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PREFACE 

Many studies of one—dimensional transport processes 

can be found in the literature of mathematical physics. 

However, the literature mostly ignores the complicated 

problem of the determination of probability distributions 

involved in neutron transport processes.  In this Memorandum, 

the author begins a probabilistic investigation of transport 

processes and arrives at some functional equations for generat- 

ing functions involved in the process.  This study evolved 

from research in neutron transport theory sponsored by the 

Advanced Research Projects Agency. 
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SUMMARY 

A probabilistic discussion of one-dimensional multi- 

type neutron transport processes is given, and the invariant 

imbedding technique is applied to the generating functions 

of the emitted neutrons.  A system of simultaneous partial 

differential equations for these generating functions is 

then derived.  The well-known Ricatti equation for the 

expected reflected flux follows from these differential 

equations. 

-"•: 
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A PRELIMINARY INVESTIGATION OF 

TRANSPORT-BRANCHING PROCESSES 

1.  INTRODUCTION 

The purpose of this Memorandum is to begin a probabilis- 

tic study of neutron transport processes, in which neutron 

multiplication plays a role.  We consider a model of the 

one-dimensional neutron transport process that has been 

extensively studied from a nonprobabilistic viewpoint by 

Bellman, Kalaba, and Wing [2, 3], and others.  The essential 

step of this nonprobabilistic viewpoint is to define a vector 

representing the expected value of the neutron flux and to 

regard this expectation vector as being propagated through 

the medium.  This description of the neutron transport 

process then bears a strong resemblance to the physical 

model of radiative transfer, first studied by Stokes in 

the nineteenth century. A brief history of the study of 

radiative transfer and neutron transport processes, as well 

as an extensive list of references, can be found in Redheffer 

[6]; references concerning neutron transport are given in 

Bellman and Kalaba [1].  In our probabilistic investigation 

of neutron transport processes, we also utilize the concept 

of a branching process [4].  We therefore refer to our 

mathematical model of a one-dimensional neutron transport 

process as a transport-branching^ßrocess. 

♦ M~W *,■="    r  n    ^Hwa^K- 
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In the model of a one-dimensional neutron transport pro- 

cess that we shall use throughout this Memorandum, our basic 

assumption is that neutrons are point particles constrained to 

move along a finite line segment.  This finite line segment, 

which we shall refer to as the rod, represents the inter- 

acting medium through which the neutrons travel.  The 

neutrons travel through the rod, moving either to the 

right or to the left, and interact with the medium, occasion- 

ally producing additional neutrons by nuclear fissions.  We 

assume that the neutrons do not interact with each other, 

so that the probability of a given neutron entering into 

a nuclear fission or otherwise interacting with the medium 

is independent of the presence of other neutrons.  We 

further assume that these probabilities are independent of 

time.  In general, energy dependence may be involved, but 

we shall restrict the allowable energies of the neutrons 

to a finite number of values, called energy states.  A 

neutron is then completely described by its position in 

the rod, the direction it is traveling ("to the left" or 

"to the right"), and its energy state.  A neutron transport 

process is initiated by neutrons entering the rod at the 

left or the right, and when a neutron leaves the rod (at 

the left or the right), it can no longer interact.  The 

models of one-dimensional neutron transport processes 

given in [1, 2, 3J are similar to our model and differ by 

varying degrees of generalization and specialization.  The 

• 
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description of the physical parameters needed to describe 

the process is given in Sec. 5 of this Memorandum. 

We are interested in the problem of determining the 

probability distributions of the neutrons leaving the rod 

in neutron transport processes initiated by given beams 

of neutrons.  One could consider the neutron transport 

process as a continuous time stochastic processes, but 

such an approach does not yield explicit solutions to 

the particular problem that we are considering—determining 

the probabilities that given numbers of neutrons leave the 

medium (rod) throughout the process.  The general approach 

that we use is to consider the probability distributions 

of the neutrons leaving the medium as functions of the ini- 

tial and end points of the rod (which we consider as imbedded 

in the real line).  This technique, for which Bellman coined 

the term invariant imbedding [1, 2, 3], has been used by 

Bellman and others in the study of neutron transport proces- 

ses as well as in a variety of other problems.  We first 

consider the problem of determining joint probability dis- 

tributions of the neutrons "reflected" and "transmitted" 

through a rod composed of two adjoining rods, each with 

known probabilities for reflection and transmission.  The 

approach that we use is similar to the method employed by 

Mycielski and Paszkowski [5] in discussirg a simple particle 

transport process, which is a special case of the process 

we consider. A direct application of the Mycielski-Paszkowski 
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method  to our problem would result in immense combinatorial 

difficulties unless a proper choice of random variables  is 

made.     We use a set of random variables  that describe a 

multitype  (Galton-Watson)   branching process   [4],  and we 

are  thus  able  to obtain  simple functional equations for 

the generating functions  describing  the reflected and trans- 

mitted neutrons.     Finally,   by using a  limiting process,  we 

obtain partial differential equations  for  these generating 

functions. 

. 
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2.  BRANCHING PROCESSES 

We begin by summarizing the terminology and notation 

of branching processes [4] that we use throughout this 

Memorandum.  A branching process consists of a collection 

of objects—e.g., neutrons in a chain reaction—each of 

which can produce similar additional objects.  If we con- 

sider an initial collection of objects as belonging to 

"generation 0," then the collection of all objects produced 

by these objects are considered as objects of "generation 1." 

In general, the objects of generation n produce objects of 

generation n + 1.  Since the probability distribution of 

the objects of a given generation depends only on :he dis- 

tribution of objects of the immediately preceding generation, 

we thus have a Markov chain 

z0  1  2      „n 
^ ~^ 

where Zn describes the objects of the n-th generation, for 

nonnegative n.  Furthermore, the distribution of the descen- 

dants of a given object of generation n is independent of 

the distribution of decendants of the other objects of 

generation n. 

We shall consider branching processes involving a finite 

number of types of objects, and we number the types from 1 

to m.  The state of the process in generation n, represented 

by Z in the Markov chain, is described by an m-dimensional 

vector with nonnegative integer components, (z?, ..., zn), 

where z. is the number of objects of type i in generation n. 



^ 
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We can thus consider Zn as a vector-valued random variable, 

which we shall refer to as a random vector. The generating 

function g^ of the random vector Zn is defined by 

^•l)    *'-(*"  s )-    Y b(n)    A ..Jj 
k^.^k -0 h"'m    1    m 

m 

wher< 

b (n) 
{"**•*& -*V   k2'   ••■'   U) 

for n - 0, 1, 2,    We consider the domain of g, v to 
m (n) 

be D , where D is the closed unit disk in the complex plane, 

and we note that g(n) : Dm - D and that g(n)(l, ..., 1) - 1. 

We quote now the basic result of Kolmogorov and Dmitriev 

(see Harris [4], p. 36) for branching processes.  Let 

V.-.k (for i - 1' •••' m; k,, ..., k - 0, 1, 2, ...) 
i   m *      ■ 

represent the probability  that a particle of type i will 

produce exactly k,  particles of type j   for j   - 1.   ...,  m. 

We define the function f:  Dm - Dm by 

where 

(2.2) 
k        ^ k -n    kT • • krT, R.1 , . . . , K "u      i tn 1   * 

s  - (sj^,   . .. ,   sm)   . 
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The resulting relation describing the generating functions 

^8(n)' is 8iven by 

(2-3)    g(n)(s) - g(0)(f(n)(s)) . 

where f^n^ is the n-th iterate of f (defined recursively by 

^(n+l)^ " £<i(n)W)j ^(O)^ " !>•  We cal1 I  the branching 

generating function of the branching process fZnl, 

Some notation that we find convenient to use throughout 

this Memorandum is summarized below.  We denote vector 

quantities by an underscored "~" and write s - (s-, , . . . , s ) , 
111 -In/ 

£ ■ (s^, ..., sm), etc.  The symbol 1 represents the 

vector (1, ..., 1).  We also use this convention for sub- 

scripts, and the symbol ? means the sum over all nonnegative 

values of j^ J2, ..., and Jm (where | - (^ ..., jm)). 

For example, Eq. (2.1) becomes 

'(n)^  ^ ök m 

We also utilize the concept of the conditional generat- 

ing function of a vector-valued random variable.  If W is 

an m-dimensional random vector, and (A,  is an event, then 

the conditional generating function CD of (Wl Ä. ) is defined by 

k    k 
(2.4)    a)(s) - 2 P(w - lda)s1

1...s In . 

■»-^ 
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3^ THE TRANSPORT GENERATING^ FUNCTIONS 

We now consider the one-dimensional neutron transport 

process described in Sec. 1. Let the process take place 

on a rod extending from 0 to x on the real line and assume 

that there are m distinct energy states numbered from 1 to 

m. In order to allow a simple mathematical solution of 

this one-dimensional transport-branching process, we shall 

consider the following variables: 

X^ - the number of neutrons of energy state i leaving 
the reac-or at the left, 

Y, - the number of neutrons of energy state i leaving 
the reactor at the right. 

i ■ 1, ..., m. 

We also define the quantities: 

U^ - the number of neutrons of energy state i incident 
at the left (traveling toward the right). 

V^ - the number of neutrons of energy state i incident 
at the right (traveling toward the left), 

i ■ 1, • • • j m. 

(See Fig. 1.) 

X-   ^ Y 

Fig.l 
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We then define the random vectors 

x- (xi V'   I'dv ■■■. V- 
S-(ui ».)•    X-Ci.   ... vm). 

and 

J-<J. » -(»i VYi V • 

We also let E represent the "i-th unit vector" with the 

i-th coordinate equal to one, and other coordinates zero. 

Since the number of neutrons emitted from the reactor 

depends on the incident neutron beams, the generating 

function for Z depends on the assumptions about the values 

of U and V.  It is useful to define 

^ - the conditional generating function of 

(Z|U - 0, V - E1) , 

2 
Y^ - the conditional generating function of 

(ZlU - E1, V - 0) , 

for  i - 1, ..., m. 

We also define the vector generating functions Y1 and Y2 by 

iHs)  - (Y[(s), ..., Y^s)),   t-l, 2 . 

Assume that U and V are random vectors, and let 

g: D  - D be the generating function of the 2m-dimensional 

•W^l . 
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vector  (V^   ...,   Vm,  U^   ...,   Um).     Since  the neutrons do 

not interact with each other,   it  is easily  seen  that  the 

generating  function for Z is  given by 

Our  eventual  goal is  to  determine the  generating 
1     2 

functions Y and Y , which we call the transport generating 

functions.  Following the Mycielski-Paszkowski method [5] 

of considering multiple "reflections" and "transmissions," 

we first determine the transport generating functions for 

a rod composed of two segments in terms of the transport 

generating functions of the segments. 

Consider the composite rod aß made up of the two rods 

a and ß as in Fig. 2.  We let ff, T* and f* U • 1. 2) 

be the transport generating functions for the neutron 

transport processes on the rod a, the rod ß, and the rod aß, 

respectively.  Let i be a fixed integer between 1 and m. 

and consider the transport-branching process initiated by 

one neutron of energy state i incident upon the rod ap at 

the right (and no neutrons incident at the left).  Let X 

and Y be the random vectors representing the neutrons 

emerging from the rod aß, as defined above.  The generating 

function for Z - (X, Y) is thus given by the i-th component 

of laß*  This Process is to be viewed as consisting of 

multiple "reflections" and "transmissions" through the 

segments a and ß (see Fig. 2).  We let (V0, R0) represent 
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Fig.2 

mrm • - — 
s    ■      ^ -^ 
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-* 

the neutrons emerging directly from (3 with the single 

neutron of energy state i incident at the right.  Then we 

^et  (Z  '  H ^  represent the neutrons emerging directly 

from a with incident neutron beam represented by V0 at 

the right.  In general, (Vn, Rn) represents the neutrons 

emerging directly from p with incident neutron beam u"-1 

at the left; (T  , U  ) represents the neutrons emerging 

directly from a with incident neutron beam Vn at the right. 

(V and Rn are considered as 0 for n odd; Tn and Un are 

considered as 0 for n even.) We define 

n 
7. 

k-or 

n 

Xn = Z Tk , 

(3.1) 

rn • 2 Rk . 
k-0~ 

This complicated description can be greatly simplified 

by considering the branching process involving 4m objects, 

where the object of type i represents 

r 

{ 

V 

a neutron of the energy state i emerging from 

aß to the left, for 1 < i < m; 

a neutron of energy state i - m emerging from 

aß to the right, for m +1 < i ^ 2m; 

a neutron of energy state i - 2m emerging from 

ß to the left, for 2m +1 < 1 < 3m; 

a neutron of energy state i - 3m emerging from 

a to the right, for 3m + 1 < 1 < 4m. 
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This branching process  is described by the Markov 

chain 

S'S'  •••»£♦*••  > 

where  the 4m-dimensional random vector 

(3.2) an -  (Xn,   Yn,  Vn,  Un)   ,       for n - 0.   I,   2,   ...   . 

Let g^ be the generating function of £n and let f: D^111 - D^11 

be^he^r^ching_generating_function for the branching process 

{Qnl. 

Writing 

(3.3) f - (f1,   f2,   f3,   f4)   , 

where £*! D4"1 - Dm, / - 1, ..., 4, the reader can easily 

see from the above description that 

fl/ 1  2  3  4N   1 f(s,s,s,s)=s  , 

(3.4) 

f2, 1  2  3  4v   2 

<:3/ 1  2  3  4N   1, 1  4v f (s , s , s , sH) « ^(s"-, sH) , 

fV- s2, s3, s4) -^(s3, s2) . 

Writing f(n)  - (fln),   f(
2
n),  f3n),   f^^), we have the recursive 

formulas: 

•■v -^T 



-14- 

£(n)   " *     » 

f2       - s2 
£(n)       I     ' 

(3-5) l(n)   " la^1'  4  !)>= ^^  ^(n-2) '  ^2»   ' 

l(n)  -4(£(n-l)'  ^   -4(^(Ä1'  £(n-2))'  ^ 

The Markov chain Q^ will converge,   providing V 

approaches  zero  (or  equivalently,  U    "* £)•     Consider  the 

Markov chain 

v0   v2   V4 v2n 
/-v> ^ 

which also describes a branching process with branching 

generating function given by 

(3.6)    f (s) = £at   Y,
2(s, 1)) . 

If we assume that the Jacobian of f (evaluated at 1) is 

small enough, then V  - 0 with probability one; and it 

follows that U -»0 with probability one. and 2 converges 

to a finite value with probability one. 

We henceforth assume the convergence (with probability 

one) of 2n,  This means that the probability of a "chain 

reaction" (producing an infinite number of neutrons) occur- 

ring is zero.  Then the generating functions f/n\ 
and 

g(n) " 8(0)~(n) converge' and lim 8(n) 
is the  generating 

function of lim Qn.  From the definition of Qn, it is clear 

that 



•w^r<^«BW(B 
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(3.7) lim Qn - (X,  Y,   0,   0) 
n-»» 

Let 

1    _2 1/1    _2> 

(3.8) 
:4       /I 2 2/1      2, ^£(n)(£' A' 2' g) --V- r) n-»cD 

Let cp    and to      be  the i-th components of Y^  and y1   , ap 

respectively.     Then 
-i-ß -^aß 

8(0) ■ V*3, ^2) ' 

and therefore, 

8(n) - ^ny s2) ■ 

The generating function for  lira On » (X, Y,   0,   0)   is given bv 

!■/   1     .2,       2> g - lim g(n)  -yn^ji ' I >'  O   • 

Therefore, 

•o*^1' £2) - I<JJ1. A2, 0, 0) - ^(t,1^1, s2), s2) , 

from which we conclude  that 

(3.9) Z^ß  -^(n1,   s2) 

.. 
V      ._■  ^r---.^ i^: •^'' 

4* 
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By identical reasoning,  or by  appealing to  symmetry, 

we obtain our  second relation 

1 2 The  functions   n     and  n   ,  which  are   the  limits of  the   sequences 

given by Eqs.   (3.8),   satisfy  the  implicit equations, 

TT1  -  Y^Cs1,   n2)   - Y^S1,    Y^Cn1,   s2)) 

(3.11) 
TT2 - J&n1,   s2)   = ÄY^S

1
,   n2),   s2) 
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ii_..PIFFERENTIA^EQUATIONS_OF  INVARIANT ipEDDING 

We now use  the invariant  imbedding approach combined 

with  the  functional equations  of Sec.   3  to obtain  systems 

of partial  differential equations  describing  the  transport 
1 9 

generating  functions  f    and  Y   .     One should note  that  these 

partial  differential equations  could also be obtained,  using 

the  techniques of  this Memorandum,  without recourse  to   the 

results of Sec.   3. 

Let us  first consider  a neutron transport process 

taking place on a given rod   [0,   L] .     To utilize  the invariant 

imbedding method,  we consider   the family of  segments   [a,   b] 

of the rod   [0,   L] .   and we  let  Y}"    . ,   and f?    . ,   be  the 
~[a,Dj ~ia,bj 

transport  generating  functions  defined in Sec.   3  for  the 

transport  process  taking place on the  (isolated)   rod 

segment   [a,   b]   (for 0 ^ a < b  < L). 

Write 

lfo,x]^>  -I*(x'  *>.       '  -1,   2  , 

where 

(s1,   s2)  c D2"1 
'v.* *^» 

and consider  the family of generating functions   [Y^x.   S)} 

parametrized by  the ral variable x.     In order  to obtain 

differential equations for Y^x,   s), we consider  the rod 

[0,  x + h]   as  composed of  two  segments   [0,  x]   and   [x,   x + h]. 

(See Fig.   3.) 

^,'^—»"' -^ .KUJP .^.-yr _ ■   ■. 
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a ß 
-^r 

x + h 

Letting 

Fig. 3 

^   ^I[x,x+h]^ h«0 
= uu^(x, s),   i --  I,   2   , 

we have 

(4-2)    rf*  v+hl(s1' s2) " s' + a/(x, s)h + o(h).   l = l,   2   . 

1      2 (We shall assume that a) and ^ are continuously differentiable.) 

Applying the results of Sec. 3 with a = [0, x] and 

p = [x, x + h] (see Fig. 3), we have 

^(x + h, s1, s2) = Y}-V ^UICAS
1
, s2), s2) 

(4.3) TT^S
1
, s2) + ^(x, n1(s1, s2), s2)h+o(h) 

**j e*>j **^ *■** r>*t s>*t *\j 

Y2(x + h, s1, s2) = Y2(x, s1, ^(s1, s2)) 

Applying Eqs. (3.8), we find that the functions n and 
2 

n in the above expression are given by 



1 * **-   i        *—*m 
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(4.4) 

Jll(Bls   S2)    -  T^X,    S1,    S2)   + h   Z   ^(x,    yl,    s2)   \ +  o(h), 
j äs. 

2/1       2 1      2> H C»   '   » )   = s^ + UJ
Z
(X,   Y1,   sz)h + o(h)   . 

We readily obtain from Eqs.   (4.3)  and  (4.4)   the basic^ystan 

21 partial differential  equations  for  the  transport generating 

functions, 

(4.5) 

55 2X<«' I1' I2) 
»T 

S .^(x. I1. 42) ^j + „Hx, J1, s2) , 

^I2(x.4l.l2) 

,1     .2. 

>SJ 

of 

J Bs2 

The initial conditions are given by 

(4.6) 
^(O, s1, s2) - s1 , 

Y2(0, s1. s2) - s2 . 

Note that the first equation of (4.5) does not involve Y2, 

so it can be solved independently to give the value of T , 

We can also regard these partial differential equations as 

an nfinite system of ordinary differential equations for 

the probabilities of various combinations of particles being 

reflected and transmitted. 
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If we are interested only in the "reflection" probabili- 

ties, these basic equations can be simplified by letting 

(4.7)    Hx, s) - Y1(x, 1, s) . 
's* *** r^f J^J 0^ 

The reader should observe that $.(x, s) is the conditional 
i   ~ 

generating function of (Y|U - 0, V - E1) in the transport 

process taking place on the rod [0, x].  The first equation 

of (4.5) becomes 

9 m  2 ^ 1 
ü i(x' s) - S vAx,   f, s) Jr Hx, s) + /(x, $, s) , 

J-l J        j 
(4.8) 

$(0, s) - 1 . 
'*-~f -**-/ f*^ 

This last result is analogous to the matrix Ricatti equation 

for the expected reflected neutron flux [1].  In fact, the 

Ricatti equation for this reflection function follows from 

Eq. (4.8), as is shown at the end of the next section. 
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5.  EQUATIONS FOR NEUTRON TRANSPORT 

The differential equations of Sec. 4 are dependent on 

Eq. (4.2) (or, equivalently, on Eq. (4.1)), which defines 

the key parameters, w    and u)2, of an abstract transport- 

branching process.  We shall now determine wl  and JU
2
 in 

terms of some physical parameters of a neutron transport 

process.  Let 

^i(x) - The reciprocal of the mean free path of a 

neutron of energy state i at the point x in 

the rod, 

qjk(x) ■ the probability that a nuclear fission initiated 
by a neutron of state i at the point x will 

produce exactly j neutrons of state u travel- 

ing to the left and k neutrons of state u 

traveling to the right, for u » 1, ... , m. 

(Absorption of neutrons can be taken into account by con- 

sidering absorption as a "nuclear fission" in which no 

neutrons are produced.)  We then define the generating 

functions 

(5.1)  Q^x, s, t) - SqikW.J1...«^ tj1... 
k 

t m 

for i ■ 1, ... , m. 

Consider a neutron fission process  in the rod  [x,   x + h]. 

A neutron of energy state i  entering  the rod has  the prob- 

ability rTi(x)h + o(h)  of causing a nuclear  fission,   and  the 

«■^ ■^-saar^KSr- -r- 
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probability  that  this neutron starts  a chain reaction result- 

ing in  two or more  fissions  is o(h).     Letting Bpf represent 

the  i-th component  of  Yr       +hl^;   " ^,   2;   i   « 1,   . . . ,  m) .   we 

therefore conclude  that 

MA    .2N . 

[1  f,t(x)h + o(h)]s[ (no fission). 

1 _2> JpK« , s"1) » / + [a. (x)h + o(h)]Q. (x, s1, sz)  (one fission) 

+ o(h) (two or more fissions), 

or, more simply. 

(5.2)    CD.^S
1
, s2) = s/ + a.(x)[Q.(x, s1, s2)  sf]h + o(h) 

Comparing Eq. (5.2) with Eq. (4.2), we obtain our 

desired result: 

1  _2 (5.3)    ^(x, s1, sZ)   =a.(x)[Q.(x, s1, sl)  -  if] , 

for t ■ 1J 2;  i = 1, . .., m. 

With only one  energy state (m = 1),   Eqs.   (4.5)  become 

T^y ^    = [Q(Xi   Y1,  s2) - s2]  ^ + Q(x,  Y1,   s2)  - Y1 

(5.4) 
OS 

^T ^    " lQ(x'  Y'  s ) - s ]  —j 
n S 
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The neutron fission process in which each fission 

produces two neutrons, one traveling to the left and one 

traveling to the right, is often discussed in the literature 

[1. 2, 3].  In this case, 

(5.5) Q(x, s1, s2) = sV ; 

the  transport  generating functions  are given by 

ÖS 

(5.6) *      .f . f.V- «2.   W2 

^xTH   " (s^   - ■ ) 
.s2 

^(0,   s1,   s2)   = s1,     Y2(0,   s1,   s2)   = s2  , 

and the generating function for the reflected neutrons is 

given by 

^^y ^ - (s$ - s) ^ + s* - $ , 

(5.7) 

*(0, s)" 1 . 

This special case is discussed by Bellman, Kalaba, 

and Wing [2], who arrived at Eq. (5.7) using elementary 

methods. 

Another  simple example of a  transport-branching process 

is  the continuous ^ng-dimensional random walk.     In a one- 

dimensional random walk,  a particle enters  the rod and 

/ 
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randomly reverses its direction during its journey until 

it leaves the rod either to the left or to the right.  Let 

a;(x) 
the reciprocal of the mean-free path of Che 

particle when it is traveling to the 

fleft 

right 
y  at the point x. 

Thus the particle has the probability ar(x)h + o(h) of 

reversing its direction while traveling to the right from 

x to x + h, and similarly while traveling to the left. 

The reader can then readily see that 

(5.8) 

(U (X, S, t) = a (x)(t - S)  , 

UL' (X, S, t) - ar(x)(s - t) . 

Equation (4.8) then becomes 

^x - (x)O - s) ^1 + ai(x)(s - $) , ^1 
(5.9) 

$(0, s) - 1 . 

The solution to (5.9) is given by 

*(x, s) = 1 - p(x) + p(x)s , 

where p(x) is the solution of the Ricatti equation 

(5.10) 

- (r  + '7r)p + arp  , 

p(0) = 0 . 

-er 
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The quantity p(x) is the probability that a particle enter- 

ing the rod [0, x] at x will leave the rod at x, and this 

probability is given by the well-known equation (5.10). 

The well-known matrix differential equations [1, 6] of 

a neutron transport process are easily derived from our 

general results.  Let R..(x) represent the expected number 

of neutrons of state i leaving the rod [0, x] at the right, 

given that one neutron of state j enters the rod at the 

right.  Then 

dff 
(5.11)   ^.(x) -^(x, 1) . 

If  the probability that  a  finite number of neutrons 

are produced is equal  to one  (i.e.,   the probability of the 

occurrence of a "chain reaction" is  zero),   it  follows  that 

$i(x,   1)   - 1  , 

a.^(x,   1)   - 0   ,       *, - 1,   2  , 

i  ■ 1,   .. • ,  m. 

Differentiation of Eq. (4.8) utilizing the above 

identities yields the familiar matrix Ricatti equation [1] 

for the expected reflected neutron flux, 

^^3 

^ 
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* l .2 .   1 
j nw, -iuu. aw. 

i ^ k 

a   2 

+   2   Ri, -f Rki  . 

1 2 where  tlie partial derivatives of uu    and uu    are evaluated 
1     2 at s ■ s =1. The Jacobian matrices 

12 9 
fa wB Sou ÖU) 

and  r   i     —7   >     —T   .      ana  « 
ds1 dsZ äs1 9sZ 

Ä< /N* <«»> «N^ 

1 2 
(evaluated at s = s =1) appearing in Eq. (5.12) have the 

following physical significance.  Consider a neutron trans- 

port process taking place on the isolated rod segment 

ß m  [x, x + h], in which one neutron of energy state j 

enters at the right (and no neutrons enter at the left). 

Then the expected number of neutrons of energy state i 

leaving ß at the right is given by 

* 1 
ÖUU. 

—4 (x, 1, 1) + o(h) , 
ösj    ~ ~ 

and the expected number of neutrons of state i leaving at 

the left is given by 

A  1 
6ii - n <x' i' v+ o(h) • J   ds. 

<T 
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2      2 

The matrices -^j  and ^ are similarly interpreted. 
^s     ös 

^-z 

We can similarly define ^.(x) to be the expected 

number of neutrons of state i leaving the rod [0, x] at 

the left, given that one neutron of state j enters the rod 

at the right.  Then 

(3.13)   T.^x) --^4 (x, 1, 1) f 

and again assuming that the probability of a "chain reaction" 

is zero, we similarly obtain the differential equation for 

the transmission matrix 

1      ? 
(5-14)  *T«-stv^+j^v- 

Finally, we remark that the algebraic equations for 

nonprobabilistic transport theory found in Redheffer [6] 

are also easily obtained from the results of Sec. 3 by 

taking expectations. 

^    ' 

* 

f 
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