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PREFACE 

An area of great interest to  the ballistic-missile-defense commu- 

nity is  the study of wake flows.    Recent experimental work has  been di- 

rected toward  the measurement of basic  parameters which could be used 

to characterize  these flows.    The experimental data thus obtained must 

then be compared with  the theoretical  data  that are available.    The pur- 

pose of this Memorandum is  to clarify the  interpretation of  the measure- 

ments so that comparison with theoretical  results will be more meaning- 

ful. 

This Memorandum is  a part of a study of reentry aerodynamics  for 

the Advanced Research Projects Agency. 
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SUMMARY 

This Memorandum demonstrates  that  the wire recovery temperature 

in a steady-state flow may be accurately determined without a detailed 

knowledge of  the convective heat-transfer rate to  the wire.    The anal- 

ysis  is valid even for large conduction losses at the wire supports, 

and a similar analysis could be made for  transient conditions. 
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I.     INTRODUCTION 

In interpreting recovery-temperature measurements in conventional 
(I  2) 

steady-state wind   tunnels,   it  is conmon practicev   '   /   to find  the  aver- 

age  temperature of a  fine wire with no electrical heating and to  infer 

the wire recovery  temperature by a detailed accounting of the heat  trans- 

ferred  to the wire by convection and of the heat  lost from the wire by 

conduction to  the supports  and by radiation.     Todisco and Pallone'   ^ 

have recently proposed a variation of this method,   applicable to  shock 

tunnels,   in which  the recovery temperature  is  determined in the presence 

of  simultaneous  electrical heating. 

The purpose of  this  analysis is to demonstrate  that the wire recov- 

ery  temperature  (and  hence   the  local  stagnation   temperature of  the  stream) 

may be  accurately determined without a detailed  knowledge of  the convec- 

tive heat-transfer  rate  to  the wire.    The analysis remains valid  even 

in  the presence of  large conduction losses  to   the supports.    This   tech- 

nique may be considered   to  be  the steady-state  analogue of  the method 

proposed  in Ref.   3. 
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II.  STEADY-STATE HEAT BALANCE 

The technique to be analyzed consists of two parts.  Before flow 

initiation, the wire is placed in a vacuum with a fixed current, and 

the mean wire temperature is measured.  Flow is then initiated, and the 

change in mean wire temperature (mean wire resistance) with the same 

current is noted.  The experiment is repeated with different currents 

until no change in wire resistance before and after establishment of 

flow is observed.  The ideal recovery temperature of the wire is then 

inferred from a detailed heat balance. 

For simplicity, assume that radiation is negligible and that the 

wire resistivity varies linearly with temperature according to the re- 

lation 

Mil 
1 + af(T - T ) 
 * r_ 

1 + Qr(T* - T ) 
(1) 

where T is a scaling temperature to be specified and T is the  temper- 

ature at which the resistivity coefficient a is evaluated.  Assume also 

that the wire thermal conductivity k  is independent of temperature, 
w 

that each cross section of the wire is at a uniform temperature, and 

that the convective heat-transfer coefficient h is constant across the 

wire, i.e., 

hd       *    * Nu  = ■;— =  constant 
o    k 

o 

where k  is the thermal conductivity of the stream at the local stagna- 
o 

tion temperature and d is the wire diameter. 

The heat balance for the wire, using the assumptions listed above, 

is 

This tedious repetition may be circumvented in practice by record- 
ing the wire resistance as a function of current in both a vacuum and 
the flow and by noting the intersection of the two curves. 
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^,+   ^iiLi =     TTdXh(T -  T    ) 
aw7 (2) 

where R(x)   is  the  resistance along the wire and T      is  the recovery tetn- 
aw ' 

perature of the flow.  This equation is to be solved with the boundary 

conditions T = Ts (the temperature of the supports) at x = ± (X/2). 

Define the new variables 

(x/i) 

s = or 

1 + a(T - T ) 
(3) 

(T - T )/T 

where T    and T are scaling temperatures.     Then 

1 +  st (4) 

and Eq. (2) may be written 

d2t 
—P + at(I - c) + a(l + bc)/s = 0 
dz^ 

(5) 

where 

4iVsX 
2 ~ 

nd k T w 
nd) 2 / i R o 

 r_ 
k i 
w 

(6) 

b = s(Taw " T*)/? = ^^«w " T*)^1 + a(T* - T )] aw (7) 
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c    =    — 
a -Am TTNu k I o o 

i2R a r 

(8) 

and R    is  the wire resistance for a uniform temperature T  . 
r r r 
In many wind-tunnel   investigations,   the  convective heat-transfer 

rates  are quite low,   so   that  the nondimensional  parameter c  is  less 

than unity.    The solution of Eq.   (5)  is  then  a cosine distribution of 

temperature between  the  supports,  with  the wire  temperature  equal   to 

the  support temperature  at z = ± 1/2. 

For convenience,   choose   the  two  scaling   temperatures T    and  T  and 

the  reference  temperature T    to be equal   to   the  support  temperature T 
r s 

(assumed known in a  given  experiment).     Then   s = aT   ,   t    =0, s      s 
b = a(T      - T ),   and  the   temperature distribution  t(z)  across   the wire N aw        s' 

1/2 1/2 
1 + st(l -  c)/(l + be)     =    cos  {[a(l -  c)]17   z}/cos  {[a(l - c)]1'   /l] 

(9) 

The  temperature distribution without convection   (c = 0)  before  flow 

initiation is t (z): 
ox 

,  1/2  w ,  l/2/0. 
1 +  st      =    cos   (a      z)/cos   (a      /2) (10) 

Integrating  these results  across  the wire   to   find average wire  tempera- 

tures,   t and  t  ,   yields 
' o    J 

1 + st(l - c)/(l + be)    =    2  tan  {[a(l  -  c)]1/2/2}/[a(l -  c)]1/2 

(11) 

1 +  st      =    2  tan  (a1/2/2)/a1/2 

o 
(12) 
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III.      INTERPRETATION OF THE RECOVERY TEMPERATURE 

The proposed  experiment is conducted in such a way as  to  equate 

the average wire resistances before  and  after initiation of flow,   i.e., 

E = S  .     Since  the resistance varies   linearly with temperature,   this re- 

quires  t =   t   .     Assuming that the wire properties and the Nusselt number 

Nu    are known,   Eqs.   (11)   and  (12)  may be combined to solve  for   the re- 

covery temperature T     .     After some manipulation,   the recovery  tempera- 

ture is  found   to be given by the solution of the following expression: 

g/(l 4- be)    =    (tan ßg -   ßg)/(tan ß -  ß) (13) 

*(?m - V (14) 

(a/2)1/2    =    (i/d)(i2Rra/TTkwJe)1/2 (15) 

(1 - c)1/2 (16) 

and ß and c  are defined, with R    and or being determined from Eq.   (1) 

and with T    » T   . 
r s 

The solution of Eq.   (13)  may be put  into dimensionless  form by us- 

ing the measured mean wire temperature T    without flow: o 

T      -  T 
R    E   _|2 2. (17) 

To  -  T8 

Then ft ■ ft(ß,c)   and  in general will depend on the local Nusselt number 

Nu    through c.     The parameter ß is restricted  to values  less   than TT/2, 

since t    is  finite  (see Eq.   (12)).     The cosine temperature distribution 

has been taken as 0 < c < 1. 

The ratio R(ß,c) has been computed for pairs of values ß = 0.1, 

0.2, ... 1.5, and c - 0.1, 0.2, ... 0.9. Somewhat surprisingly, the 

value of ft is very insensitive to  the values of ß and c chosen,  with 

• - "—"" "•■^ 
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Rmln " 1•1995 (ß = 0'1' c = 0'1) and ^x " 1-228 U - 1.5, c - 0.1). 
An asymptotic expansion for ß « 1 yields R = 1.2 exactly, independent 

of the value of c.  The interpretation of this result is very important: 

The recovery temperature T  may be accurately determined without a pre- 

eise knowledge of the local Nusselt number Nu . 
o 

An a posteriori physical argument for the insensitivity of R to 

the local heat-transfer rate may be constructed. The heat lost to the 

supports with and without flow has been denoted by Q and Q , respectively, 
0 2 

Without flow and neglecting radiation, the Jouiian heating i R is equal 

to Qo.  After flow initiation, the temperature distribution will become 

more uniform across the center of the wire, but the temperature gradient 

at the tips will increase, i.e., Q > Q .  The difference Q - Q must be 
o c 

equal to the net convective heat input in the wire or 

Q ~ Nu (T  - T) 
o    oN aw   ' 

As the Nusselt number Nu becomes small, the difference Q - Q also de- 

creases so that the temperature difference (T  - T) = (T  - T ) re- 
aw        /       x aw o' 

mains essentially constant.    Therefore,   the ratio R is nearly independ- 

ent of Nu  ,   and  to  the accuracy of most experiments,  R may be  taken to 

be 1.2. 

For  this  analysis  to be valid,  c must be  less than unity,   and a 

steady-state condition must have been established.    A similar analysis 

may be constructed for c > 1  (the  temperature distribution follows a 

cos h ßz  law)   and for  transient conditions   (the problem is  linear,  and 

variables are  separable). 
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