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{BSTRACT

Theil and van de Panne have shown how to replace the problem of
maximizing a (strictly concave) quadratic function subject to linear
inequality constraints by a finite sequence of sub-problems involving
only linear equality constraints. In another paper, the author general-
ized this approach to (1) cover the case of a differentiable and strictly
concave objective function, and (ii) permit almost complete flexibility
in the choice of the initial sub-problem. The last fcature seems essential
for the approach to be of computational interest, for computational
experience suggests that the number of sub-problems that must be solved
and the amount of computer storage required to keep track of them have
a tendency to grow approximately exponentially with the '"poorness of
the choice of the initial sub-problemn.

In this paper a modification of the above approach is proposed
which generates the sub-problems in Markovian fashion. This all but
eliminates the storage problem. Although the resulting sequence of
sub-problems is no longer necessarily finite, by means of the theory
of Markov chains it is shown that eventual convergence to the optimum
is assured with probability one and argued that the expected number of
sub=-problems that must be solved increases only approximatley linearly with
the "poorness'" of the initial sub-problem. Computational evidence is given
which supports this estimate and suggests the probable efficiency of the

Markovian algorithm even for quite ''bad" choices of the initial sub-problem.
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This paper is a scque? to a previous one [1] in which the author
gave a procedure for solving the problenm
(1) Maximize f(x) subject to aix < bi, i=1,...,m,
where f 1is a strictly concave and differentiable function that assumes
its unconstrained maximum.i/ The ai and x are n-vectors and the bi

are scalars. It is also assumed that (1) is feasible, which implies that

it has a unique optimal solution x*, and that the ai corresponding to

the constraints that are satisfied with strict equality at x* are linearly

independent.
The procedure amounts to reducing (1) to a finite sequence of sub-
nroblems of the form

(2) Maximize f(x) subject to a x = bi’ ies,

i
where S 1is a subset of the constraint indices. Note that (2) involves
only linear equality constraints, and is therefore considerably more
amenaole to solution than (1). The sequence of sub-problems is determined

o1 K o} K
by a finite sequence S ,S ,...,S , where S 1is nearly arbitrary and S

yields the optimal solution of (1). Rules are given for determining Sk
given So,...,Sk-l, and computational advantage can be taken (when (2) 1is
solved) of the fact that Sk differs by only one constraint index from
one of its predecessors.

The procedure can be viewed as a generalization of Theil and van de
Panne's algorithm [2] for quadratic programming. Aside from applicability
to a larger class of problems, the essential generalization is that So no

longer must be chosen to be the empty set. This permits advantage to be

taken, by choosing s° appropriately, of the frequent availability of

1/ Lincar cquality constraints, which con be handled (1] by a simple
modification of the procedure much more efficiently than by expressing
them as inequalities, have been excluded from (1) for the sake of
notational simplicity.
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prior (but possibly erroneous) information regarding whici of the inequality
constraints of (1) are actually restrictive. In fact, with problems that
have more than a few constraints it is almost mandatory to use such infor-
mation to guide a propitious choice of SO, for computational experience

[1] suggests that the total number of sub-problems that must be solved and
the amount of computer storage required to keep track of them tend to
increase approximately exponentially with d(So), the "aistance" (to be
defined more precisely below) from s® to a "true" set of restrictive
constraints of (1).

The purpose of this paper is to suggest how the approximately exponen-
tial dependence of computational work on d(So) can be ameliorated to
approximatcly linear dependence by generating the sub-problems in a
Markovian rather than deterministic fashion. This strategy essentially
eliminates the storage problem, for Sk will depend in a very simple
manner only on Sk-1 (it differs from it by exactly one constraint). It
is shown that eventual termination is assured with probability 1 and
argued that the expected number of sub-problems to be solved before term-
ination should be approximately proportional to d(So). Computational
experience tends to confirm this estimate. Coefiicients of proportionality
of about 2 were observed, whicih means that for the test problems, at least,
the bMarkovian algorithm is quite efficient even when d(SO) is large.

In what follows, the assumptions of the opening paragraph are assumed
to hold. Although an effort has been made to keep the present paper sclf-
contained at least so far as definitions are concerned, reference (1]
should be consulted for motivation and proo.s of the unproved assertations

below.



THE MARKOVIAN ALGORITHM

———— s o T

Denote by B the set {1 ¢ M: a x*=bi] and by A the set

i

{1 ¢ M: uti>0), where M 1is the set of the first m positive integers

and the u* are the usual optimal "multipliers" associated with (1). From
the Kuhn-Tucker Conditions, it follows that the inclusion A E P. always
holds. A subset S of M 1s said to be consistent when the linear
equations aix = bi' i € S, are consistent, and indecpendent when ai,

i € S, are lincarly independent.

It is known that the optimal solution xs of (2) exists and is unique
whenever S 1s consistent, and that xS = x* 1if and only if A EES E B.
It is convenient to denote by d(S) the distance from an arbitrary sub-
set S of M to the collection of subsets {S' S M: ACS'C B}, the
metric being the number of indices in the symmetric difference set
(A-s}U{s-B}. Thus xS=x* if and only if d(S) = 0.

The following procedure for solving (1) is called "Markovian' because

Step 2 ensures that the sequence of successive values for S constitutes

a Markov chain,
o
Step 0: Choose any initial consistent and independent S , and put

S equal to SO. Gc to Step 1la.

S

S
Step la: Solve (2) for its unique optimal solution x . Put u,

equal to 0 for 1 ¢ M-S and equal to the unique solution of

S
v =
f(x) iesuiai
for 1ieS, where V denotes the gradient operator.

If uiS > 0 for all 1e¢S and aixS < bi for all ieM-S,

5 S '
then terminate: (x ,u’) = (x*,u*). Otherwise go to Step 2a.
Step lb: Solve the following equation for its unique solution zS
ar4d then go to Step 2b:

Z;: z.a+ a = 0.

i S—1o i1 10
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Step 2a: Choose io at random (with equal probability) from those
i that violated the sign tests at Step la. If io€S, replace S
by S--io and return to Step la; otherwise, replace S by
Su 1o and return to Step la or Step lb according as SU io is
or is not consistent and independent.

Step 2b: Choose ioo at random (with equal probability) from those
i that satisfy zis < 0. Replace S by S-ioo and return to
Step 1la.

Finding (xS, us) at Step la is equivalent to solving the Lagrange
multiplier cquations associated with (2). Various suggestions made in [1]
for efficient computational implementation carry over here.

It follows from the results of [1] that this procedure, which differs
from the ofiginal only in that a randomized rule is used to determine 10

and ioo’ is well-defined, and that the following lemma holds.

Lemma: At Step ZaE , 48 + 1) = d(S) -1 fcr at lcast cnc 1 violating a

test at Step la. At Step 2b, d(S-1) = d(S) -1 for at least one 1

3

satisfying zib < 0.
Each time Step 1 is entered, a new iteration begins. The sequence
of trial sets <S°,Sl,...> gencrated by the Markovian algorithm is obviously
a Markov chain. The subsets of M satisfying d(S) = 0 can be thought of
as absorbing states. In view of the random choice rule of Step 2 and the
Lemma, at least one absorbing state is accessible (in exactly d(So)

transitions, in fact) from any consistent and independent S By a basic

property of finite Markov chains, therefore, we have the following

g/ S + 1 denotes SUL when i1 ¢Z S, end S-i otherwise.

= Rl el —— N e ey . -
-
: T e o\~ - - - .



3
Theorem: The Markovian algorithm terminates with probability 1.—/

RATE OF CONVERGENCE

In applications, of course, what really matters is the distribution
of the number of iterations before termination. We shall use a simple
random walk model to derive an estimate of the mean of this distribution
as a function of d(So).

For any given problem (1), consider the (finite) collection of all
subsets of M that could ever arise in the course of executing the
Markovian algorithm. 1If the largest value of d(S) over this collection
is D(D < m), then the collection can be partitioned naturally into
D + 1 classes according to the value of d(S) for each set. From the
above discussion, it follows that the transition matrix for the assoc-
iated Markov chain can be schematically represented as in Figure 1,
where the natural partition has been used, the P matrices have at least
one positive entry in each row, the Q matrices are unspecified, and 1
and O represent identity and null matrices. We approximate the actual
situation by the simplified random walk model of Figure 2, which has
D+1 states instead of D+1 classes of states. The parameter p
represents the aggregate probability that a set S will transit, by
an iteration of the Markovian algorithm to a set o' <catisfying
d(s') = d(s)-1.

By standard methods one can derive the mean absorption times Ed

for the Markov chain represented by Fig. 2 given an intitial state

d(d=1,2,...,D):

3/ More precisely, to every € > 0 there exists a positive integer N€
such that the probability that termination has not occurred durirg the

first N€ iterations is less than € .,
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{ d(2D+1) - 2 for p = 1/2
(3) ty = ) d i s D-d+1 = D
\‘(Zp-l) - (Zp-l ) ((';—) + oo+ ( = ) ) for0<p<l,

1l
P 4 3

We see that p = is a key value in that, for fixed D and d, t

B

d

increases very rupidly as p falls below 1/2 and decreases rapidly to
quite small values as p rises above 1/2. For 1/2 < p < 1, (3) yields

a linear upper bound on t. that is quite good for 6 <p<l:

d
- d
(4) tds m for 1/2<p51 and d=1,..,.,,D.

Note that this upper bound does not involve D, that it has zero inter-

cept, and that its slope is quite small for p larger than .6 or so.

This analysis suggests that, when p 1is greater than .5 on the
average, the expected number of iterations before termination of the
Markovian algorithm is approximately d(So)/(Zp-l).

COMPUTATIONAL EXPERIENCE

Th- Markovian algorithm was programmed for the IBM 7094 for the case
in which f(x) is quadratic, and tests were conducted on three medium-
sized problems. Test problems 1 and 3, of practical origin, were 20 x 9
(twenty variables and 9 constraints) and 50 x 25, respectively. Test
problem 2, 10 x 15, was methcdically generated from a random number table.
Each problem was run at 4 arbitrarily selected initial sets for each of
a number of equally spaced values for d(So), and the calculations were
done in such a way as to enable p to be estimated. The estimates are
.85, .84, and .78 respectively. Evidently the critical value p = 1/2
was amply exceeded in all of the test problems. Tables 1, 2, and 3

summarize the computational results, which tend to confirm the predicted
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Total Number of Iterations before Termination

' a(s®)
a(s% Run 1 Run 2 Run 3 Run 4 Avg. 2p-1
2 2 4 2 2 2.5 2.9
4 12 6 10 6 8.5 5.7
6 6 10 8 6 7.5 8.6
8 12 10 8 8 9.5 14.3
TABLE 1
Summary of Computational Re§u1ts for
Test Problem 1 (20 x 9, p = .85)
otal Number of Iterations before Termination d(So)
d (s%) Run 1 Run 2 Run 3 Run 4 Avg. 2p-1_
2 2 6 2 8 4.5 2.9
5 11 5 7 11 8.5 7.4
8 10 21 20 10 15.25 11.8
11 17 15 23 11 16.5 16.2
14 24 24 26 22 24.0 20.6
TABLE 2
Summary of Computational Regults for
Test Problem 2 (10 x 15, p = .34)

Total Number of Iterations wefore Termination d(So)
d(SO) Run 1 |Run 2 Run 3 Run 4 Avg. ES:T—
3 5 11 15 3 8.5 5.4
8 18 8 12 30 17.0 14.3
13 27 21 27 15 22.5 23.2
18 32 32 18 22 26.0 32.2
23 27 23 35 33 29.5 41.1

TABLE 3

Summary of Computational Results for
Test Problcm 3

(50 x 25, p=

.78)




proportional behavior for the number of iterations as a function of
a(s®y.

For each problem, the average computing time per iteration was well
under one second.

Although computational experience with three quadratic test problems
is hardly conclusive, it is remarkable that the average number of itera-
tions should have been observed so near to the absolute minimum, which is
d(So). Perhaps variants of the simple random choice rule of Step 2 can
be devised to come even closer to achieving that lower bound, as for
example by weighting the probabilities in favor of constraints that are

in greatest violation of a sign test.
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