
• 

.• ' .... . 
~ 

·"> .... ;~ 

( -- . ~ ~ l 

Western Management Science Institute 

University of California • Los Angeles 



University of California 

Los Angeles 

Western Management Science Institute 

it 

Working Paper No.   90 

A MARKOVIAN ALGORITHM FOR STRICTLY CONCAVE 
PROGRAMMING WITH LINEAR CONSTRAINTS"* 

by 

Arthur M.  Geoffrion 

March,   1966 

This work was supported partially by the Office of Naval Research under 
Task NR 047-041, Contract Nonr 233(75), and by the Western Management 
Science Institute under a grant from the Ford Foundation. The author 
is indebted to Joseph Naruishi for his computational assistance, which 
was rendered under a grant from the Division o.i Uesearch of the Graduate 
School of Business Administration, UCLA, and to the V/estern Data Pro- 
cessing Center for making its facilities available. This paper will 
be presented at the Fourth International Conference on Oporational 
Research. 



. BSTRACT 

Thell and van de Panne have shown how to replace the problem of 

maximizing a (strictly concave) quadratic function subject to linear 

inequality constraints by a finite sequence of sub-problems involving 

only linear equality constraints.  In another paper, the author general- 

ized this approach to (i) cover the case of a differentiable and strictly 

concave objective function, and (ii) permit almost complete flexibility 

in the choice of the initial sub-problem. The last feature seems essential 

for the approach to be of computational interest, for computational 

experience suggests that the number of sub-problems that must be solved 

and the amount of computer storage required to keep track of them have 

a tendency to grow approximately exponentially with the "poorness of 

the choice of the initial sub-problem. 

In this paper a modification of the above approach is proposed 

which generates the sub-problems in Markovian fashion. This all but 

eliminates the storage problem. Although the resulting sequence of 

sub-problems is no longer necessarily finite, by means of the theory 

of Markov chains it is shown that eventual convergence to the optimum 

is assured with probability one and argued that the expected number of 

sub-problems that must be solved increases only approximatley linearly with 

the "poorness" of the initial sub-problem. Computational evidence is given 

which supports this estimate and suggests the probable efficiency of the 

Markovian algorithm even for quite "bad" choices of the initial sub-problem. 



This   paper   is  a seque,1   to a previous  one   [l]   in which  the author 

gave  a  procedure for solving   the problem 

(1) Maximize     f(x)     subject to    a.x <    b   »       i=l,...,ra, 

where    f    is a strictly concave and differentiable  function that assumes 

its  unconstrained  maximum.-'    The    a      and    x    are  n-vectors  and  the    b 

are scalars.     It  is also assumed that  (1)   is feasible, which implies  that 

it has  a unique optimal solution    x*,  and that  the    a.    corresponding to 

the constraints  that are satisfied with strict equality at    x*    are  linearly 

independent. 

The  procedure amounts  to reducing  (1)   to a finite sequence of sub- 

problems  of  the  form 

(2) Maximize    f(x)    subject  to    ax = b   » 1 e S   , 

where    S    is a subset of  the constraint  indices.     Note that   (2)   involves 

only  linear equality constraints,  and  is therefore considerably more 

amenable  to solution than  (1) .    The sequence of sub-problems  is determined 

o    1 K o K 
by a  finite sequence    S   ,S   ,. .. ,S   ,    where    S    is  nearly arbitrary and    S 

yields   the optimal solution of  (1).    Rules are given for determining    S 

o k-1 given    S   ,...,8       ,  and computational advantage can be taken (when (2)  is 

solved)   of the fact  that    S       differs by only one constraint  index from 

one  of   its  predecessors. 

The  procedure can be viewed as a generalization of Theil and van de 

Panne's  algorithm [2]  for quadratic  programming.    Aside from applicability 

o to a  larger class  of problems,   the essential generalization is  that    S    no 

longer must be chosen to be  the empty set.    This  permits advantage to be 

o 
taken,   by choosing    S      appropriately,  of the frequent availability of 

\f   Linear equality constraints, which con bo handled  [l] by a simple 
modification of the procedure much more efficiently than by expressing 
them as inequalities,  have been excluded from (1)  for the sake of 
notational simplicity. 
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prior  (but  possibly erroneous)   information regarding which of  the  inequality 

constraints of (1)  are actually restrictive.     In fact, with problems  that 

have more  than a few constraints  it is almost mandatory to use such infor- 

o nation to guide a propitious choice of    S   ,  for computational experience 

[l]  suggests  that  the  total number of  sub-problems   that must  be solved  and 

the amount of computer storage required to keep track of  them tend  to 

increase  approximately exponentially with    d(S  ),   the  "aistance"  (to be 

defined more precisely below)   from   S      to a "true" set  of restrictive 

constraints of  (1). 

The  purpose of  this  paper  is  to suggest how the approximately exponen- 

tial dependence of computational work on    d(3 )  can be ameliorated to 

approximately  linear dependence  by generating the  sub-problems   in a 

Markovian rather than deterministic fashion.    This  strategy essentially 

eliminates  the storage problem,   for    S      will depend  in a very simple 

k-1 
manner only on    S (it differs from it by exactly one constraint).     It 

is shown  that eventual termination is assured with  probability    1    and 

argued  that  the expected number of sub-problems  to be solved before  term- 

ination  should be  approximately  proportional  to    d(S  ).    Computational 

experience tends  to confirm this estimate.    Coefficients of proportionality 

of  about  2 were observed, which means  that  for  the   test  problems>  at  least, 

the Markovian algorithm is  quite efficient  even when    d(S  )   is   large. 

In what  follows,   the  assumptions  of  the  opening paragraph are  assumed 

to hold.     Although an effort  has  been made  to keep  the  present  paper self- 

contained at least so far as definitions are concerned,  reference  [ij 

should be consulted for motivation and  proofs of  the unproved assertations 

below. 



THE MARKOV IAN ALGORITHM 

Denote by    B    the set  (i c M:  a x*=b  }  and by   A    the set 

{i  e M:    u* >0}, where    M    Is the set of the first    m    positive  integers 

and the u*      are the usual optimal "multipliers" associated with  (1).    From 

the Kuhn-Tucker Conditions,  it follows  that  the  inclusion    A c p,    always 

holds.    A subset    S of    M    is said to be consistent when the  linear 

equations    ax ab,   i  e  S,  are consistent,  and  independent when    a  , 

i  e  S,  are  linearly  independent. 

g 
It  is  known that  the optimal solution    x      of (2)  exists and  is unique 

whenever    S    is consistent, and that    x    = x*     if and only if    A c: s ^ B. 

It  is convenient to denote by    d(S)    the distance from an arbitrary sub- 

set    S    of    M    to the collection of subsets     {S' C M: A ^ s' <= B) ,   the 

metric being the number of  indices  in the symmetric difference set 

(A-S}U{S-B).    Thus    xS=x*    if and only if    d(S) = 0. 

The following procedure for solving  (1)   is called "Markovian" because 

Step 2 ensures  that  the sequence of successive values  for    S    constitutes 

a Markov chain. 

o 
Step 0;    Choose any initial consistent and  independent    S   ,   and put 

o 
S    equal to    S   .    Gc to Step la. 

S S 
Step la:    Solve  (2)  for its unique optimal solution    x   .    Put    u 

equal  to    0    for    i €    M-S    and equal to the unique solution of 

for    leS, where    ^    denotes  the gradient operator. 

If    u      > 0    for all    ies    and    a xS <b      for all    ieM-S, 

then terminate:     (xu,u ) s (x*,u*). Otherwise go to Step 2a. 
g 

Step lb;    Solve the following equation for its unique solution    z 

ari then go to Step 2b: 

,   ^r, z
J
aLA a

J     = 0. i  es-i       i i      i 
o o 

■^mmmm^^ 



Step 2a;  Choose  i   at random (with equal probability) from those   o 

i    that violated  the sign tests at Step  la.     If    i es,  replace    S 

by    S-i      and return to Step la;    otherwise,  replace    S    by o 

SU 1      and return to Step la or Step lb  according as    SU i       is o r r 0 

or is not consistent and independent. 

Step 2b:    Choose    i at random (with equal probability)  from those 
  oo 

g 
i    that satisfy    z,     < 0.     Replace    S     by    S-i        and return  to ^       i oo 

Step la. 

S       S Finding    (x   ,  u )   at Step la  is equivalent  to solving the Lagrange 

multiplier equations associated with (2).    Various suggestions made  in  [l] 

for efficient computational  implementation carry over here. 

It follows from the results of [1]  that this procedure, which differs 

from the original onlv in  that a randomized rule   is used to determine    i & - o 

and     i     ,   is well-defined,  and that the following lemma holds. 
oo 

Lemma;    At Step 2a-/'f d(S +  i) = d(S)   -1  for at  least enc    i    violating a 

test at Step la.    At Step 2b,    d(S-i) = d(S)   -1    for at  least one     i 

S 
satisfying    z      < 0. 

Each time Step 1  is  entered,  a new Iteration begins.    The sequence 

of  trial sets    <S   ,S   ,...>    generated by the Markovian algorithm is  obviously 

a Markov chain.    The  subsets  of M satisfying    d(S)  = 0    can be  thought  of 

as   absorbing states.     In view of  the  random choice rule of Step 2  and  the 

Lemma,  at least one absorbing state  is accessible  (in exactly    d(S  ) 

transitions,  in fact)  from any consistent and  independent    S   .    By a basic 

property of finite Markov chains,  therefore, we have the following 

2/    S +  i    denotes    SUi    when    i ^    S,    and    S-i    otherwise 

C 
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3/   5 
Theorem: The Markovian algorithm terminates with probability 1.— 

RATE OF CONVERGENCE 

In applications, of course, what really matters is the distribution 

of the number of iteration» before termination. We shall use a simple 

random walk model to derive an estimate of the mean of this distribution 

o 
as a function of  d(S ). 

For any given problem (1), consider the (finite) collection of all 

subsets of M that could ever arise in the course of executing the 

Markovian algorithm.  If the largest value of d(S) over this collection 

Is D(D < m), then the collection can be partitioned naturally into 

D + 1 classes according to the value of d(S) for each set.  From the 

above discussion, it follows that the transition matrix for the assoc- 

iated Markov chain can be schematically represented as in Figure 1, 

where  the natural partition has been used, the P matrices have at least 

one positive entry in each row, the Q matrices are unspecified, and I 

and 0 represent Identity and null matrices. We approximate the actual 

situation by the simplified random walk model of Figure 2, which has 

D+l states Instead of D+l classes of states. The parameter  p 

represents the aggregate probability that a set S will transit, by 

an iteration of the Markovian algorithm to a set o' satisfying 

d(S') = d(S)-l. 

By standard methods one can derive the mean absorption times t 

for the Markov chain represented by Fig. 2 given an intitial state 

d(d=l,2,...,D): 

3/ More precisely, to every e > 0 there exists a positive integer N 

such that the probability that termination has not occurred durii's ti'ß 

first N  iterations is less than e . 
€ 
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I d(2Dtl) - d2 for    p = 1/2 

<3> Jd    M „ , ,       D-d+1 , D 
<2Fär-(2iHr) «ir* +-+<-iE-> > '<»-O<P<1. I 

p 4 ö • 

We see that    p = - is  a key value in that, for fixed    D    and    d,    t 

increases  very rapidly as    p    falls below 1/2  and decreases  rapidly to 

quite small values as    p    rises  above 1/2.    For    1/2 < p < 1, (3) yields 

a  linear upper bound on    t    that   is quite good for  .6 < p < 1: 

(4^ *d -    2~-i        for    i/2  < P < !    and    d=l,.,.,D. 

Note that this upper bound does  not  involve D,  that it  has zero inter- 

cept,  and that  its slope is quite small for    p    larger than   .6 or so. 

This  analysis suggests that, when    p    is greater  than   .5 on the 

average,  the expected nuirber of  iterations before termination of the 

Markovian algorithm is  approximately    d(S  )/(2p-l). 

COMPUTATIONAL EXPERIENCE 

The Markovian algorithm was  programmed for the IBM 7094 for the case 

in which    f(x)   is quadratic, and  tests were conducted  on three medium- 

sized problems.    Test problems   1 and 3, of practical origin, were 20 x 9 

(twenty variables  and 9 constraints)  and  50 x 25, respectively.     Test 

problem 2,   10 x 15, was methrdically generated from a  random number table. 

Each problem was  run at 4 arbitrarily selected  initial sets  for each of 

a number of equally spaced values for    d(S ),  and the  calculations were 

done in such a way as to enable     p    to be estimated.     The estimates are 

.85,   .84,  and   .78 respectively.     Evidently the critical value    p = 1/2 

was  amply exceeded in all of the  test  problems.    Tables   1, 2, and 3 

summarize the computational results, which tend to confirm the predicted 

r-s. 



Total Number of Iterations before Termination! d(S0) 

2p-l d(S0) Run 1 
1 
Run 2 Run 3 Run 4 Avg. 

2 2 4 2 2 2.5 2.9      i 

4 12 6 10 6   i 8.5  1 5.7 

6 6 10 8 6 7.5 8.6 

1    8 12 10 8 8 9.5  | 
_ 

14.3 
— •■-—■  ■■ —| 1—  

TABLE  1 

Summary o;c Computational Results for 
Test Problem 1  (20 x 9, p = .85) 

d(s0) 

Total Number of Iterations before Termination 
- d(S0) 

Run 1 Run 2 Run 3 Run 4 Avg. 1  2p-l    1 

\       2 2 6 2 8 4.5 1 2'9 

1   5 11 5 7 11 3.5 7.4 

8 10 21 20 10 I 15.25 1 11'8 

11 17 | 15 23 H 16.5 16.2      | 

14 1  24 24 26 22 24.0 20.6 

TABLE 2 

Summary of Computational Results for 
Test Problem 2  (10 x 15,   p =  .34) 

j d(3
0) 

Total Number of Iterations oefore Termination 
d(s0) 1 1 

Run 1 Run 2 Run 3 Run 4 Avg. 
2p-l 

1  3 
5 11 15 3 0.5 5.4 

8 18 8 12 30 17.0 14.3 

13 27 21 27 15 22.5 23.2 

i  1° 32 32 18 22 26.0 32.2 

23 27 23 35 33 29.5 41.1 

TABLE 3 

Summary of Computational Results  for 
Test Problem 3    (50 x 25,    p =   .78) 



proportional behavior for the number of iterations as a function of 

d(S0). 

For each problem, the average computing time per iteration was well 

under one second. 

Although computational experience with three quadratic test problems 

is hardly conclusive, it is remarkable that the average number of itera- 

tions should have been observed so near to the absolute minimum, which is 

d(S )• Perhaps variants of the simple random choice rule of Step 2 can 

be devised to come even closer to achieving that lower bound, as for 

example by weighting the probabilities in favor of constraints that are 

in greatest violation of a sign test. 
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