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SUMMARY

The conical inviscid flow field vast a circular cone at an
angle of attack is obtained as the asymptotic stage of a three-
dimensional flow. The latter is computed in a spherical frame
by means of finite difference techniques associated with a method
of characteristics on the shock and body. A brief critical dis-
cussion of previous papers on the subject and an analysis of the
numerical results are given. Comparison with experiments shows
that the applicability of the theory is severely limited by
boundary layer effects.
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TECHNICAL REPORT NO. 577

INVISCID FLOW FIELD PAST A POINTED

CONE AT AN ANGLE OF ATTACK

PART I - ANALYSIS

By G. Moretti

I. INTRODUCTION

The State cof the Art

The steady supersonic flow past a pointed cone of revolu-
tion at zero angle of attack was first studied by Busemann in
1929, and by other authors in the thirties (Ref. 1). The
definition of a conical flow was given as that of a flow whose
parameters do not depend on r in a spherical frame of refer-
ence, (r,6,0). As a matter of fact, the flow past a pointeq
cone of revolution at zero angle of attack is also axisym=-
metric, that is, its parameters do not depend on ¢ either. The
latter problem is reduced to solving two ordinary differential

equations, with 6 as the only independent variable:

du,/ae v

(1)
Ldv/de =« u+ (u+ v cot 8)/(v/a® - 1)




(the three velocity components in the spherical frame being
u, v, and w, respectively, and a being the speed of sound).
In 1947, such equations were coded for an electronic computer
by Kipal and his staff (Ref. 2), and the results tabulated.
Today, Xopal's tables are obsolete, since a program of not
more than 20 FORTRAN statements may provide a direct evalu-
ation of the flow, once the free-stream Mach number, the
semi-angle of the cone, ¢, and the ratio of specific heats,
Y. are given.

In the late forties, the problem of a pointed cone at
an angle of attack, @, was considered, with some optimism,
to be a simple extensioﬁ of the case above, at least for
@ << e, It is easy to prove that a steady conical flow may
exist, whose parameters depend on 6 and ¢.  Five differ-
ential equations are needed now (since, in ad@ition to u
and v, the third velocity component, w., the pressure, p, and
either the density, p, or the entropy, S, must be determined),
but the independent variables number only th. In fifteen
years, several attempts have been made to solve the problem
SO formulated, and the number of papers is so la:ge that an

exhaustive list cannot be given here.
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The problem proved to be a very tough one, since the
system of equations which describes it is elliptic, if «
is small and vq+w2<aa, and becomes of the mixed type for
larger values of &, if there are regions of the (8,¢)-spherz
in which v*+w™>a®. 1In such a sphere, the shape of the ccne
is given, but the shock wave is unknown. 1In this respect,
the problem of a cone at an angle of attack is similar to
the blunt body problem, and similar techniques have been
used in both problems, such as inverse methods with step-on
integration from the shock to the body (Ref. 3), methods
of integral relations (the "strip-method" of Belotserkovsky)
(Ref. 4), and methods of series expansions (Ref. 8). In the
latter case, some papers try to improve the original linear-
ized formulation of Stone (Refs. 5,6) and Ferri (Ref. 7),
others (Refs. 9,10) are related to Chernyi's expansion in

powers of (y-1)/(y+l), etc.

i
itk . *



II. TIHE CENTRAL IDEA FOR A NEW TECHNIQUE

Critical objections, similar to the ones discussed in
some detail for the blunt body problem (Ref. 11), may be
raised here. Briefly, since a numerical procedure is used
to solve the problem, a system of elliptic equations is
ill-suited for the job. In the blunt body problem, a
powerful and accurate technique may be set up if the system
is made hyperbolic by considering the steady state as the
asymptote of an unsteady one. 1In the present problem, the
equations of a steady flow in the three coordinates, r, 6,
and ¢, form a hyperbolic system. Consequently, the problem
is easier to handle if the motion is not conical. Let us
consider, then, the conical motion as the asymptote (with
respect to r) of a non-conical one. To this effect, assume
an arbitrary set of initial conditions on a sphere, r = o
say, and compute the flow from there on as dependent on 6,
¢, and r, until an asymptotic state, independent of r,
develops. The physical argument for the existence of a
conical flow as an asymptotic one is that the flow in the
shock layer is forced by the outer flow, which is uniform
(and therefore conical) and the geometry of the body (which

is a cone).
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In the present approach an initial value of r is defined,
and we suppose that the asymptotic values are reached at
another value of r, ¥ = ry, say. The difference, r; - o
represents the actual length which the flow should travel in
order to overcome the initial state (a perturked, non-conical
one) with a continuous build-up of conical effects. Such a
length will obviously be the longer, the farther the initial
conditions are from 'a conical flow. But the length itself is
immaterial, since no length is involved in a conical flow.

One can think in terms of the perturbation being confined tc
such a small region in the vicinity of the apex that the dis-
tance r; - r, itself is as small as we please. (After all,
what is a pointed cone from a physical point of view, if not
a blunted cone whose blunt, irregular, discontinuous nose is
detectable only with a microscope?)

As a matter of fact, *he building up of a conical flow
around a blunted cone, such a flow being similar to what should
be expected in a pointed cone, has been investigated experi-
mentally (Ref. 12) and numerically (Ref. 13). The conclusion
was that aftexr about ten nose radii from the tip of the cone a

conical flow is well established. HKowever, the high entropy
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layer consequent to the central portion of the bow shock fills
a significant portion of the shock layer. The entropy pattern,
then, is not what is expected from a theoretical analysis of

a pointed cone, and an independent numerical analysis is still

considered necessary.
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III. DETAILS OF THE ANALYSIS

The Initial Conditions.

The present analysis differs from the one mentioned in
the previous section (Ref. 13) in the choice of the initial
conditions and in the technique used to solve the three-
dimensional equations of a steady flow.

As said before, it is convenient to choose the initial
conditions as close as possible to the solution for the
conical flow, since the computational time will be reduced
to a minimum. Moreover, we do not want to start with a set
of values consistent with a blunt body calculation, since we
want to avoid the after effects of a high entropy layer.

The initial values are guessed as follows:

It is assumed that the trace of the shock on a plane,
normal to the axis of the cone, is an ellipse if the angle
of attack & # 0. We consider such a plane as tangent to the
unit sphere, whose center is the apex of the cone, and also
assume that, within the shock layer, 6 = tan 8. Therefore
in Fig. 1, where the plane is represented, the spherical
f@-coordinate of any point is equal to the distance between

such a point and the origin, 0. In this figure, O is the

-




st

——— . — A

trace of the axis of the cone (6 = 0), V is the trace of the
vector, parallel to V_, through the apex of the cone, E is
the center of the shock ellipse, 6 and 06; are the angles
between shock and body in the leeward and windward side
respectively, A and B are the semi~axes of the ellipse, € is
the angle between shock and body on the x-axis, and b is the

semi-angle of the cone. Note that
e = A J1-c*/B® - Db (2)

First, the conical flow consistent with the assigned
cone at no incidence is computed, and a value, 60, of the
angle between shock and body in the plane of Fig. 1 is

obtained. It is then postulated that

(e + 63)/2 = 60 (3)

independent of the Mach number and the angle of attack (such
an assumption is well justified by experimental results).

From (2) and (3) A may be expressed as a function of B and C,

C-B+ 2b £ 260
A = (4)

J1-c?/B®
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Consequently, only two parameters, B and C, are left to
define the ellipse. They are related to 6, and 0; through

the equations,

B =D+ (61 +62)/2
(5)
(6. - 03)/2

Q
]

On the plane cf symmetry, w = 0 and the derivatives of u,
v, and p with respect to ¢ also vanish. If a conical motion
is assumed, the equations of motion in such a plane reduce

to the simple form,
)

Vg = - u + (v + v cot 6 + w¢//sin 8)/(v¥/a® - 1)

(6)
where a subindex means differentiation with respect to that
variable.

Note that the only difference hetween (1) and (6) is the
presence of the term W sin 6 in the latter. Therefore, the
same technique used to determine the conical flow at no
incidence could be applied to solve (6), if ww//sin 8 were

known as a function of 6. Since we do not know it, we assume
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that ww is constant between M and N and between P and Q.
Let s be the value of 6 at the shock. From the egua-
tion of the ellipse, and letting 86 = tan 6, ro = 1, it

follows that

_Ccos @+ B «/LBQ-Ca)/A2 sin® © + cos® ©
(B/2)° sin® ¢ + cos® o

and

Spp = = BC (C % ZB)/Z\2 (8)

at the symmetry plane, where the upper sign holds between M
and N and the lower one between P and Q. From the Rankine-

Hugoniot equations,

w¢ = Usww//gln s - V¢ (9)

where U is the component of the velocity behind the shock

along the normal to the shock wave, pointing inwards, and V
is the derivative with respect to ¢ of the component of the
velocity along the tangent to the shock wave in the plane of
Fig. 1. The component of the velocity in front of the shock

along the normal is

v, sin (s F @) (10)

o by
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where V, is the velocity at infinity and with the upper sign
for point N and the lower one for point Q. From (I0), U is
obtained through the Rankine-Hugoniot eguations. From the

same equations,

cos & * (1 - s__cot s)] (11)

Vv =
V&[s o

© o

We have now the equations which ‘are necessary and sufficient
to determine B and C. From a computational point of view,

an iteration procedure is convenient and is used. Two

values of B and C are guessed, the corresponding values of
w¢ on the leeward and windward sides are evaluated, then the
system of Egs. (6) is integrated between N and M and between
Q and P. Two new values of Gl.and 0; result, from which

two new values of B and C are obtained, and the procedure is
repeated until (after three or four iterations) the solution
is obtained.

At this stage, a number of equally spaced meridional
planes (¢ = constant) is considered and, alongfﬂuaintersection
of each plane with the unit sphere, a number of equally spaced
points 1s taken between the cone and the shock, (left-hand

side of Fig. 2).
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The auxiliary variable { is introduced, defined by

£ = o (12)

where

. S MR o -

0 =s ~-b (13)

The shock layer is thus mapped onto a rectangle in a
(v,f)-plane, where ¥ = ¢. (right-hand side of Fig. 2). The
initial values of u, v, w¢, p, and p are known at the points
on the lines Y = 0 and ¥ = 7, from the computation outlined
above. The shock shape, s = s(¢) is known as an ellipse and,
since we assumed that s. = 0 (conical flow), its geometry in
space is compietely defined. The Rankine-Hugoniot equations
can be applied at any point on the shock ({ = 1), to determine
the physical properties behind it, that is, u, v, w, p, and

p. On the body (£ = 0), v = 0,

R(0,0) + R(m,0) + [R(0,0) - R(7,0)] cos ¢

2R

2P = P(0,0) + pP(7,0) + [P(0,0) - P(m,0)] cos ¢ (14)

2w = {w¢(0,0) - w¢(ﬂ,0) + [w¢(0,0) + W¢(N,O)] cos @} sin @

s £

.
VT A N A s v T v T T ok T T o T O - -
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where

R(v, L)
P(Y, %)

in(p/p,)

in(p/p,)

(15)

and u is obtained from the definition of the total enthalpy.

Note that, since the entropy, S, is given by
S =P~ ¥R (16)

(within a constant factor, cv), it follows that the initial
entropy on the body is distributed with a simple trigono-
metric law.

The values of v, w, P, and R at the interior points
of the grid in the (Y,{)-plane are linearly interpolated
between body and shock and, again, u is obtained from the
definition of the total enthalpy.

At this stage, a slight correction on the values of p
(and, consequently, of R) at the interior points is made,
in order to match the total mass-flow between shock and body
with the mass~flow of the uniform stream through the elliptic

section of the unit sphere,

m s

m_=pV_ I do J (cos @ cos 6 + sin a sin 6 cos ¢) sin 8§ 46
o o

(17)
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Let Py and u be the values of p and u as computed above, and

where 71 is a constant, n << 1.

p=p, tnLl -

and body is

(18)

Then the mass-flow between shock

T 1
m = jo 5 () do jo [pg + M 21 -0 J(u, + nw) sin @ a8 (19)

where u; is the first order correction to u as obtained from the

expression of the total enthalpy,

YpL(l - %)
u; = 3 (20)
(v - l)pouo
Consequently
Y 1
= j 8 (¢) do I PLY, sin 8 46
o o
+ 1 jﬂ 8(p)d Il Z(l - ) [ + as in 8 a8 (21)
©) do - u - sin
o o o (¥ l)pouo]
=m + 7N m
and, since m = m_
mm - m
n = Ma (22)
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IV. THE COMPUTATION OF THE THREE-DIMENSIONAL
FLOW FIELD, INNER POINTS

The computation of the non-conical flow subsequent to the
initial conditions is performed along the same general lines
described for the blunt-body problem (Ref. 11l). An auxiliary
space (T,Y¥,l) is used, where Y and { have been defined above,
and T = r. Referring to the right-hand side of Fig. 2, one
can imagine a T-axis normal to the plane of the figure. The

grid does not change with T.

Letting
q = in(u/v )
¢ = v/u (23)
T = w/u

the equations of motion in the new coordinates are
= - - 6
Ry + dp [ARc + BR, Csrqc/c + vt/ru \

+ (wY - Cs¢wt/6)/ru sin @ + (2 + 0 cos 9)/r]

(a®/u®)R, + qp = - [ch + Bq, - a“Csch/u36 - (aa/Qua)[(O/r

2 2
- CS¢B)SC/6 + BSY] - (0° + 17)/2]

(24)

A
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v, = - [AVC + BvY + aapc/yrub + (v - WwT cot R)/r]
- _ 2 ; -
W, = [ch + Bw, + (a® /yru sin 0) (PY CswP:/G)
P (24)
+ (w + vr cot 6)/r] Cont'd
Sp = - [ASC + BSr] )
where
B = 171/r sin 6
(25)

A

(c/r - {s,. - §s¢B)/5

All points inside the grid (that is, neither at ¥ = 0 nor at

¢ = 1) are computed assuming that

g(T + AT, Y, ) = g{T,¥,0) + g (T.Y.0)AT + g, (T, Y, L) A T /2

(26)
where g is any of the parameters g, v, w, R, and §. The system
of Egs. (24) provides the formal expressions for the first derivatives,
Irp The first derivatives with respect to ¥ and f, which appear
in the right-hand sides, are evaluated by central differences.
In addition, Sw is obtained from the shape of the shock at T
(how to obtain sr is explained in the next section).

In order to obtain the second order derivatives, each

Ipp
of Egs. (24) is formally differentiated with respect to T. The
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second order mixed derivatives, of the type gTC, which appear

Ipy
in the right-hand sides, are formally obtained again by differ-
entiating the Egs. (24) with recspect to ¢ and Y. In this way,

the evaluation of the last i‘erm in (26) is reduced to computing

3-point cenc.ered second derivatives with respect to f¢, LY, and

YY, and to some algebraic manipulaft.ions. Ncte that 6T = 8.
The terms, s__, S are evaluated as
xT ©T
AT ! AT

Derivatives with respect to ¢ and Y of complicated factors, such
as A, a®/yru sin 8, etc. are not formally evaluated, but com-
puted by central differencing of the factors themselves.

The value of A T which can be us2d at each step is limited
by a stability criterion. The well known Courant-Friedrichs-Lewy
rule is applied, which forbids computing values at a point outside

the domain of influence of the initial points (Ref. 16).

T X ” 0'1 g s Nors ﬁm POV

AL
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V. COMPUTATION OF THE SHOCK WAVE

The points on the shock wave are computed with an improved

version of a technique successfully used in general three-

dimensional flow field computations (Ref. 13).

'”‘&A‘ﬁ;‘;&m‘«aw -

The equations of motion in spherical coordinates are written
moving all derivatives with respect to ¢ to their right-hand
sides, and the third momentum equation is stricken out, so that

the system looks as follows:

? - Sr/y - cSe/yr + Pr/y + oPe/yr + q, + ve/ru = - [TR¢

: + w¢/u)/sin 6 + 2 + ¢ cot 8]/r

M e ey

(az/ua)(-sr/y - GSe/yr + Pr/y) +q + oqe/r = [(ags(p/yu2

- q¢) T/sin 6 + o+ 1°]/r

2
P + v_+
a*P,/yru . ova/r

6 (-v - va/sin 6 + wr cos 681/r

.*.
Sr GSe/r

- Tsw/r sin £ (27)

In a (r,6)-plane, this system has three characteristics, defined

by
ZIo 98 _uw+a Ju® +v® -a®
T dr u® -a°
(28)
JII _ _d8 _uv - a Jut +vZ —at _d8
T Tar T u? -a® « tar " °
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The compatibility equation along the first characteristic reads
. 5 = dP . do’ o I .
(a/yu?) JuP+vB-a2 == + =2- = - A|(w /usin 8 + 2
dr dr r ©
+ o cot 8) + AI ('rq(p/sin 8-0°%- 1°)

- (Tv¢/sin @ + v - wl cos 0)/xru
- {aa + Ju5+§5—a§) owa/yr(uz-az)sin C)
(29)

By computing the coefficients and the right-hand side at a
suitable initial point, the values of P and ¢ ~ay match the
values of P and ¢ computed from the Rankine-Hugoniot conditions,
with a proper choice of S.. By iteration, the matching values,

including s.. are easily computed.
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VI. COMPUTATION OF POINTS ON THE BODY

A similar technique is used to compute points on the body.

The compatibility equation along the second characteristic,

(a/yu?) Ju®+v= a2 %% 8% _ _

dr

g‘-AII) (w /u sin 6 + 2
r ©

IT

+ g cot 8) - A (Tq(p/sin §-y? -72)

+ (7v¢/sin 8+v-wr cos 8)/ru +

+ (ac JGEIGE:EEY owa/yr(ua—aa)sin 8
(30)
must be used. Again, the coefficients and the right-hand side
are computed at a suitable initial point and the condition,

v = 0 on the body, is used. Consequently, P is found at a body

point. The fluid momentum equation then is used, in which v = O:

+ ___I_m_.w —
r r sin 8 8

£
2|¢

=W - (w + a2P¢/yu sin 8)/r (31)
the last of Egs. (27) reads now

D

1]

T =0 (32)

2D g v T 5 -
u r r sin 6 "o

&

Both Lagrangian derivatives are taken along a streamline which
wets the body. Thus, by finding the initial point on such a

streamline and computing the pertinent values of w, S, and the
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right-hand side of (31), the values of w and S at the point on
the body may be evaluated. Finally, the value of u at the body
point is obtained from the condition of constant total enthalpy.
At the body poirt in the leeward symmetry plane (¢ = 0),
however, the entropy is forced to be equal to the entropy of
the neighboring point in the same plane. A similar policy is
adopted for the body point in the windward symmetry plane
(p = 7). The reason for it is that no streamline enters or
leaves the symmetry planes. When the flow has settled down to
a conical one, the entropy on each of these planes must be a
constant. Our device allows the body points in the symmetry
planes to adjust their entropies to the final entropies at the

shock points, independent of the original guess.
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VII. RESULTS AND DISCUSSION

The following sample problems have been run, in order to
test the technique:

() M =7.95, € = 10°, o = 8°

e ARt
8

(2) M_=7.95, € = 10°, o = 4°

(3) M =8, € = 20°, a=5°

(4) M_ =20, €= 30° &= 10°

The first two cases were chosen to compare our results with
Tracy's experiments (Ref. 14), the third one to conclude the dis-
cussion and to check with other experiments which were made in
teasting our three-dimensional flow field computations (Ref. 13),

the fourth one to show the reversed situation (leeward side thinner

BRI 'S T SO

than the windward side) which is to be found at high Mach numbers
(Ref. 15). We will analyze the first case in detail.

It took four iterations to define the shape of the initial
shock wave. Table I shows the values of B and C, their errors
(that is, the differences between B and C at one step and B and C
at the next step) and the corresponding values of w¢ in the
leeward side (labeled 1) and the windward side (labeled 2). In
the same table, values of u, v, p, p, M, and v/u are given as -
functions of 8 in the symmetry plane (from the shock to the body).

Note that all dimensional quantities are made nondimensional;




pressures and densities are divided by P, and P, respectively;
velocity components are divided by v5:75: . The subsequent
computation was performed (in this as in the other cases) con-
sidering 11 meridional planes, spaced 18° apart, and 6 points
in each plane (including the shock and bedy points).

As a result of the non-conical computation, the shock
wave undergoes a deformation. The values of S s which are
assumed as zero initially and should be identically zero in a
conical flow, change with r and ¢. If the flow sets down to
a conical one, then s, must vanish again identically. A first
indication of the tendency of the flow toward a conical state
may be found by plotting the range of values of S at each com-
puted value of r. This is done in Fig. 3. Since s. is of the
order of .2, the shock shape may be considered as stabilized
when s. is of the order of 107%, and this situation occurs at
step 200, r ~ 13.6, far before the end of the run, which was
interrupted at step 540, r = 1073.

In Fig. 4 the internal mass-flow (across a spherical sec-
tion of the shock layer at a given station) and the external
mass-flow (across the whole shock wave from the apex to the same
station) are plotted after having been divided by r®. It is

clear again that a stable flow configuration is reached, after

—

23




3
%
;
P
?

24

about 400 steps (in a conical flow, m/xr® is a constant). It is
also interesting to note that the error (difference between
internal and external mass flow) is of the crder of 1/1000 of
the total mass flow).

There is a way of testing the soundness of the results.
If the flow, as found by the present technique, is conical, then
it is ruled by Egs. (6) in-the symmetry plane. Let us perform
again the integration of such a system, starting from the shock
as defined by the present technique and using what we assume
are the correct values of w¢(9). The integration should give
the correct value for the body angle and the distributions of u
and v between shock and body should match the ones obtained with
the present technique. This actually happens within three sig-
nificant figures. The body angle, in radians, is .17453. The
body angles computed from (6) with the values of w interpolated
from the last step in our sample run are .17410 in the leeward
side and .17445 in the windward side. The distribution of v (6)
as computed with the present technique and from the integration
of (6) is shown in Fig. 5.

A word about the entropy distribution is in order here. As
pointed out by Ferri (Ref. 7), the constant entropy lines on the
unit sphere converge to a singular point on the leeward plane of

symmetrxy. In our computation, the initial (arbitrary) distribution

e -
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of entropy is the one shown in Fig. 6, left-hand side. At the end
of the computation, the constant entropy lines appear as in the
right-hand side of the same figure. The singularity has been
built up through a numerical procedure. Note that suchia result
is obtained using a very coarse mesh. To stress the point,

Fig. 7 shows the building of the singularity by plotting several
distributions of‘entropy on the body, at different steps in the
cocmputation.

The pressure distribution is shown in Fig. 8. 1In Fig. 9 the
pressure distribution on the body is plotted as a function of ¢ for
case (3) specified above. As expected, no sizeable difference
exists among the present results, those obtained by a proper usage
of Kopal's tables (Ref. 2), and the pressure distribution on a
blunted cone at a certain distance from the nose. The latter
results have been obtained analytically (by the technique of Ref. 13)

and experimentally (Ref. 12).
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VIII. LIMITATIONS OF THE INVISCID MODEL

To conclude, Fig. 10 shows the shock shapes for the four
cases computed. In the first two caszs, some points on the
shocks as determined experimentally (Ref. 14) are shown by dots.
The agreement between computation and experiment in the windward
side is a proof of the soundness of the numerical procedure. The
disagreement in the leeward side was expected. The present model
is one of an inviscid flow. In reality, the viscous effects are
important on a cone at an angle of attack, due to the three-
dimensional behavior of the boundary layer (Ref. 17). By com-
parison of the numerical results with other data from Ref. 14,
it appears that the difference in thickness in Ebe leeward sym-
metry plane is of the order of the thickness of the viscous core.

In conclusion, the present computation, although self-
consistent and accurate, is not yet adequate to describe the
real motion, for lack of a reali;tic model of the gas. A wore
complicated model, in which viscous effects are taken into

account, will be presented in a.further communication.

e e




(€3}

10.

11.

REFERENCES

courant, R. and Friedrichs, K. 0., Supersonic Flow and
Shock Waves, Interscience Publ., New York, p. 149, 1948.

Kopal, Z., Tables of Supersonic Flow Around Cones, MIT
Dept. of Electrical Engr., Center of Analysis, Technical
Rept. No. 1, Cambridge, Mass., 1947.

Stocker, P. M. and Mauger, F. E., Supersonic Flow Past
cones of General Cross-Section, J. Fluid Mech., vol. 13,
p. 383, 1962.

Holt, M. and Lee, S. C., Calculations of Supersonic Flow
Past Yawed Cones by the Method of Integral Relations,
Univ. Ccalifornia Rept. AS-64-7, Berkeley, Calif., 1964.

Stone, A. H., On Supersonic Flow Past a Slightly Yawing
Cone, Part I, J. Math. and Physics, Vol. 27, p. 67, 1948.

Stone, A. H., On Supersonic Flow Past a Slightly Yawing
Cone, Part II, J. Math. and Physics, Vol. 30, p. 200,
1951,

Ferri, A., Supersonic Flow Around Circular Cones at
Angles of Attack, NACA Rept. 1045, 1951.

woods, B. A., The Flow Close to the sSurface of a Circular
Cone at Incidence to a Supersonic Stream, Aero. Quart.,
vol. 13, p. 115, 1962.

Gonor, A. L., Flow Over a Cone at an Angle of Attack for
High Mach Nunber, ARS Journal, Vol. 32, p. 130, 1962.

Bulakh, B. M., On the Nonsymmetric Hypersonic Flow Around
a Circular Cone, P.M.M., Vol. 26, p. 430, 1962.

Moretti, G. and Abbett, M., A Fast, Direct, anrd Accurate
Technique for the Blunt Body Problem, GASL TR-583,
Westbury, N. Y., January 31, 1966, AD 478119.

—— TN

27

P —— - . g w2 — AP Uiy e .




R R T

3%

B Wy, et

28

12.

13.

14.

15.

16.

17.

Zakkay, V., Pressure and Laminar Heat Transfer Results in
Three-Dimensional Hypersonic Flow, WADC Tech. Report
No. 58-182, September 1958.

Moretti, G., Sanlorenzo, E., Magnus, D. and Weilerstein, G.,
Flow Field Analysis of Reentry Configurations by a General

Three-Dimensional Method of Characteristics, GASL Technical
Report ASD-TR-727, Vol. III, Westbury, New York, Feb. 1962.

Tracy, R. R., Hypersonic Flow Over a Yawed Circular Cone,
Graduate Aeronautical Labs., California Institute of
Technology, CALCIT Memo No. 69, Pasadena, California,
August 1, 1963.

Gonor, A. L., Location of Frontal Wave in Asymmetric Flow of
Gas at High Supersonic Speed over a Pointed Body, ARS Journal,
vol. 30, No. 9, pp. 841-842, September 1960.

Courant, R., Friedrichs, K. 0., and Lewy, H., Ubez die
partielle Differentialgleichungen der mathematischen Physik,
Mathematische Annalen, Vol. 100, pp. 32~-74, 1928.

Moore, F. K., Three-Dimensional Boundary Layer Theory,
Advances in Applied Mechanics, Vol. IV, pp. 159-228, 1956.




.
>
(V61

TABLE I

CONE AT AN ANGLE OF ATTACK

PROGRAM 3A - RUN NUMBER 11 ON 11/1%/65

NAs= Se MAx 1Cy KAs 23C, JA® 10y LA= -0, LB=s -0y LC® -0y LD« -0, LE*x <~Cy LF=z -C

CONE HALF ANGLE® 1.00)00F 01 DEGREES. ALPHAe 3,000C0€ 20 JDEGREES, UO= 9,41NCLE 00, GAMMA= 1,4CNO0E 0G, STAB= S.CrCCOE

SUESS FOR SHNCK= 1.5CN00F Cls DELTHs1(.(OCCCE~C)
EPS | TO 7
1G.030VE-05 1C.0C00€E-05 t0.0000E-05 1.0000€ 00 -0, =-0. =-C.
MACH NUMBER= T.9529€ 0N, STANODOFF DISTANCE AT ZERO ANGLE OF ATTACK=  5.297662E-02
SHOCK ITERATION
8 o ERR{B) ERR(C) WPHI(1) NPHI {2)
1 2.461303€-01 3.321745€-02 1.862368E£-02 30321 1645E-02 -1.309597€ 00 1.309597€ 00
13 2.495162€-C1 2.785626E~02 3.385855€E-03 =5.351le (=03 ~1.253872€ 0OC 6.172868E-%1
2 2.494329€-01 2.802956E~02 ~84355565E-04 ~5.79149CE-04 ~1.265693€ 0OC 6.350081E-01
3 2.493270E-C1 2,818341€E-C2 ~1.223702€E-04 1.340313€E-04 -1.266788€ 00 6.528740E-01
4 2.493209€-01 2.818864E-02 1.199171E-05 3.414042€E-05 =1.266764E 0C 6.527720€-01
GUESS FOR LEEWARD SHOCK
ENTROPY= 3.507286€E-04
THETA v v R0 P L] v/u
1 2.T775095€-01 9.320688E 00 -1,117585E 0C 1.157315€ 00 .1.227396€ 09 T.T794015€ 00 ~1.199037E-01
2 2.675095€-0C1 9.331864E 00 -9.959933€E-0! 1.176326¢E 00 1.255712€ 00 Te676860GE 0C ~1.067306E-01
3 2.575C95€~01 9.341824E OC ~8.855479E~01 1.184920¢ 00 1.268592E€ 00 T.664TO6E 0C ~9.479391E-02
4  2.675095€-01 9.3506T9E 00 -T.781474£-01 1.190135€ 20 1.276401€ 00 T.657418E 0C -8.321826€-02
5 2.375095E-01 9.358450E OC ~6.720345E-01 1.193427€ 00 1.281347€ C¢C 1.652828E 0C ~T.181037€-02
6  2.275095€-01 9.36518lE 00 -5.6645)1E-01 1.195387€ 00 1.284294E 00 T.550102€ 0C -6.048469€E-02
7 2.175095€-01 9.370845€E IC -4.609599E-01 1.196286€ 00 1.285646E 00 T.648854k 00 -4.918993€-02
8  2.075095€-01 9.375455€E 00 -3,.552157E-C1 1.196241€ 00 1.285578E 00 T.648916€ 00 -3.788784E-C2
9  1.975C93%e-n1 9.379007€ 0C ~=2.489646E-0! 1.195278€ 00 1.284130€ CO Te650253E 00 -2.654488E~02
10 1.375095E~01 9.3814656E 30 ~1.419143E-0) 1.133348E 00 1.281227€ 00 7.652938E 00 -~1.512705€-02
11 1. T75C95E-01 9.382915E 00 ~3,374197E-02 1.190322€ 00 1.276682€ 00 To557056E 00 -3.596107E-03
12 1.750C95€-C1 90333000 IC ~5.489177E-03 1.J90135€ 00 1.276400E 00 T.557418E JC -5.85C13CE~0¢
13 1.746970E-01 9+383051€ 00 ~1,912078E-C3 1.190133€E 0O 14276397 00 T.557421E 00 -2,037810E-04
14 1.745407€~01 9.383002E 0C =~1.213767€E-04 1.192132€ 00 1.276356E QO T.657422€E 00 ~1,293582€-05
15 1.745510E-02 9.383002E 00 =-9.362918E-06 1.190132€ 00 14276396E 0C T.657422E 00 ~9.978596E~07
i6 1.7453C3E-CL° 9.383002E 00 -2.361673£-06 1.190132€ 00 1.276396E 00 Te657422E 00 -2.516969E~07
17 1.7453C2€-01 9.383002E 00 -6.11356DE~07 1.190132€ 00 1.276396E 00 Te657422E 00 -6.5155T0€E~08
GJESS FIR WINOWARD SHOCK
ENTROPYs 3.796395€-01
THETA U v RHO p . v/y
1 2.211322E~-01 3.804279E 00 -9.043338€~01 3.670937E 00  9.,027304E CC  4.T7T0006E 0C -1.027720€E-01
?  2.1113226-r1 8.813328E 00 -7.,158011E-01 3.749749€ N0 9.2999G3E 00 4e745320E 00 -8.121803E-02
3 2.011322€~01 8.820486E 00 -5,271317€~0) 3.808432€ 00  9.5045C6E OC 4.727313E 00 -5.976221E-02
4 1.911322€~C1 8,825T57E 00 =3,353668€E~01 3.848063E 00  9.643047E 00  4,715363E ¢ -3.799865€-02
5 1.911322€-01 B,829111E 3N ~1.3741)8E-01 3.956945E 00  9.7C9363E I 4.709711E 0D ~-1,5%56338E-02
6 1+761322€-C1 8.829798E 00 ~3,4035C3E-02 3.870023E OO  9,7201T8E GO  4.7I3793E 00 -3.854565E-03
? 1.748822€-C1 84829840E 00 -~T7.506550E-03 3.870216€E 00  9.720859€ CO  4.708735E 00 ~-8.5C1343E-04
A 14 745697€-C1 B+ 829842€ C) ~8,266442E~04  3,870225€ N0  9,72089N€E 00 §.708732E 9C -9.361936E~05
9 14 7455C2E~C1 8.829842E 00 ~4,03406)E~04 3,87C225E 00 9.720890E 00 4e7I8TI2E IC -+44625292E-05
1% 1.7454C4E~01 8.829842E 00 ~1.992617€E-04 3.37G225€ 00 9.720890€ 00 4477287328 0C -2.256685E-05
11 1.7453556~01 . B8,829842E 00 <~9,468329€~95 3.870225€ 0L 9,720892€ 20 4,708732E € ~1.C72310E-CS
12 1.745331E~C1 84829842E 00 ~4,239250€-05 3.37C225€ 00  9.720890E 00 4, 7I8732E 26 ~-4.801C49E-Ns
13 1e745319€E-C1 8.829842E OO0 =~1.6246T1E-05 3.370225€ 00  9.720890E CO  4.798732E 20 ~1.839978E-06
14 1+ 745313€-01 R,829842E 00 <«3.173722€~06  3.870225E N0  9.720890E 0O  4,708732E 00 «3,594313€E-C7
15 1.745312€~C1 8,829842€ Y0 ~1,539592E-06 3.370225€E 00  9.720890€ 00 4,708732€E OC -1.743623E=-07
15 1.745311€-01 8.829842E 20 -7,225265E-07 3.370225€ 0C  9.720890E 0C 4. TOYTI2E IC -8.182780E~C8
= . T YT S F  aareaal .,, T
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