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S UMMFARY

The conical inviscid flow field past a circular cone at an
angle of attack is obtained as the asymptotic stage of a three-
dimensional flow. The latter is computed in a spherical frame
by means of finite difference techniques associated with a method
of characteristics on the shock and body. A brie' critical dis-
cussion of previous papers on the subject and an analysis of the
numerical results are given. Comparison with experiments shows
that the applicability of the theory is severely limited by
boundary layer effects.
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TECHNICAL REPORT NO. 577

INVISCID FLOW FIELD PAST A POINTED

CONE AT AN PNGLE OF ATTACK

PART I - ANALYSIS

By G. Moretti

I. INTRODUCTION

The State of the Art

The steady supersonic flow past a pointed cone of revolu-

tion at zero angle of attack was first studied by Busemann in

1929, and by other authors in the thirties (Ref. 1). The

definition of a conical flow was given as that of a flow whose

parameters do not depend on r in a spherical frame of refer-

enze, (r,6,9 ). As a matter of fact, the flow past a pointed

cone of revolution at zero angle of attack is also axisym-

metric, that is, its parameters do not depend on cp either. The

latter problem is reduced to solving two ordinary differential

equations, with 0 as the only independent variable:

du/dO = v
(1)

avidS = - u + (u + v cot O)/(v-/a- - 1)
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(the three velocity components in the spherical frame being

u, v, and w, respectively, and a being the speed of sound).

In 1947, such equations were coded for an electronic computer

by Kipal and his staff (Ref. 2), and the results tabulated.

Today, Kopal's tables are obsolete, since a program of not

more than 20 LORTRAN statements may provide a direct evalu-

ation of the flow, once the free-stream Mach number, the

semi-angle of the cone, e, and the ratio of specific heats,

Y, are given.

In the late forties, the problem of a pointed cone at

an angle of attack, a, was considered, with some optimism,
I

to be a simple extension of the case above, at least for

a<< e. It is easy to prove that a steady conical flow may

exist, whose parameters depend on e and (p. Five differ-

ential equations are needed now (since, in addition to u

and v, the third velocity component, w, the pressure, p, and

either the density, P, or the entropy, S, must be determined),

but the independent variables number only two. In fifteen

years, several attempts have been made to solve the problem

so formulated, and the number of papers is so la:ge that an

exhaustive list cannot be given here.
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The problem proved to be a very tough one, since the

system of equations which describes it is elliptic, if a

is small and v2+w2<a2, and becomes of the mixed type for

larger values of a, if there are regions of the (6,')-sphere

in which v aw2>a2. In such a sphere, the shape of the cone

is given, but the shock wave is unknown. In this respect,

the problem of a cone at an angle of attack is similar to

the blunt body problem, and similar techniques have been

used in both problems, such as inverse methods with step-on

integration from the shock to the body (Ref. 3), methods

of integral relations (the "strip-method" of Belotserkovsky)

(Ref. 4), and methods of series expansions (Ref. 8). In the

latter case, some papers try to improve the original linear-

ized formulation of Stone (Refs. 5,6) and Ferri (Ref. 7),

others (Refs. 9,10) are related to Chernyi's expansion in

powers of (Y-l)/(y+l), etc.
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II. THE CENTRAL IDEA FOR A NEW TECHNIQUE

Critical objections, similar to the ones discussed in

some detail for the blunt body problem (Ref. 11), may be

raised here. Briefly, since a numerical procedure is used

to solve the problem, a system of elliptic equations is

ill-suited for the job. In the blunt body problem, a

powerful and accurate technique may be set up if the system

is made hyperbolic by considering the steady state as the

asymptote of an unsteady one. In the present problem, the

equations of a steady flow in the three coordinates, r, 6,

and P, form a hyperbolic system. Consequently, the problem

is easier to handle if the motion is not conical. Let us

consider, then, the conical motion as the asymptote (with

respect to r) of a non-conical one. To this effect, assume

an arbitrary set of initial conditions on a sphere, r = r 0

say, and compute the flow from there on as dependent on 6,

(p, and r, until an asymptotic state, independent of r,

develops. The physical argument for the existence of a

conical flow as an asymptotic one is that the flow in the

shock layer is forced by the outer flow, which is uniform

(and therefore conical) and the geometry of the body (which

is a cone).
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In the present approach an initial value of r is defined,

and we suppose that the asymptotic values are reached at

another value of r, r = r1 , say. The difference, r, - rof

represents the actual length which the flow should travel in

order to overcome the initial state (a perturbed, non-conical

one) with a continuous build-up of conical effects. Such a

length will obviously be the longer, the farther the initial

conditions are from a conical flow. But the length itself is

immaterial, since no length is involved in a conical flow.

One can think in terms of the perturbation being confined to

such a small region in the vicinity of the apex that the dis-

tance r, - r itself is as small as we please. (After all,

what is a pointed cone from a physical point of view, if not

a blunted cone whose blunt, irregular, discontinuous nose is

detectable only with a microscope?)

As a matter of fact, --he building up of a conical flow

around a blunted cone, such a flow being similar to what should

be expected in a pointed cone, has been investigated experi-

mentally (Ref. 12) and numerically (Ref. 13). The conclusion

was that after about ten nose radii from the tip of the cone a

conical flow is well established. However, the high entropy
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layer consequent to the central portion of the bow shock fills

a significant portion of the shock layer. The entropy pattern,

i then, is not what is expected from a theoretical analysis of

a pointed cone, and an independent numerical analysis is still

considered necessary.

I

t
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III. DETAILS OF THE ANALYSIS

The Initial Conditions.

The present analysis differs from the one mentioned in

the previous section (Ref. 13) in the choice of the initial

conditions and in the technique used to solve the three-

dimensional equations of a steady flow.

As said before, it is convenient to choose the initial

conditions as close as possible to the solution for the

conical flow, since the computational time will be reduced

to a minimum. Moreover, we do not want to start with a set

of values consistent with a blunt body calculation, since we

want to avoid the after effects of a high entropy layer.

The initial values are guessed as follows:

It is assumed that the trace of the shock on a plane,

normal to the axis of the cone, is an ellipse if the angle

of attack 0 X 0. We consider such a plane as tangent to the

unit sphere, whose center is the apex of the cone, and also

assume that, within the shock layer, e a tan 8. Therefore

in Fig. 1, where the plane is represented, the spherical

@-coordinate of any point is equal to the distance between

such a point and the origin, 0. In this figure, 0 is the
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trace of the axis of the cone (8 = 0), V is the trace of the

vector, parallel to V., through the apex of the cone, E is

the center of the shock ellipse, 61 and 62 are the angles

between shock and body in the leeward and windward side

respectively, A and B are the semi-axes of the ellipse, e is

the angle between shock and body on the x-axis, and b is the

semi-angle of the cone. Note that

£=A j-ClB - b (2)

First, the conical flow consistent with the assigned

cone at no incidence is computed, and a value, 6o, of the

angle between shock and body in the plane of Fig. 1 is

obtained. It is then postulated that

(€ + 62)/2 = 6 (3)

independent of the Mach number and the angle of attack (such

an assumption is well justified by experimental results).

From (2) and (3) A may be expressed as a function of B and C,

C - B + 2b ± 26
A0 (4)A= o/B;



Consequently, only two parameters, B and C, are left to

define the ellipse. They are related to 61 and 62 throuvgh

the equations,

B = b + (61 + 62)/2
(5)

C = (61 - 62)/2

On the plane of symmetry, w = 0 and the derivatives of u,

v, and p with respect to (P also vanish. If a conical motion

is assumed, the equations of motion in such a plane reduce

to the simple form,

u =v

= - u + (11 + v cot e + w P/sin e)/(v2/a 2 - 1)

where a subindex means differentiation with respect to that

variable.

Note that the only difference between (1) and (6) is the

presence of the term w(P/sin e in the latter. Therefore, the

same technique used to determine the conical flow at no

incidence could be applied to solve (6), if w(P/sin 6 were

known as a function of 6. Since we do not know it, we assume
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that w, is constant between M and N and between P and Q.

Let s be the value of 0 at the shock. From the equa-

tion of the ellipse, and letting 8 = tan 0, r = 1, it0

follows that

C cos' + B =(B'-c )IA' sin' P + cos'

(B/A)2 sin2 ' + cos 2 (P

and

s - BC (C ± 2B),A2 (8)

at the symmetry plane, where the upper sign holds between M

and N and the lower one between P and Q. From the Rankine-

Hugoniot equations,

w0 = Us /sin s - V (9)

where U is the component of the velocity behind the shock

along the normal to the shock wave, pointing inwards, and V

is the derivative with respect to 'p of the component of the

velocity along the tangent to the shock wave in the plane of

Fig. 1. The component of the velocity in front of the shock

along the normal. is

V sin (s T ) (10)



where V. is the velocity at infinity and with the upper sign

for point N and the lower one for point Q. From (20), U is

obtained through the Rankine-Hugoniot equations. From the

same equations,

V s = os Cos (- s W cot s)] (ii)

We have now the equations which'are necessary and sufficient

to determine B and C. From a computational point of ",iew,

an iteration procedure is convenient and is used. Two

values of B and C are guessed, the corresponding values of

w on the leeward and windward sides are evaluated, then the

system of Eqs. (6) is integrated between N and M and between

Q and P. Two new values of 61 and 62 result, from which

two new values of B and C are obtained, and the procedure is

repeated until (after three or four iterations) the solution

is obtained.

At this stage, a number of equally spaced meridional

planes (q = constant) is considered and, along the intersection

of each plane with the unit sphere, a number of equally spaced

points is taken between the cone and the shock, (left-hand

side of Fig. 2).
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The auxiliary variable is introduced, defined by

6 - b (12)

where

6 = s - b (13)

The shock layer is thus mapped onto a rectangle in a

(Y,)-plane, where Y = (. (right-hand side of Fig. 2). The

initial values of u, v, w P, p, and p are known at the points

on the lines Y = 0 and Y = 9, from the computation outlined

above. The shock shape, s = s(p) is known as an ellipse and,

since we assumed that sr = 0 (conical flow), its geometry in

space is completely defined. The Rankine-Hugoniot equations

can be applied at any point on the shock (1 = ), to determine

the physical properties behind it, that is, u, v, w, p, and

p. On the body (C = 0), v = 0,

2R = R(0,0) + R(IT,0) + CR(0,0) - R(IT,0)] cos p

2P = P(0,0) + P(IT,0) + EP(0,0) - P(1T,0)] cos P (14)

2w = (w (0,0) - w (1T,0) + Cw (0,0) + v (T,0)] cos 'p3 sin 4p

.,, _ • . .. T' ' - -0- 40' . .T -,40 .,,
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where

R(Y,C) = Tn(p/p,)
(15)

P(Y, C) = n(p/p.)

and u is obtained from the definition of the total enthalpy.

Note that, since the entropy, S, is given by

S =P - YR (16)

(within a constant factor, c v), it follows that the initial

entropy on the body is distributed with a simple trigono-

metric law.

The values of v, w, P, and R at the interior points

of the grid in the (Y,C)-plane are linearly interpolated

between body and shock and, again, u is obtained from the

definition of the total enthalpy.

At this stage, a slight correction on the values of p

(and, consequently, of R) at the interior points is made,

in order to match the total mass-flow between shock and body

with the mass-flow of the uniform stream through the elliptic

section of the unit sphere,

m =p Vf d. r (cos o cos 6 + sin a sin 8 cos (p) sin 8 dG
0 0

(17)
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Let p and u be the values of p and u as computed above, and

p = PO + t (l - (18)

where r is a constant, r << 1. Then the mass-flow between shock

and body is

m = f 6(0)do [p0o + t C(1- )](u + t uj) sin @ d@ (19)
0 0

where u1 is the first order correction to u as obtained from the

expression of the total enthalpy,

u Y 7PC(1 - CY
= (Y i) s (20)(- )poUo

0 0

Consequently

M = j' 8(p)dp pu sin e d6
0 0

+ t J 8(p)do f (i - ) u + YP sin e dO (21)to f 0 (Y - l) oUo

= m. + T iM2

and, since m = m

m - i(
o~m (22)
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IV. THE COMPUTATION OF THE THREE-DIMENSIONAL

FLOW FIELD. INNER POINTS

The computation of the non-conical flow subsequent to the

initial. conditions is performed along the same general lines

described for the blunt-body problem (Ref. 11). An auxiliary

space (T,Y,C) is used, where Y and C have been defined above,

and T = r. Referring to the right-hand side of Fig. 2, one

can imagine a T-axis normal to the plane of the figure. The

grid does not change with T.

Letting

q = tn(u/V

a = V/u (23)

T = W/u

the equations of motion in the new coordinates are

RT+ qT = - AR + BR - CSr qC/ + vt/ru6

+ (wy- Cs 9w/ 6 )/ru sin e + (2 + a cos 8)/r]

(a/u 2 )R T + T = - [AqC + Bqy - as R /u26 - (a2/yu2)[(a/r

- Cs B)S / + BS] - (a + T2 )/2]

(24)
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vm = - [AV + BVy + a2P /-yru8 + (v - wT cot @)/rl

wT = - [Aw + Bwy + (a2 /Vru sin 8) (Py - Cs P /6)

(24)
+ (w + vT cot )/rl Cont'd

ST = - [AS + BSr]

where

B = T/r sin 8
(25)

A = (W/r - Csr - Cs B)/8

All points inside the grid (that is, neither at = 0 nor at

= 1) are computed assuming that

g(T + A T,Y, ) g(T,Y,C) + g T(T,Y,C)A T + gT(T,Y,C)k T2/2

(26)

where g is any of the parameters g, v, w, R, and S. The system

of Eqs. (24) provides the formal expressions far the first derivatives,

gT" The first derivatives with respect to Y and C, which appear

in the right-hand sides, are evaluated by central differences.

In addition, s is obtained from the shape of the shock at T

(how to obtain s is explained in the next section).r

In order to obtain the second order derivatives, gTV each

of Eqs. (24) is formally differentiated with respect to T. The



17

second order mixed derivatives, of the type g TC' TY which appear

in the right-hand sides, are formally obtained again by differ-

entiating the Eqs. (24) with respect to C and Y. In this way,

the evaluation of the last term in (26) is reduced to computing

3-point centered second derivatives with respect to C, CY, and

YY, and to some algebraic manipulations. Note that 8T = sr .

The terms, srT' s T are evaluated as

s r(T + A T,Y) - s r(T,Y) s (T + A T,Y) - s 0(T,Y)

AT AT

Derivatives with respect to C and Y of complicated factors, such

as A, a2/yru sin 9, etc. are not formally evaluated, but com-

puted by central differencing of the factors themselves.

The value of A T which can be used at each step is limited

by a stability criterion. The well known Couiant-Friedrichs-Lewy

rule is applied, which forbids computing values at a point outside

the domain of influence of the initial points (Ref. 16).
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V. COMPUTATION OF THE SHOCK WAVE

The points on the shock wave are computed with an improved

version of a technique successfully used in general three-

dimensional flow field computations (Ref. 13).

The equations of motion in spherical coordinates are written

moving all derivatives with respect to p to their right-hand

sides, and the third momentum equation is stricken out, so that

the system looks as follows:

-s /y -as/yr + Pr/y + aP /yr + q + v /ru = - [TR

+ w( /u)/sin 6 + 2 + a cot 0]/r

(a2 /u2) (-Sr/y - aSo/Yr + Pr/y) + qr + aq /r = [(a2S0 /u 2

- q0) T/sin 8 + a2+ T2 1/r

a2 P0/yru + vr + av /r = [-v - Tv /sin + wT cos 01/'r

Sr + as /r = - TS /r sin 6 (27)

In a (r,6)-plane, this system has three characteristics, defined

by

I d6 uv + a Vu 2 +v2 -a 2

dr u2 -a2

(28)

II d6 uv - a ju+v 2 -a "  dO

dr u2-a2 r dr
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The compatibility equation along the first characteristic reads

a/U2 ) JU2 +V- 2  P + da'r f a = 2

dr dr - - I(w /u sin e + 2

+ a cot 6) + I (Tq /sin e-a 2 - T.)

- (Tv /sin e + v - wT cos e)/ru

- (aa + u2 +9-a 2 ) P Ta/yr(u'-a 2 )sin e

(29)

By computing the coefficients and the right-hand side at a

suitable initial point, the values of P and a .ay match the

values of P and a computed from the Rankine-Hugoniot conditions,

with a proper choice of s . By iteration, the matching values,r

including s , are easily computed.

'wr- N
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VI. COMPUTATION OF POINTS ON THE BODY

A similar technique is used to compute points on the body.

The compatibility equation along the second characteristic,

(a/yu.) Vu 2+v2 -a2 dP- dr= - G _XIId (w /u sin + 2

+ a cot e) -XII (Tq /sin e_/ 2 _rl)

+ (Tv /sin e +v- wr cos e)/ru +

+ (aa .u+va-aa) P Ta/yr(u2 -a2 )sin e

(30)

must be used. Again, the coefficients and the right-hand side

are computed at a suitable initial point and the condition,

v = 0 on the body, is used. Consequently, P is found at a body

point. The fluid momentum equation then is used, in which v = 0:

1 w + w = - (w + a2P /yu sin e)/r (31)
w Dt r rsin 8

the last of Eqs. (27) reads now

1lDS ___

1 S= + . S =0 (32)u Dt r r sin e

Both Lagrangian derivatives are taken along a streamline which

wets the body. Thus, by finding the initial point on such a

streamline and computing the pertinent values of w, S, and the
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right-hand side of (31), the values of w and S at the point on

the body may be evaluated. Finally, the value of u at the body

point is obtained from the condition of constant total enthalpy.

At the body point in the leeward symmetry plane (p = 0),

however, the entropy is forced to be equal to the entropy of

the neighboring point in the same plane. A similar policy is

adopted for the body point in the windward symmetry plane

(P = V). The reason for it is that no streamline enters or

leaves the symmetry planes. When the flow has settled down to

a conical one, the entropy on each of these planes must be a

constant. Our device allows the body points in the symmetry

planes to adjust their entropies to the final entropies at the

shock points, independent of the original guess.

• 2Mab
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VII. RESULTS AND DISCUSSION

The following sample problems have been run, in order to

test the technique:

(1) M = 7.95, c = 100, a = 80

(2) M = 7.95, c = 100, a = 40

(3) M = 8, c = 200, a = 50

(4) M = 20, c = 300, a = 100

The first two cases were chosen to compare our results with

Tracy's experiments (Ref. 14), the third one to conclude the dis-

cussion and to check with other experiments which were made in

testing our three-dimensional flow field computations (Ref. 13),

the fourth one to show the reversed situation (leeward side thinner

than the windward side) which is to be found at high Mach numbers

(Ref. 15). We will analyze the first case in detail.

It took four iterations to define the shape of the initial

shock wave. Table I shows the values of B and C, their errors

(that is, the differences between B and C at one step and B and C

at the next step) and the corresponding values of w in the

leeward side (labeled 1) and the windward side (labeled 2). In

the same table, values of u, v, p, p, M, and v/u are given as

functions of 8 in the symmetry plane (from the shock to the body).

Note that all dimensional quantities are made nondimensional;
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pressures and densities are divided by p. and p. respectively;

velocity components are divided by pV /PV . The subsequent

computation was performed (in this as in the other cases) con-

sidering 11 meridional planes, spaced 180 apart, and 6 points

in each plane (including the shock and body points).

As a result of the non-conical computation, the shock

wave undergoes a deformation. The values of s r, which are

assumed as zero initially and should be identically zero in a

conical flow, change with r and qp. If the flow sets down to

a conical one, i:hen s must vanish again identically. A first
r

indication of the tendency of the flow toward a conical state

may be found by plotting the range of values of s at each com-r

puted value of r. This is done in Fig. 3. Since s is of ther

order of .2, the shock shape may be considered as stabilized

when sr is of the order of 10-4, and this situation occurs at

step 200, r F 13.6, far before the end of the run, which was

interrupted at step 540, r = 1073.

In Fig. 4 the internal mass-flow (across a spherical sec-

tion of the shock layer at a given station) and the external

mass-flow (across the whole shock wave from the apex to the same

station) are plotted after having been divided by r'. It is

clear again that a stable flow configuration is reached, after
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about 400 steps (in a conical flow, m/r2 is a constant). It is

also interesting to note that the error (difference between

internal and external mass flow) is of the order of 1/1000 of

the total mass flow).

There is a way of testing the soundness of the results.

If the flow, as found by the present technique, is conical, then

it is ruled by Eqs. (6) in-the symmetry plane. Let us perform

again the integration of such a system, starting from the shock

as defined by the present technique and using what we assume

are the correct values of w (8). The integration should give

the correct value for the body angle and the distributions of u

and v between shock and body should match the ones obtained with

the present technique. This actually happens within three sig-

nificant figures. The body angle, in radians, is .17453. The

body angles computed from (6) with the values of w interpolated

from the last step in our sample run are .17410 in the leeward

side and .17445 in the windward side. The distribution of v(e)

as computed with the present technique and from the integration

of (6) is shown in Fig. 5.

A word about the entropy distribution is in order here. As

pointed out by Ferri (Ref. 7), the constant entropy lines on the

unit sphere converge to a singular point on the leeward plane of

symmetry. In our computation, the initial (arbitrary) distribution
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of entropy is the one shown in Fig. 6, left-hand side. At the end

of the computation, the constant entropy lines appear as in the

right-hand side of the same figure. The singularity has been

built up through a numerical procedure. Note that such'a result

is obtained using a very coarse mesh. To stress the point,

Fig. 7 shows the building of the singularity by plotting several

distributions of entropy on the body, at different steps in the

computation.

The pressure distribution is shown in Fig. 8. In Fig. 9 the

pressure distribution on the body is plotted as a function of P for

case (3) specified above. As expected, no sizeable difference

exists among the present results, those obtained by a proper usage

of Kopal's tables (Ref. 2), and the pressure distribution on a

blunted cone at a certain distance from the nose. The latter

results have been obtained analytically (by the technique of Ref. 13)

and experimentally (Ref. 12).
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VIII. LIMITATIONS OF THE INVISCID MODEL

To conclude, Fig. 10 shows the shock shapes for the four

cases computed. In the first two casas, some points on the

shocks as determined experimentally (Ref. 14) are shown by dots.

The agreement between computation and experiment in the windward

side is a proof of the soundness of the numerical procedure. The

disagreement in the leeward side was expected. The present model

is one of an inviscid flow. In reality, the viscous effects are

important on a cone at an angle of attack, due to the three-

dimensional behavior of the boundary layer (Ref. 17). By com-

parison of the numerical results with other data from Ref. 14,

it appears that the difference in thickness in the leeward sym-

metry plane is of the order of the thickness of the viscous core.

In conclusion, the present computation, although self-

consistent and accurate, is not yet adequate to describe the

real motion, for lack of a realistic model of the gas. A more

complicated model, in which viscous effects are taken into

account, will be presented in a-further communication.
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TABLE I

CONE AT AN ANGLE OF ATTACK

PROGRAM 3A - RU4 NUMBER 1 ON 11/16/65

NA. 5. MA- IC. KA- 23, JAw 10. LAN -0, LBs -0, LC. -0, LO' -0, LE. -O, LF. -0

CONE HALF ANGLE- 1.3393F 01 DEGREES, ALPHA. 3.OOOCOE 00 3EGREES, UO= 9.4100E 00# GAMMA- 1.4C000E 00, STAB- 5.CPCOOE r

GUESS FOR SHOCK* 1.SCCOOF 01, DELTH*IC.OOCCCE-03

EPS I TO 7
10.O300E-05 tC.OCOOE-05 10.00002-OS 1.OOOE 00 -0. -0. -C.

4ACH NUNRER- 7.9529E 009 STANDOFF DISTANCE AT ZERO ANGLE OF ATTACK* 5.297662E-02

SHO:K iTERATION

B C ERRISI ERRIC) WPr4I(1 WPHI2)
1 2.461303E-01 3.321745E-02 1.862368E-02 3.321r45E-02 -1.409597E 00 1.309597E 00
I 2.495162E-01 2.786626E-02 3.385855E-03 -5.3511o -03 -1.253872E OC 6.17286BE-Cl
2 2.494329E-01 2.802956E-02 -8.355565E-04 -5.791490E-04 -1.265693E 00 6.3508E-01
3 2.4q3270E-01 2.818341E-C2 -1.223702E-04 1.340313E-04 -1.26678E 00 6.528740E-01
4 2.493209E-01 2.818864E-02 1.199171E-05 3.414042E-05 -1.266764E O 6.527720E-01

GUESS F3R LEEWARD SHOCK

ENTROPY- 3.507286E-04

THETA U V R40 P N V/U
1 2.775095E-31 9.320688E 00 -1.117585E 0C 1.157315E 00 .1.227396E 03 7.T4015E 00 -. L99037E-01
2 2.675095E-01 9.331864E 00 -9.959939E-01 1.176324E 00 1.255712E 00 7.67684GE OC -1.067304E-01
3 2.575C95E-01 9.341824E D0 -6.655479E-01 1.184930C 00 1.268592E 00 7.664706E 00 -9.479391E-02
4 2.475095E-01 9.3506?qE O -T.T8l474f-O1 1.190135E 00 1.276401E 00 7.65?418E OC -8.321828E-02
5 2.375095E-01 9.358460E 00 -6.720345E-01 1.193427E 00 1.281347E 00 ?.652828E OC -7.181037E-0
6 2.275s95E-O 9.365181E 00 -5.664531E-01 1.195387E 00 1.284294E 00 7.SS0102E 00 -6.048469E-02
7 2.175095E-01 9.370845E 30 -4.609509E-01 1.196286E 00 1.285646E 00 7.648854E 00 -4.918992E-02
q 2.075095E-01 9.375455E 00 -3.552157E-01 1.196241E 00 1.285578E 00 7.648916E 00 -3.788784E-02
9 1.975095E-01 9.379007E 00 -2.489646E-01 1.195278E 00 1.284130E CO 7.650253E 00 -2.654488E-02

10 1.475095E-01 9.381496E 00 -1.419143E-01 1.193348E 00 1.281227E 00 7.652938E 00 -1.512705E-02
11 1.77595E-01 9.382915E 00 -3.374197E-02 1.190322E 00 1.276682E 00 7.S57156E 00 -3.596107E-03
12 1.750C95E-Cl 9.3i3300E 0 -5.4891T7E-03 1.101 5E 00 1.276400E 00 7.657418E 00 -5.85C130E-04
13 1.74697nE-01 9.3830C1E 30 -1.912078E-03 1.190133E 00 1.276397E 00 7.$5?421E 00 -2.037810E-04
14 1.745407E-01 9.383P02E OC -1.213769E-04 1.191132E 00 1.276396E 00 7.657422E 00 -1.293583E-05
15 1.745S10E-01. 9.383002E 00 -9.36291BE-06 1.19032E 00 i.276396E OC 7.657422E 00 -9.978596E-07
16 1.745303E-Cl, 9.383002E 00 -2.361673E-06 1.19013ZE 00 1.276396E 00 7.657422E 00 -2.516969E-7
17 1.7453C2E-01 9.383002E 00 -6.113560E-07 1.19013?E 00 L.276396E 00 7.65T422E 00 -6.515570E-08

GJESS FJR WIOWARO SHOCK

ENTROPYm 3.796395E-01

THETA U V RHO P 4 V/U
1 2.211322E-01 3.804279E 00 -9.04833SE-01 3.670937E 00 9.027304E 00 4.770006E 00 -l.027720E-O
7 2.111322E-e1 8.813328E 00 -7.158011E-01 3t749749E 00 9.299903E 00 4.745320E 00 -8.121803E-02
3 2.011322E-01 8.820486E 00 -5.271317E-01 3.808492E 00 9.504506E 00 4.727313E 00 -5.976221E-02
4 1.911322E-Cl 8.825757E 00 -3.353668E-01 3.848063E 00 9.643047E 00 4.715363E 3( -3.799865E-02
5 1.811322E-01 8.829111E 30 -1.374138E-01 3.366946E 00 9.TC9363E 3 4.739711E 00 -1.556338E-02
6 1.761322E-01 8.029798E 00 -3.4035C3E-02 3.870023E 00 9.720178E 00 4.718T93E 00 -3.854565E-03
7 1.74q82?E-C: 8.829840E 00 -7.506550E-03 3.870216E 00 9.720859E 00 4.708735E 00 -8.501343E-04
A 1.745697E-'l 8.829842E 03 -8.266442E-04 3.870225E 00 9.7208906 00 4.708732E OC -9.361936E-n5
9 1.7455M2E-01 8.829842E 00 -4.0940626-04 3.8TC22SE 00 9.720893E 00 4.738?32E 10 -4.625292E-05

1l 1.745404E-01 8.829842E 30 -1.992617E-04 3.87G225E 00 9.20890E 00 4.708132E OC -2.256685E-05
11 1.745)55F-01 8.829842E 00 -9.468329E-05 3.870225E Ou 9.720893E 30 4.738732E WC -I.CT231OE-05
12 1.745331E-Cl 8.829842E 00 -4.239253E-05 3#87C225E 00 9.720890E 00 4.718732E 90 -4.dCl,49E-06
13 1.745319E-C1 8.829842E 00 -1.624671E-05 3.470225E 00 9.720890E CO 4.708732E 0C -1.839978E06
14 1.745313E-01 8.829842E 00 -3.173722E-06 3.870225E n0 9.720890E 00 4.708732E 00 -3.594313E-07
15 1.745312E-01 8.829842E 30 -1.539592E-06 3.470225E 00 9.720890E 00 4.708732E o -1.743623E-t?
16 1.745311E-01 8.879842E 3C -7.225265E-07 3.370225E )0 9.720890E 00 4.70732E IC -8.182780E-08
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