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SUMMARY

The theory of extreme values is shown

to be revelant in the analysis of two

stochastic biological phenomena.



"Bacterial Extinction Time as an Extreme Value Phenomenon"

by

Benjamin Epstein

In [3], Mather found that some data or bacterial extinction times in the

presence of a bactericide appeared to fall along a straight line when one plotted

log(-log pt) against t , where Pt is the observed proportion of samples with

no surviving bacteria after an exposure of t minutes to the bactericide.

In Mather's data, Pt was observed in samples of size 18 at times t - 12(2)26

minutes, and Pt varied from zero at t - 12 to 1-1 at t - 26. Mather was
t 18

led by heuristic reasoning to the model log(-log pt) - a + St, where Pt is

the "true" proportion of samples showing the absence of bacteria after an exposure

of time t to the bactericide. Subsequently, it was noted by Gumbel on pages

43-44 of [3] that Mather had given an interesting application of the theory of
_ea+ et)

extreme values without, however, using the term, since Pt a e

is the type 1 asymptotic distribution of largest values. Gumbel then gave an

alternative method of fitting the experimental data, which he deemed somewhat more

appropriate in the light of extreme value theory. Actually, there appears to be

little to choose between the two methods of fitting the data, since, in this

instance, the parameter estimates obtained by either method are in excellent

agreement with each other.

Neither Gumbel nor Mather gave a theoretical model for the time to extinction

problem. To provide such a model would seem to be of some interest, particularly

in view of the last paragraph on page 44 or (2]: "The three figures show that the

theory of largest values in an adequate tool for the analysis of the extinction time

of bacteria subject to a disinfectant. However, the philosophical question of why

these data follow the law of largest values instead of smallest, as one might expect,

remains open.
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We now give a simple model for the bacterial extinction time problem which

leads in a natural way to the type 1 distribution of largest values. In the

model we make the following assumptions:

a) the nunber of bacteria in a sample just prior to be the introduction of
S±bt

a bactericide at time t - 0 is a Poisson random variable with

mean YO ;

b) the "lifetime" of a bacterium in the presence of the bactericide

(a fixed dose is assumed) is distributed with c.d.f F(t) , t 0 0

It is clear that the presence or absence of bacteria in the sample after

a length of time t has elapsed depends upon whether or not all of the bacteria,

x , present in the sample at time t - 0 have "died" or, putting it another way,

whether or not the longest lived bacterium survives. Since

-YO x
e 7

p(x) - x!

is the probability that x bacteria are in the sample at time t - 0 and

[F(t)]x is the probability that all x bacteria "die" by time t (assuming that

bacterial extinction times are mutually independent) it follows from the theorem

of total probability that G(t), the c.d.f of the time T to total bacterial

extinction in the sample, is given bytt

W eYO x

G(t) - pr(T<t) 1 0 x1 [F(t)]x
x=O

(1) -Yo[1 - F(t)]
-e ,t>O0

t If the sample consists of v cc drawn from a solution in which bacteria are

distributed at random with 6 bacteria per unit volume, than 10 - 6 v .

t+ A simapler proof of (1) is as follows: If x0 , the number of bacteria in the

sample at time t - 0 , is Poisson distributed with mean AO 9 the number of

bacteria living longer than time t , is Poisson distributed with mean

Yo[l - F(t)] . Consequently, the probability that the sample will be bacteria-

free ia• Pr(xt - 0) - e-YO[l - F(t)]. But the events T < t and xt - 0 are

equivalent and this establishes (1).
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A discrete amount of probability e , which corresponds to the probability

that there are no bacteria in the sample at time t - 0 , is assigned to the
e-Y0

c.d.f G(t) at t - 0 , i.e., G(6+) - e

If bacterium lives are distributed with c.d.f F(t) =k - " , t > 0 , an

assumption that would appear to be reasonable in this situation, G(t) becomes

-At

(2) G(t) - e , t > 0

The c.d.f (2) is called the type 1 distribution of largest values in Gumbel's

terminology. It follows from (2) that

(3) log(-log G(t)) - log y0 - At

This is a theoretical justification of the model used to fit the data in [3].

A useful measure of the effectiveness of the bactericide is t , the modal

or most probable time at which bacterial extinction takes place. t is the

solution of the equation g'(t) - 0 , where g(t) , the p.d.f of the time to

extinction, is given by

-At

(4) g(t) -G'(t) -=ye e, e 0

It is readily verified that the maximum value of g(t) is attained at

- log Y0(5) t =

The expected number of bacteria surviving in n sample after exposure to the

bactericide for a length of time t is 'roe 1 Siilarly, G(t) - e

Thus, t is that exposure time such that, on the average, one bacterium in the

sample still survives and it is also that exposure time for which 372 of the

samples become bacteria free. As pointed out by Mather, t is a siapler measure

of the time to extinction in a sample than the more

This is not to be confused with the probability of death of a single bacterium
in the presence of the bactericide. If the time to extinction distribution of

-At _ _I YO "_
individual bacteria is given by F(t) - 1 - e then F(t) a 1 --- a

This the probability that an individual bacterium will die on or before tim t
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ccmmon t 5 0 , the time at which 50% of the samples become bacteria free. t.*

is related to t by the formula

- loz loiR2
(6) t.50 - t

-yoe- .50

as can easily be seen from the relations e - 1/2 . More generally,

t , the time at which IOOp% of the samples become bacteria free, is related

to t by the formula

- log log 1

(7) t X-Vp

It is also useful to point out that if the sample drawn from the solution to

which bactericide had been added contained kv c.c. rather than v c.c., then

the modal extinction time tk for samples of this size would be

log (kyo) loa k
(8) tk - A - ++ X

Our discussion has been purely theoretical under the assumptions that the

model resulting in equation (2) is a reasonable description of the bacteriological

situation. In practice, of course, yo and A may be unknown and would be

estimated either graphically or analytically by the methods described by Mather

and Gumbel. The value of the model is that it assigns a meaning to each of the

parameters. For the data In [31, yo and X can be estimated respectively

(see pages 140-141 of (3)) as y - 794 and A - .376. Thus we can say froe

the dato that the number of bacteria in the sample at time t - 0 is Polisoi

distributed with estimated mean a 794 and that in the presence of 1.152 Phenol

the life of ci Individual bacterium Is exponentially distributed with estimated

mean life 1 - 2.66 minutes. Substituting in (5), (6) and (7), one obtains

17.75, 18.73, ane 25.65 minutes respectively as estimates of t , t. 0 and t

Substituting in (8), one obtains 17.75 + 6.12 - 23.87 minutes as an estimate of
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the modal extinction time in a lOv cc sample.

Comparisons between the effectiveness of the same bactericide at various

dosages or between different bactericides at the same dosage, can be made by

comparing the corresponding X values.

The model for bacterial extinction times given in this paper leads to the

type 1 distribution of largest values. It is interesting to note that the model

given recently by Gart (1] for the distribution of response times after inoculating

a hopt with a solution containing some microorganisms can also be considered in

the framework of extreme value theory, the only difference being that response

times are distributed as smallest values. The key points in the model are: 1) the

number of inoculating particles in the sa-ple is a Poisson random variable with

mean y , 2) the incubation time for a single particle is assumed to be a random

variable with c.d.f F(t), 3) a positive response occurs on or before time t if

and only if at least one of the x inoculating particles present at time t a 0

has incubated, or putting it another way, if and only if the particle taking the

shortest time to incubate has done so by time t . It follows readily from these

assumptions that the c.d.f of the response tire is H(t) - 1 - •-F(t), t >0 .

If one lets the incubation time c.d.f for a simple particle be F(t) - [1 - e-t IN

as is done in (1), then it can be shown that for large - , H(t) can be

approximated by the c.d.f 1 - e• . a type 3 distribution of smallest values.

From this it follows that there is an approximately linear relationship between the

logarithm of the modal response t!we (or, more generally, the logarittm of any

percentile of the response of the resporse time) and the logariths of yr
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