

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of trade names in this report does not constitute an official indorsement or approval of the use of such items.

DDC AVAILABILITY NOTICI

Distribution of this document is unlimited.

Destroy this report when no longer needed. Do not return it to the originator. Distribution of this document is unlimited

AD_____

TECHNICAL REPORT

66-2 CM

NITROSO RUBBER HANDBOOK

by

Malcolm C. Henry Materials Research Branch and Charles B. Griffis Rubber, Plastics and Leather Engineering Branch

Project reference: 1C024401A329

こうちょう ちょうちょう

いたいこう しまたないとなって、「日本」 いいます

ý I

たい地域の行います

C&OM-15

.ء جر مرکز کر

January 1966

Clothing and Organic Materials Division U. S. ARMY NATICK LABORATORIES Natick, Massachusetts 01760

The start

FOREWORD

Military operations conducted on a global scale require a variety of equipment that must operate under all climatic conditions. This imposes severe requirements on construction materials, particularly rubber whose properties are severely affected by temperature extremes. To assure that rubber materials are available that meet requirements, a continuing Army research program is maintained. Out of this research, new rubbers are developed. Work both in-house and under Army contract has contributed to the availability of these new types of rubbers, the result of many and varied efforts of a number of persons. This report deals with such a new product, "nitroso" rubber, which is not a single polymer but rather a family of many rubbery polymers.

The story of nitroso rubber development is spread over a number of contractor reports, published and unpublished papers, scientific meeting presentations and laboratory notebooks. This handbook summarizes in one convenient volume all of the work performed on this subject. It is designed for the use of materials engineers looking for specific applications and for research scientists interested in synthesizing new materials.

> S. J. KENNEDY Director Clothing and Organic Materials Division

> G. R. THOMAS Associate Director Clothing and Organic Materials Division

APPROVED:

ないののないないないないないないないないない ノー・ くちゅうちょうい

100

DALE H. SIELING, Ph.D. Scientific Director

W. W. VAUGHAN Brigadier General, USA Commanding

ii

TABLE OF CONTENTS

		Page No.
List of	Tables	vi
List of	Figures	viii
Abstrac	t	ix
I	Introduction	1
II	Terminology and Nomenclature	2
III	Historical Development	2
IV	Nitroso Rubber Chemistry	4
	A. Monomer Syntheses	4
	 Tetrafluoroethylene, C₂F₄ Trifluoronitrosomethane, CF₃NO p-Bromotetrafluoronitrosobenzene, p-BrC₆ Methylperfluoronitrosopropionate \$\mathcal{P}\$-Nitrosoperfluoropropionic Acid, HOOC(CF₂) \$\mathcal{T}\$-Nitrosoperfluorobutyric Acid, HOOC(CF₂) Miscellaneous 	2CF ₂ NO 7
	B. Polymerizations	8
	 Kinetics and Postulated Mechanisms Copolymerizations Terpolymerizations 	8 10 11
	C. Pilot Plant Scale-Up	11
	D. Basic Polymer Property Studies	25
	 Solvent Properties Infrared Spectroscopy Nuclear Magnetic Resonance Spectroscopy X-ray Diffraction Glass Transition Temperature (rebouild met Thermogravimetric Analyses Linear Thermal Expansion Coefficients (approximetrie) 	28

iii

1.4.2

and the second of the second of

العا المراجع إلى

TABLE OF CONTENTS (continued)

A STATE

と で 、 、

~

· ··· 6004. · · · · ·

4

۱

Pa	ge	No	
1 G			٠

y	Pro	perties of Nitroso Rubber	32
	A.	Copolymers	33
	В.	Properties of Nitroso Rubber Terpolymer (carboxyl-nitroso rubber)	36
	c.	Properties of Special Interest	37
VI	Соп	pounding Studies	42
	A.	Materials and Test Methods	42
	B.	Results and Discussion	42
	с.	Conclusions	53
VII	Fut	oure and Potential Uses of Nitroso Rubber	53
VIII	Sun	mary	53
IX	Ack	nowledgments	54
x	Ref	erences	55

iv

Same -

1000

-

يريون ميريون مواد اليان مح

LIST OF TABLES

न् न

2

ji.

- 97

18 M D

		Page No.
I	Synthesis of Nitroso Monomers	5
II	Copolymers with CF3NO	13
III	Nitroso Copolymers Other Than CF ₃ NO	16
IV	Nitroso Terpolymers (CF ₃ NO/F ₂ C=CF ₂ /A)	18
v	NMR Spectroscopy of Nitroso Rubbers	28
VI	Apparent Linear Thermal Expansion Coefficients of CF ₃ NO/CF ₂ Nitroso Gums	32
VII	Nitroso Rubber (raw polymer)	33
VIII	Nitroso Rubber (compounded)	34
IX	Glass Transition Temperatures for Various Nitroso and Fluorocarbon Polymers	35
х	Carboxyl-Nitroso Rubber	36
XI	Carboxyl-Nitroso Rubber (compounded)	37
XIA	Nitroso Rubber Copolymer CF ₂ NO/CF ₂ CF ₂	38
XIB	Resistance to ClF ₃ Gas of Various Vulcanizates of Carboxyl-Nitroso Elastomers	39
XIC	Resistance to ClF ₃ Gas of Carboxyl-Nitroso Elastomers Cured with $Cr(CH_3COO)_3$ or with $Cr(CF_3COO)_3$	40
XID	Fluid Resistance of Carboxyl-Nitroso Elastomers Cured with Cr(CF ₃ COO) ₃	41
XII	Compounding Recipes and Test Results Amine Cures - HiSIL 303 Filler	44
XIII	Compounding Recipes and Test Results Amine Cures - Carbon Black Fillers	45

"v

C. Carlor

2007

and the

LIST OF TABLES (continued)

edinamer statistic

		Page No.
XIV	Compounding Recipes and Test Results Amine Cures - Amine and Filler Variations	46
xv	Compounding Recipes and Test Results Other Than Amine Cures	48
XVI	Mooney Viscosity of Various Batches of Nitroso Rubber	49
XVII	Cure Characteristics as Determined with Mooney Viscometer (large rotor)	50
XVIII	Differential Thermal Analysis Results	52

•

-

÷ ۱

age .

<u>,</u> *

-

-

العلى الم

5

LIST OF FIGURES

- Secret

-

<u>No</u> .	Title	Page No.
1.	Equipment flow chart for CF ₃ NO production	24
2.	Equipment flow chart for C_2F_4 production	24
3.	Material flow chart for nitroso rubber	26
4.	Equipment flow chart for nitroso rubber production	26
5.	Infrared spectrum (2-15u) of 56703-3 nitroso gum	27
6.	Nuclear magnetic (F ¹⁹) resonance spectrum of 56703-3 nitroso gum	27
7.	Rebound tester for 1000 cycles per second modulus	29
8.	1000 cycle per second modulus by rebound on sample XP5675	30
9.	Thermogravimetric analysis in air and helium of an amine- cured nitroso copolymer	31

vii

ABSTRACT

"Nitroso" rubber is the generic name for a family of rubbery high polymers having the common structural denominator of a repeating nitrogen-oxygen-carbon atomic sequence as follows:

and a second the second second second second

Ċ,

Architecturally these nitroso polymers are the first of a whole new class of materials. Nitroso polymers, as currently known, are highly fluorinated or completely fluorinated and as such are members of a specialty type of elastomer since only a limited number of fluorinated elastomers are known. It is becoming increasingly evident, however, that the combination of "nitroso" groups in the highly fluorinated linear polymer chain is responsible for the introduction of interesting and novel combinations of properties. Thus, nitroso elastomers have good low temperature properties, sclvent resistance, stability to corrosive environments, and flame resistance.

Nitroso polymers have been developed to their present state by the cooperative effort of Army scientists and contractors. Over the past eight years, considerable insight has been gained as to the nature and potential uses of nitroso rubbers. This handbook is an attempt to assemble a summary of this accumulated knowledge. It is hoped that the contents so compiled will aid in the future development of this new family of specialty elastomers.

NITROSO RUBBER HANDBOCK

I. Introduction

The foundation upon which the U. S. Army's Research and Development Program is based rests upon the requirements of its tactical and support forces. As a result of these requirements a continuing program is carried out in an attempt to develop new and improved materials.

Materials required by the Army often must have properties or combinations of properties not required by others. Military operations are routinely carried out in environments presenting severe stress upon both personnel and equipment. Arctic operations at -65°F and lower are typical of the low temperatures met in Army operations. On the other hand, extremes of ground temperatures may reach 120°F while 1000°F is a common temperature encountered in operating components of military equipment.

Experience has shown that commercially available rubbers, both natural and synthetic, are unsatisfactory in many cases. One specific requirement for improved elastomers is that of low temperature flexibility and petroleum fluid resistance. Elastomers are not commercially available that have the combined properties of low temperature flexibility and gasoline or oil resistance. Elastomers having these combined properties are required for many military items such as fuel lines, pump diaphragms, rubber covered cables and wire, chemical warfare protective clothing, gas masks, gaskets, flexible containers and liners.

Additional properties required in elastomers in addition to those already cited are czone resistance, flame resistance, resistance to high thermal flux and radiation and both acid and oxidizer resistance. In short, elastomers are required having combinations of properties that will maintain their integrity in a wide range of temperature and corrosive environments.

The development of new elastomers with the best possible combination of properties has thus been the goal of the U. S. Army Natick Laboratories research program since its inception some years ago. Nitroso rubbers were recognized to belong to a unique system both as a generalized chemical structure and as a material with desirable combinations of properties that have potential use in military operations. This report is the story of the development of nitroso.rubber to its present state. Many people have contributed to the nitroso rubber program that has been carried out by the U. S. Army Natick Laboratories. It is hoped that recognition of individual efforts have been made within the text of this report.

II. Terminology and Nomenclature

-

1

'A

The terminology for the class of polymeric structures now commonly known as nitroso rubber has evolved primarily as a result of convenience. In one sense this is unfortunate since the implication is to a single structure. In reality, it is a generalized class of structures. Nitroso rubber is derived from material having a common structural denominator, namely a repeating trivalent nitrogen-oxygencarbon sequential atomic arrangement of the following type:

As currently known, it is highly or completely fluorinated. However, many structural variations are theoretically possible and a large variety of structures have been prepared all having in common the repeating nitrogen-oxygen-carbon linkage.

Many structures containing this repeating unit are not elastomeric. Depending upon other incorporated structural features, these products may range from viscous oils to resinous plastics. From a structural point of view nitroso elastomers are unique as the only known example of a nitroso group entering into a polymer chain as an integral entity.

III. Historical Development

The history of the development of nitroso rubbers began in 1955 when Barr and Hazeldine¹⁻³ reported the discovery of a reaction between tetrafluoroethylene and trifluoronitrosomethane. One of the reaction products was reported to be a viscous polymeric cil. Subsequent work established the elastomeric nature of one of the reaction products⁴ and extended the scope of the reaction.

In 1956 the first patent was issued to $Rose^5$ for the product resulting from the reaction of tetrafluoroethylene and trifluoronitrosomethane.

A summary report by Fitt⁶ was also published in 1957 on both the preparation of nitroso compounds and the addition reactions of nitroso compounds to olefins.

Published reports in the early literature described nitroso elastomers as having novel combinations of properties. Resistance to the action of corrosive chemical environments such as solvents, oxidizing chemicals and ozone coupled with good low temperature properties were typical of the properties that created the initial interest for Army scientists. In 1957 the U. S. Army Natick Laboratories (then the Quartermaster Research and Development Command) funded its first contract to investigate the possibilities of developing these nitroso polymer's into useable or practical elastomeric materials for military use. Complimentary interest in these unique elastomers has resulted in further investigations by Hazeldine^{7,8} and Rose⁹. Since that time to the development of the present state of the art the following industrial and academic laboratories under contract to the U. S. Army Natick Laboratories, have contributed considerable data toward the development of these nitroso containing elastomers: The Central Research Laboratories of the Minnesota Mining and Manufacturing Company; Thiokol Corporation, Peninsular Chemical Research Corporation; Monsanto Research Corporation; University of Florida and the University of Colorado. Throughout this report repeated references will be found relating to these contractors and the results obtained under their research programs with the U. S. Army. For convenience these references have been abbreviated using a sequence of a capital letter indicating the company, a number indicating the report number and finally a page reference thus: T7-p-32 indicates Thiokol Corporation, Report #7, page 32.

Contractors referenced in this report are as follows:

- U. S. Army Contract DA19-129-QM-1043, 15 October 1957 -15 August 1960.
 Minnesota Mining and Manufacturing Company, Arctic Rubber, G. H. Crawford, et. al. Final Research Report 1960.
- U. S. Army Contract DA19-129-QM-1684, 24 August 1960 -23 December 1962. Minnesota Mining and Manufacturing Company, Arctic Rubber, H. A. Brown, et. al. Final Research Report 1962.
- U. S. Army Contract DA19-129-AMC-69(X)0.19044, 27 February 1963 - 28 February 1965. Nitroso Rubber, Research Development and Production, Thiokol Chemical Corp., Trenton, N. J. J. Green, et. al. Final Research Report 1965.
- 4. U. S. Army Contract DA19-129-AMC-151(N) O.I. 9115, Physicals and Rheologic 1 Properties of Nitroso Rubbers, Monsanto Research Corp., Everett, Mass., G. L. Ball, et. al, 1963 present; 9 reports.
- 5. U. S. Army Contract DA19-129-AMC-152(N) O.I. 9116, Synthesis and Polymerization of Fluorinated Sulfur Modified Nitroso Rubber, Peninsular Chemical Research, Inc., Gainesville, Florida, G. Stump, et. al. 1963 - present; 8 reports.
- U. S. Army Contract DA19-129-QM-1926 O.I. 6028-62, Synthesis of Special Fluorine Containing Monomers, University of Colorado, Boulder, Colorado, J. D. Park and J. R. Lacher, 1964 - 1966 period.

 U.S. Army Contract DA19-129-AMC-79(N) Research on Synthesis of Unsaturated Fluorocarbon Compounds, University of Florida, P. Tarrant, et. al. April 1 1963 - 1966 period.

Abbreviations:

Ţ

a.	Minnesota Mining and Manufacturing Company	3M
Ъ.	Thiokol Chemical Corporation	Т
c.	Monsanto Research Corporation	M
d.	Peninsular Chemical Research, Inc.	Р
e.	University of Florida	F
f.	University of Colorado	С

IV. Nitroso Rubber Chemistry

In 1957 the U. S. Army Natick Laboratories funded a program with the Central Research Laboratories of the Minnesota Mining and Manufacturing Company to begin to investigate the potential of nitroso polymers as a military elastomer.

Early work was substantiated that trifluoronitrosomethane, CF_3NO , reacts with tetrafluoroethylcne to form an oxazetidine as the main product,

$$\begin{array}{c} CH_3 - N - 0 \\ | \\ CF_2 - CF_2 \end{array}$$

at temperatures above 100°C. At temperatures below 0°C a linear polymer predominates containing alternating CF_3NO and CF_2CF_2 groups.

$$- \left(\begin{array}{c} N - 0 - CF_2 - CF_2 \\ I \\ CF_3 \end{array} \right)_n$$

Both the polymer and the oxazetidine were found to be stable towards acids as well as oxidizing and reducing agents. Additionally the polymer had good low temperature properties. From this initial study it became apparent that methods of synthesizing nitroso-containing monomers and other potentially useful fluorocarbon comonomers was of some importance.

A. Monomer Syntheses

The course of this investigation has resulted in the syntheses of imnumerable monomers. Only those monomers most pertinent will be discussed in detail. A number of the synthesized nitroso monomers are shown in Table I along with reference to information concerning their syntheses.

-Anton A

\$

***	Trans the second of

ė

	SYNTHESIS OF NITROSO MONOMERS	
MONOMER	HETHOD	REFERENCE
p-BrC6F4NO	$HC_6F_4NH_2 + Br_2 \xrightarrow{CH_3COOH} BrC_6F_4NH_2$ 70%	T7,p10
	$BrC_6F_4NH_2 + HCOOOH \xrightarrow{CH_2C_1} BrC_6F_4NO 64$	-
C ₆ F ₅ NO	C ₆ F ₅ NH ₂ + HCOOOH <u>CH2Cl2</u> C ₆ F ₅ NO	T3, pll G.M. Brooke et. al. Chem & Industry 1961, 832
с _б н _с ио	Commercially available	Chemical Procurement Laboratories
CH3CF2NO	$CF_2 = CH_2 + HI \longrightarrow CH_3CE_1$	3M Final Report 1962
	$CH_3CF_2I + NO \xrightarrow{H_g} CH_3CF_2NO$	
H(CF ₂) ₄ NO	$H(CF_2) \rightarrow I + NO = H_g + H(CF_2)_{4}NO$	3M Final Report 1962
C1CF2CF2N0	$F_2C = CF_2 + NOC1 \longrightarrow C1CF_2CF_2NO$	3M Final Report 1962 Fierce Chemical Co.
NO2CE2CE2NO	$C_2F_4 \xrightarrow{3NO} O_2NCF_2CF_2NO$	3M Final Report 1960
с ₈ н ₁₇ ю	$C_8F_{17}I + NO H_g C_8H_{17}NO$	3 M Final Report 1960
C3H7NO	$C_{3}F_{7}I + NO \xrightarrow{H_{g}} C_{3}H_{7}NO$	3M Final Report 1960
CF2C1CFC1NO	$CF_2 = CFC1 + NO \frac{FeCl_3}{CF_2} CF_2C1CFC1NO$	3H Final Report 1960 Pierce Chemical Co.
CH302C(CF2)2NO	$CF_2 - c \xrightarrow{0} + CH_3NO_2 \longrightarrow CH_3O_2C(CF_2)_2COONO$ $CF_2 - c \xrightarrow{0} 0$	
	CH302C(CF2)2COONO DYTOLYSIS CH302CCF2CF2NO	P8,p7
	$p-BrC_{6}F_{4}NO$ $C_{6}F_{5}NO$ $C_{6}H_{5}NO$ $CH_{3}CF_{2}NO$ $H(CF_{2})_{4}NO$ $C1CF_{2}CF_{2}NO$ $NO_{2}CF_{2}CF_{2}NO$ $C_{8}H_{17}NO$ $C_{3}H_{7}NO$ $CF_{2}C1CFC1NO$	NONOMERMETHODp-BrC6F4N0 $HC6F4NH2 + Br2 CH2COOH \rightarrow BrC6F4NH2 708$ $BrC6F4NH2 + HCOOOH CH2CL \rightarrow BrC6F4NO 648$ C6F5N0 $C6F5NH2 + HCOOOH CH2CL \rightarrow C6F5NO$ C6F5N0 $C6F5NO$ C6F3N0 $C6F2 = CH2 + HI \rightarrow CH3C6I$ CH3CF2N0 $CF2 = CH2 + HI \rightarrow CH3C6I$ C1CF2CF2N0 $F2C = CF2 + NOC1 \rightarrow C1CF2CF2NO$ R02CF2CF2N0 $F2C = CF2 + NOC1 \rightarrow C1CF2CF2NO$ C2F4 $3NO \rightarrow 0_2NCF2CF2NO$ C3H7N0 $C_3F7I + NO H8 = U.V. \rightarrow C3H7NO$ C3H7N0 $CF2 = CF2 + NO F6C13 \rightarrow CF2C1CFC1NO$ CF2C1CFC1N0 $CF2 = CFC1 + NO F6C13 \rightarrow CF2C1CFC1NO$ CH302C(CF2)2N0 $CF2 = CFC1 + NO F6C13 \rightarrow CH302C(CF2)2COONO$ CH302C(CF2)2N0 $CF2 = CP0 + CH3N02 \rightarrow CH302C(CF2)2COONO$

Table I

5

1.22

25.43

-11

1. Tetrafluoroethylene, C_2F_4

Tetrafluoroethylene may be obtained commercially as a compressed gas (Peninsular Chemical Research Corporation, Gainesville, Florida) or by the debromination of Freon 114-B₂, tetrafluorodibromomethane, in the presence of activated zinc dust in methanol.

$$CF_2BrCF_2Br + Zn \xrightarrow{CH_3OH} CF_2 = CF_2 + ZnBr_2.$$

The synthesis of nitroso compounds is somewhat restrictive. The more successful procedures usually involve one of the following methods: pyrolysis of acetylnitrites; oxidation of amino groups under selective conditions and the addition of nitrosyl halides or nutric oxide to olefins. Typical syntheses that have been used for preparing nitroso compounds are described in the following paragraphs and in Table I. A recent review by Gowenlock and Luttke describes the general structure and properties of C-nitroso compounds¹⁰.

2. Trifluoronitrosomethane, CF₃NO

Trifluoronitrosomethane is a deep blue gas with a boiling point of -84°C. It was first prepared by Ruff and Giese¹¹ by the fluorination of silver cyanide in the presence of silver nitrate. Barr and Hazeldine¹ synthesized it from the reaction of trifluoroiodomethane, CF₃I or CF₃Br¹² and nitric oxide, NO, in the presence of ultraviolet light using mercury as a catalyst. The pyrolytic decarboxylation of trifluoroacetylnitrite¹³ has been the most successful procedure used to date.

Trifluoroacetylnitrite is formed by the reaction of trifluoroacetic anhydride with dinitrogen trioxide by mixing equivalent quantities of the two reactants, using autogeneous pressure or a reflux condenser to maintain the N_2O_3 in the liquid phase. The reaction is complete in a few minutes and may be followed by the change in color from blue (N_2O_3) to amber $(CF_3(\ ONO))$.

> $(CF_3CO)_2O + N_2O_3 \longrightarrow 2CF_3COONO$ $CF_3COONO \longrightarrow CF_3NO + CO_2$

The pyrolysis is carried out in refluxing FC-43, tri(perfluorobutyl) amine. The overall yield is approximately 30%. Trifluoronitrosomethane obtained this way is amenable to scale up and can be purified readily to a state satisfactory for participation in polymerization reactions (See Sec. IVC).

Trifluoronitrosomethane may currently be obtained commercially from Peninsular Chemical Research Corporation, Gainesville, Florida.

3. <u>p-Bromotetrafluoronitrosobenzene</u> (p-Br C₆F_uNO) (Table I)

1. The second second

1

A bromine-glacial acetic acid solution was added to a solution of 2,3,5,6-tetrafluoroaniline at room temperature. The product 4-bromo-2,3,5,6-tetrafluoroaniline was obtained as colorless crystals, mp 57-80°C, and was characterized by infrared spectra and elemental analysis. The brominated product was refluxed together with a mixture of 98% formic acid and 90% hydrogen peroxide for five hours followed by a chromatographic separation on acid washed alumina. The pure 4-bromo-2,3,5,6-tetrafluoronitrosobenzene was obtained as colorless crystals that melted to a green liquid at 39-40°C. Thermochromism of this type is common in aromatic nitroso compounds due to dimer formation in the solid state.

4. Methylperfluoronitrosopropionate (Table I)

Equimolar amounts of methyl nitrite and perfluorosuccinic anhydride were condensed in a Fisher Porter tube and allowed to come to room temperature for 1-1/2 hours. Unreacted material was removed at reduced pressure. Yield, practically quantitative.

Analysis for CH₃O₂CCF₂CF₂NO: %C, 25.76; %H, 1.29; %F, 32.60 Found: %C, 25.84; %H, 1.33, %F, 36.91.

A two-neck flask fitted with a Vigreaux column and an addition funnel was connected to an air cooled condenser vented through a 183°C trap. A vacuum was maintained while the nitrite was dropped into the flask heated to 200°C. After the pyrolysis had been going for several minutes a blue liquid collected in the -183°C trap. The blue product was separated and distilled twice. GLC and an infrared spectrum showed it to be pure $CH_3O_2C(CF_2)_2NO$.

5. <u>B-Nitrosoperfluoropropionic Acid</u>, HOOCCF₂CF₂NO¹

One preparation of $HOGCCF_2CF_2NO$ was carried out by the photolysis of dinitrosyl perfluorosuccinate utilizing a quartz

$$(CF_2COONO)_2 \xrightarrow{hv} ONOOC CF_2CF_2NO + CO_2$$

HOOCCF_2CF_2NO $\leftarrow H_2O \xrightarrow{hv}$

ampoule kept at 0°C with irradiation from a sunlamp. The reaction rate was very slow and in all cases considerable N_2O_3 was formed indicating decomposition of the dinitrite as follows:

$$(CF_2COONO)_2 \longrightarrow (CF_2CO)_2O+ N_2O_3$$

The rate of decomposition was increased at higher temperatures. Varying conditions did not result in improved yields which were in all cases very low.

March March March C.

6. Y-Nitrosoperfluorobutyric Acid, HOOC(CF2)3N014

The photolysis of dimitrosyl perfluoroglutarate, $(CF_2)_3(COONO)_2$, derived from the reaction product of perfluoroglutaric anhydride and N_2O_3 , proceeded at a much faster rate with less reversion to N_2O_3 . The reaction product $\forall rmltrosoperfluorobutyric acid,$ HOOCCF_2CF_2CF_2NO, could be purified by distillation.

7. Miscellaneous

Alternative methods may also be used for the syntheses of nitroso-containing coopounds such as those described by Andreades¹⁵ and Park¹⁶ utilizing addition reactions of nitrosyl halides to fluoroolefins and fluoroketones.

B. Polymerizations

?

Nitroso elastomers Lay be prepared using standard bulk, solvent or water emulsion polymerization techniques. Hazeldine^{17,18} has also reported the formation of high molecular weight elastomers containing the nitroso group as an integral part of the elastomer. Both bulk and solution polymerizations of $CF_{3}NO/C_{2}F_{4}$ have the disadvantage of poor heat transfer (leading to uncontrolled reactions) or low molecular weight product when used on a larger scale. Methods of carrying out these polymerizations in aqueous medium indicated that satisfactory conditions could be obtained when using low temperatures. Thus an aqueous suspension system employing an organic suspending agent such as magnesium carbonate and a soluble inorganic salt such as lithium chloride or lithium browide as a freezing point depressant was found to be a good polymerizing medium. Using this system the polymer is obtained in the form of small particles. The polymer is separated from the water phase by filtration and freed of suspending agent by acid treatment. The resultant molecular weight of the product compares favorably with that obtained by small scale bulk polymerizations. As will be seen (IVC) this polymerization system was found to be the most advantageous for "scale-up" and was used in the pilot plant facility when larger quantities of nitroso rubber copolymers were being prepared. Materials obtained via this method have been shown to have intrinsic viscosities of greater than one, indicating molecular weights over one million.

1. Kinetics and Postulated Mechanisms

The mechanisms involved in the copolymerization of

nitroso monomers have as yet not been resolved to any degree of certainty. The dependence of initial polymerization rate on the concentration of CF_3NO and C_2F_4 was determined approximately by polymer isolation techniques. The rates obtained best fit a reaction which is first order in CF_3NO concentration and one-half order in C_2F_4 concentration. Experiments have shown rather conclusively that mechanism of initiation is not due to impurities being present in the monomers. Rather, the initiation is probably due to the radical character of the nitroso compound itself.

Section Sector

2

A partial scheme for this mechanism might be:

Termination steps might include:

A biradical mechanism is reasonably plausible based on existing data, the stability of CF_3NO and the formation of oxazetidine under conditions of elevated temperatures. (3M-Final Report 1960).

A number of interesting features concerning the nitroso copolymers have been observed that are of interest. As shown in reaction step No. 2 there are theoretically two different ways in which the nitroso group can attach to the C_2F_u . In a polymeric

species one might expect to find either a random sequence or a regular preferred orientation. W. T. Flowers¹⁹ has done considerable work having to do with the thermal degradation of nitroso polymers and in particular the CF_3NO/C_2F_4 copolymer. Inside a mass spectrometer volatile fragments with molecular weights up to 6000 have been produced. There is nothing to suspect that the structure is other than a regular one. These mass spectrometric results also show a repeating regular pattern for every molecular weight of the monomer, that is 199. If one were to have a unit in the reverse sequence with fragmentation occurring at the N-O bond (which it does being the weakest link in the polymer) then one would get molecular weights which do not correspond to the 199 difference and these have not been seen.

P

Another interesting feature, also having to do with the direction of addition of the nitroso group to an olefinic carbon bond, has been noted by Sutcliffe²⁰. Using unsymmetrical olefins the direction of addition of the N=0 group of CF_3N0 to a C=C bond in oxazetidine formation is <u>opposite</u> to that involved in formation of the predominant copolymer. This can be explained by postulating that copolymerization occurs by a free radical mechanism and that oxazetidine is produced by either a free radical or molecular process preceded by formation of a 1:1 complex of nitroso compound with olefin²¹.

Finally, the effect of small amounts of chain transfer agents on the polymerization rate and molecular weight were determined. The transfer agents used had no significant effect on the polymerization rate, which is normal for a radical type polymerization provided the radical formed after transfer is capable of initiating new chains. In all cases the transfer agents significantly lowered the molecular weight of the polymer. Initial polymerization rates in $CF_2ClCFCl_2$ solutions were determined and found to be lower than in $(C_4F_9)_3N$. The rate dependency on monomer concentrations was found to be the same in $CF_2ClCFCl_2$ as in $(C_4F_9)_3N$. These results also seem to be consistent with the polymerization mechanism already proposed earlier in this section (3M-Final Report 1962).

2. Copolymerizations

A variety of nitroso copolymer systems have been studied under a variety of conditions. Both laboratory scale and pilot plant scale procedures have been worked out in considerable detail. The pilot plant copolymerizations are described in section IVC of this report. Typical laboratory procedures for bulk polymerizations are described by Crawford²² and Brown (3M-Final 1962) for trifluoronitrosomethane and tetrafluoroethylene.

The monomers are condensed into pyrex ampoules, sealed and the reaction carried out at subambient temperatures. Unreacted monomers are vented and the solvent, if any, removed.

Copolymerization systems that have been prepared are noted in Tables II and III and are referenced within the table for source information.

3. Terpolymerizations

In contrast to copolymerizations the experimental procedures for terpolymerizations are relatively undeveloped. Terpolymerizations studies to date have been primarily bulk polymerizations using nearly molar equivalent quantities of comonomers with a relatively small molar proportion of added termonomer. Experimentally the reaction conditions are essentially similar to copolymerization conditions. Table IV describes and references the variety of terpolymer systems that have been studied thus far. Termonomers are usually selected as participating members of the polymerization based on structural considerations for subsequent compounding studies.

The termonomer selected must have a reactivity such that the reactive groups will be distributed randomly along the polymer chain. Very few olefinic compounds then qualify as termonomers. Nitroso compounds containing functional groups in the side chain are suitable termonomers since all nitroso compounds have about the same reactivity towards C_2F_u provided the nitroso group is adjacent to a -CF₂- group.

C. Pilot Plant Scale-Up

The requirement for extensive compounding studies concomitant with the requirement for relatively large quantities of the trifluoronitrosomethane/tetrafluoroethylene copclymer suggested a need for a pilot plant facility. In 1963 the U. S. Army funded an extensive program with Thiokol Chemical Corporation (T-Final 1965) to produce a sizeable quantity of this copolymer for the purpose of carrying out extensive compounding evaluations. Thiokol reports to the U. S. Army reflect this effort.

One of the main efforts in this work deal with the scale-up synthesis of the trifluoronitrosomethane as well as determining the hazard involved in the synthesis and handling of this relatively unexplored chemical compound. Thiokol's past experience in propellants was recognized as being somewhat unique as a result of the many procedures that have been developed for the evaluation of potentially hazardous materials. Both the art and the science of those skilled in these safety tests were made available to the program.

The preferred route for trifluoronitrosomethane production was through the formation and decarboxylation of trifluoroacetylnitrite, $CF_3CO_2NO^{15}$. Nothing to date has been uncovered that has resulted in any change in this approach. Trifluoroacetylnitrite can be prepared by the interaction of dinitrogen trioxide, N_2O_3 , or with nitrosyl chloride, NOCl, with the former method being preferred because of superior yields.

 $(CF_3CO)_2O+N_2O_3 \longrightarrow 2CF_3CO_2NO$

Sty Augus

Series.

The N₂O₃ was obtained from the Matheson Company, Inc., and used as received. The purity was greater than 99 percent. Since N203 dissociates readily it was removed from the storage cylinders as the liquid phase. Trifluoroacetylnitrite was decomposed to CF₃NO by pyrolytic techniques. In Trauzl block tests trifluoroacetylnitrite could be detonated although the detonation was not very brisant. Additional detonation testing by a card gap test to ascertain whether cr not this material will propagate a detonation wave (and at what rate) showed that the critical diameter of trifluoroacetylnitrite is greater than 11/16 incn with metallic confinement. Ignition limits of the vapors were determined over the range of 25-100°C as a function of concentration in nitrogen. No detonations were experienced. The data from these tests indicated that CF2CO2NO ignites on initiation at concentrations greater than 50 percent up to about 65°C and at lower concentrations at higher temperatures. The lower temperature limit for the ignition of CF3CO2NO vapor appears to be about 40°C. Thermal decomposition rate of CF₂CO₂NO were determined up to 184°C at which temperature the time required for complete decomposition is of the order of 5 - 6 minutes. Spark tests indicated that dilution of the CF₃CO₂NO vapors by FC-43 (3M product-perfluorobutyl tertiary amine isomer mixture) had resulted in a process operable without undue hazard (Thiokol Reports Nos. 1 and 3).

Satisfactory completion of the safety tests along with studies of the pyrolysis of CF_3CO_2NO resulted in a unitized operation capable of producing one pound/hour of the deep blue gaseous CF_3NO which could ultimately be stored in gas storage bottles. Thus it became

1.'

	CoMcnomer	System	Time, hr 1	Temp. °C 1	Reactant Ratio(Molar)	Conversion 8	Product	Remarks	Reforence
ч.	so ₂	Bulk	4 days	- 25	1/1	8	:	No reaction	P6,p9
5.	F ₂ c=S	Bulk	2 days 4 days	- 78 - 20	1/1		1	No reaction	P1, p18
з.	F ₃ CN=SF ₂	Bulk	20	38 1	1	8	8 8	No reaction	P2,p15
т	F2C=CFC1	Bulk	20-1/4 days	- 30	1/1	75	Flastomer	t	P8.p9
ۍ.	F2C=CFB~	Bulk	Ŧ	-30	1/1	61	White hard		P8.p10
		Bulk Bulk Bulk	з 2 18	-78 Ambient -20	1/1	: : 6	ernstomer Tough eticky g Fluid liquid White tough el	gum elastomer	
6.	F2C=CFI	Bulk	15	- 30	1/1	8	:	Dark brown solld P8,py	td P8.py
7.	FHC=CHF	Bulk	30 d a ys	- 30				No reaction	P8.p12
e i	F2C=CF2	Sol'n	1 week 2 weeks	10 Ambient	1/1		No change No change	Albr ₃ /VCl ₃ /Ph ₄ Sn catalyst	P4.p16
6	CH2=CH2	Bulk	3 weeks	-15 to 20	;			No product	1960 3H Fina l
10.	F2C=CH2	Bulk	3 weeks	-15 to 20	1/1 0	37	Graaa		1960 3M Final
11.	F2c=cc12	Bulk	24	- 20	2/1	100	Fríable Thermo- plastic		1960 3M FInal
12.	FHC=CH ₂	Bulk	2 days 1 day	-16 to 20 20	0 2/1	-	Unknown Utiknown	No polymer No polymer	1960 3M FINAI 1960 3M FINAI
13. 1	FHC=CF2	Bulk	3 days	- 20	1/1	64	Elasiic gum		1960 3M Final

Table II Copolymers with CF₃NO

13

Address and Salar

يند ري ملج م ł

A South a second and a second a second

×, · ·

した

Table II (continued)

•

PC;

۱

:

ł,

CO.L.

COPOLYMERS WITH CF3NO

	CoMonomer	System	Time, hr	Temp. °C	Reactant Ratio(Molar)	Conversion	Product	Remarks	Reference
	. CF ₂ =CFBr	Bulk	18-	ţ	1/1	60	E.	64-5	P7.p9
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	15. CH ₂ -CH ₂		4 days	-15	1/1			No reaction	P6.µ9
CF_3CFSF5 Mulk 75 20 1/2.5 20 Tantic num No reaction $CF_3^{-CCFC}_3$ Bulk 75 20 1/2.5 20 Flantic num No $FCC=CFFOLis_3$ Bulk 12 -15 1/1 100 Plantic num No $FCC=CFFOLis_3$ Bulk 72 -30 1/1 20 Gum 78 -10 1 $F_2C=CFSCF_3$ Bulk 73 -30 1/1 -1 No	1	Bulk		-15	1/1	001	filastic gum		B
	17. CF2=CFSF5	Bulk						No reaction	23
FCLC=C(F)OLN3 Bulk 12 -15 1/1 100 Plaatic $F_2C=CFSCF3$ Bulk 75 -30 1/1 20 Gum No. eastion $F_2C=CFSCF3$ Bulk 72 -30 1/1 -1 No. eastion No. eastion $F_2C=CFSCF3$ Bulk 75 -30 1/1 -1 No. eastion No. eastion $(CF_3)_2C=S$ Bulk 360 -78 1/1 -1 No. eastion No. eastion $(CF_3)_2C=S$ Bulk 360 -78 1/1 -1 No. eastion No. eastion $(CF_3)_2C=S$ Bulk 48 -65 2/1 0 -1 No. polymer No. eoduct unknown $CF_3CF_2CH=CH_2$ Bulk 48 -20 2/1 0 -1 Product unknown $CF_3CF_2CH=CH_2$ Bulk 20 2/1 0 -1 Product unknown $CF_3CF_2CH=CH_2$ Bulk 20 2/1 0 -1 Product unknow	1	Bulk	75	20	1/2.5	30	Elastic gum		F
$\Gamma_2 C= CFSCF_3$ Bulk 72 -30 $1/1$ 20 $0.0m$ T_R -40 0.1 $7r$ -40 0.1 $1/2$ 20 $0.0m$ 10 100		3 Bulk	12	-15	1/1	100	Plantic		1960 3M Final
(CF ₃) ₂ C=S Bulk 360 -78 1/1 Mo polymer Mo polymer CF ₃ CH ₂ OCH=CH ₂ Bulk 48 -65 2/1 0 Product unknown CF ₃ CH ₂ OCH=CH ₂ Bulk 48 -20 2/1 0 Product unknown CF ₃ CF ₂ CH=CH ₂ Bulk 48 -20 2/1 0 Product unknown CF ₃ CF ₂ CH=CH ₂ Bulk 24 20 2/1 0 Product unknown CF ₃ CF ₂ CF=CH ₂ Bulk 48 -20 2/1 0 Product unknown CF ₃ CF ₂ CF=CH ₂ Bulk 48 -20 2/1 0 Product unknown CF ₃ CF Bulk 48 -20 2/1 0 Product unknown CF ₃ CF Bulk 48 -20 2/1 0 Product unknown CF ₂ -CF Bulk 48 -20 2/1 0). F2C=CFSCF3	Bulk Bulk Bulk		-30 -38 nbient			Gum Possible polymer	620	47,P9 614.24
$ \begin{array}{l lllllllllllllllllllllllllllllllllll$		Bulk	360	- 78	1/1	3	1	No polymer	r2.p15
$CF_3CF_2CH=CH_2 Bulk 48 -20 2/1 0 Product unknown \\ Bulk 24 20 2/1 D Product unknown \\ CF_3CF_2CF=CH_2 Bulk 48 -16 to 20 2/1 0 Product unknown \\ CF_2-CF Bulk 48 -20 2/1 0 Product unknown \\ CF_2-CF Bulk 48 -20 2/1 0 Product unknown \\ CF_2-CF Bulk 48 -20 2/1 0 Product unknown \\ CF_2-CF Bulk 48 -20 2/1 0 Product unknown \\ CF_2-CF Bulk 48 -20 2/1 0 Product unknown \\ CF_2-CF Bulk 48 -20 2/1 0 Product unknown \\ CF_2-CF Bulk $			48 24	-65 +20	2/1 2/1	c 0		Product unknown Product unknown	HE 096T HE 096T
Bulk 24 20 $7/1$ 0 Product unknown $CF_3CF_2CF=CH_2$ Bulk 48 -16 20 $2/1$ 0 Product unknown CF_2-CF Bulk 48 -20 $2/1$ 0 Product unknown CF_2-CF Bulk 48 -20 $2/1$ 0 Product unknown CH_2-CH Bulk 48 -20 $2/1$ 0 Product unknown	3. CF3CF2CH=CH2	Bulk	48	- 20	2/1	0	8 9	Product unknown	WC
CF3CF2CF=CH2 Bulk 48 -16 to 20 2/1 0 Product unknown CF3CF2CF Bulk 48 -20 2/1 0 Product unknown CF2-CF Bulk 48 -20 2/1 0 Product unknown CF2-CF Bulk 48 -20 2/1 0 Product unknown CH2-CF Bulk 48 -20 2/1 0 Product unknown		Bulk	24	30	2/1	c	8	Product unknown	1960 3M Final
CF2-CF Bulk 48 -20 2/1 3 Product unknown CH2-CH			48 24	t o	2/1 2/1	c 0	 		E
	1	Bulk	14.8	- 20	1/6	c	:	Product unknown	}

14

.

1 -20 $1/1$ 50 $1/4$ 100 k -30 $1/1$ 3^{1} 0 und $1/1$ 10^{1} k -30 $1/1$ 3^{1} 0 und $1/1$ 10^{1} k 22 -30 $1/1$ 3^{1} 0 und $1/1$ k 72 -20 $1/1$ 2^{1} 0 und 100 k 72 -20 $1/1$ 2^{1} 0 und 100 k 72 -15 0 $1/1$ 0 100 k 2 -15 0 $1/1$ 0 100 k 12 -15 0 $1/1$ 0 100 k 12 -12 $1/1$ 0 0 100 k 12 -11 12 0 0 100 k 12 12 120 100 100 k 12 11 12 100 100 k 12 11 11 100 100 k 11 11 11 110 110 <th>26. CF₂=CHCF=CH₂ Bulk</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Diels Alder adduct</th> <th></th> <th></th>	26. CF ₂ =CHCF=CH ₂ Bulk						Diels Alder adduct		
	. CF ₂ =CFCH=CH ₂		- 20	7/7	ŭ	0	l'1 da tomer		1960 JM FInal
	сн2=снсн=сн2							Diels Alder Adduct	1960 3M Final
	CF ₂ =CFCF=CF ₂ Bulk Suspension		- 30	1/1 1/1	30		Gum Tough Rum		64.79
	CF2CF=CFCF2 Bulk		- 20	1/1	i		ł	No reaction	P5
$\label{eq:charge} CH_2=C(CH_3)C(CH_3)=CH_2 \\ CH_3=CH=CH=CH_2 \\ Bulk \\ CH_3=CH=CH_2 \\ Bulk \\ CH_3=CH=CH_2 \\ Bulk \\ CH_3=CH=CH_2 \\ CH_3=CH=CHCH_3 \\ CH_3=CHCH_3 \\ CH_3=CHCH_$. CF3CF2CF2CHO Bulk 3	aeks	ţ	1/1	i		÷	Product unknown no polymer	1960 3M FINAL
CH_3CH=CHE_CHautk Diela Alder Alder Alder Alder Alduct Diela Alder Alder Alduct DH I $CH_2=C(CH_3)CH=CH_2$ $Bulk$ $Diela Alder Alduct$ $Diela Alder A$								Díela Alder adduct	1960 JM Final
CH_2=C(CH_3)CH=CH_2 Dieln Alder Adduct CF_2=CFCH_2CH=CH_2 Sus- 48 -20 1/1 20 Gum Brown tacky product CH_2=C-CH=CH_2 Sus- 48 -20 1/1 20 Gum Brown tacky product CH_2=C-CH=CH_2 Sus- 48 -20 1/1 20 Biels Alder Adduct CH_2=C-CH=CH_2 E E E E E E CH_2=C-CH=CH_2 E E E E E CH_2=CH=CH_2 E E E E CH_2=CH=CH_3 E E E E CH_3CH=CHCH_3 E Molent E E E CH_3CH=CHCH_3 E Molent E E E CH_3CH=CH2 Bulk 24 I/1 E E CH_3CHCH2 Bulk 24 I/1 E E								Díels Alder adduct	JM Final
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	CH2=C(CH3)CH=CH2						10	els Alder Adduct	3M Final
CH2=C-CH=CH2 Diels Alder Adduct J DCH2CF3 OCH2CF3 Diels Alder Adduct CH3CH=CHCH3 Bulk C6H5CH2 Bulk 24 -15 CH3=C(CH3)COOC.H3 24 24 -15 CH3=C(CH3)COOC.H3 24 24 -15	CF2=CFCH2CH=CH2	8 1	-20	1/1	30	MuD	Nr.	own tacky product	P5,p11
CH ₃ CH=CHCH=CHCH ₃ (CN) ₂ C=C(CN) ₂ Bulk 96 Ambient C ₆ H ₅ CH=CH ₂ Bulk 24 -15 1/1 Unknown 011 011 01							10	iels Alder Adduct	3M Final
(CN) ₂ C=C(CN) ₂ Bulk 96 Ambient No renction C ₆ H ₅ CH#CH ₂ Bulk 24 -15 1/1 Unknown 011 CH ₂ =C(CH ₂)COOC.Ho 24 -15 1/1 80 011							70		3M Final
C ₆ H ₅ CH#CH ₂ Bulk 24 -15 1/1 (Inknown 011 CH ₂ =C(CH ₂)COOCHo 24 -15 1/1 80 011	(cn)2c=c(cn)2	96	Ambient				No	reaction	
CH^=C(CH2)COOCH2 24 -15 1/1 80 011	с ₆ н₅сн≖сн₂	54	-15	1/1	linknown	011			3M Final
	о. сн ₂ =с(сн ₃)соос ₄ н ₉	24	-15	1/1	80	110			3M rinal

The second

NUMERAL DESCRIPTION
÷

ميند الم الم

....

Table III

.

T

と読

1 X

NITROSO COPOLYMERS OTHER THAN CF 3HO

			JENNITH	CUPULIT	WITKOSO COPOLITICAS OFFICIAL LINK CI 3KO			
	Monomers	System	Time.(hr) Temp(°C)	Molar Ratio	Conversion	Product	Remarka	Keference
	cF ₃ cF ₂ No/F ₂ C≠cF ₂	Bulk	24/16	2/1	100	Gum rubber		1960 3M Final
<u>~</u> .	cF ₃ cF ₂ cF ₂ No/F ₂ c≠cF ₂	Bulk	24/-20	2/1	100	Gum rubber		1960 3M Final
	(CH3)2NNO/F2C=CF2						No reaction	1960 3H FINel
-	Brcf2cf2N0/F2C=CF2	Bulk	12/-78 to 25	1/1	91	Clear elasto- meric gum		28,p12
ۍ.	C ₈ F ₁₇ No/F ₂ C=CF ₂	Bulk	24/-2C	1/1.5	20	Gum rubber		1960 3M Final
	CF2C1CFC1N0/CF2=CFC1	Bulk	1-4k/20	1/1	60	Gum		1960 3H FLINAL
7.	02NCF2CF2NO/F2C=CF2	Bulk	24/-20		06	Gum rubber		1960 3M Final
÷	02NCF2CF2NO/F2C=CC12	Bulk	5-day/-25		95	Brittle-short		1960 3M Final
6.	02NCF2CF2NO/F2C=CFC1	Bulk	24/-25		92	Builttle-short		1960 3M Final
10.	02NCF2CF2NO/F2C=CFH	Bulk	2 4/-25		80	Gum-stiff		1960 3H FInal
	02NCF2CF2NO/CF3CH2OCH=CH2	3H2 Bulk	24/-25		98		Brown fuming oil	Lani'i MC 0001
12.	02NCF2CF2N0/F2C=CHC1	Bulk	24/-25	8 2	;	3 7	No product	1960 3M Final
13.	02NCF2CF2NO/F2C=CH2	Bulk	24/-25				No product	1960 3M Final
14.	0 ₂ NCF ₂ CF ₂ N0/S0 ₂	Bulk	24/-25				No product	1960 3M Final
15.	02NCF2CF2N0/F2C=CF2	Emulsion	17/20		95	Gum		1960 3M Final
16.	0 ₂ NCF ₂ CF ₂ NO/F ₂ C=CF ₂	Bulk	24/-25		82	Gum		1960 3M linal
	17. CICF ₂ CF ₂ NO/F ₂ C=CF ₂	Bulk	20/-20		Trans	Transparent rubber		1960 3M Final
l			The second se	The second secon				(يصفيها بي بين مسلم بشريف من من من المسلمان من المسلمان ال

16

A CARLES

.

1960 3M Final	1960 3H FInal	Transparent thermo- 1960 34 Final plastic	Transparent thermo- 1960 3M Final plastic	Transparent thermo- 1960 3M Final plastic	1960 3M Flnal	Decomposed on 1960 34 Final drying .	Decomposed on 1960 3M Final drying	1962 3% Final	-35°C 1962 3M Final	1962 3M Final	19C2 3M Final	powder 1962 3M Final	Tacky benzene Pl,pl9 solvent	Yellow tacky Pl,pl9 powder CH2Cl2 solvent	Hard white-yellow Pl.ply solid	Hard resin, rubbery T7,p10 55-130°C; 1/1 co-
		Transpar plastic	Transpar plastic	Transpar plastic		Decompo: drying	Decompo drying		Tß =			Black	Tacky he solvent	Yellow t powder solvent	Hard w solid	Hard 55-13 Dolym
Elastoneri Run	Very short rubber					Polymer	Polymer	[]astorieric gum	Elastomeric gum	Tacky gum	Elastomeric Rum	Polymer	Semi-solid	Polymer		Polymer
82								58	10	0 11	72					
													1/1	1/1.25	1/1	1/1
8-day/ -65 to .35	20/-20	20/-20	20/-20	20/-20	20/-20	20/-20	20/-20	35 day/ -65	3 day/ -20	24/-20	20/-25	16/-35	20/-20	48/-20	24/-40 (3 day/-20)	1-25
Bulk	Bulk	Bulk	Bulk	Bulk	Bulk	Bulk	Bulk					Solution	Solution	Solution	Solution	Solution
18. CICF2CF2N0/F2C=CF2	19. CICF2CF2NO/F2C=CFC1	20. CICF2CF2N0/F2C=CFH	21. CICF2CF2NO/F2C=CH2	22. CICF ₂ CF ₂ NO/F ₂ C=CC1 ₂	23. CICF ₂ CF ₂ W0/CF ₃ CF=CH ₂	24. CICF2CF2NO/CF3CH2OCH=CH2	25. CLCF2CF2N0/CF3CH=CH2	26. HCF2(CF2)3NO/F2C=CF2	27. CH3CF2NO/F2C=CF2	28. HCF ₂ CF ₂ NO/F ₂ C=CF ₂	29. HCF ₂ CF ₂ NO/F ₂ C=CF ₂	30. C ₆ H5NO/F ₂ C=CF ₂	31. C ₆ F5N0/F2C=CF2 S	32. C6F5NO/F2C=CF2 S	33. C ₆ F ₅ NO/F ₂ C=CFC1 S	34. BrC ₆ H4NO/F ₂ C=CF ₂ S

_

				Table IV			
		Ζ'	NITROSO TERPOLYMERS (CF3NO/F2C=CF2/A)	MERS (CF 3NO/H	^ح 2C=CF ₂ /A)		
Monomer A	System	Time,hr/ Temp ^o C	Molar Ratio	Conversion \$	Product	Remarks	Reference
1. So ₂	Bulk	96/-25	.5/1/.5		Tacky polymer		P6,p10
2. F ₂ c=S	Bulk	20 day/ -78 to -20	100./1/1		Polymer	Copolym e r of CF ₃ NO + F>C≖CP2	P1,p19
3. CF ₃ 0F CF ₃ 0F	Bulk Bulk	18/-25 	1/1/.2 1/1.4		Tacky gum 	Exploded after 5 min.	P6.n9 P6.p9
4. CCl3Br	Bulk	(96/-15 48/ambien	96/-15 1/1/ trace 48/ambient)		Viscous gum		P6,p11
5. CF2Br2	Bulk	96/ambient	ent 1/1/1		Viscous liquid		r6,p11
6. F2C=CH2	Bulk		1/1/.6 1/1/.5	80 84	Elastomeric gum Elastomeric gum		T8,p12 T8,p12
7. СГН=СГН	Bulk	96/-30		62	Polymer	NoCFH=CFH in polymer	P8,p12
8. CF ₂ =CFH	Suspen- sion		10./99/.1	011	Rubber		T 7
9. CF ₂ =CFH	Suspen- sion		1/99.01	1	Rubber		Т7
10. CF ₂ =CFH	Suspen- sion		1/96/.04	70	Rubber		T7
11. CF ₂ =CFH	Suspen- sion		1/-/1	:		No reaction	T7
12. CF ₂ =CFH	Suspen- sion		1/.5/.5	45	Gum		T 7
13. CF2=CFH	Suspen- sion		1/.25/.75	63	Rubber		77
14. CF2=CFH	Suspension	ç	1/.125/.875	71	Rubber		τ,
15. CF ₂ =CFH	Suspension	c	1/.96/.04	79	Rubber		T7
16. CF ₂ =CFBr	Bulk	48/-30	12/.14/.024	70	Elastomeric gum 7 = 0.36		P8,p10

HALF I TO AND THE PROPERTY OF A DESCRIPTION OF A DESCRIPR

q.

ą

13

\$í

ş

17. CF ₂ =CFBr	Aulk	JR/-30	.14/.095/.047 6	61 1:1astomervic Rum 1 = 0.10	c	P8,p10
cf ₂ =cfbr	Rulk	48/-30	.14/.095/.047 9	90 โ.ไ.เรtomeric หุนm ท ื≖ 0.11		P8,p10
сн ₂ =снсоон	Bulk	(24/-65 (120/-25	1/-/1	Mo reaction	(Copolymarization)	T8,p16
си2=сисоон	Bulk	(24/-65 (120/-25	1/.5/.5	ພາາມ	No -COOH in polymer	Ta.p16
c112=C11C001	Bulk	(24/-65 (120/-25	1/.1/	ບຕາພ	No -COON in polymer	T8,p16
сн ₂ =сисоон	Bulk	02-01/02	1/.9×'s	Polymors	Liquid + gun products	TA, p16
CH2=CHCOOH	Bulk	20/0	1/.9/.1	Terpolymer		T0,p16
сирсисоон	Bulk	20/1 3/50	1/.9/.1	Tarpolymor		T0,p16
сн2=снссон	Solution	23/-25	۱/۰۰/۱	Soft Rum	No -COON in polymer CN ₂ Cl ₂ nolvent	T0,p16
си ₂ =сисоон	Solution	-/25	1/-1.1		Exploded, overpressure Cll5Cl2 solvent	TA, p16
CH2=CHCOOH	Solution	-/25	1/.5/.5		Exploded, overpressure CU ₂ CL ₂ solvent	70,p16
сн ₂ =снсоон	Solution	-/25	1/.9/.1		Exploded, overpressure Cll5Cl3 solvent	T8,p16
cii ₂ =ciicooii	Solution	20/25	1/.5/.5	Liquid polymor		T8,p16
си ₂ =снсоон	Solution	(24/-65 (120/-25	1/-1	No roaction	fraon 113 golvent	T8,p16
сн ₂ =снсоон	Solution	(24/-65 (120/-25	1/.5/.5	Liquid polymer	ar Fruon 113 aclvent	TG,p1C
сн2=снсоон	Solution	(24/-65 (120/-25	1/.9/.1	Liquid polymer	rr Fran 113 solvent	78,p16
CH ₂ CH ₂ O	Bulk	96/-25	2/1/1	Tacky gum		PÓ.p4
34. F2C=CFBr	Bulk	12/-78 to 25	1/1/.25 92	2 Elastomer	Terpolymer, 9.4 mole % P7.pl0 CF2≖CFBr Tg≡-45°C	P7.p10

F_2C=CFBr Bulk $12/-76$ $1/1/.50$ 3 $\Gamma_2C=CFBr$ Bulk $12/-78$ $2/1/1$ 8 NOCF_2CF_2C00H $12/-30$ $2/1/1$ 8 NOCF_2CF_2C00H Bulk $72/-30$ $2/1/1$ 8 CF_3CF=CF_2 Bulk $72/-30$ $5/5/1$ 8 CF_3CF=CF_2 Bulk $72/-30$ $5/5/1$ 8 CF_3CF=CF_2 Bulk $65/-30$ $5/5/1$ 8 CF_2=CFCF=CF_2 Bulk $48/-30$ $1/1/.2$ 8 CF_2=CFCF=CF_2 Bulk $48/-30$ $1/1/.2$ $1/1/.2$ CF_2=CFCF=CF_2 Bulk $48/-30$ $1/1/.2$ $1/2/.2$ CF_2=CFCF=CF_2 Suspen- $72/-20$ $2/1/1$ $2/2/.1$ CF_2=CFCF=CF_2 <th>Time,hr/ Molar Conversion Temp^oC Ratio \$</th> <th>sion Product</th> <th>Remarks</th> <th>Reference</th>	Time,hr/ Molar Conversion Temp ^o C Ratio \$	sion Product	Remarks	Reference
F2C=CFBr Bulk 12/-78 $2/1/1$ 89 . NOCF_2CF_2C00H . . $2/1/1$ 89 . NOCF_2CF_2C00H Bulk $72/-30$. $01/.009/.001$. CH_2=CHCN Bulk $72/-30$. $01/.009/.001$. CF_3SCF=CF_2 Bulk $55/-30$ $5/5/1$ $01/.009/.001$ CF_3SCF=CF_2 Bulk $65/-30$ $5/5/1$ $01/.009/.001$ CF_3SCF=CF_2 Bulk $65/-30$ $5/5/1$ $01/.009/.001$ CF_2 Bulk $65/-30$ $5/5/1$ $01/.009/.001$ CF_2 Bulk $65/-30$ $5/5/1$ $01/.009/.001$ CF_2 Bulk $48/-30$ $01/.005/.02$ $01/.005/.02$ CF_2 Bulk $48/-30$ $01/1/.2$ $01/.1/.2$ CF_2 Bulk $48/-30$ $1/-1/.1$ $01/.01$ CF_2 Suspen- $72/-20$ $2/1/1$ $01/.1/.2$ CF_2 Suspen- $21/.1/.1$ $01/.1/.1$ $01/.1/.1$ CF_2 Suspen- $21/.1/.1$ $01/.1/.1$	1/1/.50	Elastomer	Terpolymer, 21.7 mole - & Crocrbr Tge-35°C	P7.p10
. NOCF2CF2C00H . CH2=CHCN Bulk 72/-30 . CH2=CHCN Bulk 89/-38 .01/.009/.001 CF3SCF=CF2 Bulk 65/-30 5/5/1 CF3SCF=CF2 Bulk 65/-30 5/5/1 CF3SCF=CF2 Bulk 65/-30 5/5/1 CF3SCF=CF2 Bulk 48/-30 .08/.06/.02 CF2=CFCF=CF2 Suspen- 48/-30 .01/1/.2 CF2=CFCF=CF2 Bulk 48/-30 1/1/.2 CF2=CFCF=CF2 Bulk 48/-30 1/1/.2 CF2=CFCF=CF2 Bulk 48/-30 1/1/.2 CF2=CFCF=CF2 Bulk 48/-30 1/1/.1 CF2=CFCF=CF2 Suspen- 72/-20 2/1/1 CF2=CFCF=CF2 Suspen- 2/1/1 CF2 CF2=CFCF=CF2 Suspen- 2/1/1 CF2 CF2=CFCF=CF2 Suspen- 2/1/1 CF2 CF2=CFCF=CF2 Suspen- 2/1/1 CF2 CF2=CFCF2 Suspen- 2/1/1 CF2 CF2=CFCF2 Suspen- 2/1/1 CF2 <t< td=""><td>3/1/1</td><td>Elas tome r</td><td>Terpolymer 31 mole & CF.SCFBr Tge-21°C</td><td>P7,p10</td></t<>	3/1/1	Elas tome r	Terpolymer 31 mole & CF.SCFBr Tge-21°C	P7,p10
· CH2=CHCN Bulk 72/-30 $CF_3SCF=CF_2$ Bulk $48/-38$.01/.009/.001 $CF_3SCF=CF_2$ Bulk $55/1$.01/.009/.001 $CF_3SCF=CF_2$ Bulk $65/-30$ $5/5/1$ $CF_2=CFCH=CH_2$ Suspen- $48/-30$ $.22/.17/.05$ $CF_2=CFCF=CF_2$ Suspen- $48/-30$ $.22/.17/.05$ $CF_2=CFCF=CF_2$ Suspen- $48/-30$ $.08/.06/.02$ $CF_2=CFCF=CF_2$ Bulk $48/-30$ $1/1/.2$ $CF_2=CFCF=CF_2$ Bulk $48/-30$ $1/1/.2$ $CF_2=CFCF=CF_2$ Suspen- $72/-20$ $2/1/1$ $CF_2=CFCF=CF_2$ Suspen- $2/1/.1$ CF_2 $CF_2=CFCF=CF_2$ Suspen- $2/1/.1$ CF_2 $CF_2=CFCF=CF_2$ Suspen- $2/1/.1$ CF_2 $CF_2=CFCF=CF_2$ Suspen- $2/1/.1$ CF_2 $CF_2=CFCF_2$ Suspen- $2/1/.1$ CF_2 $CF_2=CFCF_2$ Suspen- $2/1/.1$ CF_2 $CF_2=CFCF_2$ Suspen- $2/1/.1$ CF_2 <t< td=""><td></td><td></td><td></td><td>3M Final</td></t<>				3M Final
CF_3CF=CF_2 Bulk $48/-38$ $01/.009/.001$ CF_3SCF=CF_2 Bulk $55/-30$ $5/5/1$ CF_2=CFCH=CH_2 Suspen- $48/-30$ $22/.17/.05$ CF_2=CFCF=CF_2 Suspen- $48/-30$ $22/.17/.05$ CF_2=CFCF=CF_2 Suspen- $48/-30$ $08/.06/.02$ CF_2=CFCF=CF_2 Bulk $48/-30$ $1/1/.2$ CF_2=CFCF=CF_2 Bulk $48/-30$ $1/1/.2$ CF_2=CFCF=CF_2 Bulk $48/-30$ $1/1/.2$ CF_2=CFCF=CF_2 Bulk $48/-30$ $1/1/.1$ CF_2=CFCF=CF_2 Suspen- $72/-20$ $2/1/.1$ CF_2=CFCF=CF_2 Suspen- $2/1/.1$ $2/1/.1$ CF_2=CFCF=CF_2 Bulk $72/-20$ $2/1/.1$	/-30	Gum	No CH ₂ #CHCN In polymer	PR,p12
CF_3CF=CF_2 Bulk $65/-30$ $5/5/1$ CF_2=CFCH=CH2 Suspen- $48/-30$ $22/.17/.05$ CF_2=CFCF=CF2 Suspen- $48/-30$ $0.98/.06/.02$ CF_2=CFCF=CF2 Suspen- $48/-30$ $0.98/.06/.02$ CF_2=CFCF=CF2 Suspen- $48/-30$ $1/1/.2$ CF_2=CFCF=CF2 Bulk $48/-30$ $1/1/.2$ CF_2CFCF=CF2 Suspen- $72/-20$ $2/1/1$ CF_2=CFCF=CF2 Suspen- $2/1/1$ $72/-20$ CF_2=CFCF=CF2 Suspen- $2/1/1$ $72/-20$ CF_2=CFCF2 Bulk $72/-20$ $2/1/1$ CF_2=CFCF2 Bulk $72/-20$ $2/1/1$ CF_2=CFCF2 Bulk $72/-20$ $2/1/1$ CF_2 <cfefcf2< td=""> Bulk $72/-20$ $2/1/1$ CF_2<cfefcf2< td=""> Bulk $72/-20$ $2/1/1$</cfefcf2<></cfefcf2<>		Polymer	Viscous, Pale blue thioether recovered	P2,p15
CF2=CFCH=CH2 Suspen- sion $48/-30$ $22/.17/.05$ CF2=CFCF=CF2 Suspen- sion $48/-30$ $08/.06/.02$ CF2=CFCF=CF2 Bulk $48/-30$ $1/1/.2$ CF2=CFCF=CF2 Bulk $48/-30$ $1/1/.2$ CF2=CFCF=CF2 Bulk $48/-30$ $1/1/.2$ CF2=CFCF=CF2 Bulk $48/-30$ $1/-/1$ CF2=CFCF=CF2 Suspen- sion $72/-20$ $2/1/1$ CF2=CFCF=CF2 Suspen- sion $2/1/1$ $2/1/1$ CF2=CFCF=CF2 Bulk $72/-20$ $2/1/1$ CF2=CFCFCF2 Bulk $72/-20$ $2/1/1$		White gum		P7,p10
CF2=CFCF=CF2 Suspen- $48/-30$ $.08/.06/.02$ sion CF_2 =CFCF=CF2 Bulk $48/-30$ $1/1/.2$ CF2=CFCF=CF2 Bulk $48/-30$ $1/1/.2$ CF2=CFCF=CF2 Bulk $48/-30$ $1/-/1$ CF2=CFCF=CF2 Bulk $48/-30$ $1/-/1$ CF2=CFCF=CF2 Suspen- $72/-20$ $2/1/1$ CF2=CFCF=CF2 Suspen- $2/1/1$ $2/1/1$ CF2=CFCF2 Bulk $72/-20$ $2/1/1$.22/.17/.05	.7 Elastomoríc Bun		P8,p11
CF2=CFCF=CF2 Bulk 48/-30 1/1/.2 CF2CFCF=CF2 Bulk 48/-30 1/-/1 CF2=CFCF=CF2 Suspen- 72/-20 2/1/1 CF2=CFCF=CF2 Suspen- 2/1/1 2/1/1 CF2=CFCF=CF2 Bulk 72/-20 2/1/1 CF2=CFCF2 Bulk 72/-20 2/1/1 CF2=CFCF2 Bulk 72/-20 2/1/1 CF2=CFCF2 Bulk 72/-20 2/1/1 CH2=CHCH=CH2 Bulk 72/-20 2/1/1	.08/.06/.02	io Elastom e ric Rum		P 9.p11
CF_2CFCF=CF_2 Bulk 48/-30 1/-/1 CF_2=CFCF=CF_2 Suspen- 72/-20 2/1/1 CF_2=CFCF=CF_2 Suspen- 2/1/1 CF_2=CFCF_2 Suspen- 2/1/1 CF_2=CFCF_2 Bulk 72/-20 2/1/1 CF_2CF=CF_2 Bulk 48/-30 .043/.037/.005 88	1/1/.2	13 Gum	[1] = 0.355	P7,p10
CF_2=CFCF=CF_2 Suspen- 72/-20 2/1/1 sion CF_2=CFCF=CF_2 Suspen- 2/1/1 CF_2CF=CF_2 Bulk 72/-20 2/1/1 CH_2=CHCH=CH_2 Bulk 48/-30 .043/.037/.005 88	1/-/1	.7 Elastom e ríc gum	(Copolymerization)	48.p11
CF ₂ =CFCF=CF ₂ Suspen- 2/1/1 sion CF ₂ CF=CFCf ₂ Bulk 72/-20 2/1/1 CH ₂ =CHCH=CH ₂ Bulk 48/-30 .043/.037/.005 88	2/1/1	17 Polymer	Viscous sticky liquid P5.p11	d P5 ,p11
CF_2CF=CFCF2 Bulk 72/-20 2/1/1 CH_2=CHCH=CH2 Bulk 48/-30 .043/.037/.005 88		17 Polymer	Viscous sticky liquid P5,p11	d P5,p11
CH ₂ =CHCH= CH 2 Bulk 48/- 30 .043/.037/.005	2/1/1	4 Viscous liquid	No monomer A in- corporated	P5,p12
	.043/.037/.005	Viscous liquid	Decomposes rapidly in air	P8,p11
	/-20 11/8/3 17	Viscous liquid		P5.p12

Table IV

I.

5

NITROSO TERPOLYMERS (CF₃NO/F₂C=CF₂/A (continued)

20

of several second second second second

, H.

•

50. CF ₂ =CFCH=CH ₂	Suspen- sion	72/-20	2/1/1	39	Polymer	Vincous sticky liquid	P8,p11
cf2=cfch=ch2	Suspen- sion	24/-20	3/2/1	38	Polymer	Visceus sticky liquid	P5,p11
cF2=cFcH=cH2	Suspen- sion	20/-20	2/1/1	33	Polymer	Viscous sticky liquid	P5,p11
сг ₂ =сгсн=сн ₂	Suspen- sion	0/-20	2/1/1	8	Polymer	Exploded aft e r 5 mins.	P5,p11
сғ ₂ =сғсн=сн ₂	Bulk	12/-30	1/1/2	36	Gum	[µ] = 0.14	P7.p10
cf ₂ =cfch=ch ₂	Bulk	0/-78	2/1/1	t 1	P	Ľxploded	P7.pln
CF2=CFCH=CH2	Bulk	0/-78	2/1/1	E E	8	Exploded	P7,p1
No(cf ₂) ₃ cooh						See VB	
сн ₂ =снос ₂ н ₅	Bulk	144/-20	2/1/1	50	Polymer	Clear viscous liquid	.P5.pl2
CF2≖CFS1(CH ₃)2C1 Bulk	l Bulk	48/-25	2/1/1	1	0	Clear liquid, no silane incorporated	P6,p10
CF2=CFCH=CH2	Bulk	72/-30	3/2/1		Gum	Clear elastomer	P6,p1('
cF2=cFcH2cH=cH2	Suspen- sion	48/-20	2/1/1	33		Brown viscous liquid	P5,n11
CF2#CFCF2C00CH3	Bulk	81		77	Elastomeric gum	No ester incorporat- ed	P8,p12
NO (CF2) 3COOCH3	Bulk	48/-30		20	Elastomeríc gum	Eater incorporated	P8,p12
сн ₂ ≢с(сн ₃)сн≢сн ₂	2 Bulk	-10	.04/.025/.025	ţ		Exploded	P7.f11
сн ₂ ≖с(сн ₃)сн≡сн ₂	2 Bulk	-10	10/60/60*	8		Exploded	P7,p11
сн ₂ ≡с(сн ₃)си≡сн ₂	2 Bulk	24/-78	.03/.02/.01	53	Gum	Tacky, turns brown	P7, p11
CF2=CFCF2C00Et	Bulk	48/-30			Elastomeríc gum	No ester incorporat- ed	PC, p12

ļ

ġ,

A 22 State Carterian and and a state warder warder

Table IV (continued)

ŗ

NITROSO TERPOLYMERS (CF3NO/F2C=CF3/A)

		.,	UTIKNON TEKENTELEVO (CE 300/15 50-CE 5/V)	Interna Int Sunt	r 20=Ur 2/A/		
Honomer A	System	Time,hr/ Temp ^o C	Molar Ratío	Conversion	Product	Remarks	Reference
68. C ₆ H ₅ NO	Solution					Black non-elastomeric solid	T4,p9
69. C ₆ F ₅ NO	Solution		1./1/6.	76	Elastomer		T4,p9
70. C ₆ F ₅ NO	Solution		.8/1/.2	78	Elastomer		T4.p9
71. C6FNO	Solution		.5/1/.5	86	Stiff elastomer		T4.p9
72. C6F ₅ NO	Solution		.2/1/.8	58	Resin		T4,p9
73. C6F5NO	Solution		1/1/0	50	White powder	(Copolymerization)	T4,p9
74. BrC ₆ H4NO	Solution		-1/1/1	42	Brittle solid	Rubbery 55°C CH2C1	T7.p11
75. BrC ₆ H4NO	Solution		Trace/1/1	01	Brittle solid	Rubbery 55°C CH ₂ C1 ₂	T7,p11
76. BrC ₆ H ₄ NO	Solution		.3/1/.7	H3	Brittle solid	Rubbery 50°C	T7,p11
77. BrC6H4NO	Solution		.5/1/.5	04	Elestomer		T7,p11
78. BrC ₆ H ₄ NO	Solution		.7/1/.3	85	Elastomer		T7.p11
79. ВгС ₆ Н ₄ ИО	Solu⁺ion		1./1/6.	79	Elastomer		T7,p11
80. BrC ₆ H ₄ NO	Solution		1./1/6.	82	Ll as tomer		T7,p11
в1. ИОС ₆ Н4 соон	Solution	24/-25	-/1/1		kesin	Solvent CH ₂ Cl ₂ :Et ₂ O	T8,p17
82. ИОС ₆ Н4СООН	Bulk	24/-25	1./1/6.		Gum	40% Terpolymer	T8,p17
вз. иос ₆ н ₄ соон	Bulk	24/-25	1./1/6.		Gum	60% Terpolymer	T8,p17

84.	84. NOC ₆ H ₄ COOH Solu	Solution 24/	2 4/-25	1./1/6.	_		Liquid	Solvent CH ₂ Cl ₂ :Et ₂ 0	T8,p17
85.	85. NOC ₆ H4COOH Solu	Solution 24/.	24/-25	.5/1/.5			Gum	Solvent CH2Cl2:Et20	T4, p17
8 6.	вс. Noc ₆ H ₄ соон solu	Solution 24/-25	-25	1./1/6.			Soft rubber	Solvent CH ₂ Cl ₂ : (CH ₃) ₂ CO Product soluble in FC43; Freen 113 mixture	T8, p17
67.	87. C ₆ F ₅ NO Solu	Solution 24/-40	0 7	9/10/1			Semi-elasto- meríc tacky gum	Solvent CH ₂ Cl ₂	P1,p20
88.	. CF ₂ =CFS:(CH ₃) ₂ 0Et	Bulk	240/-35		2/1/1	53	Clear liquid	No silane in- corporated	P5,p12
89.	. Noc ₆ F4cooH								T8,p12
.06	90. CH2=CHO(CH2)20CH2CH=CH2 Bulk	2 Bulk	144/-78		2/1/1	52	Brown gum		P5,p12
91.	. (cF2=cFcF2)2cFc1	Bulk	48/-30		038/027/011	52	Viscous liquid	d Some diene in- corporated	P7,p12
92.	. CF2ªCFC ₆ H₄CH3	Bulk	48/-30	- - -	.03/.025/.005)5 63	Viscous liqui	Viscous liquid Styrene incorporated	P7,p12
93.	. CF ₂ =CFC ₆ H ₄ COOH	Solution	48/-30		.03/.025/.005	5 62	Viscous liquid No	d No acid incorporated	P7,p12
94.	CF2=CFC6H4COONa	Suspension	72/-30		.03/.025/.005)5 62	Gun	Nr acid incorporated	P7,p12
				MISCE	MISCELLANEOUS TERPOLYMERIZATIONS	RPOLYMERIZ	ATIONS		
95.	CF2=CFCH=CH2/CF2*CFCF=CF2/CF3NO	CF2/CF ₃ NO			1/12			Exploded at -25 ^e bulk system	P6,p9
	CF ₂ =CFCH=CH ₂ /CF ₂ =CFCF=CF ₂ /CF ₂ =CF ₂ /CF ₃ N0 Bulk 18/-25	CF2/CF2=CF2/(Bulk	CF ₃ NO 18/-2		.005/.005/.055/.032	155/.032	Tacky gum		P6,p9
	CF3CF−ÇF2/CF3CF≖CF2/CF3N0 0	3NO Bulk	48/-25		/1/2		Tacky gum		P6,p9

-

~

an all and a second

ましのないとの語言には、

possible to continuously produce CF_3NO of at least 99 percent purity by metering trifluoroacetylnitrite into a reactor containing an inert diluent at reflux. Decarboxylation is affected in the vapor phase and the CF_3NO swept continuously from the reactor zone through a purification train into traps at liquid nitrogen temperature where it is condensed. The inert diluent (triperfluorobutylamine-FC-43) is returned to the reactor by a condenser. CF_3NO purification is affected by a 5 percent caustic scrubber to remove CO_2 and NO_2 , a drying tower and finally a molecular sieve column at $-100^{\circ}C$ to remove non-acidic nitrogen oxides and CF_3NO_2 . This unitized operation was capable of producing one pound per hour of pure CF_3NO which could be stored in gas storage bottles for extended periods of time at $-20^{\circ}C$ without change or detrimental effect on its use in polymerizations.

Figure 1 illustrates the equipment flow chart for CF_3NO production. Tetrafluoroethylene, C_2F_4 , for the scaled up production of nitroso rubber was manufactured in the Thiokol TFE facilities in Moss Point, Mississippi. For the initial polymer program tetrafluoroethylene was prepared by the debromination of tetrafluorodibromcethane. This was accomplished by a refluxing suspension of activated zinc in methanol. The efficient vapors were precooled by a cold water condenser and then passed through a -35°C condenser to remove any dimethyl ether which might have been produced by the reaction of zinc and methanol. The product was then condensed at liquid nitrogen temperatures under a slight helium pressure to preclude contamination by atmospheric oxygen. When the reaction was complete the condensate was warmed to -76°C transferred in vacuum to a stainless steel storage cylinder containing an inhibitor. The Equipment Flow Chart for the tetrafluoroethylene preparation is shown in Figure 2.

Figure 1. Equipment flow chart for CF₃NO production

Thiokol's copolymer facility consisted of two reinforced concrete bays in which the glass monomer production equipment and the 25 gallon stainless steel polymerization reactor were housed. A circulating brine system cooled by direct injection of CO_2 furnished refrigeration for the polymerization and necessary cold traps. This was accomplished by a 100 gallon tank equipped with a stainless steel 7-1/2 HP brine pump. A 12 kw oil heating system was piped to the pyrolysis unit. The equipment flow chart is given in Figure 4.

In evaluating the reaction variables which could have significant effect upon the product it was found that the purity of the CF_3NO was critical. In addition certain solvents could act as chain transfer agents as for example, carbon disulfide or those containing hydrogen or chlorine. The optimum polymerization time at -25°C was found to be about 24 hours. The purity of lithium bromide used as a freezing point depressant was found not to be critical. The quantity of magnesium carbonate used did not particularly effect better suspensions or yield significantly variable products. The heat of polymerization was determined to be 74.8 ± 0.5 K cal/mole using the CF_3NO/C_2F_4 monomer ratio.

Since the nitroso monomer is itself the initiator in the polymerization of the nitrosc rubber, very special polymerization conditions are required to assure the formation of a high molecular weight polymer. Suspension, bulk and solution polymerizations have been investigated. The suspension procedure described herein is typical of one that has consistently produced high molecular weight nitroso rubber: a 150 cc. stainless steel cylinder is charged with 70 cc. of Li Br solution (53g. Li Br/100g. H₂O, freezing point -45°C), 2.0g. MgCO3 and 8.0g. each of CF2CF2NO. The cylinder is agitated at a temperature of -25°C for 20 hours. At the end of this time, the unreacted monomers are vented and the contents of the cylinder removed. The resulting suspension is allowed to settle and the supernatant liquid decanted. The precipitate is washed in water and then stirred in concentrated HCl until no further reaction is noticed. The conversion may be as high as 86 percent of the expected high molecular weight polymer. The material flow chart for the scale-up of this process is given in Figure 3. Two hundred pounds of CF_3NC/CF_2CF_2 copolymer have been produced in this facility in lots of approximately 30 pounds. Yields run as high as 85 percent.

D. Basic Polymer Property Studies

In 1962 the U. S. Army Natick Laboratories began funding a program with Monsanto Research Corporation to carry out certain physical and rheological properties on the CF_3NO/CF_2CF_2 copolymer gumstock. The goal of this program was to obtain basic information about the chemical structure of this polymeric systems in order to have a fuller understanding of its potential.

. کتار و اختصار شد ش

Figure 3. Material flow chart for nitroso rubber

13 H X X

ſ,

4

1. Solvent Properties

Useful solvents for measuring physical and rheological properties of CF_3NO/CF_2CF_2 gumstock were found to be FC-75, (a mixture of isomers of perfluorocyclic ether, $C_8F_{16}O$, manufactured by 3M Co.), Freon 113, trichlorotrifluoro ethane and perfluorotributylamine, FC-43.

2. Infrared Spectroscopy

Inasmuch as no infrared frequency assignments were found for the perfluorocarbons in standard sources, only tentative conclusions have been drawn. Absorptions for CF_3NO/CF_2CF_2 copolymer gumstock appear at 830 cm⁻¹ believed due to $-CF_2-CF_2$ - bend, at 745 cm⁻¹ due to either $-CF_2-CF=$ or =CF-CF= either of which appear in the idealized average structure obtained by NMR. Significantly, no $-CF(CH_3)_2$ which would appear at 730 cm⁻¹, was seen nor was $-CF_2CF_3$ present which would appear at 735 cm⁻¹. Figure 5 shows a typical CF_2NO/CF_2CF_2 spectrum.

3. Nuclear Magnetic Resonance Spectroscopy

Shown in Figure 6 is a typical NMR spectrum obtained for a CF_3NO/CF_2CF_2 nitroso rubber gumstock. Listed in the following table are these peaks and their assignments. The structure is defined as

-IN(CF3)CF2CF20-x

Figure 6. Nuclear magnetic (F¹⁹) resonance spectrum of 56703-3 nitroso gum

Table	Y
lacie	•

NMR SPECTROSCOPY CF NITROSO RUBBERS*

Sample No	Chemical	Shift of	Peaks, ppm	Area	Ratic o	f Peaks
	÷	<u>2</u>	<u>3</u>	1	2	3
XP5675	-11.4	4 <u>11</u> 5	+24 C	3.0	1,9	2.0
XP5702	-11.4	+11.7	÷2∔ 2	30	2.0	1.9
XP5812	-11.3	711 7	÷2∔,8	3.0	1.9	20
XP5887	-11.5	-11 5	+2+.0	3.0	2.0	1.9

 $-N(CF_3) -N-CF_2CF_2-$

-OCF2CF2-

*F19 Resonance @ 40 Mc Reference trifluoro acetic acid

A COMPANY AND A

4. X-ray Diffraction

All samples of CF_3NO/CF_2CF_2 were found to be non-crystalline as shown by their diffuse diffraction patterns

5. Glass Transition Temperature (rebound method)

Figure 7 shows the rebound tester used to determine the glass transition of a material at 1000 cps by measuring the rebound of a small ball bearing from the surface of the specimen. The percent rebound correlates to the logarithmic decrement since this decrement goes through a maximum where the elastic modulus decreases rapidly from a glassy state to a subbery state. Data of percent rebound versus temperature for a typical CF_3NO/CF_2CF_2 copolymer is shown in Figure 8. The specimen was tested from -100°C up to 40°C. The minimum rebound region of -18°C is the 1000 cps glass transition temperature. Using an equivalence of 7°C per decade of frequency (approximation) the 0.1 cps glass transition (such as determined by the torsion pendulum, would be -46°C.

6. Thermogravimetric Analyses

A TGA in helium and in air was conducted on cured CF_3NO/CF_2CF_2 samples, the results of which are shown in Figure 9. In air the rubber violently decomposed at 270°C.

Ser.

×**.

?

(I

*

ŗ.

31

Ē

7. Linear Thermal Expansion Coefficients (apparent)

adverting to a second and the second of the second

100

i.

9

Coefficients of linear thermal expansion by means of a dynamic modification of ASTM-D596-44 were conducted on samples of CF₃NO/CF₂CF₂ gumstock. A quartz dilatometer was used. The dynamic modification consisted of periodic determinations of expansion as a function of temperature at a rate of 1°C/min. The term "apparent" is used because of the non-equilibrium nature of these determinations. A temperature range of -75°C up to about 10°C above the glass transition temperature was covered. Glass transition temperatures Tg, where $(\partial \Delta I/\partial T=0)$ were determined as a result of expansion measurements and is shown in Table VI.

Table VI

APPARENT LINEAR THERMAL EXPANSION COEFFICIENTS

Sample	Apparent Linear Expansion Coefficient °C-1	Temperature Range	Tg ^b 0°C	Tg, ^C O°C
XP5675 ^d	(7.2 x 10-5) (1.2 x 10-4)	-67 to -52 -52 to Tg	-46	-60 ^C
XP5702	$(8.2 \times 10-5)$ $(1.2 \times 10-4)$	-67 to -52 -52 to Tg	-46	-45
XP5812	(7.6 x 10-5)	-72 to Tg	-49	
XP5887	(5.7 x 10-5 (8.8 x 10-5)	-72 to -62 -62 to Tg	-48	

OF CF3NO/CF2 NITROSO GUMS

a, "Apparent" due to temperature use of 1°C/min.

- b. From thermal expansion data
- c. From Clark-Berg determinations

d. Devolatilized 16 hr at 80°C and 3 mm Hg

e. Sample contained volatiles

V. Properties of Nitroso Rubber

For the great majority of nitroso elastomers prepared to date only mininal data has been compiled. Certain selected systems have been subjected to intensive investigations and considerable data has been accumulated. This is particularly true for the CF_3NO/CF_2CF_2 copolymer system and to a lesser extent the $CF_3NO/CF_2CF_2/NO(CF_2)$ (3 or 4) COOH terpolymer systems. The properties of fluorinated elastomers have received considerable attention and reviews by Montermoso^{22,23} and others²⁴⁻²⁵ describe their properties in some

detail. Summations of various phases of the U. S. Army sponsored Nitroso Rubber Program have been described in publications by Montermoso²⁷⁻²⁹. Recent results describing the chemical and physical properties of nitroso rubber co- and terpolymers have been reported by Griffis and Henry³⁰,³¹.

A. Copolymers

The properties of the raw polymer of nitroso rubber obtained from the reaction of CF_3NO and $CF_2=CF_2$ are described in Table VII. As an equimolar copolymer it is a colorless, transparent rubber that can be processed on regular rubber compounding equipment. The rubber is completely nonflammable. When directly exposed to a flame, some gas is evolved which tends to put out the flame; however, no charring of the rubber takes place.

Table VII

NITROSO RUBBER (raw polymer)

Structure

Crystal structure Amorphous Mol. Wt. Approx. 1.3X10⁶ Specific gravity 1.93 Dielectric constant 2.41 @ 60 cycles Tg -51°C Solubility - soluble in - fluorocarbons, FC-43, Freon 113 insoluble and unaffected in hydrocarbons

Reaction: aliphatic and aromatic amines degrade or crosslink.

€CF₂CF₂N-0}_n

Thus far, the only successful cure has been with triethylenetetramine and even this cure requires extended periods of time at temperatures near the decomposition temperature of the copolymer. Higher molecular weight copolymer samples are definitely more difficult to cure, using the amine treatment, than lower molecular weight materials. Above 212°F. sponging occurs rather rapidly.

The properties of the compounded rubber and the recipe used for compounding is given in Table VIII.

Table VIII

NITROSO RUBBER (compounded)

Recipe:	
Polymer	100
Hi Sil 303	15
TETA	1.25
HMDA	2.5
Properties:	
Tensile strength, (Psi)	1230
Stress at 300% Elongation, (Psi)	410
Ultimate elongation, %	640
Hardness, Shore A	60
Tensile set at break, %	34
Low temperature properties:	
Temperature retraction, TR50	-36°C
Gehman stiffness, T ₅	-41°C
Chemical resistant properties, volume swell, % in :	following:
70/30: isoctane/toluene	2
MEK, ether	2
Perchloroethylene	3
Nitrogen Tetroxide	l

Ozone resistance: after 24 hrs @ 175 ppm @ 150°F. No cracks Flammability: will not ignite

In its uncompounded state nitroso rubber copolymer is a white to amber colored dense elastomer with a fluorine content of 66.8%. Its low glass temperature results from the low attractive forces between chains and to free rotation about the -N-O bonds in the repeating unit. A study of the glass transition temperatures for various nitroso and fluorocarbon polymers has been compiled by Thiokol (T-1) and as shown in Table IX.

Hypothetical Tg values such as those found in Table IX are subject to considerable variation. The Tg of tetrafluoroethylene for example has been calculated to be anywhere from -112°C to 130°C. Stump³² and Boyer³³, believe it to be -50°C based upon experimental evidence and subsequent use of the Fox equation $(Tg_{1,2} = w^1/Tg_1, + w^2/Tg_2)$. The values as shown in Table IX, in a relative manner, do indicate the theoretical potential for developing lower temperature flexible fluoroelastomers.

34

Table IX

GLASS TRANSITION TEMPERATURES FOR VARIOUS NITROSO AND FLUOROCARBON POLYMERS

Polymer	TE. C	Comments
1. $\begin{bmatrix} NOCF_2CF \\ CF_3 & F \end{bmatrix}_x$	-51	literature
2. $\begin{bmatrix} NOCF_2CF \\ CF_3 & CF_3 \end{bmatrix}$	-9	literature
3. $- \left[CF_2 CF_2 \right]_{\mathbf{x}}$	80	literature
$\begin{array}{c} 4 \begin{bmatrix} CF_2 CF \\ CF_3 \end{bmatrix} \\ x \end{array}$	165	literature
5. $\begin{bmatrix} NO \\ CF_3 \end{bmatrix}_{\mathbf{x}}$	-108	calculated based on 1 and 2
$\begin{array}{c} 6 \begin{bmatrix} NOCF_2 CF \\ F & CF_3 \end{bmatrix} \\ x \end{array}$	-51	Assumption - same as 1
	-184	calculated
$\begin{array}{c} 8 \begin{bmatrix} \text{NOCF}_2 \text{CF}_2 \end{bmatrix} \\ F \\ \end{array} \\ \times \\ \end{array}$	-95	calculated
9. $\begin{bmatrix} NOCF_2CF_2 \\ F \end{bmatrix}$ $\begin{bmatrix} NOCF_2CF_2 \\ CF_3 \end{bmatrix}$ $\begin{bmatrix} 0.9* \end{bmatrix}$ $\begin{bmatrix} 0.1* \end{bmatrix}$	-90	calculated
$10 \begin{bmatrix} NOCF_2CF_2 \\ F \end{bmatrix}_{0.75} - \begin{bmatrix} NOCF_2CF_2 \\ CF_3 \end{bmatrix}_{0.25}$	-86	calculated
$11 \begin{bmatrix} \text{NOCF}_2 \text{CF}_2 \\ \text{F} \end{bmatrix} = \begin{bmatrix} \text{NOCF}_2 \text{CF}_2 \\ \text{CF}_2 \end{bmatrix} = \begin{bmatrix} \text{NOCF}_2 \text{CF}_2 \\ \text{F} \end{bmatrix} = \begin{bmatrix} \text{NOCF}_2 \text{CF}_2 \\ \text{CF}_2 \end{bmatrix} = \begin{bmatrix} \text{NOCF}_2 \text{CF}_2 \end{bmatrix} = \begin{bmatrix} \text{NOCF}_2 \text{CF}_2 \\ \text{CF}_2 \end{bmatrix} = \begin{bmatrix} \text{NOCF}_2 CF$	-91	calculated
$12 \begin{bmatrix} \text{NOCF}_2 \text{CF}_2 \\ \text{F} \end{bmatrix}_{0.75} = \begin{bmatrix} \text{NOCF}_2 \text{CF}_1 \\ \text{F} \\ \text{CF}_3 \end{bmatrix}_{0.25}$	-86	calculated
 weight fractions 		•••••

35

· Starting

ST 6.

......

B. <u>Properties of Nitroso Rubber Terpolymer</u> (carboxyl-nitroso rubber)

Properties of the carboxyl-nitroso raw polymer are given in Table X. The beginning of a family of these terpolymers have been synthesized, in which nitrosoperfluoropropionic acid and nitrosoperfluorobutyric acids have been used in varying mole ratios of 0.5 to 2.

1

ł

Table X

CARBOXYL-NITROSO RUBBER

Crystal Structure: Amorphous Molecular Weight: 0.62 (FC43); - 0.81 X 10⁶ Solubility: Soluble in fluorocarbons, FC43 and Freon 113

The compounding recipe and the properties of the vulcanized carboxylnitroso rubber are given in Table XI. The incorporation of the acid termonomer into the nitroso polymer has resulted in decided improvement of tensile strength properties, while retaining the excellent chemical, low temperature and flammability characteristics. It is interesting to note the increased volume swell of this compound in methyl ethyl ketone over the copolymer.

Nitroso rubber gumstock appears to be resistant to chlorine trifluoride ClF_3 . Amine cured vulcanizates of nitroso rubber copolymer and metal salt vulcanizates of carboxyl-nitroso rubber terpolymer, are converted by chlorine trifluoride, to substances resembling the original gumstock, with losses of weight approximately corresponding to the amount of curing agent present. The rate of degradation appears to depend upon the metal salt used in the vulcanization and upon the temperature³⁴.

Nitroso elastomer gumstocks containing no hydrogen atoms (completely fluorinated) are extremely resistant to corrosive environments. Of particular note are the resistance to strong oxidizing agents such as N_2O_4 or fuming acids. In the presence of strong bases the elastomer degrades. Table XIA indicates the stability of nitroso elastomers to a variety of atmospheres.

Table XI

CARBOXYL-NITROSO RUBBER (compounded)

Compounding Recipe:	Polymer - 100
	Silstone 110-20
	Chromium triperfluoroacetate 8
Properties of compounded polymer:	
Tensile strength, psi	2170
Ultimate elongation, %	720
Set at break (10 min.), X	30
Hardness, Shore A	57
Low temperature properties:	
Temperature retraction, TR-50	-41°C
Gehman stiffness, T ₅	-44°C
Chemical resistance:	
Volume swell, 7, in following:	
70/30: isooctane/toluene	2
MEK	52
Dichloroethane	4
Nitrogen tetroxide	6
Flammability - will not ignite	

C. Properties of Special Interest

<u>Storable Oxidizers</u> :	Nitrogen tetroxide, N ₂ O ₄ , has no effect.* Elemental Fluorine: unaffected by fluorine at room temperature.
Ozone Resistance:	No cracks after 24 exposure to 175 ppm @ 150°F.
Sunlight Resistance:	No cracks after 2 months of exposure

@ 20% elongation.

*Various nitroso elastomers have been evaluated for N_2O_4 resistance. The nitroso rubber copolymer gum has shown no indication of degradation after 60 days immersion in liquid N_2O_4 at 150°F. Carboxy-containing nitroso terpolymers cured with chromium triperfluoroacetate appear to be unaffected after three weeks in liquid N_2O_4 at 100°F³⁵. A summation of these results with carboxyl nitroso elastomers is shown in Tables XIB, C and D. It was noted that although the cured carboxyl nitroso elastomers swelled in many liquids, in most cases the liquid was a solvent of the curing agent (CF₃COO)₃Cr. It was thus possible to speculate that the solvation of the (CF₃COO)₃Cr caused the swelling.

CARTO DESCRIPTION

V. .

Table XIA

NITROSO RUBBER COPOLYMER CF2NO/CF2CF2

A STATE A STATE AND A STATE AN

A ALL . I .

-

9

E. Last

١.

1. Q.

(Unvulcanized Gumstock)

Solvents and chemical agents having no significant affect, solvation, swell or degradation.

	Temperature
50:50 xylene hexafluoride:chloroform	steam bath
2-Butanone (MEK)	steam bath
Trichlorobenzene	steam bath
1,4-Dioxane	steam bath
3:1 Heptane:MEK	steam bath
Chlorocyclohexane	steam bath
3:1 MEK:Heptane	steam bath
50:50 MEK:Heptane	steam bath
Xylene Hexafluoride (XHF)	steam bath
1,4-dichlorobutane	steam bath
Benzotrifluoride (BTF)	steam bath
Trifluoroethanol (TFE)	steam bath
Carbon tetrachloride	steam bath
Diethyl Ether	steam bath
n-Butyl Chloride	steam bath
Tetraethyl orthosilicate (TEOS)	steam bath
para-chloro-benzotrifluoride	steam bath
Chlorobenzene	steam bath
Trichloroethylene	steam bath
Chloroform	stean bath
Methyl chloroform	steam bath
b , b -dichloroethyl ether	steam bath
Methyl Perfluoro Butyrate (MFB)	steam bath
Distilled water	212°F
Conc. ammonium hydroxide	reflux
Furfural	212°F
Skydrol	212°F
Skydrol 500	212°F
JP6 Fuel	212°F
ASTM ref. oil #1	212°F
ASTM ref. oil #3	212°F
MIBK	212°F
Xylene	212°F
10% aq. acetic acid	212°F
10% aq. sulfuric acid	212°F
Conc. hydrochloric acid	158°F
Conc. nitric acid	158°F

Table XIB

RESISTANCE TO CIF₃ GAS OF VARIOUS VULCANTZATES^(*) OF CARBOXYL-HITROSO ELASTOMERS

	Elastomer ^(#%) (100 p. by xt.) Silstone 110, p. by wt. Curing Agent, formulae	(1) - 5	(0) - MnO	(4) - C30 8	(2) - Cd(0H)	(n) 25 BPA Epoxy	100(5112)2011 25 10012)2011	(2) - HO(CH ₂)20H	(2) (5) - 20 10(Cli ₂)2011 cr(cF ₃ Coo) ₈
	Press-Cure Oven-Cure (post-cure)		Stepvis	I h se to the	l hour at 2000F he indicated te	I hour at 2000F Stepvise to the indicated temperatures:	ser:		þ
	Jors/oF	22/350	1/400	0.5/350	0.25/350 21/225	21/225	23/350	1/350	1/300
	Resistance to CIF ₃ :	olns	servations		hours e	<pre>sposure at</pre>	after 4 hours exposure at indicated temperatures:	mperatures:	
39	at 25°C, appearance	No ch.	llo ch.	No ch.	No ch.	Jegraded	Warped	No ch.	No ch.
	weight	1	-1.83	+0.8%	0.0	-42.79.	-21.4%	31/1-	-19.2%
	at 50°C, appearance	No ch.	ł	1	No ch.	ı	ı	Melted	ı
	weight	1	t	ı	-0.6%	ł	ı	-5.5%	1
	at 100°C, appearance 5	SI. Flow	ł	1	ı	ı	1	1	Melted
	weight	ł	ı	t	1	ı	ı	ı	-19.3%
	at 120°C, appearance	ı	ſ	ł	No ch.	ı	Gumstock	ı	ŀ
	weight	ł	1	ł	-2.29	t	-27.6%	ı	r
	at 135°C, appearance	1	Melted	1	I	Gumstock	1	ı	t
	weight	I	-8.78	ł	I	-42.85	I	I	ł
	at 150°C, appearance M	Melted	1	Sl.Flow	1	1	t	ſ	ı
	weight	t	t	-6.2%	ı	ı	ſ	I	1
	Notes: (#) Approx. 2 gm. sam (**) (0) Terpolymer: (1) "<:	la.	compound SF3/ONCF SF3/ONCF	<pre>les were compounded on a Micro-Mill C2F4/ONCF3/ONCF2CF7COOH, mole ratio = 1 C2F4/ONCF3/ONCF2CF2CF7COOH, mole ratio "/ " / " / " / " , " * * * * * * * * * * * * * * * * *</pre>	ficro-Mill mole rati H, mole r , mole r	0	/97/3 Unkn wn 100/48/2 100/99.5/0.5		
		•			, mole r	ratio = 100	100/44.6/1.4		

-

. .

A Particular and the second

77

٠.

A.

-

ì

· .

The statement of the second second second second

.

4

-

. NE

\$\$. \$ AA

Table XIC

CARBOXYL-WITROSO ELASTOWERS (*) CURED WITH Cr(CH3COO), OR WITH Cr(CF3COO)3

Elastomer ⁽ Silstone Curing A7e Curing A7e	<pre>Elastomer^(##)(100p.by wt.) Silstone 110, p. by wt. Curing Afent. formulae Curint Afent, p. by wt.</pre>) (5) 20 cr(cr ₃ con) ₃	(5) (5) 20 cr(cF ₃ con) ₃ cr(cF ₃ con) ₃	(2) cr(cH ₃ coo) ₃	$\frac{(2)}{2} \qquad \frac{(5)}{2} \qquad (5$	(5) - cr(cF ₃ con) ₃	lFu Rubber ^{(†} Compounded (34 Co.)	lFu Rubber ^(AAA) Fluorel 2140 Teflor Compounded and Film Curred (34 Co.) (AuPont)	2]40 Tefl or Film (AuPont)
Press-Cure Oven-Cure	Press-Cure Oven-Cure (post-cure)		Step-wi	l hour se to the ind	l hour at 200°F Step-wise to the indicated temperatures:	atures:			
	hours/of	1/300	1/300	0.5/350	12/300	12/200	- - - - - -	I	1
Resistance to ClF ₃	s to CIF ₃	0	Observations a	fter 4 hours	ifter 4 hours exposure at the indicated temperatures:	ne indicated	temperature	es :	
at 25°C,	appearance	No. ch.	No. ch.	No. ch.	No. ch.	No. ch.	No. ch.	No. ch.	No. ch.
	weight	-19.2%	t	-1.5%	1	1	+6.23	+3.8%	+0.1%
at 50°C,	appearance	1	ı	1	ı	ı	No. ch.	No. ch.	No. ch.
	weight	ı	ł	ı	ı	ı	+7.18	+4.78	+0.3\$
at 100°C,	appearance	Melted	ı	1	ı	ı	ı	ı	1
	weight	-19.3%	ı	ı	ı	Ŧ	1	ı	ł
at 120°C,	appearance	ı	ı	ı	Mcl.ted	felted	v.brittle	No. ch.	No. ch.
	weight	ı	ı	8	-8.15	-7.9%	+6.73	+8.35	+0.35
at 135°C,	appearance	١	Gumstock	1	1	1	1	1	t
	weight	1	-8.7%	ı	ı	1	ı	1	ı
at 150°C,	appearance	ı	I	Sl.Flow	ı	3	ı	I	ı
	weight	ı	,	-6.09	t	1	1	1	ſ
lotes: ((*)(2) Terpolymer: C2F4/ONCF3/ONCF2CF2CF2CF2COH, mole ratic = 100/98/2 (5)	ner: C2F4/01 : / /	NCF ₃ /ONCF ₂ CF ₂ " / " / Acm	CF ₂ COOH, mole , mole vlate (Commen	<pre>, mole ratic = 100/98/2 , mole ratio = 100/98.6/1.4 , ommercial Chemicals Div.</pre>	38/2 38.6/1.4 * Div 34 Cc			
	A gasket mac temp. for at	de from this	A gasket made from this material was temp. for approx. 3-1/2 years (at in	tused effectively in thermittant exposure).	used effectively in presence of ClF ₃ gas at room termittant exposive).	ace of CLF3	gas at room		
	5 101 · Juny	+ /+_> ·vo rd/	אממוס ימר זיי		• / > • • • • • • /				

40

1.

Table XID <u>FLUID RESISTANCE OF CARBOXYL-NITROSO ELASTOMER</u>(*)<u>CURED WITH Cr(CF3COO)</u> (8 p. by wt. Cr(CF3COO)3/100 p. by wt. ELASTOMER)

Original Properties	Appearance	-	Strength	Elong.
	Dk. Green	-	330 psi	600%

Aging Conditions: Samples (small dumbells) were placed in 50 ml. of liquids in 100 ml. single neck flasks fitted with the reflux condensers. All flasks were kept in an oil bath for 7 days at 110°C.^(**)

Testing: Aged samples were tested wet (ASTM D471-57T)

	Liquids (Samples were aged in)	Appearance	Weight Change, %	Strength Retained,	Elong.
	(Jampies were aged in)	nppearance	change, o	Recarneu,	o Netaineu
1	Distilled water	No change	+26	70	92
2	Skydrol-500	Swollen	+109	-	-
3	JP-4 Fuel	Brown	0	109	107
4	FC-43 Solvent, Tech.	Swollen	+500	-	-
5	$NH_{4}OH$, 10% aq. soln.	Degraded	-	-	-
6	DMF Solvent, Tech.	Bleached	Swollen	Weak	-
7	Xylene, Tech.	Bleached	Swollen	Weak	-
8	Carbon-Tetrachloride, Reag.	Sl. Bleach	+4	6 7	72
9	Heptane, Tech.	Brown	C	127	110
10	Trifluoro-Ethanol, Tech.	Swollen	+39	58	78
11	H_2SO_{μ} , 30% aq. soln.	No change	-2	285	132
12	NãOH, 10% aq. soln.	No change	+6	164	130
13	DMSO solvent, Tech.	Bleached	Swollen	Weak	-
14	Phenol, 5% aq. soln.	Swollen	+25	58	73
15	Ethylene Glycol, Reag.	No change	0	141	125
L6	1,2-Dichloroethane, Reag.	No change	+4	83	87
17	Ethyl Alcohol, 50% aq.	No change	+8	73	88
18	Acetic Acid, 10% aq.	Swollen	+33	39	S2
19	Ethyl Acetate, Tech.	Swollen	+53	36	66
20	MEK, Tech.	Swollen	+52	42	65
21	Benzene, Tech.	No change	+3	64	60
22	HCl, 10% aq. soln.	No change	+12	71	88
23	HNO3, 10% ac. soln.	No change	+15	79	95
1	N_2O_4 , at room temp.(1)	No change	-	194	131
2	N ₂ O ₄ , at 5-15°C	No change	+6	186	136
3	UDMH, at room temp.	Degraded	-		

Notes: (*) Terpolymer: $C_2F_4/ONCF_3/ON(CF_2)_3COOH$, mole ratio = 100/99.5/0.5 (1) Under pressure.

(**) Liquids boiling at lower temperatures refluxed.

VI. Compounding Studies

The second second

÷

Ż

1.

Texp.

Although nitroso elastomers have interesting combinations of properties it was clear from the initial studies that certain physical properties, such as tensile strength, have to be improved before they become useful items. Accordingly work was initiated with the Thiokol Corporation to develop techniques for producing nitroso rubber in pilot plant quantities. This was successfully carried out by Thiokol as already described in earlier sections of this report. The following paragraphs report the work concerned with the research compounding of nitroso elastomers.

A. Materials and Test Methods

The Thiokol Chemical Corporation produced six batches of nitroso rubber that were used in this study. These rubbers, all copolymers of trifluoronitrosomethane and tetrafluoroethylene, were made in the pilot plant of the company.

Compounding studies have been conducted on only two of the batches. Their physical properties and the test methods used are as follows:

PropertyASTM Test Method NumberTensile strength)Ultimate elongation)D412-62TStress at 300% elongationHardnessD676-59TMooney viscosityD1646-63

The differential thermal analysis data were obtained with a DuPont Model 900 differential thermal analyzer under the following conditions:

Sample size:	4mm	Atmosphere:	AR ₂ @	760 mm
Reference:	glass beads	Temperature scale:	~	50
Program mode:	heat	Temperature scale:		0.5
Rate of heating:	10°/min	Base line slope:		0

B. Results and Discussion

It was noted early in the compounding studies that the properties of the vulcanizates produced from the pilot plant facility were not similar to those of the compounds from the laboratory produced rubber (Minnesota Mining and Mfg. Co.) even though the compounding recipe used was the same. For example, while tensile strengths

of 1000 psi or more had readily been obtained from the earlier rubber (3M), tensile strengths of 300 psi represented the maximum obtainable from the Thiokol rubber. There were differences in curing characteristics (scorch time, time of cure, and cure index) as well. To compensate for these differences, a series of amine cure studies were made.

The compounding and curing recipes, cure times and temperatures, and subsequent physical properties of various compounds of batch 5702 are given in Tables XII and XIII, and of batches 5702 and 5675 in Tables XIV and XV. Table XII gives the test results of amine-cured, HiSil 303-filled vulcanizates and Table XIII the results with amine-cured, carbon black-filled vulcanizates. Table XIV lists the vulcanizates with amine cures and amine and filler variations, and Table XV those with other than amine cures.

In the Table XII series (HiSil 303 filler) the triethylenetetramine (TETRA) was varied from 1.25 to 5 pphr (parts per hundred rubber) and the hexamethylenediamine carbamate (Diak #1) from 1 to 2.5 pphr. Press cure temperatures varied from 220° to 260°F. The Thermax black filler (MT), which had been found to increase the rate of cure of the Thiokol rubber, was tried in combination with the HiSil 303 in compound 57. This vulcanizate proved to be too weak to test. Compound 79, which had the smallest amount of TETA (1.75 pphr), was the best of this series but even this showed a tensile strength of only 245 psi.

In the second series using the amine cure Table XIII, various carbon black fillers were used: medium thermal (MT) furnace black "Thermax", an easy-processing channel (EPC) black, and a highabrasion furnace (HAF) black. Press cure temperatures varied from 180° to 250°F. None of the black fillers gave vulcanizates that were superior to those using HiSil 303 Table XII or to those using Linde silicone-treated HiSil 233 or Silstone 101. When the curing time was kept below 250°F, only the HAF black among the black-filled compounds did not sponge but it failed to cure.

XII	
Table	

Minton .

こうちょうない 日本の地域のないかい シット・マート

I.

- 1.81

i.

COMPOUNDING RECIPES AND TEST RESULTS AMINE CURES - HISIL 303 FILLER

١

					Compound Number	Number			
Ingredient Parts by Weight	79	50	51	51	57	58	60	64	65
Nitroso, Thiokol 5702	JOU	100	100	100	100	100	100	100	100
Triethylenetetramine Hexamethylenediamine	1.25	0	e G	e C	e:	1.5	ъ	1.5	1.5
carbamate	2.5	2	1. 25	1. 25	Ч	2	-1	Ч	
HiSil 303 Mg O	15	20	15	15	15 5	15	15	7.5	0T
Zn Silicate Fluoride MT Black					3 15				
Sodium Borate								7.5	
Press Cure, Time min/Temp ^o F Oven Cure, Time hrs/Temp ^o F	60/250 16/212	60/220 16/212	60/260	60/230	60/220	60/260 64/212	60/220	60/220	60/220
Tensile Strength, psi Ultimate Elongation, % Stress at 300% Elong. psi Hardness, Shore A	245 380 230 57	200 100 30				100 300 100 60	175 260 - 67		

I

ы
H
ы
×
Table

COMPOUNDING PECIPES AND TEST RESULTS ANTHE CURES - CARBOH BLACK FILLERS

2

							Compour	Compound Number			1
Ingredient Parts	9¢	10	n	13	17	18	19	22	23	31	32
Nitroso, Thiokol 5772 Silstone 191	100	100	100	107	110	100	100	100	100	100 20	100 20
Triethylenetetramine	e	ო	e	e	1.5	1.5		N	£	2.5	2.5
Hexamethylenediamine Carbamate	٦	1	7	-1	г	7	7		7	ч	Ч
1,4 Cyclohexane Bis(Methylamine		-	I	F	-	~	ч	-	-		
2n0	e	e	e	c	r,	e		m	ſ	e	e
Zinc Fluoride	ы	Ч		F							
I.AF Black				15	25	17	17	17	17		
MT Black	15	15	15			8	8	80	8		
Linde Silicone Treated HiSil									10		
Press Cure, Tire, min/Tump ^o F Oven Cure, Time, min/Temp ^o F	60/250 1 6/212	66/210	60/210	60/220	60/200	60/200	60/200	60/200 16/200	60 /2 00 16/200	60/240 60/21 0	50/21 0
Tensile Strength, psi	125	100	140	100	210	200	160	06	200	250	220
Ultimate Elongation, %	290	400	0611	370	100	160	225	061	350	750	650
Stress @ 300% Elong, psi	ı	06	100	ł	ı	ı	ı	•	•	100	100
Hardness, Shore A	36	30	28	40	62	50	35	38	50	37	L H
å Sponged											
				 			_				

Table XIII (continued)

COMPOUNDING RECIPES AND TEST RESULTS AMINE CURES - CARBON BLACK FILLERS

Ingredient Parts by Weight 33 Parts by Weight 33 Nitroso, Thiokol 5702 100 1 Silstone 101 20 Triethylenetetramine 2,5 Hexamethylenediamine Carbamate 1 Zn0 MT Black EPC Black HAF Black								
hiokol 5702 100 01 20 etetramine 2.5 enediamine Carbamate 1 3	34 35	36	37	38	39	640	ų1	42
01 20 etetramine 2.5 enediamine Carbamate 1 3			100	100	100	100	100	100
etetramine 2.5 enediamine Carbamate 1 3	10 10	10	10	10	10	10	10	10
enediamine Carbamate 1 3			2.5	2.5	2.5	2.5	2.5	2.5
ZnO 2 MT Black EPC Black HAF Black			L	Ч		-	-1	1
MT Black EPC Black HAF Black	en	с С	e	e	e	e	e	e
EPC Black HAF Black	10 10							
HAF Black			10	9	10			
						10	10	10
Press Cure Time, min/Temp ^o f 60/180 60/3	60/240 60/210	0 60/180	60/240	60/210	60/180	60/240	60/210	60/180
Tensile Strength, psi 50 Ultimate Elongation, \$ 950 Hardness, Shore A 33	150 200 500 600 26 26	950 22 22	100 500 28	150 550 37	150 600 29			

ļ

.....

Éÿ

45

AT 10.

.....

1015.00

~ --

ş

٠.

ŗ

ų

Table XIV

COMPOUNDING RECIPES AND TEST RESULTS AMINE CURES - AMINES AND FILLER VARIATIONS

						U	Compound Number	1 Number	S.			
Ingredient Parts by Weight	F	~	ε	14	\$	5	6	٢	15	ω	21	24
Nitroso, Thiokol 5675	100	100	100	100								
Nitroso, Thiokol 5702 ZnO	n				100	100	100	100	100	100	100	100
Triethylenetetramine Hexamethylenediamine	2	n	ო	Ч	ю	7		8	ო	5 63	° -4	ю
Carbamate Diethylene Glycol Diphenylguanidene 1,4 Cyclohexane Bis			0 T O	0.33	Ч	7		0	с С	-1	Ч	4
(Methylamine) HiSil 233 ר-ל-ס-לנין	15	L L	15				ស	2	ო	e e	Ч	
Silstone 101 DyPhos Nitroso Treated HiSil 233		C 1		OT	15	10	15	10	12.5	12.5	12.5	15
Press Cure,Time,min/Temp °F 60/240 90/210 60/210 Oven Cure,Time,hrs/Temp °F 16/212 16/212 16/212	60/240 16/212	90/210 16/212	60/210 16/212	240/212 24/195	061/91 16/190	60/280 16/300	60/280 16/212	60/280 -	60/230 -	60/250 16/212	60/200 16/200	60/200 16/212
Tensile Strength, psi Ultimate Elongation, % Stress at 300% Elong, psi Hardness, Shore A	pəgnoqz	pəBuods	pəgnoqe	300 500 150 34	sponged	no curê	100 170 -	pəânoqs	aus ou	200 700 16	100 950 - 21	180 340 53

Table XIV (continued)

COMPOUNDING RECIPES AND TEST RESULTS AMINE CURES - AMINE AND FILLER VARIATIONS.

								Compo	Compound Number	her			
	Ingredient Pante he Weight	02				i	ſ	ſ	1				
	raris by weight		T,	7.7	6/	h/.	75	76	77	73	79	88	16
	Nitroso, Thiokol 5702	100	100	JUU	100	100	100	τοο	100	100			
	Triethylenetetramine	2	4	8	Ч	3		1			, ,	יי י י	5 -5 -
	lexamethylenediamine!	2	ഹ	ഹ			ო			0	1	۲	ž
	Carbamate											I	
	Ethylenediamine Carbamate								ო				
	Sulfur		-			1.5	~	~		ç	~		Ľ C
	Pyrometallicanhydride				ۍ) 	ł	,	ł	4	4		n • • •
	Methylene Pis (phenyldi-												
	isocyanate)				Ч					•			
4	Sodium Bicarbonate				i ო								
7	DyPhos	ഗ	S	ŝ									
	HiSil 303				ST	15	20	20	20	50	00	00	
	N,N'-Dicinnamylidene-						;	2	5 1	•	4	2	
	l,6 Hexanediamine							3					٣
	Zn0)			٣.		7
	Cadmium Stearate										1.5		
	Diphenylnitrosoamine) ;	6	
	HiSil 233												15
	Diethylene Glycol												~
	Press Cure,Time,min/Temp ^o F 60/220 60/230 60/230 180/212	60/220	60/230	69/230	180/212	30/250	30/250	30/250	30/250	307250		607250	607200
	Oven Cure,Time,Hrs/Temp ^o F	1	I	. 1	1	. 1	3	- 1	1			2	16/212
	Tensile Strength, psi	100	100	150	ə,	Ð	Ð	2 ,	9	150	Э	ə	ə
	Ultimate Elongation, % Strees at 300% Flong rei	006	100	225	IND	cnı	ino	ano	ano	395	ano	ano	สกอ
	liardness, Shore A	26	32	42	oN	ołl	сŅ	oŭ	oj	وں 1	oł	ol	oł
					•	[1	ŗ	ł	2	!	Ţ	T

Sec. 1

194

ì

l

Ś

Table XV

t. 1

ALA STATE AND ALA STATE STATES AND ALA STATES

Ļ

COMPOUNDING RECIPES AND TEST RESULTS OTHER THAN AMINE CURES

	~	Compou	nd Numb	er		
82	83	84	85	86	87	88
100						
	100	100	100	100	100	100
5						
2						
	15					
	·1					
	2					
	5					
		15	15	15	15	15
		3				
			9			
ate			3			
				1		
				1	1	
						5
						3
60/240	60/250	60/300	60/300	60/250	60/250	60/250
	<i>•</i>	0	0	0	Ø	0
ire	ĨĽ	ĩr	л. Т.	Ĩ	nre	cure
C	C C	บี	บี	บ	อ	
no	ou	ou	ou	ou	ou	ou
	100 5 2 .ate 60/240	100 5 2 15 1 2 5 .1 2 5 .1 2 5 .1 2 5 .1 2 5 .1 2 5 .1 2 5 .1 2 5 .1 2 5 .1 2 5 .1 2 5 .1 2 5 .1 2 5 .1 5 .1	82 83 84 100 100 5 2 15 12 5 15 3 .ate 60/240 60/250 60/300 9 3 5 5 15 3 3 .ate	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table XIV describes the compounds made with a variety of amine crosslinking agents, fillers, and stabilizers. It had been found that the addition of more than 2 pphr of triethylenetetramine usually produces sponging and this always lowers the tensile strength. Sponging often is not readily discernible; sometimes it can be detected only by means of a microscope. To ensure against sponging, compound 14 was made using only 1 pphr of triethylenetetramine and 0.33 pphr of hexamethylenediamine carbamate. To achieve maximum cure with this low level of curative, the compound was press-cured for 240 minutes at 210°F and then oven-cured for 24 hours at 195°F. The tensile strength of this compound (300 psi) was the highest obtained with the Thiokol nitroso rubber. Compound 14 showed no signs of sponging. None of the other variations produced a vulcanizate with more than 200 psi tensile strength.

いい あやい

State State

Table XV shows the results when compounds were vulcanized with other than amine crosslinking agents. None of these vulcanizates could be tested; from visual examination none appeared to have been cured.

To determine the curing characteristics of the nitroso rubber, the viscosity, not only of batches 5702 and 5675 but also of the remaining four batches, was determined on the Mooney viscometer Table XVI. Batch 5675 gave the lowest result, a viscosity of only 22. The curing characteristics of a variety of compounds are given in Table XVII. Compounds 12 and 13, which represent 3M and Thiokol nitroso rubbers, respectively, showed great differences in curing characteristics. Compound 7 is a compound in which 1 pphr of 1.4 cyclohexane bis (methylamine) replaced 1 pphr triethyletramine and then 3 pphr of zinc oxide stabilizer was added. This compound gave the best curing characteristics, hence the same formula was used in a series of compounds (8,9,11, and 12) in which the fillers were varied by the use of different carbon blacks and the effect of zinc fluoride was investigated.

Table XVI

MOONEY VISCOSITY OF VARIOUS BATCHES OF NITROSO RUBBER

Thiokol Chemical Corporation Batch Identification	Mooney Viscosity (ML-4+1 @ 212°F)
5702	35
5812	35
5812 (9/14/64)	36
5812 (9/15/64)	35
5812 (Part #3)	36
5675	22

Table XVII

CURE CHARACTERISTICS AS DETERMINED WITH MOONEY VISCOMETER (LARGE ROTOR)

T 2					Compour	Compound Number	អ្			
ingreatent Parts by Weight	12	13	7	ω	6	11	12	13	14	15
Nitroso, MMM 9690 Triethylenetetramine Hexamethylenediamine Carbamate Silicone treated HiSil 233	6 T 6	100 1 100	5 T T T T T T T T T T T T T T T T T T T	5	ъч	юч	юн.	ю ч	64	юч
Nitroso, Thiokol 5702 Zinc Fluoride Thermax	100		100	100	100 1 1 2	100	100 1	100	100	1 100
ZnO l ,4 , Cyclohexane Bis(Methylamine) HAF Black	<u> </u>		μIJ	ოო	964	1 1 1	ыз	6 4 S	े न ४ स	а 1 12.5
Temp. of Test, °F Minimum Viscosiry Scorch Time, t ₅ , min. Time of Cure. t ₃₅ , min. Cure Index, t 30=t ₃₅ -t ₅	215 11.5 50 50 50	215 70 19 2 6.5 16.5	250 56 18 13	250 13 14.5 -	250 20 2.75 5.5 2.75	250 4.2 1	250 250 11.5 14.5 3	250 68 19.2 12.2	250 54 14.3 7.1	τ Ν Ν Ν Ν Ν Ν Ν Ν Ν

•

E. 7

.

. عر

+

- -

ANTER AND

.....

ţ

5 ţ,

ł

Ż

1

.

Sector Sector

~ ---

.

Serrated, large rotor used. NOTE:

· ANT CONTRACT STOR

• ~

Table XVII (continued)

CURE CHARACTERISTICS AS DETERMINED WITH MOONEY VISCOMETER (LARGE ROTOR)

. 1

× 7.5 12.7

Ingredient					3	compound number	Number				
Parts by Weight	16	19	20	21	24	32	35	38	1,4	50	51
Nitroso, Thiokol 5702	100	100	100	100	100	100	100	00			
Triethylenetetramine	ო			-	6	5	5 1 0	, v , v)) C	2 2 1))
Hexamethylenediamine Carbamate	•	~	~	l) –) • •) • ~	7 • •	י אי א	vc	, . ,
1,4 Cyclohexane Bis(Methylamine)	~	ו ה ו	ı	Ч	4	4	4	4	-1	N	67.T
ZnO	ო	ო	ო	ຕ		ę	c.	٣.	ç		ç
MT Black		ω	œ		4)	, c	7	>		C
HAF Black		17	17		-		2		0 #		
Ethylenediamine Carbamate		ŀ	I	•					24		
Nitroso treated NiSil 233				12.5							
Silicone treated HiSil					5	00	0	c			
EPC Black					4	2	2) T		
HiSil 303								24		20	5
Temp. OL AESU, T	250	200	200	200	200	210	210	OTC	210	212	212
Minimum Viscosity	7	66	10	48	66	53	011	54	C L		
	11.2	10	ł	ſ	2	ŝ	(n)	بر ۲	7 75	>	2 2 2
.n.	16	ı	1	ī	11		σ	بة ال الساري	7 - 2 C	I i	
ų	4.8	ı	ı	1	σ		. .	- r - r	с 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ł	ş
	1				>	>	>		20.12	ł	-

. 1

ş

AND TAXE STATES

With Thermax black as a filter, compound 9, the zinc fluoride improved the curing characteristics of the nitroso rubber, as is shown below.

No.	Compound	Time for Cure (beyond 35 min)
		min
8	No filler, no zinc fluocide	no cure
9	Thermax black with sine fluorids	5.5
12	No filler with zin- fluoride	no cure
11.	Thermax black, no zinc fluoride	14.5

Zinc fluoride in HAF black filler systems (compounds 13, 14, and 15) did not change the curing characteristics of these compounds to the same degree that it did with the Thermax black and it did not improve the physical properties of the vulcanizates. In compounds 38 and 41, 2.5 pphr of triethylenetetramine and mixtures of carbon black and silicone-treated fillers were used and the temperature was reduced to 210°F (to eliminate sponging). The cure characteristics produced were excellent but the physical properties were poor.

Results of attempts to identify crosslinking of the nitroso rubber by the use of differential thermal analysis techniques are given in Table XVIII. Triethylenetetramine was the only material tested that indicated crosslinking, and this occurred at 60°C. Using this method of analysis, the second order transition of -50°C compares with that previously reported on the 3M rubber. Table XVII shows that the addition of triethylenetetramine reduced the temperature for the onset of deterioration from 220°C to 200°C. The addition of Diak #1 (hexamethylenediamine carbamate) significantly reduced the temperature for the caset of deterioration. This was also true when other amines were used, and when dicumylperoxide was added.

Table XVIII

DIFFERENTIAL THERMAL ANALYSIS RESULTS

Sample Identifi ation	Tg°C	Tc°C	Td°C
Thiokol 5702	-50		220
Thickol 5702 with TETA	-49	60	200
Thiokol 5702 with Diak #1			155
Thiokol 5702 with H ₂ N F F NH ₂			168
Thiokol 5702 with H ₂ N F F NH ₂ Thiokol 5702 - TETA and UROTROPIN			137
Thiokol 5702 - dicumylperoxide			133
Thiokol 5702 - TETA, Diak #1, DPG, CAB-O-SIL			138

Tg = Second order transition temperature

Tc = Onset of crosslinking temperature

ŕ

Td = Onset of degradation temperature

C. Conclusions

The Thiokol Chemical Corporation nitroso rubber has different curing characteristics from that made by the Minnesota Mining and Manufacturing Company.

The physical properties of the compounds made and reported here, using the Thickol Chemical Corporation nitroso rubber, were extremely poor.

The reinforcing fillers HiSil 303 and the silicone-treated HiSil 233 were superior to the medium thermal furnace blacks, the highabrasion furnace blacks, and the easy-processing channel blacks.

VII Future and Potential Uses of Nitroso Rubber

The future of nitroso rubbers depends upon the types of uses that can be developed for this unique elastomer. These uses, in turn, are largely dependent upon the specific combinations of properties that can be evolved from this architecturally unique molecular system. Undoubtedly nitroso elastomers are to be considered specialty rather than general purpose elastomers.

Nitroso rubbers appear to have potential utility for applications where corrosive environments are found, such as in the aerospace industry, use in expulsion bladders and for valves exposed to rocket vuels and oxidizers. As a low temperature elastomer whose petroleum resistance is required, nitroso elastomers may also have practical utility. As a metal coating material nitroso elastomer may have practical advantages in certain areas where extremely corrosive environments predominate.

VIII Summary

The syntheses of nitroso monomers and the practicability of carrying out pilot plant syntheses of nitroso polymers has been demonstrated. Nitroso elastomers have unique combinations of properties not held by an elastomer to date. These elastomers are the only completely fluorinated "rubber" materials known and indeed the only known case where a nitroso group enters into a polymerization reaction to yield a -N-O-chain sequence in a linear polymer. To retain these desirable properties and at the same time develop yet new elastomer systems with high tensile strengths is the goal of the present effort. Current applications require materials having tensile strength superior to those now currently known in the nitroso elastomer systems.

IX Acknowledgments

States and the second second

ę

The authors would like to acknowledge their appreciation to Dr. Stephen Kennedy, Director, and Dr. George R. Thomas, Associate Director of the Clothing and Organic Materials Division for their continued support of this program; also the authors appreciation is expressed to the National Academy of Sciences and its Elastomer Advisory Panel which followed the progress of the work from its earliest conception.

`~

X. <u>References</u>

۰.

• :

1.	Barr, D.A. and R.W. Hazeldine, J. Chem. Soc., 1881 (1955).
2.	Barr, D.A. and R.W. Hazeldine, J. Chem. Soc., 2532 (1955).
3.	Barr, D.A. and R.W. Hazeldine, Nature, <u>175</u> , 991 (1955).
4.	Barr, D.A. and R.W. Hazeldine, J. Chem. Soc., 3416 (1956).
5.	Rose, J.B. Crosslinked Reaction Production of Tetrafluoro- ethylene and Trifluoronitrosomethane and Process thereof. Filed Oct. 12, 1956, awarded 1962, U.S. Pat #3,065,214.
6.	Fitt, P.S. Copolymers of Fluoronitrosoalkanes and Fluoro- alkenes, Part I - Literature Survey Royal Aircraft Establishment, Farnborough, England, 1320 (1957).
7.	Barr, D.A., R.N. Hazeldine, and C.J. Willis, Proc. Chem. Soc., 230 (1959).
8.	Griffin, C.E. and R.N. Hazeldine, Proc. Chem. Soc., 369, (1959).
9.	Rose, J.B. Rubbery Polymers to ICI Ltd. Brit. Pat #789,254 Jan. 1958.
10.	Gowenlock, B.G. and W. Luttke, Quarterly Reviews, <u>12</u> , 321 (1958).
	Gowenlock, B.G. and W. Luttke, Quarterly Reviews, 12, 321 (1958).
11. 12.	Gowenlock, B.G. and W. Luttke, Quarterly Reviews, <u>12</u> , 321 (1958). Ruff, O. and M. Giese, Ber., 69, 598684 (1936). Crawford, G.H. to Minnesota Mining and Manufacturing Company,
11. 12.	<pre>Gowenlock, B.G. and W. Luttke, Quarterly Reviews, <u>12</u>, 321 (1958). Ruff, O. and M. Giese, Ber., 69, 598684 (1936). Crawford, G.H. to Minnesota Mining and Manufacturing Company, U.S. Pat #3,072,592 Jan. 1963.</pre>
11. 12. 13.	 Gowenlock, B.G. and W. Luttke, Quarterly Reviews, <u>12</u>, 321 (1958). Ruff, O. and M. Giese, Ber., 69, 598684 (1936). Crawford, G.H. to Minnesota Mining and Manufacturing Company, U.S. Pat #3,072,592 Jan. 1963. Rue, D.N. and G.H. Crawford, J. Org. Chem. <u>28</u>, 872 (1963). Brown, H.A. U.S. Army Contract DA-19-129-QM-1684, Minnesota Mining and Manufacturing Co. Final Report, Aug 24, 1960 to
11. 12. 13. 14.	 Gowenlock, B.G. and W. Luttke, Quarterly Reviews, <u>12</u>, 321 (1958). Ruff, O. and M. Giese, Ber., 69, 598684 (1936). Crawford, G.H. to Minnesota Mining and Manufacturing Company, U.S. Pat #3,072,592 Jan. 1963. Rue, D.N. and G.H. Crawford, J. Org. Chem. <u>28</u>, 872 (1963). Brown, H.A. U.S. Army Contract DA-19-129-QM-1684, Minnesota Mining and Manufacturing Co. Final Report, Aug 24, 1960 to Dec 23, 1962. p 13.
11. 12. 13. 14.	 Gowenlock, B.G. and W. Luttke, Quarterly Reviews, <u>12</u>, 321 (1958). Ruff, O. and M. Giese, Ber., 69, 598684 (1936). Crawford, G.H. to Minnesota Mining and Manufacturing Company, U.S. Pat #3,072,592 Jan. 1963. Rue, D.N. and G.H. Crawford, J. Org. Chem. <u>28</u>, 872 (1963). Brown, H.A. U.S. Army Contract DA-19-129-QM-1684, Minnesota Mining and Manufacturing Co. Final Report, Aug 24, 1960 to Dec 23, 1962. p 13. Andreades, S. U.S. Pat #3,040,085, June 19, 1962.

X. References (continued)

1

Ł

- 19. Flowers, W.T. Manchester University, England private communication.
- 20. Sutcliffe, H. Royal College of Advanced Technology, England, private communication.

A MARCHAR MARCHAR

- 21. Barr, D.A. R. N. Hazeldine, and C.J. Willis, J. Chem Soc., 1351 (1961).
- 22. Crawford, G.H. D. E. Rice, and J. Montermoso, Paper presented at 137th ACS Meeting (1960). Cleveland, Ohio.
- 23. Montermoso, J.C. Rubber Chem. & Tech., 34, 1521 (1961).
- 24. Barson, G.A. and C.R. Patrick, Brit. Plastics, 36, (1963).
- 25. Latlow, J.C. Rubber Plastics Age 39, 33 (1958).
- 26. Bartholemew, S. R. et. al., Rubber Chem & Tech 32, 1585 (1959).
- 27. Montermoso, J.C. Chem. Eng. Progress 57, 98 (1961).
- 28. Montermoso, J.C. et. al., Rubber & Plastics Age 42, 514 (1961).
- 29. Montermoso, J.C. et. al., U.S. Dept. of Commerce OTS Pub. PB 181094, Proceedings of the Sixth JANAF Conference, Natick, (1960).
- 30. Griffis, C.B. and M.C. Henry, Seventh National SAMPE Symposium, Los Angeles, Calif., May 1964, Section 12, Properties of Nitroso Elastomers.
- 31. Griffis, C.B. and M.C. Henry, Rubber and Plastics Age <u>46</u>, 63 (1965).
- 32. Stump, G. et. al., Polymer Letters 3, 831 (1965).
- 33. Boyer, R. Rubber Chem. Tech. 36, 1303 (1963).
- 34. Green, J. and N.B. Levine, Elastomeric and Compliant Materials For Contact with Liquid Rocket Fuels and Oxidizers, ASD Technical Report Part II, November 1961; Part III, July 1963, Tech. Documentary Report, Part I, March 1964.
- 35. Levine, N.B. et. al., Elastomeric and Compliant Materials for Contact with Liquid Rocket Fuels and Oxidizers, Technical Report ML-TDR-64-107 Part II, February 1965; RMD Report 5062-Q6, Jan-Mar, 1965; RMD Report 5062-Q7, April-June 1965.

	2. 7. 3
	1 mg
-	

. 31 27 10

		a 1
52° / 4	۲	

Unc	la	SS	ifi	ed
0		• .	01	

11-

1 1

Security Classification			
DOCUMENT CO	NTROL DATA - R&D		
(Security classification of title, body of abstract and index 1 ORIGINATING ACTIVITY (Corporate author)			المحمد والمحمور بالمراجعة بالمحمول المتعار المتحاو المتحاد المتكافية المتحدي
U.S. Army Natick Laboratories	2.	-	RT SECURITY CLASSIFICATION
Natick	2.6		nclassified
Massachusetts 01760			-
3 REPORT TITLE		A	
NITROSO RUBBER HANDBOOK			
4 DESCRIPTIVE NOTES (Type of report and inclusive dates)	• •		
January 1957 - December 1965 5 AUTHOR(S) (Lest neme, first neme, initial)			
	_		
Henry, Malcolm C. and Griffis, Charles	s B.		
6 REPORT DATE	7. TOTAL NO. OF PAGE	E\$	75. NO. OF REFS
January 1966	56	_	35
SA CONTRACT OR GRANT NO.	94. ORIGINATOR'S REPO	RT NUM	BER(S)
6 PROJECT NO. 10024401A329			
	66-2 CM	ur.	
с.			other numbers that may be assigned
	shis report)		
d.	CG0M-15	5	
10 AVAILABILITY/LIMITATION NOTICES			
Distribution of this document is unlin			
Distribution of this document is unlin Release to CFSTI is authorized.	nited.		
11 SUPPLEMENTARY NOTES	12 SPONSORING MILITAR	ACTIN	VITY
	U. S. Army Natick Laboratories		
	Natick, Mass C		
	L		
13 ABSTRACT INitropoli nubbon is the conomic nome	Ean a familu af m	hham	. high polymous barries
"Nitroso" rubber is the generic name is the common structural denominator of a			
sequence as follows:	i rebea nig urtrog	gen-07	tygen-carbon atomic
-N-O-((2-)		
•	x		
Architecturally these nitroso polymers	s are the first of	f a wł	nole new class of
materials. Nitroso polymers, as curre			
pletely fluorinated and as such are me	-	•	
only a limited number of fluorinated e			—
creasingly evident, however, that the			
highly fluorinated linear polymer chain interesting and novel combinations of	-		
good low temperature properties, solve		-	
vironments, and flame resistance.	int resistance, s	un ti	
Nitroso polymers have been developed t	to their present a	state	by the cooperative
effort of Army scientists and contract	tors. Over the pa	ast ei	ight years, consider-
able insight has been gained as to the	-		
rubbers. This handbook is an attempt		•	
knowledge. It is hoped that the content	-	will a	ald in the future de-
velopment of this new family of specia	arty etastomers.		

Υ P

an ide

Unclassified Security Classification							
14. KEY WORDS		. LII	NK A	LIN	K B	11	N
Development Chemistry Preparation (Formulation) Physical properties Nitroso rubber Handbooks		8 8 8 2,9 0					
	UCTIONS						
 ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of De- fense activity or other organization (corporate author) issuing the report. REPORT SECUNITY CLASSIFICATION: Enter the over- all security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accord- ance with appropriate security regulations. GROUP: Automatic downgrading is specified in DoD Di- rective 5200. 10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as author- ized. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classifica- tion, show title classification in all capitals in parenthesis immediately following the title. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter the stanch of service. The name of the principal author is an absolute minimum requirement. REPORT DATE: Enter the date of the report as day, month, year; or month, year. If more than one date appears on the report, use date' of publication. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information. NUMBER OF REFERENCES: Enter the total number of references cited in the report. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written. & & & & & & & CONTRACT OR GRANT NUMBER: Enter the appropriate military department identification, such as project number, subproject number,	itations of imposed such as: (1) (2) (3) (4) (5) If th Services cate this 11. SUF tory note 12. SPC the depa ing for) 13. ABS' summary it may a port. If shall be It is ports be end with of the ir (C), or (Ther ever, the 14 KEY or short index er selected	report by "U. S. G this repo- users shall report dia shall req "All dist ified DD "All dist ified DD e report has shall req "All dist ified DD e report has shall req "All dist ified DD PLEMEN es. DNSORING artmental the resea TRACT. If y of the do liso appea additiona attached highly do n an indic nformation	dissemin ty classi announc DDC is overnmen rt directil all reques ilitary ag rectly fro uest thro tribution C users s has been thent of C tenter th VTARY N G MILITA project o rch and d Enter an occument i ation of the in the p mitation ed length Key wo that charr catalogir	nation of i fication, i ters may i ement and not author it agencies y from DD it through it through is through in DDC. (i ugh of this rej is this required furnished ommerce, i furnished ommerce, if OTES: U ARY ACT) fice or la levelopme abstract g ndicative erz in the s required hat the all ch paragra he militar aragraph, on the ler is from 1 rds are te acterize a nodel tes	the report using state obtain co i dissemi- ized." s may ob C. Othe ay obtain Other qua oport is co est throu- to the Of for sale known ise for ac of the re- body of i, a cont option of the securi- represen- option of the securi- represen- securi- represen- option of the securi- represen- securi- represen- securi- represen- securi- represen- securi- represen- securi- securi- represen- securi- securi- securi- represen- securi- secu	t, other til indard sta opies of til ination of tain copies of tain copies of copies of alified us ontrolled. gh ffice of T to the pul ditional for addre orief and f eport, eve the techn inuation s f classifie e abstract ty classified as (T be abstract ty classified as (T be abstract ty classified as (T be abstract) the techn inuation s f classified as (T be abstract) the abstract of the techn inuation s f classified as (T be abstract) the abstract of the techn inuation s f classified as (T be abstract) the abstract of the techn inuation s f classified as (T be abstract of the techn ind may be s required the techn the techn of the techn inuation s f classified as (T be abstract of the techn ind may be s required the techn	hit h ed ofe