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ABSTRACT

The problem of an axial slot on a circular cylinder clad with a

radially inhomogeneous plasma (dielectric) was considered recently by

Rusch [1964]. Although his formulation is quite general inasmuch as it

admits a realistic approximation to the plasma sheath inhomogeneities, the

resulting solution is not well suited for computations of field patterns

of large cylinders.

In the present formulation we consider the dielectric permittivity

profile of the form E(p) = (p/b) 2 p , a < p < b , where 'a' is the radius of

the conducting cylinder, 'b' is the outer radius of the dielectric coating

and tp' is an arbitrary parameter. It follows that the assumed profile is

capable of representing an inhomogeneous cold plasma when p > 0 and a real

dielectric when p < 0. The apparent advantage of the present formulating

is the fpct that the wave equation can be solved in terms of known functions

and the solution can be extended to large cylinders.

Field expressions appropriate to small and large cylinders are

found using standard methods of harmonic series representation, Watson Trans-

formation and saddle point integration. In the case of large cylinders coated

with cold plasma, the radiation patterns are plotted for various combinations

of the cylinder radius, thickness of the coating, and the inhomogeneity gra-

dient. The radiation patterns are in good agreement with qualitative argu-

ments of geometric optics.
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1. Introduction

The problem of a radiating slot on a dielectric clad cylinder occu-

pies a relatively important position in microwave engineering. Its importance

is due primarily to the phenomenon of a plasma sheath formed around a hyper-

sonic vehicle during its reentry phase. Since the plasma can be represented

under certain conditions by its equivalent dielectric permittivity, the problem

of a plasma covered antenna can be reduced to one of a dielectric clad antenna

that can be treated as a well-defined boundary value problem.

The boundary value problem approach to the plasma sheath phenomenon

was used in the past by several authors. Tamir and Oliner [1962] and Omura

[1962] obtained theoretical radiation patterns of a dielectric clad slot on

ground plane. Tyras et al [1965] obtained experimental confirmation of their

results by means of an artificial plasma simulation technique. The problem

of an axial slot on a circular cylinder clad with a dielectric layer was con-

sidered by Hasserjian [1965]. He formulated the solution in terms of an

integral representation from which he was able to find the far field pertinent

to a cylinder of a large radius.

The problem of a slot clad with inhomogeneous dielectric layer was

attacked by two different methods. In the first method, the inhomogeneity of

the layer was approximated by a series of discrete homogeneous and parallel

layers [Hamm and Tyras, 1965; Harris and Pachares, 1965; Harris, 1965]. The

resulting formulas are necessarily long and complicated but they can be pro-

grammed for a digital computer to obtain numerical results. In the case of

cylindrical geometry, the formulas obtained by this method converge slowly

when the radius of the cylinder is large and, consequently, their application

is limited.
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Another method of appLoach to the problem of inhomogeneities in the

layer is that of a rigorous solution. Inasmuch as no general solution to the

differential equation describing wave propagation in inhomogeneous regions

exists, this approach suffers from the lack of versatility. However, Rusch

[19643 found a solution to an inhomogeneous profile that allows, perhaps, the

most realistic approximation to an inhomogeneous, continuously radially

stratified plasma sheath. He chose a model of the dielectric permittivity

profile of the form E(p) = Ap2 + Bp + C where A, B, and C are arbitrary

constant. The two linearly independent solutions of the wave equation are

constructed using the well-known method of Frobenius. Consequently, his

final expression for the fields appears as an infinite series that cannot be

expressed in terms of known functions. When the radius of the cylinder is

small, the resulting series converges well and numerical results can be ob-

tained. When the radius of the cylinder is large, which is the case of great

practical importance, the resulting series is slowly convergent and it is not

suitable for numerical calculations.

In this paper we choose the dielectric permittivity profile of the

form E(p) = (p/b) 2 p where 'b' is the outer radius of the coating and 'p' is

an arbitrary constant. This parcizular model admits exact solution of the

pertinent differential equation in terms of Bessel functions. The model is

capable of representing an increasing or decreasing profile when 'pt is

positive or negative respectively. When 'p' is positive, this model can

2 2be related to the plasma frequency in the form (Wo/W) I - (p/b)2 p

It will follow that this representation will admit the specification of the

plasma frequency, wo, between the limits of the operating frequency and

zero.
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The principal advantage of the present formulation is the fact that

the solution can be expressed in terms of known functions. After obtaining

the familiar harmonic series representation, the integral representation can

be found using the well-known Watson Transformation. The latter, in turn,

enables obtaining the far field expression for an arbitrarily large cylinder

which seems to be of some practical importdnce.

2. Theoretical Development

Consider an axially slotted cylinder clad with an concentric in-

homogeneous layer of a dielectric that is a function of the radial variable

only. The geometry of the problem is shown in Fig. 1. In the inhomogent uis

dielectric region the fields must satisfy

7 x El = i oHI

; x Hl - iwoEE(p)E I

E-~a = 5 (e) (1)

where the harmonic time dependence of the form e- has been assumed and

suppressed throughout. The excitation considered is of the form of an in-

finitely thin slot fed by a voltage V (delta function slot). In the free

space region the fields must satisfy

-0. -. 0 -0.

7 x Eo = iw 1o Ho

Vx Ho  -iwcov (2)

Moreover, at the interface p = b the tangential components of the electric

and the magnetic fields must be continuous which implies
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Hz1I - zo

E,! = E0o , (3)

since the assumed geometry does not admit any other tangential field components.

Performing a curl operation on the second equation of (1) and sub-

stituting the first, one obtains a differential equation in terms of the

magnetic field only, that is

V2 HI + ? Ex HI +kEH I O (4)

where we used a well-known vector relation. The axial component of the vector

equation (4) can be shown to be

I 1 Hzl I 32 Hzl 1 6c 6Hz l  1 E Hzl 2;-(p -)- + F2 CJ- p + ) + =0

(5)

which in the case that the dielectric permittivity is a function of the radial

variable only becomes

i _(PHl I 6E aHzi I 2Hzl +k2 E 6P - 1 -p- + 1 2 (6)

Similarly, it can be shown that in the free space region the magnetic field

must satisfy

I 6 , 3Hzo I 2Hzo 2(
It w l b ap" p t s tohzo = 0 f

It will be appropriate to seek the solution of the form
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imoHz (60 ) = " %m()e (8)

from which it will follow that the radial functions timl(O) and mo(r) musf

satisfy the ordinary differential equations

+ + (k2 - 0 (9)
ml P E ml =

and

V, + t + (k 2 2
mo G mo 02- o)= 0 (10)

where tie denoted differentiations are with respect to p

The further success in proceeding with the solution is contingent

upon being able to solve the differential equation (9). Since a gcneral

solution for an arbitrary function c(p) is not known to exist, one must at

this point specify the functional dependence of the dielectric permittivity,

E . Rusch [1964] chose a model of the dielectric permittivity of the form

c(o) = Ao 2 + BP + C where A, B and C are constants and found two linearly

independent power series solutions to (9) using the method of Frobenius

[Dettman, 1962]. His model is quite versatile inasmuch as it allows fairly

realistic approximations to the electron density profile in a plasma sheath.

The price paid for this is the complexity of the final solution which cannot

)e expressed in terms of known functions.

In this paper we shall choose the profile of the dielectric per-

mittivity in the form

E(0) = (1)2p (11)
b
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where 'b' is the outer radius of the coating and 'pt is an arbitrary number.

In what follows we shall show that this particular choice of c(p) results in

solutions to (9) in terms of known and tabulated functions.

The particular model of E(p) given in (11) is capable of represent-

ing and increasing profile when 'p' is positive and a decreasing profile when

tp' is nesative. When 'p' is positive, this permittivity profile can be

easily related to the electron density profile in a lossless, cold plasma via

the relation

2 2p

2

where wo is thp plasma frequency and (wow) 2 = 8.06 x 107 N/f 2 , where N is

the number of free electrons per cubic centimeter. The possible profiles of

(Wo/W)2 versus o/b are shown in Fig. 2a. It will follow that the present

representation will admit the specification of the plasma frequency wo be-

tween the limits of the operating frequency w and zero. Once the plasma

frequency is specified at the skin of the cylinder, however, the details of

the profile are fixed. The latter restriction is not a serious one, however,

inasmuch as it is known that the main contributions to the propagation

characteristics will come from the bulk effect of the inhomogeneity rather

than from the details of the permittivity profile [Liu and Wetzel, 1965].

When tp' is negative then the assumed functional dependence for

E(p) in (11) will represent a profile that decreases with an increasing

radial distance as shown in Fig. 2b. This case is then applicable to the

problem of a cylinder clad with real inhomogeneous dielectric.

When the form of C(p) given in (11) is substituted into (9), one

obtains the differential equation
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+ 12 2 p m2
+ ( )'ml + (k, b 2 p 2P -'m = 0 (12)

which can be related to the known equation [Olver, 1964]

W" + (---2D)W + (%2 q 2z2 q- 2 + 2  q 0 (13)

having solutions of the form

W = zP :v(XZ q) (14)

where CV() is any Bessel function. Comparing the coefficients of (12)

and (13) we find that the solutions to (12) must have the form

*ml : 0p rv(xOp + i)  (15a)

where

X - l (13b)(p+l)bP

V Fm (15c)
p+l

The solution (15a) is evidently valid for all p # -1 and when p = I it

becomes identical to the corresponding solution in free space.

2.1 The Case p 0 -1

The complete solution can in this case be written in the following

form
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-P e' [rcTJ(Xpp~1) + DmHv (%PP~) 1a
-CO

H,= e'mo Fm(1)) (16b)

Noting that the tangential electric field components are expressed

as follows

E01 [2p 61z, (17a)

- ((0,

one obtains, applying the boundary conditions at p =a and p b, the set of

simultaneous algebraic equations

a21  a22 a23\ (Dm) 2irab 2p 0

831 a32 a33 Fm 0 (18)

where

al b0 [JV'(A) + p-( ) l 7()

a12 =b v 4)'A B0  a

8121 bP JV(B)

* 82 =bP H~l)(B)

831 bP[JV,(B) + J- JT,(B)j

832 = bP[4l) (B) + P- 4l ) B)

a3 3 22-H, 1 (B0 ) (19)
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and

A0 = k0 a

Bo = kob

B Bo
A=

p + (20)

The system of simultaneous equations can be solved readily using

Cramer's rule. The field in the air is found to be

CO

-WEo(p+l)V ( e H)(kop)Hz° l2°° -u'A (21)

where

6m = p l)(Bo) - QVHI (Bo) (22)

and

Bo JV(A) [ )(B) + Bo

0 01- H. 1 ), +pA) P+1 4l()][J1(B) + P-JV(B)] (23a)

QV x HM(B) JV(A) + P (1 J (A)]

-JV(B) [ (1)'(A) +~ 2- ) Hl) (A)]B
o

As a partial check on the above result, we set p - 0 which

corresponds to a cylinder in the air. In this case one finds
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2i (l) (6m i;-H (Ao) (24)

which upon substitution into (21) gives

HiV - e imo P4I)(kop) (25)zo 2 Z0a ' 1 25

where Zo = (po/Eo)1/2  is the free space impedance. The expression in (25)

can be recognized as the one appropriate to an axially slotted cylinder in

free space [Wait, 1959].

Another partial check can be performed setting b = a. In this

case one finds

2i(p+l) Hi) (A1 ) (26)

which when substituted into (21) again gives (25) as it should.

2.2 The Case p = -1

In the previous case we have excluded the case p = -1 because the

solution to the radial wave function was not defined therein. We shall now

examine this particular case in detail.

Putting p -1 in (12) one obtains

0M l 02 'ml , 0 (27)

This differential equation has simple solutions

-l+q -l-q
qml : + , 2

q %f 1+ 2 B2 . (28)
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The field in the air now becomes

iWEobV - ei re q(ab)q H (kop)
ita /, Bogl)'(Bo) [(q-l)a 2 q + (q+l)b 2 q]+(l-q 2 )jl) (Bo) [b2qa 2 q]

(29)

As a partial check on this result one can set a = b in which case one again

obtains (25).

Inasmuch as this solution is of rather restrictive application, it

will not be pursued any further.

3. Application to Small Cylinders

The formulas (21) and (29) constitute the formal solution to the

problem for any inhomogeneous layer described by (11) and any radius of the

cylinder. In the case when the radii of the cylinder and the coating are

small, considerable simplifications to these formulas are possible.

It will be convenient to rewrite (21) in the form

-wE-(p+l)V- Hi (kop)
Hzo = i 2AoB M ECom m

0 0 1-
0

E=

{ m 0 (30)

Now if the radius of the coating is sufficiently small so that

Bo << p + 1 (31)

the following approximations to the various Bessel functions are possible
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12

JVX JX JV(x )

Sr (v+l) 2 x

(x) -i (1(x) -v () .

I[ x x (32)

Using these approximations in (21), one obtains its approximate

forn valid for Bo << p + 1, p A -1 .

o a)7 Bo m 4m2+p2 cos mo 1)(koP) ]

"oV lH(l)(kop) - 8 ) pHzo = 4 0 0Nm! Rm 0

(33)

where

Rr += - ____,m2p2 (

Rm = (m-p-.'m2+p2)(.) - (r-p (a L __\(M)+).

It will be noted that the first term in (33) correctly represents

the field of an isolated magnetic current line source of the strength I(m) . _V.

The remainder of the terms in (33) evidently represents the correction terms

for the non-zero radius of the cylinder and the effect of the coating.

4. Application to Large Cylinders

When the radii of the cylinder and the coating are not small, the

harmonic series representative of the solution derived earlier is slowly

convergent and consequently many terms are needed for a given degree of

accuracy. In this case, an alternate, integral representation of the solu-

tion can be found using the well-known Watson Transformation. Subsequently,

this integral representation can be used to find the "residue series repre-

sentation" valid in the shadow region and the "geometric optics field" valid

in the illuminated region.
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4.1 Integral Representation of the Solution

If the denominator 6, in (21) has no zeroes on the real axis in the

complex p-plane, then it will foll" that the harmonic series representation

(21) can be put in the form

WC0 (p+l)V R,.iP(ko p)(35

Hz=i2Aoo a-/sij dp (35)

where C is a contour in the complex p - plane that runs slightly above and

slightly below the rep. axis in the clockwise direction in such a way that

it encloses all of the zeroes of sin v . Alternately (35) can be written

in the form

WEo(p+l)V r H1  (kop) cos
H'zo i 2AoB o  /J sin dp (36)

where the path of integration is understood to run slightly above the real

axis.

4.2 Fields in the Shadow Region

In order to find tha residue series representation we must evaluate

the integral in (36) by closing the contour with a large semi-circle in the

upper half plane enclosing all of the poles produced by the zeroes of A.

To this end we must investigate the behavior of the integrand in (36) for

large values of p.

Let us devide the upper half-plane as follows:

Region I: 0 < arg p < A/2 -

Region II: A/2 - 5 < arg p < n/2 + 8

Region III: it/2 + 6 < arg p < T
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and note the following asymptotic behavior of the Beahel functions [H6nl et al,

19611

Ii FI 2/ (37a ex)

III: Hl)(x)- -i (2 eex)-sin nt -

(-) exi Ir,) ( ex). (37c)

Using these asymptotic forms, (22) can be written

(6 i~ (j) Hl)Ao (8a

I-b, a) H I ) (Bo) (38b)

XAii 2ABoX H I ) (D (38c)

where

Xv = Jv(A)Yv(B) - Jv(B)Yv(A). (39)

The asymptotic evaluation of X. in (39) is somewhat cumbersome

inasmuch as the straightforward application of (37c) yields a value of zero.

In order to obtain a more accurate estimate, one may apply the ,.ultiplica-

tion theore m for the Bessel functions [Olvec, 1962]

tv(A) t (OB) = v n-i ()n (40a)
n v+n(B)

n=O
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with
Ip+l

Cc /a)~ (40b)

Substituting (40a) into (39) gives

XV7 = aV I l (2) n fYV(B)J.n(B)-JV(B)YV+n(B)] . (41)

n=o

Now using the Wronskian

Yv(B)J+I(B) - YV+I(B)Jv(B) = (42)

and the recurrence relation

tV 2 (B) = 2 ).V+l (B) - tv(B) (43)
V+2 B

which for a large v can be approximated by

V+n(B) () l,) (- 'Vni(B)) (44)

one can sum the series in (41) to obtain

V

(e v(le _-c?) . (45)

In region III, p and consequently V will have a negative real part

so that the exponential in (45) will have negligible contribution. Thus

(38c) becomes

(6 H 2(ABo (Bo) . (46)
II 27tBOP b
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Setting p R exp (ie) on the semicircle, it is now easy to show

that for a large R

H( 1)(k p)cos i e-R[ysine + cosO in (p/a)]

-R[ysinG - cos9 £n (p/a)'

SR2 e- R[ysine - cosO in (p/a)] (47)

in regions I, II, and III respectively, where y = 0 for 0 < ; < A and

y = 2A - 0 for A < t < 2A . Thus the contribution from the large semicircular

arc vanishes everywhere in the upper half plane.

The integral in (36) can now be evaluated to give

co

2wE°(p+I)V7 (1) cos Pn(0-)

Hzo= o / CnHkn (kop) sin (48a)
n=1

where

Cn - ) (48b)

and kn are the zeroes of AL = 0.

In the far zone, the Hankel function can be replaced by its

asymptotic form

2 1)(kop) 2 ei(kop - 11/4 - pnn/2) (49)Pn Y kor)

and noting that

cos Pn(-) .iPn/2 [eiPn(3/2-0)+eiPn(-/2)(
e s -i e(50)s in Pnit
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it will follow that the series, in (48) will converge rapidly in the shadow

region of the slot, g/2 < 0 < 3g/2.

The zeroes of Pn = 0 are evaluated approximately in the Appendix.

4.3 Fields in the Illuminated Region

To find the fields in the region directly illuminated by the slot

we must evaluate the integral in (36) at its stationary points. In what

follows it will be shown that these stationary points will be found on the

real axis. In order to assure freedom in deforming the contour of integra-

tion so as not to interfere with the poles of the integrand due to the zeroes

of sin p A, it will be convenient to employ the transformation

cos P(-r = cos P eiPyc - ieiP¢ (51)
sin p A sin pit

which enables writing (36) in the form

Hzo E Ao(P+l)V (il I + 12) (52)

112AOBO

where

O H1  (kop) cos p 0 iJ d(5

I1, sinpi.e ip (53)

and

CO H (k op) o12 e dp 54

The ntegral I, can be readily evaluated by closing the contour

with a large semicircle in the upper half-plane, the contribution of which

is negligible, and integrating about the poles produced by the zeroes of
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6In = 0. The result is

I = 2 'i7  C H( 1) (kop) c e 1 n'  
(55)21iL n-H n  0 sin Pn,

n14

Using the asymptotic form of the Hankel function in (49) and a simple trans-

formation, one can readily show that in the far zone

= 2 ei(kop-it/4)7 Cn i~n(3T/2-) (56)

Since pn has a positive imaginary part it will follow that the contribution

of 11 in the illuminated region will be small.

To evaluate the integral 12 we first note the following asymicotic

forms valid for a large value of the argument [H6nl et al, 1961]

H(1) 2B) J(~I2) -1/4 ei 7 -arc cost- -g/4] i<0
( 2(Bef0011< Bo

(57a)

and

(I) IT 2 1/4 + N\p -B0
H (B0 )- - ( -B) eI'in Bo  0 I > Bo.

(57b)

If we denote by 12< the value of integral in (54) evaluted for

jpA < B. and Li > BO respectively, then we can write

(B2 - '2)1/4 eif< d,
12< B0j [(k0 )2_ 2]/ 4 [BoP v- i(Bo- 2  I 2Q_] (58a)

0 V (B
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and

i(/4 2_ B(2 1/4 eif> dp

12> ' 0  j [(ko)2_ 2]i 4 [BP + (P2 2B) 1
/ 2Q ]  (58b)

where

P + + _ . IBT 2 - p(arc cos - arc cos L-)

kop B0

(59a)

and

f> =i(k +.J(kop)2- 2 - p arc cos '-a)- p~n B8)+ 2
k~p0 o

(59b)

Setting f' = 0 determines the stationary points of the integrals.

It will follow that the stationary points will be given by

Ps ± Bo sin 0 (60)

which are within the limits of 12< but not of 12> . Hence, using the method

of stationary phase, the integral 12 is evaluated to give

2 krp Bo cos oei( k op -Bocos V - /4)
2 PV(Ps) - i Cos 0 Qv(Ps) (61)

with

'B2 sin20 + p2(2
v = .- +p (62)

l+p
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Comparing (56) and (61) it will be noticed that the contribution

of the former is negligible in relation to the latter, hence (52) becomes

, 2 cos Oei(koo Bo cos 0 - Ai/4)
= aZo  -o"k0  - i cos 6QV(Ps) (63)

Two paitical checks, b = a and p = 0, can be performed on (63) to

obtain the well-known iesult for a bare cylinder. In the first case, b = a,

one readily obtains

ev(Ps) = 0

QV (1s) = -2i(p+l) (64)
iot4

which together with (63) gives the well-known result [Wait. 1959]

V k i(kop - Aocoso - ,c/4)
Hz0 = to e • (65)

For the case p = 0, noting that H s ) (B°)/H-s (B) = i cos 4 , one

obtains .(1)'

PV("s) - i cos OQV(ps) B A0)
itB0  11) (Bo )

-2 cos (
rAo  (66)

where the last approximation is valid if both Ao ane Bo are large and not

far apart. Substitution of (66) into (53) again yields (65) as it should.

5. Numerical Results and Interpretation

The power radiation patterns related to the field formula (63) are

shown in Figs. 3 to 5. It will be noted that each pattern exhibits peaks at

certain angles that appear to be a function of the cylinder radius, Ao,

_ - ,..,. _. . . -:S ;-- M r _-- - - -
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inhomogeneity gradient, p, and the thickness of the layer in wavelength T .

These patterns resemble in many respects the radiation patterns of the corre-

sponding planer geometry, homogeneous layer problem considered previously by

several authors [Tamir and Oliner, 1962; Omura, 1962; Tyras et al, 1964] and

the curved homogeneous layer considered by [Hasserjian, 1965].

The presence of the peaks in the radiation patterns as well as their

relative position which is dependent on the geometry of the problem, can be

explained qualitatively by the elementary consideration of geometric optics.

Since all of the rays radiated by the source must satisfy the Snell's law

...'(p) sin 4(p) - Const. (67)

any ray launched at an angle 0(a) by the slot will be deflected while travel-

ling through the layer according to r D
o(p) - arc sin sin 4(a)] . (68)

Consequently, the angle that any ray will emerge from the layer, 6(b), will

be given by

4(b) - arc sin [(b) sin 0(a)] . (69)

It will follow that the angle 0(b) increases with increasing radius of the

cylinder, a, and it decreases with increasing outer radius of the layer, b, and

an increasing gradient of the inhomogeneity as measured by the parameter fp'.

Moreover, since all of the rays launched by the slot are deflected in the laver

toward the vertical axis according to (68), it will follow that there will be

little, if any, broadside radiation by this structure. The pictorial repre-

sentation of the foregoing, qualitative, analysis is shown in Fig. 6.

The examination of the various power radiation patterns shown in

Figs. 3 to 5 reveals good agreement with the qualitative arguments of geometric

optics. In particular, the presence of the minor side lobes in Fig. 5 must be

attributed to the phase interference effects of some emerging rays that occur

under a certain set of conditions.
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6. Figures

al NARROW

Fig. '.Geometry of the problem
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7. Appendix

The Roots of

From (22) we have in this case

fn' (Bo) Pvn - (A-1)
E4) (Bo) QV

we note

B -A -tB
p+l

t I/ (A-2)

When the radii of the cylinder and the coating are large and not

far apart, then the quantity 't' in (A-2) will necessarily be small. In

this case we can use the approximation

CV(A) - Cv(B) - tB tvf(B) (A-3)

where tv( ) is any Bessel function. Using (A-3) in (A-i) one obtains the

following approximate expression

n (Bo) 1 p+l

Hl) ( 0) []b " B) * (A4)(BO)  (p+l)Bo

Note that when a b then the right side of (A-4) is zero and the expression

reduces H1)(Bo) = 0 which is an appropriate to a bare cylinder.Pn

It is easy to show using asymptotic form for the Hankel functions

that (A-4) will have no solutions if p < Bo .

In the range p - Bo, where Bo is large, one can use the transition

region expansion of the Hankel functions in terms of Airy functions

[H6nl et al, 1961] to obtain
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Hn'(Bo )  - 12_l/e2/3 Ai L, /3 e- i/(Bo- Pn)1
n- (i -o 12it/ I) 13-/3•(A-5)

(BO) 0  Ai [(L) e i/3(Bo- n)]
n B0

Substituting (A-5) into (A-4) we write

(Bo 2_ n2 )e- 2 (/3 1/3

- i.± ~~(f)e l Ai1(2. ( 0
I 2/ 3 21/3 - (5)] A [ /3 ei3Bo- (A-6)

(p+l) o  2 Ai [B e(i)/3(Bo- )]

The left side of (A-6) is small if 'a' and 'b' are large and not too far

apart. Thus to the first approximation the roots will be determined from

Ai'(aA) = 0 and consequently

n Bo - an1l)1/3 eiA/3 (A-7)

which are the roots appropriate to the bare cylinder.

Since the first root, P', is close to Bo, a better approximation

to its value can be obtained by expanding the Airy function and its derivative

in a power series. We note

Ai'(z) C2  C2  C z2 + ) (A-8)
Ai(z) CI(  Ci 2C2

where C2 /C- 0.72 [Olver, 1962]. Setting Bo2  P 2B0(B0 -pa) and collect-

ing the above results, we obtain a better approximation for the first root as

follows

2 1/3 C2 i2it/3
(Bo z(p+l)e

P0 Bo +  2 (A-9)

p2 +l)ei 3 +
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