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ABSTRACT

The problem of an axial slot on a circular cylinder clad with a
radially inhomogeneous plasma (dielectric) was considered recently by
Rusch [1964]. Although his formulation is quite general inasmuch as it
admits a realistic approximation to the plasma sheath inhomogeneities, the
resulting solution is not well suited for computations of field patterns
of large cylinders.

In the present formulation we consider the dielectric permittivity
profile of the form €(p) = (p/b)zP, a<p<b, where 'a' is the radius of
the conducting cylinder, 'b' is the outer radius of the dielectric coating
and '"p' is an arbitrary parameter. It follows that the assumed profile is
capable of representing an inhomogeneous cold plasma when p > 0 and a real
dielectric when p < 0. The apparent advantage of the present formulating
is the fect that the wave equation can be solved in terms of known functions
and the solution can be extended to large cylinders.

Field expressions appropriate to small and large cylinders are
found using standard methods of harmonic series representation, Watsen Trzns-
formation and saddle point integration. In the case of large cylinders coated
with cold plasma, the radiation patterns are plotted for various combinations
of the cylinder radius, thickness of the coating, and the inhomogeneity gra-
dient. The radiation patterns are in good agreement with qualitative argu-

ments of geometric optics.
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1. Introduction

The problem of a radiating slot on a dielectric clad cylinder occu-
ples a relatively important position irn microwave engineering. Its importance
is due primarily to the phenomenon of a plasme sheath formed around a hyper-
sonic vehicle during its reentry phase. Since the plasma can be represented
under certain conditions by ite equivalent dielectric permittivity, the problem
of a plasma covered antenna can be reduced to one of a dielectric clad antenna
that can be treated as a well-defined boundary value problem.

The boundary value problem approach to the plasma sheath phenomenon
was used in the past by several authors. Tamir and Cliner [1962] and Omura
[1962] obtained theoretical radiation patterns of a dielectric clad slot on =
ground plane. Tyras et al [1965] obtained experimentel confirmation of their
results by means of an artificial plasma simulation technique. The problem
of an axial slot on a circular cylinder clad with a dielectric layer was con-
sidered by Hasserjian [1965]. He formulated the solution in terms of an
integral representation from which he was able to find the far field pertinent
to a cylinder of a3 large radius.

The problem of a slot clad with inhomogeneous dielectric layer was
attacked by two different methods. In the first method, the inhomogeneity of
the layer was approximated by a series of discrete homogeneous and parallel
layers [Hamm and Tyras, 1965; Harris and Pachares, 1965; Harris, 1965]. The
resulting formulas are necessarily long and complicated but they can be pro-
grammed for a digital computer to obtain numerical results., In the case of
cylindrical geometry, the formulas obtained by this method converge slowly
when the radius of the cylinder 1s large and, consequently, their application

is limited.
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Another method of approach to the problem of inhomogeneities in the
layer is that of a rigorous solution. 1lnasmuch as no general solution to the
differential equation describing wave propagation in inhomogeneous regions
exists, this approach suffers from the lack of versatility. However, Rusch
[1964] founé a solutica to an inhomogeneous profile that allows, perhaps, the
most realistic approximation to an inhomogeneous, continuously radially
stratified piasma sheath. He chose a model of the dielectric permittivity
profile of the form ¢€{p) = Ap2 + Bp + C where A, B, and C are arbitrary
constant., The two linearly independent solutions of the wave equation are
constructed using the well-known method cf Frobenius. Consequently, his
final expression for the fields appears as an infinite series that cannot be
expregssed in terms of known functions. When the radius of the cylinder is
small, the resulting series converges well and numerical results can be ob-
tained. When the radius of the cylinder is large, which is the case of great
practical importance, the resulting series is slowly convergent and it is not
suitable for numerical calculations.

In this paper we choose the dielectric permittivity profile of the
form e(p) = (p/b)2p where 'b' is the outer radius of the coating and ‘pt is
an arbitrary constant. This parcicular model admits exact solution of the
pertinent differential equation in terms of Bessel functions. The model is
capable of representing an increasing or decreasing profile when 'p' is
positive or negative respectively. When 'p' is positive, this wodel can
be related to the plasma frequency in the form (wO/w)2 =] - (p/b)Zp .

It will follow that this representation will admit the specification of the
plasma frequency, w,, between the limits of the operating frequency and

Zero.
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The principal advantage of the present formulation is the fact that
the solution can be expressed in terms of known functions. After obtaining
the familiar harmonic series representation, the integral representation can
be found using the well-known Hatson Transformation. The latter, in turn,
enables obtaining the far field expression for an arbitrarily large cylinder

which seems to be of some practical importdance.

2. Theoretical Development
Consider an axially slotted cylinder clad with an concentric in-
howogeneous layer of & dielectric that is a function of the radial variable
only. The geometry of the problem is shown in Fig. 1. In the inhomogen. us

dielectric region the fieldsmust satisfy

-

- -
Vx Ey = Ly
- - -
Vx H = iw€o€(p)El
v
EM(a,Q) = 7 5(9) (L

where the harmonic time dependence of the form e-iwt has been assumed and
suppressed throughout. The excitation considered is of the form of an in-
finitely thin slot fed by a voltage V (delta function slot). In the free

space region the fields must satisfy

L

- -
v X aniwpo}{o

~—

Vx H = -lwe By . (2)

Moreover, at the interface p = b the tangential components of the electric

and the magnetic fields must be continuous which implies



B = Hyp
Ey1 = Ego 5 (3)

since the assumed geometry does not admit any other tangential field components.
Performing a curl operation on the second equation of (1) and sub-
stituting the first, one obtains a differential equation in terms of the

magnetic field only, that is
VZH, +1Vex il +k2eH; =0 (%)
17 e 1 o} 1

where we used a well-known vector relation. The axial component of the vector

equation (4) can be shown to be

13 OHyy L d%H,; 1 dedH,; 1 )
P %P D) P S S T s S ) ke =0

(5)
which in the case that the dielectric permittivity is a function of the radial

variable only becomes

3 ; 32
O (pely - 12 2 S L T S

Similarly, it can be shown that in the free space region the magnetic field

must satisfy

~ 2
19 OHzq 1 O%Hzo 2.,
o Bp(p p )+ VA YY AR Kottzo = 0 ™

It will be appropriate to seek the solution of the form
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Hy(0,0) = Vy()el™ (8)

-

from which it will follow that the radial functions Wml(c) and V. (0) must

satisfy the ordinary differential equations

1 Ei .t 2 m2 , -
tap F G m gy (ke - Ty = 0 9
and
2
1o 2 m_ -
w;o + = wmo + (ko - 02) Voo = 0 (10)

where tle denoted differentiations are with respect to p .

The further success in proceeding with the solution is contingent
upon being able to solve the differential equation (9). Since a general
solution for an arbitrary function e€{p) is not known to exist, one must at
this point specify the functional dependence of the dielectric permittivity,
€ . Rusch [1964] chose a model of the dielectric permittivity of the form

€(p) = Ap?

+ Bp + C where A, B and C are constants and found two linearly
independent power series solutions to (9) using the method of Frobenius
[Dettman, 1962]. His model is quite versatile inasmuch as it allows fairly
realistic approximations to the electron density profile in a plasma sheath.
The price paid for this is the complexity of the final solution which cannot
e expressed in terms of known functions.

In this paper we shall choose the profiie of the dielectric per-

mittivity in the form

o) = B (11)

1ot ol BN SKSD Y
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where 'b' is the outer radius of the coating and ‘'p' is an arbitrary number.
In what follows we shall show that this particular choice of €(p) results in
solutions to (9) in terms of known and tabulated functions.

The particular model of €(p) given in {1l1) is capable of represent-
ing and increasing profile when 'p' is positive and a2 decreasing profile when
'p' is necative. When 'p' is positive, this permittivity profile can be
easily related to the electron density profile in a lossless, cold plasma via

the relation
2 2p

2o

where wy 1s the plasma frequency and (wo/w)2 = 8,06 x 107 N/f2 , where N is
the number of free electrons per cubic centimeter. The possible profiles of
(wo/w)2 versus po/b are shown in Fig. 2a. It will follow that the present
representation will admit the specification of the plasma frequency w, be-
tween the limits of the operating frequency w and zero. Once the plasma
frequency is specified at the skin of the cylinder, however, the details of
the profile are fixed. The latter restriction is not a serious one, however,
inasmuch as it is known that the main contributions to the propagation
characteristics will come from the bulk effect of the inhomogeneity rather
than from the details of the permittivity profile [Liu and Wetzel, 1965].

When 'p' is negative then the assumed functional dependence for
€(p) in (11) will represent a profile that decreases with an increasing
radial distance as shown in Fig. 2b. This case is then applicable to the
problem of a cylinder clad with real inhomogeneous dielectric.

When the form of €(p) given in (11) is substituted into (9), one

obtains the differential equation



1-2 - 2
Var + C5Byeny + (572 07 - Byyg; = 0 (12)

which can be related to the known equation [blver, 1964]
1-2p 2 2.2q-2 EZ_VZSZ
W' (U + (W2t W = 0 (13)
z

having solutions of the form
W=2zP & 029 (14)

where C\K) is any Bessel function. Comparing the coefficients of (12)

and (13) we find that the solutions tc (12) must have the form
i
Yaml * oP (v(lpp+ ) (15a)
where

ko <
N o= (or1)57 (15b)

B dmz + p2 15
V= ) . (15¢)

The solution (15a) is evidently valid for all p # -1 and when p = 97 it

becomes identical to the corresponding solution in free space.

2.1 The Case p # -1
The complete solution can in this case be written in the following

form



F

«©

B,y = oF Sﬂ o1 {Cva(kpp+1) + Dmﬁsl)(kop+1)] (16a)

-]

Hyp = ST' elme Fmﬂél)(kop) . (16b)

—

-

Noting that the

as follows

Es1

E¢o

tangential electric field components are expressed

-i (b\2p OHy;

E;(z) RYY (172)

-1 aHzo ’
= ve 9o (170)

one obtains, applying the boundary conditions at p = a and p = b, the set of

simultaneous algebraic equations

a11
az21

a31

where

ajo 0 Ca 1
iweoV
222 223) | Dn | = 7050
azy a33/ | Pq 0 / (18)

k
=5 [y

bP J,(B)

vP u{D ()

- (1)(30)

- (1)'(80)

=R

bPlay®) + |- 3,(B)]
bP (D" () + &= aD ®)]

(19)



and
Ay = kya
Bo = kob
A - Ao _a-)P
“p+1lb
B
B = 0
p+1 . (20)

The system of simultaneous equations car te solved readily using

Cramer's rule. The field in the air is found to be

©

~weo (V. T 5§V (k,0)

Moo = “laghy LS Bm 0
where

b = PP () - outtP (5 (22)
and

p+l 1!
P, = [308) + g; (g) 3,1 @ + » 1P (8]

' ptl
- mD ) + B (la’-) BV w1y + %‘ Iy(®] (23a)

BO o

(1) =zt b 1
o = 1P @ byw + & (F 5 m)

1 p+l
-3y [ @) + 2 (-3) i$D a)]

e}

As a partial check on the above result, we set p = 0 which

corresponds to a cylinder in the air. In this case one finds

& e —



1m~m.~4,g,wa:.‘? *

24 . (1)°¢
&y = b Bm ) (4,)

which upon substitution into (21) gives

-]

VS gme B (kop)
B = ' e El
z0  2nZoa -

Y ﬁgl (A0)

where 25 = (pQ/eO)ll2 is the free space impedance.

(24)

(25)

The expression in (25)

can be recognized as the one appropriate to an axially slotted cylinder in

free space [ﬁait, 1959].

Another partial check can be performed setting b = a.

case one finds

21 1 '
by = B (D7, )

In this

(26)

which when substituted into (21) again gives (25) as it should.

2.2 The Case p = -1

In the previous case we have excluded the case p = -1 because the

solution to the vadial wave function was not defined therein

examine this particular case in detail.

Putting p = -1 in (12) one obtains

2 _ 2
3y Bo - m
wl * S Yoyt

o

This differential equation has simple solutions

We shall now

(27)

(28)
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The field in the air now becomes

=]

iwegdV elimé q(ab)? Hél)(kop)
e L, p a0 (8o) [(a-D)a2d + (q+1)b29]+(1-gD)HSD (B, [b29-a29)]

Hyy =

(29)

As a partial check on this result one can set a = b in which case one again
obtains (25).
Inasmuch as this solution is of rather restrictive application, it

will not be pursued any further.

3. Application to Small Cylinders
The formulas (21) and (29) constitute the formal solution to the
problem for any inhomogeneous layer described by (11) and any radius of the
cylinder. In the case when the radii of the cylinder and the coating are
small, considerable simplifications to these formulas are possible.

It will be convenient to rewrite (21) in the form

(-]

} ~we o (p+1)V ’; H,gl) (koP)
Hyo W /. €qp Cos md -——'—'——Am
(o]
1 , m=0
€ =
"2, mio0 . (30)

Now if the radius of the coating is sufficiently small so that
By < p+1 (31)

the following approximations to the various Bessel functions are possible



- wAS O

12

Y
Jux) ~—L1 _ & ;

: ~X 30
F(wtl) 27 7 Ive) ~ 2 Iyl

BP0 ~2LM Y 5P v aPeo .
bt X X (32)

Using these approximations in (21), one obtains its approximate

forn valid for By << p + 1, p # -1 .

weoV = 1B\® Y 2402 6
\ O m cos m
Hyy = éo [H§l)(kop) - 8(%)p‘14 (E_) i! 8 Hél)(kop)]
1
(33)
wheve
o [T vy
Ry = (m-paZtpd) &V I L (mep + D AT L (30

It will be noted that the first term in (33) correctly represents
the field of an isolated magnetic current line source of the strength I
The remainder of the terms in (33) evidently represents the correction terms

for the non-zero radius of the cylinder and the effect of the coating.

4, Application to Large Cylinders

When the radii of the cylinder and the coating are not small, the
harmonic series representative of the solution derived earlier is slowly
convergent and consequently many terms are needed for a given degree of
accuracy. In this case, an alternate, integral representation of the solu-
tion can be found using the well-known Watson Transformation. Subsequently,
this integral representation can be used to find the '"residue series repre-
sentation'" valid in the shadow region and the ''geometric optics field" valid

in the illuminated region.

(w_ v
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4.1 1Integral Representation cf the Solution
1f the denominator A, in (21) has no zeroes on the real axis in the
complex p-plane, then it wiil follew that the harmonic series representation

(21) can be put in the form

- wGo(P+1)V \/‘%(Al) (kop) . eip(¢-1t) du (35)

20 " 1212448, b, sinun

where C is a contour in the complex i1 - plane that runs slightly above and
slightly below the res1 axis in the clockwise direction in such a way that
it encloses zll of the zeroes of sin . n . Alternately (35) can be written

in the form

weg(p+)V Hﬁl)(kop) _ Cos L(e-n) 36
Hz0 = T[24,B, 5 sin g O (36)

[
-

where the path of integration is understood to run slightly above the real

axis.

4,2 Fields in the Shadow Region
In order to find the residue series representation we must evaluate
the integral in (36) by closing the contour with a large semi-circle in the
upper half plane enclosing all of the poles produced by the zeroces of By
To this end we must investigate the behavior of the integrand in (36) for
large values of u.
Let us devide the upper half-plane as follows:
Region I: 0 <arg u<n/2 -5
Region II: /2 - d<arg u<nf2 +50

Region IXI: /2 + 8 < arg p < =«
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and note the following asymptotic behavior of the Bessel functions [Hanl et al,

1961]

(1) . 27 (2" 1 2.\ M
I: H " (x)~ i, |- _ij J (x)~ (_h
b ) N (ex 7Tk i ex)

I A - e

I1I: D ()~ -1 2 ‘i““(:ZE)“ J_(x)~ =sinun
R = - IR NG

Using these asymptotic forms, (22) can be written

. b “
@ ~ iiBo (3) ARICS

12 [6)" (1)
@y ~ EX%;(a) HE™ (Bo)

f ol
_ivp~ (1)
(Au)III 2ABu Xy Hu (BO)

where

Xy = J,(A)Yy(B) - Jy(B)Yy(A).

The asymptotic evaluation of Xy, in (39) is somewhat cunbersome
inasmuch as the straightforward application of (37c¢) yields a value of zero.

In order to cbtain a more accurate estimate, one may apply the .ultiplica-

tion theor~m for the Bessel functions [blver, 1962]

¢, = £, (B) = a”}jﬂiltj—;;’i ('-‘25)n C yin(®

n=o

(37a)

(37b)

(37¢)

(38a)

(38b)

(38c)

(39)

(40a)



= N

p+l

Q
1}
—
o |m
s S g

Substituting (40a) into (39) gives

x, = o ) L)

n
220 () iy (B34 (BT (D)L (B)]

n=o

Now using the Wronskian

YV(B)Jv+1(E) - Yv+1(B)Jv(B) = ;g

and the recurrence relation

Eopp® = EEL e @) - B

which for a large v can be approximated by

n-1

-2
€ vn® ”’(?23'!) Con1® - (%\_,)“ Cy®,

one can sum the series in (41) to obtain

v
X, -%% (ev(l-og)- 1) .

In region III, pu and consequently v will have a negative real part

so that the expounential in (45) will have negligible contribution.

(38c) becomes

__4p2 e\ (D)
@111 ™ Zean . (&) B @

(40b)

(41)

(42)

(43)

(44)

(45)

Thus

(46)

15
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Setting p = R exp (i6) on the semicircle, it is now easy to show

that for a large R

Hé})(kop)cos L(d-n)dp

Ap sin 1 =xn

5 e-R[ysine + cos6 £n (p/a)]

N e-R[ysinG - cosd £n (p/a)’

N Rze-R[ysine - cosB £n {p/a)] (47)

in regions I, 1I, and III recpectively, where y = ¢ for 0 < ¢ < n and
Yy=2n - ¢ for 1 < ¢ < 2n . Thus the contribution from the large semicircular

arc vanishes everywhere in the upper half plane.
The integral in (36) can now be evaluated to give

o

2weo (pHL)V ;“ (1) cos up(¢-x)
Hyo = nAgB, Cn ‘n (kop) sin ppon (482)
n=1
where
3 -1
o = (2 o ) (48b)

and ., are the zeroes of ALn =0,

In the far zone, the Hankel function can be replaced by its

asymptotic form

(D N 2 i(koo - /4 - ppn/2)
B, ko)~ s e o (49)

and noting that

CO? Hp (6= e-iunﬂ/z - «1[ei“n(3“/2'®)+ei“n(®'“/2)]
sin g

(50)
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it will follow that the series, in (48) will converge rapidly in the shadow

region of the slot, n/2 < ¢ < 3n/2.

The zeroes of A 0 are evaluated approximately in the Appendix.

4.3 Fields in the Illuminated Region
To find the fields in the region directly illuminated by the slot
we must evaluate the integral in (36) at its stationary points. In what
follows it will be shown that these stationary points will be found on the

real axis. In order to assure freedom in deforming the contour of integra-

tion so as not to interfere with the poles of the integrand due to the zeroes

of sin p n, it will be convenient to employ the transformation

cos p(o-m) _ cos p® fum _ 4 iue (51)
sin p sin ux

which enables writing (36) in the form

(11, + 1 52
20 ﬂonBo 1 2) (52)
where
® (1)
H, " (kop) cos u ¢
p 9] pRTE: ¢
I, = [ . e du (53)
1 _d/l A“ sin pu n
and
(1) ¢
H'"/ (k _p)
12 x:f -JJ‘_—.__-—- i“¢ . (54)
u
~ 00

The ‘ntegral I, can be readily evaluated by closing the contour
with a large semicircle in the upper half-plane, the contribution of which

is negligible, and integrating about the poles produced by the zeroes of

M o aftuseelrt
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Ap = 0, The result is
n
o
. 1 cOs }.no .. ;
I = Zﬁli; an )(k ) Enf ettt (55)

n=

Using the asymptotic form of the Hankel function in (49) and a simple trans-

formation, one can readily show that in the far zone

i;.n(3n/2+¢) ipn(3n/2-9)
I, =2 /fc—;; RG-S “/A)Y ‘H’- (56)

1 - elZﬂpn

o=t

Since i, has a positive imaginary part it will follow that the contribution
of I; in the illuminated region will be small.
To evaluate the integral I; we first note the following asymj cotic

forms valid for a large value of the argument [ﬁénl et al, 1961]

B2 2 . -
Hﬁl)(Bo)”‘JE;‘(Bg L*2) -1/4 i[»Bo ue-parc cos%; n/&]’ !u‘ < B

o}

(57a)

and
(1) 2 2 .2 -1/4 uﬁn(w)- N Bz
Hu (Bo)~ -iv?{ (u -Bo) e BO HETES iul > BO'

(57v)

If we denote by 12§ the value of integral in (54) evaluted for

‘pl < B, arnd 'LI > B, respectively, then we can write

~ (Bg- ;12)1/4 eif< di.

Ip< = By 1/4 N (562)
DR (NS L L T L
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and
2
tnft T (HZ_ Ba)1/@ eif> dp:
I,, = Bee " j 7 2174 2 2.1/2 (58b)
[(kop) “-1] """ [BoPy + ("-B3) ™" Qy]
where
f< = puo + \/(kop)2 - HZ - JB% - pz - u(arc cos EﬁE -~ 8rc cos %;)
(59a)
and

2
— By -
fs = 1(ue +- (kop)2- u2 - p arc cos Qﬁ;)- uzn(————ii:-——)+ L.‘2_ Bg .

(59b)

Setting f = 0 determines the stationary points of the integrals.
>

It will follow that the stationary points will be given by
hg =+ By sin ¢ (60)

which are within the limits of I,. but not of I, . Hence, using the methed

of stationary phase, the integral I, is evaluated to give

1. ~ 2% Bg cos oei(koo-Bocos 6 - n/b)
2 kop Py(ug) - 1 cos ¢ Qy{ug)

(61)

with

\[Bz sin2® + Y
Ve 2 P . (62)
1+p
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Comparing (56) and (61) it will be noticed that the contribution

cf the former is negligible in relation to the latter, hence (52) becomes

‘(Qil)v‘/ 2 cos eel(koo - Bo cos o - x/4)
Hyo = naz, nkoD . P, (n) - 1 cos 8Q,0.0) . (63)

Two partical checks, b = a and p = 0, can be performed on (63) to

obtain the well-known iesult for a bare cylinder. In the first case, b = a,

one readily obtains

Pv(us) =0

Y(ug) = PR (64)

which together with (63) gives the well-known result [Wait, 1959]

V[ KXo i(kop - Aocoss - n/4)
Hyo = e .

- Z, 2np

(65)

t
For the case p = 0, noting that Hil) (Bo)/Hﬁl)(Bo) = i cos ¢, one
s s

chbtains (1!
21 Hug® (A0)
Pylug) - 1 cos oQy(ug) = —= -
(L)
0 H“s (Bg)

~ -2 cos ¢
TA, (66)

where the last approximation is valid if both A, an¢ B, are large and not

far apart. Substitution of (66) into (53) again yields (65) as it should.

5. Numerical Results and Interpretation
The power radiation patterns related to the field formula (63) are
shown in Figs. 3 to 5. It will be noted that each pattern exhibits peaks at

certain angles that appear to be a function of the cylinder radius, A,,
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inhomogeneity gradient, p, and the thickness of the layer in wavelength T .
These patterns resemble in many respects the radiation patterns of the corre-
sponding plarner geometry, homogeneous layer problem considered previously by
several authors fTamir and Oliner, 1962; Omura, 1962; Tyras et al, 1964] and
the curved homogeneous layer considered by [Hasserjian, 1965].

The presence of the peaks in the radiation patterns as well as their
relative position which is dependent on the geometry of the problem, can be
explained qualitatively by the elementary consideration of geometric optics.
Since all of the rays radiated by the source must satisfy the Snell's law

Je(p) sin ¢(p) = Const. (67)
any ray launched at an angle ¢(a) by the slot will be deflected while travel-

ling through the layer according to
D
¢(p) = arc sin [{%\ sin ¢(a)] . (68)
]

Consequently, the angle that any ray will emerge from the layer, ¢(b), will

be given by

b
It will follow that the angle ¢(b) increases with increasing radius of the

%
¢(b) = src sin [(g) sin @(a)] . (69)

cylinder, a, and it decreases with increasing outer radius of the layer, b, and

ot

an increasing gradient of the inhomogeneity as measured by the parameter 'p'.
Moreover, since all of the rays launched by the slot are deflected in the laver
toward the vertical axis according to (68), it will follow that there will be
little, 1f any, broadside radiation by this structure. The pictorial repre-
sentation of the foregoing, qualitative, analysis is shown in Fig. 6.

The examination of the various power radiation patterns shown in
Figs. 3 to 5 reveals good agreement with the qualitative arguments of geometric
optics. In particular, the presence of the minor side lobes in Pig. 5 must be

attributed to the phase interference effects of some emerging rays that occur

under a certain set of conditions.



.. .

22

6. PFigures
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Fig. 6.

Ray focusing by the layer
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7. Appendix

The Roots of Aﬂn—f 0

From (22) we have in this case

B 6 By

Hl(*-i) (Bo) ) Qy -
we note
B-A=tB "
t =1 -(%) . (a-2)

When the radii of the cylinder and the coating are largze and not
far apart, then the quantity 't' in (A-2) will necessarily be small, 1In
this case we can use the approximation

L A ~y(B) - tB LH(B) (A-3)
where £,( ) is any Bessel function. Using (A-3) in (A-1) one obtains the

following approximate expression

Hﬁi)'(so) 1 (1 ,ﬁ)pu s 3
aﬁt];) (B,) (p+1)B, c

] "= 8, . (a-w)

Note that when a = b then the right side of (A-4) is zero and the expression
reduces Hﬁi)'(Bo) = 0 which i{s an appropriate to a bare cylinder,

It is easy to show using asymptotic form for the Hankel functions
that (A-4) will have no solutions if u < Bj .

In the range u ~ Bj, where B, is large, one can use the transition
region expansion of the Hankel functions 1in terms of Airy functions

[H6n1 et al, 1961] to obtain

L OO PX S TP

W
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10 112 /3 4q/34m L
Hun o) -(‘2“>1/3e12ﬂ/3 A [(Fg) o) © (A-3)
B';Sl) (Bo) B, i [(-}23—-)1/3e-1n/3(30' Un)]

o

Substituting (A-5) into (A-4) we write

2 2. -12%/3 2 )1/3 e-in/S

Py At [ (B,- W]
" [(%.)1/3 IEETEPR
(o]

(4-6)

P B2/3 7 - @

The left side of (A-6) is small if 'a' and 'b' are large and not too far
apart. Thus to the first approximation the roots will be determined from

Ai'(a]) = 0 and consequently

Bo,1/3 1ix/:
p ~ By - a;(zg) / eln/3 (a-7)

which are the roots appropriate to the bare cylinder.
Since the first root, Hys is close to B,, a better approximation
to its value can be obtained by expanding the Airy function and its derivative

in a pover series. We note

C C
At G2, 2 O o, .
ALC2) Cl(l + N z 7c, zé 4+ ... ) (A-8)

2
where C2/01 ~0.72 [Olver, 1962]. Setting B, - plz ~ 2Bo(Bo-u1) and collect-

ing the above results, we obtain a better approximation for the first root as

follows
1/3 ¢
& Bt
Hy ™ Bo + c ) 2/3 ‘ (A-9)
22 [ in/3
(cl) (Bo) et 42 [ @)
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