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Introduction 

In this paper we will establish sufficient conditions for decision rules to 

be optimal for two n-period P-models of chance-constrained programming. —' 

Proofs of theorems will be based on results contained in our earlier papers 

[7, 8] on n-period E-model^ of chance-constrained programming. 

The basic similarities and differences between the P- and E-models of 

chance-constrained programming can be seen by considering the following two 

models: 

T max   E(c X) 

(1) subject to    P{AX 5 b) ^ a 

P(XS 0) >   ß 

and 

max   P(cTX ^ cTX  ) o    o 

(2) subject to    P(AX £ b) 2: a 

P{X^ 0) >  p 

In (1) and (2) E stands for the expectation operator and P for the 

probability operator.    In both cases we compute the expectation and proba- 

bility using the joint distribution of all the random variables involved in the 

problem,  i.e. ,  the joint distribution of all the random variables contained 

in the A matrix,  and the b, c vectors. 

th 
The i     constraint of (1) and (2) says that any set of feasible decision 

rules   x. = 4>.{A, b, c)   ,    j = 1, . . . , n ,    where   (♦>.   is some function of the elements 
J J J 

of A,b, c, must be such that the inequality 

n 
2 a..x. < b. 

j=l   lJ  J        1 

W   See Charnes and Cooper [3] where the "P,"   "E," and "V"  models wore 
first explicitly introduced. 
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is satisfied with at least probability a. .     The second set of constraints in 

(1) and (2) indicate that  <}>. , j =1, . . . ,n  must also have the property that the 

inequality 

(MA.b.c) ^0 
J 

is satisfied with at least probability ß. . 

In either problem (1) or (2) we may have additional constraints which 

restrict the type of functions 4>.(A,b, c) that are admissible.    In the problem 

discussed here,  as incur earlier papers on n-period E-models [7,8],these 

additional constraints will be dictated by our interpretation of the problem. 

Thus we will not impose restrictions of functional form on the admissible 

rules,  such as by requiring them to be linear decision rules as is done in 

[ 3, 5,10,11 ].    Instead our admissible class of decision rules will be the most 

general class which is consistent with our interpretation of n-period models. — 

In (1) our object is to find the feasible set of decision rules xf.. . . ,x* in n 
which give the linear function  E ex.   as large an expected value as possible. 

j=l J   J 
The concept of maximizing the expected values of a linear function is common 

in the literature of many subjects.    In economics, for example, the notion of 

planning so as to maximize expected profits (or minimize expected costs) 

under constant returns to scale is often used.    Thus the formulation and 

analysis of chance-constrained programming problems with the objective 

function maximize   E(c X)   is natural,  particularly when we interpret the 

problem as one of planning over an n-period horizon. 

On the other hand, the objective function of (2) perhaps requires some 

elaboration.    In (2) the components of   c   X    are specified relative to some 

set of values which an individual or business firm regards as satisfactory 

whenever they are achieved.    The problem is one of finding feasible decision 
T rules which will maximize the probability of attaining the given level c   X    . 

In [3]  Charnes and Cooper have discussed the relationship of the P-model 

approach to what H. A. Simon [19, 20] calls "satisficing" as opposed to 

"optimizing" behavior.    In [18] a P-model objective function is used in the 

analysis of risky investment decisions. 

!_/    See sections 4 and 6 of [ 7] and section 2 below for     further discussion 
of this point. 

■ ■*>*^""^—■^"^■^"■l5BÖ^5GK^~"-="^"^w^^MP*fM^^t     "* »-y^ -53 
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Moreover it is quite possible that employing the E-model rather than 
T the P-model would yield a very high expected value for the   c  X   with a very 

small probability of attaining this value,  while the correcponsing P-model 

might give a smaller expected value but with a very high probability of 

achieving it.    Individuals or firms often prefer a gamble with lower expected 

value and higher probability of success, to a gamble with high expected value 

and a low probability of winning.    It is to aid in analyzing the implications of 

this kind of human or business behavior that the P-model was formulated. 

As mentioned above we are going to discuss two different n-period 

models.    These models will differ chiefly in the following way.    In the triangu- 

lar n-period model we will assume that each period generates two new con- 

straints, one of which requires that   P(X.^O) 2 ß. and the other couples   X. , 

the decision rule of the j     period,  to the de-ision rules of all preceding 

periods.    In both these constraints we will compute the probability using the 

joint distribution of all the random variables involved in the problem.    For 

this reason we will refer to these constraints as total chance constraints. 

In the other model we will consider, the block-triangular model, 

we allow each period to generate a finite,  but otherwise arbitrary, number 

of chance constraints.    However,  in contrast to the triangular model, we 

will regard these constraints as conditional chance constraints.      That is, 

we will interpret the P operator in the constraints of the i     period as meaning 

that we compute the probability using the condition distribution of the random 

variables of the i     period given the observed values of the random variables 

of periods one to i - 1 . 

In sections 3 and 5 below we establish theorems which give sufficient 

conditions for decision rules to be optimal for the total and conditional 

chance constraint cases.    However,  in spite of the similar nature of these 

theorems,  the methods of proof are quite different. 



?..    The Triangular Problem:    Total Chance Constraints 

The problem we are going to consider in this and the following 

section is 

n 
maximize    P( T, c. X. ä k) 

j=i J > 

subject to PlajjX^ djb^ tü1 5 0) >  QTJ   , 

P<a21Xl+a22X2+d2b2+w2(bl,-0)-a2   ' 

(3) P(a31X1+a32X2+a33X3 + d3b3+tJ3(b1,b2) 10)2: a^  , 

P( S a..X.+ d.b.+ w.(b,,. . . .b.   .) 1 0) 2  a.    , 
V=1   ij   j      i   x       i   1 i-i i 

n 
P(S *    X +dh   +u (h ,...,h    AS01* *     , .«njinn       nl n-1 n 

J=l 

P(X.^ 0) > ß.    .     j=l....fn   , 

where P represents the total probability operator. Thus we compute the 

probability using the joint distribution of all the random variables involved 

in the problem. 

In (3) we make the following assumptions: 

(a) a.. ,  i5 j ,    i, j =1, . . . »n,     ^ c; •    i. j=l. • • • ,n , 

w, and k are given constants, and a.. ^ 0 ,  d. ^0 1 B 11 x 

for all i. 

(b) w.(b , . , . , b.   ,) ,   i=2,. . . , n ,   is a piecewise continuous 

function with at most a countable number of discontinuities. 

(c) a.i 3.,   i,j=l, ...,n, are known probabilities.    Thus 
i    J 

0 ^ a. , ß. ^ 1    for all i and j . 
i    rj 

(d) b. ,  i = 1, . . . , n ,  are continuous random variables whose 

joint frequency function f (b., . . . .b  )  is known. 
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(e) X. i   j =1,.. . ,n ,   is a function of the random variables  b., . . . ,b    . 

but it is not a function of b., . .. ,b   .    X.  is pircewise continuous 
J J 

with at most a countable number of discontinuities. 

(f) For each j, j = 1,. . . , n ,  there exists a set of j - 1 dimensional 

rectangles,   {A^- , kcKJ" }  where KJ'   is some indexing set,  such 

that 

(ij     U        AJJ   = E'''   ,    where   EJ'   is j - 1 dimensional Euclidean 
k€KJ_1    * 

space, 

(ii)     F.  .(AJ^nA-*"1) = 0.  for all k,  reK^"1 and   k ^ r , where 
j-l    k r 

F.  JG) s / ...    /f •   Jb,, . . . , b.   .) db,, . . . , db.   ,   for any set 
j-l _     j-J.    i j-l       i j-i 

GeE1'     , and f.   ,   is the joint frequency function of b., . . . ,b.   , . 
]-l J ^ y 1 J-l 

(iii)     X? , an optimal X. ,   is of constant sign in  AJ.     for all   k€KJ 

J J 

These six assumptions are the same as those made in [8]. 

The meaning of assumptions (a) through (d) is clear.    Assumption (e) is 

dictated by our interpretation of the problem.    We are going to treat (3) as 

an n-period,  or n-stage,  problem in which X. ,  the decision rule of the j 

period,   is selected after we have made decisions X, X.  .  and after we 
1 j-l 

have observed the values of the random variables of periods  1 to j-l ,  but 

before   b.  and all random variables and decisions of periods j+1 to  n have 
J 

been observed. 

In other words, we must select  X. ,  our first period decision rule,  before 

observing the value of the first period random variable  b, .    Then having 

selected   X,   and having observed  b.  we must choose the second period decision 

rule,   X„ ,  before we observe the value of b_ .    This process continues with  X. 
2 2 r j 

depending explicitly on X. ,  b. ,   i = 1, . . . ,j-l,  and only implicitly (i. e. ,  through 

the coupling effect of the constraints) on  b. and   X. , b.,   i =j+l, . . . , n.      Our 

admissible class is defined in this manner beccuse in an n period planning 

situation our information at any stage (aside from a knowledge of the joint 

distribution of  b. , i = 1, . . . , n)   is limited to a knowledge of the decisions and 

observations of the preceding stages.    This explains the first part of 

assumption (e). 
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The second part of this assumption and assumption (f) are required 

in order that we will be able to use the differential equation methods of the 

isoperimetric theory of the calculus of variations.    It is clear, however,  that 

they do not restrict our admissible class of rules to any significant degree. 

We assume that there exists a set of feasible decision rules for (3).    This 

assumption is similar to that made in most mathematical programming papers 

where it is assumed that the problem does have some feasible solution.    In the 

model with conditional chance constraints discussed in sections 4 and 5,  more 

is  said about the question of feasible rules existing,  since there it is quite 

likely that for some values of b,,. . • , b.   .   it will not be possible to satisfy 

the constraints of the i     period. 

Note, however,  that unlike most programming problems,   in any P model 

problem we need not be concerned with whether or not the objective function 

is bounded,  since we know a priori that its optimal value will lie in the 

interval [0,l]. 

An important question in (3), and in any P model,  concerns the uniqueness 

of the optimal decision rules.    The nature of the objective function of (3) is 

such that we expect that several sets of optimal decision rules will exist. 
n 

This is primarily due to the fact that we gain nothing by making    Z c. X. 
j=1   J    J 

strictly larger than k for any sample point if we could just as easily make it 

equal to  k.    In other words,  if X.  and X'.' , j=l, . . . ,n, are two sets of feasible 
n ^       n     J 

rules for which   P( 2 c. x! ^ k) = P(   E c. X!' ^ k),  then both these rules could 

be optimal even though we might have   X. <  X . , j=l, . . . ,n ,   for all sample 

points   (b., . . . ,b.   ,).    Thus unlike most programming problems, the actual 
■'"      n 

numerical value of    £ c. X.   is   not critical as long as it is greater than k. 
j=l   J    J 

For th;s reason there will,  in general, exist many sets of optimal rules for (3). 

This is,  of course,  to be expected.    Since,  as we explained in our introduction, 

the P model was designed explicitly to handle the kind of situation where an 

individual or firm desires only to achieve a certain level of satisfaction with 

as large a probability as possible and any set of decision rules which do this 

will be considered optimal.    In particular,  the individual or firm is not 

' •■   .     :^——™»    ^üujr ^^,-J1   -~~*^*^*mmimtmM^rmi^.       •   - m**- - y-- 



n 
interested in making   S c. X.  as large as possible (although one of the chance 

j=l  J    J  n 
constraints may require that   Z c. X. exceed a given value with at least a 

j=l   J   J 

specified probability). 

The fact that there may well exist several sets of optimal decision rules 

makes it very difficult to establish necessary conditions on these rules.    On 

the other hand, by focusing on a particular subclass of feasible rules we can 

obtain sufficient conditions for optimality in our  n-period P-model.    This will 

be done by converting the given problem into an n+1-period E-model problem, 

and using our previous results on necessary conditions for optimality in the 

E model to derive sufficient conditions for optimality of the P model.    This is 

done in the next section. 

3.    Sufficient Conditions for Opämality 

In order to use the results contained in [ 8] we shall employ the following 

device.    We will replace the constant k in (3) by the random variable  b     , 

which is  N(k, <) where   €>0  is very small.    This device is employed because 

the results in [8] hold only for continuous random variables.    However, 

because the frequency function of b    ,  converges uniformly to the frequency 

function of k (since treating k as a random variable its frequency function is 

6(x;k),  the Dirac delta function at x = k),  it is easy to show that as € —>0   the 

optimal decision rules for the new problem converge uniformly to the optimal 

decision rules of (3). 

Thus we are now going to consider the problem 

n 
maximize        P(   S c.X. 2 b   .,) 

j=l   J   J       n+1 

(4) subject to P( Z a.. X.+d. b. + uMb., . . . ,b.   .)<0)>a. ,  i=l,...,n J ._,   ij   j       i   i       i    1 i-l \ 

P{X.^ 0)> ß.    ,    j=l,...,n 
J J 

where   P   means that we compute the probability using   f    . ,  the known joint 

frequency function of   b.,...,b     . .    However, because   b    .  is independent of 

b , . . . ,b     and because   X.   is a function of only   b., . . . ,b.  . ,   it is clear that 

the constraints of (4) do not depend on   b   ,, .    Thus we will get the same result r n+1 0 



if we compute the probability in the constraints using f     rather than  1     . 

Hence the constraints of (4) are identical to those of (3). 

But (4) is equivalent to the problem 

n 
maximize     P ( S c. X. - X   ., - b   ..) 

j=l   J    J        n+1       n+1 

i 
(5) subject to        P(Z; a.. X. + d. b. + ^.(b.,. . . , b.   ,) ^ or. ,  i =1,.. . ,n subject to        P(Z; a.. X. + d. b. + u.(b.,. . . ,b.   , 

J j=i   ^   J       1   1       1    1 1_1 i 

P(X  * 0)^  p.    ,    j=l, ...,n 

x„+i2 0 

That (4) and (5) are equivalent can be seen as follows. 

Let   Xl, j = 1, . . . , n   be feasible for (4),  then   X1   j = 1, . . . , u , and any 

X   .,^0   are feasible for (5) and conversely.    Moreover,   if   X. .  J=l!...,n 
n+1 B J 

are optimal for (4),  then   X*, j = 1,... , n   and   X*+1 = 0 are optimal for (5). 

Since if there exist   X'.', j = 1, .... n+1   such that   XV are feasible for (5) and 
J J 

the inequality 

n n 
P( 2 cX'.'- X"     ^ b xl) >  P( 2 c.X*- X*., 2 b   .,) 

j=l   J    J        n+1       n+1 j=i   J    J 

holds,  then we also have 

n n 
P( L c.X" £ b   ..) > P( S    c.X*^b   ..) 

j=l   J    J        n+1 j=l   J    J        n+1 

as    X    , ,  X     . ^ 0 everywhere.    But   X. , j=l, . . . ,n are feasible for (5) and 

hence they are also feasible for (4).    Thus we have contradicted the assumed 

optimality of   X. , j=l, . . . , n ,   so  X;,  j=l, . . . , n   and   X    . = 0   are indeed 

optimal for (5).    Conversely if   XT, j=l,. . . , n+1   are an optimal set of rules 
r« 

equivalent problems. 

for (5),  then   XT, j=l, . . . ,n   are optimal for (4).    Hence (4) and (5) are 
■I 

Now let   «*.,   be the optimal value of the objective function of (4).    Then 

Qr*+,    is also the optimal value of (5).    Hence any set of decision rules 

Xf, . . . , X*  .  which satisfy the constraints of (5) and the additional constraint 



n 
(6) P( S c.Xr- X'    ^ b A1) ^ a\, 

,,11        n+1      n+i n+1 
j=l   ■>    J 

will be optimal for (5) and   XT, . . . , X     will be optimal for (4).   (Of course our 

definition of   or*, i   implies that we will only be able to satisfy the second in- 

equality in (6) as an equality and not a strict inequality,  but it is more conven- 

ient to write it as we have above).    Thus our object now is to find  X, .... .X   ,, J 1 n+1 
which satisfy 

P( S a..X.+ d.b.+ «.(b,,. . .,b.   ,) ^ 0) ^ a. ,  i=l,.. . , n+1 

(7) 
P(X. > 0) ^ ß. , j =1, ...,n+l 

J J 

where ßn+1 = 1.  arn+1 = a*H , ^(^ bn) = 0 .  dn+1 = 1 

and    a 
c.        j = 1, . . . , n 

n+1'J h j=n+l 

If we regard (7) as the constraints of a chance-constrained programming 

problem,   (4) and (5) will be solved as soon as we have found any set of 

feasible decision rules for the problem whose constraints are (7).    Thus we 

can use as our objective function in this problem any function we desire.    It 

n+1 
is convenient to choose as our objective   maximize  E( S c!x.)   and so to 

i=l   J   J 
solve the problem J 

n+1 
maximize     E( Z c. X.) 

(8) subject to       constraints given by (7) 

where   c. .  j = 1, . . . , n+1   are some set of constants But (8) is an n + 1 
J 

period triangular E-model problem of the type considered in [8j.        Moreover 

in corollary 2 in [8]  we establish that a necessary condition that     X.   , 

j =1, . . . , n+1   be optimal for (8) is that   X;   be a piecewise linear function of 

u), i=l, . . . , j   and   {z,    ,  keK      },  i = 1,... , j, where   z,   = max {z  :f .(z   ) = T, ;, 

i* i-1 
T,      is a given constant for each   A,       defined in assumption (f),  and    f- ( • ) 

^rr 
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is the conditional frequency function of   b.  given by   b.,. . . , b.  j .    Thus we 

have established 

Theorem 1     A sufficient condition that   X. , j =1,... f n   be optimal for (4) 

is that   X* , j =1,. .. , n  be the optimal piecewise linear 
J , i*        „i-li 

function of u. .  i = 1,. . ., j   and   {z,   , keK     } , i = 1, . . ., j 
i*     * K 

where   z, is defined above. k 

Note that none of the quantities with subscript   n+1    enter into the 

determination of   XT .  j = 1,. • . , n   as given in Theorem 1.    Hence we can 

conclude that   X* , j = 1,. . ., n   are not functions of the   €  used in defining 
■I 

b   .. .    Thus they are,  in fact, a set of optimal rules for  (3) and not merely 

a set of rules which converge to the optimal rules of (3). 

In the special case where   b.,... ,b     are independent random variables in 
we have, using the results in section 6 in   [ 8j , 

     Let   b., . . . ,b     be independent random variables.    Then a 

sufficient condition that   X;  , j =1,.. . ,n   be the optimal 

piecewise linear function of   w. ,  i =1,. . ., j  and   {D,  , kcK ' } , 

i=l, ...,j ,   where   D.     is a  constant for each kcK1"    and 

K       is the indexing set defined in assumption (f). 

We could proceed to establish other theorems which are similar to 

those contained in [8].    We will not do so, however, as our main objective 

in this paper is to prove the general piecewise linearity of the optimal rules 

which we have just done.    The extensions and ramifications of this result 

along with examples of optimal rules in special cases will be presented in 

subsequent papers. 

4.    The Block Triangular Model:  Conditional Chance Constraints 

The model we treat in this and the following section is similar to that 

discussed in [?].   It is expressed as follows: 

r*=¥I^^r"w—'""•i^^1^!^^.  ^-'^ 
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n    T 

maximize     P ( S c. X. 2  k) 

(9) subject to P{A11X1 i bj) ^ ^ 

P(A21X1 + A22X25b2)^2 

P(A., X, + .. . + A.. X.^ b.) 2 ä. 
il    1 ii    i       i i 

P (A  , X, + ... + A     X^b)^ä nl    1 nn   n      n n 

X. ^ 0    ,    j =1, ... .n 

In (9) we make the following assumptions: 

(a) A.. ,  i - j ,   i, j = 1, . . . , n   is an   m. xn.  matrix of constants, 
J J 

T (b) c,  j=l, ...,n   is a   Ixn.   vector of constants, 
J J 

(c) k is a given constant, 

id)   b. ,  i = l,...,n   is an   m.xl   vector of random variables. 

The joint distribution of all the random variables contained 

in   b. ,  i = 1, . . . , n   is assumed to be known. 

(e) a.,  i = l,...,n    is an   m.xl   vector of probabilities.     »•.  , 
1       th -       1 

the  k     element of   a. ,    is a function of the random variables 

contained in   b,, . . . , b.   ,  ,    i. e. ,    or.,  - «., (b,, . . ., b.  ,) . 1 i-l ik       ik    1 i-l 

(f) X. ,  j =1, . . . , n   is the   n. x 1   vector of decision rules for the 
j J 

j     period.    X. is a function of   b., . . . , b.  . but it is not a 
•I J 

function of   b.,...,b  . 
J n 

With the exception of (e),  these assumptions are similar to those used 

in the triangular problem.    The chief difference is that in (9) the i     period 

generates   m.   coupling constraints,  while in (3)   m.   is equal to one.    Also, 

in (9) the components of   b.,  i =1,. . . , n   need not be continuous random 

variables as they were in (3). 
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Assumption (e) needs to be explained in more detail.    Because we 

interpret th*;  P operator in the constraint 

i 
P( Z:A..X. ^ b.) ^  a. 

j=l   ^   J        1 

as meaning that we compute the probability using the conditional distribution 

i 
of   b.  given   b,, . . . ,b.   . ,  it follows that   P( E A.. X. ^ b.)   will be a function 

i 6 1 i-l j=1    iJ    J        * 

of   b., . . . , b.   . .    Hence we want to allow the probability with which the   i 
1 i-l r ' 

period constraints must hold to be a function of the random variables 

b,, . . . , b.   ,.    For this reason   a.   can be a function of the random variables 
1 i-l i 

of periods   1 to  i-l. 

The fact that   P is a conditional probability operator explains why we 

have   X. - 0   in (9) rather than   P(X. 2 0) £ ß.   which would correspond more 

closely to (3).    For in this latter case,   in accordance with the above notation, 

we would have to treat   P   as meaning that we compute   P(X. ^ 0)   using the 

conditional distribution of   b.  given by   b.,...^.   . .    But given   b.,...(b.   . , 

X.   is deterministic by assumption (f) ,     hence  if   p.> 0   we must have 

X. ^ 0   if it is to be feasible.    So instead of writing     P(X. 2: 0) ^ ß.   we write 

the nonnegativity constraints in the simpler form   X. ^ 0 . 

In the objective function of (9) however, the   P operator means that we 

compute the probability using the joint distribution of all the random variables 

involved in   b., . . . ,b    .    This is similar to the interpretation used in (3). 

From [7j we have the following 

Lemma 1:     The constraint 
i 

P( Z A..X. ^ b.) ^ a. 
j=l    U    J        ^ ^ 

in (9) can be replaced by the equivalent constraint 

1 --1       - £ A..X. ^ F.   (1-a.), 
j=l    ^    J        l l 

where   F.   (l-a.) is the   m.x 1   vector of   1 - or. percentile 
ii i i r 

(or fractile) points of the conditional distribution of b. 
~-1       - th 1 

given   b.,...,b.   ..     F.   (I-a..), the k     component of 

,T 
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F^d-ä.),  is defined by    F^V - äik) ' max {y : F.k(y) ^ 1 - ä.k) 

where   F., (•)   is the conditional distribution function of  b.,   , 
ik ik 

the k     component of   b. ,  given   b., . . . ,b.   , . 

Using this lemma we can write (9) in the equivalent form 

. n    T maximize     P( 2 c. X. ^ k) 
r-i J   J 

(10) subject to 2 A..X. s F.(l-ä.)   ,    i = l,...ln 
j=l    ^    J        1 1 

X. ^ 0    ,    j=l n   . 
J 

On considering (10),  an immediate question which arises is whether or 

not a set of feasible decision rules exists for all possible sample points 

(b.,. . . , b  ).    In general such a set will not exist for all sample points and 
in n    7 

so we are faced with the problem of how we compute   P( S c. X. ^ k) over 
j=l   J    J 

those sample points for which a feasible set of   X,. . . . , X     fails to exist. r      r In 

One method of resolving this difficulty, and the one we shall use here, 

is to interpret the objective function as meaning that we want to maximize 

T the joint probability that    2   c. X. ^ k   and feasible   X,, . . . , X     exist,  i.e., 
i    J    J   In 

n    T J=l    J    J 

maximize   P( S c. X. ^ k (1 X,, . . . , X    feasible).    Thus for any sample point 
j=l   J    J In J f     f 

for which feasible   X,, . , . ,X     do not exist,  we get no contribution to the 

objective function.    This procedure is equivalent to defining   X., , k = 1, . . . , n. 

j = 1, . . . , n   to be  M  if   c..   < 0 ,  or to be   -1\1  if   c..  > 0 ,  at all points of 

inconsistency,  where   M > 0   is very large.        Thus it corresponds to 

defining   X.,  = 0   at the points of inconsistency in the E-model as was done 
JK 

in  [7j. 

This is not,  however,  the only way in which we could deal with the 

problem of inconsistency.    We could,  for example,  explicitly introduce con- 

straints which would result in our feasible choices of   X,, . . . , X.   ,    being 
1 j-1 

limited in such a way that we are guaranteed that a feasible   X.   exists, 

j = 1, . . . , n .    The type of additional constraints we would have to include 
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would be of the same form as the constraints of (10) except that the right-hand 

side of the i      block of constraints would be operated on by a projection into 

the range of the A.,  operator.    This procedure is discussed in section 7 

of [7]. " 

Anoth :r alternative,  and one which is much less satisfactory than the 

two discussed above, would be to simply assume that the constraints are con- 

sistent for all possible sample points.    This procedure is adopted in the  n 

stage linear programming under uncertainty problems discussed in [12,13,14, 

15, 22].     Such an assumption destroys one of the major features of chanc e- 

constrained programming,   namely that the decision rules which result from 

solving a chance-constrained problem are designed only to provide "policies" 

for management operation and decision.    As such,  the implementation of these 

decision rules is subject to the controls available to the manager, hence they 

may impute an action which,  due to exceptional circumstances,   cannot actually 

be taken.    Thus our rules need not spell out in advance the actual actions that 

will be taken in exceptional circumstances,  e.g., the circumstances under 

which the constraints of (10) will be inconsistent. 

We now turn to the problem of finding sufficient conditions for   Xf , 

j = 1, . . . , n   to be optimal for (10),  under the assumption that if a set of infeasi- 

ble decision rules does not exist for some sample point,  this point will not be 
n    T    * included in computing   P{ £ c. X. - k) . 

j=l   J     J 

5.    Sufficient Conditions for Optimality 

In a manner analogous to that used in section 3,  it is easy to show that 

(10) is equivalent to the problem 

maximize     P(X il ^ 0) n+i 

1 --1       - 
(11) subject to £ A..X. S F.  (1-a.     ,    i=l....,n 

j=1    U    J 1 1 

n   „ 
-E c   X. + X       < -k 
JS1 J    J n+1 

X. ^ 0   ,    j = 1, . . . , n   , 
J 

j- 
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where   X   ,.   is selected after observing   b,,...^    and in the objective 
n+1 b      I n 

function we integrate over only those values of   b., . . . , b     for which 

X   ,, ^ 0   and feasible   X. , j = 1,. . . , n+1   exist. 
n+1   j 

Let   b   .,   be a   N(0,1) random variable which is independent of b-.-.-.b 
n+1 ^ i n 

Let   or,,   be defined by 
n+1 

(12) in+1 -= I - Fn+1(-k) , 

where   F  .,(•)   is the conditional dirtribution function of   b   ,.   given 
n+i n+1 

b,, . . . , b    .    Because of the independence of   b   ,,  and  b. ,   i = 1,.. • , n   we 
1 n _ r n+1 i 

see that     F  ., ( • )   is the distribution function of a   N(0,1) random variable. 

Thus   a   ,,   defined by (12) will be constant for all   b. ,   i -" 1, . . . , n . 
n+1 i 

T 
j -c.    ,     j =1, . . . , n 

n+l.j 
11     .     j  = n+1 

Let    A   .,   .   =     s' 
I 

so that   A   .,       is    1 x n. ,  j = 1, . . . , n   and   A   ,,      ,,   is    1x1. 
n+1, j j     J n+1, n+1 

Then (11) can be written as 

maximize     P(X   ,, ^ 0) 
n -r I n- 

1 -.1    - 
(13) subject to 2  A..X. £ F.  (1-a.) ,    i-l,...,n+l 

j=l     ^    J 1 

X.äO    ,    j = 1, . . . , n . 

In (13) for each sample point   (b., . . . ,b     .)   we want to find decision rules 

X. ,  j = 1, . . . , n+1   which are feasible and,   if possible,   also satisfy the 

inequality   X*   , ^ 0 . 

Suppose for each sample point we consider the set of constraints 

i . 
'    2 A..X. 5 F    (1-ä.)    ,    i = l... . ,n+l 

i=l    1J    J        ' ' (14) 

X. S 0 ,    j=l n+1    . 
w L J 
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If we find any set of decision rules which satisfies these constraints for a 

given sample point,  then for this point such a set of rules will be optimal 

for (13).    To see this,  consider any point which has the property that feasible 

rules exist for (14).    Then this point also yields feasible rules for (13) and 

gives   X     .20.    Conversely,  if for some sample point we can find feasible 

rules for (13) which contribute to the objective function of (13), these rules 

will also satisfy (14).    Moreover any point for which feasible   X. , j =1, . . . ,n 

exist in (13) but fail to give   X     , ^ 0   can be treated as a point of inconsistency 

since it does not contribute to the objective function. 

To obtain a set of rules which satisfies (14) let us solve the problem 

n+1     T 

maximize     E( 2   c.    X.) 
(15) j=l   J       J 

subject to constraints given by (14)   , 

T 
where all components of   c.    , j = 1, . . . , n+1   are strictly positive.    In (15) 

just as we did in [ 7J, we will sec   X. = 0 , j = 1, . . . , n+1   at all points where 
iT the constraints are inconsistent.    Since   c.    > 0 ,  j = 1, . . . , n+1   and we arc 

n+1    -p 
maximizing,  we know that any point for which     2  c!   X? > 0   is such that 

j=1   J      J 

feasible rules exist for (15).    Thus for such a point decision rules exist which 

are feasible for (10) and which contribute to the objection of (10)   (i.e. ,  they 
n    T 

give     S  c. X. ^ k) . 
i-i > > 

But in theorem 2 of [ 7] we have shown that a necessary condition that 

X. ,  j = 1, , . . , n+1   be optimal for the   n+1  period  E-model,  given by (15) is 

that   X*  be a piecewise linear function of   F.  (1 - or.)   and   X, .... , X* , 
J J J 1 J-l 

Hence we have proved 

Theorem 3        A sufficient condition that   X* , j = 1, . . . , n   be optimal 

decision rules for (9) is that   X.    be the optimal piecewise 
"-1        -           ^         A linear function of   F.   (1-a.)   and   X*,   k = l j-1 • 

This theorem leads immediately to 

Corollary 1       A sufficient condition that   Xf ,  j = 1, . . . , n   be optimal decision 

rules for (9) is that   X.   be the optimal piecewise linear function 
--1       - ^ 

of   F    (l-ar, )   ,    k = l, . . . , j   . 
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6.    Conclusions 

Having given a general characterization of the classes of rules which 

contain an optimal set for (3) and (9), we will conclude with a few remarks on 

how these rules can be found.    In general it is extremely difficult to find an 

optimal set of rules even though we know the rules are piecewise linear.    It 

is not,  however,  impossible as is evidenced by the examples in [7,9] and 

in the solution of the savings and loan problem discussed in [9].    This latter 

example is particularly useful since it provides us with a means of comparing 

the optimal piecewise linear rules with the optimal linear rules found in [llj. 

Moreover,  even though the general problem is difficult to solve,   it may 

be possible to generate algorithms for finding the optimal rules in special 

cases.    For example,  it is fairly easy to establish sufficient conditions that 

X.,j=l,...,n   be piecewise linear in the random variables   b,, . . . , b.   ,  . 
J 1 J"1 

Since much work had been done ou finding deterministic equivalents for 

problems in which   X. is restricted to be a linear function of   b,, . , . , b.   , 
r i J J 

(see l 3, 5, 10,11J),  a perturbation technique may be able to be used to find 

exactly how the optimal linear rule ought to be perturbed in order to get the 

optimal piecewise linear rule. In the savings and loan problem referred to 

above an approach of this sort would have found that a rather minor perturbe- 

tion of the optimal linear rule resulted in the optimal piecewise linear rule. 

Thus this perturbation approach may lead to efficient means of solving certain 

classes of problems. 

Finally,  it is to be hoped that the fact that the same class of rules is 

optimal for the E-model and the corresponding P-model will lead to increased 

efforts in finding algorithms for these problems,   since the resulting alforithms 

will then   solve two of the three chance-constrained models first proposed 

in [3]. 
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