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Introduction

In this paper we will establish sufficient conditions for decision rules to

1/

be optimal for two n-period P-models of chance-constrained programming. —

Proofs of theorems will be based on results contained in our earlier papers

[7,8]) on n-period E-models of chance-constrained programming.

The basic similarvities and differences between the P- and E-models of

chance-constrained programming can be seen by considering the following two

models:

max E(cTX)
(1) subject to P(AX £ b) 2 a

P(Xz0)z

and

max P(CTX = cTX )

oo

(2) subject to P(AX =b) 2 «a

P(X20)z B

In (1) and (2) E stands for the expectation operator and P for the
probability operator. In both cases we compute the expectation and proba-
bility using the joint distribution of all the random variables involved in the
problem, i.e., the joint distribution of all the random variables contained

in the A matrix, and the b, ¢ vectors.

The ith constraint of (1) and (2) says that any set of feasible decision
rules xj = ¢>j(A, b,c) , j=1,...,n, where ¢>j is some function of the elements

of A, b, c, must be such that the inequality

Za.x =b,
j=l i)7] i

l/ See Charnes and Cooper [3]) where the "P," "E," and "V" modeis were
first explicitly introduced.



is satisfied with at least probability a, . The second set of constraints in
(1) and (2) indicate that ¢j » j=l,...,n must also have the property that the
inequality

¢>j(A, b,c) 20

is satisfied with at least probability pj :

In either problem (1) or (2) we may have additional constraints which
restrict the type of functions ¢j(A, b, ¢c) that are admissible. In the problem
discussed here, as in our earlier papers on n-period E-models [7,8],these
additional constraints will be dictated by our interpretation of the problem.
Thus we will not impose restrictions of functional form on the admissible
rules, such as by requiring them to be linear decision rules as is done in
[3,5,10,11]. Instead our admissible class of decision rules will be the most
general class which is consistent with our interpretation of n-period models. —

 J

In (1) our object is to find the feasible set of decision rules x’l".. cea X

n
which give the linear function Z cj xj as large an expected value as possible.

The concept of maximizing the expected values of a linear function is common
in the literature of many subjects. In economics, for example, the notion of
planning so as to maximize expected profits (or minimize expected costs)
under constant returns to scale is often used. Thus the formulation and
analysis of chance-constrained programming problems with the objective
function maximize E(cTX) is natural, particularly when we interpret the

problem as one of planning over an n-period horizon.

On the other hand, the objective function of (2) perhaps requires some
elaboration. In (2) the components of coTXo are specified relative to some
set of values which an individuai or business firm regards as satisfactory
whenever they are achieved. The problem is one of finding feasible decision
rules which will maximize the probability of attaining the given level c'or}(o .
In [3) Charnes and Cooper have discussed the relationship of the P-model
approach to what H. A. Simon [19, 20] calls "satisficing" as opposed to
""optimizing' behavior. In [18] a P-model objective function is used in the

analysis of risky investment decisions.

_1_/ See sections 4 and 6 of { 7] and section 2 below for [further discussion
of this point.

1/

| " T - rorpreresu RN U,

# ‘wv'

-



———
—_— —————— o ~—,

Moreover it is quite possible that employing the E-model rather than
the P-model would yield a very high expected value for the cTX with a2 very
small probability of attaining this value, while the correcponsing P-model
might give a smaller expected value but with a very high probability of
achieving it. Individuals or firms often prefer a gamble with lower expected
value and higher probability of success, to a gamble with high expected value
and a low probability of winning. It is to aid in analyzing the implications of

this kind of human or business behavior that the P-model was formulated.

As mentioned above we are going to discuss two different n-period
models. These models will differ chiefly in the following way. In the triangu-
lar n-period model we will assume that each period generates two new con-
straints, one of which requires that P(XjZ 0) 2 Bj and the other couples Xj ,

the decision rule of the jth period, to the de-ision rules of all preceding

periods. In both these constraints we will compute the probability using the
joint distribution of all the random variables involved in the problem. For

this reason we will refer to these constraints as total chance constraints.

In the other model we will consider, the block-triangular model,

we allow each period to generate a finite, but otherwise arbitrary, number
of chance constraints. However, in contrast to the triangular model, we

will regard these constraints as conditional chance constraints. That is,

By . . .th . .
we will interpret the P operator in the constraints of the i~ period as meaning
that we compute the probability using the condition distribution of the random
variables of the ith period given the observed values of the random variables

of periods one to i-1.

In sections 3 and 5 below we establish theorems which give sufficient
conditions for decision rules to be optimal for the total and conditional
chance constraint cases. However, in spite of the similar nature of these

theorems, the methods of proof are quite different.



2. The Triangular Problem: Total Chance Constraints

The problem we are going to consider in this and the following

section is

n
maximize P({( Z c¢.X. 2 k)
j=l

subject to P(a,, X,+d,btw £0)2 a

171 171 7l )

Pla,) X +2,,X,+d, b, +wy(b))s0) 2 a, ,

T <
(3) P(a3lxl+ a32X2+ 433x3 +d3b3+ u3(b1,b2) £0)2 «a

P(Za X,+d. b.+w(b,...,b. . )Js0)2 a. ,
5=1 ij7) i il i

n
P(Za .X.+d b +w {(b,,...,b
- W Jj nn n 1

P(XjZ O)z2p. o HJ=b...,m
where P represents the total probability operator. Thus we compute the

probability using the joint distribution of all the random variables involved

in the problem.
In (3) we make the following assumptions:

(a) A n L) nl B)Els s ey 8. €0 fuil=tses el

ij i'7j
w and k are given constants, and aii* 0, d #0
for all i.

(b) wi(bl. e bi-l) , i=2,...,n, is a piecewise continuous

function with at most a countable number of discontinuities.
(c) @ Bj, i,j=1,...,n, are known probabilities. Thus

OSai, ﬁjsl for alliand j .
(d) b,, i=1,...,n, are continuous random variables whose

joint frequency function fn(bl, 5 0 ol bn) is known,



(e} X., j=1,...,n, is a function of the random variables bl’ o bj-l

but it is not a function of bj’ St bn : Xj is piecewise continuous

with at most a countable number of discontinuities.
(f) For each j, j=1,...,n, there exists a set of j-1 dimensional
rectangles, {A'L-l, keKJ-l} ere Kia Ml sisome indexing set, such

that

(1) U 5 1AJl:1= EJ-1 » where EJ'1 is j-1 dimensional Euclidean
keK)”™
space,

(ii) Fj-l(A‘{(.lnA'l-l) = 0, for all k, reK‘]-1 and k #r, where
F. (G)=f... [f
j-1 G

GeEJ-1 , and fj-

(b . ’bj-l)dbl' s ,dbj_1 for any set

1"

is the joint frequency function of bl’ -, bj-l 5

j-1

1
(iii) X;' , an optimal Xj , is of constant sign in AJLZI for all keK) ™!,

These six assumptions are the same as those made in [8]

The meaning of assumptions (a) through (d) is clear. Assumption (e) is
dictated by our interpretation of the problem. We are going to treat (3) as
an n-period, or n-stage, problem in which Xj , the decision rule of the _jth
period, is selected after we have made decisions Xl' e ¢ 'Xj-l and after we
have observed the values of the random variables of periods 1 to j-1, but
before b, and all random variables and decisions of periods j+l to n have
been observed.

In other words, we must select Xl’ our first period decision rule, before
observing the value of the first period random variable bl . Then having
selected Xl

rule, X_, before we observe the valus of b‘2 . This process continues with Xj

and having observed b1 we must choose the second period decision

depending explicitly on Xi ’ bi » 1=1,...,j-1, and only implicitly (i.e., through
the coupling effect of the constraints) on bj and Xi , bi’ 1=j+tl,...,n. Our
admissible class is defined in this manner beczuse in an n period planning
situation our information at any stage (aside from a knowledge of the joint
distribution of bi »i=1,...,n) is limited to a knowledge of the decisions and
observations of the preceding stages. This explains the first part of

assumption (e).

s T = e L — e T R AT L T W -,



The second part of this assumption and assumption (f) are required

in order that we will be able to use the differential equation methods of the
isoperimetric theory of the calculus of variations. It is clear, however, that
they do not restrict our admissible class of rules to any significant degree.
We assume that there exists a set of feasible decision rules for (3). This
assumption is similar to that made in most mathematical programming papers
where it is assumed that the problem does have some feasible solution. In the
model with conditional chance constraints discussed in sections 4 and 5, more
is said about the question of feasible rules existing, since there it is quite
likely that for some values of bl' s bi-l it will not be possible to satisfy

the constraints of the ith period.

Note, however, that unlike most programming problems, in any P model
problem we need not be concerned with whether or not the objective function

is bounded, since we know a priori that its optimal value will lie in the

interval [0,1].

An important question in (3), and in any P model, concerns the uniqueness
of the optimal decision rules. The nature of the objective function of (3) is

such that we expect that several sets of optimal decision rules will exist.
n

This is primarily due to the fact that we gain nothing by making '2-:1 cj Xj
strictly larger than k for any sample point if we could just as eajszly make it
equal to k. In other words, if X and X', j=l,...,n, are two sets of feasible
rules for which P(%1 3 xJ? 2 k) = P( ';51 ¢;X{'2 k), then both these rules could
be optimal even thoJu—gh we might ha.v.:: X; < X'.; » j=l,...,n, for all sampie

points (bl' RO 'bj-l)' Thus unlike most programming problems, the actual
n
numerical value of Z c.X. is not critical as long as it is greater than k.
j=1
For this reason there will, in general, exist many sets of optimal rules for (3).

This is, of course, to be expected. Since, as we explained in our introduction,
the P model was designed explicitly to handle the kind of situation where an
individual or firm desires only to achieve a certain level of satisfaction with
as large a probability as prssible and any set of decision rules which do this

will be considered optimal. In particular, the individual or firm is not



=

n
interested in making X - Xj as large as possible {although one of the chance
j=1 n
constraints may require that £ c. X, exceed a given value with at least a

specified probability). =

The fact that there may well exist several sets of optimal decision rules
makes it very difficult to establish necessary conditions on these rules. On
the other hand, by focusing on a particular subclass of feasible rules we can
obtain sufficient conditions for optimality in our n-period P-model. This will
be done by converting the given problem into an ntl-period E-model problem,
and using our previous results on necessary conditions for optimality in the
E model to derive sufficient conditions for optimality of the P model. This is

done in the next section.

3. Sufficient Conditions for Op.imality

In order to use the results contained in [ 8] we shall employ the following
device. We will replace the constant k in (3) by the random variable bn+1
which is N(k, ¢) where €>0 is very small. This device is employed because
the results in [8] hold only for continuous random variables. However,
because the frequency function of bn+1 converges uniformly to the frequency
function of k (since treating k as a random variable its frequency function is
6(x; k), the Dirac delta function at x=k), it is easy to show that as ¢ —>0 the
optimal decision rules for the new problem converge uniformly to the optimal

decision rules of (3).

Thus we are now going to consider the problem

n
. >
maximize P( j2=:1 cj Xj 2 bn+1)
i
3 < > =
(4) subject to P( szllaij Xj + di bi + wi(bl, an 85 bi-l)- 0)Za., i=l,...,n

P(X.20)28. , j=l,...,n
(J )ﬁJ ]

where P means that we compute the probability using fn+1' the known joint
frequency function of bl' T ; bn+1 . However,because bn+l is independent of

bl' ‘e 'bn and because Xj is a function of only bl' “ e 'bj-l , it is clear that

the constraints of (4) do not depend on bn+l . Thus we will get the same result

s — Y T S Tt e Iy s e



if we compute the probability in the constraints using fn rather than fn+1 .

Hence the constraints of (4) are identical to those of (3).

But (4) is equivalent to the problem

maximize P(j%l cj Xj - Xn+12 bn+l)
(5) subject to P(Jélaijxj-r d; b, + wi(bl,...,bi_l)Zai S iElg e s I
P(XjZ 0) 2 ﬁj I b
Xr1+l =1¢

That (4) and (5) are equivalent can be seen as follows.

Let xJ!. j=1,...,n be feasible for (4), then Xj',j=1,...,n, and any

Xr,1+1 2 0 are feasible for (5) and conversely. Moreover, if X;' J=ly. an
are optimal for (4), then X¥, j=1,...,n and X:+1 =2 0 are optimal for (5).

Since if there exist X;', j=1,...,n+l such that X.'i' are feasible for (5) and
the inequality
& " "n
P(Z c¢c.X.-X
5=1 i) n+l j=1

)

n
* %
an+l)>P(chX.-X >bn+1

) n+l ~

holds, then we also have

n n
1] %
2 2
P Zrc, XaBib = PIOS Lyt =iby )
j=1 j=1
as X'r;+l . X:;H 2 0 everywhere. But X;', j=l,...,n are feasible for (5) and
hence they are also feasible for (4). Thus we have contradicted the assumed

optimality of X¥, j=1,...,n, so X¥, j=l,...,n and x:“ =0 are indeed

optimal for (5). Conversely if X;.“, j=1,...,n+]l are an optimal set of rules
for (5), then X.’;, j=l,....,n are optimal for (4). Hence (4) and (5) are

equivalent problems.

Now let a: be the optimal value of the objective function of (4). Then

+1

a:H is also the optimal value of (5). Hence any set of decision rules

X¥,...,X*

] T4l which satisfy the constraints of (5) and the additional constraint



n
*_ ¥ *
(6) P(j2=:1 cj Xj xn-i-l 2 bn+1) o T+l

will be optimal for (5) and X Xz

definition of a* 1 implies that we will only be able to satisfy the second in-

will be optimal for (4). (Of course our

nt
equality in (6) as an equality and not a strict inequality, but it is more conven-
ient to write it as we have above). Thus our object now is to find 5N 'X:;H

which satisfy
i
P2 a..X+t+dbB +&(by.:5,b: )<0)2 a., i=ls::. bl
j=1 ij = il il i-1 1
(7) _
P(XjZO)Zﬂj,J=1....,n+l

*

pUBETE SR U A IR AR PR L DO SO SRR I
-C, j=1 » N
and «a +1 . = J
2 1 j=ntl

If we regard (7) as the constraints of a chance-constrained programming
problem, (4) and (5) will be solved as soon as we have found any set of
feasible decision rules for the problem whose constraints are (7). Thus we

can use as our objective function in this problem any function we desire. It

n+l

is convenient to choose as our objective maximize E( £ ¢! X.) and so to
solve the problem j=1

n+l

maximize E(Z c!X.)

j=1
(8) subject to constraints given by (7)
where c.'. j=1,...,ntl are some set of constants But (8) is an n+1

period triangular E-model problem of the type considered in [8]. Moreover

in corollary 2 in [8] we establish that a necessary condition that X’." ,

j=1,...,n+]l be optimal for (8) is that X;." be a piecewise linear function of

1%

i1y, . . vl i s
},i=1,...,j, where z, = max {zk'fi(zk)-Tk*}’

=1 i and {z'7, keK
w,, izl,...,j an z, » ke
i i-1

T;{ is a given constant for each Ak defined in assumption (f), and fi( -)
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is the conditional frequency function of bi given by bl' el bi-l . Thus we

have established

Theorem 1 A sufficient condition that X;'. j=l,...,n be optimal for (4)
is that X¥, j=l,...,n be the optix;qal piecewise linear
E i i-1 . :
function of w,, i=1l,...,j and {zll( , keK1 X ol 3 Fils & e o)

-3
where z;( is defined above.

Note that none of the quantities with subscript ntl enter into the
determination of X;‘ » J=1,...,n as given in Theorem l. Hence we can
conclude that X}" » jJ=1,...,n are not functions of the ¢ used in defining

b :
n+l
a set of rules which converge to the optimal rules of (3).

Thus they are, in fact, a set of optimal rules for (3) and not merely

In the special case where bl’ S50 ,bn are independent random variables

we have, using the results in section 6 in [8],

Theorem 2 Lief bl’ )
sufficient condition that X; » j=1,...,n be the optimal

o bn be independent random variables. Then a

piecewise linear funct.ion of W, i=l,...,) and {D;( ’ chi'l} '
i=1,...,j, where D; is a constant for each keKi~! and
K™} is the indexing set defined in assumption (f).

We could proceed to establish other theorems which are similar to
those contained in [8). We will not do so, however, as our main objective
in this paper is to prove the general piecewise linearity of the optimal rules
which we have just done. The extensions and ramifications of this result
along with examples of optimal rules in special cases will be presented in

subsequent papers.

4. The Block Triangular Model: Conditional Chance Constraints

The model we treat in this and the following section is similar to that

discussed in [7]. It is expressed as follows:

B . :,"——_‘w:-w ~ o
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2T
maximize P(Z ¢, X. 2 k)
a=q W
J
(9) subject to P(A11 X, < b )2 a,

In (9) we make the following assumptions:
(a) Aij »12j, i,j=L...,n is an mixnj matrix of constants,
(b) c;[‘, j=L,...,n isa lxnj vector of constants,
(c) k is a given constant,

id) bi w A=l .::,m 18an mixl vector of random variables.
The joint distribution of all the random variables contained

in bi » 1=1,...,n 1s assumed to be known.

(e) 5i , i=1l,...,n is an mixl vector of probabilities. aik ;
the kth element of &i , 1s a function of the random variables
contained in bl’ r o bi-l , dee., a, F aik(bl’ s bi-l) .

(f) Xj , j=1,...,n is the n‘j x 1 vector of decision rules for the

jth period. Xj is a function of bl’ 5 o0 0 bj-l but it is not a

functionof b.,...,b .
j n

With the exception of (e), these assumptions are similar to those used
in the triangular problem. The chief difference is that in (9) the ith period
generates m, coupling constraints, while in (3) m, is equal to one. Also,
in (9) the components of bi' i=l,...,n need not be continuous random

variables as they were in (3).

—— s . — ey -—-W
© e e~ 3 - - 0
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Assumption (e) needs to be explained in more detail. Because we
interpret the P operator in the constraint

- 1 -

P(ZA..X. =b.,)2 a.

3 i) T i

j=l

as meaning that we compute the probability using the conditional distribution
= [

bi-l , it follows that P( Z Aij Xj = bi) will be a function

of b, given b
i 3
j=1

¥

of b,...,b . Hence we want to allow the probability with which the b
period constraints must hold to be a function of the random variables

by, 'bi-l'
of periods 1 to i-1.

For this reason &i can be a function of the random variables

The fact that P is a conditional probability operator explains why we
have Xj 2 0 in (9) rather than IS(XJ. 20)z2 6j which would correspond more
closely to (3). For in this latter case, in accordance with the above notation,
we would have to treat P as meaning that we compute I-D(Xj 2 0) using the

conditional distribution of b, given by b 'bj-l . But given bl' X 'bj-l :

1’ L
X. is deterministic by assumption (f), hence if p.> 0 we must have
xj 2 0 if it is to be feasible. So instead of writing ﬁ(xj 20)2 B, we write

the nonnegativity constraints in the simpler form X.i 20.

In the objective function of (9) however, the P operator means that we

compute the probability using the joint distribution of all the random variables

involved in byy-v e bn . This is similar to the interpretation used in (3).

From [ 7] we have the following
Lemma 1: The constraint
i E
P(Z A .X.2b.)2 a.
j=1 Wiy i i

in (9) can be replaced by the equivalent constraint

i

A.X sFlu-a),

N 1 i

j=1
where F-'i-l(l-ari) is the m, X 1 vector of 1- &i percentile
(or fractile) points of the conditional distribution of bi

: -1, - th
given b,,...,b. ;. F, (1- aik) » the k' component of



- 18

=-1 - . . =-1 -
Fi (l-ai), is defined by Fi (l'aik)

where F.‘ik(-) is the conditional distribution function of bik ,

= . - < 1 o
S max{y.Fik(Y) =l-a.)

the kth component of bi » given bl’ 600 'bi-l ]
Using this lemma we can write (9) in the equivalent form

ST,
maximize P(Z c¢. X. 2 k)

j=1

(10) subject to ZA X SF(-a) , i=l,...,n

On considering (10), an immediate question which arises is whether or
not a set of feasible decision rules exists for all possible sample points

(bl, ce 'bn)' In general such a set will not exist for all sample points and

n
so we are faced with the problem of how we compute P(Z C?X. 2 k) over

j=l

those sample points for which a fcasible set of X Xn fails to exist.

P
One method of resolving this difficulty, and the one we shall use here,

is to interpret the objective function as meaning that we want to maximize
n

the joint probability that Z c?)(j 2 k and feasible X

Xn exist, i.e.,
j=1

RRRE
=, S5

maximize P(Z ¢.X. 2 k [} Xl’ s X feasible). Thus for any sample point
j=1

for which feasible Xl’ Ty Xn do not exist, we get no contribution to the

objective function. This procedure is equivalent to defining Xjk'
J=1L...,n to be M if cjk<0,ortobe -nn o if cjk>0,atallpointso{
inconsistency, where M > 0 is very large. Thus it corresponds to

defining X'k= 0 at the points of inconsistency in the E-model as was done
in [7]

This is not, however, the only way in which we could deal with the
problem of inconsistency. We could, for example, explicitly introduce con-
-1 being
limited in such a way that we are guaranteed that a feasible X. exists,

straints which would rc¢sult in our feasible choices of Xl, c e XJ.

j=L....,n. The type of additional constraints we would have to include

k=1,...,n.
J
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would be of the same form as the constraints of (10) except that the right-hand
side of the ith block of constraints would be operated on by a projection into

the range of the A.. operator. This procedure is discussed in section 7

of [7].

Anoth .r alternative, and one which is much less satisfactory than the
two discussed above, would be to simply assume that the constraints are con-
sistent for all possible sample points. This procedure is adopted in the n
stage linear programming under uncertainty problems discussed in [12,13,14,
15,22]. Such an assumption destroys one of the major features of chance-
constrained programming, namely that the decision rules which result from
solving a chance-constrained problem are designed only to provide "policies"
for management operation and decision. As such, the implementation of these
decision rules is subject to the controls available to the manager, hence they
may impute an action which, due to exceptional circumstances, cannot actually
be taken. Thus our rules need not spell out in advance the actual actions that
will be taken in exceptional circumstances, e.g., the circumstances under

which the constraints of (10) will be inconsistent.

We now turn to the problem of finding sufficient conditions for X"; )
j=1,...,n to be optimal for (10), under the assumption that if a set of infeasi-
ble decision rules does not exist for some sample point, this point will not be

T

n
included in computing P(Z cj X;'Z k) .
j=l

5. Sufficient Conditions for Optimality

In a manner analogous to that used in section 3, it is easy to show that

(10) is equivalent to the problem

maximize P(Xn+l 2 0)

(11) subject to A X, SF.(l-a) , i=l,...,n
j=1 M j i i
n
Tl X, +X . S-k
j=l" n+l
X.20 , j=l,...,n ,
j
g . m— — =y = . S R
»

}i: S



~15-

where Xn+1 is selected after observing b,..., bn and in the objective
function we integrate over only those values of bl, SB ok bn for which
X 2 0 and feasible X., j=1,...,n+l exist.

n+l —_ J

Let an be a N(0,1) random variable which is independent of bl""’b

Let a be defined by

nt+l
(12) @ =1 F itk
where Fn+1 (-) 1is the conditional distribution function of bnJrl given
b.,...,b_. Because of the independence of b and b., i=1],...,n we
1 n n+l i

see that F.'nﬂ( -) 1is the distribution function of a N(0,1) random variable.

Thus a defined by (12) will be constant for all b, i<1l,...,n.

n+l
1-%‘ y  j=1, Lm
Let An+l,j = \"
Ll » jJ=n+tl
so that An+1,j 1s lxnj, j=lL,...,n and An+l,n+1 i1s 1x1.
Then (l11) can be written as
maximize P(Xle = 0)
1
(13) subject to Z A..X. =< (l-a.), 1i-1, ,yntl
) U7
J
X.20 , j3=L...,n.
J
In (13) for each sample point (bl’ ceey bn+l) we want to find decision rules

X;" » j=1,...,ntl which are feasible and, if possible, also satisfy the

inequality X:H 20.

Suppose for each sample point we consider the set of constraints

1
{ Z A ijE"i’l(l-&i) , i=1,...,ntl
(14) W:‘
|

<
.
v
o
.
1]
—
o
+
—
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If we find any set of decision rules which satisfies these constraints for a
given sample point, then for this point such a set of rules will be optimal

for (13). To see this, consider any point which has the property that feasible
rules exist for (14). Then this point also yields feasible rules for (13) and
gives Xle 2 0. Conversely, if for some sample point we can find feasible
rules for (13) which contribute to the objective function of (13), these rules
will also satisfy (14). Moreover any point for which feasible Xj o) UG R E B G

exist in (13) but fail to give X 2 0 can be treated as a point of inconsistency

n+l
since it does not contribute to the objective function.

To obtain a set of rules which satisfies (14) let us solve the problem

n+l T
maximize E( Z c¢' X))
(15) j=1 )
subject to constraints given by (14) ,
ol . : "
where all components of c¢,” , j=1,...,ntl are strictly positive. In (15)

just as we did in [7], we will sex X.=0, j=1,...,n+l at all points where

the constraints are inconsistent. Since ch> 0, j=1,...,ntl and we are

n+l
maximizing, we know that any point for which Z cj'T X¥>0 is such that
j=1
feasible rules exist for (15). Thus for such a point decision rules exist which

are feasible for (10) and which contribute to the objection of (10) (i.e., they
n
give Z CTX. =y
j=1 J ]
But in theorem 2 of [7] we have shown that a necessary condition that
X;", j=1,...,ntl be optimal for the nt+l period E-model, given by (15) is
that X;‘ be a piecewise linear function of F;l(l- &j) and X*,..., X-’;‘_l .

Hence we have proved

Theorem 3 A sufficient condition that X¥, j=1,...,n be optimal

decision rules for (9) is that X* be the optimal piecewise

linicsn Fan Eiom i ﬁj'l(l-&j) and X*, k=1,...,j-1.

This theorem leads immediately to

Corollary 1 A sufficient condition that X¥, j=1,...,n be optimal decision

rules for (9) is that X; be the optimal piecewise linear function
- .1 - _ .
of Fk (l-ak) » k=l,...,j
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6. Conclusions

Having given a general characterization of the classes of rules which
contain an optimal set for (3) and (9), we will conclude with a few remarks on
how these rules can be found. In general it is extremely difficult to find an
optimal set of rules even though we know the rules are piecewise linear. It
is not, however, impossible as is evidenced by the examples in [7,9] and
in the solution of the savings and loan problem discussed in [9]). This latter
example is particularly useful since it provides us with a means of comparing

the optimal piecewise linear rules with the optimal linear rules found in [11].

Moreover, even though the general problem is difficult to solve, it may
be possible to generate algorithms for finding the optimal rules in special

cases. For example, it is fairly easy to establish sufficient conditions that

X;‘, j=1,...,n be piecewise linear in the random variables bl' e 'bj-l .
Since much work had been done ou finding deterministic equivalents for
problems in which X. is restricted to be a linear function of bl' EE G bj-‘

(see [3, 5,10,11]), a perturbation technique may be able to be used to find
exactly how the optimal linear rule ought to be perturbed in order to get the
optimal piecewise linear rule.In the savings and loan problem referred to
above an approach of this sort would have found that a rather minor perturbe-
tion of the optimal linear rule resulted in the optimal piecewise linear rule.
Thus this perturbation approach may lead to efficient means of solving certain

classes of problems.

Finally, it is to be hoped that the fact that the same class of rules is
optimal for the E-model and the corresponding P-model will lead to increased
efforts in finding algorithms for these problems, since the resulting alforithms

will then solve two of the three chance-constrained models first proposed
in [3].
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