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PREFACE 

The  research  reported here was   sponsored  by the  Defense Atomic Support 

Agency and monitored by Lt.  Frank Brady  Jr.     The study was conducted under 

Contract  DA-49-146-XZ-343  from  September   1964   to December   1965,   and  was  a 

continuation of work begun in  June  1959,   under Contract  DA-49-146-XZ-018, 

which has been  published  in four  reports  numbered DASA-1266-1  to DASA- 

1266-4.1-4 

Supervisor  for  the  project  was  Dr.   Ernest  G.  Chllton and  the  project 

leader was  Dr.  Lynn Seaman.    Dr.  George N.  Bycroft  conducted and  described 

the analysis   in Appendix C.    The analysis  in  Appendix D was  prepared by 

Mr.  Leonard McCulley and  Dr.  Clarence M.  Ablow.    The  experiments  were con- 

ducted by Dr.  Seaman with the assistance  of  Messrs.  Gerald Wagner,   William 

Fehner,   James  Symes  and  Phillip Neketin. 

Dr.   Robert   V.   Whitman  of  Massachusetts   Institute  of   Technology,   the 

consultant   on   the  project,   helped  to direct   the course   of   the  work.     The 

Vicksburg   clay  soil   used   on  the   project   was   supplied  by   the  Waterways 

Experiment   Station   of   Vicksburg,   Mississippi. 

The  notation  has  not  been   completely  standardized for  the  whole   report, 

Within  the  chapters   the   symbols  are  consistent  and are listed  before 

Chapter   1.     The  notation   of  each  appendix   is   listed  at the beginning  of 

the  appendix. 

Test   results  are  given  in  metric   units.      However,   the   soil   column and 

some  of   the gages  are  designed   using  English   units,   and   their discussions 

are   shown   in  that   system.     The  metric   units   used and   their  English   equiva- 

lents are: 

Quantity Metric  Unit English Equivalent 

Pressure,   stress,   modulus 1   bar» 14.50  psi 
Length 1   cm 0.3937   in. 
Wave   Velocity 1   m/sec 3.281   ft/sec 
 Particle  Velocity 1   cm/sec 0.03281  ft/sec 
*  One tar  equals  one  million dynes/cm2 and   is  approximately  equal   to 

one atmosphere. 
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ABSTRACT 

Soil  behavior during stress wave  propagation was  studied  on a   sand 
and  two clays  by making  one-dimensional wave  propagation  tests on 5-meter 
long  columns  of   the soils.     Attempts were made  to predict   this behavior 
by determining  soil properties  in dynamic compression  tests  on small 
samples and by  using these  properties   in a variety of mathematical models 
for  soil. 

In  all   the  wave propagation  tests,   stress and acceleration records 
were  very  similar,   showing  that  the   three soils differ     in  degree,   not   in 
kind.     Peak  stress  and particle velocity attenuated  to 20-40^ of the peak 
value  in  the   length  of  the  5-meter  column.    The peak acceleration attenu- 
ated with  the  second power of arrival   time.    The  rise  time  of   the stress 
increased with depth.    The wave velocity  of  the  peak stress  also increased 
with depth:  average wave  velocities  ranged from  100 to 500 m/sec. 

Both  time-dependent  and  time-independent  dissipation was   observed  in 
all   soils.     Time-dependent  dissipation was dominant   in  soft   clay;   time- 
independent  dissipation was  more  important  in  sand and  stiff  clay. 

Two theoretical  soil  models were  analyzed:   one  to investigate the 
effect  of  combined  time-dependent and   time-independent  dissipation,   and 
one  to study  the  effects  of  nonlinear  stress-strain  relations  and geo- 
static  stress.     Comparison of  the  theoretical  predictions from  the first 
of   those and  two previously  studied models  (using properties   obtained from 
compression  tests   on soil  samples)  with  the wave  propagation  results  showed 

1. For  clays   the arrival   time  of   the wave at  the  column  base 
was within   10^ of  that  calculated  from  the  tangent  modulus, 
and   for  sand  it  was   within  25$. 

2. Attenuation of peak stress and  particle velocity was  pre- 
dicted within ±50$ at  the base  of  the  column   (5-meter  length). 

One  of  the  soils—a  well-compacted  kaolinite  clay-exhibited an 
approximately  linear  loading  relation  during compression     tests.    Because 
of  this   linearity  the model  analyses  were  particularly applicable to the 
prediction  of  the  behavior of   this  soil   (all models  used  for  predictions 
have   linear  loading  relations).     For  this   soil,   attenuation was  predicted 
within   10$ and wave  velocity within 5$;   thereby  verifying  the   usefulness 
of   the   theoretical  models   used. 

In general, the earlier, simpler models are as suitable for predic- 
ting wave propagation behavior as the more complex models, but no single 
model  can  predict  all  properties  reliably. 
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NOTATION  FOR CHAPTERS   1   through  5 

c =     wave   velocity   (meters/sec) 

c =     wave   velocity at   the  surface,   or  wave  velocity associated 

with  ria/dt   > o 

c1 -     wave velocity associated with da/dt < o 

E    =  spring constants for viscoelastic compacting model (bars) 

E    =  spring constant of series spring of viscoelastic compac- 
o 

ting model, or modulus during loading for linear hyster- 

etic model 

Et   =  unloading modulus for linear hysteretic model 

g    -  acceleration of gravity, 981 cm/sec2 

M    =  soil modulus 

T    =  time required for stress to decay from its peak value to 

0.368 times its peak value 

T    =  value of T at the top of the soil column 
o 

t    =  t ime 

t =     time  of  peak stress 
P 

v =     particle  velocity   (cm/sec) 

v =     peak  particle velocity 
m 

v =     peak  particle velocity at   the  surface 
mo 

a =     (1   -A/E0/E1)/(1  ^VEo/Ej   =   (1   -   Co/cJ/U   +   co/cj, 

the  strain-rate-independent   dissipation  parameter 

e =     s t ra i n 

Tj =     viscosity  of  viscoelastic   compacting model   (bar-sec) 

§ =     viscous  dissipation  parameter denoting   lag  between   peak 

strain  and   peak stress 

P =     density   (gm/cm3) 

a =     stress 

a =     peak  stress m 
a =     peak  stress   at   the   surface,   applied  peak  stress mo 
T =     t  /T«,   nondimensional arrival  time  of  the  peak stress 

P P'   0 
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CHAPTER   1 

INTRODUCTION 

Knowledge  of   the   response  of  soil   to nuclear explosions   is  necessary 

for  the  proper design  of  underground  protective structures.     This  study 

was  concerned  with  the   transmission  of   forces  from the explosion  through 

the  soil  to the  vicinity of  the structure.     The dissipative  properties of 

the  soil  modify  the  forces during  transmission:     the  relationship between 

the dissipative  properties and  the modifications was  studied  on  this 

project. 

The  present   study  was  restricted  to near-surface phenomena,   to 

moderately-compacted soils  similar  to  those  found near the  surface,   and 

to overburden  pressures  produced by depths  up  to five meters .     The  applied 

loading had a   peak value  of several atmospheres and a  duration of  a   few 

milliseconds.     The  loading history was  similar  to the pressure history of 

an airblast  so that   the  study  is  especially  pertinent   to situations   in 

which  there  is  an  air  or  surface burst.     All   the tests and analyses  were 

concerned with  one-dimensional  phenomena   only. 

This  project   is  the  fourth   in a   series   initiated  for the  study  of 

wave  propagation   in  soils.     The  particular feature of  the  present  project 

is  the extension   to clay  soils   (previous  projects dealt with  sand) .     The 

results of  the  study  can be used  for design  of  underground structures and 

for correlation  of  data   from  large-scale  field  tests. 

1.1    Objectives 

The  purpose  was  to study wave  propagation   in soils and  to develop 

methods for predicting wave propagation  phenomena. 

1 .2    Approach 

Our approach  consisted of  three major phases: 

l)     The  experimental determination  of wave propagation 

phenomena   in  typical near-surface soils. 

1 



2) The dynamic testing of  small  samples  of  these  soils   in 

a   laboratory dynamic compression  tester. 

3) The development   of  theoretical  models  which  use  the 

results  from the  laboratory compression tester to pre- 

dict  the  wave  propagation  results. 

For the wave  propagation  tests  our approach was  to apply a   pulse 

loading to a  one-dimensional column  of  soil.     The pulse  loading was  simi- 

lar  to the airblast  pressure wave from au explosion.     The approach   includ- 

ed measurements  of   stress  and particle  velocity  in the  soil   to provide 

information on  the  stress  wave caused by  the pulse  loading.     Soils with a 

range of properties  were  studied  to provide  a  broad base  for a   prediction 

procedure;     dry sand,   wet  kaolinite clay,   dry kaolinite,  and a   sticky, 

natural clay from Vicksburg,   Mississippi. 

Our approach   in  the  conduct   of  compression  tests  was  to attempt   to 

duplicute  the  loading and  soil conditions  of   the wave  propagation  tests 

on a  small  sample  of  the  soil:     same  boundary  conditions,   stress   levels, 

loading  rates,   water  contents,   and densities.     Stress  on  the  sample  and 

strain of the soil   sample were measured  simultaneously  during  testing. 

The  stress-strain  data  were  then  used  to determine  the  wave  velocity and 

dissipation  parameters  to be used  for prediction  of wave propagation 

phenomena. 

The theoretical models  were developed  to study certain aspects  of 

wave  propagation and   the  relation between wave  propagation phenomena  and 

compression  phenomena.     The aspects  considered were:    attenuation and 

dissipation,   nonlinearities  of  the  stress-strain  curve,   and  the geostatic 

stress.     Each  theoretical  model studied  contained  two or more  of   these 

features.    By comparing  the  theoretical   prediction of  these models  with 

the measured wave  propagation phenomena,   we attempted  to determine which 

features of  soil  behavior are significant,   which  features  could be 

predicted and  the  degree  of  accuracy  of   the  prediction. 



1.3    Background 

Many  investigators  have  studied  one-dimensional wave  propagation 

phenomena   to get   some  insight   into three-dimensional  phenomena.     These one- 

dimcnsional  studies  should   lead naturally  toward an  eventual  understanding 

of  three-dimensional  phenomena.     For experiments  to approximate  a  one- 

dimensional  case,   conditions must  be  controlled  in  the other  two dimensions, 

Strain and  pressure are  the-  conditions  usually controlled,   either by main- 

taining  zero strain  or constant  pressure  in   the second and  third dimensions. 

The constant   lateral  pressure  condition was  employed by E.  T.   Selig5 and 

R.  L.  McNeill.6    The  zero  lateral  strain  condition was  used  by  W.  Heierli,7 

R.  V.  Whitman,8   J.   V.  Zaccor and N.   R.   Wallace,9 H.   W.  Kriebel* and the 

present  investigator.     Each  of  these boundary conditions  represents  three- 

dimensional wave  propagation  conditions   in   certain   limited  regions 

surrounding  an  explosion. 

The  constant   lateral  pressure  condition  can be  obtained by  encasing 

the soil   in a   rubber membrane  or tube and applying  external  pressure or 

internal vacuum.     The zero lateral  strain condition has been accomplished 

using a   stiff   tube   (Heierli,7  Kriebel,a present  study)  or a   pressurized 

fluid boundary   (Zaccor and Wallace9). 

Pressures  have been applied with a   shock tube,   a  drop-weight,   or a 

contained explosion.     The soil  response  to the stress wave was measured 

with various  transducers:     stress gages,   force gages,   accelerometers, 

soil  strain gages,   and displacement  gages. 

Test   results  have been  correlated  in  various ways  by  the different 

investigators,   but   for  their  tests  on  sands,   all have  used a  strain-rate- 

indopendent model as   the basis  for analyses.     Heierli  had a  good  correla- 

tion of  force history between  experiments and analysis.     Zaccor and 

Wallace were able  to relate the wave  velocity and particle velocity found 

in wave propagation  experiments  to the modulus measured  in  compression 

tests.     Selig,5  McNeill,6 and  Seaman  and  Whitman4 were able  to predict 

peak  stress  attenuation. 



Theoretical  analyses  that  have  been  conducted can be  separated  into 

two groups  on  the basis  of  the  type  of  dissipativc mechanism hypothesized 

for  the  soil.     All  the experimentalists mentioned  earlier  used  nonlinear 

and strain-rate-independent  models  for  soil.    Other theoretical  studies  on 

this  type of  model have been  published  by Weidlinger and  associates.10"11~1, 

The other dissipative model   is  strain-rate-dependent  and  has been 

studied  recently  for   its applicability   to soils by  Kondner,^^ 14  Christen- 

sen and  Wu, 15  and  Whitman.16    Their  experiments were   in  the  form of 

dynamic  compression  tests on  soil.     These  studies  have  shown  that  The 

dissipative  character of  certain  clay  soils   is  similar  to  that   of  the 

standard  linear   (3 element)  viscoelastic  model  in  the  frequency  ranges 

considered.     The wave  propagation  calculations of  Lai  and  Sauer1  show that 

this model  does  not adequately  represent   the attenuation  or wave  front 

changes  seen   in  actual  soils.     Thus,   th?  model should be  modified  for 

application  to vavo  propagation predictions,    A viscoelastic model  that 

exhibits  the  same dissipation at  all   frequencies   (constant   tar  delta 

model)  was analyzed by Bycroft.3    Although  the wave  propagation  behavior 

of  this  model   is   similar  to  that   observed   experimentally,    its   properties 

are different   from  those seen   in   compression  tests. 



CHAPTER 2 

SUMMARY AND RECOMMENDATIONS 

2,1     Summary 

2.1.1  Wave  propagation  tests  in  sand and clay.     One-dimensiona 1 wave 

propagation  tests were  performed  on  Monterey beach  sand,   a  kaolinite  clay, 

and a  Vicksburg  backswamp clay.     These soils,   which  represent a wide  range 

of  soil   properties,  had  a   stiffness  and density  comparable  to that   of 

natural   soils  near the  surface  of   the earth.     One-dimensionality was 

obtained  by  confining  the  soil   in  a   5-meter  long  tube which allowed  the 

soil   to move along the axis  of   the  tube but   restrained  the  radial motion. 

Loading was   in  the form of  a  stress  pulse with amplitudes  up to 11 bars 

and  durations   from 2  to 6  msec. 

These  first  complete one-dimensiona1 tests  on  clays  and  the continu- 

ing  tests   on  sand  indicated  that   the wave transmission  properties of  the 

two materials  were very  similar.     All  soils exhibited both  time-dependent 

and  time-independent energy dissipation.    The differences   in  the soils 

appeared   in wave  velocities and   in  the  relative  importance  of  the  two 

types  of  dissipation.     Stress and acceleration  records  obtained from tests 

on  the  sand and  clays were  qualitatively  identical.     The  stress waves 

spread  out  and   the peaks  attenuate as   they travel  through   the soil.     For 

all  tests   the  peak stress attenuated   to between  l/5  and  2/5  of  the applied 

peak   in   the   length of   the  5-meter  column.     The  peak  particle  velocity 

attenuated  the   same amount.     The  peak acceleration attenuated with  the 

second  power  of  arrival   time.     TTie  rise time  of  the  stress  and the wave 

velocity  associated with  the peak stress both  increased with depth.     The 

duration  of  the   stress wave  increased  4  or 5  times  in  the  first  2 meters 

(and was  not  measurable beyond   that  depth because  of   the arrival of  the 

reflected  wave   from the  base  of   the   soil  column). 



The  test apparatus   included an  articulated soil  tube  for holding  the 

soil,   stress  gages and ac^elerometers  for measuring  characteristics  of   the 

stress  wave,   and a drop-weight  mechanism for applying  the  loading.     The 

soil  tube and accelerometers  appeared  to be adequate  for  the study.     The 

stress   gages  exhibited  certain  calibration  problems which affected all 

aspects   of  the  stress  data:      the  peak stresses were  given within  20^,   wave 

durations were  lengthened as  much  as GO'f,,   and  rise   times  were altered an 

indeterminate  amount.     The  drop-weight  provided a   stress   pulse which 

lacked   the  shock front  and   exponential decay   characteristic  of air blast 

loadings.     Because  of   this   lack,   the  experimental   conditions do not 

correspond  exactly with  ei  'er  field  conditions  or   conditions assumed 

for  theoretical  analyses. 

2.1.2  Soils Properties   from  Compression  Tests.     One-dimensiona1 

dynamic   compression  tests  were  performed on   samples   of   the  soils  under 

confinement   conditions which   closely approximated  those  used  in the wave 

propagation   tests.     The  compression   tests  were  used   to determine  soil 

properties,   particularly   the  moduli   during   loading  and   unloading  and   the 

dissipation   characteristics.     The  moduli  and  dissipation   characteristics, 

which  are   related  to  the  behavior   of   the  soil  during  wave   propagation  are 

determined   from  stress-strain  data   obtained  during   the   compression  tests. 

All  of   the  soils  showed a   considerable difference  between   the  loading and 

the  unloading   stress-strain   relation.     In  the  driest   kaolinite  soil,   the 

loading   relation was  essentially   linear,  but  the  other  soils exhibited a 

relation  that  was concave  to  the  stress axis,   i  e,   stiffening on   loading. 

In  all   cases,   the unloading   relation  was  concave  to  the   stress axis. 

The  slopes  of  the stress-strain  curves were measured  to determine 

the  soil  modulus  from which  wave   velocities   for  the   soil  were  calculated. 

The  tangent   moduli  at   the   stress   level  of  6  bars  varied   from 750  to 4800 

bars   (11,000   to 70,000  psi).      For  the  sand,   there  was  a   small  initial 

hump on   the   stress-stra in  curve;   the  size  of   the hump was  proportional   to 

the  preload   level.     For  the   clay,   the  slopes  are  functions  only  of   total 

stress   level--preload  plus  dynamic  stress   increment.     Time-dependent 

dissipation,   as  measured  by   the  viscoelastic  parameter  tan   6,   was  prom- 

inent   in  the   clays   (tan   6  =   0.3)   but  not  so  significant   for  the  sand 
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(tan   6  =  0.12).     Time-independent dissipation  or compaction,   measured by 

oi,   was   important  for  sand and  stiff  clay   (a =   0.12  to 0.15)   but  could 

hardly  be detected  in  the wet   clay  (a =  0.02). 

2.1.3 Theoretical  Models.     As a  basis  for  correlating the wave  propa- 

gation  and compression   test  data,   and  eventually as a   basis  for wave 

propagation predictions,   several  theoretical models  for soil have  been 

analyzed.     Each  of  the  models   represents  only   two or  three of  th«-   dominant 

features  of  soil.     The  simplest  models  are characterized by  two constants: 

one  for wave velocity and  one  for dissipation.     These models are  the 

linear hysteretic model   (dissipation  independent  of  strain-rate)  and  the 

constant   tan delca  model   (strain-rate-dependent  dissipation),   both  of 

which were analyzed during a   prior contract.3 

A  slightly more  complex model with both  strain-rate-independent  and 

strain-rate-dependent  dissipation was analyzed  under  the present   contract. 

The analysis of  this model,   the  viscoelastic  compacting model,   showed  the 

interaction of  the  two types  of dissipation  in  affecting attenuation  and 

changes   in wave shape.     A fourth model with a   nonlinear  loading character- 

istic and  strain-rate-independent  dissipation   (S-hysteretic mod  1 ^  was 

analyzed  to study  the effect  of  overburden or geostatic stress  on wave 

propagation  characteristics.     For this model  the attenuation rate  is 

markedly  reduced by the  presence of the geostatic  stress. 

The  numerical  constants  for the theoretical  soil models were found 

from  the dyanmic  compression  tests.    Wave velocity was determined from 

the   slope   (tangent  modulus)   of   the stress-strain  curves.    The   lag time 

between  the peak stress  and  the  peak strain was   used as a  measure of  the 

viscous  dissipation parameter,   tan   6.    The  ratio of   the slopes  of the 

stress-strain curves during   loading and  unloading was  used as  a measure 

of   the  compacting dissipation  parameter,   a. 

2.1 A  Comparison  of  Theoretical and Experimental  Results.     A compari- 

son  of  wave propagation results  and of theoretical  predictions based  on 

compression  test  properties  shows  that 

1.     Arrival  time  of   the  stress wave  can be  predicted from  the 

compression modulus  of   the soil,   and 



2.     Stress attenuation  can be predicted  from  the dissipative 

soil parameters  found   in  the compression  tosts. 

The   correlation between  the  predicted and measured  values was  rather 

imprecise   in most  cases,   but   it   showed  that   the  approach  is valid although 

improvements are needed  in   the  testing and  in  the  prediction  procedure. 

Thus  a  rational basis  for  predicting wave propagation behavior from  soil 

properties  has been  established. 

One  of  the soils--kaolinite  clay compacted  at  a  water content  of 

18.8^—exhibited an approximately   linear   loading   relation during  compres- 

sion   tests.     Because  of   the   linearity,   the  model   analyses  were  particu- 

larly  applicable  to  the  prediction  of  the  behavior  of   this  soil.      (All 

three  models  used  for  predictions  have   linear   loading   relations.)     Predic- 

tions  were  made  for wave   velocity,   surface  particle  velocity,   the  variation 

of   particle  velocity with  depth,   and  the  attenuation  of   peak  stress   with 

depth.     For  this soil  the  experimental  results  agreed  very well with  these 

predictions,   not  only  in  trend but   in magnitude.     The attenuation with 

depth  was   predicted  reasonably well  by any  of   the   throe  models  used: 

constant   tan delta,   linear  hysteretic,   and  viscoelastic   compacting. 

The  other soils  exhibited  stress-strain   relations  which were  defin- 

itely  nonlinear.    As might   be expected,   the  correlation  between  the  model 

predictions  and  the measured  values   from  these  soils  was   rather  imprecise. 

Attenuation of  stress  and  particle velocity   in  the  clays was  best 

predicted by  the constant   tan delta  model   (purely   time-dependent  dissipa- 

tion),   although  the  data   ranged  ±50cfo of  the  prediction.     For  tho  sand,   the 

soil   column  experiments  showed a   faster attenuation  rate  than any  of   the 

model   predictions;   however,   the  attenuation  pattern  was   similar  to  that 

given  by   the  viscoelastic   compacting  model   (combined   time-dependent  and 

time-independent dissipation)  and  the values were  within OO^t of  the  pre- 

dicted.      It  was  found   that   the  best  abscissa   for  attenuation  plots   is  a 

nondimensional arrival  time:     the actual arrival   time divided by  the 

loading  duration.     This   same  abscissa   is   indicated  by  all   three models 

used  for predictions.     Experimental  scatter  is  considerably reduced by 

8 



the   use  of   this   abscissa.     Also,   tests   with   loading durations   from  1  msec 

to  10 msec  have   shown   that   the effect   of   load  duration  on  attenuation   is 

properly  accounted   for by   this abscissa. 

For  the  clay   tests,   the  peak  particle   velocity  at   the   surface was 

predicted   from  the   simple   equation   r>cv   -    T,   where   o  is  density,   c   is  wave 

velocity,   v   is  particle  velocity and    •   is   stress.      In  this   case,   the  pre- 

dicted   vuiuc  of   particle   velocity,   v,   was  within   10^ of   the  experimental 

values.      For  the   sand,   the  predicted  particle  velocity was  50^>  higher   than 

the experimental   values. 

Wave  velocity  was determined  as   the  difference   in  arrival   times  of 

peak  stress  at   two depths.     The measured  arrival   times and  wave  veloci- 

ties  derived   from   them were  correlated  with   the  wave  velocities  and 

arrival  times  computed  from  the  tangent   moduli  obtained  from dynamic 

compression   tests   on   the  soil.     For  clay   column   tests   the arrival   times 

at   the  column  base were predicted within   10^ from  the data  on  soil  moduli; 

for  sand  the   predictions  were within  25^.     The wave  velocity  data   from 

the   tests  on   rather  dry  kaclinite  showed   that   the   velocity was   essentially 

the   same at   all  depths  and   was  predicted  within  a   few percent   from  the 

tangent  modulus measured   in  a  dynamic   compression   test  on  the   soil.     For 

the   other  column   tests,   the   experimental   wave  velocities  tended   to   increase 

with  depth while   the   values   predicted   from  the modulus decreased  with 

depth.     This  disparity   indicates  that   the   soil  modulus does  not   provide  a 

sufficient  basis   for   predicting  the wave  velocity   in detail.     Other  factors- 

geostatic  stress,   curvature   of  the  stress-strain   relation,   time-dependence 

of   the  soil,   and  the   rise  time and duration  of  the  stress wave--must  ail 

be  brought   in  to make   a  complete prediction  for wave  velocity  of  the peak 

stress.     The prediction of  wave velocity  from  the   tangent  modulus   obtained 

in  dynamic  compression   tests   should  be  compared with  predictions   from 

static  moduli  and   from   seismic   tests.     Seismic  velocities  are  generally 

two or  three  times  as   large  as  velocities  of   large  amplitude  stress  waves. 

Static  moduli  are  about   one-half  the  dynamic   moduli;   hence,   predictions 

based   on  static  moduli   should  lie 30°!   low. 
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Use of  the  experimental  and theoretical  results for  prediction  of 

phenomena  in  full-scale  field conditions   should  be made with  caution.     The 

present  results  were  obtained  in a  one-dimensional  (controlled   lateral 

strain)   condition  and  their applicability   to more  complex geometries   is 

unknown.    The wave  durations   involved   in  these   tests are  one-tenth  to  one- 

thousandth  those  found   in   the  field,   and   the preloads  and  dynamic  pressures 

were   limited.     Hence,   the  use  of  these  results   for prediction  of   full-scale 

phenomena would  require  considerable extrapolation. 

2.2 Recommendations for  Further Research.     For DASA's  purposes,    i.e., 

for  the design and  analysis   of  sha How-buried underground  protective 

structures,   it   is   important   to develop  an   understanding  of  wave   propaga- 

tion   in  soils  under   conditions which  closely approximate   those  of   the 

full-scale  problem.     Therefore,   the  present   investigation   should  be 

extended  in  the   following directions: 

1. To depths   of   tens   of  meters  below   the   surface  of   the  ground. 

2. To dynamic   pressures  of  70 bars   (1000   psi)   and  positive 

pressure  durations   up  to  1  second. 

3. To  soils  which  are   compacted   to densities  as  high  as   thot;e 

obtained  with  modern  highway  compaction   equipment   (and   thus 

comparable   to well-consolidated   soils  and  soils   likely   to 

be   found   in  backfills  over  buried   shelters). 

4. To three dimensions. 

Steps in each of these directions would provide significant improvements 

in our understanding of actual structural response which would be caused 

by a   near-surface  nuclear explosion. 

From the researchers' point of view, the first three represent simply 

extrapolations on presently held information on the wave propagation prob- 

lem. Work in these three directions will serve to confirm or improve and 

quantify the prediction procedure of Chapter 3. The step to three dimen- 

sions will necessarily involve the investigation of phenomena which differ 

considerably from the one-dimensional phenomena investigated herein. Some 

progress   is now possible  in   each of  these   four  directions. 
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To accomplish  the extension   in  these directions we  recommend: 

1.     One-Dimensional Wave Propagation Experiments.     These  tests 

should  be  similar to those  reported herein with  the  follow- 

ing  modifications.     Loading with  several decay  rates  should 

be   used;   in particular,   a   loading with no decay  should be 

used  to  determine wave   velocity   through  the  soil,   a   rapid 

decay should be used  to obtain  a  high attenuation,  and a 

small decay should be  used because that would  be most   like 

field conditions.     Tests  should be made at  several preload 

levels,   from zero to several bars,   to simulate  the over- 

burden  pressures   felt  by  soils   at   various  depths.     The 

dynamic  pressures  used  should be  extended up  to 70 bars  to 

simulate   likely structural  design  conditions.     The soils 

used   should   represent  a   wide  range  of  compactions  and 

dissipativc  properties.     The  three  soils   treated   in  this 

report   represent  an  adequate  range  of  dissipative  proper- 

ties,   but   were only moderately  compacted  for  the  tests. 

2,     Improvement   of  Wave  Propagation  Test  Equipment.     The gages 

for  measuring  stress and  the system for applying  the  load- 

ing   should   be  improved  for   future  tests.     The  gage design 

should be  based on a  force gage  concept   so that   the total 

force  travelling through  the  soil   is measured.     (Stress 

equals  the  force divided  by   the   cross-sectional  area  of 

the column.)     By using a   force gage,   one eliminates  the 

problem of  over or under-registration which  is  common 

with   stress  gages      The gage  calibration should be  the 

same  during   loading and  unloading  so that  the entire stress 

wave   can be  correctly recorded.     The density and  stiffness 

of   the gage  should be similar  to  those of   the  soil  to mini- 

mize  the disturbance caused by the  presence of  the gage. 

One gage design which appears  to meet  those  requirements 

has  been  described   in  a   proposal   to DASA.* 

* SRI  Proposal   PHU 65-192 submitted   to DASA  on October   11,   1965. 
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To best simulate blast pressures from nuclear weapons, the 

applied pressure history should have a shock front and a 

pressure decay thereafter. These conditions can be obtain- 

ed in several types of shock tubes.  With a shock tube, 

pressures up to 70 bars can be obtained and the pressure 

histories can be readily controlled and repeated. 

Dynamic Compression Tests on Soil Samples.  Laboratory com- 

pression tests should be performed to determine soil proper- 

ties, and the effects of strain rate, stress level, and 

preload on those properties.  To do this, the compression 

test program described in this report should be expanded 

to include pressure pulse rise times from 2 msec to 2 

minutes.  With such a program, a fairly complete picture 

of the effects of strain rate can be mapped out.  Such 

tests should be conducted at several dynamic stress levels 

and several preloads. 

Three-Dimensional Wave Propagation Study.  Considerable 

progress can now be made toward solving the three- 

dimensional problem of blast loading on soil in which there 

are buried structures.  The following steps should be taken: 

a. Analysis of the response of an elastic half-space 

to a blast loading on its surface. 

b. Development of experimental techniques to measure 

the response of an elastic model of a ha If-space 

to a simulated blast loading.  The model response 

should be compared with the analytical results to 

evaluate the validity of the experiments. 

c. Conduct of experiments in an elastic half-space 

model in which small structures have been embedded. 

The testing techniques of step b  should be used. 

d. Conduct of experiments in a ha If-space of dissipa- 

tive material (with dissipation properties like 

those of soils) in which structures have been 

embedded. 
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CHAPTER   3 

PREDICTION  PROCEDURE 

The procedure  for prediction  of   stress  wave  propagation phenomena 

in   soils  is   neither  complete  nor   verified.      Some  of   the  details  of   the 

procedure  seem quite   clear  now,   others   are   almost   pure   speculation.     By 

outlining   it   here,   we  simply   indicate   the  direction which has been   taken 

toward   understanding   the  phenomena.      The   experimental   findings of 

Chapter  4  are  used   to   indicate   the   level   of   accuracy  expected   in   the 

parts  of  the   prediction.     The prediction  procedure   is  strictly  applicable 

to  one-dimensional   phenomena  only,   although   some  of   the   concepts   may  be 

useful   in  studying  more  complex geometries.      The   test  results,   on   which 

the   procedure   is   based,   were   limited   to wave  durations of   several 

milliseconds,   dynamic   stress   levels   of   11   bars or   less  and  preload 

levels   up to  0.7   bars.      Extrapolations  of   these   results   to  much   longer 

durations or  higher   stresses   should  be  made  with caution 

A  prediction procedure   requires knowledge of   the soil   for which 

the  prediction   is   to  be  made       With  qualitative knowledge  we  decide 

which   soil   model   parameters   are paramount.      Quantitative  knowledge   of 

the  pertinent   values  of   these  parameters  must   then  be  found  from 

laboratory   tests. 

The prediction   should   be  made  on  the  basis  of  average  soil   properties 

tor   the  depths   and   stress   levels   that   pertain   to  a   particular   problem. 

The   theoretical   models   used   for   the   prediction   are   characterized   by   a 

wave   velocity   and  one  or  two  dissipation   parameters.     The  models 

describe   the   soil   as   compacting   (showing  a   residual   strain  after   a 

loading cycle),   strain-rate-dependent   (viscoelasticj,   or   both  visco- 

elastic   and  compacting.      When  we have chosen  one  of   these models   the 

qualitative  nature  of   the   soil   has   been  decided.      The experiments  des- 

cribed   in Chapter   4   show   that   the constant   tan delta  model   (purely 
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viscoelastic dissipation)   is  the  best  choice  for  the  clay   soils  but 

that  the  viscoelastic  compacting model   (both  types  of  dissipation)   is 

best  for  sand. 

Next,   tests   are  performed   to  find   the  magnitude  of  the   parameters 

in   the  theoretical  models.     These parameters  can be  found   from dynamic 

compression  tests on  thin  samples of   the  soil.      The  stress  on  the  soil 

and   the   strain  of   the   sample must  be   recorded  during   the   test.      The 

equipment   and  procedure   for performing  the   test   are  given   in Appendix  B. 

A modulus»  for  the  soil   can be  found  from  the  slope  of   the  stress-strain 

relation  at  the  stress   level of   interest.     The  amount  of   time   the  peuk 

strain  lags behind   the  peak stress  is  used   to determine  the  viscoelastic 

properties.     The  slope of   the  unloading  stress-strain curve   is  compared 

to   the  loading   slope   to  determine  the   compacting  parameter.      These  data 

reduction  procedures  are   given  in Appendix  B. 

After   the   theoretical  model   has  been  specified  quantitatively, 

the  model  can   be  analyzed   for   its behavior during wave propagation. 

Then  the   analytical   behavior can be  used   to predict   the corresponding 

response  of  the  soil.      For  simple models,   the  analysis can  be done  once 

and  graphed.     This   is  the  case   for  the  constant   tan delta  and  linear 

hysteretic  models  for which attenuation  curves  are  given  in  Figs.   3.1 

and  3.2.     The  prediction  of  the   linear  hysteretic  model  gives   the   same 

attenuation  for  stress   and   particle  velocity.      For   the constant   tan 

delta model,   the  stress   and particle  velocity   attenuations are  nearly 

the  same   (as noted   in Ref.   3).      In a  given  situation,   it   is  expected 

that   the   applied  stress   wave  form would  be known  so   that   a  knowledge   of 

the   amount  by   which   stress  attenuates  with depth   (such as   in  Figs.    3.1 

and  3.2)   is all   that   is   required  for  the  prediction of  stress  attenuation. 

For  the  prediction  of  particle   velocity  attenuation,   the particle  vel- 

ocity  at   the  surface must  be determined  first.     This  peak  value  is 

calculated  from 

mo 
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where mo is the peak applied stress. 

is the material density, and 

is the wave velocity corresp< 

ifound from the tangent modulus;. 

0  is the wave velocity corresponding to cr  at the surface 
mo 

NONDIMENSION AL DEPTH . eoTo 
MA-2917-30» N 

FIG. 3.1    STRESS ATTENUATION  PREDICTION  FROM 
THE  CONSTANT  TAN  DELTA  MODEL 

Attenuation equation 
am/amO - (1  " 0.15 tan 5)e 

-7/8/(77enTn)tonS O'O' 
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FIG. 3.2   STRESS ATTENUATION   PREDICTION  FROM  THE   LINEAR 
HYSTERETIC  MODEL 

Curves from Eq. C.22 
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Tlit' experimental stress attenuation and particle velocity attenuation 

are not well represented by the theoretical predictions of any of the 

models.  The constant tan delta model appears to represent the results 

for clay best; however, the experimental points are as much as 50% above 

or below the prediction.  The peak particle velocity was obtained within 

5 or 10% from Eq. 3.1 for the clay and with less accuracy for the sand. 

The attenuation predictions for particle velocity were no more accurate 

than those for stress. 

The duration and rise time of the stress wave may also be predicted 

I rum the theoretical models.  However, neither the duration nor rise 

time have been adequately predicted by the linear hysteretic model. 

The complete wave form from the other models has not been studied so 

no prediction is available from them. 

The wave velocity is taken directly from the tangent modulus from 

the compression test data and is not modified by the models.  Based on 

this wave velocity, an arrival time at the base was predicted.  The 

predicted times for the clay columns were within 10% of the experimental 

values; the predicted time was 25% short for the sand. 
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CHAPTER 4 

WAVE PROPAGATION  EXPERIMENTAL RESULTS AND DISCUSSION 

4.1 Introduction 

Wave  propagation  experiments  were conducted   in   three  soils  to 

determine  the general  nature of   the phenomena   involved  and  also  to 

accumulate  data with which  to evaluate  the predictions obtained  from 

theoretical   soil  models.      In   this   chapter,   we   show 

1. the  principal   features  of  wave  propagation   in  the  soils, 

2. the  degree   to which  these  features can be  predicted  theoretically, 

and 

3. the   features  that  do not   correspond   to  the   theoretical   predictions. 

As  a  preparation  for  the wave  propagation  results,   the test  condi- 

tions  are  first outlined,   and   then   the main  test   results  are given. 

Further  information on   test   apparatus,   gages,   and  calibration  procedures 

are  given  in Appendix A. 

4.2 Test Conditions 

The test facility consisted of a soil tube and its support structure. 

The soil tube, shown in Fig. 4.1, was constructed of alternate rings of 

aluminum and neoprene rubber.  The aluminum rings provided a high radial 

stiffness to prevent radial motion of the soil, and the rubber spacers 

reduced the axial stiffness of the tube.  Thus, the tube was intended to 

allow only one-dimensional (axial) motion in the soil.  Further infor- 

mation on the stiffness of the tube and on the degree to which it required 

one-dimensional motion in the soil is given in Ref. 3 and 4. 

The tube was made up in segments, each about 0.7 meters long (see 

4.1).  In Fig. 4.2, the column is shown at full hei 

(seven segments), with its associated support structure. 

Fig. 4.1).  In Fig. 4.2, the column is shown at full height of 4.5 meters 
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SOIL-FILLED 
TEST   SECTION< 
OF   COLUMN 

DROP  WEIGHT 

STEEL   PLATE 

SAND   COLUMN 
FOR   DAMPING 

TOP   FORCE   GAGE 

ALUMINUM   RING 

NEOPRENE   RUBBER 
SPACER 

SUPPORT   TO  PREVENT 
COLUMN   BUCKLING 

BASE   FORCE  GAGE 

TA-9IM-W 

FIG. 4.1    TWO SEGMENTS OF  SOIL TUBE   IN TEST  CONFIGURATION 
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SOIL COLUMN 

PULLEY FOR DROP WEIGHT 

DROP WEIGHT 

STEEL PLATE   5 em THICK 

10 cm THICK LAYER OF SAND 

TOP FORCE GAGE 

"A" RING 

BASE FORCE GAGE 

DELAY PYRMID 
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FIG. 4.2 SOIL COLUMN SUPPORT STRUCTURE 
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The  drop weight   mechanism   (Fig.   4.2)   was   used   to apply  a   large 

stress  for a   short  duration  on  the   top of   the   column.     The   stress  waves 

closely  resemble  those  from  blasts:     rise   time of  0.2  to  1.0 msec   to  a 

peak  and   then  an  approximately  exponential   decay  with an  exponential   time 

constant  of  2   to 6  msec.      In most  of   the   tests,   the weight,   a   steel 

cylinder with  a   steel   ball   at   the   base  for  a   striker,   was  dropped   onto 

a  5-cm-thick  steel   plate   resting on  the  soil   column.      Immediately   below 

the  plate was  a  10-cm-thick  layer of dry   sand  to damp out  ringing pro- 

duced  by   the   impact.      Below   the   sand was   the   top  force  gage  and   then 

below  that   the   soil   being   tested.      For  some  of   the  tests  on  wet  kaolinite, 

the  weight  was  equipped  with a   large  striking  plate   (see   Fig.   A.7)   and 

was  dropped  directly   onto   the damping  sand. 

Measurements of   the  soil   stress  and  motion  during  wave  propagation 

was  obtained   from  stress  gages  and  accelerometers  embedded   in   the   soil 

and   from  force  gages   at   both  ends of   the  column.      The  sensing  element 

was  either a   piezoelectric   crystal   or  a   strain  gage  bridge.      In  either 

case,    the  response  of   the  gage  was   fed   to   oscilloscopes   and  recorded 

with  oscilloscope  cameras.      Characteristics  of   the  gages   and   the 

calibration  procedures   for   the  stress  and   force  gages  are  detailed   in 

Appendix A.     A  typical   layout of  the column  and  gage  is  shown   in 

Fig  4.3. 

Three  soils,   exemplifying a  wide   range  of   properties,   were   used 

in   the   tests:      a  Monterey   beach   sand,   a  kaolinite,   and   Vicksburg   back- 

swamp  clay.     The  sand   was  composed  of  clear,   dry,   subangular  particles 

of   nearly  uniform  size.      The kaolinite  was   purchased  as  a  white   powder 

and  was   reconstituted  with  water  to  form  a   soil.      The  Vicksburg  back- 

swamp  clay   is  a  natural   soil   that  was  mixed  with  water  to  obtain   a 

desired  consistency.      These   three  soils  ranged   from dry   to  very  wet, 

hence  bracketing  the   variation of  water contents  of   soils  used   for 

construction.      The   tangent   modulus of   the   soils  at  a  stress   level   of 

6  bars   varied   from  750  bars   to  4800  bars.      This   range  is  common   to 

soils  found  near  the   surface of   the  earth  but   not   to soils  which  have 

been   highly-compacted,   hardened  by  drying,   or  consolidated  under  a 

high  overburden  pressure. 
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The soil tube was fl 1ed six times for the wave propagation tests. 

The soils us ^d  for each column <~nd information about the placement of 

the soil are given in Table 4.1.  Further data on the soils placed in 

each column are given in Appendices A and B. 

TABLE 4.1 

SOILS TESTED 

Column Des-  Soil 
ignation     Name 

Compaction Water   Dry 
Method     Centent  Density  Comments 

(#)    (gm/cm3) 

A Kaolinite Hand 
Tamping 

34.7 1.29 

B Kaolinite Hand 
Tamping 

31.7 1.34 

C Kaolinite Static 
Pressure 

18.8 1.42 

D Vicksburg 
Clay 

Pneumatic 
Tamper 

26.8 1.34 

E Monterey 
Sand 

Sprinkling - 1.63 

F Vicksburg 
Clay 

Static 
Pressure 

24.4 1.52 

We t, ve ry 
compressible 

Wet, compressible 

Dry, granular 
appearance 

Sticky; nonuniform 
moisture content 

Dense 

Near optimum 
moisture content 

Dry density is the weight of solids divided by the volume. 
b Optimum moisture  content   is  content  at  which  maximum dry density 

(maximum  compaction)  can be obtained with a  given compaction  technique. 
The  compaction method   used  as   a   reference  here   is   the  Standard  Proctor. 

4.3     Results 

When an impulse is applied to the top of a column of soil, a stress 

wave propagates down the column.  Typical stress records obtained at 

various points along the column are shown in Fig. 4.4.  At the top, the 

stress wave shape shows the manner in which it was formed—by impact of 

a dropped weight on a steel plate.  Hence, the wave has a rise time of 

a few tenths millisecond and may indicate some oscillations caused by 

ringing in the steel plate.  As the wave progresses down the column, 

the oscillations damp out, and the rise time and duration of the wave 

increase. 
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The records  indicate  that  the wave  changes  shape as   it  progresses 

down   the column.     At   the base there   is a   reflection  that doubles  or 

triples  the magnitude  of  the wave:     therefore,   some care must be  taken   to 

distinguish the  features belonging  to the   initial wave from those   that 

accompany the  reflected wave.    As the  initial wave  travels down  the  col- 

umn,   its peak  is  reduced and   its duration   increased.    An  idealized  form 

of  the stress wave   is   shown   in  Fig.   4.5.     It  has  a   rapid  rise  to a   sharply 

defined peak stress  and  then  an exponential  decay.     The time,     T,     required 

for  the stress  to reduce  to   .368 times  its  peak value  is  the  exponential 

decay  constant  for  the   idealized stress wave.     This   idealized  stress  wave 

is  the general  form assumed   in both   the data   reduction and  the  computation 

with  the  theoretical  soil models. 

TIME 
•»- ^9l' ? JJ « 

FIG. 4.5 IDEALIZED STRESS WAVE 

Associated with the stress wave are the particle accelerations and 

velocities—the motions of the soil caused by the stress.  Examples of 

acceleration records are shown in Fig. 4.6.  The general shape of the 

acceleration wave does not change much, but the peak is drastically 

reduced and the dur?. cion is greatly increased.  Accelerations were not 

26 



" 

620g i— 

f 

240g i— 

■p 

i 
o 

4 6cm DEPTH 

I    I    W    I    I    I    I    I    I    I    IH    Klmwc 

741cm  DEPTH 

I   I   I   M   I   I   I    I   I    I   I   I   I 

275 4 cm DEPTH 

u 

I msec -H    IN- 

TIME 

346 3 cm DEPTH 

J_U 

TB   MS4 93 

FIG. 4.6   ACCELERATION RECORDS  FROM A  TEST  ON COLUMN  C 

Test 24 on Dry Koolinite, Drop Height of 30 cm 

27 



considered   in   the   theoretical   predictions  and  no  standard   form  for   the 

acceleration  wave  was   adopted.      Particle  velocity   records  were   obtained 

from  the  acceleration   by  graphical or  electronic  integration with 

respect   to   time.      The  particle   velocity   wave   form  is  almost   identical 

to   that of   the   initial   stress wave. 

The   features  of   the  stress   and   acceleration waves   that   were   con- 

sidered  are: 

1. attenuation   of   the  peak   stress  with  depth, 

2. change   in   the duration  of   the   stress wave  with depth. 

3. variation   of   the wave   velocity   with depth, 

4. attenuation  of   peak  acceleration   with depth,   and 

5. attenuation of  peak particle   velocity  with depth. 

For attenuation  of   peak  stress  and   particle   velocity,   variation   of   wave 

velocity,   and   the   change   in  duration   we   have   made   theoref n prt-dic t ions. 

The  predictions   are   from  the   linear   hysteretic  model.   visc< coapacting 

model,   and   the   constant   tan  delta  model.      These   three   reprt      r; t   different 

types of   energy  dissipating  mechanisms.      The   linear  hysteretic   model 

shows dissipation   bv   a   frictional   mechanism.      The dissipation   parameter 

is  or,   which   ranges   from  Ü   tor  no  dissipation   to   1.0  at   maximum  dissipation 

For   the   tested   soils,    the  maximum a-   is   0.15     Appendix   B   .       In   the 

constant   tan delta  model,   the  dissipation   is   viscous,   and   the   phase   lag 

between   stress   and   strain   is   the   same   at   all   frequencies.      Tan   6.    the 

dissipation   parameter,   ranges   from 0.1   to  0.3   for  the   tested   soils;    it 

is   a  measure  of   the   phase   lag  between   stress   and   strain   that    occurs 

under  cyclic   loading.      The   viscoelastic   compacting model   combines 

viscous  and   frictional   types of  dissipation.      The dissipative   parameters 

are or,   as  with   the   linear  hysteretic   model,   and   ^/E0,   a  measure  of   the 

lag   time  between   stress   and   strain.      For  our   soils,   T/E0   varies   between 

20  and  30  msec.      The   first   two of   these  models  were  analyzed   in  Ref.   3 

and   the   third   is   treated   in  Appendix  C  of   the   report.      The   methods   for 

obtaining   the   soil   properties   used  with   these   models  are  described   in 

Appendix  B. 

Six   (.< mplete  columns were  constructed   using   the   three   soils     see 

Table  4.1;.      For  convenience   in   comparing   the   results   from   the   tests, 
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the  results   for  each wave propagation  feature   are  grouped   together. 

That   Is,   first   the  stress  attenuation curves  from all   the  tests are 

given,   then   the   wave durations,   etc.      The sequence   is A,   B,   C,   D,   F, 

and  E so   that   the  three  tests of  kaolinite   (A,   B,   and  C)   and   the  two 

of   Vicksburg backswamp clay   (D and   Fj   are  together. 

Stress  attenuation data  from  the   tests  are  summarized   in Figs.   4.7 

to  4. 13.      In  most  cases,   there   is  considerable  scatter  in  the  data.     To 

some extent   this  is caused by unreliability of   the  stress  gage calibra- 

tions.     However,   much of   the  apparent   variability  in   the data  is caused 

by changes   in  the conditions  from  test   to test.      Each  graph  shows points 

from  tests   in which there were   several   stress  levels,   durations,   and  even 

different  wave   velocities.     The  prediction curves on  each figure are 

based  on  average   values of   the   stress   and duration  and  en predicted wave 

velocities  obtained from  the modulus  of   the soil   (Appendix B). 

The  limited  number of points  from Column A appear  to follow the pre- 

diction  of   the  constant  tan delta  model  reasonably well   (Fig.  4.7).     For 

Column B there are two figures,   one for  the tests  in which  the drop-weight 

impacted  the  sand above  the force gage directly  (Fig.  4.8)  and one for 

the usual configuration with a  steel plate atop the column  (Fig. 4.9). 

The  importance  of  drop height   (and,   therefore,   of  stress   level)  on atten- 

uation  is  particularly noticeable   In  Fig.  4.9.     For both groups of tests 

on Column B,   the  best prediction   is  from the constant   tan delta model. 

The first   reasonably consistent  data  appear  in Fig.  4.10 and was 

obtained  from  the we 11-compacted  clay  of  Column C.    All  the  theoretical 

predictions  are   in  the vicinity of  the data,  but  the constant  tan delta 

model appears  to represent  the  trend  of  the data  best.  The stress values 

at  the depth  of 4.35 meters are from the base force gage.     This gage reg- 

istered  the  sum of  the initial stress wave and the wave  reflected from 

the base.     To obtain a value for  the stress in the  initial wave,   the 

peak value was divided by the ratio of  the impulse at the base to the 

impulse at  the top.    This value of  the stress in the initial wave is 

represented  by  the  points at 4.35 meters.    This  procedure for getting a 

peak stress  at  the base for the  initial stress wave was  used  for Columns 

C through F,   and  it  is further explained  in Appendix A. 
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FIG. 4.7   STRESS ATTENUATION:  COLUMN A,   KAOLINITE 

Curve Parameters 
Linear Hysteretic:   a       0.02 
Viscoelastic Compacting:   a.       0.02, EJ/EQ   -   2.0, ^/EQ   =   30 msec 
Constant Tan Delta:   tan 8   =   0.30 
c        100 m/sec for all models. 
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FIG. 4.8   STRESS ATTENUATION: COLUMN  B,   KAOLINITE 
(To - 6 msec) 

Curve Parameters 
Linear Hysteretic:   a =   0.02 
Viscoelastic Compacting:   a-   0.02, E^/EQ   =   2.0, T/ZEQ   -   30 msec 
Constant Tan Delta:   tan S   =   0.30 
c   =   100 m/sec, TQ        6 msec for all models. 
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Curve Parameters 
Linear Hysteretic:   a =   0.02 
Viscoelastic Compacting:   a -   0.02, E,/E0        2.0, TJ/EQ   -   30 msec 
Constant Tan Delta:   tan f>   -   0.30 
c   -   100 m/sec, TQ        2.5 msec for all models. 
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FIG. 4.10   STRESS ATTENUATION: COLUMN C,   KAOLINITE 

Curve Parameters 
Linear Hysteretic:   a, =   0.15 
Viscoelastic Compacting:   at =  0.15, E,/E0   =   2.0, T^/EQ  =   15 msec 
Constant Tan Delta:   tan 8   =  0.30 
c  =  240 m/sec for all models. 
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FIG. 4.11    STRESS ATTENUATION: COLUMN D,   VICKSBURG CLAY 

Curve Parameters 
Linear Hysteretic:   a-   0.09 
Viscoelastic Compacting:   a      0.09, E^/EQ   =   1.7, i;/E0   =   20 msec 
Constant Tan Delta:   tan fi        0.30 
c   =   340 m/sec for all models. 

34 



SYMBOL DROP HEIGHT _ 

IOS.9 cm 
64.0 
34.4 

LINEAR HYSTERETIC 

VISCOELASTIC COMPACTING 

O.I 1 1 1 
2                  3 4 

DEPTH m«t«f» 
6 

T1-M4-99 

FIG. 4.12   STRESS ATTENUATION: COLUMN   F,  VICKSBURG CLAY 

Curve Parameters 
Linear Hysteretic:   a =  0.09 
Viscoelastic Compacting:   a-   0.09, E^EQ   -   1.7, 7;/E0   =   20 msec 
Constant Tan Delta:  tan ß   =   0.30 
c   =   340 m  sec for all models. 
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FIG. 4.13 STRESS ATTENUATION: COLUMN E, MONTEREY SAND 

Curve Parameters 
Linear Hysteretic:   a       0.12 
Viscoelastic Compacting:   a -  0.12, E^/EQ   =   5.0, JJ/EQ        22 msec 
Constant Tan Delta:   tan £   =  0.12 
c        500 m  sec for all models. 
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The somewhat loose soil of Column D showed a faster attenuation of 

stress than predicted (Fig. 4.11).  The form of the attenuation is similar 

to the curve from the viscoelastic compacting model but not unlike that 

from the constant tan delta model.  For Column F (Fig. 4.12), the stress 

attenuation was also faster than predicted.  Here, the form of the experi- 

mental attenuation curve is similar to that from the constant tan delta 

model.  For Column F the data at 4.25 meters are definitely out of line 

with the other data.  This same discontinuity occurs in the other figures 

but is less noticeable.  This discontinuity is probably caused by differ- 

ence in the reduction system used for the base force gage and the other 

gages (stress gages).  The data points at the column base as well as those 

at the top were obtained from force gages, the Intermediate points from 

stress gages.  The stress gagt- data were based strictly on static cali- 

brations.  The force gage data were based on both static calibrations 

and the Impulse ratio mentioned above.  No conclusions have been reached 

as to which groups of data may be more reliable. 

The large scatter of data in Fig. 4.13 is at least partially due to 

the range in stxey.    ivels and durations.  Both of these factors vary with 

drop height.  Prediction curves based on the average values of the param- 

eters indicate that the viscoelastic compacting model is the best approxi- 

mation for the sand.  This result contrasts with the conclusion in 

Reference 4 that the attenuation in sand was well represented by the 

linear hysteretic model.  The present experimental results were similar to 

those from Reference 4 but the procedure for evaluating the dissipation 

parameter a  had changed.  The parameter a is a function of the slopes of 

the loading and unloading stress-strain curves obtained in a compression 

test on the soil.  In Reference 4 these slopes were measured on static 

stress-strain curves at a point "near" the peak stress of the compression 

test.  This evaluation has the disadvantage of being based on static tests 

and of depending on the choice of a point for making the evaluation.  The 

present values of a  were derived from an analysis in which the slopes at 

midheight of the stress-strain curves were used.  This analysis (see 

Appendix C) also takes into account the time-dependent nature of the 

soil. 
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The next feature to be considered is the duration of the stress 

wave.  As the peak attenuates, the duration increases.  The time between 

the arrival of the peak and the time at which the stress has decayed to 

0.368 of the peak has been taken as the duration of the wave.  The non- 

dlmenslonal duration (duration divided by the duration of the applied 

stress) is shown in Figs. 4.14 to 4.18 for Columns B through F.  The 

arrival of the wave reflected from the base made it Impossible to deter- 

mine a duration for the stresses in Column A. 
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No theoretical  prediction  is given  for comparison with the data   on 

duration.     The duration  prediction  has  not  been  worked out  for  the 

constant  tan delta  model  or for  the  viscoelastic  compacting model,   and 

the  prediction  from  the   linear hysteretic  model   is  inadequate  in all 
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cases.  Instead, a curve for a = 1.0 from the linear hysteretic model is 

given to provide a basis for comparing the data from one test with that 

from another.  This curve shows a much faster change in duration than 

that for the value of a,   which is appropriate for each soil. 

For Column B, there are two theoretical curves corresponding to the 

two ranges of duration observed.  It may be noted from the disparity 

between these curves that the rate of change of duration with depth is 

strongly dependent on the magnitude of the duration at the surface. 

The data tend to lie considerably above the relevant curves in both 

cases.  The durations for Column C are also above the theoretical curve, 

although not markedly so.  For Columns D, F, and E, the points are all 

well above the theoretical curve.  This rapid change in duration of the 

stress wave is associated with the rapid attenuation of the peak.  The 

observed durations are probably larger than the actual duration because 

of the nonlinear unloading response of the embedded stress gages.  In 

Ref. 4,   it was observed that the nonlinearity could cause an apparent 

increase of up to 60$ in wave duration.  This point is discussed further 

in Section 4.4. 

Wave velocities were obtained from the slopes between points on 

plots of arrival time versus depth.  A typical time-depth plot from 

Column C is shown in Fig. 4.19.  The wave velocities associated with the 

arrival of the initial stress, of the peak stress, one-half peak stress, 

and one-tenth the peak stress are shown.  This plot indicates that the 

time between the first arrival of stress and the arrival of the peak 

increased gradually with depth.  For these tests, the wave velocity 

associated with the peak stress was essentially a constant: for the 

other columns it increased somewhat with depth. 

Plots of the wave velocity (of the peak stress) as a function of 

depth are shown in Fig. 4.20.  The velocities were determined from the 

difference in arrival times at gages at two depths, and the velocities 

are, therefore, plotted as a line between those two depths.  The pre- 

diction lines were derived from an evaluation of the tangent modulus 

from compression tests described in Appendix B.  Both the overburden 
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stresses   and  the   peak dynamic   stress  levels  were   considered   in  develop- 

ing   the  prediction.      In  each  case,   the  predicted  wave  velocity decreased 

with depth,   whereas  the  measured  velocity  increased  with depth.     However, 

the  magnitudes of   the  predicted  and measured  velocities were  similar. 

For  all   the clay  columns,   the  predicted  arrival   time  at  the  base   (using 

the  predictions of wave   velocity  as shown)  were  within  10^ of   the  actual 

arrival   times      The  best  correlation between experiment  and  prediction 

is  clearly  with Column C.      This  rather dry  clay  material  had  a nearly 

linear   stress-strain  relation,   which was  unaffected  by preload  or peak 

stress,   and,   therefore,   it  behaved much  like  a   linearly elastic  material 

during   loading. 

The  predicted wave   velocity  for  the  sand was  somewhat  higher  than 

the  measured  velocities.      The  predicted  arrival   time   at  the  base was 

only   75^i of   the measured  arrival  time.      If   the   secant  modulus  from  the 

compression  tests  were   used   to  obtain   the wave   velocity,   then  the  arrival 

times would  agree within   10^ for  the  sand       It  may  be  noted here  that   a 

disagreement  between  the   actual   and predicted  wave   velocities  leads   to 

disagreement   in other  predictions,   such  as   that  for  stress attenuation. 

The  predicted attenuation  rate   is directly dependent  on  the wave 

velocity.      Since   the  wave   velocity  varies with depth   in most  cases,   it 

should  not  be expected  that  a  prediction  based  on a  constant   velocity 

would  coincide with  the  experimental data 

Acceleration   records  were  obtained  from  tests  on Columns C  through 

F.      The  peak accelerations  are   shown as  a function or  arrival  time of 

the  peak   in Fig.   4.21.     No prediction was made  for acceleration.     The 

lines  on   these plots  indicate merely  the   trend  of   the  data.      In general, 

the   acceleration  attenuates  with  the square of   the  arrival  time,   and 

the  magnitude of   the peak  is proportional  to  the  magnitude of   the 

applied   stress.     The  softest  soil  of   this group   (Column 0)  gave   the 

most   rapid  attenuation   (proportional   to  time  to   the  2.7 power)   as 

would   be  expected.      However,   the  peak accelerations  at   the surface wer? 

highest   for  this column   in contrast  to what  would   have  been expected. 

This   latter discrepancy  may  be   attributed  to  the  fact   that  for different 
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series of tests there were different amounts and types of damping material 

placed on top of the column to reduce oscillations in the stress wave. 

Particle velocity was determined by integration of the accelerometer 

response.  For Col amn B, the acceleration signal was integrated 

electronically, and a velocity-time trace was displayed on the oscillo- 

scopes.  This particle velocity trace has a shape similar to that of 

the critical stress wave.  For Columns C through F, the acceleration 

signal was recorded, and the area under the acceleration Vi ace was 

integrated manually to obtain peak particle velocity.  The experimental 

values of peak particle velocity are shown in Figs. 4.22 to 4.26.  Along 

with the points are curves from the three theoretical models used to 

predict stress attenuation.  The particle velocity at the surface was 

determined from the equation 

a 
v   =   (4.1) 
mo   pc0 

v 

where     v       is   the  peak  particle  velocity   at   the   surface, 
mo ' 
a  is the peak stress at the surface. 

mo F 

o       is   the   gross  density of   the  soil,   and 

c0     is  the  wave   velocity  at   the   surface,   as predicted  from 

compression   test  data. 

The  peak particle  velocity was calculated  only   for  the   stress   level 

obtained  from  the  drop height of   about  100  cm.     Therefore,   the   theoretical 

predictions  are directly   applicable only   to points obtained  using  that 

ü.-op height. 

The  few  points  available  from  the Column  B  tests  indicate   that   the 

constant  tan  delta  model   represents   the  attenuation  reasonably  well. 

The  particle  velocity  at   the  surface  appears  to agree  quite well  with 

the  prediction.     The  accelerometer  at  the  next depth beyond  those 

plotted  1.65 m,   recorded  a much lower particle   velocity,   below   10 cm/sec. 

This  very  sharp decrease   in particle  velocity  coincides  with  the   sudden 

increase  in  wave  velocity   that  occurred   at   about  1.5 m   (see Fig.   4.20). 

The  particle  velocity  at   the  surface of  Column  C was  also well   predicted 

by  Eq.    (4.1).     Down   to  three meters,   the  points   lie near  the   theoretical 
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V ? 

curve for  the  constant  tan delta model.     There  is  a  sudden decrease  in 

particle velocity beyond that depth,   caused by the coincidence  of  the 

reflected wave from the base with the  initial wave.     The particle 

velocity   in  the  initial wave  is downward while  the reflected wave  has 

an upward  velocity;   hence,   the  partial  coincidence of   the waves  tends 

to reduce  the peak value. 

In both Columns D and  F,   the  particle  velocity  appears to  have 

attenuated much faster than predicted.     Actually,   the  attenuation is 

initially  high,   down  to  1 ns-: ter,   and  from  there on   it   is  quite  gradual. 

This  trend  is  similar to that  indicated by  the constant  tan delta model, 

Again,   the predicted  velocity  at   the  surface is quite  close   to the 

measured values. 

4.4    Discussion 

These one-dimensional  wave propagation tests on clays and  sands 

indicated  that   the wave transmission properties of   the  two types of 

soil  were  very  similar.     In  fact,   stress  and acceleration  records 

obtained  from  tests on the  two materials  were  identical  qualitatively 

and only  slightly different quantitatively. 

Stress  attenuation  is of  most   interest and   so  it  will  be discussed 

in detail  first.     The discussion  will   then turn  to  the  stress  wave 

duration,   the   stress measurement  methods,   and  the wave   front   and wave 

velocity. 

4.4.1     Stress Attenuation.     Stress  attenuation   is  used  here  to 

mean  the decrease  of  the peak  stress as  a function of  distance  from the 

point where   the  load  is applied.      For all   the tests made   the  stress 

attenuated 60  to  80^ through  the   length of  the G-meter column.     The 

curve of  stress  attenuation versus depth were all quite   similar: 

nothing distinguished those for  sand  from those for  the  clays. 

These data   in combination with   the  theoretical  models  provide an 

initial  basis  for predicting attenuation caused by material  dissipation. 

In each of   the   three models used   in  Section  4.3,   attenuation   in a  given 

soil   is a  function only of  z/(cTo).     Thus,   if   the attenuation   is known 
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lor z - 2 meters, T0 - 2 msec, it can be assumed to be the same for 

z = 200 meters and TQ = 0. 2 sec. 

There is considerable scatter in the experimental results for 

stress attenuation.  This dispersion of the data can be attributed to 

several causes, which should be considered in any future test program: 

1. Plotting procedure.  The peak stress data were plotted versus 

depth for the convenience of other investigators who might 

desire to evaluate the data.  With this method there is no way 

to account for differences in wave duration or wave velocity. 

An alternate abscissa, which partially accounts for these 

factors, is discussed later. 

2. Irregularity of the wave shape.  The theory for all three of 

the models considered indicates that attenuation is directly 

dependent on the rate of decay of the applied stress.  The 

applied stress wave form varied from test to test so that it 

is not surprising that the attenuation rate also varied. 

3. Variation in stress gage calibration.  The stress gage 

calibration changes slightly from test to test.  Hence, the 

value of peak stress is only known within about 20^.  This 

will be discussed later. 

The correlation between theory and experiment is rather poor.  The 

theoretical prediction requires a knowledge of the wave velocity, one 

or two attenuation parameters, and the duration of the applied stress. 

If any of these is off, the prediction will be inaccurate.  Thus, the 

correspondence between experimental and theoretical attenuation is not 

a very sensitive measure of the applicability of any model.  Particular 

problems that lead to differences between theory and experiment are 

1.  Varying wave velocity.  In the experiments, the velocity often 

varied considerably with depth; however, all the models 

^including the nonlinear model of Appendix D) showed a constant 

or nearly constant wave velocity.  The varying velocity tends 

to distort the attenuation pattern so that the theoretical and 

experimental curves cannot be expected to coincide. 
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2. Incompleteness of  the  models.     None of   the  models  fully  repre- 

sents  soil  that  shows  a nonlinear sti ess-strain  relation, 

rate-dependence,   and  a compacting character.     Each model 

studied represents only one or two of  these  factors. 

3. Improper evaluation of  parameters.     Because none of  the models 

actually  represents  in detail  the behavior of  soil,   the model 

parameters must be evaluated on some fairly  arbitrary basis. 

For   instance,   tan   6 of   the  constant  tan delta model  could be 

evaluated by  the experimental  lag time,   width of   the hysteresis 

loop,   area of   the hysteresis  loop,   from a  creep curve,   from 

the damping observed  during oscillatory  loading,   from the 

variation of modulus  with  frequency,   etc.      Because  the soil   is 

not precisely  represented  by  the constant  tan delta model,   all 

of   these bases for evaluation will give different  values  for 

tan   6.     Hence,   a model  may  give  a poor prediction  because   its 

parameters were   improperly  evaluated,   not   because  the model 

is   inappropriate.     Thus,   it   is very  important  to  choose  the 

most  suitable basis   for evaluation. 

4. Dependence of  parameters   JM   stress  level.      Each  of   the 

dissipation parameters  and  wave  velocity  depend  on  the  stress 

level.     Hence,   in  a  column   in which  stress   varies with depth, 

the dissipative  parameters will  also vary  with depth.     Of 

course,   these  variations were not  considered  in  the  theoretical 

predictions.     Rather,   parame ers were  chosen  appropriate   to 

the maximum applied   stress   (the  stress obtained with  the drop 

height  of  about  100 cmj. 

5. Form of  the applied  stress.     The applied  stress  assumed  for  all 

the  theoretical work  had  a  shock front  and   an exponential 

decay  after  the  front.     The  stress  pulse applied  by  the drop 

weight  had a  finite  rise  time of 0.3  to  1.0 msec,   a rounded 

peak  and  a decay   thereafter.     This difference between theoretical 

and  experimental  applied  stress  should  affect  attenuation 

significantly  near  the  top of  the column. 
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The main  value of   these   tests and  related  theory may be  to point 

out   the  variables  involved.      Unfortunately,   the quantitative significance 

of  each variable cannot  be  assessed  from our  test   results. 

Stress  attenuation  graphs  are  the easiest   to  use for predictions 

for a  particular soil  and  applied  stress if   they  are plotted as peak 

stress  versus depth.     However,   the natural  coordinates  from the 

theoretical  standpoint   appear  to be nondimensional  peak  stress  versus  a 

nondimensionalized  arrival   time or depth      This depth abscissa  is 

z 

P       T0      T0     J      c 
o P 

where     T     is  the nondimensional  arrival  time of   the  peak,   or the non- 
P 

dimensional depth of  the measurement  point, 

t     is  the  time difference between  the  arrival of   the peak at 
P 

the surface  and  the  arrival  at  the depth  of  interest, 

T0   is the duration of   the wave  at   the   surface, 

z     is  the depth,   and 

c     is  the wave velocity  associated with  the peak  stress, 
P 

This definition of  nondimensional  depth as  the  logical  abscissa agrees 

with  the  analyses of   the  constant   tan delta,   linear hysteretic,   nonlinear 

hysteretic,   and  viscoelastic  compacting models.     An example of  the  use 

of   this  abscissa with  the   soils data  is  shown   in  Fig.   4.27.     This 

figure  contains all   the   stress attenuation data  points  from Column B 

(wet  kaolinitej      The applied  stress  in  these   tests  varied  from 0.58  to 

2.5  bars  and  the duration of   the wave was 2.5 or 6 msec.     These data 

are  also  shown  in Figs.   4.8  and  49 with depth  as   the abscissa.     The 

two   figures were  required  because of  the variation   in time constants 

from  2.5  to 6.0 msec.     The  data  can be combined   in  Fig    4,27 because  the 

nondimensional  abscissa  accounts  for  the  variation   in time constant. 

The  scatter of  data  in  Figs.   4 8,   4.9 and 4.27  should be compared  to 

get  an  idea of  the  value of   nondimensional  depth as  the  abscissa. 

The  use of  this nondimensional  abscissa minimizes  the  importance 

of   variations in  the wave  velocity.     The stress  attenuation data 
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presented earlier   (Fig.   4.7-4.12;  show,   in  most  cases,   an extremely 

rapid attenuation   initially  and   then  a  more gradual  decay  thereafter. 

This pattern   is directly   related   to  the  fact   that   the  abscissa   is depth 

and   that  the wave   velocity  is  low at   the  surface  and  increases with 

depth.      If   the  arrival   time  were   used   as   the  abscissa,   the  attenuation 

rate would  be  consicierably  more  uniform  and  would correspond  more  closely 

to   theoretical   predictions      All  models  used  in   the predictions exhibit 

a   constant  wave   velocity;   hence,   they  cannot  be  expected   to predict 

accurately  phenomena  that depend on wide  variations in  wave  velocity. 

Even   ^f   the  nondimensional depth were   used   as the   abscissa,   the 

attenuation curves  would not be  linear  on   the  semilog plots.     There 

would  still  be  a  rapid attenuation at  high  stress levels and  a more 

gradual  attenuation   later.     This pattern contrasts with the curves of 

the   linear hysteretic  and  viscoelastic  compacting models,   which are 

nearly  linear  in  the   range of  present   interest.     The constant   tan delta 

model  gives  the  desired  pattern,   but   it   is not   unique  in  this  respect. 

The  nonlinear hysteretic  model,   which  is  analyzed  in Appendix  D, 

also  gives  the  desired  attenuation pattern.     The  latter model   has a 

rate-independent   stress-strain  relatiun,   which   is concave  to  the 

stress axis.     The particular attenuation pattern obtained  is caused by 

the   introduction of   gcoitatic  stress,   a   factor   that does not  enter  the 

analyses of   the other models.     Hence,   no  firm conclusion can  be  reached 

concerning  the  suitability  of  any one of   the models  for attenuation 

predictions. 

4.4.2    Stress Wave Duration.     The  stress wave duration  is not  a 

quantity  that needs   to be known precisely   to predict  the behavior of  a 

structure buried   in   the soil.     However,   the concern here  is  to know why 

the   theoretical   predictions  are  so different  from  the measured  values. 

At  all depths,   the  durations are much longer  than predicted.     There are 

several  possible explanations for  this difference and probably  all  of 

M "Ti nave  sume  validity.     One explanation   is   that   the models are  based 

on   too small  a dissipation  parameter.     A   larger  amount of dissipation 

would   increase  the  predicted rate of  increase of  duration and   it  would 
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also increase the predicted rate of stress attenuation.  Both effects 

would put the predicted values closer to the experimental ones but 

would still not account for the large change in duration.  A second 

possibility is that the models are not adequately representing some 

important feature of the soil.  This is a possibility, although it is 

doubtful that a model could predict stress attenuation but not the 

lengthening of the stress wave  A third explanation is that the stress 

records are consistently in error.  Such an error in the record has been 

alluded to ii Ref. 4, where it was noted that the unloading calibration 

of the stress gages could be markedly different from the loading 

calibration.  An example is given in Fig. 4.28 for three gages buried 

a lew centimeters below the surface in a container of sand.  It should 

be noted that the gage always reads the same under a given stress on 

its sensitive surface.  Hence, the disagreement between loading and 

unloading calibration means that the average stress applied by the soil 

to the gage is not equal to the average stress in the soil sample. 

The calibration information of Fig. 4.28 was replotted in Fig. 4.29 to 

show the nature of the unloading nonlinearity.  Surprisingly, the ratio 

of unloading to loading response is a simple linear function of the aver- 

age applied stress.  What effect does this calibration anomaly have on 

the stress records? Suppose that this static calibration is applicable 

during a wave propagation test.  Then, an exponential stress wave will 

be distorted as shown in Fig. 4.30.  In this example, the duration of 

the recorded stress is 47%  longer than that of the average stress on 

the soil. 

The difference between loading and unloading calibration is caused 

by stress redistributions about the gage.  Such redistributions require 

some time to occur as shown by Mason, et al17, so that the unloading 

calibrations will depend on the rate at which unloading occurs as well 

as on how soon it begins after the peak load is reached.  For a quasi- 

static loading, the redistribution will be complete so that the difference 

between loading and unloading curves will be maximum.  Therefore, the 

stress waves measured during wave propagation tests are distorted less 

than shown in Fig. 4.29, but the amount of distortion will vary with 
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stress  decay   rate  and   from soil   to  soil       Because   the  stress decay  rate 

decreases with  depth,    the distortion  probably   increases with depth. 

Variables,   such   as   soil   type,   density,   and '.noisture,   which  affect 

the  relaxation   time  of   a   soil,   will   also  influence   the  amount   by  which 

recorded   stress waves  will   be  distorted   (because  the   stress   redistribu- 

tions   that  cause   the   distortion  are   time-dependenty. 

LI.3    Stress  Gage Calibration.      The   stress gage  calibration was  a 

static   procedure       It   was  based  on   the  assumption   that   the  stress wil 

be distributed  on  the   gage  in   the  same way   under static  and dynamic 

conditions.      This  method   is  simple   a .i   repeatable but  not   completely 

justifiable.      There   are  at   least   two  factors   to indicate   that   static 

and  dynamic  calibrations   should  differ. 

The  calibration  uepends  on  the manner   in  which   the   soil  distributes 

the  stress over   the   gage.     As   the   stress   is   applied   to  the   soil,   the 

stress  distribution  changes.      This  change   requires   time   (several   milli- 

seconds   in  sand     so   that   lor a  given  average   applied  p.c-sure.   different 

stresses  will   be   applied   to  the   gage  by   the   soil  for  difierent   loading 

rates.     Because   the   stress redistribution   is  a  time-dependent   affair,   it 

would be   expected   that   highly   time-dependent   soils  would   lead   to   large 

differences between   the   static   and  dynamic   calibrations  and   that   time- 

independent  soils would  show  no difference       This expectation   is  hinted 

at   by   the  nicely   repeatable data  from  the   stiff  soil   of  Column C. 

The   stress distribution   in  the  vicinity  of  the  gage   is greatly 

influenced by   the   radial   stress of   the   tube  on  the   soil.     The  radial 

stress   is caused  by   a   Poisson   effect   when   axial  stress   is  applied   to 

the  soil.     When   the   axial   stress   is  decreased,   the   radial   stress   also 

decreases  but   much   less   than   the  axial   stress.     Plastic  equilibrium of 

the  soil   requires   that   the radial   stress  not   exceed   four or   five   times 

the  axial   stress  and   that   it   not   fall   below  zero.      However,   the   magnitude 

ol   the   radial   stress  within  that   range   cannot  be defined by   statics. 

Hence,   it   may   vary   from   teat   to   test   in  a   fairly arbitrary  manner.     Thus, 

the stttic  calibrations  were  made  with  a different   radial   stress   acting 

than   that  during   the  dynamic   test. 
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From discrepancies between  the  response  of  adjacent   stress and 

force gages,   we concluded  that  the  stress gage  calibrations  err by  ±20^ 

in situations where  repeated testing is done. 

4.4.4    V'ave  Velocity.     The  velocity with which waves  travel   through 

the  soil  is  not  solely   related  to one property  of  the  soil.     Rather   the 

wave velocity  is a product of  the complex  interaction between the 

propagating wave  and  the   soil.     Wave  velocity   is primarily  a  function of 

the  stiffness or compression modulus of   the  soil.     But  velocity   is  also 

affected by  the  rise  time of  the  stress wave,   the viscoelastic or  time- 

dependent dissipation of   the soil,   by   the  variation of   the  soil   stiffness 

with depth,   and by  the  concavity or  convexity  of  the  stress-strain   relation 

of   the  soil.     The effects of  the   rise  time  and  decay  rate  of   the  stress 

wave on wave  velocity  are  shown   in  the   time-depth plot of  Fig.   4.31. 

This plot   shows  the wave   interactions  for a  wave propagation calculation 

using  the  linear  hysteretic model.     The  applied  pressure  represented  by 

incremental   steps  is plotted above  the  coordinate  line,   the  waves,   below. 

The wave  velocity   is   the   slope of   the  lines  on   this diagram.     When 

lines  are drawn  between   the  points of  maximum  stress,   a  "wave  velocity" 

for  the maximum stress  can be determined.     Two points  may  be noted 

concerning   this  "velocity":     it   is not   the   loading or  unloading  velocity 

of   the material  but   is   intermediate   to  these,   and  it   is  a  nonlinear 

function of  depth,   although  the   model   has only   linear  characteristics. 

Time  dependence  of   the soil   also affects   the wave   velocity  because 

it  caused  the soil  modulus  to  increase as  the  loading  rate   increases. 

Thus  a  shock wave  would   travel   faster   than  a  gradually   rising   stress 

wave.     If  we  add  such  factors as nonlinear  loading and  unloading 

relations,   and  properties   that   vary   with depth,   it   should  be  clear  that 

the  "wave  velocity  of   the  peak  stress"  is difficult   to  relate  to   the 

material  pioperties.     However,   this   "velocity"   is of   most   interest   to   the 

predictor.      Therefore   it   is  important   to have   some basis  for estimating 

this  velocity. 

We have  attempted   to correlate  the wave  velocity of   the peak  stress 

with  the wave  velocity  computed  from the tangent modulus of   the  stress- 

strain curve  of   the   soil.     Such   a  correlation   is necessarily  approximate 
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FIG. 4.31    TIME-DEPTH  PLOT  FOR  CALCULATION WITH   LINEAR  HYSTERETIC MODEL 

but   it  has   indicated   that   a   reasonable   velocity  estimate  can  be obtained 

from  the  tangent  modulus.     As  pointed out  in Section  4.3  the  average 

wave  velocity  through  the  clay  column  is  within  about  10^ of   the wave 

velocity  computed   from the   tangent modulus and  within 25^ for  the sand 

column.     And  this  computed wave  velocity   served  as  a  good basis  for 

calculating  the  peak particle  velocity  for all   the clay   tests. 

It   is possible  that   the waves  recorded should be  considered shock 

waves  instead of   stress waves.     Normally  a  shock wave  has  a  very  brief 

rise   time   (fraction of  a microsecond;  and   this  rise   time would   remain 

constant  at  all  depths;   these conditions  are not  met  by  the  recorded 

waves.      Zaccor,   Wallace,   Durkin,   and Mason18 have  suggested   that  a  rise 
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time of   around  100 microseconds   in sand   should  be  considered  a   shock 

t front.      If   the wave   is a  shock,   then the wave velocity   is associated  with 

the  secant  modulus of  the  stress-strain   relation.     If   the wave   is not   a 

shock,    the  velocity  would  depend  on   the   tangent   modulus.     The  wave 

velocities  measured   in our   tests  are   affected by  many   things   besides   the 

modulus.     Therefore,   the   fact   that our   correlation was best  with  the 

tangent  modulus   is  not  a  sufficient  basis  for deciding  that   the waves  are 

stress waves. 

The  soil   tube  which   is   required   to   provide   the  one-dimensional 

conditions  also  has   some effect   on both  wave  velocity  and   attenuation. 

Whitman4   has  noted   that   it   was  necessary   to account   for   the  mass of   the 

tube   in determining  the wave   velocity,   c,   from  c2 -  11/n,   where  M is   the 

soil  modulus and   o   is  the  combined density of   the  soil   and   tube.     That 

is,   the   tube   tends   to  reduce   the   wave   velocity. 

The   tube  may   also  increase   the  attenuation   rate  of   high   frequency 

components   in   the  wave.     This   increased   attenuation  could   be   caused   in 

two  ways:     by   the   radial   acceleration  of   the  soil   and   by   friction against 

the  wall   of   the   tube.     Both of   these  effects would  be more  effective   in 

attenuating  high-frequency   than   low  frequency   components  of   the   stress 

wave.     These   two   effects  might   remove   very   little  energy   from   the  pulse 

but   contribute   significantly   to  reducing   the   steepness  ot   the   wave   front. 
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CHAPTER 5 

DISCUSSION OF THEORETICAL MODELS 

5 .1     Introduction 

Theoretical models  are  t\.e  needed link between  soil  behavior  in com- 

pression  tests  and soil  behavior during wave propagation.    The models 

show  the  relation between  compression modulus and wave  velocity,   between 

hysteresis   loo^  (of  a   stress-strain  curve)  and attenuation,  and between 

strain   lag and attenuation.     Thus,   the models are  the basis of a  method 

whereby  one  can  observe  phenomena   in a  compression  test  and  then  predict 

tiic wave  propagation  behavior.     The models  can be used  either for  theoret- 

ical  analyses  of wave  propagation  or  to provide  the  scaling  laws  for 

relating  the  soil behavior  under  different   test   conditions. 

No  complete model  for  soil  has  been developed.     Rather we have 

studied models  which  exhibit  some of  the main features  of soil.    The 

organization  of  the  study  can be  seen  in Table 5.1.     In  this table  the 

modals are  sep. :-ated according  to  the type  of material  dissipation which 

they  represent.     Compactica means   the  type  of dissipation  in which  there 

is a   permanent  deformation after  a   loading  cycle.     A  linear compacting 

model  here means a model which  has  a   linear  stress-strain  relation during 

loading  and a   linear   relation during  unloading.     The  second type  of 

dissipation   is  time-dependent   (viscous).     Superposition   is valid  in  the 

analysis   of   linear time-dependent  models. 

The  clastic model  is  the  simplest and  exhibits  no dissipation.    The 

linear hysteretic model   (see Ref.  3 and 10)   shows  permanent  set after a 

loading   cycle and exhibits  the  same behavior at  all   loading  rates.     The 

S-hysteretic  model  (Appendix D)   has  an S-shaped  stress-strain relation 

during   loading   (first   convex  then  concave  to the  stress  axis)  and an 

unloading  relation which  is  concave  to the  stress  axis.     The standard 

linear  viscoelastic   (three-element)   model and the  constant  tan delta 
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model exhibit  frequency-dependent dissipation but no permanent set.    The 

standard  linear model  (see Rcf.   l)  has a maximum dissipation at one 

frequency and none at zero and  infinite frequencies;  whereas,   the constant 

tan delta model  (see Ref. 3)  has  the same dissipation at  all frequencies. 

The viscoelastic compacting model analyzed  in Appendix C  is the  first  to 

contain both  compacting and time-dependent dissipation. 

TABLE 5.1 

TYPES OF SOIL MODELS 

Compaction 

none linear nonlinear 

T
i
m
e
-
D
e
p
e
n
d
e
n
c
e
 

None Elastic Linear hysteretic S-hysteretic 

Linear Constant 
tan delta, 
standard 
linear 
viscoelastic 

Viscoelastic 
compacting 

Nonlinear - - True model for soil 

In the same table the true model for soil is shown as a nonlinearly 

time-dependent and nonlinearly compacting model. An example of the non- 

linear  time-dependence  required  to  represent  soil   is  the model developed 

by Kondner.   "S1'    The nonlinear compaction of  soil  is  represented by the 

S-hysteretic model. 

5.2    Viscoelastic Compacting and S-Hysteretic Models 

Two models were analyzed on the present project  to determine their 

wave propagation response.    The viscoelastic compacting model is dis- 

cussed  in Appendix C and  the  S-hysteretic  model   is  treated  in Appendix D, 

These  two models represent   logical  extensions from the earlier models  in 

the direction of a more complete  representation of soil. 

The viscoelastic compacting model was  formulated as a combination 

of  the   linear hysteretic and standard linear viscoelastic models.    This 

model was analyzed to ascertain  the effect  of  combining  time-dependent 
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and   time- ndependent  dissipation.     Because  soil  contains  both  types  of 

dissipation,   it   is  reasonable to investigate  such a model.    The  theoret- 

ical   results of Appendix C show that  the combined effects  can be obtained 

approximately by a  superposition of  the  separate effects  of  the  two types 

of dissipation.    That   is,   the attenuation exhibited by the viscoelastic 

compacting model  can  be  found by combining  the attenuation determined 

from  the two component  models,  the  linear hysteretic and standard  linear 

viscoelastic.     The wave  front  variations  are also merely a   combination 

of   the behavior of  the  component models. 

The analysis developed   in Appendix C for  the  viscoelastic  compacting 

model   is based on a   known  solution  of  the wave  propagation problem  in   the 

linear hysteretic medium.     Through  the use of  the  correspondence principle 

the  known solution was  altered to form the  solution for  the viscoelastic 

problem.    Because of   the generality  of  the  approach,   the analysis   is 

applicable to any model constructed by the  introduction of  linear visco- 

clasticity to the  linear hysteretic model.    Therefore,   the analysis could 

be used for a  model built by  combining  the   linear hysterttic model with 

the  constant  tan  delta  model.    The  S-hysteretic   (or nonlinear hysteretic) 

model  was analyzed  to study  the effects of geostatic stress on attenua- 

tion and to investigate  the development  of   the wave front.     For  these 

purposes the  model was   constituted as a  strain-rate-independent  model 

with nonlinear loading and unloading  relations.     The loading relation  is 

convex  to the stress axis  at   low stresses  and concave at  high stresses. 

This   initial  convex portion,   which has been observed  in dynamic  compres- 

sion   tests,   is a   function  of   the preload or geostatic stress.     Its 

presence helps  to explain  the fact  that  seismic waves  (zero stress   Irvel 

disturbances)   travel at  much  higher  velocities  than  large amplitude  stress 

waves.     It also explains  the  existence of  small  precursors  in wave 

propagation  tests:  hence,   it   is associated with modifications  of  the wave 

front.     The  remainder of   the   loading  curve  and all  the unloading  curve 

are  concave to the  stress axis:     this behavior corresponds  to that 

observed  in dynamic compression  tests  on  soil.     With these   loading 

relations it was  possible  to  study the effects brought about by  the 

curvature of  the  stress-strain relation and  the geostatic  stress.     The 
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analysis  of  the S-hysteretic model was  completed  only  for the  case  of 

purely  concave  loading  and  unloading  relations.     With  thes?   relations  a 

shock front  remains a   shock at  all depths--no precursors occur.     Hence, 

no  information was  obtained on wave front  formation.     However,   the analyt- 

ical   results did provide  information about  the  effect  on stress  attenua- 

tion  of  geostatic  stress,   curvature of   the  stress-strain  relations,   decay 

rate  of  the applied  stress,   and  stress   level.     The most  significant   find- 

ing was  that  the  combination  of  geostatic  stress with  a  curved   loading 

relation  decreased  the attenuation  rate markedly.     The predictions   from 

this  model were not  used  to  compare with  the  experimental data   of  Chapter 4 

For attenua  ion  the predictions   in all  cases would  show  less  attenuation 

than  those cf  the  linear hysteretic model. 

,) .3     Suitability  for  Use   in  Predictions 

To be  readily  usable  for wave  propagation  predictions a  model  must   be 

tractable analytically.     The  elastic mod^l   is  the  easiest  to analyze  be- 

cause   it   is  linear and  elastic and has but  one  parameter,  a  wave  velocity. 

The   linear hysteretic model   is  piecewise   linear  so  that a   restricted  super- 

position  is valid.     The  time  required  for an  analysis of  this model   is  com- 

parable  to that   required  for  the   linear  viscoelastic  models.     Because  the 

viscoelasti- compacting  model   is based  on   linear and  piecewise   linear  com- 

ponents,   it  can be analyzed  using a   restricted  superposition and   is   thus 

only  slightly more  complex  than  the piecewise  models.     The  S-hysteretic 

and  nonlinear time-dependent  models are  considerably more difficult   to 

analyze because  superposition  cannot  be  used.     It   is  possible  to analyze 

the   true  soil model  for wave  propagation behavior.     However,   for  practical 

use   in  predictions,   the most   complicated model  required will  probably be 

the  viscoelastic  compacting. 

Let  us now survey  the models for  the  suitability uf  their wave 

propagation predictions. 

Attenuation.     Only  the elastic model does  not   exhibit  any attenuation 

of  peak stress  or particle  velocity.    The standard   linear viscoelastic 

model  shows attenuation which   is a  function  of  arrival  time  but   is   inde- 

pendent  of  the decay   rate  of   the applied pre-sure   (in  the depths which have 
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been  studied).     The  other models all  show  attenuation as a   function  of 

arrival  time and  pressure decay  rate.     The  experimental   results  show  that 

attenuation  is a   function of  the  pressure  decay rate and  arrival  time. 

Wave  Front.     The  constant   tan delta   model  and  the S-hysteretic  model 

exhibit  a   rise  time which   increases  with  depth:     this behavior   is also 

shown   in the  experiments.     The other models all  show an  initial  shock 

front   which  docs  not   vary with depth.     (if   the  viscoelastic  compacting 

model  were  formulated as  a   combination of   the  constant   tan delta  model and 

the   linear hysteretic model,   then  the  rise  time of  the  stress wave   in this 

model   would   increase  with depth.) 

Durötion.     Only  the  clastic model  provides  for no change   in duration 

of   the   stress wave  as   it   travels   through   the  material.     All   the  others 

show  .some   lengthening  of   the  stress  wave  with  depth.    The  experimental 

data  also show  considerable   lengthening  of   the  wave with depth. 

Compression  Test  Data.     If a  model   is   to be useful  for wave  propaga- 

tion  predictions,    its  parameters must  be  derivable  from other  soil  test 

data   such as   that   from compression   tests.     The   time-dependence,   the  com- 

paction,   and   the  nonlineant ics are all  exhibited  in  these   tests       One of 

the main  features   of   test   results   is  a   loop   (closed or open)   between   load- 

ing and unloading  stress-strain curves.     Such a   loop  is exhibited by all 

but   the elastic model       The experimentally  observed  lag  between  peak 

strain and  peak  stress   is  present   only   in   the   timn-dependent  models       The 

concave  upward  nonlinear!ties  of   the  stress-strain  curve are  observed 

only   in  the  S-hysteretic  model.     Honcc,   none  of   the models  exhibits  all 

the main features  which  are noticed   in compression data. 

The previous  discussion has  considered  only the potentialities  of 

the  models,   not   their actualities  or  the  quantitative correctness  of   their 

predictions.     The   importance of  such a  survey  is the following;     if  we 

wish  to predict   the   increasing  rise  time  of   the   »tress wave,   we  need 

consider only  the  S-hysteretic and  the constant   tan delta  models, 

A model  with  potential value   in  predictions  is a  viscoelastic  compac- 

ting model  composed  of  constant  tan delta   and   linear hysteretic  elements. 

This model  could be  analyzed  readily   (the  method has  been worked  out   in 
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Appendix  C)  and would exhibit   attenuation,   and  changes  of wave  front  and 

duration  similar  to those  seen   in wave  propagation  experiments.     It  also 

would  show both  the  time-dependent and  compacting  type of dissipation  seen 

in  compression  tests.     Its drawbacks are  that   it  provides  for a  constant 

wave velocity at  all  depths,   has  the  same  time-dependent dissipation at 

all  frequencies,   and  shows no  variation of  dissipation with  stress   level. 
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NOTATION FOR APPENDIX A 

A = area   (cm2j 

g = acceleration of gravity 

h - height   of drop 

I = impulse  per unit area  of  soil  cross-section   (bar-msec) 

M = mass  of   the drop weight   (kgm),   or mass  of  isolated  soil 

element   shown  in Fig.  A.10. 

t = time 

v = particle  velocity  (cm/sec) 

j = stress   (bars),  subscripts refer to depth  in  the column 

71 

/     .     — 



Appendix A 

WAVE PROPAGATION TESTS 

A.l    Introduction 

Details  of   the wave propagation  tests  with six  columns   of  soil are 

given  in  this appendix.     Information  on  the  construction  of   the  column and 

test apparatus,   the gages used,   calibration  procedure,   and  data   reduction 

procedures  is  included.    The most   important   results  from  these  tests—the 

attenuation  of  peak  stress,   the attenuation  of  particle  velocity  and 

acceleration,   variation  of wave  velocity with depth,   and a  discussion of 

the variation  of   the stress wave with  depth--aro found   in Chapter  4. 

A.2    Test  Facility and Gages 

Unidimensional wave propagation   testing  required  the  construction of 

a   test  facility   in which essentially   one-dimensional  waves   could   propa- 

gate.    The soil   tube  that was  constructed was described   in  Ref.  3.     One- 

dimensionality   imposed  the  following   requirements  on  the  design  of   the 

tube: 

(1) High   radial   stiffness   to  inhibit   radial motion  of   the 

soil,   and 

(2) Low axial  stiffness  to allow  the  tube wall  to move with 

the adjacent  soil and not   to  retard  the axial  soil  motion. 

The  tube was   constructed  of  alternate   rings of aluminum and  neoprene 

rubber  (Fig.  A.l).     The  soil  tube  is  composed of  segments,   each approxi- 

mately 0.7 meters   long.    The  segments  were addei on as  the   tube was  filled 

with soil.     In  Fig.  A.2,   the  column   is  shown at  full height  with   its asso- 

ciated support   structure.    Buckling  of   the  soil column  is  prevented by the 

"A" rings,   which  provide  intermediate   support  to the  column. 

The  capabilities and  limitations  of   the  soil  column were discussed  in 

Ref.  3 and 4.     Specific  points  are: 
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(1) The  radial  stiffness  of  the tube  is adequate  to simulate 

a   zero radial  strain condition.     With an  axial pressure 

of  7 bars,   the  radial  strain was  only  100 microstrain 

(microinches/inch) . 

(2) The axial stiffness  of  the tube is about  56 bars and  is 

thus small enough  so that  the tube absorbs  less  than  1^ 

of   the total applied  force when  the  soil   is a  dense sand. 

For soil  that   is   less  stiff than  the dense sand,   the tube 

probably  takes  more  than   ifo of  the  total   force. 

Two  types of  stress  gages,   two types  of  force  gages,   and  two types 

of accelerometors were used.     The  stress gages had been developed earlier 

and are  described  in Part   IV.     Drawings  of  these gages appear as  Figs.  A.3 

and A.4. 
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FIG. A.3   DIAPHRAGM STRESS GAGE 
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Of  these  two,   the  D gage  is a  hollow disk with a   thin diaphragm  on  one 

side.     This diaphragm was   instrumented with   four  strain gages  that  formed 

a   complete electrical   resistance bridge.     These gages were found   to be 

very  reliable and gave  repeatable  results.     The other stress  gage,   the  C 

gage,   consists of  a   disk of  piezoelectric  material   (PZT-5)   . andwiched 

between  two aluminum  covering disks. 

Two types of  accelerometers were  used,   both made by Endevco.     The 

type  used near  the  top of  the  column  is   type  2261,   which has a   piezo- 

rcsistive bridge  as   the  sensing element.     The  other accelerometers were 

type  2221C and are  piezoelectric.    The  piezoelectric gages were  found  to 

suffer significant  zero shifts  if  they were  shocked above  100 g;   there- 

fore,   these gages were  used deep  in  the  column where  the acceleration 

level  was  less  than   100 g. 

A force gage,   which had been  constructed  for DASA at  SRI  under Con- 

tract  49-146-XZ-024,   was  used at  the base  of   the  column.    This gage, 

designated SI,  was designed as a  surface  shear gage but  it also worked 

well  as a  total  force  gage.    A photo of  the  gage appears as  Fig.   A.5 and 

is described more  fully  in  Ref.   19. 

The second type   of  force gage was  constructed  on  the project   for 

use at  the top of  the column and was numbered 01.     This gage consists of 

three  short columns between Vo aluminum disks  (see  Fig.  A.6).    The 

columns are aluminum  tubes   instrumented with  four strain gages  each  to 

measure  the  force  transmitted  through  the  columns.     Miscellaneous  data 

on all  six gage  types  are given  in Table A.l. 

The stress wave   for all  the  tests was  caused by dropping  a   large 

weight  onto the top of  the soil column.     The  stress waves produced by 

this  mechanism closely  resemble  those  from blasts—rapid  rise  to a   peak 

and   then a  nearly  exponential decrease.     The  drop-weights  used are  shown 

in Fig.  A.7.     The  21.5 and 49.2 kg weights  had a  steel  striker ball  that 

struck the heavy  steel  plate  resting  on  the   soil.     The 21.5  kg weight 

was  used for most   of   the  tests.    The 24.0  kg  weight  had a   large  curved 

plate  on  the base,   and   it  was dropped directly onto the sand.     The   impact 

with  this weight  was  much  softer than the   impact of  the other weights 
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FIG. A.5 SURFACE SHEAR GAGE USED AS A FORCE GAGE 
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FIG. A.6    FORCE  GAGE  Gl  WITH  UPPER DISK REMOVED 

79 



24.4 cm 

1^^ 

H27cm* 
DIAMETER 

wt>2l Skgm 

STRIKER BALL 

r-l2.7cm*l 

60cm rodius 

24,4 cm 

-22.8cm- 
DIAMETER 

STRIKING   PLATE   FOR 
DIRECT   IMPACT ON   SOIL 

wt'24 Okgm 

— 20.5cm— 
DIAMETER 

wt = 49.2(tqm 

STRIKER BALL 

•«   1 «4   45 

FIG. A.7   DROP-WEIGHTS 

80 



Table A.l 

GAGt CHARACTERISTICS 

Des ig- Natural Position 
nation       Measurement       Sensor Type       Height  x Diameter       Freq.     Sensitivity    during  use 

Strain Gage       0.59 cm x 3.8  cm 27  kc     1 mv/bar upper half D Stress 

C Stress 

2261 Accele 

2221C Acccle 

SI Force 

Gl Force 

Bridge 

Piezoelectric  0,40 cm x 4.4   cm 
crysta 1 

of   column 

1 v/bar lower  part 
of  column 

Acceleration     Strain Gage       2.3    cm x  1.5  cm 40 kc     0.1 mv/g upper half 
Bridge of  column 

Acceleration     Piezoelectric  0.8    cm x  1.5  cm 30 kc     14 mv/g lower Jialf 
of   column 

Strain  Gage       7.6    cm x 30     cm 2.6 kc  2 mv/ff 
Bridge [square) 

Strain Gage       4.4    cm x 32.0 cm 
Bridge 

base  of 
metric  ton      column 

2 mv/f top  of 
metric  ton      column 

NOTES: Natural  frequency was  not  determined  since  it  was well above  the 
range  of  interest. 

Sensitivity   for  the   strain gage  bridge   is   listed  on  the basis  of 
a   10-volt  excitation. 

and, consequently, the stress level was lower and the wave durations 

were longer.  The weights did not appear to rebound on contact; therefore, 

the applied impulse was taken as the change in momentum that would just 

stop the weight.  This impulse was computed as 

/ 
A 

where  I  is the impulse per unit area of the soil cross section, 

M is the mass of the drop-weight, 

A is the cross-sectional area of the soil column, and 

h  is the height of the drop. 

The units of this impulse are bar-msec, the same as the area under the 

curve on a stress-time record.  Hence, this impulse can be readily com- 

pared to the impulse measured at each force or stress gage. 

A.3 Soil and Test Conditions 

Soils used for the tests were a kaolinite clay, Vicksburg backswamp 

clay, and Monterey beach sand.  Properties of these soils are given in 

Appendix B.  Table A.2 lists the conditions of these soils as they were 

during the wave propagation tests. 
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Table A.2 

TEST CONDITIONS 

Column  Soil Placement  Column  Testing  
Desig- Soil Name8Compac11on    Waterc        Dry Density Satur- height   Impulse6    Calibration 
nation Method      Content gm/ctn3        ation" meters  levels,       Procedure 

% % bar -msec 

A Kaolinite Hand 
Tamping 

34,7 1.29 88 

B Kaollnlte Hand 
Tamping 

31.7 1.34 88 

C Kaolinite Statlcb 

Pressure 
18.8 1.42 60 

D Vlcksburg 
Clay 

Pneumatic 
Tamper 

26.8 1.34 71 

E Monterey 
Sand 

Sprinkle 
through 
Funnels 

1.63 

F Vlcksburg 
Clay 

Static15 

Pressure 
24.4 1.52 81 

2.58     14.0 Fluid 

4.62    6.1 to Fluid 
14.1 

4.35    7.0,10.0, Static, 
12.8 Impulse 

4.48    7.0,9.9, Static, 
12.8 Impulse 

4.33    7.4,10.2, Static, 
13.0,30.8 Impulse 

4.27    7.5,10.2     Static, 
13.1 Impulse 

Kaolinite was purchased  as a dry powder from L.  H.   Butcher Co.,   San 
Francisco.    Vlcksburg backswamp clay was  provided  by the  U.S. Army 
Waterways  Experiment   Station,  Vlcksburg,  Mississippi. 

Static compaction pressure was  17.0 bars  for Column C and 5.7 bars 
for Column  F. 

Average water content  from samples  taken during  placement and during 
removal.     The water content  on removal was normally   1 to 2^ less  than 
the content at  placement. 

Saturation calculations are based on a  specific  grwity  of 2,60 for 
kaolinite  and 2.70 for buckshot  clay. 

The  Impulse of  the dropped weight was  calculated as  in Equation A.l. 

The clay used  for  the  first  three  columns was  a pure white kaolinite 

obtained commercially  in an air dry condition.     For Column A,   the dry 

powdered clay was mixed with water to a water content of about 35^.     This 

same clay was used in Column B in addition to some  freshly mixed clay of 

about   33^ water  content.     The  soil  for  Column C was produced  by mixing 

dry  clay with  the wet  clay  from Column  B,   producing a moisture content 

around  19^.     The  clay   for  Columns A and B was quite  soft and   so it  was 

compacted by tamping it  into place.     The dryer soil  for Column C had a 

granular appearance and was  much stiffer.      It was  placed  in  the soil 

tube  in 10 cm lifts;   each  lift was compacted with  a Jack to a static 

pressure of  17.0 bars. 
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The Vicksburg backswamp clay used in Columns D and F was mixed to 

a water content of about 28$ at the Waterways Experiment Station and 

shipped to SRI.  When it arrived, it was rather soft and sticky and tended 

to extrude through the column walls under static compacting pressure. 

Therefore, it was compacted with a seven-pound pneumatic tamper. 

Lnlortunately, the compaction was neither uniform nor sufficient to 

produce a density comparable to that from a Standard Proctor test.  For 

Column F, the soil was dried in small batches to a water content of about 

24^ (estimated by working the clay by hand;, placed in the column in 

10 cm lifts, and statically compacted with a hydraulic jack. 

Column E was filled by raining Monterey sand through a double funnel 

device.  This method of compacting sand has been described in Ref. 3. 

The stress wave caused by the drop-weight traversed a layer of sand 

before reaching the force gage.  Figure A.2 shows this layer of sand 

between the 5-cm thick steel plate and the force gage.  The sand tended 

to smooth out the high frequency oscillations caused by the impact on 

the steel plate.  Apparently, the sand caused some shocking up of the 

stress wave so that the rise time at the force gage is shorter than that 

at the top of the sand.  In some tests, this sand layer did not adequately 

exclude the high frequency oscillations and so l/4-in. of plywood and 

up to l/4-in. of soft rubber were placed immediately under the 5-cm steel 

plate.  The addition of these latter dissipative materials increased 

both the rise time and duration and rounded the wave form. 

The stress level is roughly proportional to the applied impulse. 

Therefore, the stress level was varied by changing the drop weight and 

drop height.  The range of impulse levels used is shown in Table A. 2. 

Tests were generally conducted at three impulse levels so that the effect 

of stress level on attenuation and wave velocity could be studied. 

Some typical characteristics of the applied stress waves are shown 

in Table A.3.  Data for the table are taken from tests in which the 

21.5 kg weight was used to produce an impulse of 12 to 14 bar-rasec.  The 

stiffness of the column clearly determines the stress level that can be 

obtained at a given impulse level:  the peak stress for Column A, the 
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soft kaolinite, is much less than that for Column C in which the 

kaolinite was drier and denser.  The wave durations also indicate that 

a sharper wave is transmitted in the drier, denser soil. 

Table A.3 

REPRESENTATIVE TEST RESULTS 

Column  Test No.   Applied Impulse  Peak Stress  Rise Timu  Duration 
(bar-msec)       '^bar        (msec      (msec 

A 10,   11 14.0 

B 35  -  37 12.1 

C 15  -   18 12.8 

D 10  -   12 12.8 

E 7-9 13.0 

F 7-9 13.1 

1.3 0.7 4.5 

2.57 0.84 2.37 

5.15 1.06 1.99 

5.78 0.31 1.95 

6.94 0.44 1.58 

11.2 0.42 1.46 

A.4 Calibration of Stress Gages 

by 

The   stress   gages   used   in   the wave  propagation  tests  were  calibrated 

(1) Subjecting  the gage   to a   fluid  pressure while   immersed   in a 

fluid   (fluid  calibration;, 

(2) Pressurizing  the column  statically  before  and  after   the  drop 

weight   tests   (static   calibration   ,   and 

(3) Equating   the   impulse  measured   at   each  stress  gage   to   the 

impulse measured at   the  top   force   gage   (impulse  calibration;. 

The   fluid  calibration procedure   is  easy   to apply  and  may  be  justified 

if   the soil  is  soft  enough to  act   like a  fluid.     In  most   soils,   the 

stress  field about  a   gage will  not   be  as  uniform as   it  would  be   in  a 

fluid,   and   the   gage  will   tend   to over or  under-register.      If   all   the 

gages over-register  to  the same extent,   the  stress  level will   be  unknown 

but  the  rate  of   attenuation can  be  found. 

For   the  static  calibration,   a  force was  applied  to  the  top of   the 

soil  column with  the   same jack with which  some of  the  soils were  com- 

pacted.     The  calibration was made  before  and  after  testing,   and   the 
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average  was  used  as   the static  calibration.     Samples of  these  results 

are  shown   in  Fig.   A.8,  along with  the   fluid calibrations of   the gages. 

The  gage at   the   shallow depth over-registered considerably,   while the 

deeper gage under-registered   at  the higher stress  levels. 

The  impulse  calibration   is based   on  the fact   that  the   impulse of 

the   initial  wave   is  the  same  at  all  depths.     In   this  case,   the calibra- 

tion  and   the   test  were made  simultaneously.     That   the  impulse does not 

vary with depth  can be  shown with  reference  to Fig.   A.9.     This  figure 

exhibits  a column  with a  cross-sectional   area of   unity and  an  isolated 

mass of   soil,   M,   between   the  measuring  stations.     When an  impulse  is 

applied   to  the  column,   forces  are  transmitted  to M,   causing  it   to move 

with  velocity,   v. 

^i  - a2 = M^ (A. 2; 

When   this equation   is  integrated  with   respect   to   time,   the   result   is 

12 '-2 ^2 
j' 

C2    d t    =       j in—   u .      -    HI v v 2    -    V J I      d  dt  -    I        ca dt =    j        M^ dt  = M(va  - v1) (A.3j 

t, t, t 1 

where  vl   and  v2  are  particle  velocities  at  times  tj   and  ta   ,   respectively. 

Now,   tl   is chosen  before   the  arrival  of   the  stress wave  and   ta   is chosen 

long  after  the passage of   the wave  so  that  all  motions of   the   soil mass 

have  returned  to  zero.     For  this case,   vl  and  va  are  zero,   and 

ta ta 

r r Ci   dt  =    I       ^2  dt (A-4) 

tl tj 

These integrals define an impulse (actually, impulse divided by cross- 

sectional area of the columnj. Because of the equality (Eq. A.4), the 

impulses measured at all levels are equal and are equal to the impulse 

applied at the top. 

In practice, La was limited to the length of the stress-time record 

obtained.  The particle velocity at ta was not known but was assumed 

to be approximately zero since the stress was nearly zero at that time. 
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FIG. A.9   STRESSES 
IN THE 
COLUMN 

The  area  under   the  stress-time curve was equated  to  the  applied   impulse 

in order  to obtain the calibration constant for the  stress record. 

As  shown   in  Tablr- A. 2,   the fluid calibration  procedure was  used 

for  the  first   two columns.     Thereafter,   the static calibration was 

used.     In ench of these cases,   the  impulse calibration was used as a 

check.     The   impulse  calibration  gave  stresses within  ±10^ of  those 

calculated with the  static calibration.    Therefore,   the  static calibration 

was  assumed   to be adequate. 
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NOTATION FOR APPENDIX B 

c = wave velocity   (meters/sec; 

E = spring  constants for viscoelastic compacting models,   (bars) 

E0       = spring constant  of  series  spring,   loading 

Ex       = spring constant  of  parallel  spring,   loading 

M = a modulus   (barsj 

t a time 

t = t  - rr/'u,   the  lag  time between peak stress and peak strain 

t = half   the duration of  the  loading  pulse,   see Fig.   B. 11 

■ji = vl  -       Eo/E|;/(l   +       EQ/EJ;,   compacting dissipative parameter 

= viscous dissipative parameter used with  the constant 

tan delta model 

e = strain 

elj  = strain difference shown in Fig. B.11 
d 

€2.  = strain difference shown in Fig. B.ll 

T   = viscosity of dashpot of viscoelastic compacting model, 

(bar-msec) 

0!   = slope of loading stress-strain curve 

02   = slope of unloading stress-strain curve 

0   = density (gm/cm3 ) 

a   = stress, (barsj 

a0   = peak applied stress 

Ci       - peak unloading stress, see Fig. B. 13 

r   = natural circular frequency (rad/sec) 
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Appendix B 

SOIL PROPERTIES 

B. 1     Introduction 

To generate a prediction  for wave propagation  phenomena,   detailed 

information on certain  soil  properties  is  needed.      In this  appendix  the 

procedure and equipment   used   for obtaining  these  properties  are described 

and  the data on  the  tested   soils are   listed.      In  add  tion,   the ordinary 

soil  properties  that  are  used  to classify  and characterize  soils  arc- 

given.     These ordinary  properties are shown  in Table B.l.     More data  on 

the  compaction  characteristics of   the  Vicksburg  backswamp clay  were 

given  by Jackson and  Hadala.20    The  grain  size distribution  for  the 

Monterey  sand  is  shown   in  Fig.   B.l.     The  sand  is  evidently  somewhat   loss 

uniform than  that previously  used on  this  project. 

Table  B.l 

GENERAL SOIL PROPERTIES 

Specific     Liquid     Plastic    Minimum       Maximum 
Gravity       Limit       Limit        Density       Density      Description Type 

($)] [cjcj        grams/cm3  grams/cm3 

Kaolinite 
Clay 2.60 49 

Buckshot 
Clay 

Monterey 
Sand 

2.70 

2.62 

60 

35 

23 

1.41 1.66 

White, obtained as 
a dry powder, very 
sticky when wet. 

Brown, sticky, con- 
tains organic mat- 
erial, 

Clean, dry, sub- 
angular sand, finer 
than 30 mesh. 
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B.2     The MIT One-Dimensional  Soil  Tester 

Specific   information  about dynamic  moduli,   fnctional  behavior,   and 

viscous dissipation   is  needed  in order to predict  the nature of  wave 

propagation  in  a  soil.     These properties  can  all  be determined  from 

appropriate dynamic   tests on small   samples of  the soil  if  the confinement 

conditions of   the  soil  are  the same  as those which obtain during wave 

propagation.     The  type of   test  that was used  is one in which a pressure 

is applied rapidly  to  the  soil  sample and  then released.     An appropriate 

loading function  is  shown  in Flg.   B.2.   The primary  result  from the test 

is a plot of  stress  versus  strain during loading and unloading   (see 

Fig.   B.3j.     Moduli of  the  soil appear as  slopes of the curves and,   hence, 

can be determined from the plot.     The frictional  and viscous dissipation 

parameters can also be determined from this plot  if  the proper  type of 

dissipation mechanism is known or assumed. 
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FIG. B.2    LOADING FUNCTION  FOR COMPRESSION  TESTS 
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FIG. B.3   TYPICAL  STRESS-STRAIN  CURVE 
FROM DYNAMIC  COMPRESSION  TESTS 
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A modification  of  a device developed  at   the Massachusetts   Institute 

of  Technology   for making dynamic one-dimensional   soil   tests was  used  on 

this project.     The  modified  tester   (see  Fig.   B.4;   is composed  mainly of 

two  heavy,   stainless  steel  disks.     The  small  cavity  in  the  lower one 

holds the  soil.     The chamber above  the  soil,   separated by  a membrane 

from  the  soil   is  filled  with a  light  oil.     The   soil   is  stressed  by 

pressurizing  the oil,   either from an external   source through  the pressure 

port  or by depressing  the  plunger.     The  follower disk  lies directly  atop 

the   soil and  follows   Lhe  motion of  the  soil during  testing.     A  rod 

connects  the  follower disk  to  the core of   an  L. V.D.T.    (linear  variable 

differential   transformer;,   which monitors   the  core motion,   and   thus   the 

soil   strain       The   stress  on  the  soil   is equal   to  the pressure   in  the 

upper chamber;   this  pressure  is monitored  by  a  diaphragm-type  pressure 

transducer. 

The  lateral   strain  of   the  soil  during  testing  is quite  low because 

ol   the great  stiffness of   the confining disks.     No measurements of 

lateral  strain were  made  but   it  was  estimated   that  the  strain  was  less 

than 2 microstrain   at  a  pressure  of  7 bars.     This strain  is much  less 

than  the 100 microstrain  expansion of   the  soil   column  tube. 

To determine   the effect of  expansion  of   the  tester on  the   strain 

measurements,   the  tester was assembled without  a sample and with the 

strain measuring  rod  screwed  into  the bottom of   the sample chamber. 

Any  strain measured   in  the configuration   is a  false  indication of  soil 

strain;   hence,   this   test  provided  a measure of   the  inaccuracy  of  the 

strain obtained during  soil   tests.     The  tester was then subjected  to a 

150 psi  pressure pulse;   the resulting core motion corresponded   to an 

apparent  sample  strain of 60 microstrain.     This  strain  gives  a modulus 

of  2 5 x 106  psi   for  the   tester.     The highest  moduli measured  on  the clay 

was  1000 bars   (15,000 psi;  and on the  sand  4800 bars   (70,000  psi). 

Hence,   the  flexibility of   the  tester  does  not  add a significant  error  to 

the   soil  modulus  measurement. 

B. 3     Test  Procedure 

A soil   sample was  selected  from  the  material  tested  in  the column. 

For  clays,   the  sample was  trimmed  so that   its  weight would give  the 

required density when  it  was compacted   into  the  soil chamber   in  the 
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tester.      It was  compacted by  tamping and   then consolidated  under a  static 

preload of   10.5  bars.     Sand  samples were  placed by  sprinkling  the  sand 

through  a  series  of   screens  from a height  of   about  30 cm. 

The  system   for applying pressure   to   the  soil   is  shown  schematically 

in Fig.   B.5.     The dynamic pressure  source   is a charged  accumulator,   a 

large  steel   bottle with a diaphragm  separating oil  and air chambers. 

Dynamic  pressures were  applied  by opening  the dump valve  suddenly. 

Preloads were  applied  with  the  hydraulic  hand pump.     The bleed  valves 

were used  to evacuate  air trapped  in   the  system,   and  the  throttle  valve 

was used  to slow  the dynamic pressure rise and,   thus,   to damp out 

oscillations. 

ACCUMULATOR 
PRESSURE 

GAGE 

BLEED VALVE 

..ACCUMULATOR 
^FILL VALVE 

HYDRAULIC  HAND 
PUMP 

FIG. B.5   SCHEMATIC  LAYOUT  FOR  PRESSURE  SYSTEM 
FOR MIT TESTER 

Two oscilloscopes were used  to display  the data  from the   test fixture: 

One displayed  the  stress and strain as functions of  time   (Tektronix 502A), 

and  the other displayed stress versus  strain   (Tektronix 535).     The 

Tektronix 535 was modified so that  strain controlled  the horizontal 

deflection of   the oscilloscope beam,   while  the time base determined how 
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long the beam would be  unblanked.     The   trigger signal  went   to Time 

Base B,   was delayed,   and  then  triggered  Time Base A.     The beam  then 

became unblanked.     After a  time  interval   governed by   the  setting of 

Time Base A,   the  beam was blanked  again.     With  this  system,   the   stress- 

strain curve was  obtained  just during   the  time of  interest:      from start 

of  loading  to  the  completion of   the first   unloading. 

B. 4    Presentation of  Data 

Tests were  performed at  five preload  levels for each of   three 

peak stress levels   in order  to get  a  complete picture of   the   variation 

of modulus and   the dissipation  parameters with  stress  level.      The  stress- 

strain curves  that  were obtained  are grouped in Figs.   B.6  through B. 10. 

Several   interesting features may   be  noted  in  these  curves.     All 

loading curves,   except   those from  sample  3,   are concave  upward  and   thus 

appear  to be  stiffening with increasing  stress.     While  the  loading 

stress-strain curves  for No.   3 are essentially  linear,   the  unloading 

curves are not;   therefore,   no linear  elastic behavior can  be  expected. 

There are many  minor  irregularities   in  the  stress-strain  curves 

caused  by oscillations  in  the pressure,   and   they should  not   be  attributed 

to  an anomalous  soil   behavior.     These  oscillations occurred  only  at  low 

dynamic  stress  and  at  low preload  levels.     They may  have  been  caused by 

the presence of  air  in   the pressure  chamber. 

Preload  seeems   to have no  effect   on  the  stress-strain  curve   for 

the kaolinite  samples.     That   is,   on  a  plot of   total   stress   (preload 

plus dynamic  increment )   versus  total   strain,   all   the  curves  would 

approximately coincide.     For  the  Vicksburg clay  this was  not   the  case 

becuase  there  seemed  to be  a continuing compaction  throughout   the   test 

program.     Later   tests  always gave evidence of  stiffer  soil   than earlier 

tests.     The curves  for sand show a  small   initial  hump,   which  grows   in 

imporl   .ice with  preload  level.     The hump has been noted before  and 

studied   in detail   by  Moore.21 

On many of   the  stress-strain curves,   the maximum strain does not 

coincide with  the  maximum stress.      In  such  a case  the   tangent   to   the 

unloading  curve  at   the peak stress  is  vertical  or slightly  negative. 
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FIG. B.6   STRESS-STRAIN CURVES: SAMPLE   1,   KAOLINITE 

Testing Order:   150 psi peak and 10 psi preload, 
150 psi peak and   5 psi preload, ... 
100 psi peak and 10 psi preload, ... 
50 psi peak and 134 psi preload. 
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' 

i 
13/4 psi     I 
PRELOAD    & 
       S 

2 psi        „ 
PRELOAD 

3 psi 
PRELOAD    a 

5 psi 
PRELOAD   * 

r O 

10 psi 
PRELOAD    & 

■      o 

50 psi PEAK t 100 psi PEAK ♦ 

5000 fittroin 5000 /ittroin -H   K 

2500 ftttroin 5000 /ittroin 

(50 psi PEAK ♦ 

5000 /ijtrain -M   K 

5000 /xttrain 
tC-5l84-»6 

FIG. B.7   STRESS-STRAIN CURVES: SAMPLE 2,   KAOLINITE 

Testing order as in Fig. B.6 

98 



50 psi PEA»   ♦ 100 psi PEAK I 150 psi PEAK t 

1/2 psi 
PRELOAD 

I psi 
PRELOAD 

2 psi        - 
PRELOAD   * ■       o 

i 

5 psi 
PRELOAD 

10 psi      I 
PRELOAD   & ■       o 

1000/istrom    «J 

1000/isfroin 

1000/ittrain 

1000 fitUain 

1000 /xttroin 

1000 /ittrain 

2500 fi«troin 

2500 /i«f rain 

2500 /xatrain 

2500/ittroin 
TC-5H4-8T 

FIG. B.8   STRESS-STRAIN CURVES: SAMPLE   3,   KAOLINITE 

Testing order as in Fig. B.6 
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50 psi PEAK ♦ 100 psi PEAK ♦ 150 psi PEAK t 

1/2 psi 
PRELOAD 

I psi 
PRELOAD 

2 psi       •- 
PRELOAD   & 

5 Psi 

PRELOAD   & 

10 psi      I 
PRELOAD   * 

2900 /xifroin  -H    I- 

2500 /istroin 2500 /xttroin  -^    k- 

1000 fitUa'm 2500 /xitroin 

5000 fitUoin  -H 

5000 /iitroin   *<    K 

5000 /xttroin 
TC-5l84-9e 

FIG. B.9   STRESS-STRAIN CURVES: SAMPLE  ^    VICKSBURG CLAY 

Testing order as in Fig. B.6 
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50 psi PEAK t 100 psi PEAK t 150 psi PEAK ♦ 

i 
T I psi 

PRELOAD * 
m       O 

1 

2 psi      I 
PRELOAD   * 
 »     o 

i 

5 psi      I 
PRELOAD  & 
 a>        O 

i 

10 psi     I 
PRELOAD   & 

250 fitUatn 500 /^strain   -H   h- 1000 fJLtUain 
TC-5l»«-»9 

FIG. B.10   STRESS-STRAIN CURVES: SAMPLE 5.  MONTEREY SAND 

Testing order as in Fig. B.6 

The lag of  the strain behind   the  stress  Is more clearly shown  In 

illustrations,   such as  Figs.   B. 2 and B. 11   in which both stress  and 

strain are recorded  as functions of  time. 
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FIG. B.ll    MEASURED  POINTS ON THE COMPRESSION TEST DATA 
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B. 5    Data Reduction;     Dissipation Parameters 

The data from  the MIT tester can provide  information on   (1) dissipa- 

tion parameters of  the  soil,  and  (2.,  moduli  from which wave velocities 

are obtained.     In each case,   the soil data was reduced on   the  assumption 

that  the soil  can  be approximated by  the  linear hysteretic  model,   the 

viscoelastic  compacting model,  or the constant  tan delta model.     No 

attempt was made to formulate a model  thai would actually duplicate  the 

behavior o^   the   soil during the compression  test.     The dissipation  par- 

ameters are considered  first. 

The  stress-strain  data  in Figs.   B.6  to B.10 suggest   that   both com- 

pacting and  viscous dissipation  exist   in  the   soil.     Compaction  here  refers 

to   the  tendency  of   the  material  to  show  some  permanent   set  after a  loading 

and  unloading  cycle.     Viscosity  is exhibited  when the maximum  strain 

occurs  later than the per.K stress,   that   is,  during the unloading portion 

of   the stress-strain curve. 

The dissipation parameter for  the  soil was determined  from measure- 

ments taken from the stress-strain curves and  from the stress-time and 

strain-time curves. 

The reduction  was  accomplished  by  comparing certain features of  the 

experimental  curves with  corresponding features derived from an analysis 

of   the models.     The  features  to be  considered were   (1)   th^  slopes of   the 

stress-strain curves at  midheight,   (2j   the lag time between the occurrence 

of  peak stress and  peak  strain,   and   (3)   thtt width of  tho loop  formed 

between  the  loading and   unloading stress-strain curves   (Fig.   B.llj. 

The first measurement was used  to define  the viscoelastic  parameter 

for the viscoelastic compacting model,   the second,   to define  the com- 

pacting parameter for the viscoelastic compacting and the  linear hysteretic 

models,  and  the  third,   to find  tan  6 for  the  constant  tan delta model. 

The analysis of the viscoelastic compacting model  to  a pressure 

pulse which is given in Section C.5  is  the basis for the determination 

of   the parameters  for that model.     The   viscoelastic  parameter,   T\ ,    was 

determined graphically  from Fig.  C.7.     Then the compacting dissipative 
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parameter, a, was found from an Iterative solution of Eq. C.41 and then 

C.32.  This data reduction scheme for the viscoelastic and compacting 

parameters was applied to the records from the soil samples tested in 

the MIT tester. The basic data—lag time, slopes of the curves, and 

natural frequency of loading—were measured on the stress-strain, stress- 

time and strain-time record" obtained during the tests.  The lag time, 

t„ was measured as the time difference between the peaks on the stress- i 
time and strain-time records (Fig. B.ll).  The slope of the stress-strain 

curves were measured with a drafting machine.  The loading frequency, u, 

was taken as rr/t , where t  is half the duration of the loading as shown 

in Fig. B.ll.  These measured data and the dissipative parameters obtained 

from the data reduction scheme are listed in Table B.2. 

ms.Mi'ATioN pnonrriES or THE SOILS 

Tiibl.-     H.i 

Ua* Tun   ( 
«•■pie later Dry PrcHeurr Tiar «1 on »idtn 

No. Soil Content 

(4) 
Uvnelty 

Km   CH 

U.VI- .t to 
neo 

,.r loop 

1 MoUnlte 311.(1 1.24 Ml 0 AH 5 .130 
1CHI .21" 2.13 11).9 .03S .155 
ISO ,329 1 .43 6.67 .IM» .164 

i bollnlte 33.3 1 .36 .»u . ."■ 1 2.211 31.0 .III» .162 
UK' ,303 1.77 16 .0 .1123 .21.1 
l.'itl ..17 7 1 .U> H.I .u'.» .27. 

,1 Mollnitv 1»,.) 1 .34 Ml .305 1 .»7 1.1.2 ,148 .36« 
um .i.'i^ 2.34 13.5 .J.'.i ..mr. 
ISC .»(17 3 .13 16.Ü .i\2 . i»:. 

1 1U< k.w.»|) W,] _ St) ..i i<; 1 ,81 2(1.9 .116.1 .2.1 1 
HHi .»* 2.in 16 .3 .11(1 . 184 
ISO .343 1 .37 H.n .117 .12» 

5 Bar. i .«e Ml . 1.1'i 4.62 23.3 .1.11 .209 
um lit! 8,48 22.2 .117 .24« 
ISO .121 !>.S2 HI. 1 .1162 .220 

L'ued   for   PredlLtlone 

(■/•«) 

None of  the various parameters appear  to be constant  but  rather vary 

with  the pressure level used.     Certain trends may be noted in the Table: 

or appears to increase with stress level  for the  clays but to decrease for 

the sand.     The viscous parameter,   Tl/E0 , appears  to decrease as  stress 

increases for  the  softer soils but  to remain constant  for the drier, 

stiffer soils.     Whitman16  has  suggested  that  Et/Eo should be about 1  for 

soft clays and 4 for sands.     This prediction agrees quite well  with  the 

tabulated  values. 

The  linear hysteretic model  is a special case of  the  viscoelastic 

compacting model in which there  is no time-dependent dissipation.     There- 

fore,   the  same values of  the compacting parameter, a,  were used for  the 
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predictions of  both  the linear hysteretic  and  viscoelastic compacting 

models. 

Tun       is  the dissipative parameter associated with   the  constant 

tan delta model.     Tan delta was determined by comparing the theoretical 

response of  the model  with  the soil   response measured in  the compression 

tests.     Examples of  theoretical  stress-strain curves arising from cyclic 

loading  of  the  constant   tan delta model   (or any  linear viscoelastic  model) 

are   shown  in  Fig.   B.12.     Tan   6  is the  lag  time   between peak  stress  and 

peak  strain and   is  related  to  the size of   the  loop formed  between  loading 

and  unloading  stress-strain curves.     Tan  t  can,   therefore,   be  evaluated 

on  the basis of  either lag time or  loop size. 

b|bE 

u 

STRAIN, f- 
TA-ftlM«0 

FIG. B.12   STRESS-STRAIN CURVES  FROM CYCLIC  LOADINGS:  CONSTANT 
TAN DELTA MODEL 

Using  the lag  time as an  indication of  tan  6 gives  the relation 

t an  S     =    cot (B. 1) 

for cyclic loading.  If the width of the stress-strain loop at midheight 

is taken as the measure of tan 6, then 

2 sin S 
t1d " e 2d 

Id 
(B.2) 
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where €irf and  ea    are defined  in Fig.   B.ll.     Values of  tan   6 derived 

from  the  two bases are  listed  in  the   sixth   (üüt.)  and  tenth  columns of 

Table B.2.     Except  for   the case of  soil  sample  4,   there  is  no correlation 

between  the magnitudes of   tan  6  found  by  the  two procedures.     Evidently 

the dissipation   in  the  soil   is more  complex  than  that   in  the constant 

tan delta model.     Very  precise prediction of  wave propagation  behavior 

cannot  be  made  with  this moael  since   it   is uncertain  how to  evaluate   the 

basic dissipative parameter.     The definition  tan   6 =  uut . was chosen   in 

order  to get  some basis  for predictions.     The   values of  tan   c   used  in 

the wave  propagation predictions are  listed  in Column  15 of  Table B.2. 

B.6     Data Reduction:     Wave  Velocity 

Wave   velocity,   c, can  be  related  to  the  stiffness of a  material  by 

the  simple equation / M 
c =/— (B.3) 

v p 

where M  is an appropriate modulus, and 

p  is the density. 

For soils with highly nonlinear stress-sl. ; » relations, finding an 

appropriate value for M is very difficult.  Both the tangent modulus 

and the secant modulus were obtained from the test records, but the 

tangent modulus was used as the basis for the predictions.  The basis 

for using the tangent modulus is the assumption that a shock wave does 

not occur in spite of the concave upward stress-strain curve. 

The modulus data were obtained by finding the appropriate slopes 

of the stress-strain curves at four stress levels:  1.5, 3.0, 4.5, and 

6.0 bars.  The data were obtained for each peak stress level and each 

preload level.  The resulting wave velocities that were obtained using 

Eq. B.3 are plotted in Figs. B.13 to B. 17 as a function of depth 

(preload ). 

In general, the wave velocities appear to be fairly repeatable. 

They show a trend toward higher velocities for higher stress levels and 

preload levels.  The velocities based on the tangent were used to derive 

the velocities used in the attenuation predictions.  The prediction 
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velocity  for a particular column was taken as the average of  velocities 

determined as appropriate for conditions at  the  top and  at the base of 

the column.     As an example,   consider the data on Vicksburg clay  in Fig.   B. 16 

In  the wave  propagation  tests on  Vicksburg clay   (Column D    the  peak  stress 

at   the  top was 5.8 bars  and  that   at  the base was  3.0 bars.     At   the  top 

(depth of   zero meters)  the wave velocity prediction from the figure  is 

360 m/sec   for a dynamic  stress of   5.8 bars.     At   the  base   (4.48 meters 

the  prediction  is 320 m/sec.     Then  the average  velocity   to be used   in 

the attenuation prediction  is  340 m/sec.     All   the  wave  velocity  predictions 

are listed   in  the last column of  Table B.2. 
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NOTATION FOR APPENDIX C 

b = an/T 

c0 = wave velocity during  loading 

c = unloading wave velocity 

E0,E1,E2,E3       = moduli  defined  in  Fig.  C.2 

F(z,t,a,M'i)       = correct   solution  to wave propagation problems 

F1(z,t,a,M.1)     = solution given by Eq.  C.ll 

G = typical  terms of  the series  of Eq. C.l 

G = one-sided  Fourier transform of G 

H = Heaviside step function 

i - imaginary number 

J0(ia)) = viscoelastic complex compliance for da/dt > 0 

JiCirju) = viscoelastic complex compliance for da/dt < 0 

k1,k2 = real and  imaginary parts ofn/ pj(ia)) 

n = index used  in summations 

p = applied  pressure 

5 = slope  of  stress-strain  relation 

51 = slope during loading       (bars) 

52 = slope during unloading   (bars) 

T = exponential decay constant  of  the applied stress 

t = time 

t = arrival  time of  the peak stress 
a r 

t = lag time 

t = time at which stress during loading is equal 
m 

to ao - f1 

z = depth 

a = (ci/co  ~1)  / (ci/co ■t"1);   dissipation parameter 

0 = Co/Ci 

6 = phase  lag,   time dependent dissipation parameter 

e = strain 

£,§ = dummy  variables  of Eq.  C.16 and C.17 

Q = Ei/(uyTl),   a  viscoelastic  parameter used   in Sect.  C.5 

T| = viscosity of the dashpot 
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\ = Ej/Eg    -    E3/E2 

M-i = Vo>  viscoelastic time constant 

p = density 

V = summation given in Eqs.  C.36 and C.37 

^ = summation given  in Eqs.  C.39 and C.40 

a =    nondimensional peak stress from linear hysteretic 

model 

001.. =    nondimensional peak stress  from standard  linear 
SL>V 

viscoelastic model 

avr, =    nondimensional peak stress  from standard  linear 
V \s 

viscoelastic compacting model 

T =    variable defined  in Eq.   C.10 

TJ^TJ =     variables  defined  in  Eq.   C.12 and C.13 

T =    t  /T,   nondimensional arrival  time 
p a'   ' 

OJ =    natural  circular frequency 
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Appendix C 

STRESS WAVE  PROPAGATION THROUGH A 
VISCOELASTIC COMPACTING MEDIUM 

C. 1     Introduction 

Dynamic  compression  tests show  that  most  soils exhibit  both  compac- 

tion and strain-rite effects.     Compaction here  refers  to the  tendency of 

the material  to show  some  permanent  set  after a   loading and  unloading 

cycle.    Strain-rate effects  refer  to a  group of  phenomena  associated with 

viscosity:     increase  in modulus with strain  rate,   lag of  the displacement 

or  strain behind   the  loading  function,   and  smoothing  o.f  stress  waves  that 

propagate  through   the material.     Wave  propagation tests  show a   smoothing 

out  of  the  stress  wave,   an   indication  of   viscous behavior.     But  the 

attenuation  of  the  peak  stress  follows   roughly  the prediction  based  on 

the  compaction  characteristics of  the  soil.     Thus,   it  appeared   that  a 

more  realistic prediction of wave propagation  phenomena  could be obtained 

with a model  that  combined viscous and compaction effects. 

The mathematical model chosen here  to study nondimensiona1  stress 

wave propagation  in soils  is a  combination of  two models that  were studied 

previously:     the  linear hysteretic  (Ref.  3) and the standard  linear visco- 

elastic models   (Ref.   1).     It will be  referred  to as  the viscoelastic 

compa ct i ng  modo1. 

The compaction  part of  the mechanism is  shown  in Fig.  C.l as a   stress- 

strain relation at  zero rate of  strain.     Straight  lines have been used to 

approximate  the  curved characteristics  typical of most  clays.     On  increas- 

ing the stress,   the strain increases  linearly along the path OA.     If the 

stress  is reversed at  the point A,   the strain decreases along another 

straight  line AB.     On increasing the stress again,   the strain  follows the 

path BAC.    This compaction characteristic  is  typical of many earth mate- 

rials.    A stress wave propagated into such a material undergoes attenua- 

tion due to the hysteretic  (compact in,-»,   frictional)  nature of   the medium, 

i.e.,   energy   is dissipated. 
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STRAIN 

FIG. Cl   STRESS-STRAIN  RELATION 
AT  ZERO RATE   OF STRAIN 

(U-Mir-st 

In addition  to this  feature,   wc wish   to  introduce  strain-rate 

effects.     To do this,   we assume  that   the  material  is  not   linearly  clastic 

on  the characteristics OA and AB but   that   it   is   linearly  viscoelastic  on 

these  paths.     The  work of  Whitman16.   Christonsen and  Wu15,   and  Kondner 

and Ho14 have  indicated  that  the  three-element   standard   linear  visco- 

elastic model  provides a  good description  of  clay and  sand  behavior. 

Therefore,   models  of  this   type were  chosen   for both   loading and  unloading 

A mechanical   representation  of  the  viscoelastic   compacting  model   is 

shown   in Fig.  C.2,   labeled with   the  nomenclature  used   in  the  analysis. 

The  model  contains  two  ratchet  devices which  do not   allow  portions  of   the 

springs  to expand  during  unloading.     Thus,   the  spring  characteristics arc 

different during  loading and unloading.     During periods   in  which   the 

strain  rate   is of  constant  sign,   the model   representation   is  that  of a 

standard  linear viscoelastic model.     Fig.   C.3  shows an  example of  a 

stress-strain  relation  obtained  by applying   to the model a   pulse   loading 

in  the  form of a  ha if  sine wave. 
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FIG. C.3   STRESS-STRAIN RELATION FOR  RESPONSE 
OF VISCOELASTIC COMPACTING MODEL 
TO A  HALF-SINE  PRESSURE  PULSE 
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This model was analyzed for its  response during wave propagation and 

for  its behavior during a  dynamic  compression test.    The wave  propagation 

results served to correlate  the experimental data  of Chapter 4.    The 

compression test  results provided a basis for finding  the dissipative 

parameters of  the soil  (Appendix B), 

C.2    Wave Propagation Analysis 

An analysis was made of the response of a  one-dimensional   rod of a 

viscoelastic compacting medium subjected  to a sharp pressure  pulse at  one 

end.    The applied pressure pulse has a  shock front and an exponential 

decay after  the  front.    This wave  form  is  similar  to the  pressure wave 

obtained from high explosives and to that  produced by the drop-weight  on 

the soil  column.     The wave  propagation analysis was  conducted  to determine 

the stress history at several depths  in  the one-dimensional medium.    Such 

stress histories are directly comparable with records of stress gages  in 

the column of  soil used on  this project . 

A solution  for  the wave  propagation  problem was  formed,   using  the 

"correspondence  principle."    This was more  feasible  than a   transform 

technique,   which would  involve  the difficulty of   incorporating  the moving 

boundary between  the two states of  the compaction characteristic.    The 

"correspondence principle" states  that  the solution to a  viscoelastic 

problem may be obtained from the solution  to the elastic case by  taking 

the one-sided Fourier transform of  the elastic solution,   replacing the 

elastic moduli by  the complex viscoelastic moduli,  and  inverting  the trans- 

form  (see Bland22).    This principle  is valid when  it   is applied  separately 

on the  linearly  loading and  unloading parts of the characteristic shown 

in Fig.  C.l.     However,   it  is  difficult  to  show that  the  correspondence 

principle  satisfies  exactly  the moving boundary  condition between  the 

states of  loading and unloading.    A demonstration that  this principle 

gives a   reasonable approximation to the correct solution  is given  iri 

Section C.3. 

The first  step in the solution procedure  is to find the solution for 

the elastic case. 
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The  solution   to the wave  propagation  problem   in a   nonviscous  com- 

pacting medium   is Riven  by  Salvadori.   Shalak and  Weidlinger   (1961)   in   the 

form 

oi :. t ) [' - ( t- i / c , ) /T on f -an<t + «/c1)/rl 

l"^]    -   e ■11- !        Ll//( t  -  z/c0) (C. 1) 

where     a z,t) stress at  depth  z  and time  t, 

-t/T 
PoC 

o 

a 

stress   input  at   z   -  0, 

peak applied  stress, 

wave  velocity   corresponding  to the  portion BA  in 

Fig.   Cl, 

wave velocity corresponding to the part OA in 

Fig. Cl, 

ci/co - 1 

Li/e0 + 1 

T exponential decay  constant  of  the applied  stress,  and 

H symbol  for Heaviside step  function. 

Equation  1  shows  the  stress at any  point  to  consist  of  the  sum of  waves 

propagating   in  both directions.     The   front  of  the  stress  wave propagates 

at   the  velocity  c0. 

Let   G be  a   typical  term  in  the   series  of  Eq.   Cl,   i.e., 

G 
M   f 1  7  / r .   ) 

'     Hit     -     2     C0) (C.2) 

whore 
a" 

b    =    — 
T 

(C.3) 

If G denotes the one-sided Fourier transform of G, then 

CD 

(,' 
<t-b t*b z / 

Hit   -   z'c0)dt 

I r,.J + 6 1 ( i t/n J / C 
Ü 
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where 

ß co/fi (C. S) 

To apply  the correspondence  principle,   it   is  necessary to  replace 

^ _i In  i In 
Co by   [oJo(i^)J ind  ci  by   [nJ1(iuL)j    /   ,   where   o     is   the density of 

the material and Jo(ii0  and J,(ia)  are the viscoelastic complex compliances 

of   the parts  OA and AB of  the  compacting  characteristic   shown   in  Fip.   C.l. 

To minimize  the number of  parameters and  to simplify  the  analysis,   it   is 

advantageous  to make 

J]   (  ICjj) 

I 
(C.6) 

The  complex compliance  of   the  three  element   viscoelastic model   is 

given by   (Bland22) . 

i £, 
Jiico) 

E0 f?     Jv2 
1 - 

E2 

(C..7) 

where  E0 and  Ej   represent   spring   stiffnesses  as  shown   in   FiR.  B.12,   and 

T     is  the  viscosity  of   the  dashpot . 

If  one   introduces   the  notation 

y E    E 

then 

pj( iaj) 
lop.. 

^/l 2    2 \2    +   c^V? 

kl ( ■)   -   ik2{ . (C. 8) 

where  ki(i)   and  k2( j )  are  the  real  and imaginary  parts,   and kj(:)   is 

essentially   the  reciprocal  of  the wave velocity. 

If  Eq.   C.8  is  substituted   into  Eq.  4,   the  transform   inverted,   and 

the   real  part   selected,   one obtains 
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<; 
2 
.7 

(<>> -k       (WJCU«      -t, (£0)61(11/3) 
p «* ( 6  cos  o/r  + &) sin  ctrr}dt 

b2   +  ,.? 
(C.9) 

where 

T f     -   «^.(a;)   + -  kAüü)bz{\   ± ß) (C. 10) 

The expression  for  the  general  case  then  follows as 

o(z.t) I 

-E 
M=0 

-*?(r.;)„ ,   .4     ((iJ)a',i(l-/3)/^ 

(J- cos arr.   + a; si narl) 

v^n 

jt 
+ a? 

da) 

<T 

zL + - > _ a" 
V 

n = l 

-t,(w)wi   -». (ai)aB*(I*4)/r/l 
2 «•   ' - a" cos (^r    + a; si 

v2n 

4   ^ 

n^2j do 

where 

(C. 11) 

r,     -      f   -  it, (a))   + 
it2M 

«"2(1   - ^/T (C.12) 

k2(cü) 
T2     =     f   -  zfe^aj)   +  —  anz(\   + /3)/r (C.13) 
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The  expression   in  Eq.  C.ll was  programmed  for  numerical  evaluation 

of   the  integrals.     Results  obtained using  this analysis arc given   in 

Section  C.4. 

C.3     Justification  for  Use of  Correspondence Principle 

Maclaurin's  theorem may  be  used  to show  the nature of   the approxima- 

tion  obtained by  using  the  correspondence  principle. 

Let     F(z,t,a,^1)     be  the  correct   solution to  the  problem and 

Fiizta,^i)     be  the  solution given by  Eq.   C.ll.     The  parameters    a     and 

M-i     which  measure  the amount   of   compaction and viscosity,   respectively, 

are  to be  small.     When  cither     a  =  0    or    tij   - 0,     Eq.  C.ll   is  the  correct 

solution,*    i.e., 

FA:, f ,0,/i. )    -    F(z, e.O.M, ) ((:- I l» 

F  (z. t.oc.O)     *    F(z. t. 1,0) (C. 15) 

Expand  both    F; z , t, .< .y.)     and     Fi l,z, t, .. p,)     as  a   Maclaurin series,   i.e., 

FU.e.ot,^)     =    F(:,t.0.0) 

?F 
+  a (z, t ,0,0) 

da 

dF 

i 

+ Ml --   (z.t.O.O) 
«Mi 

J2-   (^^-)f(....4.al?.,.0 (C.16) 

* When u-i~"',   Eq. C.ll also give the correct solution for any y  in 
this model. 
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+ a —U, e.0,0) 
3a 

+ ß    T— (e, f,0,0) 

+ 1 
n=2 ^(a| + 'i|)V'U','^,l5^o (C•17, 

From Eqs.  C.14  and  C.15 

FAz, 1,0,0)    =   Fiz, t,0.0) (C.18) 

dFi dF 
—   (z, (,0,0)     -    —- (2, f.G.O) (C. 19) 

da da 

    (2. (,0,0)     =     —   (2, (,0,0) (C.20) 

Thus,   p!  is  a  first  order approximation  to F. 

C.4     Results and  Discussion 

An example of  the variation of a  stress wave with distance through 

the medium is given   in  Fig.  C.4.    The wave maintains a  shock front  for 

the depths considered and  there is no rounding off of the peak of  the wave. 

The  peak stress decreases,   and the wave  tends  to  lengthen gradually with 

depth. 

The attenuation ol   peak stress with depth  is  shown  for one case  in 

Fig.   C.5.    The attenuation appears to be approximately exponential.     This 

attenuation  should be compared with that  obtained using  the viscous and 

compacting dissipative  components separately.     For comparison,  curves 

from the linear hysteretic and standard  linear viscoelastic models have 

been  provided.    The combination of the two dissipative parameters    gives 

a  higher attenuation  rate,   as expected.    A comparison of a  number of 
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PARAMETER 
a » 002 

7)/E0 » 60 msec 
C = I 75 m/sf.c 

T0 = 2 5 msec 

5 METERS 

16       18      20 

TIME — msec 

FIG. C.4   STRESS WAVES  AT SEVERAL DEPTHS:  VISCOELASTIC COMPACTING  MODEL 

Te-Sii4-r* 

FIG. C.5   COMPARISON OF  ATTENUATION  BY   VISCOUS,  STRAIN-RATE- 
5NDEPENDENT, AND COMBINED DISSIPATION 
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attenuation  curves   indicates  that   the  nondimensiona1   stress  from the 

viscoelastic  compacting model,      -     ,     can be predicted  approximately by 

"vc     ^     CT
I.H   

x ^SLV (C.21) 

whore and are  the  nondimensiona1  peak stresses  from the 
LH oLV 

linear  hysteretic and  standard   linear  viscoelastic models.     These peak 

stresses   'see  Ref   1 and 3;  are given  by 

crlH I   -   (1   -   a)     I    an[\   -  e-2a', + lTP/<1+a>] (C.22) 

and 
1     2iE    t    )/v 

'si.v '■ (C.23) 

where     t        is   the arrival   time  of   the   stress wave,   and 
a 

T t     T     is  the nondimensiona1 arrival  time. 
P ^ 

Relations   C.21  and C.23 are  applicable   in   the range  of   depths and viscos- 

ities encountered   in  this  study.     However,   to understand the behavior of 

the  model   outside  this   range,   it   is  necessary to discuss  some of  the pecu- 

liarities   of   the   standard   linear  viscoelastic model  without   compacting: 

The  first   step  is  to  introduce  the   loss angle,      6,     for  the  standard 

linear  viscoelastic model.     This  angle   (Ref.  4)   is given by 

tan  b    -■       (C. 24) 

£,   E0  +  (f1 V
2  +  (-' V2 

The equation   indicates how  the dissipative  loss  is  related  to frequency, 

and  to  viscosity,     r.     For   infinite  frequency,   infinite  viscosity, 

zero  frequency,   or zero viscosity,   there  is no viscous  dissipation.     Loss 

occurs  only   for  some  intermediate  frequencies and viscosities.     The maxi- 

mum dissipative   loss  occurs at 

-T   -    ^i  ^o   ;   (W (C.25) 

In wave  propagation,   the  fact  that  there  is no dissipation at   infi- 

nite   frequencies  means  that  a   shock wave  front   is  not   smoothed out  but 

remains a   shock at  all Hrpths.     The magnitude of  the  stress associated 
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with  the shock front  decreases with depth and  is given by Eq.  C.23.     Down 

to a  depth,     z     ,     this stress  is the maximum stress of  the wave.    This 
cr' 

critical depth  (see  Ref    l)   is given by 
z- 8 c r 

1   + 4Vfo 
({:.26) 

where    TT is   the   initial  rate of  decay  of applied  pressure, 
dt 

t  o 

p       is  the  peak applied  pressure, 
o 

For   larger depths,   the  peak  stress  occurs at   some  time after  the  shock 

front .    At a   considerably greater depth,   the wave again appears   to have 

a   sharp front  and  the   peak  stress  travels  at       c0/^^~Ei/E0. 

Similar effects   can be  expected  to occur with the viscoelastic  com- 

pacting model.     For a   very   large and very  small  viscosity,   all   the 

dissipation can be attributed  to    3.    The  stress  wave frc-nt  maintains  a 

shock  front  to all  depths,   but  beyond  some  depth,   the peak stress  may 

occur  sometime after   the shock front.    The  particle velocity attenuates 

at   the  same  rate as   the  stress  for both  the   linear hysteretic  model and 

for   the  standard   linear viscoelastic model  down  to the depth given by  C.26, 

Hence,   it  can  be expected  that  the  particle  velocity and  stress  attenuate 

at   the  same  rate   in   the  viscoelastic  compacting  model down  to a   depth  at 

which  the  peak does  not  occur at   the  shock  front. 

C.5     Response   in a   Dynamic   Compression  Test 

An analysis was   made  of   the  response  of   the  viscoelastic  compacting 

model   to a  pressure   pulse   in  the  form of a   sinusoid.    This analysis was 

conducted to provide  a  means  for  interpreting  the experimental  stress- 

strain data  obtained   from  compression  tests  on  soil  samples   (App.  B) . 

The whole model  element   is assumed  to  receive  the   loading  simulta- 

neously  so  that   there   is no wave propagation.     The   loading  function  used 

is 

ao  [ /        (Ji\ 1 
a      -     —      1    "   COS   CJt    +   (1 1(1    +   cos   aj()//(f    -   77» (C.27) 
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where     *0 is the peak applied stress, 

j is the decrease  in stress  after  the peak, 

i is the natural circular  frequency, 

i is time,   and 

H is the Heaviside step function. 

The  loadinR   (shown   in  FIR.  C.6)  approximates very well  the actual   load- 

ings  obtained  with  the MIT tester. 

»■«  — 

V) 

a. 

w 
w w 

TIME 
T«-»IM-«t 

FIG. C.6   FORM OF  THE  ANALYTICAL LOADING 

The  strain   response  to a   step function  of  stress  on  the model  is 

t  - T *rV-e' v e»    f, 
(C.28 

where     ~       is  the  stress magnitude of   the step, 

E0    and     E,    are moduli defined   in  Fig.  C.2,   and 

Tl      is  the viscosity associated with  the dashpot 

in  Fig.  C.2. 
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Using the superposition integral, the strain caused by the loading in 

Eq. C.27 is 

\l   +  e    ^ je     ^ 

^■R^)] 
2    V,      '1/ 

cr. sin  cut   +   cos  cot   +   e   ''v 

L      UJT7 

(1    +   COS   ajt ) 

-TT) 

2E, 1 + 
(-) 

(C.2Q) 

This  equation  is  valid between the  time of maximum stress and  the 

time of maximum  strain.    At maximum strain,   locking  occurs,   and  the  unload 

ing parameters must  be  used  to  find the  stivin  response.     The  time  of maxi 

mum strain  is given by 

~7 0                                                        iC.V.n 

where  the  strain   is given by  the expression   in C.29.     The  condition   is 

— e-^ + — le +   cos   cot + ^ sin    ' t 

where 

0 

(C.31 l 

t -  t  =  n/a,   the  lag  time between  peak stress 

and  peak  strain 

Ej/Eo 

The   lag time  can  be determined  from  the  difference between  peak times on 

the   stress-time and  the  strain-time  curves  obtained from  the  compression 

tests.    Then Eq.   C.31  provides one condition  on    >    and     '.     A second con- 

dition was generated by  taking  the maximum value of     >     for which a   solu- 

tion could  be obtained   for     '    from Eq .   C.21.     For smaller  values  of 

two solutions  of     £    are  obtained;   for   larger  values  there are  no  solutions 
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Hence,   by  the  choice of  this  second  condition,   a  unique  value of     Q    is 

required.     The values of     \    obtained by  this  procedure are   in  the range 

found  by  Whitman.16 

A complete graphical  solution  of  Eq.  C.31 and  the  second  condition 

are given   in   Fig.   C.7.    A minor variable  in  the  solution  is   the  ratio of 

■0/i.    Given    xt      and      o/'i,     £ = Ej/'JüTI    and     \ixt   Ci/c0    can 1     found 

from  the  figure. 

The next  step is to find the  compacting dissipative parameter,    a. 

The  parameter, is given by  the  ratio of the slopes at  zero strain 

rate and,   hence,   by the ratio of  the moduli,  E0 and Ej. 

1 - sE0/E2 
(C.32) 

i * > vr2 

The slopes  of  the  stress-strain  curves would be proportional  to the moduli 

E0 and Eg     if  there were no viscous efforts.    The  rate-dependent  character 

will modify  the proportionality  to  some extent.    The slopes will be evalu- 

ated at mid-height  of the unloading stress-time  loop because  the viscous 

effects will  be minor at  that  stress   level   (see  Fig.  B.ll).     To evaluate 

these slopes   it   is  necessary  to continue  the loading analysis  to determine 

the strain at  all  times during the  initial  loading and unloading.    In the 

analysis   it   was assumed  that     Ej/Eg  =  EQ/EJ    to reduce  the  number of 

parameters.     For  the  initial   loading,   the  strain   is  simply 

1» (1 + L] 
2   \«0       EJ 

(1  - cos cot) - 

f1 
cot ~ cos cot  + e 

2t 1 + {-)1 
for 

Thf  slope  of   the stress-strain  curve  is 

5,     -- 

V 
t <- 

CO 

(C.33) 

(C.34) 

where is  given  by Eq.  C.27. 

The slope was  evaluated at a   loading  stress  level  equal  to  the mid-height 

stress of  the  unloading  stress-strain   loop;  hence, 
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FIG. C.7   GRAPHICAL  SOLUTION FOR VISCOELASTIC 
PARAMETERS  FOR  THE VISCOELASTIC 
COMPACTING  MODEL 
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al er, 
—   ( 1   -   ros  ojf    ) 

o-,     \ 
O", 

(C. 35) 

or 
cos  cot -1 + — 

0     J 

The  slope  of the loading curve at  the time given by Eq.  C.35  is 

1  + 
KcüTjl    _ 

1 + 
-) COT)/ 

Mil» 
2    2 00*7) 

En   UTTJ 

1 2-o'-i " 1 

1    - 
a 

(C 36) 

where  t   is to be evaluated from Eq. C.35. 
m 

For convenience,   the sum    in  the denominator will be designated by    Zj 

so  that 

\(jjr]i 

1 

The  strain during  unloading  is 

(C.37) 

1 1\       ai   /I 1 

(£2   + J "lF/*-j-7ur*■;;(1 + co-', 

c
 1 B3 

2£. 

CTjl        sin ojf j   -  cos oif j   + e    v    j 

w \ COT) I 

- Z?n("t'*-<** x) 

131 



(f3 \     '-*{ajt-7T-ut 
— a in  cot {   ~ cos  <^t J e  u'v 

2E. 1   + 
K'-'J J 

(E*     • ^ \—   sin   cot   ~   cos  u>ti 
\ajTi I 

1E^\-, 

(C.38) 

The   slope     S2     is  evaluated  at   the middle  of   the   unload IHR  cycle;   hence, 

at       it       3-/2.    The  slope   is 

e,\2 

_1_ 

5, 

1 

1  -  — 

,1 + a -GJ 
21 1   + &) i 

1   +1 S) 
2        *! 

[' ■©! 
£ \2 C3 V 

'•c 
(f 

— sin   'fi  ~ ros    t , j r       » ' 

f       £ 

um     £, 

/' . 

 sin   -if (   
+ cos cut!   +\ — e + 1)*' 

ijri 1 l 

!^-",)l 
When   the  sum  in braces   is   replaced by    Z2.     Eq.   C.39 becomes ((',. V» 

2 

1    + © 
(C. U) 

The    ratio  of  the  two slopes   is 

£ v 

or 

F S" v c 0 ^ 1 ^ 1 

C2 02 .  2 
(Ctl i 

132 



- 
, 

Because Z2 contains the ratio  E0/E2,  Eq. C.41 cannot be solved 

explicitly. However,  E0/E2 is approximately equal to Si/Sj.  With this 

as a first approximation, the correct value of  E0/Ea can be readily 

obtained by iteration.  Finally, a    can be determined from Eq. C.32. 

This analysis provided the basis for determining both the visco- 

elastic and compacting parameters from the soils data. 

1 
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NOTATION  FOR  APPENDIX D 

A =  coefficient of  stress-strain relation   (bars) 

B =  coefficient of convex  portion of  stress-strain curve 

b =  coefficient for exponential  decay of hump 

c =   Lagrangian wave  speed   (gm/crn2  sec) 

E0 =   permanent  set 

F(mi =   strain on shock front 

Fj =  coefficient of variable term in approximation to F 
f(€jnij =   stress-strain relation 

G,   H =  functions found  in the  solution of  the initiation 

problem 

Gj =  coefficient of  the approximation to C 

g =  acceleration of gravity,   (cm/seca) 

H,  J =  arbitrary constants 

v =  function defined  following Eq.   44 

hj . ha =  proportionality factors 

k =    (R  -   1J/(R +  1} 

M(ln z   )     =  G(zj 

m 

N 

Na 

n 

n, 

P 

Q 

q 

R 

R, L 

r, s 

= mass per unit cross-section area (gm/cm1) 

= 1/n 

= l/n2 

= exponent giving curvature of  stress-strain relation 

= curvature parameter for hump on stress-strain curve 

= curvature of  unloading stress-strain relation 

= preload on  top of column  (bars) 

= (V/So  -  1)N -   (Y/So +   1)N 

= peak applied dynamic stress (bars) 

= (v/So - 1)N + (v/So + 1)N 

= y/So 

a subscripts lor approximations made on the basis of 

points to the right and to the left 

= characteristic coordinates 
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J =  position of shock front  in  r-s coordinates 

S = dm/dt 

S0 =   IP(0)Q/Eol   */■ 

T s time on the shock front 

TQ = decay constant for loading (sec) 

t = time ^secj 

M s   shock  velocity 

U =   initial  modulus 
i 

u,   b ■   subscripts for approximations made on  the basis of 

points  above   (upperj   and below 

V(m) =  particle velocity on  the  shock  front 

v =  particle velocity 
vo^ v» =  particle velocity on  front  and back of  shock 

w =   arbitrary  function 

x = depth  in the column   (cm; 

y =  In 7] 

z =  an arbitrary variable  used  in defining M 

=    ^P(0WlBo - Eo/j  V» 

6 = (g/Aj" 

e = strain 

€(sj 
liS static   strain 

c = -m  (R   -  lj 

V s -m   (R  +   Ij 

\i - VVo/2Q 

I = position of   the shock  front  in  time and depth 

o = density   (gm/cm'y 

^ = initial  density 

Po,P» = density on front and  back of   shock 

a s stress   (barsj 

0(.) - static  stress   (bars; 

dQfOi = stress on front and back of   shock 
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Appendix D 

NONLINEAR  HYSTERETIC MEDIUM 

D.1     Introduction 

The  analytical work described here was directed  toward  two aspects 

of wave propagation: 

1. Effect  of  geostatic  stress on  attenuation of   stress. 

2. Wav«  front  formation. 

Geostatic stress (initial stress or preload due to overburden) 

alters the wave velocity and makes the soil stiff er than it would be if 

it were initially stress free.  Usually the geostatic stress causes the 

wave velocity to increase with depth.  Wave propagation through a 

medium with properties which vary with distance may have characteristics 

considerably different from that through a homogeneous medium.  Concern 

about these characteristics prompted a wave propagation analysis of a 

model with nonlinear loading and unloading relations similar to those 

of soils.  The effect of geostatic stress was considered in the analysis. 

Wave front formation presents an anomalous situation in one- 

dimensional wave propagation.  As waves propagate through soil, the 

rise time (time from zero stress to the peak) tends to increase. 

However, in one-dimensional compression tests, soils exhibit stress- 

strain relations that are predominantly concave to the stress axis. 

Such a relation indicates that rise times should decrease as the wave 

moves through the soil.  To explain the lengthening of the rise time 

then some other factor must be introduced such as effect of loading 

rate, or of preload.  When soil with a preload is dynamically loaded, 

the stress-strain relations show a small initial portion that is convex 

to the stress axis.  One of the goals of the study was to determine the 

influence of this convex portion on the rise time of the propagating 

stress wave. 

With these two goals in mind—investigation of the effect of 

geostatic stress and of wave front formation—a study was undertaken of 

a theoretical model with nonlinear loading and unloading stress-strain 
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relations but with no time-dependence.     The  loading relation  could be 

either wholly concave to the stress axis or initially convex and then 

concave at higher stresses.     The unloading relation was entirely concave 

to  the  stress axis.     With  the wholly concave  loading relation,   the   effect 

of  geostatic  stress was  considered.     Solutions  for  the wave  propagation 

problem  in  this medium were obtained for a loading with a shock front 

and  an exponential decay of  pressure.     This  solution provided a deter- 

mination of   the effects of   geostatic  stress  and  curvature of   the  loading 

relation on  the attenuation of  stress  in a  propagating wave. 

The loading relation which is  initially convex and then concave 

was   required  to  study   the matter of  wave  front  formation      The computer 

program for  the  solution of   the wave propagation  problem with  this 

loading relation was only partially completed  at the close of   the 

project.     Therefore,   no  results  arc available  on  the   subject  of  wave 

front  development. 

D. 2    Governing Equations 

D.2.1    General   Equations 

We  considered  a  column of  material   with  cross-sectional   area acted 

upon  by  gravity  and  an  applied load.     Thus,   one  space dimension and   the 

time  are needed as  independent  variables.     Because  the   stress-strain 

relation  for each particle depends  on the  history of   the particle,   it   is 

useful   to  introduce  a  Lagrangian  space  ».oordinate  that   is a constant  for 

each partible. 

Let x(cmj  be   the  distance below a  fixed  reference  level  and  t(sec; 

be   the   time.     For the  Lagrangian coordinate,   let m(gm/cm2;  be  the mass 

per  unit  cross-sectional   area between the  top of   the column and point  x 

in  the column.     Thus,   the Lagrangian coordinate  represents a product of 

density and depth   in  the column. 

The  loading,   or applied  stress,   is  assumed   to be 

a     =    P       . t   <  0 
(I). I) 

P   * Qe 0 f   > 0 
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where Q and T0 are positive constants and P Is non-negative.  With 

the loading, a shock front will develop at the surface at  t = 0. 

If z  (dynes/cm2j  is the stress taken positive for compression, 

then the equation of motion is 

*„  = g "-, (D.2) 

where subscript denote differentiation  and    g  (cm/sec2j  is  the  accelera- 

tion of  gravity. 

The  continuity  relation can be determined  using the definition of 

density,   p ,   and  tho Lagrangian coordinate, 

r,     =     1 (D. 3) 

and the definition of strain 

m 

P 

( 0) 

1 - ;   =  1 - p(0);r (D.4) 

i o 1 
where  D    is the density in the stress free state.  Then 

e  = -.,< 0)^   = - < o), 7'(ü^f  = 'P^\m (D.5) 

D. 2.2    Constitutive Relations 

The  static  relation between stress,    -  ,   and  strain,   e   ,   is  taken  to 

be 
o    '    Atn (D.6) 

With    A   [dyne/cm2 }     and    n   idlmensionlossy     positive constants.     At  time 

zero,   the  column  is at  rest under gravity  and an applied  load of 

P   (dynes/cm2
y.     Hence, a (J '     -     P +  mg (D. 7) 

l 
and /D J.  __\ " 

f 

(^ 
(•) r: ^£1 (D.8) 

whore the superscript  (s) indicates static conditions. 

For dynamic loading, the constitutive equation is assumed to be 

a     -     At" + ßU«'']"1 [e/e«'' - l]e"fc[f/f(',-l] (0.9) 

where B and b are positive constants.  The equation applies only 

where e  > 0.  The form of this equation has been chosen to simulate 
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the  combined yielding-stiffening stress-strain curve that has been observed 

for sand.     The first  term gives the basic  stiffening behavior.     The 

second term provides an initial   "bump",   the  importance of which is con- 

trolled by the initial   static  strain and hence by  tho static  stress   (see 

Fig.   D.l), 

DYNAMIC STRESS 
STRAIN CURVE 
STARTING FROM 
PARTICULAR 
STATIC STRESS 

r(s) 
STATIC STRESS- 

STRAIN CURVE 

<(*) 
IU-4«3r-4 

FIG. D.l    S-SHAPED  STRESS-STRAIN CURVE   FOR  SOIL 

The  tangent   modulus   right  at  the   start of   the  "bump"  is  given  by 

do 

7" 
( s   ) 

n\{t{s)]n'1   +  ß[e<j)] 

n- 1 

n.\ 
a ( J ) 

H 
( 5 ) 

,4 
(I). 10) 

This tangent modulus should be related  to the  velocity with which seismic 

level  waves propagates   through  soil.     From  the  available data     Hardin 

and Rlchart23,,   it  appears that  this  Initial   tangent modulus  should   vary 

as       isi1/2;   that   is,     nj    and    n    should  equal  2.     In the calculations 

it was assumed  that    U}   = n. 

Equation D. 9 will  give combined yielding and  stiffening only  if   the 

tangent modulus goes through a  minimum.     The condition for the existence 

of   such a minimum  is    A/bB < 1.     Otherwise   the  curve will  always be 

concave  to it.-  stress  axis. 
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For unloading, that is, for et < 0 the constitutive relation is 

a  =  C(e - f)"2 (U.ll i 

where C (dynes/cm2)  and 112    are positive constants and  E corresponds 

to the residual strain when unloading is completed.  At each point, E is 

determined by equating D.9 and D. 11 at the peak stress.  The unloading 

relation was formulated as a reasonable representation of observed stress- 

strain relations in sand. 

The constitutive relations, Eqs. D.9 and D.11, show that the stress 

is a function of geostatic stress and the residual strain, which is a 

function of the previous peak stress at the point.  Hence, the constitutive 

relations will vary with depth.  To emphasize this functional dependence, 

we write   = f(e,m) where it is understood that either D.9 or D.11 is 

used depending on the sign of  e . 
In 

The constitutive relations are formulated only for one loading and 

for one unloading.  Due to the nature of the wave propagation problem, 

it was not necessary to formulate a relation for a second loading cycle. 

D.2.3 Characteristic Relations 

To develop the characteristic coordinates and equations, the 

equations of motion and continuity are presented in the following form: 

v-     -    ß  -  ifeem   + /,) (D.12 t 

el     --     -P{0)vm (D.5) 

Following Courant  and Friedrichs24 we form a linear combination of 

the two equations,   say    H    times the first plus    J    times the  second 

Hvt   + p{0)Jva   + Je,   + feH€m     -    H{g  - fm) (D.13) 

This equation  is in characteristic  form  if both    v    and     g     are  being 

differentiated  in  the  same direction,   that   is,   if 

// J 

r(0)j ffH 
(D.14) 
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Put    ca =   p      f       so  that the  requirement of Bq.   D.14 is 

Substitution  Into Eq.   D. 13 gives 

vt   ±  cvu ±   [c//'(0)](tt   ±  cej     =     z  -  fu 

(I). 15) 

(I). 16) 

Thus,     c   (gm/c.;i2  -  sec)     is   the  speed of waves  in  the Lagrangian coordinalo 

system.     Note   that  the  units of     c    are  not   length per  unit  time. 

The characteristic coordinates    r    and    s    are  introduced by 

requiring,   for any function    w, that    \v    - cw      be proportional   to    w t m r 
and    vr   + cw      be proportional  to w   .      Thus, t m ^ s ' 

u ,   -   c w 
t < 

h,u and        u,   +   ru 1     r t » h2Us (I). 17) 

where    hj     and    hj    are proportionality factors.     By  letting    w =  t    and 

then    m,  it  follows  that 

1                                        c 1                                    c      . 
t        '-     —                 m       -     - — t        --     -                 *.     --     —   (»■ 18) 

Eliminating    h1     and     h2    from D.17 and  D.18,   results  in  the  following 

characteristic  relations: 

Along characteristics where     r     is constant, 

r \ (U. 19) 

Along characteristics where  s  is constant, 

m        -     ~c \ 

(I). 20) 

(I). 

( 0 ) ) 
r /'   J t (« " K^r (13.22) 

The r =  constant waves are outgoing waves along which m  increases 

with t.  The  s =  constant waves are incoming since m decreases as 

t  increases.  Not that the coefficients  c, c/fA0^, and  g - f   in 7 m 
Ü. 19 to D.22 are functions of  e  and  m. 

For use in the numerical calculations, D. 19 - D.22 must be approx- 

imated by finite difference equations. In the r-s plane, we will set 

r and  s as the vertical and horizontal coordinates, respectively. 
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Thus, in D.19 and 0.20 we consider a left point, L , and a right point, 

R , in approximating the s-derivatives of the variables e, m, v, and 

t.  The difference equations we shall use are 

m,, - mt  = citf,  -   tL) (D. 19a) 

'« " vL   + ic  / (0,l{eÄ - ,L)     -     (g - fm)(tB   -   tL)        .    (U.20a) 

Eqs.   0.19a  and  D.20a best approximate  D. 19 and D.20 when  the  coefficients 

art- evaluated   for  the averages of  the   values  of     e    and    m     at    L    and 

R.     Similarly,   for an upper point,   u  ,   and a lower point,   b  ,  we have 

m
u   " mfc     =     -c^u  -  'J (D.21a) 

Iu   - vb   -   ic  ,'0>]Uu   - eb)     -     (g -/.)(tu   - th)       . (D.22a) 

D.2  4    Shock Equations 

Now consider a shock front moving  relative  to the material enveloping 

at   a  time,   t  ,   the particle with Lagrangian coordinate*,   m=m(t).     Then 

if    x(m,t;     is   the position of  the particle with  the coordinates    m    and 

t,   the position of  the shock  front  is  given by 

f     =     x\mU) ,i\ 

and, thus, the shock velocity is 

dm i dm .   ,« >, i am /    v — ^v  .,-' — + ,  =  (i - e) [^(Oj-i _ + ,,     (D. 23) 
it ' dt dt 

We may evaluate the expression for U on either side of the shock front, 

obtaining the relationship 
dm 

i   if   f   i   —   i    i i v i       ■„     =     If^n-Ue, - e0)  jj (D,24) 

wlu-re   the subscripts    0    and    1    refer  to the front and back  sides of 

the  shock.     For   the shock front  that  moves into undisturbed material, 

dv 
v0  = 0    and    e0  =  e^     so that  if we write      S    for    -     ,   we have 

r,     -     ^m]-1[e1   -  t
<J,]5 (0.24a) 

Equation 0.24  is  the "kinematic" shock condition,   which replaces the 

automatically  satisfied condition of conservation of mass.     The equation 

Courant  and  Friedrichs,   Supersonic   Flow and  Shock Waves,   pp.   133-134. 
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for conserving momentum across  the   shock is found by equating the net 

rate of change of momentum across  the shock front  to  the net applied 

force  there.     Thus,   we have 

P0(vQ  -  U)2  - Pl{vl   -  V)2     *    <rl   - a0       . (D.25) 

Using D. 23,   D.24,  and the relation     o"1 =   (l-ej/p^,   equation D.25 

reduces  to 
cjj   - £70     -     S(vl   -  r0) (D.26) 

Again,   for  the shock front  that moves Into undisturbed material,     vu = o 

and     CQ =   ^s^     so that 

(-j   - (-
(l)      =     i^S (13. 26a) 

Equations D.24 and D.26 will be referred to as the shock equations and 

In the case mentioned will be specialized to D.24a and D.26a. 

D.3 Initial Values and the Linear Solution 

The characteristic plane of Flg. D.2 has the characteristic coordin- 

ates of  r  and  s.  The definition of the coordinates Is completed by 

setting  r = s = t on the noncharacterlstlc curve, m = o , corresponding 

to the upper surface of the material.  The other noncharacterlstlc curve, 

df , represents the position of the shock front In r-s  coordinates. 

Numerical subscripts will now refer to points in Fig. D.2. 

With  -0 = P + Q , e0  is found from Eq. D.9.  Since both forms of 

stress-strain relation hold on the shock, D.9 and D.11 may be equated to 

give  EQ.  The shock equations D.24a and D.26a can then be used to give 

values of  v0 and S0. 

Before the numerical method can be applied, variable values must be 

obtained at point 1.  Series representations for these values are developed 

in the following discussion.  We see that in the case of Interest,  P = 0, 

the second term of D.9 is exponentially small near the surface.  Since 

the series are to be expanded as functions of  m about  m = 0, D.9 is 

conveniently approximated by 

a  = Aen (D.27) 
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It   should  be noted that  retention of  the second term of D.9 In the case 

P = 0, while complicating  the  algebra,   presents no difficulty  to  the 

analysis.     For simplicity,  we  shall set    P = 0    in the discussion and 

use 0.27 as  the comprcsslve  stress-strain relation.     Furthermore,   the 

shock moves  Into undisturbed material  initially  so  that  shock relations 

D.24a and   0.26a apply. 

TA-5ia4-U 

FIG. D.2   THE  CHARACTERISTIC  PLANE AND  POINTS DESIGNATED 
IN  THE  ANALYSIS 
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Since both forms of  stress-strain relation hold on the shock, 

Co =   (Q/A)N    and    E0 = eo "   (Q/C)N2,  where    N = l/na .     The more 

convenient form of D.ll,   a = Q[(e-E)/(eo-E0)J"2,  may be linearized In 

good approximation to 

a    =    (?[1  -  fi2   + M2(e   - f)/U0  " EQ)] (I).28) 

so long as the shock stress and  the stress level behind the  shock are 

close. 

Using m as the parameter along the shock, define the strain and 

particle velocity on the shock by c - F(m and v = V^m,. The shock 

relations D. 24a and 0.26a may be rearranged to read 

52     *    p((i){AFn   ' m^)/[F -  (mg A)N] (0.29) 

V2     =     Mf   -  ng)[f -   (mg 4)*]   A 
<0) (D.30) 

Since    S    Is the Lagranglan  shock speed,   the  shock locus    t = T(m)     Is 

found from , 
T    -     I S'ldm (D.31) 

o 

The flow behind  the shock  is governed by the unloading stress-strain 

relation D.28 and equations of motion   (Eq.  G.12 and G. 13 of Ref.   4    which 

S     =     'P{0)v, (Ü.33) 

The use of D.28 permits reduction of  the continuous  flow equations  to 

t t /      «■ 

where    y2 =  D^o^Qna/(e0 - E0).     The general solution of this wave 

equation is conveniently written 

a     --    Q[l   + G(m  - yt)   + //(m  + yt)] (Ü.34) 

whore    G    and    H    are  functions  to be determined. 

The  stress given by D.34 can now be substituted  into the equations 

governing  flow behind the shock. 

vt    --    g - QiG'im - yt)  + H'(m + yt) (Ü.35) 

v * [-lV0,]ef    -    -(e0 -E0)a y
o)Qh2    =    {QMiC{n ' yt) - H'{m + yt)] 

(D.36, 
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where  the primes  represent differentiation with  respect  to the arguments, 

m  -   ^    and    m +  Yt. 

Using  the  shock  front  as  a  reference  point,   D.35  can be  integrated with 

respect  to    t , 

v    -    V + g(t - D + (Q >) [Gim - yt) - G(m - J) - H(m + yt) + H{m + yT)] 

and differentiated with respect to m  to give (0.37) 

'„    V   - gT'   +   (Q y) [('.'(m  -  yt)   - (1 - >T')G'(m - yT) 

- H'(m  + yt)   + (1 + yT')H'(m  + yT)] (Ü.38) 

The   result of  equating D. 36  and D. 38  is 

(1  -  yT')G'{m - yT)  -  (1 + 77")W'(m + yT)     -    (y Q)(V'   - gT') 

which can be integrated giving 

(.{m - yT)  - Him  + yT)    = (y Q) W -  1(0) - gT]       . (D. 39) 

Also,   on the shock     T = AF11    and    t = T    so that 

1   + G(/R   -  >r)   + //(m   +  yf)     -     (.4  (?)fn       . (D. 40) 

Equations D.39 and D.40 can be simplified by noting that at the surface 

= Qe~t/To  so that 

1 + G(-yf) + W(>f)  = e   '   To 

or more generally 

1   +  (-.(-x)   + rtU)      =     e (l (D. 41) 

Thus,   H    may be eliminated from D. 39 and D.40 to give 

Mm  -   yT)   + Ci-m -  yT)     =     {> (?) [V -  V{0)  - gT]   t e-
('+>r>/(>ro)   (D.42) 

and 

VAm  -  ,.T)   - G(-m - yT)  + «? 0       -     (4 >)fn (D. 43) 

From the forms of     S,   V,   and T    as functions of    F    and    m,    it may 
N be  surmised  that,  with  two  term accuracy,   F =  So  + F^   .      From  this, 

putting    x = mii/^0    and     6 =   (g/AjN, one finds 

S    -    50{1   +   l(n  -  Df,   + cS](x'2)}   ,   S*     --    p{0)Q/e0 

V ^o11   +   (<"   +  D^i   " S](*/2)}   ,   V2
0     --    Q€0/p{0) 

T     -     (m  50)U   -    In   2(n   +   l)][(n   -   DF,    +  bM 
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V»» 

To  the same accuracy,  G(m)  = Gj- (-m)       so that  putting 

P     -     ^/S0  - l)N  -  (y/S0  + \)N q     -     (y/S0 - l)N  +  (>/50   +   1)^ 

D. 42 and D. 43 read 

qGl     =     (M/e0) l{n   +  Df,  - M       ,        v     -     - V'o  2Q      . 

From these Gl may be eliminated giving, finally, 

F.     = ^.Sp/[/u.(n + Dp ~ ng] 

With    Fi    known,   values for    F,  S,   V,   and T    at point  1 are obtained as 

functions of    ml     by using the above expressions.    Of course,   m,     must be 

made small enough  so that resulting vnlues of    F,  S,  V,   and T    are 

consistent with th" simplifications made  in the  stress-strain relations 

D.9 and D. 11. 

Linear Model 

The above  results can be extended  to yield an analytic description 

of   the flow if    n = n2  =  1    and    B = 0.     In  this  case. 

S2
0     -    ^

0)A 

V2     -     AiF  -  mg A)2  f
i0) 

T     =     m  .S. 0 

2 < 0 '(7 

Define /? = y/S0   ,    (note   that   /?   >   1 ) 

f = -m(/?  -   1) 

rj = -m(fl  +   1) 

ife = (/?  -   1)   (fl  +   1) 
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Then D. 42  and   D. 43   read 

GCf)  + Gdj)        j. 

U / 
[f(m) - F({))\ -—2 + e 

v/(yT0) 
- 1 

4 
- R.) 

Remembering  that     Fio    > Q/A,    eliminate     F^m,     from  the  above equations 

and  reduce   to 

(iikr,) 
(i('i) URT) e 0    - 1 

Q(R 2    _ 

Transform by  letting    M(lnjz|j   = G(z    ,    for    z < o to obtain 

»/( In +    /n   fe) 
.V(/n   hjj 2g/f |r;| 

fc n/p2    _ 

- |-n| /'yr0) 
■  1 

Q(/?z  - 1) k 

With    d  -  -  In  k,   transform again  according  to    y  -  ln|Ti| obtaining  the 

difference  equation 

W( v ) 
t/(v   -   </) +   /i(v) (D.44) 

where 

/K V ) 
2KK 

0(ft' 

'   ,(>rl 

It follows that  M^-,! = o.  A simple recursive process yields 

knsn v    M(/I !/( 
n  I 

k     7.     k'h(y  -   jd) 
J  =0 

wliicli  in   the   limit  as     n -• ^    reduces  to 

W( v I 

or,   in   terms of     G.   T",   and k 

k    >' k'hiy  -   / </) 

fc     S     it7/i( ln\rj\    +   j    Ink) 
I   o 

(D.45) 

The series  in D.45 converges exponentially,   allowing efficient numerical 

evaluation of   the function    G .      The  values of  the flow variables  are 

then easily  obtained   as  follows: 

Equation  0.41   is  a functional   relationship between    G     and     H    so 

that wu may eonsider  them equallv available.     From D. 29 and   D. 31 

m h V^A (I). 46) 
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so that in the m-t plane the shock locus is a straight line.  Then D.40 

may be solved for F, giving 

F    = {Q'A)[\ +Gim - yT)   + Him  + yT)] (D. 47) 

With F known, Eq. D.30 reads 

V    --     (AF -  mg) 'v r
(0)A (D. 48) 

Thus,   the variable values on  the shock are  given by  D.46,   D. 47 and  D.48. 

Behind   the shock,   v     is  obtained directly  from Eq.   D.37.     Equating   the 

shock  relations gives     E =  F(l  - A/C)    so that    e    may be obtained  from 

D.34 as 
t     =     £ +  (Q/C) [l  + G((n - 7«)   + //{m + yt)] (I). 4^) 

With    G    given then,   the f1 ow on and behind  the  shock is known completely. 

D. 4    Numerical Method 

With the applied  stress  given by Eq.   D.1,  discontinuities  in  stress 

and particle velocity  will  be propagated  from  the  surface at  time     t = 0 

down  into the medium in the  form of a  shock  front.     Initially,   the  shock 

will  be moving into quiescent material  so  that flow computations must be 

performed only for points at  the surface,   in  the  continuous  flow region 

behind   the shock,   and on the  shock itself.     However,   at greater depths, 

the form of  the compressive  stress-strain relation allows  the formation 

of  sound waves,   which precede  the shock into   the material below.     In 

general  then,  provision must  be made for computation of the flow variables 

at  points 

(1)    on  the  surface, 

{2)    in the continuous  flow regions behind and  ahead of  the  shock, 

(3      on the shock moving into quiescent material, 

[4 j    on the shock moving into continuous  flow,   and 

(5;    on the first  precursor,  i.e.,   the  sound wave moving into 

quiescent  material. 

The points  referred  to  in  the following discussion are  located  in 

Fig.   D.2.     Each of   the  specific points mentioned  represents a typical 

calculation. 
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I   - The Surface 

With conditions at   a general  point  5 in  the flow known,   the  flow 

variables  are  computed  at point  30 by  an  iterative process,   Involving 

Eqs.   D.21a,   D.22a,   the  unloading relation,   D.11,   and   the  surface  stress, 

D.l: 
(k i 
I  M t .   ♦   m r   c 1 ( fc-1 ) 

i k i 
i it /» ^ Qir^i-t^' r0)] 

( k ) 
3 0 f0   +    [a ( * )  U'-\"2 

3 0      "'' 

{ k    I) 

'in r, 
f> 
,(o) 

( * '    _    e 
3 0 5 )    +    [g   -   /? ( * - 1  » 1 / < ( * ) 

3 0 

( (I I 

](e 's) 

where    f^e.m,     is   given  by   (7j,     c(€,m/i   =  [o^^f   ^e^ni/j1/2    and 

«!/' 

w'0' 

/ ' 

( / 

<*M    - m  I 3 0     J  '     ^    m -, [ 

The  procedure   is   repeated  until   successive  iterates agree  to some 

pi-escribed precision. 

II   - The Continuous Flow Regions 

In the continuous flow region ahead of the shock, ehe strain rate, 

e , is positive while behind the shock it is negative. The calculations 

in the two regions differ only in the choice of stress-strain relation, 

which must there reflect the sign of € . The function E{m) is computed 

at points on the shock as part of the shock calculations. Values of E 

used in the unloading relation behind the shock are interpolates of the 

shock values. 

With conditions known at points 3  and 4,   the flow variables are 

calculated at  point 5 by   iteration of  the coefficients,  c    and     f    , 
' m ' 
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in  Eqs.   D. 19a - 0.22a.     The Iteration  scheme is  conveniently written 

m<»'    _   m4       =    _c<»    '  M,(*» ,(*-i) iv*)    t 
4 L '5 4 

''5       -   "3   +   [^*-l,/p(0)][e;»)   -  .3]     =     [g - flS*-l)][( 5 ' 3 

,<»'   _   Vi  _   [c^-^/^'^Jle«*'   -  t4] [g - fl^-'Mlf^'   -   f 

where 

C3 
ki     =     ^0-5[e3>4   + ^M],   0.5[m3   4   +  m;4»]} 

c (0)     r     c 
3,4 3.4 

«i'i ■  Mo.su,,. * t;"i, o.5[«, , * .;',i 

Ki",     ■     </.) 
3 , 4 

The  process  is continued  until  successive   iterates agree  to some  prescribed 

precision. 

For  interior points   such as 2,   the  flow variables  are  taken  as  inter- 

polates of   the  variables  at points  1 and  3,   i.e.,   if X  represents  any  of 

the  variables    m,   t,   v,   or   s    then    X2  =   Z^i   +   (1  -  C)X3.     The   inter- 

polation constant     ?     is  chosen so  that  the mesh  remains  uniform  along 

the   shock  front. 

Ill   - The Shock Moving into Quiescent Material 

If the conditions are known at point  5 behind  the  shock and  point  4 

on   the shock,   then  the  flow variables  at  point  20,   the  intersection of   the 

shock with the horizontal  characteristic   (see  Fig.   D.2)  through point   5, 

satisfy the  following  set  of difference  equations: 

(n20   -  m5     -      r( f20   "   f s) 

''20   "   "5 ('20  "  e
5)     =     U -   /.H'20  -   's) pm 
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( 0 ), 
2 0 ie2 0 '2 0 JO2 0 P'    ' V,n fe■">    •   t ^ n * ' ' 1 -^ 

CT2o  - a2o{s)     =     "2oN:o 

where       20     is defined by D. 9 and 

P ' 1 - (€     +e      ), -  («1     +m     j 
[2       $ 2 0 2       s 2 0  J 

r
m [2  (e5   +   ^o''     2   (m[i   +  n2o)J 

Since c and  f  represent conditions behind the shock it is understood 
tn 

that the unloading relation applies in their evaluation. 

The variables v20 f    t20 ,   and S20 may ^e eliminated from the above 

set leaving two equations that can be solved numerically for  e20 and 

m20. Since both forms of stress-strain relation hold on the shock, D. 9 

and D. 11 may be equated to give £20*  Back substitution into the 

original set of equations yields the remaining flow values. 

IV - The Shock Moving into Continuous Flow 

The vertical characteristic through point 8 meets the shock locus 

at point 9.  The horizontal characteristic that intersects the shock 

locus at point 9 passes through some point 12,  whose variables are 

defined by 

.v12    = £XU  + (1 - f).V6 

where X is written for m; t,   v and e.  The two equations along the 

horizontal characteristic, 

m9 - m12     ct( t9   -   f12) 

VH    -   '12 f — (e9i - ei2)   ^  (« " HLnt9   '   tl2) 

the two equations along the vertical characteristic, 

ffl9   -   m8      =     cR( t9   -   t9) 

"9«   -    "12   -    -77;    (Sfl   -   e8)       =       (S   "   Blt){t9   -    t%) 
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and the two shock equations 

P{0)(v9li  -  v9L)     -     (f9B -  6n)59 

a9R   -   a9t        =       {V9H   -   V9L)S9 

provide six more relations.  A second order difference form of the 

shock speed is 

0 5(5, + N7)  -  (m9 - m7)'((,- (7) 

In addition,   the  shock speed and   the  sound speed at the  front face of 

the shock are equal,  giving 

/eU9fl.m9)     =      (cT9/t   _  cr9L)   (t9/)   -   e9t) 

for a total of  twelve equations In  the  twelve variables m^,  t^, v12, 

€12,    n>9,   t9,    v»,   e9      e9    ,   S9 and   I.     The subscripts L and R on the 

variables    v,   e  and  j    Indicate  the  left and right  sides of  the shock 

locus,   S .     Also 

C"   (t12   +  e9/.)'   "  (mi2   +   ',9)      '      ,{''m)     pivt',,   l)y   (l)-ll) '/. 

r1 • 1 rfl    -    r - (t9fl + e8), - (m9 
+ %>     .     f(fc',m)    piven by  (D.^) 

/?t /J- (e12 + Si^ ' (ml2  + N)    '   f(t'ra) «?iven l,v (|)-ll) 

«/.    "    /-[^Sfl^B^ ^N +m8' ]•    ^,»0 given by (D.9) 

The system can be reduced to four equations In    m9,    e9  ,   69D,  and 
L    R 

| and solved numerically.  Back substitution yields the remaining 

variables.  It should be noted that if  f < 0 then point 12 is not 

physically between points 6 and 7 in Flg. D. 2. 
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V - The First Precursor 
(s ) On  the  leading precursor     e =   e (m;     so that 

R 

mB m1 r{ t H   -    t 7 

'H   -   " 

may be  solved as a function of    m8.     The function    f (e,m)  used in the 

evaluation of   c  and R  is  given  by   {D.9/. 

Logic  of   the  Method 

It  can  be observed  that   there   is a certain freedom of direction  in 

the solution  in the continuous flow regions.     That  is,   this solution 

may be  carried  out  along  the  vertical  characteristics  toward  the 

surface  or  along the horizontal  characteristics  to deeper points.     This 

corresponds   to obtaining  information near the  surface  over  long  time 

intervals or at greater depths  for shorter periods.     Since there is 

little   interest in the flow near the  surface,   the organization of  the 

computation  is  such as to obtain the  flow information as economically 

as possible  at  the greater depths of  the material  by  integrating along 

the  horizontal  characteristics. 

D. 5    Results  and Discussion 

Results were obtained using t'iat part of  the  computer program that 

was complete  at  the close of  the project.     The program was developed by 

steps  in  such a way  that  useful   information could  be obtained at  the 

conclusion of   each step.     First,   the program was written  to handle an 

applied  loading with a  shock  front   followed by a decay in pressure. 

The  soil  considered followed  the simple relation  shown in Eq.   (D.6), 

* = A€n.     This  stop was completed.     Then the more complex relation of 

Eq,    [D.9/  was  used for  the soil.     This relation  introduced a precursor, 

which breaks away from the shock front at  some depth and which added 

considerable difficulty to the  solution.    At the close of  the project, 

the  program could handle  the break-away of the precursor but could not 

follow it   very  far. 
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Several  calculations were made for the  simple nonlinear solid 

defined by  Eq.   (D.6)   that  is,  for  the solid with a pun ijr concave stress- 

strain  relation.     The attenuation of stress and particle velocity were 

affected by curvature   (nj,   geostatic stress,  duration of  loading,  and 

stress  level.     The unique feature of these calculations  is the capacity 

to account for geostatic   stress,   the  initial  static   stress due to the 

weight  of   the soil  above. 

Curvature of the  stress-strain relation  is  required  for the geo- 

static   stress to have any effect on the wave propagation phenomena. 

That  is,   if  thore is  no curvature,   there  is no  geostatic effect.     In 

combination,   increasing curvature     (n)    and  increasing  geostatic  stress 

tend  to decrease the    attenuation   rate.     This  trend  can be  seen  in 

Figs.   D. 3 and D. 4.     The ordinates are the peak  stress at any depth divided 

by  the  peak  applied  stress,   or the peak particle  velocity at any depth 

divided by  the  peak particle  velocity at  the  surface.     The abscissas 

are nondimensional arrival   time:     arrival   time of   the peak stress or 

particle velocity divided by  the duration,  To  ,   of   the  applied stress. 

The calculations were made  for geostatic  stress  caused by a soil  density 

of     o  =  1.6 gm/cm3    or for     D = o,   the  case of  no geostatic  stress. 

From  these  two figures,   the  curvature and  geostatic   stress have different 

effects on  stress and  particle velocity attenuation  and   the effects are 

different for    ^ = 0.2    and    a  =  0.3. 

Becuase geostatic  stress   is   important,   so  is   the applied  stress 

level,   as  shown in Figs.   0.5  and 0.6.    An increase  in the ratio of 

geostatic  stress to peak  applied  stress appears  to decrease the  atten- 

uation   rate.     The stress  level has only a small  effect on particle 

velocity attenuation.     The  curve  for no geostatic   stress  is  shown for 

comparison in each figure. 

The duration,  To  ,  of   the loading also affects  attenuation because 

of   the   importance of  geostatic  stress   (see Figs.   0.7 and 0.8).     The 

nondimensional depth,   T/TQ   ,   eliminates the duration as a parameter for 

the case where  there  is no geostatic stress.     But  it  also brings 

together many real depths at  the  same abscissa.     For   instance,   at 

T/TO =   4,   twice as much depth  is  involved for the    TQ =  10 msec    as for 
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FIG. D.4   EFFECT OF CURVATURE  AND GEOSTATIC  STRESS ON ATTENUATION 
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FIG. D.6   EFFECT  OF  STRESS  LEVEL ON  PARTICLE   VELOCITY ATTENUATION 
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the 5 msec case. Hence,  i so twice as much geostatlc stress is Involved. 

Since stress attenuation Is ger. ally reduced by geostatlc stress, we 

would expect that longer durations would diminish attenuation:  this Is 

verified In Flg. D. 7.  The next figure shows that particle velocity is 

almost completely Insensitive to the duration of loading. 

We may conclude from this study that, for soil with a marked 

curvature In the stress-strain relation, geostatlc stress will be quite 

important.  It will be necessary to specialize an attenuation prediction 

to the stress level, duration, and unit weight of soil as well as for 

the values of  " and n. 
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