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PREFACE

The research reported here was sponsored by the Defense Atomic Support
Agency and monitored by Lt. Frank Brady Jr. The study was conducted under
Contract DA-49-146-XZ-343 from September 1964 to December 1965, and was a
con'inuation of work begun in June 1959, under Contract DA-49-146-XZ-018,
which has been published in four reports numbered DASA-1266-1 to DASA-
1266-4 .14

Supervisor for the project was Dr. Ernest G. Chilton and the project
leader was Dr. Lynn Seaman. Dr. George N. Bycroft conducted and described
the analysis in Appendix C. The analysis in Appendix D was prepared by
Mr. Leonard McCulley and Dr. Clarence M. Ablow. The experiments were con-
ducted by Dr. Seaman with the assistance of Messrs. Gerald Wagner, William

Fehner, James Symes and Phillip Neketin.

Dr. Robert V. Whitman of Massachusetts Institute of Technology, the
consultant on the project, helped to direct the course of the work. The
Vicksburg clay soil used on the project was supplied by the Waterways

Experiment Station of Vicksburg, Mississippi.

The notation has not been completely standardized for the whole report.
Within the chapters the symbols are consistent and are listed before
Chapter 1. The notation of each appendix is listed at the beginning of

the appendix.

Test results are given in metric units. However, the soil column and
some of the gages are designed using English units, and their discussions
are shown in that system. The metric units used and their English equiva-

lents are:

Quantity Metric Unit English Equivalent
Pressure, stress, modulus 1 bar* 14 .50 psi

Length 1 cm 0.3937 in.

Wave Velocity 1 m/sec 3.281 ft/sec
Particle Velocity 1 cm/sec 0.03281 ft/sec

* One tar equals one million dynes/cm2 and is approximately equal to
onc atmosphere.
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ABSTRACT

Soil behavior during stress wave propagation was studied on a sand
and two clays by making one-dimc¢nsional wave propagation tests on S-meter
long columns of the soils. Attempts were made to predict this behavior
by determining soil properties in dynamic compression tests on small
samples and by using these properties in a variety of mathematical models
for soil.

In all the wave propagation tests, stress and acceleration records
were very similar, showing that the three soils differ in degree, not in
kind. Peak stress and particle velocity attenuated to 20-40% of the peak
value in the length of -the S-meter column. The peak acceleration attenu-
ated with the second power of arrival time. The rise time of the stress
increased with depth. The wave velocity of the peak stress also increased
with depth: average wave velocities ranged from 100 to 500 m/sec.

Both time-dependent and time-independent dissipation was observed in
all soils, Time-dependent dissipation was dominant in soft clay; time-
independent dissipation was more important in sand and stiff clay.

Two theoretical soil models were analyzed: one to investigate the
cffect of combined time-dependent and time-independent dissipation, and
one to study the effects of nonlinear stress-strain relations and geo-
static stress. Comparison of the theoretical predictions from the first
of these and two previously studied models (using properties obtained from
compression tests on soil samples) with the wave propagation results showed

1. For clays the arrival time of the wave at the column base
was within 10% of that calculated from the tangent modulus,
and for sand it was within 25%,

2. Attenuation of peak stress and particle velocity was pre-
dicted within #50% at the base of the column (5-meter length).

One of the soils--a well-compacted kaolinite clay-exhibited an
approximately linear loading relation during compression tests. Because
of this linearity the model analyses were particularly applicable to the
prediction of the behavior of this soil (all models used for predictions
have linear loading relations). For this soil, attenuation was predicted
within 10% and wave velocity within 5%; thereby verifying the usecfulness
of the theoretical models used.

In general, the earlier, simpler models are as suitable for predic-

ting wave propagation behavior as the more complex models, but no single
model can predict all properties reliably.
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NOTATION FOR CHAPTERS 1 through 5

wave velocity (meters/sec)

wave velocity at the surface, or wave velocity associated
with do/dt > o

wave velocity associated with do/dt < o

spring constants for viscoelastic compacting model (bars)
spring constant of series spring of viscoelastic compac-
ting model, or modulus during loading for linear hyster-
etic model

unloading modulus for linear hysteretic model
acceleration of gravity, 981 cm/sec?

soil modulus

time required for stress to decay from its peak value to
0.368 times its peak value

value of T at the top of the soil column

time

time of peak stress

particle velocity (cm/sec)

peak particle velocity

peak particle velocity at the surface

(1 -v/Eo/Ey)/(1 +4/Eo/E;) = (1 - co/cy)/(1 + co/c,y),
the strain-rate-independent dissipation parameter
strain

viscosity of viscoelastic compacting model (bar-sec)
viscous dissipation parameter denoting lag between peak
strain and peak stress

density (gm/cm?)

stress

pecak stress

peak stress at the surface, applied peak stress

tp/To, nondimensional arrival time of the peak siress

ix
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CHAPTER 1
INTRODUCT ION

Knowledge of the response of soil to nuclear explosions is necessary
for the proper design of underground protective structures. This study
was concerned with the iransmission of forces from the explosion through
the soil to the vicinity of the structure., The dissipative properties of
the soil modify the forces during transmission: the relationship between
the dissipative properties and the modifications was studied on this

project.

The present study was restricted to near-surface pnenomena, to
moderately-compacted soils similar to those found near the surface, and
to overburden pressures produced by depths up to five meters. The applied
loading had a peak value of several atmospheres and a duration of a few
milliseconds. The loading history was similar to the pressure history of
an airblast so that the study is especially pertinent to situations in
which there is an air or surface burst. All the tests and analyses were

concerned with one-dimensional phenomena only.

This project is the fourth in a series initiated for the study of
wave propagation in soils. The particular feature of the present project
is the extension to clay soils (previous projects dealt with sand). The
results of the study can be used for design of underground structures and

for correlation of data from large-scale field tests.
1.1 Objectives

The purpose was to study wave propagation in soils and to develop

methods for predicting wave propagation phenomena.
1.2 Approach
Our approach consisted of three ma jor phases:

1) The experimental determination of wave propagation

phenomena in typical near-surface soils,

1



2) The dynamic testing of small samples of these soils in

a laboratory dynamic compression tester,

3) The development of theoretical models which use the
results from the laboratory compression tester to pre-

dict the wave propagation results,

For the wave propagation tests our approach was to apply a pulse
loading to a one-dimensional column of soil. The pulse loading was simi-
lar to the airblast pressure wave from au explosion. The approach includ-
ed measurements of stress and particle velocity in the soil to provide
information on the stress wave caused by the pulse loading. Soils with a
range of properties were studied to provide a broad base for a prediction
procedure: dry sand, wet kaolinite clay, dry kaolinite, and a sticky,

natural clay from Vicksburg, Mississippi.

Our approach in the conduct of compression tests was to attempt to
duplicate the loading and soil conditions of the wave propagation tests
on a small sample of the soil: same boundary conditions, stress levels,
loading rates, water contents, and densities. Stress on the sample and
strain of the soil sample were measured simultaneously during testing.
The stress-strain data were then used to determine the wave velocity and

dissipation parameters to be used for prediction of wave propagation

phenomena.

The theoretical models were developed to study certain aspects of
wave propagation and the relation between wave propagation phenomena and
compression phenomena. The aspects considered were: attenuation and
dissipation, nonlinearities of the stress-strain curve, and the geostatic
stress. Each theoretical model studied contained two or more of these
features. By comparing the theoretical prediction of these models with
the measured wave propagation phenomena, we attempted to determine which
features of soil behavior are significant, which features could be

predicted and the degree of accurecy of the prediction.



1.3 Background

Many investigators have studied one-dimensional wave propagation
phenomena to get some insight into three-dimensional phenomena. These one-
dimensional studies should lead naturally toward an eventual understanding
of three-dimensional phenomena. For experiments to approximate a one-
dimensional case, conditions must be controlled in the other two dimensions.
Strain and pressure are the conditions usually controlled, either by main-
taining zero strain or constant pressure in the second and third dimensions,.
The constant lateral pressure condition was employed by E. T. Selig® and
R. L. McNeill.® The zero lateral strain condition was used by W. Heierli,?
R. V. Whitman,® J. V. Zaccor and N. R. Wallace,® H. W. Kriebel? and the
present investigator. Each of these boundary conditions represents three-
dimensional wave propagation conditions in certain limited regions

surrounding an explosion.

The constant lateral pressure condition can be obtained by encasing
the soil in a rubber membrane or tube and applying external pressure or
internal vacuum. The zero lateral strain condition has been accomplished
using a stiff tube (Heierli,” Kriebel, ? present study) or a pressurized

fluid boundary (Zaccor and Wallace?).

Pressures have been applied with a shock tube, a drop-weight, or a
contained explosion. The soil response to the stress wave was measured
with various transducers: stress gages, force gages, accelerometers,

soil strain gages, and displacement gages.

Test results have been correlated in various ways by the different
investigators, but for their tests on sands, all have used a strain-rate-
independent model as the basis for analyses. Heierli had a good correla-
tion of force history between experiments and analysis. Zaccor and
Wallace were able to relate the wave velocity and particle velocity found
in wave propagation experiments to the modulus measured in compression
tests. Selig,3 McNeill,® and Seaman and Whitman* were able to predict

pcak stress attenuation.



Theoretical analyses that have been conducted can be separated into
two groups on the basis of the type of dissipative mechanism hypothesized
for the soil. All the experimentalists mentioned earlier used nonlinear
and strain-rate-independent models for soil. Other theoreticzl studies on

this type of model have been published by Weidlinger and associates, !0”11712

The other dissipative model is strain-rate-dependent and has been
studied recently for its applicability <o soils by Kondner,!¥®,!% Christen-
sen and Wu, !5 and Whitman.!® Their experiments were in the form of
dynamic compression tests on soil. These studies have shown that 1he
dissipative character of certain clay soils is similar to that of the
standard linear (3 element) viscoelastic model in the frequency ranges
considered. The wave propagation calculations of Lai and Sauer! show that
this model does not adequately represent the attenuation or wave front
changes seen in actual soils. Thus, tbhz model should be modified for
application to wave propagation predictions. A viscoelastic model that
exhibits the same dissipation at all frequencies (constant tar delta
model) was analyzed by Bycroft.? Although the wave propagation behavior
of this model is similar to that observed experimentally, its properties

are different from those seen in compression tests.,



CHAPTER 2

SUMMARY AND RECOMMENDATIONS

2.1 Summary

2.1.1 Wave propagation tests in sand and clay. One-dimensional wave

propagation tests were performed on Monterey beach sand, a kaolinite clay,
and a Vicksburg backswamp clay. These soils, which represent a wide range
of soil properties, had a stiffness and density comparable to that of
natural soils near the surface of the earth. One-dimensionality was
obtained by confining the soil in a 5-meter long tube which allowed the
soil to move along the axis of the tube but restrained the radial motion.
Loading was in the form of a stress pulse with amplitudes up to 11 bars

and durations from 2 to 6 msec.

These first complete one-dimensional tests on clays and the continu-
ing tests on sand indicated that the wave transmission properties of the
two materials were very similar, All soils exhibited both time-dependent
and time-independent energy dissipation. The differences in the soils
appeared in wave velocities and in the relative importance of the two
types of dissipation., 8Stress and acceleration records obtained from tests
on the sand and clays were qualitatively identical. The stress waves
spread out and the peaks attenuate as they travel through the soil. For
all tests the peak stress attenuated to between 1/5 and 2/5 of the applied
peak in the length of the S5-meter column. The peak particle velocity
attenuated the same amount. The peak acceleration attenuated with the
sccond power of arrival time. The rise time of the stress and the wave
velocity associated with the peak stress both increased with depth. The
duration of the stress wave increased 4 or 5 times in the first 2 meters
(and was not measurable beyond that depth because of the arrival of the

reflected wave from the base of the soil column).



The test apparatus included an articulated soil tube for holding the
soil, stress gages and acrelerometers for measuring characteristics of the
stress wave, and a drop-weight mechanism for applying the loading. The
soil tube and accelerometers appeared to be adequate for the study. The
stress gages exhibited certain calibration problems which affected all
aspects of the stress data: the peak stresses were given within 20%, wave
durations were lengthened as much as 60%, and rise times werec altered an
indeterminate amount. The drop-weight provided a stress pulse which
lacked the shock front and exponential decay characteristic of air blast
loadings. Because of this lack, the experimental conditions do not
correspond exactly with ei "er field conditions or condititions assumed

for theoretical analyses.

2.1.2 Soils Properties from Compression Tests., One-dimensional

dynamic compression tests were performed on samples of the soils under
confinement conditions which closely approximated those used in the wave
propagation tests. The compression tests were used to determine soil
properties, particularly the moduli during loading and unloading and the
dissipation characteristics. The moduli and dissipation characteristics,
which are related to the behavior of the soil during wave propagation are
determined from stress-strain data obtained during the compression tests,.
All of the soils showed a considerable difference between the loading and
the unloading stress-strain relation. In the driest kaolinite soil, the
loading relation was essentially linear, but the other soils exhibited a
relation that was concave to the stress axis, i.e, stiffening on loading.

In all cases, the unloading relation was concave to the stress axis.

The slopecs of the stress-strain curves were measured to determine
the soil modulus from which wave velocities for the soil were calculated.
The tangent moduli at the stress level of 6 bars varied from 750 to 4800
bars (11,000 to 70,000 psi). For the sand, there was a small initial
hump on the stress-strain curve; the size of the hump was proportional to
the preload level. For the clay, the slopes are functions only of total
stress level--preload plus dynamic stress increment. Time-dependent
dissipation, as measured by the viscoelastic parameter tan §, was prom-

inent in the clays (tan & = 0.3) but not so significant for the sand

6



(tan & = 0.12). Time-independent dissipation or compaction, measured by
o, was important for sand and stiff clay (¢ = 0.12 to 0.15) but could
hardly be detected in the wet clay (¢ = 0.02).

2.1.3 Theoretical Models. As a basis for correlating the wave propa-

gation and compression test data, and eventually as a basis for wave
propagation predictions, several theoretical models for soil have been
analyzed. Each of the models represents only two or three of thr dominant
features of soil. The simplest models are characterized by two consfants:
one for wave velocity and one for dissipation. These models are the
linear hysteretic model (dissipation independent of strain-rate) and the
constant tan delca model (strain-rate-dependent dissipation), both of

which were analyzed during a prior contract.?

A slightly more complex model with both strain-rate-independent and
strain-rate-dependent dissipation was analyzed under the present contract.
The analysis of this model, the viscoelastic compacting model, showed the
interaction of the two types of dissipation in affecting attenuation and
changes in wave shape. A fourth model with a nonlinear loading character-
istic and strain-rate-independent dissipation (S-hysteretic mod:1) was
analyzed to study the effect of overburden or geostatic stress on wave
propagation characteristics. For this model the attenuation rate is

markedly reduced by the presence of the geostatic stress,

The numerical constants for the theoretical soil models were found
from the dyanmic compression tests, Wave velocity was determined from
the slope (tangent modulus) of the stress-strain curves. The lag time
between the peak stress and the peak strain was used as a measure of the
viscous dissipation parameter, tan §. The ratio of the slopes of the
stress-strain curves during loading and unloading was used as a measure

of the compacting dissipation parameter, «.

2.1.4 Comparison of Theoretical and Experimental Results. A compari-

son of wave propagation results and of theoretical predictions based on

compression test properties shows that

1. Arrival time of the stress wave can be predicted from the

compression modulus of the soil, and



2. Stress attenuation can be predicted from the dissipative

soil parameters found in the compression tests.

The correlation between the predicted and measured values was rather
imprecise in most cases, but it showed that the approach is valid although
improvements are needed in the testing and in the prediction procedure.
Thus a rational basis for predicting wave propagation behavior from soil

properties has been established.

One of the soils--kaolinite clay compacted at a water content of
18.8%--exhibited an approximately linear loading relation during compres-
sion tests. Because of the linearity, tihe model analyses were particu-
larly applicable to the prediction of the behavior of this soil. (All
three models used for predictions have linear loading relations.) Predic-
tions were made for wave velocity, surface particle velocity, the variation
of particle velocity with depth, and the attenuation of peak stress with
depth. For this scil the experimental results agreed very well with these
predictions, not only in trend but in magnitude. The attenuation with
depth was predicted reasonably well by any of the three models used:

constant tan delta, linear hysteretic, and viscoelastic compacting.

The other soils exhibited stress-strain relations which were defin-
itely nonlinear. As might be expecled, the correlation between the model

predictions and the measured values from these soils was rather imprecise,

Attenuation of stress and particle velocity in the clays was best
predicted by the constant tan delta model (purely time-dependent dissipa-
tion), although the data ranged #50% of the prediction. For the sand, the
soil column experiments showed a faster attenuation rate than any of the
model predictions; however, the attenuation pattern was similar to that
given by the viscoelastic compacting model (combined time-dependent and
time-independent dissipation) and the values were within 50% of the pre-
dicted. It was found that the best abscissa for attenuation plots is a
nondimensional arrival time: the actual arrival time divided by the
loading duration. This same abscissa is indicated by all three models

used for predictions. Experimental scatter is considerably reduced by



the use of this abscissa. Also, tests with loading durations from 1 msec
to 10 msec have shown that the effect of load duration on attenuation is

properly accounted for by this abscissa.

For the clay tests, the peak particle velocity at the surface was
predicted from the simple equation npcv = 7, wnere o is density, c is wave
velocity, v is particle velocity and - is stress., In this case, the pre-
dicted volue of particle velocity, v, was within 10% of the experimental
values.  For the sand, the predicted particle velocity was 50% higher than

the experimental values,

Wave velocity was determined as the difference in arrival times of
pcak stress at two depths. The measured arrival times and wave veloci-
ties derived from them were correlated with the wave velocities and
arrival times comput~d from the tangent moduli obtained from dynamic
compression tests on the soil. For clay column tests the arrival times
at the column base were predicted within 10% from the data on soil moduli;
for sand the predictions were within 25%. The wave velocity data from
the tests on rather dry kaclinite showed that the velocity was escentially
the same at all depths and was predicted within a few percent from the
tangent modulus measured in a dynamic compression test on the soil. For
the other column tests, the experimental wave velocities tended to increase
with depth while the values predicted from the modulus decreased with
depth., This disparity indicates that the soil modulus does not provide a
sufficient basis for predicting the wave velocity in detail. Other factors--
geostatic stress, curvature of the stress-strain relation, time-dependence
of the soil, and the rise time and duration of the stress wave--must ail
be brought in to make a complete prediction for wave velocity of the peak
stress, The prediction of wave velocity from the tangent modulus obtained
in dynamic compression tersts should be compared with predictions from
static moduli and from seismic tests. Seismic velocities are generally
two or three times as large as velocities of large amplitude stress waves,
Static moduli are about one-half the dynamic moduli; hence, predictions

based on static moduli siould be 309 low,



Use of the experimental and theoretical results for prediction of
phenomena in full-scale field conditions should be made with caution. The
present results were obtained in a one-dimensional (controlled lateral
strain) condition and their applicability to more complex gecometries is
unknown. The wave durations involved in these tests are one-tenth to one-
thousandth those found in the field, and the preloads and dynamic pressures
were limited. Hence, the use of these results for prediction of full-scale

phenomena would require considerable extrapolation.

2.2 Recommendations for Further Research. For DASA's purposes, 1i.c.,

for the design and analysis of shallow-buried underground protective
structures, it is important to develop an understanding of wave propaga-
tion in soils under conditions which closely approximate those of the
full-scale problem. Therefore, the present investigation should be

extended in the following directions:
1. To depths of tens of meters below the surface of the ground.

2. To dynamic pressures of 70 bars (1000 psi) and positive

pressure durations up to 1 second.

3. To soils which are compacted to densities as high as those
obtained with modern highway compaction equipment (and thus
comparable to well-consolidated soils and soils likely to

be found in backfills over buried shelters).
4. To three dimensions.

Steps in each of these directions would provide significant improvements
in our understanding of actual structural response which would be caused

by a near-surface nuclear explosion.

From the researchers' point of view, the first three represent simply
extrapolations on presently held information on the wave propagation prob-
lem. Work in these three directions will serve to confirm or improve and
quantify the prediction procedure of Chapter 3. The step to three dimen-
sions will necessarily involve the investigation of phenomena which differ
considerably from the one-dimensional phenomena investigated herein. Some

progress is now possible in each of these four directions.
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To accomplish the extension in these directions we recommend:

1, One-Dimensional Wave Propagation Experiments. These tests
should be similar to those reported herein with the follow-
inz modifications. Loading with several decay rates should
be used; in particular, a loading with no decay should be
used to determine wave velocity through the soil, a rapid
decay should be used to obtain a high attenuation, and a
small decay should be used because that would be most like
field conditions. Tests should be made at several preload
levels, from zero to several bars, to simulate the over-
burden pressures felt by soils at various depths. The
dynamic pressures used should be extended up to 70 bars to
simulate likely structural design conditions. The soils
used should represent a wide range of compactions and
dissipative properties. The three soils treated in this
report represent an adequate range of dissipative proper-

ties, but were only moderately compacted for the tests.

2. Improvement of Wave Propagation Test Equipment. The gages
for measuring stress and the system for applying the load-
ing should be improved for future tests. The gage design
should be based on a force gage concept so that the total
force travelling through the soil is measured. (Stress
equals the force divided by the cross-sectional area of
the column.) By using a force gage, one eliminates the
problem of over or under-registration which is common
with stress gages The gage calibration should be the
same during loading and unloading so that the entire stress
wave can be correctly recorded. 7The density and stiffness
of the gage should be similar to those of the soil to mini-
mize the disturbance caused by the presence of the gage.
One gage design which appears to meet those requirements

has been described in a proposal to DASA.*

* SRI Proposal PHU 65-192 submitted to DASA on October 11, 1965.
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To best simulate blast pressures from nuclear weapons, the
applied pressure history should have a shock front and a
pressure decay thereafter. These conditions can be obtain-
ed in several types of shock tubes. With a shock tube,
pressures up to 70 bars can be obtained and the pressure

histories can be readily controlled and repeated.

Dynamic Compression Tests on Soil Samples. Laboratory com-
pression tests should be performed to determine soil proper-
ties, and the effects of strain rate, stress level, and
preload on those properties. To do this, the compression
test program described in this report should be expanded

to include pressure pulse risc times from 2 msec to 2
minutes. With such a program, a fairly complete picture

of the effects of strain rate can be mapped out. Such

tests shculd be conducted at several dynamic stress levels

and several preloads.

Three-Dimensioral Wave Propagation Study. Considerable
progress can now be made toward solving the three-
dimensional problem of blast loading on soil in which there
are buried structures. The following steps should be taken:
a. Analysis of the response of an elastic half-space
to a blast loading on its surface.
b. Development of experimental techniques to measure
the response of an elastic model of a half-space
to a simulated blast loading. The model response
should be compared with the analytical results to
evaluate the validity of the experiments.
c. Conduct of experiments in an elastic half-space
model in which small structures have been embedded.
The testing techniques of step b should be used.
d. Conduct of experiments in a half-space of dissipa-
tive material (with dissipation properties 1like
those of soils) in which structures have been

embedded .

12



CHAPTER 3

PREDICTION PROCEDURE

The procedure for prediction of stress wave propagation phenomena
in soils is neithcr complete nor verified. Some of the detuils of the
procedure seem quite clear now, others are almost pure speculation. By
outlining it here, we simply indicate the direction which has been taken
toward understanding the phenomena. The experimental findings of
Chuapter 4 are used to indicate the level of accuracy expected in the
parts of the prediction. The prediction procedure is strictly applicable
to one-dimensional phenomena only, although some of the concepts may be
usceful in studying more complex geometries. The test results, on whach
the procedure is based, were limited to wave durations of several
milliseconds, dynamic stress levels of 11 bars or less and preload
levels up to 0.7 bars. Extrapolations of these results to much longer

durations or higher stresses should be made with caution

A prediction procedure requires knowledge of the soil for which
the prediction is to be made With qualitative knowledge we decide
which soil model parameters are paramount. Quantitative knowledge of
the pertinent values of these parameters must then be found from

laboratory tests.

The prediction should be made on the basis of average soil properties
tor the depths and stress levels that pertain to a particular problenm.
The theoretical models used for the prediction are characterized by a
wave velocity and one or two dissipation parameters. The models
describe the soil as compacting (showing a res‘éual strain after a
loading cycle ), strain-rate-dependent (viscoelastic), or both visco-
elastic and compacting. When we have chosen one of these models the
qualitative nature of the soil has been decided. The experiments des-

cribed in Chapter 4 show that the constant tan delta model (purely

13



viscoelastic dissipation) is the best choice for the clay soils but
that the viscoelastic compacting model (both types of dissipation) is

best for s=and.

Next, tests are performed to find the magnitude of the parameters
in the theoretical models. These parameters can be found from dynamic
compression tests on thin samples of the soil. The stress on the soil
and the strain of the sample must be recorded during the test. The
equipment and procedure for performing the test are given in Appendix B.
A modulus for the soil can be found from the slope of the stress-strain
relation at the stress level of interest. The amount of time the peak
strain lags behind the peak stress is used to determine the viscoelastic
properties., The slope of the unloading stress-strain curve is compared
to the loading slope to determine the compacting parameter. These data

reduction procedures are given in Appendix B.

After the theoretical model has been specified quantitatively,
the model can be analyzed for its behavior during wave propagation.
Then the analytical behavior can be used to predict the corresponding
response of the soil. For simple models, the analysis can b2 done once
and graphed. This is the case for the constant tan delta and linear
hysteretic models for which attenuation curves are given in Figs. 3.1
and 3.2. The prediction of the linear hysteretic model gives the same
attenuation for stress and particle velocity. For the constant tan
delta model, the stress and particle velocity attenuations are nearly
the same (as noted in Ref. 3). In a given situation, it is expected
that the applied stress wave form would be known so that a knowledge of
the amount by which stress attenuates with depth (such as in Figs. 3.1
and 3.2) is all that is required for the prediction of stress attenuation.
For the prediction of particle velocity attenuation, the particle vel-
ocity at the surface must be determined first. This peak value is

calculated from

(¥

mo
va - pCo (3-1)
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where

is the peak applied stress,

is the material density, and

is the

{ found
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The experimental stress attenuation and particle velocity attenuation
are not well represented by the theoretical predictions of any of the
models. The constant tan delta model appears to represent the results
for clay best; however, the experimental points are as much as 50% above
or below the prediction. The peak particle velocity was obtained within
5 or 10% from Eq. 3.1 for the clay and with less accuracy for the sand.
The attenuation predictions for particle velocity were no more accurate

than those for stress.

The duration and rise time of the stress wave may also be predicted
from the theoretical models., However, neither the duration nor rise
time have been adequately predicted by the linear hysteretic model.

The complete wave form from the other models has not been studied so

no prediction 1s avallable from them.

The wave velocity is taken directly from the tangent modulus from
the compression test data and is not modified by the models. Based on
this wave velocity, dan arrival time at the base was predicted. The
predicted times for the clay columns were within 10% of the experimental

values; the predicted time was 25% short for the sand.
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CHAPTER 4

WAVE PROPAGATION EXPERIMENTAL RESULTS AND DISCUSSION

4.1 Introduction

Wave propagation experiments were conducted in three soils to
determine the general nature of the phenomena involved and also to
accumulate data with which to evaluate the predictions obtained from
theoretical soil models. In this chapter, we show

1. the principal features of wave propagation in the soils,

2. the degree to which these features can be predicted theoretically,

and

3. the features that do not correspond to the theoretical predictions.

As a preparation for the wave propagation results, the test condi-
tions are first outlined, and then the main test results are given.

Further information on test apparatus, gages, and calibration procedures

are given in Appendix A.

4.2 Test Condit.cns

The test facility consisted of a soil tube and its support structure.
The soil tube, shown in Fig. 4.1, was constructed of alternate rings of
aluminum and neoprene rubber. The aluminum rings provided a high radial
stiffness to prevent radial motion of the soil, and the rubber spacers
reduced the axial stiffness of the tube. Thus, the tube was intended to
allow only one-dimensional (axial) motion in the soil. Further infor-
mation on the stiffness of the tube and on the degree to which it required

one-dimensional motion in the soil is given in Ref. 3 and 4.

The tube was made up in segments, each about 0.7 meters long (see
Fig. 4.1). 1In Fig. 4.2, the column is shown at full height of 4.5 meters

(seven segments), with its associated support structure.
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The drop weight mechanism (Fig. 4.2) was used to apply a large
stress for a short duration on the top of the column. The stress waves
closely resemble those from blasts: rise time of 0.2 to 1.0 msec to a
peak and then an approximately exponential decay with an exponential time
constant ot 2 to 6 msec. In most of the tests, the weight, a steel
cylinder with a steel ball at the base for a striker, was dropped onto
a 5-cm-thick steel plate resting on the soil column. Immediately below
the plate was a 10-cm-thick layer of dry sand to damp out ringing jpro-
duced by the impact. Below the sand was the top force gage and then
below that the soil being tested. For some of the tests on wet kaolinite,
the weight was equipped with a large striking plate (see Fig. A.7) and

was dropped directly onto the damping sand.

Measurements of the soil stress and motion during wave propagation
was obtained from stress gages and accelerometers embedded in the soil
and from force gages at both ends of the column. The sensing element
was elther a piezoelectric crystal or a strain gage bridge. In either
case, the response of the gage was fed to oscilloscopes and recorded
with oscilloscope cameras. Characteristics of the gages and the
calibration procedures for the stress and force gages are detailed in
Appendix A. A typical layout of the column and gage is shown in

Fig 4.3.

Three soils, eXemplifying a wide range of properties, were used
in the tests: a Monterey beach sand, a kaolinite, and Vicksburg back-
swamp clay. The sand was composed of clear, dry, subangular particles
of nearly uniform size. The kaolinite was purchased as a white powder
and was reconstituted with water to form a soil. The Vicksburg back-
swamp clay is a natural soil that was mixed with water to obtain a
desired consistency. These three soils ranged from dry to very wet,
hence bracketing the variation of water contents of soils used for
construction. The tangent modulus of the soils at a stress level of
6 bars varied from 750 bars to 4800 bars. This range is common to
soils found near the surface of the earth but not to soils which have
been highly-compacted, hardened by drying, or consolidated under a

high overburden pressure.
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The soil tube was f. ‘ed six times for the wave propagation tests.
The soils usf.'d for each column .ad information about the placement of
the so0il are given in Table 4.1. Further data on the soils placed in

each column are given in Appendices A and B.

TABLE 4.1
SOILS TESTED

Column Des- Soil Compaction Water Drya

ignation Name Method Centent Density Comments

(%) (em/cm?)

A Kaolinite Hand 34.7 1.29 Wet, very
Tamping compressible
B Kaolinite Hand 31.7 1.34 Wet, compressible
Tamping
C Kaolinite Static 18.8 1.42 Dry, granular
Pressure appearance
D Vicksburg Pneumatic 26.8 1.34 Sticky; nonuniform
Clay Tamper moisture content
E Monterey Sprinkling = 1.63 Dense
Sand
F Vicksburg Static 24.4 1.52 Near optimumb
Clay Pressure moisture content

2 Dry density is the weight of solids divided by the volume.

Optimum moisture content is content at which maximum dry density

(maximum compaction) can be obtained with a given compaction technique.
The ccmpaction method used as a reference here is the Standard Proctor.

4.3 Results

When an impulse is applied to the top of a column of soil, a stress

wave propagates down the column. Typical stress records obtained at

various points along the column are shown in Fig. 4.4. At the top, the

stress wave shape shows the manner in which it was formed--by impact of
a dropped weight on a steel plate. Hence, the wave has a rise time of
a few tenths millisecond and may indicate some oscillations caused by
ringing in the steel plate. As the wave progresses down the column,

the oscillations damp out, and the rise time and duration of the wave

increase.
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The records indicate that the wave changes shape as it progresses
down the column. At the base there is a reflection that doubles or
triples the magnitude of the wave: therefore, some care must be taken to
distinguish the features belonging to the initial wave from those that
accompany the reflected wave. As the initial wave travels down the col-
umn, its peak is reduced and its duration increased. An idealized form
of the stress wave is shown in Fig. 4.5. It has a rapid rise to a sharply
defined peak stress'and then an exponential decay. The time, T, required
for the stress to reduce to .368 times its peak value is the exponential
decay constant for the idealized stress wave. This idealized stress wave
is the general form assumed in both the data reduction and the computation

with the theoretical soil models.

STRESS

TIME

RA-2917-232 R

FIG. 4.5 IDEALIZED STRESS WAVE

Associated with the stress wave are the particle accelerations and
velocities--the motions of the soil caused by the stress. Examples of
acceleration records are shown in Fig. 4.6. The general shape of the
acceleration wave does not change much, but the peak is drastically

reduced and the duracion is greatly increased. Accelerations were¢e not
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considered in the theoretical predictions and no standard form for the
acceleration wave was adopted. Particle velocity records were obtained
from the acceleration by graphical or electronic integration with
respect to time. The particle velocity wave form is almost identical

to that of the initial stress wave.

The features of the stress and acceleration waves that were con-
sidered are:

1. attenuation of the peak stress with depth,

2. change in the duration of the stress wave with depth,

3. variation of the wave velocity with depth,

4, attenuation of peak acceleration with depth, and

5. attenuationn of peak particle velocity with depth.
For attenuation of peak stress and particle velocity, variation cf wave
velocity, and the change in duration we have made thecretic predictions.
The predictions are from the linear hysteretic model, visc« compacting
model, and the constant tan delta model. These three repre nt different
types of energy dissipating mechanisms. The linear hyvsteretic model
shows dissipation by a frictional mechanism. The dissipation parameter
is o, which ranges from O for no dissipation to 1.0 at maximum disslpation.
For the tested soils, the maximum o is 0.15 Appendix B . In the
constant tun delta model, the dissipation is viscous, and the phase lag
between stress and strain is the same at al' frequencies. Tan £, the
dissipation parameter, ranges from 0.1 to 0.3 for the tested soils; it
is a measure of the phase lug between stress and strain that occurs
under cyclic loading. The viscoelastic compacting model combines
viscous and frictional types of dissipation. The dissipative parameters
are o, as with the linear hysteretic model, and T/E,, a measure of the
lag time between stress and strain. For our soils, T/Eg varics between
20 and 30 msec. The first two of these models were analyzed in Ref. 3
and the third is treated in Appendix C of the report. The methods for
obtaining the soil properties used with these models are described in

Appendix B.

Six c¢emplete columns were constructed using the three soils sec

Table 4.1). For convenience in comparing the results from the tests,
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the results for each wave propagation feature are grouped together.
That is, first the stress attenuation curves {rom all the tests are
given, then the wave durations, etc. The sequence is A, B, C, D, F,
and E so that the three tests of kaolinite (A, B, and C) and the two

of Vicksburg backswamp clay (D and F) are together.

Stress attenuation data from the tests are summarized in Figs. 4.7
to 4.13. In most cases, there is considerable scatter in the data. To
some extent this is caused by unreliability of the stress gage calibra-
tions. However, much of the apparent variability in the data is caused
by changes in the conditions from test to test. Each graph shows points
from tests in which there were several stress levels, durations, and even
different wave velocities. The prediction curves on each figure are
based on average values of the stress and duration and cn predicted wave

velocities obtained from the modulus of the soil (Appendix B).

The limited number of points from Column A appear to follow the pre-
diction of the constaat tan delta model reasonably well (Fig. 4.7). For
Column B there are two figures, one for the tests in which the drop-weight
impacted the sand above the force gage directly (Fig. 4.8) and one for
the usual configuration with a steel plate atop the column (Fig. 4.9).

The importance of drop height (and, therefore, of stress level) on atten-
uation is particularly noticeable in Fig. 4.9. For both groups of tests

on Column B, the best prediction is from the constant tan delta model.

The first reasonably consistent data appear in Fig. 4.10 and was
obtained from the well-compacted clay of Column C. All the theoretical
predictions are in the vicinity of the data, but the constant tan delta
model appears to represent the trend of the data best. The stress values
at the depth of 4.35 meters are from the base force gage. This gage reg-
istered the sum of the initial stress wave and the wave reflected from
the base. To obtain a value for the stress in the initial wave, the
peak value was divided by the ratio of the impulse at the base to the
impulse at the top. This value of the stress in the initial wave is
represented by the points at 4.35 meters. This procedure for getting a
peak stress at the base for the initial stress wave was used for Columns

C through F, and it is further explained in Appendix A,
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FIG. 4.9 STRESS ATTENUATION: COLUMN B, KAOLINITE
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Curve Parameters

Linear Hysteretic: a« - 0.02

Viscoelastic Compacting: a - 0.02, E, /E, 2.0, n/E; - 30 msec
Constant Tan Delta: tand = 0.30

¢ - 100 m/sec, To -~ 2.5 msec for all models.
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FIG. 4.10 STRESS ATTENUATION: COLUMN C, KAOLINITE

Curve Parameters
Linear Hysteretic: o = 0.15

Viscoelastic Compacting: a = 0.15, E,/E; = 2.0, n/E; = 15 msec

Constant Tan Delta: tan 6 = 0.30
¢ = 240 m/sec for all models.
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Curve Parameters
Linear Hysteretic: a - 0.09
Viscoelastic Compacting: « = 0.09, E,/E, = 1.7, n/E; = 20 msec

Constant Tan Delta: tan & - 0.30
¢ - 340 m/sec for ali models.
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FIG. 4.12 STRESS ATTENUATION: COLUMN F, VICKSBURG CLAY

Curve Parameters

Linear Hysteretic: a = 0.09

Viscoelastic Compacting: o = 0.09, E,/E;, = 1.7, n/E; = 20 msec
Constant Tan Delto: tan 5 = 0.30

¢ = 340 m/sec for all models.
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Curve Parameters

Linear Hysteretic: a  0.12

Viscoelastic Compacting: « - 0.12, E,/E;, - 5.0, n/E; - 22 msec
Constant Tan Delta: tan & - 0.12

c 500 m/sec for all models.
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The somewhat loose so0il of Column D showed a faster attenuation of

stress than predicted (Fig. 4.11). The form of the attenuation is similar
to the curve from the viscoelastic compacting model but not unlike that
from the constant tan delta model. For Column F (Fig. 4.12), the stress
attenuation was also faster than predicted. Here, the form of the experi-
mental attenuation curve is similar to that from the constant tan delta
model. For Column F the data at 4.25 meters are definitely out of 1line
with the other data. This same discontinuity occurs in the other figures
but is less noticeable. This discontinuity is probably caused by differ-
ence in the reduction system used for the base force gage and the other
gages (stress gages). The data points at the column base as well as those
at the top were obtained from force gages, the intermediate points from
stress gages, The stress gage data were based strictly on static cali-
brations. The force gage data were based on both static calibrations

and the impulse ratio mentioned above. No conclusions have been reached

as to which groups of data may be more reliable,

The large scatter of data in Fig. 4.13 is at least partially due to
the range in stres. i<vels and durations. Both of these factors vary with
drop height. Prediction curves based on the average values of the param-
eters indicate that the viscoelastic compacting model is the best approxi-
mation for the sand. This result contrasts with the conclusion in
Reference 4 that the attenuation in sand was well represented by the
linear hysteretic model. The present experimental results were similar to
those from Reference 4 but the procedure for evaluating the dissipation
parameter o had changed. The parameter o is a function of the slopes of
the loading and unloading stress-strain curves obtained in a compression
test on the soil. In Reference 4 these slopes were measured on static
stress-strain curves at a point "near' the peak stress of the compression
test. This evaluation has the disadvantage of being based on static tests
and of depending on the choice of a point for making the evaluation. The
present values of o were derived from an analysis in which the slopes at
midheight of the stress-strain curves were used. This analysis (see

Appendix C) also takes into account the time-dependent flature of the

soil,
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The next feature to be considered is the duration of the stress
wave. As the peak attenuates, the duration increases. The time between
the arrival of the peak and the time at which the stress has decayed to
0.368 of the peak has been taken as the duration of the wave. The non-
dimensional duration (duration divided by the duration of the applied
stress ) is shown in Figs. 4.14 to 4.18 for Columns B through F. The
arrival of the wave reflected from the base made it impossible to deter-

mine a duration for the stresses in Column A.
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FIG.4.14 STRESS WAVE DURATION: COLUMN B, KAOLINITE
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No theoretical prediction is given for comparison with the data on
duration. The duration predi:tion has not been worked out for the
constant tan delta model or for the viscoelastic compacting model, and

the prediction from the linear hysteretic model is inadequate in all
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cases. Instead, a curve for o = 1.0 from the linear hysteretic model 1is
given to provide a basis for comparing the data from one test with that
from another. This curve shows a much faster change in duration than

that for the value of o, which is appropriate for each soil.

For Column B, there are two theoretical curves corresponding to the
two ranges of duration observed. It may be noted from the disparity
between these curves that the rate of change of duration with depth is
strongly dependent on the magnitude of the duration at the surface.

The data tend to lie considerably above the relevant curves in both
cases. The durations for Column C are also above the theoretical curve,
although not markedly so. For Columns D, F, and E, the points are all
well above the theoretical curve. This rapid change in duration of the
stress wave is associated with the rapid attenuation of the peak. The
observed durations are probably larger than the actual duration because
of the nonlinear unloading response of the embedded stress gages. In
Ref. 4, it was observed that the nonlinearity could cause an apparent
increase of up to 60% in wave duration. This point is discussed further

in Section 4. 4.

Wave velocities were obtained from the slopes between points on
plots of arrival time versus depth. A typical time-depth plot from
Column C is shown in Fig. 4.19. The wave velocities associated with the
arrival of the initial stress, of the peak stress, one-half peak stress,
and one-tenth the peak stress are shown. This plot indicates that the
time between the first arrival of stress and the arrival of the peak
increased gradually with depth. For these tests, the wave velccity
associated with the peak stress was essentially a constant; for the

other columns it increased somewhat with depth.

Plots of the wave velocity (of the peak stress) as a function of
depth are shown in Fig. 4.20. The velocities were determined from the
difference in arrival times at gages at two depths, and the velocities
are, therefore, plotted as a line between those two depths. The pre-
diction lines were derived from an evaluation of the tangent modulus

from compression tests described in Appendix B. Both the overburden
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stresses and the peak dynamic stress levels were considered in develop-
ing the prediction. In each case, the predicted wave velocity decreased
with depth, whereas the measured velocity increased with depth. However,
the magnitudes of the predicted and measured velocities were similar.

For all the clay columns, the predicted arrival time at the base (using
the predictions of wave velocity as shown) were within 10% of the actual
arrival times. The best correlation between experiment and prediction

is clearly with Column C. This rather dry clay material had a nearly
linear stress-strain relation, which was unaffected by preload or peak

stress, and, therefore, it behaved much like a linearly elastic material

during loading.

The predicted wave velocity for the sand was somewhat higher than
the measured velocities. The predicted arrival time at the base was
only 75% of the measured arrival time. If the secant modulus from the
compression tests were used to obtain the wave velocity, then the arrival
times would agree within 10% for the sand It may be noted here that a
disagreement between the actual and predicted wave velocities leads to
disagreement in other predictions, such as that for stress attenuation.
The predicted attenuation rate is directly dependent on the wave
velocity. Since the wave velocity varies with depth in most cases, it
should not be expected that a prediction based on a constant velocity

would coincide with the experimental data

Acceleration records were obtained from tests on Columns C through
F. The peak accelerations are shown as a function or arrival time of
the peak in Fig. 4.21. No prediction was made for acceleration. The
lines on these plots indicate merely the trend of the data. In general,
the acceleration attenuates w.th the square of the arrival time, and
the magnitude of the peak is proportional to the magnitude of the
applied stress. The softest soil of this group (Column D) gave the
most rapid attenuation (proportional to time to the 2.7 power) as
would be expected. However, the peak accelerations at the surface wer-
highest for this column in contrast to what would have been expected.

This latter diécrepancy may be attributed to the fact that for different
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series of tests there were different amounts and types of damping material

placed on top of the column to reduce oscillations in the stress wave.

Particle velncity was determined by integration of the accelerometer
response. For Col.umn B, the acceleration signal was integrated
electronically, and a velocity-time trace was displayed on the oscillo-
scopes. This particle velocity trace has a shape similar to that of
the critical stress wave. For Columns C through F, the acceleration
signal was recorded, and the area under the acceleration *:ace was
integrated manually to obtain peak particle velocity. The experimental
values of peak particle velocity are shown in Figs. 4.22 to 4.26. Along
with the points are curves from the three theoretical models used to
predict stress attenuation. The particle velocity at the surfacc¢ was
determined from the equation

v o= (4.1)
mo pCo

where vmo is the peak particle velocity at the surface,

%no is the peak stress at the surface,

0 1s the gross density of the soil, and

Co 1s the wave velocity at the surface, as predicted from

compression test data.

The peak particle velocity was calculated only for the stress level
obtained from the drop height of about 100 cm. Therefore, the theoretical
predictions are directly applicable only to points obtained using that

a.op height.

The few points available from the Column B tests indicate that the
constant tan delta model represents the attenuation reasonably well.
The particle velocity at the surface appears to agree quite well with
the prediction. The accelerometer at the next depth beyond those
plotted 1.65 m, recorded a much lower particle velocity, below 10 cm/sec.
This very sharp decrease in particle velocity coincides with the sudden
increase in wave velocity that occurred at about 1.5 m (see Fig. 4.20).
The particle velocity at the surface of Column C was also well predicted

by Eq. (4.1). Down to three meters, the points lie near the theoretical
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curve for the constant tan delta model. There is a sudden decrease 1n
particle velocity beyond that depth, caused by the coincidence of the
reflected wave from the base with the initial wave. The particle

velocity in the initial wave is downward whiic the reflected wave has
an upward velocity; hence, the partial coincidence ¢f the waves tends

to reduce the peak value,

In both Columns D and F, the particle velocity appears to have
attenuated much faster than predicted. Actually, the attenuation is
initially high, down to 1 m2ter, and from there on it is quite gradual.
This trend is similar to that indicated by the constant tan delta model.
Again, the predicted velocity at the surface is quite close to the

measured values.
4.4 Discussion

These one-dimensional wave propagation tests on clays and sands
indicated that the wave transmission properties of the two types of
soil were very similar. In fact, stress and acceleration records
obtained from tests on the two materials were identical qualitatively

and only slightly different quantitatively.

Stress attenuation is of most interest and so it will be discussed
in detail first. The discussion will then turn to the stress wave '
duration, the stress measurement methods, and the wave front and wave

velocity.

4.,4.1 Stress Attenuation. Stress attenuation 1s used here to

mean the decrease of the peak stress as a function of distance from the
point where the load is applied. For all the tests made the stress
attenuated 60 to 80% through the length of the S-meter column. The
curve of stress attenuation versus depth were all quite similar:

nothing distinguished those for sand from those for the clays.

These data in combination with the theoretical models provide an
initial basis for predicting attenuation caused by material dissipation.
In each of the three models used in Sectior 4.3, attenuation in a given

soil is a function only of z/(cTqy). Thus, if the attenuation is known
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for z = 2 meters, Ty = 2 msec, it can be assumed to be the same for

z = 200 meters and Ty, = 0.2 sec.

There 1s considerable scatter in the experimental results for
stress attenuation. This dispersion of the data can be attributed to
several causes, which should be considered in any future test program:

1. Plotting procedure. The peak stress data were plotted versus
depth for the convenience of other investigators who might
desire to evaluate the data. With this method there is no way
to account for differences in wave duration or wave velocity.
An alternate abscissa, which partially accounts for these
factors, is discussed later.

2. Irregularity of the wave shape. The theory for all three of
the models considered indicates that attenuation is directly
dependent on the rate of decay of the applied stress. The
applied stress wave form varied from test to test so that it
is not surprising that the attenuation rate also varied.

3. Variation in stress gage calibration. The stress gage
calibration changes slightly from test to test. Hence, the
value of peak stress is only known within about 20%. This

will be discussed later.

The correlation between theory and experiment is rather poor. The
theoretical prediction requires a knowledge of the wave velocity, one
or two attenuation parameters, and the duration of the applied stress.
If any of these is off, the prediction will be inaccurate. Thus, the
correspondence between experimental and theoretical attenuation is not
a very sensitive measure of the applicability of any model. Particular
problems that lcad to differences between theory and experiment are

1. Varying wave velocity. In the experiments, the velocity often

varied considerably with depth; however, all the models
(including the nonlinear model of Appendix D) showed a constant
or nearly constant wave velocity. The varying velocity tends
to distort the attenuation pattern so that the theoretical and

experimental curves cannot be expected to coincide.
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Incompleteness of the models. None of the models fully repre-
sents 30il that shows a nonlinear stiess-strain relation,
rate-dependence, and a compacting character. Each model
studied represents only one or two of these factors.

Improper evaluation of parameters. Because none of the models
actually represents in detail the behavior of soil, the model
parameters must be evaluated on some fairly arbitrary basis.
For instance, tan § of the constant tan delta model could be
evaluated by the experimental lag time, width of the hysteresis
loop, area of the hysteresis loop, from a creep curve, from
the damping observed during oscillatory loading, from the
variation of modulus with frequency, etc. Because the soil is
not precisely represented by the constant tan delta model, all
of these bases for evaluation will give different values for
tan §. Hence, a model may give a poor prediction because its
parameters were improperly evaluated, not because the model

is inappropriate. Thus, it is very important to choosec the
most suitable basis for evaluation,

Dependence of parameters >n stress level. Each of the
dissipation parameters and wave velocity depend on the stress
level. Hence, in a column in which stress varies with depth,
the dissipative parameters will also vary with depth. Of
course, these variations were not considered in the theoretical
predictions. Rather, parame ers were chosen appropriate to
the maximum applied =tress (the stress obtained with the drop
height of about 100 cm).

Form of the applied stress. The applied stress assumed for all
the theoretical work had a shock front and an exponential
decay after the front. The stress pulse applied by the drop
weight had a finite rise time of 0.3 to 1.0 msec, a rounded
peak and a decay thereafter. This difference between theoretical
and experimental applied stress should affect attenuation

significantly near the top of the column.

54



The main value of these tests and related theory may be to point
out the variables involved. Unfortunately, the quantitative significance

of each variable cannot be assessed from our test results.

Stress attenuation graphs are the easiest to use for predictions
for a particular soil and applied stress if they are plotted as peak
stress versus depth. However, the natural coordinates from the
theoretical standpoint appear to be nondimensional peak stress versus a

nondimensionalized arrival time or depth This depth abscissa is

A
1 [ az
To . d

n p

(s

Y
©

I
o

where Tp is the nondimensional arrival time of the peak, or the non-
dimensional depth of the measurement point,
t 1is the time difference between the arrival of the peak at
the surface and the arrival at the depth of interest,
To is the duration of the wave at the surface,
z is the depth, and

Cp is the wave velocity associated with the peak stress.

This definition of nondimensional depth as the logical abscissa agrees
with the analyses of the constant tan delta, linear hysteretic, nonlinear
hysteretic, and viscoelastic compacting models. An example of the use
of this abscissa with the soils data is shown in Fig. 4.27. This

figucre contains all the stress attenuation data points from Column B
(wet kaolinite, The applied stress in these tests varied from 0.58 to
2.5 bars and the duration of the wave was 2.5 cr 6 msec These data

are also shown in Figs. 4.8 and 4.9 with depth as the abscissa. The

two figurcs were required because of the variatior in time constants
from 2.5 to 6.0 msec. The data can be combined in Fig. 4.27 because the
nondimensional abscissa accounts for the variation in time constant,

The scatter of data in Figs. 4.8, 4.9 and 4.27 should be compared to

get an idea of the value of nondimensional depth as the abscissa.

The use of this nondimensional abscissa minimizes the importance

of variations in the wave velocity. The stress attenuation data
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presented earlier (Fig., 4.7-4.12, show, 1n most cases, an extremely

rapid attenuation initially and then a inore gradual decay thereaftcr,
This pattern is directly related to the fact that the abscissa is depth
and that the wave velocity is low at the surface and increases with
depth. If the arrival time were used as the ahscissa, the attenuation
rate would be considerably more uniform and would correspond more closely
to theoretical predictions All models used in the predictions exhibit

a constant wave velocity; hence, they cannot be expected to predict

accurately phenomena that depend on wide variations in wave velocity.

Even if the nondimensional depth were used as the abscissa, the
attenuation curves would not be linear on the semilog plots. There
woulld still be a rapid attenuation at high stress levels and a more
gradual attenuuation later. This pattern contrasts with the curves of
the linear hysteretic and viscoelastic compacting models, which are
neariy linear in the range of present interest. The constant tan delta
model gives the desired pattern, but it is not unique in this respect,.
The nonlinear hysteretic model, which is analyzed in Appendix D,
also gives the desired attenuation pattern. The latter model has a
rate-i1ndependent stress-strain relaticn, which is concave to the
stress axis. The particular attenuation pattern obtained is caused by
the introduction of geostatic stress, a factor that does not enter the
analyses of the other models. Hence, no firm conclusion can be reached
concerning the suitability of any one of the models for attenuation

predictions,

4.4.2 Stress Wave Duration. The stress wave duration is not a

quantity that neceds to be known precisely to predict the behavior of a
structure buried in the soil. However, the concern here is to know why
the theoretical predictions are so different from the measured values.
At all depths, the durations are much longer than predicted. There are
several possible explanations for this difference and probably all of
thom pave some validity., One explanation is that the models are based
on too small a dissipation parameter. A larger amount of dissipation

would increase the predicted rate of increase of duration and it would
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also increase the predicted rate of stress attenuation. Both effects
would put the predicted values closer to the experimental ones but
would still not account for the large change in duration. A second
possibility is that the models are not adequately representing some
important feature of the soil. This is a possibility, although 1t 1s
doubtful that a model could predict stress attenuation Lut not the
lengthening of the stress wave A third explanation 1is that the stress
records are consistently in error. Such an error in the record has becn
alluded to :i1 Ref. 4, where it was noted that the unloading calibration
of the stress gages could be markedly different from the loading
calibration. An example is given in Fig. 4.28 for three gages bhuried

a lew centimeters below the surface in a container of sand. It should
be noted that the gage always reads the same under a given stress on
its sensitive surface. Hence, the disagreement between loading and
unloading calibration means that the average stress applied by the soil
to the gage is not equal to the average stress in the soil sample.

The calibration information of Fig. 4.28 was replotted in Fig. 4.29 to
show the nature of the unloading nonlinearity. Surprisingly, the ratio
of unloading to Joading response is a simple linear function of the aver-
age applied stress. What effect does this calibration anomaly have on
the stress records? Suppose that this static calibration is applicable
during a wave propagation test. Then, an exponential stress wave will
be distorted as shown in Fig. 4.30. In this example, the duration of
the recorded stress is 47% longer than that of the average stress on

the soil.

The difference between loading and unloading calibration is caused
by stress redistributions about the gage. Such redistributions require
some time to occur as shown by Mason, et all'? so that the unloading
calibrations will depend on the rate at which unloading occurs as well
as on how soon it begins after the peak load is reached. For a quasi-
static loading, the redistribution will be complete so that the difference
between loading and unloading curves will be maximum. Therefore, the
stress waves measured during wave propagation tests are distorted less

than shown in Fig. 4.29, but the amount of distortion will vary with
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stress decay rate and from soil to soil Because the stress decay rate

decreases with depth, the distortion probably increases with depth.

Variables, such as soil type, density, and woisture, which affect
the relaxation time of a soil, will also influence the amount by which
recorded stress waves will be distorted (because the stress redistribu-

tions that cause the distortion are time-dependent .

4.4.3 Stress Gage Calibration. The stress gage calibration was a

static procedure. It was based on the assumption that the stress wil
be distributed on the guge in the same way under static and dynamic

conditions, This method is simple a .1 repeatable but not completely
Justifiable. There are at least two factors *to indicate that static

and dynamic calibrations should differ.

The calibration depends on the manner in which the soil distributes
the stress over the gage., As the stress is applied to the soil, the
stress distribution changes. This change requires time (several milli-
seconds in sand  so that for a given average applied p.cc-sure, different
stresses will be applied to the gage by the soil for difierent loading
rates.  Because the stress redistribution is a time-dependent affair, it
would be expected that highly time-dependent soils would lead to large
differences between the static and dynamic calibrations and that time-
independent soils would show no difference This expectation is hinted

at by the nicely repeatable data from the stiff soil of Column C.

The stress distribution in the vicinity of the gage is greatly
influenced by the radial stress of the tube on the soil. The radial
stress is caused by a Poisson effect when axial stress is applied to
the soil. When the axial stress is decreased, the radial stress also
decreases but much less than the axial stress. Plastic equilibrium of
the soil requires that the radial stress not exceed four or five times
the axial stress and that it not fall below zero. However, the magnitude
of the radial stress within that range cannot be defined by statics,
Hence, it may vary from test to test in a fairly arbitrary manner. Thus,
the stitic calibrations were made with a different radial stress acting

than that during the dynamiz test.
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From discrepancies between the response of adjacent stress and
force gages, we concluded that the stress gage calibrations err by 120%

in situations where repeated testing is done.

4.4.4 Vave Velocity. The velocity with which waves travel through

the soil is not solely related to one property of the soil. Rather the
wave velocity is a product of the complex interaction between the
propagating wave and the soil. Wave velocity 1is primarily a function of
the stiffness or compression modulus of the soil. But velocity is also
affected by the rise time of the stress wave, the viscoelastic or time-
dependert dissipation of the soil, by the variation of the soil stiffness
with depth, and by the concavity or convexity of the stress-strain relation
of the soil. The effects of the rise time and decay rate of the stress
wave on wave velocity are shown in the time-depth plot of Fig. 4.31.

This plot shows the wave interactions for a wave propagation calculation
using the linear hysteretic model. The applicd pressure represented by
incremental steps is plotted above the coordinate line, the waves, below,
The wave velocity is the slope of the lines on this diagram. When

lines are drawn between the points of maximum stress, a 'wave velocity"
for the maximum stress can be determined. Two points may be noted
concerning this '"velocity': it is not the loading or unloading velocity
of the material but is intermediate to these, and it is a nonlinear

function of depth, although the model has only lincar characteristics.

Time dependence of the soil also affects the wave velocity because
it caused the soil modulus to increase as the loading rate increases,
Thus a shock wave would travel faster than a gradually rising stress
wave. If we add such factors as nonlinear loading and unloading
relations, and properties that vary with depth, it should be clear that
the "wave velocity of the peak stress’ is difficult to relate to the
material properties. However, this ''velocity' is of most interest to the
predictor. Therefore it is important to have some basis for estimating

this velocity.

We have attempted to correlate the wave velocity of the peak stress
with the wave velocity computed from the tangent modulus of the stress-

strain curve of the soil. Such a correlation is necessarily approximate
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but it has indicated that a reasonable velocity estimate can be obtained
from the tangent modulus. As pointed out in Section 4.3 the average
wave velocity through the clay column is within about 10% of the wave
velocity computed from the tangent modulus and within 25% for the sand
column. And this computed wave velocity served as a good basis for

calculating the peak particle velocity for all the clay tests.

It is possible that the waves recorded should be considered shock
waves instead of stress waves. Normally a shock wave has a very brief
rise time (fraction of a microsecond, and this rise time would remain
constant at all depths; these conditions are nct met by the recorded

waves, Zaccor, Wallace, Durkin, and Mason'!?® have suggested that a rise
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time of around 100 microseconds in sand should be considered a shock
front. If the wave 1is a shock, then the wave velocity 1s associated with
the secant modulus of the stress-strain relation. If the wave 1s not a
shock, the velocity would depend on the tangent modulus. The wave
velocities measured in our tests are affected by many things besides the
modulus. Therefore, the fact that our correlaution was best with the
tangent modulus is not a sufficie:ut basis for deciding that the waves are

stress waves.

The soil tube which 1s required to provide the one-dimensional
conditions also has some effect on both wave velocity und attenuation.
Whitman* has noted that 1t was necessary to account for the mass of the
tube in determining the wave velocity, c¢, from ¢3 = M,n, where M is the
soil modulus and p is the combined density of the soil and tube., That

is, the tube tends to reduce the wave velocity.

The tube may ulso increase the attenuation rate of high frequency
components 1n the wave. This increased attenuation could be caused in
two ways: by the radial acceleration of the soil and by friction against
the wall of the tube. Both of these effects would be more effective 1n
attenuating high-frequency than low frequency components of the stress
wave., These two effects might remove very little encrgy from the pulse

but contribute significuntly to reducing the steepness of the wave front.
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CHAPTER 5

DISCUSSION OF THEORETICAL MODELS

5.1 Introduction

Theoretical models are the needed link between soil behavior in com-
pression tests and soil behavior during wave propagation. The models
show the relation between compression modulus and wave velocity, between
hysteresis loop (of a stress-strain curve) and attenuation, and between
strain lag and attenuation. Thus, the models are the basis of a method
whereby one can observe phenomena in a compression test and then predict
the wave propagation behavior. The models can be used either for theoret-
ical analyses of wave propagation or to provide the scaling laws for

relating the soil behavior under different test conditions,.

No complete model for soil has been developed. Rather we have
studied models which exhibit some of the main features of soil. The
organization of the study can be seen in Table 5.1, In this table the
modzls are sep. rated according to the type of material dissipation which
they represent. Compacticn means the type of dissipation in which there
is a permanent deformation after a loading cycle. A linear compacting
model here means a model which has a linear stress-strain relation during
loading and a linear relation during unloading. The second type of
dissipation is time-dependent (viscous). Superposition is valid in the

analysis of lincar time-dependent models.

The elastic model is the simplest and exhibits no dissipation. The
lincar hysteretic model (see Ref. 3 and 10) shows permanent set after a
loading cycle and exhibits the same behavior at all loading rates. The
S-hysteretic model (Appendix D) has an S-shaped stress-strain relation
during loading [first convex then concave to the stress axis) and an
unloading relation which is concave to the stress axis. The standard

linear viscoelastic (three-element) model and the constant tan delta
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model exhibit frequency-dependent dissipation but no permanent set. The
standard linear model (see Ref. 1) has a maximum dissipation at one
frequency and none at zero and infinite frequencies; whereas, the constant
tan delta model (see Ref. 3) has the same dissipation at all frequencies.
The viscoelastic compacting model analyzed in Appendix C is the first to
contain both compacting and time-dependent dissipation.

TABLE 5.1
TYPES OF SOIL MODELS
Compaciion
none linear nonlinear
None Elastic Linear hysteretic | S-hysteretic

o
g Linear Constant Viscoelastic -
3 tan delta, compacting
§ standard
8 linear
a viscoelastic
L
=~ | Nonlinear - - True model for soil

L. ———

In the same table the true model for soil is shown as a nonlinearly
time-dependent and nonlinearly compacting model. An example of the non-
iinear time-dependence required to represent soil is the model developed
by Kondner.13,!% The nonlinear compaction of soil is represented by the

S-hysteretic model,

5.2 Viscoelastic Compacting and S-Hysteretic Models

Two models were analyzed on the present project to determine their
wave propagation response, The viscoelastic compacting model is dis-
cussed in Appendix C and the S-hysteretic model is treated in Appendix D.
These two models represent logical extensions from the earlier models in

the direction of a more complete representation of soil.

The viscoelastic compacting model was formulated as a combination
of the linear hysteretic and standard linear viscoelastic models. This

model was analyzed to ascertain the effect of combining time-dependent
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and time- . ndependent dissipation. Because soil contains both types of
dissipation, it is reasonable to investigate such a model. The theoret-
ical results of Appendix C show that the combined effects can be obtained
approximately by a superposition of the separate effects of the two types
of dissipation. That is, the attenuation exhibited by the viscoelastic
compacting model can be found by combining the attenuation determined
from the two component models, the linear hysteretic and standard linear
viscoelastic. The wave front variations are also merely a combination

of the behavior of the component models.

The analysis developed in Appendix C for the viscoelastic compacting
model is based on a known solution of the wave propagation problem in the
linear hysteretic medium. Through the use of the correspondence principie
the known solution was altered to form the solution for the viscoelastic
problem. Because of the generality of the approach, the analysis is
applicable tu any model constructed by the introduction of linear visco-
clasticity to the linear hysteretic model. Therefore, the analysis could
be used for a model built by combining the linear hysteretic model with
the constant tan delta model. The S-hysteretic (or nonlinear hysteretic)
model was analyzed to study the effects of geostatic stress on attenua-
tion and to investigate the development of the wave front. For these
purposes the model was constituted as a strain-rate-independent model
with nonlinear loading and unlocading relations. The loading relation is
convex to the stress axis at low stresses and concave at high stresses.
This initial convex portion, which has been observed in dynamic compres-
sion tests, is a function of the preload or geostatic stress., Its
presence helps to explain the fact that seismic waves (zero stress lovel
disturbances) travel at much higher velocities than large amplitude stress
waves. It also explains the existence of small precursors in wave
propagation tests: hence, it is associated with modifications of the wave
front. The remainder cf the loading curve and all the unloading curve
are concave to the stress axis: this behavior corresponds to that
observed in dynamic compression tests on soil. With these loading
relations it was possible to study the effects brougnht about by the

curvature of the stress-strain relation and the geostatic stress. The
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analysis of the S-hysteretic model was completed only for the case of
purely concave loading and unloading relations. With thes2 relations a
shock front remains a shock at all depths--no precursors occur. Hence,

no information was obtained on wave front formation. However, the analyt-
ical results did provide information about the effcct on stress attenua-
tion of geostatic stress, curvature of the stress-strain relations, decay
rate of the applied stress, and stress level. The most signiricant find-
ing was that the combination of geostatic stress with a curved loading
relation decreased the attenuation rate markedly. The predictions from
this model were not used to compare with the experimental data of Chapter 4.
For attenua:ion the predictions in all cases would show less attenuation

than those ¢f the linear hysteretic model.

3.3 Suitability for Use in Predictions

To be readily usable for wave propagationr predictions a model must be
tractable analytically. The elastic mod~l is the easiest to analyze be-
cause it is linear and elastic and has but one parameter, a wave velocity,
The linear hysteretic model is piecewise linear so that a restricted super-
position is valid. Thke time required for an analysis of this model is com-
parable to that required for the linear viscoelastic models. Because the
viscoelasti~ compacting model is based on linear and pieccewise linear com-
ponents, it can be analyzed using a restricted superposition and is thus
only slightly more complex than the piecewise models. The S-hysteretic
and nonlinear time-dependent models are considerably more difficult to
analyze because superposition cannot be used. It is possible to analyze
the true soil model for wave propagation behavior. However, for practical
use in predictions, the most complicated model required will probably be

the viscoelastic compacting.
Let us now survey the models for the suitability of their wave
propagation predictions.

Attenuation. Only the elastic model does not exhibit any attenuation
of peak stress or particle velocity., The standard linear viscoelastic
model shows attenuation which is a function of arrival time but is inde-

pendent of the decay rate of the applied prec.sure (in the depths which have
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been studied). The other models all show attenuation as a function of
arrival time and pressure decay rate. The experimental results show that

attenuation is a function of the pressure decay rate and arrival time.

Wave Front. The constant tan delta model and the S-hysteretic model
c¢xhibit a rise time which increases with depth: this behavior is also
shown 1n the e¢xperiments. The other models all show an initial shock
front which does not vary with depth. (If the viscoelastic compacting
model were formulated as a combination of the constant tan delta model and
the linear hysteretic model, then the rise time of the stress wave in this

model would i1ncrease with depth.)

Duration., Only the clastic model provides for no change in duration
of the stress wave as it travels through the matcrial. All the others
show somc lengthening of the stress wave witn depth. The experimental

data also show considerable lengthening of the wave with depth.

Compression Test Data. If a model 15 to be useful for wave propaga-

tion predictions, its parameters must be derivable from other soil test
data such as that from compression tests. The time-dependence, the com-
paction, and the nonlinearitics are all exhibited in these tests One of
the main fcatures of test results is a loop (closed or open) between load-
ing and unloading stress-strain curves. Such a loop is exhibited by all
but the eclastic model The experimentally observed lag between peak
strain and peak stress is present only in the time-dependent models The
concave upward nonlinearities of the stress-strain curve are observed

only in the S-hysterctic modecl. Hence, none of the models exhibits all

the main features which are noticed in compression data.

The previous discussion has considered only the potentialities of
the models, not their actualities or the quantitative correctness of their
predictions. The importance of such a survey is the following: if we
wish to predict the increasiug rise time of the stress wave, we neced

consider only the S-hysteretic and the constant tan delta models.

A model with potential value in predictions 1s a viscoelastic compac-
ting model composced of constant tan delta and linear hysteretic elements,.

This model could be analyzed readily (the method has been worked out 1in
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Appendix C) and would exhibit attenuation, and changes of wave front and
duration similar to those scen in wave propagation experiments. It also
would show both the time-dependent and compacting type of dissipation seen
in compression tests. Its drawbacks are that it provides for a constant
wave velocity at all depths, has the same time-dependent dissipation at

all frequencies, and shows no variation of dissipation with stress level.
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NOTATION FOR APPENDIX A

area (cm?)

acceleration of gravity

height of drop

impulse per unit area of soil cross-section (bar-msec)
mass of the drop weight (kgm), or mass of isolated soil
element shown in Fig. A.10,

time

particle velocity (cm/sec)

stress (bars), subscripts refer to depth in the column

71



Appendix A

WAVE PROPAGATION TESTS

A.1 Introduction

Details of the wave propagation tests with six columns of soil are
given in this appendix. Information on the construction of the column and
test apparatus, the gages used, calibration procedure, and data reduction
procedures is included. The most important results from these tests--the
attenuation of peak stress, the attenuation of particle velocity and
acceleration, variation of wave velocity with depth, and a discussion of

the variation of the stress wave with depth--are found in Chapter 1,

A.2 Test Facility and Gages

Unidimensional wave propagation testing required the construction of
a test facility in which essentially one-dimensional waves could propa-
gate. The soil tube that was constructed was described in Ref. 3. One-
dimensionality imposed the following requirements on the design of the
tube:

(1) High radial stiffness to inhibit radial motion of the

soil, and
(2) Low axial stiffness to allow the tube wall to move with

the adjacent soil and not to retard the axial soil motion.

The tube was constructed of alternate rings of aluminum and neoprene
rubber (Fig. A.1). The soil tube is composed of segments, each approxi-
mately 0.7 meters long. The segments were added on as the tube was filled
with soil. In Fig. A.2, the column is shown at full height with its asso-
ciated support structure. Buckling of the soil column is prevented by the

"A" rings, which provide intermediate support to the column.

The capabilities and limitations of the soil column were discussed in

Ref. 3 and 4. Specific points are:
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(1) The radial stiffness of the tube is adequate to simulate
a zero radial strain condition. With an axial pressure
of 7 bars, the radial strain was only 100 microstrain

(microinches/inch).

(2) The axial stiffness of the tube is about 56 bars and is
thus small enough so that the tube absorbs less than 1%
of the total applied force when the soil is a dense sand.
For soil that is less stiff than the dense sand, the tube

probably takes more than 1% of the total force.

Two types of stress gages, two types of force gages, and two types
of accelerometers were used. The stress gages had been developed earlier
and are described in Part IV. Drawings of these gages appear as Figs. A.3

and A.4.
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Of these two, the D gage is a hollow disk with a thin diaphragm on one
side. This diaphragm was instrumented with four strain gages that formed
a complete electrical resistance bridge. These gages were found to be
very reliable and gave repeatable results, The other stress gage, the C
gage, consists of a disk of piezoelectric material (P2ZT-5) _andwiched

between two aluminum covering disks,

Two types of accelerometers were used, both made by Endevco. The
type used near the top of the column is type 2261, which has a piezo-
resistive bridge as the sensing element. The other accelerometers were
type 2221C and are piezoeclectric. The piezoelectric gages were found to
suffer significant zero shifts if they were shocked above 100 g; there-
fore, these gages were used deep in the column where the acceleration

level was less than 100 g.

A force gage, which had been constructed for DASA at SRI under Con-
tract 49-146-XZ-024, was used at the base of the column. This gage,
designated S1, was designed as a surface shear gage but it also worked
well as a total force gage. A photo of the gage appears as Fig. A.5 and

is described more fully in Ref. 19,

The second type of force gage was constructed on the project for
use at the top of the column and was numbered Gl. This gage consists of
three short columns between to aluminum disks (see Fig. A.6). The
columns are aluminum tubes instrumentad with four strain gages each to
measure the force transmitted through the columns. Miscellaneous data

on all six gage types are given in Table A.1l,.

The stress wave for all the tests was caused by dropping a large
weight onto the top of the soil column. The stress waves produced by
this mechanism closely resemble those from blasts--rapid rise to a peak
and then a nearly exponential decrease. The drop-weights used are shown
in Fig. A.7. The 21.5 and 49.2 kg weights had a steel striker ball that
struck the heavy steel plate resting on the soil. The 21.5 kg weight
was used for most of the tests. The 24.0 kg weight had a large curved
plate on the base, and it was dropped directly onto the sand. The impact

with this weight was much softer than the impact of the other weights
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FIG. A.5 SURFACE SHEAR GAGE USED AS A FORCE GAGE
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Table A.1
GAGt CHARACTERISTICS

Desig- Natural Position
nation Measurement Sensor Type Height x Diameter Freq. Sensitivity during use

D Stress Strain Gage 0.59 cm x 3.8 cm 27 ke 1 mv/bar upper half
Bridge of column
C Stress Piezoelectric 0,40 cm x 4.4 c¢m a 1 v/bar lower part
crystal of column
2261 Acceleration Strain Gage 2.3 cmx 1.5 ¢cm 40 kc 0.1 mv/g upper half
Bridge of column
2221C Acceleration Plezoelectric 0.8 cm x 1.5 cm 30 k¢ 14 mv/g lower uLalf
of column
s1 Force Strain Gage 7.6 cm x 30 cm 2.6 ke 2 mv/# base of
Bridge (square) metric ton  column
Gl Force Strain Gage 4.4 cm x 32.0cm @ 2 nv/# top of
Bridge metric ton column
NOTES: : Natural frequency was not determined since it was well above the

range of interest.

Sensitivity for the strain gage bridge is listed on the basis of
a 10-volt excitation,

and, consequently, the stress level was lower and the wave durations
were longer. The weights did not appear to rebound on contact; therefore,
the applied impulse was taken as the change in momentum that would just

stop the weight. This 1mpulse was computed as
M
I = :; Vo gh

where 1 1is the impulse per unit area of the soil cross section,

M is the mass of the drop-weight,

A 1is the cross-sectional area of the soil column, and

h 1s the height of the drop.

The units of this impulse are bar-msec, the same as the area under the

curve on a stress-time record. Hence, this impulse can be readily com-

pared to the impulse measured at each force or stress gage.

A.3 Soil and Test Conditions

Soils used for the tests were a Kaolinite clay, Vicksburg backswamp
clay, uand Monterey beach sand. Properties of these soils are given in
Appendix B. Table A.2 lists the conditions of these soils as they were

during the wave propagation tests,
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Table A.2
TEST CONDITIONS

Column Soil Placement Column Testing
Desig- Soil Name®Compaction WaterC Dry Density Satur- height Impulse® Calibration
nation Method Content gm/cm? ationd meters levels, Procedure
y % bar-msec
A Kaolinite  Hand 34.7 1.29 88 2.58 14.0 Fluid
Tamping
B Kaolinite Hand 31.7 1.34 88 4,62 6.1 to Fluid
Tamping 14,1
Cc Kaolinite StaticP 18.8 1.42 60 4.35 7.0,10.0, Static,
Pressure 12,8 Impulse
D Vicksburg  Pneumatic 26.8 1.34 71 4.48 7,0,9.9, Static,
Clay Tamper 12.8 Impulse
E Monterey Sprinkle = 1,63 = 4.33 7.4,10.2, Sstatic,
Sand through 13.0,30.8 Impulse
Funnels
F Vicksburg Staticb 24 .4 1,52 81 4,27 7.5,10,2 Static,
Clay Pressure 13.1 Impulse

Kaolinite was purchased as a dry powder from L, H, Butcher Co,, San
Francisco. Vicksburg backswamp clay was provided by the U,S. Army
Waterways Experiment Station, Vicksburg, Mississippi.

Static compaction pressure was 17,0 bars for Column C and 5.7 bars
for Column F,

Average water content from samples taken during placement and during
removal. The water content on removal was normally 1 to 2% less than
the content at placement.

Saturation calculations are based on a specific gravity of 2,60 for
kaolinite and 2.70 for buckshot clay.

The impulse of the dropped weight was calculated as in Equation A,1l,.

The clay used for the first three columns was a pure white kaolinite
obtained commercially in an air dry condition. For Column A, the dry
powdered clay was mixed with water to a water content of about 35%. This
same clay was used in Column B in addition to some frechly mixed clay of
about 33% water content. The soil for Column C was produced by mixing
dry clay with the wet clay from Column B, producing a moisture content
around 19%. The clay for Columns A and B was quite soft and so it was
compacted by tamping it into place. The dryer soil for Column C had a
granular appearance and was much stiffer., It was placed in the soil
tube in 10 cm lifts; each lift was compacted with a jack to a static

pressure of 17,0 bars.
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The Vicksburg backswamp clay used in Columns D and F was mixed to
a water content of about 28% at the Waterways Experiment Station and
shipped to SRI. When it arrived, it was rather soft and sticky and tended
to extrude through the column walls under static compacting pressure.
Therefore, it was compacted with a seven-pound pneumatic tamper.
Unfortunately, the compaction was neither uniform nor sufficient to
produce a density comparable to that from a Standard Proctor test., For
Column F, the soil was dried in small batches to a water content of about
24% (estimated by working the clay by hand,, placed in the column in

10 cm lifts, and statically compacted with a hydraulic jack.

Column E was filled by raining Monterey sand through a double funnel

device. This method of compacting sand has been described in Ref. 3.

The stress wave caused by the drop-weight traversed a layer of sand
before reaching the force gage. Figure A.2 shows this layer of sand
between the 5-cm thick steel plate and the force gage. The sand tended
to smooth out the high frequency oscillations caused by the impact on
the steel plate. Apparently, the sand caused some shocking up of the
stress wave so that the rise time at the force gage is shorter than that
at the top of the sand. In some tests, this sand layer did not adequately
exclude the high frequency oscillations and so 1/4-in. of plywood and
up to 1/4-in. of soft rubber were placed immediately under the 5-cm steel
plate, The addition of these latter dissipative materials increased

both the rise time and duration and rounded the wave form.

The stress level is roughly prcoportional to the applied impulse.
Therefore, the stress level was varied by changing the drop weight and
drop height. The range of impulse levels used is shown in Table A.2.
Tests were generally conducted at three impulse levels so that the effect

of stress level on attenuation and wave velocity could be studied.

Some typical characteristics of the applied stress waves are shown
in Table A.3. Data for the table are taken from tests in which the
21 5 kg weight was used to produce an impulse of 12 to 14 bar-msec. The
stiffness of the column clearly determines the stress level that can be

obtained at a given impulse level: the peak stress for Column A, the
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soft kaolinite, is much less than that for Column C in which the
kaolinite was drier and denser. The wave durations aiso indicate that

a sharper wave 1s transmitted in the drier, denser soil.
Table A.3

REPRESENTATIVE TEST RESULTS

Column Test No. Applied Impulse Peak Stress Rise Time Duration

(bar-msec) (bar (msec (msec
A 10, 11 14.0 1.3 0.7 4.5
B 35 - 37 12.1 2.57 0.84 2.37
C 15 - 18 12.8 5.15 1.06 1.99
D 10 - 12 12.8 5.78 0.31 1.95
E 7- 9 13.0 6.94 0,44 1.58
F 7- 9 13.1 11.2 0.42 1.46

A.4 Calibration of Stress Gages

The stress gages used in the wave propagation tests were calibrated
by
(1) Subjecting the gage to a fluid pressure while immersed in a
fluid (fluid calibration),
(2) Pressurizing the column statically before and after the drop
weight tests (static calibration;, and
(3) Equating the impulse measured at each stress gage to the

impulse measured at the top force gage (impulse calibration,.

The fluid calibration procedure is easy to apply and may be justified
if the soil is soft enough to act like a fluid. In most soils, the
stress field about a gage will not be as uniform as it would be in a
fluid, and the gage will tend to over or under-register. If all the
gages over-register to the same extent, the stress level will be unknown

but the rate of attenuation can be found.

For the static calibration, a force was applied to the top of the
soil column with the same jack with which some of the soils were com-

pacted. The calibration was made before and after testing, and the
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average was used as the static calibration. Samples of these results
are shown in Fig. A.8, along with the fluid calibrations of the gages.

The gage at the shallow depth over-registered considerably, while the

deeper gage under-registered at the higher stress levels.

The impulse calibration is based on the fact that the impulse of
the initial wave is the same at all depths. In this case, the calibra-
tion and the test were made simultaneously. That the impulse does not
vary with depth can be shown with reference to Fig. A.9. This figure
exhibits a column with a cross-sectional area of unity and an isolated
mass of soil, M, between the measuring stations. When an impulse is
applied to the column, forces are transmitted to M, causing it to move
with velocity, v.

dv .
0y = Cg = Ma? (A.2)

When this equation 1s integrated with respect to time, the result is

t, t; t,
f | I dv

of'} dt - Ca dt = i M’EE‘ dt = M(Va - V‘) (A.a)
ty t, t,

where v, and v, are particle velocities at times t, and t, , respectively.
Now, t; 1s chosen before the arrival cf the stress wave and t, is chosen
long after the passage of the wave so that all motions of the soil mass

have returned to zero. For this case, v, and v, are zero, and

- -

| cydts | ot (A.4)
(9 [

ty ty

These integrals define an impulse (actually, impulse divided by cross-
sectional area of the column). Because of the equality (Eq. A.4), the
impulses measured at all levels are equal and are equal to the impulse

applied at the top.

In practice, i3 was limited to the length of the stress-time record
obtained. The particle velocity at t, was not known but was assumed

to be approximately zero since the stress was nearly zero at that time.
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The area under the stress-time curve was equated to the applied impulse

in order to obtain the calibration constant for the stress record.

As shown in Table A.2, the fluid calibration procedure was used
for the first two columns. Thereafter, the static calibration was
used. In ench of these cases, the impulse calibration was used as a
check. The impulse calibration gave stresses within x10% of those
calculated with the static calibration. Therefore, the static calibration

was assumed to be adequate.
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NOTATION FOR APPENDIX B

wave velocity (meters/sec)

spring constants for viscoelastic compacting models, (bars)
spring constant of series spring, loading

spring constant of parallel spring, loading

a modulus (hars)

time

t - n/w, the lag time between peak stress and peak strain
half the duration of the loading pulse, see Fig. B.11

1 -  Eg/Ey)/(1 + Eg/E;), compacting dissipative parameter
viscous dissipative parameter used with the constant

tan delta model

strain

strain difference shown in Fig. B.1l1

strain difference shown in Fig. B.1l1

viscosity of dashpot of viscoelastic compacting model,
(bar-msec)

slope of loading stress-strain curve

slope of unloading stress—strain curve

density (gm/cm3)

stress, (bars)

peak applied stress

peak unloading stress, see Fig. B.13

natural circular frequency (rad/sec)
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Appendix B

S SOIL PROPERTIES

B.1 Introduction

To generate a prediction for wave propagation phenomena, detailed
information on certain soil properties 1s needed. In this appendix the
procedure and equipment used for obtaining these properties are described
and the data on the tested soils are listed. In add tion, the ordinary
soil propertics that are used to classify and churacterize soils are
given. These ordinary properties are shown in Table B.1l. More data on
the compaction characteristics of the Vicksburg backswamp clay were
given by Jackson and Hadala.2?® The grain size distribution for the
Monterey sand is shown in Fig. B.1. The sand is evidently somewhat less

uniform than that previously used on this project.
Table B.1

GENERAL SOIL PROPERTIES

Specific Liquid Plastic Minimum Maximum
Type Gravity Limit Limit Density Dens1ity Description

(%) (% grams/cm® grams;cm?
Kaolinite White, obtained as
Clay 2.60 49 35 - - a dry powder, very
sticky when wet.
Buckshot Brown, sticky, con-
Clay 2.70 60 23 = - tains organic mat-
erial.
Monterey Clean, dry, sub-
Sand 2.62 - = 1.41 1.66 angular sand, finer

than 30 mesh.
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B.2 The MIT One-Dimensional Soil Tester

Specific information about dynamic moduli, frictional behavior, and
viscous dissipation is needed in order to predict the nature of wave
propagation in a soil. These properties can all be determined from
appropriate dynamic tests on small samples of the soil if the confinement
conditions of the soil are the same as those which obtain during wave
propagation. The type of test that was used is one in which a pressure
is applied rapidly to the soil sample and then released. An appropriate
loading function is shown in Fig. B.2. The primary result from the test
is a plot of stress versus strain during loading and unloading (see
Fig. B.3). Moduli of the soil appear as slopes of the curves and, hence,
can be determined from the plot. The frictional and viscous dissipat.on
parameters can also be determined from this plot if the proper type of

dissipation mechanism is known or assumed.
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UPPER TRACE: STRAIN 500 microstrain/cm
LOWER TRACE: STRESS 20 psi/cm
SWEEP: 5 msec/cm

FIG. B.2 LOADING FUNCTION FOR COMPRESSION TESTS

STRESS —= 20 psi/cm

STRAIN — 500 microstrain/cm

TA-5104-8)

FIG. B.3 TYPICAL STRESS-STRAIN CURVE
FROM DYNAMIC COMPRESSION TESTS

92



A modification of a device developed at the Massachusetts Institute
of Technology for making dynamic one~-dimensional soil tests was used on
this project. The modified tester (see Fig. B.4) is composed mainly of
two heavy, stainless steel disks. The small cavity in the lower one
holds the soil. The chamber above the soil, separated by a membrane
from the soil is filled with a light oil. The soil is stressed by
pressurizing the oil, either from an external source through the pressure
port or by depressing the plunger. The follower disk lies directly atop
the soil and follows the motion of the soil during testing. A rod
connects the follower disk to the core of an L.V.D.T. (linear variable
differential transformer ), which monitors the core motion, and thus the
soil strain The stress on the soil is equal to the pressure in the
upper chamber; this pressure is monitored by a diaphragm-type pressure
transduccer.

The lateral strain ot the soil during testing is quite low because
of the great stiffness of the confining disks. No measurements of
lateral strain were made but it was estimated that the strain was less
than 2 microstrain at a pressure of 7 bars. This strain is much less

than the 100 microstrain expansion of the soil column tube.

To determine the effect of expansion of the tester on the strain
measurements, the tester was assembled without a sample and with the
strain measuring rod screwed into the bottom of the sample chamber.

Any strain measured in the configuration is a false indication of soil
strain; hence, this test provided a measure of the inaccuracy of the
strain obtained during soil tests. The tester was then subjrcted to a
150 psi pressure pulse; the resulting core moticn corresponded to an
apparent sample strain of 60 microstrain. This strain gives a modulus
of 2.5 x 10® psi for the tester. The highest moduli measured on the clay
was 1000 bars (15,000 psi, and on the sand 4800 bars (70,000 psi).

Hence, the flexibility of the lvster does not add a significant error to

the soil modulus measurement.

B.3 Test Procedure

A soil sample was selected from the material tested in the column.
For clays, the sample was trimmed so that its weight would give the

required density when it was compacted into the soil chamber in the
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tester. It was compacted by tamping and then consolidated under a static
preload of 10.5 bars. Sand samples were placed by sprinkling the sand

through a series of screens from a height of about 30 cm.

The system for applying pressure to the soil is shown schematically
in Fig. B.5. The dynamic pressure source is a charged accumulator, a
large steel bottle with a diaphragm separating oil and air chambers.
Dynamic pressures were applied by opening the dump valve suddenly.
Preloads were applied with the hydraulic hand pump. The bleed valves
were used to evacuate air trapped in the system, and the throttle valve
was used to slow the dynamic pressure rise and, thus, to damp out

oscillations.

ACCUMULATOR
PRESSURE

THROTTLE I BLEED VALVE

VALVE

MIT TESTER e
ACKUMULATS l ACCUMULATOR

T )( FILL VALVE

PRESSURE
GAGE
HYORAULIC HAND
PUMP

TA-3104-30

FIG. B.5 SCHEMATIC LAYOUT FOR PRESSURE SYSTEM
FOR MIT TESTER

Two oscilloscopes were used to display the data from the test fixture:
One displayed the stress and strain as functions of time (Tektronix 502A),
and the other displayed stress versus strain (Tektronix 535). The
Tektronix 535 was modified so that strain controlled the horizontal

deflection of the oscilloscope beam, while the time base determined how
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long the beam would be unblanked. The trigger signal went to Time
Base B, was delayed, and then triggered Time Base A. The beam then
became unblanked. After a time interval governed by the setting of
Time Base A, the beam was blanked again. With this system, the stress-
strain curve was obtained just during the time of interest: from start

of loading to the completion of the first unloading.

B.4 Presentation of Data

Tests were performed at five preload levels for each of three
peak stress levels in order to get a complete picture of the variation
of modulus and the dissipation parameters with stress level. The stress-

strain curves that were obtained are grouped in Figs. B.6 through B.10,

Several interesting features may be noted in these curves, All
loading curves, except those from sample 3, are concave upward and thus
appear to be stiffening with increasing stress. While the loading
stress-strain curves for No. 3 are essentially linear, the unloading

curves are not; therefore, no linear elastic behavior can be expected.

There are many minor irregularities in the stress-strain curves
caused by oscillations in the pressure, and they should not be attributed
to an anomalous soil behavior. These oscillations occurred only at low
dynamic stress and at low preload levels. They may have been caused by

the presence of air 1in the pressure chamber.

Preload seeems to have no effect on the stress-strain curve for
the kaolinite samples. That is, on a plot of total stress (preload
plus dynamic increment) versus total strain, all the curves would
approximately coincide. For the Vicksburg clay this was not the case
becuase there seemed to be a continuing compaction throughout the test
program. Later tests always gave evidence of stiffer soil than earlier
tests. The curves for sand show a small init.ial hump, which grows in
import .ace with preload level. The hump has been noted before and

stud.ed in detail by Moore. 2}

On many of the stress-strain curves, the maximum strain does not
coincide with the maximum stress. In such a case the tangent to the

unloading curve at the peak stress is vertical or slightly negative.
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FIG. B.6 STRESS-STRAIN CURVES: SAMPLE 1, KAOLINITE

Testing Order: 150 psi peak and 10 psi preload,
150 psi peak and 5 psi preload, ...
100 psi peak and 10 psi preload, ...
50 psi peak and 1% psi preload.
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FIG. B.7 STRESS~STRAIN CURVES: SAMPLE 2, KAOLINITE

Testing order as in Fig. B.6
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Testing order as in Fig. B.6
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Testing order as in Fig. B.6
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FIG. B.10 STRESS-STRAIN CURVES: SAMPLE 5, MONTEREY SAND

Testing order as in Fig. B.6

The lag of the strain behind the stress is more clearly shown in

illustrations, such as Figs. B.2 and B.11 in which both stress and

strain are recorded as functions of time.
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B.5 Data Reduction: Dissipation Parameters

The data from the MIT tester can provide information on (1) dissipa-
tion parameters of the soil, and (2) moduli from which wave velocities
are obtained. In each case, the soil data was reduced on the assumption
that the soil can be approximated by the linear hysteretic model, the
viscoelastic compacting model, or the constant tan delta model. No
attempt was made to formulate a model thai would actually duplicate the
behavior of the soil during the compression test. The dissipation par-

ameters are considered first.

The stress-strain data in Figs. B.6 to B.10 suggest that both ccm-
pacting and viscous dissipation exist in the soil. Compaction here refers
to the tendency of the material to show some permanent set after a loading
and unloading cycle. Viscosity is exhibited when the maximum strain
occurs later than the peak stress, that is, during the unloading portion

of the stress-strain curve.

The dissipation parameter for the soil was determined {rom measure-
ments taken from the stress-strain curves and from the stress-time and

strain-time curves.

The reduction was accomplished by comparing certain features of the
experimental curves with corresponding features derived from an analysis
of the models. The features to be considered were (1) th~ slopes of the
stress-strain curves at midheight, (2) the lag time between the occurrence
of peak stress and peak strain, and (3) the width of the loop formed

between the loading and unloading stress-st:rain curves (Fig. B.11),

The first measurement was used to define the viscoelastic parameter
for the viscoelastic compacting model, the second, to define the com-
pacting parameter for the viscoelastic compacting and the linear hysteretic

models, and the third, to find tan § for the constant tan delta model.

The analysis of the viscoelastic compacting model to a pressure
pulse which is given in Section C.5 is the basis for the determination
of the parameters for that model. The viscoelastic parameter, 7, was

determined graphically from Fig. C.7. Then the compacting dissipative
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parameter, o, was found from an iterative solution of Eq. C.41 and then
C.32. This data reduction scheme for the viscoelastic and compacting
parameters was applied to the records from the soil samples tested in

the MIT tester. The basic data—lag time, slopes of the curves, and
natural frequency of loading—were measured on the stress-strain, stress-
time and strain-time recorde obtained during the tests. The lag time,

tl was measured as the time difference between the peaks on the stress-
time and strain-time records (Fig. B.11). The slope of the stress-strain
curves were measured with a drafting machine. The loading frequency, u,
was taken as n/tw, where tw is half the duration of the loading as shown

in Fig. B.11l. These measured data and the dissipative parameters obtained

from the data reduction scheme are listed in Table B.2.

DISSIPATION PROPERTIES OF THE SOILS
Table H.3

Ueed for Predictions_

Lag Tan Pl-rtn\nﬁu
Sample Water Dry Pressure Time, K, on width to L3N
No. So1l Content Density Level 1t Eo Eo : of loop Column Eo "/ By a2  Tan ¢ c
X '

gm cm? put nee. asec (m/mec)

1 Ksolinite 38,0 1.34 50 0 L045 13u
100 240 2,33 10.9 L0235 135
130 323 1.43 6 .67 038 1614

3 Kaolinite 3.8 1,36 3o Lof4 2,20 31,0 .0le 162 A, B 2.0 30 .02 .30 100
100 .292 1,117 16.0 023 .213
150 377 1.1y LIS} U586 275

3 Kavlinite 18,3 1.34 30 305 1,87 15,2 BEL 11 C 2.0 15 A0 .30 240
100 .2%2 2.34 3.5 ryal 385
150 L207 3.15 16,0 212 .aud

] Backswamp 2.3 50 312 1,61 209 0n3 .233 b, r 1.7 20 04 .30 340
100 .254 2,18 16.3 8 V] .494
150 iy 1,37 L) 17 3

L] Sar. = 1.66 50 A3y 4,67 233 34 209 E 5.0 22 2 113 300

100 L1038 6,48 22.2 17 .24
150 24 5,52 19,1 082 .4dv

None of the various parameters appear to be constant but rather vary
with the pressure level used. Certain trends may be noted in the Table:
a appears to increase with stress level for the clays but to decrease for
the sand. The viscous parameter, T/E,, appears to decrease as stress
increases for the softer soils but to remain constant for the drier,
stiffer soils. Whitman’® has suggested that E,/Ey should be about 1 for
soft clays and 4 for sands. This prediction agrees quite well with the

tabulated values.

The linear hysteretic model is a special case of the viscoelastic
compacting model in which there is no time-dependent dissipation. There-

fore, the same values of the compacting parameter, @, were used for the
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predictions of both the linear hysteretic and viscoelastic compacting

models.

Tan is the dissipative parameter associated with the constant
tan delta model. Tan delta was determined by comparing the theoretical
response of the model with the soil response measured in the compression
tests. Examples of theoretical stress-strain curves arising from cyclic
lo.ding of the constant tan delta model (or any linear viscoelastic model)
are shown in Fig. B.12, Tan § is the lag time between peak stress and
peak strain and is related to the size of the loop formed between loading
and unloading stress-strain curves. Tan { can, therefore, be evaluated

on the basis of either lag time or loop size.

o
i ton 3:0.02
o8
€
b
© 06 |-
[
(T2}
v L
[+ 4
-
v o4l
tan 8 = 0.20 B
0.2 — e
0.0

STRAIN, £—
m

TA-3104-60

FIG. B.12 STRESS—STRAIN CURVES FROM CYCLIC LOADINGS: CONSTANT
TAN DELTA MODEL

Using the lag time as an indication of tan § gives the relation

tan & = wt | (B.1)

for cyclic loading. If the width of the stress-strain loop at midheight
is taken as the measure of tan §, then
' €14 ~ €24
2 sin b T ————— (B.2)
€14
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where €14 and €ay are defined in Fig. B.11l. Values of tan ¢ derived

from the two bases are listed in the sixth (wtl) and tenth columns of
Table B.2. Except for the case of soil sample 4, there is no correlation
between the magnitudes of tan § found by the two procedures. Evidently
the dissipation in the soil is more complex than that in the constant

tan delta model. Very precise prediction of wave propagation behavior
cannot be made with this model since it is uncertain how to evaluate the
basic dissipative parameter. The definition tan § = wtf was chosen in

order to get some basis for predictions. The values of tan f used in

the wave propagation predictions are listed in Column 15 of Table B.2.

B.6 Data Reduction: Wave Velocity

Wave velocity, ¢, can be related to the stiffness of a material by

the simple equation /M

= (3.3)
c ~/ )

where M 1is an appropriate modulus, and

p 1is the density.
For soils with highly nonlinear stress-si. "1 relations, finding an
appropriate value for M is very difficult., Both the tangent modulus
and the secant modulus were obtained from the test records, but the
tangent modulus was used as the basis for the predictions. The basis
for using the tangent modulus is the assumption that a shock wave does

not occur in spite of the concave upward stress-strain curve,

The modulus data were obtained by finding the appropriate slopes
of the stress-strain curves at four stress levels: 1.5, 3.0, 4.5, and
6.0 bars. The data were obtained for each peak stress level and each
preload level. The resulting wave velocities that were obtained using
Eq. B.3 are plotted in Figs. B.13 to B.17 as a function of depth

(preload .

In general, the wave velocities appear to be fairly repeatable.
They show a trend toward higher velocities for higher stress levels and
prelovad levels. The velocities based on the tangent were used to derive

the velocities used in the attenuation predictions. The prediction
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velocity for a particular column was taken as the average of velocities
determined as appropriate for conditions at the top and at the base of

the column. As an example, consider the data on Vicksburg clay in Fig. B.16
In the wave propagation tests on Vicksburg clay (Column D) the peak stress
at the top was 5.8 bars and that at the base was 3.0 bars. At the top
(depth of zero meters) the wave velocity prediction from the figure is

360 m/sec for a dynamic stress of 5.8 bars. At the base (4.48 meters

the prediction is 320 m/sec. Then the average velocity to be used in

the attenuation prediction is 340 m/sec. All the wave velocity predictions

are listed in the last column of Table B.2.
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NOTATION FOR APPENDIX C

b = o/t

Co = wave velocity during loading

c = unloading wave velocity

Eo,E;,E3,E3 = moduli defined in Fig. C.2

F(z,t,a,u;) = correct solution to wave propagation problems

F,(z,t,a,n,;) = solution given by Eq. C.11

G = typical terms of the series of Eq. C.1

G = one-sided Fourier transform of G

H = Heaviside step function

i = imaginary number

Jo(iw) = viscoelastic complex compliance for dc/dt >0

Jo(iw) = viscoelastic complex compliance for dg/dt < O

ky,kp = real and imaginary parts ofV_EJ—(i_wr

n = 1index used in summations

p = applied pressure

S = slope of stress-strain relation

S, = slope during loading (bars)

S, = slope during unloading (bars)

T = exponential decay constant of the applied stress

t = time

ta = arrival time of the peak stress

tz = lag time

tm = time at which stress during loading is equal
to 0o - %‘*

z = depth

o = (cy/co -1) / (cy/co +1), dissipation parameter

8 = co/cy

6 = phase lag, time dependent dissipation parameter

€ = strain

¢,E = dummy variables of Eq. C.16 and C.17

¢ = Ejp/(wN), a viscoelastic parameter used in Sect. C.5

n = viscosity of the dashpot
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Ey/Eo = E3/E,
T/Ee, viscoelastic time constant

density

summation given in Eqs. C.36 and C.37
summation given in Eqs. C.39 and C.40

nondimensional peak stress from linear hysteretic
model

nondimensional peak stress from standard linear
viscoelastic model

nondimensional peak stress from standard linear
viscoelastic compacting model

variable defined in Eq. C.10

variables defined in Eq. C.12 and (.13

ta/T, nondimensional arrival time

natural circular frequency
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Appendix C

STRESS WAVE PROPAGATION THROUGH A
VISCOELASTIC COMPACTING MEDIUM

C.1 Introduction

Dynamic compression tests show that most soils exhibit both compac-
tion and strain-rate effects. Compaction here refers to the tendency of
the material to show some permanent set after a loading and unloading
cycle, Strain-rate effects refer to a group of phenomena associated with
viscosity: increase in modulus with strain rate, lag of the displacement
or strain behind the loading function, and smoothing of stress waves that
propagate through the material, Wave propagation tests show a smoothing
out of the stress wave, an indication of viscous bechavior. But the
attenuation of the peak stress follows roughly the prediction based on
the compaction churacteristics of the soil., Thus, it appeared that a
more realistic prediction of wave propagation phenomena could be obtained

with a model that combined viscous and compaction effects.

The mathematical model chosen here to study nondimensional stress
wave propagation in soils is a combination of two models that were studied
previously: the linear hysteretic (Ref. 3) and the standard linear visco-
elastic models (Ref. 1). It will be referred to as tiie viscoelastic

compacting model.

The compaction part of the mechanism is shown in Fig. C.1 as a stress-
strain relation at zero rate of strain, Straight lines have been used to
approximate the curved characteristics typical of most clays. On increas-
ing the stress, the strain increases linearly along the path OA. If the
stress is reversed at the point A, the strain decreases along another
straight line AB. On increasing the stress again, the strain follows the
path BAC. 1his compaction characteristic is typical of many earth mate-
rials. A stress wave propagated into such a material undergoes attenua-
tion due to the hysteretic (compacting, frictional) nature of the medium,

i.e., encrgy is dissipated.
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STRAIN
RA-2917-30

FIG. C.1 STRESS-STRAIN RELATION
AT ZERO RATE OF STRAIN

In addition to this feature, we wish to introduce strain-ratce
effects, To do this, we assume that the material is not lincarly elastic
on the characteristics OA and AB but that 1t is linearly viscoelastic on
these paths. The work of Whitman'!®, Christensen and wWul®, and Kondner
and Ho!? have indicated that the three-clement standard linear visco-
elastic model provides a good description of clay and sand behavior,

Therefore. models of this type were chosen for both loading and unloading.

A mechanical representation of the viscoelastic compacting model is
shown in Fig. C.2, labeled with the nomenclaturc used in the analysis.
The model contains two ratchet devices which do not allow portions of the
springs to expand during unloading. Thus, the spring characteristics arc
different during loading and unloading. During periods in which the
strain rate is of constant sign, the model representation is that of a
standard linear viscoelastic model, Fig. C.3 shows an example of a
stress-strain relation obtained by applying to the model a pulsc loading

in the form of a ha.f sinc¢ wave,
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FIG. C.2 REPRESENTATION OF THE VISCOELASTIC COMPACTING MODEL
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FIG. C.3 STRESS—STRAIN RELATION FOR RESPONSE
OF VISCOELASTIC COMPACTING MODEL
TO A HALF-SINE PRESSURE PULSE
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This model was analyzed for its response during wave propagation and
for its behavior during a dynamic compression test. The wave propagation
results served to correlate the experimental data of Chapter 4. The
compression test results provided a basis for finding the dissipative

parameters of the soil (Appendix B).

C.2 Wave Propagation Analysis

An analysis was made of the response of a one-dimensional rod of a
viscoelastic compacting medium subjected to a sharp pressure pulse at one
end. The applied pressure pulse has a shock front and an exponential
decay after the front. This wave form is similar to the pressure wave
obtained from high explosives and to that produced by the drop-weight on
the soil column. The wave propagation analysis was conducted to determine
the stress history at several depths in the one-dimensional medium. Such
stress histories are directly comparable with records of stress gages in

the column of soil used on this project.

A solution for the wave propagation problem was formed, using the
"correspondence principle." This was more feasible than a transform
technique, which would involve the difficulty of incorporating the moving
boundary between the two states of the compaction characteristic. The
"correspordence principle” states that the solution to a viscoelastic
problem may be obtained from the solution to the elastic case by taking
the one-sided Fourier transform of the elastic solution, replacing the
elastic moduli by the complex viscoelastic moduli, and inverting the trans-
form (see Bland?2?), This principle is valid when it is applied separately
on the linearly loading and unloading parts of the characteristic shown
in Fig. C.1. However, it is difficult to show that the correspondence
principle satisfies exactly the moving boundary condition between the
states of loading and unloading. A demonstration that this principle
gives a reasonable approximation to the correct solution is given in

Section C.3.

The first step in the solution procedure is to find the solution for

the elastic case.
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The solution to the wave propagation problem in a nonviscous com-
pacting medium is given by Salvadori, Shalak and Weidlinger (1961) in the

form
aglz,t)

~(t-2/¢,)/T @ {
. !
Py

n
~a (t+z2/¢c,)/T
+ 2 a"l] - e : }

n=1

@ -a” -1/c T
- 51"{1 g /"’}]H(t-:'co) (C. 1)
1

n

wilere clz,t) stress at depth z and time t,

Oc"t/T - stress input at z = 0,
po peak applicd stress,
Cy wave velocity corresponding to the portion BA in
Fig. C.1,
Co wave vclocity corresponding to the part OA in
Fig. C.1,
- o ¢y/cg =1 .
cy/co + 1
T exponential decay constant of the applied stress, and
H symbol for Heaviside step function,

Equation 1 shows the stress at any point to consist of ithe sum of waves
propagating in both directions. The front of the stress wave propagates

at the velocity cq.

Let G be a typical term in the series of Eq. C.1, i.e.,

-b(riz‘cl

)
G = e H(t = z'cy) (C.2)

where
,‘n

T

b = (C.3)

If G denotes the one-sided Fourier transform of G, then

[e o]
: -uut-bt*b:/cl )
G - e H(t - 2 Co)dt

0
~liweebecre8)] /ey

e

(C. 4)

i'l) + b
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where
ﬁ = ¢,/ (C.5)

To apply the correspondence principle, it is necessary to replace

co by [oJo(iw)]-l/z and ¢, by [oJl(iw)]-l/z, where o is the density of
the material and Jo(in) and J,(iuw) are the viscoelastic complex compliances
of the parts OA and AB of the compacting characteristic shown in Fig. C.1.
To minimize the number of parameters and to simplify the analysis, it is

advantageous to make

Jo i) i “1 ! . (C.6)
J, (iw) ¢, J& B

The complex compliance of the three element viscoelastic model is

given by (Bland??).

Jw) = f— - = |l - — (C.7)

1
E,

where E, and E; represent spring stiffnesses as shown in Fig. B.12, and

~e

is the viscosity of the dashpot.

If one introduces the notaiicn

A= E) E,
Hy w E,
then
,( ) F f )y ltfl)}ll
vod(iw = e ] + -
Eu"/ A 4 ,‘)2“% )\2 + '4)2}1f
kl(') = lkz(:) (C.8)

where ky(1) and k,(;) are the recal and imaginary parts, and k,(:) is

essentially the reciprocal of the wave velocity.

If Eq. C.8 is substituted into Eq. 4, the transform inverted, and

the real part sclected, onc obtains
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@ -hz(m)(uz —kl(a:)bz(liﬁ)

. 1 e e (b cos wr + @ sin wr)dt
(s - : (C.g)
' 0 b2 + (1)2
where
|
T o=t = ozk(w) + = k,(w)bz(]l t f3) (C.10)
w

The cxpression for the general case then follows as

—ky(w)ar sk (w)a™z1-8) /71 .
e e ?a coswrl"'wsmwrldw

7z, t) I
pO ;r. E e aZn
n=0 - +w2
T®
0
@
ko (wlwe -k, (w)a" 2 (] Tf1
l ® e 2 )Ie j LENE RN (—a" coswr2+wsinwr2)du
+ - "
T E a2n
n=1 — +w2
TG
0
(C.11)
where
k,(w)
T,o= ot - zk(w) 4 a”z(1 - BY/T (C.12)
w
k,(w)
T, = t - zk(w) * a”z(1 + B)/T (C.13)
@
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The expression in Eq. C.11 was programmed for numerical evaluation
of the integrals. Results obtained using this analysis are given in

Section C.4,

C.3 Justification for Use of Correspondence Principle

Maclaurin's theorem may be used to show the nature of the approxima-

tion obtained by using the correspondence principle.

Let F(z,t,a,u;) be the correct solution to the problem and
F,:z,a,ux) be the solution given by Eq. C.11, The parameters a and
wy Which measure the amount of compaction and viscosity, respectively,
are to be small, When either o+ =0 or u; - 0, Eq. C.11 is the corrcct

solution,* 1i.,e,,

Frlzot,0,u) = F(z,t,0,4) (C.11)

Fl(z.t.i,O) = F(z.t,a,0) (C.15)

Expand both Fiz,t,.,u) and F,(z,t,..u) as a Maclaurin series, i.c,,

F(z,t,0,u) = F(z,t,0,0)
oF
t ) (2 t,0,0)
A
+ BF( t.0,0)
/Ll a;[.] &y b YUy
® 1 3 a\"
+ 2 = Jla=+ u=)F(z.t,0,5)y.zn (C.16)
n'2n!(3’, “ag) 2t L gy

* When u,-+, Eq. C.11 also give the correct solution for any » in
this model,
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Fitz ot a, ) = Fi(z,t,0,0)

BFI
+ @ =—(z,¢t,0,0)
oa

BFl
+ — ,t,0,0
My o (2 )
o 1 9 a\" | .
+ ngz F(a SZ + /,Ls—f) FI(Z,t,g,g)IC::g:O (Ll?)
From Eqs. C.14 and C.15
Fi(z,¢,0,0) = F(z,¢,0,0) (C.18)
aFl oF
—_— (2,t,0,0) = =—(2,t,0,0) (C.19)
aa aa
oF oF .
—_— (z,t,0,0) = =— (2z,t,0,0) (C.20)
7S oL,

Thus, F; is a first order approximation to F,

C.4 Results and Discussion

An example of the variation of a stress wave with distance through
the medium is given in Fig. C.4. The wave maintains a shock front for
the depths considered and there is no rounding off of the peak of the wave.
The pcak stress decreases, and the wave tends to lengthen gradually with

depth.

The attenuation of peak stress with depth is shown for one case in
Fig. C.5. The attenuation appears to be approximately exponential. This
attenuation should be compared with that obtained using the viscous and
compacting dissipative components separately. For comparison, curves
from the linear hysteretic and standard linear viscoelastic models have
been provided. The combination of the two dissipative parameters gives

a higher attenuation rate, as expected. A comparison of a number of
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attenuation curves indicates that the nondimensional stress from the

viscoelastic compacting model, “yer c€an be predicted approximately by
ve T w96y (C.21)
where .LH and ‘SLV are the nondimensional peak stresses from the

lincar hysteretic and standard linecar viscoelastic models, These peak

stresses (see Ref 1 and 3) are given by

cw o L= S oany ezt mesaiea) (C.22)

and

, 0 a’' .
"SLy ¢ (C.23)
where  t is the arrival time of the stress wave, and
A
T t /T 1is the nondimensional arrival time.

p a

Relations C.21 and C.23 arc applicable in the range of depths and viscos-
ities encountered in this study. However, to understand the behavior of
the model outside this range, it is necessary to discuss some of the pecu-

liarities of the standard linear viscoclastic model without compacting:

The first step is to introduce the loss angle, §, for the standard
lincar viscoelastic model. This angle (Ref. 4) is given by

[@343] E
Y 0
tan 5 = (C.24)

3 / 2 e 2
£, Ey + (B, E)? + () E)

The equation indicates how the dissipative loss is related to frequency,
.. and to viscosity, T, For infinite frequency, infinite viscosity,
scro frequency, or zero viscosity, there is no viscous dissipation. Loss
occurs only for some intermediate frequencies and viscosities. The maxi-

mum dissipative loss occurs at

— - VE E, t (EJE)? (C.25)

In wave propagation, the fact that there is no dissipation at infi-
nite frequencics means that a shock wave front is not smoothed out but

remains a shock at &'l denths, The magnitude of the stress associated
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with the shock front decreases with depth and is given by Eq. C.23. Down
to a depth, Z this stress is the maximum stress of the wave. This

critical depth (see Ref 1) is given by

| 21 d
o o 2) - .ﬁ/ (C.26)
o 1 + 4E /E, \E;] py dt] -
where g% is the initial rate of decay of applied pressure,
t-o

po is the peak applied pressure.

For larger depths, the peak stress occurs at some time after the shock
front. At a considerably greater depth, the wave again appzars to have

a sharp front and the peak stress travels at co/V E,/Eo.

Similar effects can be expected to occur with the viscoelastic com-
pacting model. For a very large and very small viscosity, all the
dissipation can be attributed to a. The stress wave front maintains a
shock front tc all depths, but beyond some depth, the peak stress may
occnr sometime after the shock front. The particle velocity attenuates
at the same rate as the stress for both the linear hysteretic model and
for the standard linear viscoelastic model down teo the depth given by C,26.
Hence, it can be expected that the particle velocity and stress attenuate
at the same ratec in the viscoelastic compacting model down to a depth at

which the peak does not occur at the shock front,

C.5 Response in a Dynamic Compression Test

An analysis was made of the response of the viscoelastic compacting
model to a pressure pulse in the form of a sinusoid. This analysis was
conducted to provide a means for interpreting the experimental stress-

strain data obtained from compression tests on soil samples (App. B).

The whole model element is assumed to receive the loading simulta-

ncously so that there is no wave propagation. The loading function used

is
Oo / O’l
od 191 [l - cos wt * \l ‘—>(l + cos wt)H(t - n‘w)] (C.27)
2 T
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where

-

0

t
H

is the peak applied stress,

is the decrecase in stress after the peak,
is the natural circular frequency,

is time, and

is the Heaviside step function.

The loading (shown in Fig. C.6) approximates very well the actual load-

ings obtained with the MIT tester.

STRESS

The strain

where

2r
W

€|«

TIME

FIG.C.6 FORM OF THE ANALYTICAL LOADING

(- )
o o - —_
= e 4 - \] - n
" E, E ‘

1

is the stress magnitude of the step,
and E; arec moduli defined in Fig. C.2, and
is the viscosity associated with the dashpot

in Fig. C.2.
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response to a step function of stress on the model is

(C.28)
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Using the superposition integral, the strain caused by the loading in
Eq. C.27 is

91 /1 1
== = +t—(1 * cos wt)
2 Eo E,
E
E, - —L(wr-m)
oyl= = sin wt t cos wt * e “7
+ el (C.20)

E \?
w7
This equation is valid between the time of maximum stress and the
time of maximum strain. At maximum strain, locking occurs, and the unload-

ing parameters must be used to find the strein response., The time of maxi-

mum strain is given by
= D (C. 30

where the strain is given by the expression in C.29. The conditior is

% el -'.tl i A . .
—_ e " t - 1je tcos wt; = VO A=+ AL sin wt, - 0
o oy {

qQ
o

C.30
where [ = E} (3
R
t‘z -t = /., the lag time between peak stress

and peak strain

- E;/Eq

The lag time can be determined from the difference between peak times on
the stress-time and the strain-time curves obtained from the compression
tests, Then Eq. C.31 provides one condition on ) and 7. A sccond con-
dition was generated by taking the maximum value of » for which a solu-
tion could be obtained for [ from Eq. C.21. For smaller values of -,

two solutions of [ are obtained; for larger values there are no solutions.
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Hence, by the choice of this second condition, a unique value of ([ |is
required. The values of ) obtained by this procedure are in the range

found by Whitman,1®

A complete graphical solution of Eq. C.31 and the second condition
are given in Fig. C.,7. A minor variable in the solution is the ratio of
o/ "1. Given 1t£ and -°/~1, C = E,/mﬂ and Awtzcl/so can | found

from the figure.

The next step is to find the compacting dissipative parameter, «o.
The parameter, «, 1is given by the ratio of the slopes at zero strain

rate and, hence, by the ratio of the moduli, E, and E,.

1 - vE/E,
a = D —— (C-32)
1+ “Eoliz

The slopes of the stress-strain curves would be proportional to the moduli
Eo and E, if there were no viscous efforts. The rate-dependent character
will modify the proportionality to some extent. The slopes will be evalu-
ated at mid-height of the unloading stress-time loop because the viscous
effects will be minor at that stress level (see Fig. B.11). To evaluate
these slopes it is necessary to continue the loading analysis to determine
the strain at all times during the initial loading and unloading. In the
analysis it was assumed that E,;/Ej5 = EO/E2 to reduce the number of

parameters, For the initial loading, the strain is simply

Eit
El . '+
ol— sin wt “cos wt te '
(70 1 1 (1’77
_— (1 = cos wt) -

f ui
e = — + = or t <=
2 0 El E] 2 w
2£ 11 + | —
! wn
The slope of the stress-strain curve is (C.33)
do [a
S - E/—F- (C.B‘;)
! dtl 3t

where - is given by Eq. C.27,

The slope was evaluated at a loading stress level equal to the mid-height

stress of the unloading stress-strain loop; hence,
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NONDIMENSIONAL VISCOELASTIC PARAMETERS:

oty ond 54

o
~

o
-

0.4

0.3

0.2

| | l E

0.1 0.2 0.3 0.4
LAG TIME , o,

0.5

TA-5184 -5I

FIG. C.7 GRAPHICAL SOLUTION FOR VISCOELASTIC

PARAMETERS FOR THE VISCOELASTIC
COMPACTING MODEL
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Uo Ul )

(1 - cos wt.)

1"
q

o
|
I

o
> (C. 35)

or

"

|
[y
+

cos wt
L]

The slope of the loading curve at the time given by Eq. C.3¢ is

JRe)

s, - 2 —  (C.36)
(En) E\E, Ey um O To -,
L+l —] + - ] - — === 7 'n
onl e e o, o,

where tm is to be evaluated from Eq. C.35.
For convenience, the sum in the denominator will be designated by X,

1
E 1+ (")
0
s il

- (C.37)
! b3

1

The strain during unloading is

1 + & ! ! + 1 (1 + )
¢ = o, -] - = -
’ E2 EJ) 2 <E2 EJ) cos

"E—l' -E.-L(a't ) '5(([("77-.,( )
oo\l + e @7 Je «m L, wm .

-

E
2E, 1 + | —
wn

E E
El ) -—ltl -f(wt-w-wgl)
o\~ sin wt, =~ cos wt; te 7 e “7

1
m

SI tn
—,

2, 1 +(
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e = o L Rl

A A g

E3 . -Ji(mz-n-Lrl)
Ul - sin wtl -~ cos wtl e K
AN
2611 +{ —
. wT)

E3
oc\— sin wt = cos wt

(C..38)

The slope S, is cvaluated at the middle of the unloading cycle; hence,

at r t 3-/2., The slope is

>

T. = |\ 7™ sin «t, T cos .t e
g l 1

=
+
N
5|
S~———~,

E,m ) [ -
Ey Ey | E o -—— o e P
S |m——sinwt, teosut, {—e 7 t—=1lle ' [
1'7" El 1,‘7,‘ (&} I (v 1

When the sum in braces is replaced by 2,, Eq. C.39 becomes

)
E H\—
2 1 ar)

>
]
-

S,

-

The ratio of the two slopes is

V)

%2l

771
—

—

-
-
-

[7/]

[
o

™M
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Because X, contains the ratio Eo/Ez, Eq. C.41 cannot be solved
explicitly, However, Eo/E2 is approximately equal to S,/S,. With this
as a first approximation, the correct value of EO/E, can be readily

obtained by iteration. Finally, a can be determined from Eq. C.32,.

This analysis provided the basis for determining both the visco-

elastic and compacting parameters from the soils data.
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NOTATION FOR APPENDIX D

A = coefficient of stress-strain relation (bars)

B = coefficient of convex portion of stress-strain curve

b = coefficient for exponential decay of hump

c = Lagrangian wave speed (gm/cma sec )

Eo = permanent set
; F(m) = strain on shock front

Fy = coefficient of variable term in approximation to F

f(eg,m) = stress-strain relation

G, H = functions found in the solution of the initiation
J problem

G, = coefficient of the approximation to

= acceleration of gravity, (cm/sec?®)
, dJ = arbitrary constants

m = function defined following Eq. 44

hy . h, = proportionality factors
v K = (R-1)/(R+1)

M(ln z )| = G(z)

m = mass per unit cross-section area (gm/cm?)
N = 1/n
N, = 1/n,

. n = expcnent giving curvature of stress-strain relation
n, = curvature parameter for hump on stress-strain curve
ng = curvature of unloading stress-strain relation

/ P = preload on top of column (bars)

- p = (¥/So = 1)V - (y/So + 1)"

Q = peak applied dynamic stress (bars)

q = (v/s0 = 1N + (y/5 + 1)

R = y/so

R, L = subscripts tor approximations made on the basis of
points to the right and to the left

; r, s = characteristic coordinates
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Vo vV,

position of shock front in r-s coordinates

dm/dt

fp(O)Q/E°! 1/2

gime on tae shock front

decay constant for loading (sec)

time (sec)

shock velocity

initial modulus

subscripts for apprcximations made on the basis of
points above (upper) and below

particle velocity on the shock front
particle velocity

particle velocity on front and back of shock
arbitrary function

depth in the column (cm)

in 7|

an arbitrary variable used in defining M

l’o‘“Qn:/(so - o)) /3

(8/a)"

strain

static strain

-m (R - 1)

-m (R + 1)

YVo/2Q

position of the shock front in time and depth

density (gm/cm?)

initial density
density on front and back of shock

stress (bars)

static stress (bars)

struss on front and back of shock
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Appendix D
NONLINEAR HYSTERETIC MEDIUM

D.1 Introduction

The analytical work described here was directed toward two aspects

of wave propagation:

1. Effect of geostatic stress on attenuation of stress.

2. Wave front formation.

Geostatic stress (initial stress or preload due to overburden)
alters the wave velocity and makes the soil stiffer than it would be if
it were initially stress free. Usually the geostatic stress causes the
wave velocity to increase with depth. Wave propagation through a
medium with properties which vary with distance may have characteristics
considerably different from that through a homogeneous medium. Concern
about these characteristics prompted a wave propagation analysis of a
model with nonlinear loading and unloading relations similar to those

of soils. The effect of geostatic stress was considered in the analysis.

Wave front formation presents an anomalous situation in one-
dimensional wave propagation. As waves propagate through soil, the
rise time (time from zero stress to the peak) tends to increase.
However, in one-dimensional compression tests, soils exh:ibit stress-
strain relations that are predominantly concave to the stress axis.
Such a relation indicates that rise times should decrease as the wave
moves through the soil. To explain the lengthening of the rise time
then some other factor must be introduced such as effect of loading
rate, or of preload. When soil with a preload is dynamically loaded,
the stress-strain relations show a small initial portion that is convex
to the stress axis. One of the goals of the study was to determine the
influence of this convex portion on the rise time of the propagating

stress wave.

With these two goals in mind-—investigation of the effect of
geostatic stress and of wave front formation—a study was undertaken of

a theoretical model with nonlinear loading and unloal.ing stress-strain
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relations but with no time-dependence. The loading relation could be
either wholly concave to the stress axis or initially convex and then
concave at higher stresses. The unloading relation was entirely concave
to the stress axis. With the wholly concave loading relation, the cffect
of geostatic stress was considered. Solutions fcr the wave propagation
problem in this medium were obtained for a loading with a shock front

and an exponential decay of pressure. Thkis solution provided a deter-
mination of the effects of geostatic stress and curvature of the loading

relation on the attenuvation of stress in a propagating wave.

The loading relation which is initially convex and then concave
was required to study the matter of wave front formation The computer
program for the solution of the wave propagation problem with this
loading relation was only partially completed at the close of the
project. Therefore, no results are avallable on the subject of wave

front development.

D.2 Governing Equations

D.2.1 General Equations

We considered a column of material with cross-sectional area acted
upon by gravity and an applied load. Thus, one space dimension and the
time are neceded as independent variables., Because the stress-strain
relation for cach particle depends on the history of the particle, it is
useful to introduce a Lagrangian space .oordinate that is a constant for

cach particle,

Let x(cm) be the distance below a fixed reference level and t(sec,
be the time. For the Lagrangian coordinate, let m\gm/cmz, be the mass
per unit cross-sectional area between the top of the column and point x
in the column. Thus, the Lagrangian coordinatc represents a product of

density and depth in the column.

The loading, or applied stress, is assumed to be

(D. )
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where Q and T, are positive constants and P 1s non-negative. With

the loading, a shock front will develop at the surface at t = O,

If - (dynes/cm’) is the stress taken positive for compression,
then the equation of motion is

x = g - o, (D.2)

tt
where subscript denote differentiation and g (cm/sec’) is the accelera-
tion of gravity.

The continuiiv relation can be determined using the definition of

density, np , and the Lagrangian coordinate,

s x, 71 (D. 3)
and the definition of strain
pto)
¢ = lm=— = 1= pl0)y (D.4)
L
(
where 0 °) is the density in the stress free state. Then

¢ = 'p(O)x = ',(O)U (D.5)

nt

D.2.2 Constitutive Relations

The static relation between stress, - , and strain, ¢ , 1s taken to

be
o = Ae" (D.6)
With A (dyne/cm?, and n (dimensionless) positive constants. At time

zero, the column is at rest under gravity and an applied load of

P (dynes/cm?,. Hence, 08 = P+ g (D.7)
d 1
an P + n
¢ Us) = (__.A Mg) (D.B)

where the superscript (s) 1indicates static conditions.

For dynamic loading, the constitutive equation is assumed to be

n

1 o
o= Aen 4 Blet] ez te) - q) et Leve -] (D.9)
where B and b are positive constants., The equation applies only

where € > 0., The form of this equation has been chosen to simulate
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the combined yielding-stiffeniag stress-strain curve that has been observed
for sand. The first {erm gives the basic stiffening behavior. The

second term provides an initial "bump", the importance of which is con-
trolled by the initial static strain and hence by the static stress (see
Fig. D.1).

OYNAMIC STRESS -
STRAIN CURVE
STARTING FROM
PARTICULAR
STATIC STRESS

STATIC STRESS-

Z] __— STRAIN CURVE

c(l) €

RA-4637-4

FIG. D.1 S-SHAPED STRESS-STRAIN CURVE FOR SOIL

The tangent modulus right at the start of the "bump' is given by

dc - 4
u = = pdle)ml 4 gleted] ]

' de

el

-1
"

n=-1

~+(s) 2 L Us) n
= nA[ . ] & B[-j;‘ (D.10)

This tangent modulus should be related to the velocity with which seismic

level waves propagates through soil. From the available data (Hardin
and Richart?3, ] it appears that this initial tangent modulus should vary

as -(S)'/2: that is, n, and n should equal 2. In the calculations

it was assumed that n; = n,

Equation D.9 will give combined yielding and stiffening only if the
tangent modulus goes through a minimum. The condition for the existence
of such a minimum is A/bB < 1. Otherwise the curve will always be

concave to itz stress axis.
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For unloading, that is, for < 0 the constitutive relation is

€t
o = Cle - E)"? (D.11)

where C (dynes/cmz) and n, are positive constants and E corresponds
to the residual strain when unloading is completed. At each point, E is
determined by equating D.9 and D.11 at the peak stress. The unloading

relation was formulated as a reasonable representation of observed stress-

strain relations in sand.

The constitutive relations, Eqs. D.9 and D.11, show that the stress
is a function of geostatic stress and the residual strain, which is a
function of the previous peak stress at the point. Hence, the constitutive
relations will vary with depth. To emphasize this functional dependence,
we write - = f(e,m) where 1t is understood that either D.9 or D.11 is
used depending on the sign of €y
The constitutive relations are formulated only for one loading and
for onc unloading. Due to the nature of the wave propagation problen,

it was not necessary to formulate a relation for a second loading cycle.

D.2.3 Characteristic Relations

To develop the characteristic coordinates and equations, the

equations of motion and continuity are presented in the following form:

v, g = (fe, *f.) (D. 12

3 = ‘,O(O)v_ (D.5)

t

Following Courant and Friedrichs?4 we form a linear combination of

the two equations, say H times the first plus J times the second

Ho, + p'®y_ +Je, + f He = H(g - f,) (D.13)

This equation is in characteristic form if both v and ¢ are being
differentiated in the same direction, that is, 1f

H o J

0 g fH

(D.14)
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Put c? = O(O)fe so that the requirement of Eq. D.14 is
J = tle/p'®)]H (D.15)
Substitution into Eq. D.13 gives

v, t cv, t [c'p(o’](e‘ tce ) = g~ f, (b. 1o)

Thus, ¢ (gm/c.u2 - sec) 1s the speed of waves in the Lagrangian coordinate

system. Note that the units of ¢ are not length per unit time.

The characteristic coordinates r and s are introduced by
requiring, for any function w, that wt - cwm be proportional to wr

and LR be proportional to L Thus,

. - k7D - . , + . = . ) i
v, cuw, hlu, and u, cu, h2“s (h. 1

where h; and h, are proportionality factors. By letting w =t and
then m, it follows that

1 .
R T S TR TS
r h, r h, * h, h,

Eliminating %, and h, from D.17 and D.18, results in the following

characteristic relations:

Along characteristics where r 1s constant,

m = et (D.19)

< s

v, + le 00 (g = f ¢, (D.20)
Along characteristics where s 1is constant,

m ST (= 21

r r

v,o= fe 00 e, (g - f ¢, (D.22)
The r = constant waves are outgoing waves along which m increascs
with t. The s = constant waves are ilncoming since m decreases as

t increases. Not that the coefficients c, c/0(°/, and g - £ in

D.19 to D.22 are fuactions of ¢ and m,

For use in the numerical calculations, D.19 - D.22 must be approx-
imated by finite difference equations. In the r-s plane, we will set

r and s as the vertical and horizontal coordinates, respectively.
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Thus, in D.19 and D.20 we consider a left point, L , and a right point,
R , in approximating the s-derivatives of the variables ¢, m, v, and
t. The difference equations we shall use are

mp = omp = clty = t,) (D.19a)

vp —vy t le U0 e ey 2 (g = f 0ty = t,) . (D.20a)
Eqs. D.19a and D.20a best approximate D.19 and D.20 when the coefficients
are evaluated for the averages of the values of ¢ and m at L and

R. Similarly, for an upper point, u , and a lower point, b , we have

m - m = —c(t ‘tb) (D.21a)

—€,) = (g = falt, =¢t,) . (D. 22a)

D.2 4 Shock Equations

Now consider a shock front moving relative to the material enveloping
at a time, t , the particle with Lagrangian coordinate*, m=m(t). Then
if x(m,t, 1is the position of the particle with the coordinates m and
t, the position of the shock front is given by

o= xlm(t),t]

and, thus, the shock velocity is

/ d d
U= v = sy =, 02w s -t 2 ey (D.23)
" odt ! dt dt

We may cvaluate the expression for U on elther side of the shock front,

obtaining the relationship
dnm

dt
where the subscripts 0 and 1 refer to the front and back sides of

I T [,0(0)]-1(61'60) (D.24)

the shock. For the shock front that moves into undisturbeu material,

Vo = 0 and g4 = ¢(5) so that if we write S for g: , we have

A0 - g ls))g (D. 24a)

oo 1

Equation D.24 is the "kinematic" shock condition, which replaces the

automatically satisfied condition of conservation of mass. The equation

* Courant and Fricdrichs, Supersonic Flow and Shock Waves, pp. 133-134.

143




for conserving momentum across the shock 1s found by equating the net
rate of change of momentum across the shock front to the net applied

force there. Thus, we have

Polvg = U2 = p (v, = U)? o, ma, . (D.25)

Using D.23, D.24, and the relation 7! = (1-6)/0(0), equation D.25
reduces to

o, = 0O = S(v, = vy,) (D.26)

Again, for the shock front that moves into undisturbed material, v, = o
and oo = -(S) so that

@, = ol IR v, S (D. 26a)
Equations D.24 and D.26 will be referred to as the shock equations and

in the case mentioned will be specialized to D.24a and D. 26a,

D.3 1Initial Values and the Linear Solution

The characterlistic plane of Fig. D.2 has the characteristic coordin-
ates of r and s. The definition of the coordinates is completed by
setting r = s =t on the noncharacteristic curve, m = o , corresponding
to the upper surface of the material. The other noncharacteristic curve,
o , represents the position of the shock front in r-s coordinates.

Numerical subscripts will now refer to points in Fig. D. 2,

With °, =P+ Q, €o 1s found from Eq. D.9. Since both forms of
stress-strain relation hold on the shock, D.9 and D.11 may be equated to
give Eo. The shock equations D.24a and D.26a can then be used to give

values of v, and S,.

Before the numerical method can be applied, variable values must be
obtained at point 1. Series representations for these values are developed
in the following discussion. We see that in the case of interest, P = 0,
the second term of D.9 is exponentially small near the surface. Since
the series are to be expanded as functions of m about m =0, D.9 is

conveniently approximated by

o = Ae” (D.27)

144




It should be noted that retention of the second term of D.9 in the case
P = 0, while complicating the algebra, presents no difficulty to the
analysis. For simplicity, we shall set P = O 1in the discussion and
use D.27 as the compressive stress-strain relation. Furthermore, the
shock moves into undisturbed material initially so that shock relations

D.24a and D.26a apply.

3 -7 B 10 FIRST
0 PRECURSOR
|
0
3
TA-5184 -68

FIG. D.2 THE CHARACTERISTIC PLANE AND POINTS DESIGNATED
IN THE ANALYSIS
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Since both forms of stress-strain relation hold on the shock,
€0 = (Q/AN and Eq = ¢¢ - (Q/C)N’, where N = 1/np . The more
corvenient form of D.11, ¢ = Q[(e-E)/(eo-Eo)Jna, may be linearized in
good approximation to
o = Q[1 - n, * nyle = E)/(ey = Eo)] (D.28)
so long as the shock stress and the stress level behind the shock are

close.

Using m as the parameter along the shock, define the sirain and
particle velocity on the shock by ¢ = F(m) and v = V(m), The shock

relations D.24a and D.26a may be rearranged to read

St = plOIAF™ - ng)/(F - (mg 'A)V) (D.29)

y? (AF" = mg)[F - (mg/A)N] O (D.30)

Since S 1is the Lagrangian shock speed, the shock lecus t = T(m) s

found from .
T - ,és‘dm . (D.21)

The flow behind the shock is govcrned by the unloading stress-strain
relation D.28 and equations of motion (Eq. G.12 and G.13 of Ref. 4, which

read v, = g-o0 (D.32)

Em 8 -pl0y . (D.33)
The use of D.28 permits reduction of the continuous flow equations to
Utt = 7’0’
where 3 = p(°)Qn,/(e° - Eg). The general solution of this wave
equation is conveniently written

o = Q1 +G(m=-yt) + Him + yt)] (D. 34)

where G and H are functions to be determined.

The stress given by D.34 can now be substituted into the equations
governing flow behind the shock.

v, = g ~QIG'(m - yt) + H'(m + yt) (. 35)
v, = [F1p'%%, = (e, —Ega, 'V, = (@G (m - yt) - H(n + )]
(D.36)
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where the primes represent differentiation with respect to the arguments,
m- 3yt and m + Yt.
Using the shock front as a reference point, D.35 can be integrated with

respect to t,

v o= Vgt -T) + Q)G =-yt) -Gm=>T) = Hm tyt) + Hnm + T)]
and differentiated with respect to m to give (D.37)
v Vs gT 4 QG (= yt) = (1 = 5T )G (m = wT)

= H'(m + yt) + (1 + yTHH' (m + »T) ] . (D. 38)

The result of equating D.36 and D.38 is
(1 =, TG " (m = »T) = (1 +T"YH' (mn + »T) = (Y Q)(V' = gT")
which can be integrated giving
Gm = ,T) = Hm + 5T) = (5 Q) [V = V(0) - gT] . (D.39)
Also, on the shock = = AF" and t = T so that
1 +G(m = HT) *+ Hm +T) = (AQF" . (D.40)

Equations D.39 and D.40 can be simplified by noting that at the surface
= Qe't/To so that

-t TO
1 + G(=yt) +t HHt) = e
or more generally
: - ()T()i
1 + G(=x) + H(x) = ¢ (D.41)
Thus, H may be eliminated from D.39 and D.40 to give
. = : (st YT (YT ,)
Gim = ,T) + G(-m = ,T) = (O Q)[V - V() - gT] t e il 0" (D.42)
and
~(a+yT)/(¥T,)
Gmn = ,T) = Gl=m = ,T) + e 07000 gy (D. 43)

From the forms of S, V, and T as functions of F and m, it may

be surmised that, with two term accuracy, F = ¢4 + F,mN. From this,

putting x = mN/e0 and ¢ (g/A)N, one finds

S = S+ [n = DF +51(x'2)) . 82 = pl9/e,
Vo= V{1l + [(n + DF; = 8]1(x/2)} , V2 = Qe,/p'Y
T - (nS){t = [n2n+ DIln - DF, +5]x}
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To the same accuracy, G(m) = G,o(-m)N so that putting

p = /Sy - DY - (y/S, + D¥ g = (S, - DY+ /s, + DY
D.42 and D.43 read

PGy = nF, /ey

G, = (w/e)ln + DF =81 . w - LV, 20

From these G, may be eliminated giving, finally,

F, = wubp/lu(n + 1)p = nql

With F; known, values for F, S, V, and T at point 1 are obtained as
functions of m; by using the above expressions. Of course, my; must be
made small enough so that resulting values of F, S, V, and T are
consistent with th~ simplifications made in the stress-strain relations

D.9 and D.11.

Linear Model

The above results can be extended to yield an analytic description

of the flow if n =n, =1 and B = 0, In this case,

S2 - ploig
Vi o= A(F - mg )% O
T = nS,
W2 = ot0)g
Define R - v'S, . (note that R > 1)
£ = -=m(R - 1)
n = =m(R t+ 1)
k= (R-1) (R+1)
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Then D.42 and D. 43 read

A 2 /(T )
GEY LGy - 2 == Fm) - Foy) - == b0 o
Q Ll S,

’3/(770)

G() = Gl + AI"( )
) = Gy e = - m
Q

Remembering that F(o, = Q A, eliminate F(m; from the above equations

and reduce to

n/{yT.)
G(n 2¢R , 0" -
(k) Sl g _ S !
QR - 1) k
Transform by letting M(1ln|z|) = G(z, , for 2z < o to obtain
=il
\ nt yT,.)
Ml y 2R 0" -
Wiln |, + In k) S 1) + £ IT)’ o ]
& Q(R2 - 1) k
With d = - 1n k, transform again according to y = In|n| obtaining the
difference equation
M(v)
Wiy - d) = toh(y) (D. 14)
where
2R ] ety T )
hiyv) [-;—]4" - [(' Yol l]
OR ~ 1) k

It follows that M(-v) = o. A simple recursive process yields

n -1
"My~ nd) My + k> kh(y - jd)

J =0

which in the limit as n —+ « reduces to

Wiv) v S k'hiy - jd)
) v
or, in terms of G, T, and k
HER kS k'hCInln] 4y n k). (D. 45)
;0

The series in D. 45 converges exponentially, allowing efficient numerical
evaluation of the function G. The values of the flow variables are
then casily obtained as follows:

Equation D.41 is a functional relationship between G and H so
that we may consider them equally available. From D.29 and D.31

p—

T = mhpt0ly (D. 46)
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so that in the m-t plane the shock locus is a straight line. Then D. 40
may be solved for F, giving
F = (QA[1+Gim - yT) + H(m + yT)] (D.47)
With F known, Eq. D.30 reads
V = (AF - ng) /7004 (. 18)

Thus, the variable values on the shock are given by D.46, D.47 and D.48.
Behind the shock, v 1is obtained directly from Eq. D.37. Equating the
shock relations gives E = F(1 - A/C) so that ¢ may be obtained from

D.34 as
e = E+ QO +Gm - vt) + Him + yt)] (D. 49)

With G given then, the f'ow on and behind the shock is known completely.

D.4 Numerical Method

With the applied stress given by Eq. D.1, discontinuities in stress
and particle velocity will be propagated from the surface at time t = O
down into the medium in the form of a shock front. Initially, the shock
will be moving into quiescent material so that flow computations must be
performed only for points at the surface, in the continuous flow region
behind the shock, and on the shock itself. However, at greater depths,
the form of the compressive stress-strain relation allows the formation
of sound waves, which precede the shock into the material below. In
general then, provision must be made for computation of the flow variables

at points

1) on the surface,

2) 1in the continuous flow regions behind and ahead of the shock,
3) on the shock moving into quiescent material,

4) on the shock moving into continuous flow, and

S, on the first precursor, i.e., the sound wave moving into

quiescent material.

The points referred to in the following discussion are located in
Fig. D.2. Each of the specific points mentioned represents a typical

calculation.
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I - The Surface

With conditions at a general point 5 in the flow known, the flow
variables are computed at point 30 by an iterative process, involving

Eqs. D.21a, D.22a, the unloading relation, D.1l1, and the surfacec stress,

D.1:;
e - (k-1
Th s tomle
k) X (k)
it Pt Qlexp(-tit! T,)]
N
(%0 s Ch ) ogal 2
‘10 E, '[’30 cl
(v 1)
.
1
(k) Bl (k) (k-1) (k)
30 i (3 - €g) * e R, }('30 - ty)

where fi{e.m, is given by (7), c(e,m; = [o(ojfe\e,m,j‘/2 and

|
k) da 4 (k)]
e ‘{q e o “q09 -

-
]
i
o )h—
A
-
-
= »
-
o) — (o —
3 3
- o

(k)
R

RO (f,)

The procedure is repeated until successive iterates agree to some

prescribed precision.,

II - The Continuous Flow Regions

In the continuous flow region ahead of the shock, (he strain rate,
€ is positive while behind the shock it is ncgative. The calculations
in the two regions differ only in the choice of stress-strain relation,
which must there reflect the sign of et. The function E(m) is computed
at points on the shock as part of the shock calculations. Values of E

usced in the unloading relation behind the shock are interpolates of the

shock values,

With conditions known at points 3 and 4, the flow variables are

calculated at point 5 by iteration of the coefficients, ¢ and fm ’
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in Eqs. D.19a - D.22a. The iteraticn scheme is conveniently written

(k) = (k-1) (k)

me - my, = C, [ts - t3]

(k) - (k-1) (k)

me -m, = --c4 [ts - t‘]

Uén) -y [C;h-l)Ap(O)][E;h) _ (3] - (g - R;k-l)][t;h) B ,3]
v;h) N [Cik-l) p(O)][(éh) _ t4] _ [g _ Rik-l)][t;kb _ "]

c{0.5ley , +ef*'] 0.50my , + mgt])

T 03y
AL - fi0sle, v et) 0.50my , ¢ alt])
(0) -

The process 1s continued until successive iterates agree to some prescribed

precision.

For interior points such as 2, the flow variables are taken as inter-
polates of the variables at points 1 and 3, i.e., if X represents any of
the variables m, t, v, or ¢ then X, = EX, + (1 - )X;. The inter-
polation constant ¢ 1is chosen so that the mesh remains uniform along

the shock front.

111 - The Shock Moving into Quiescent Material

If the conditions are known at point 3 behind the shock and point 4
on the shock, then the flow variables at point 20, the intersection of the
shock with the horizontal characteristic (sec Fig. D.2) through point 5,

satisfy the following set of difference equations:

-m - (-(120 - rs)

(€9 - €5) = (g - f )0ty - t¢)
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20 Y20
990 - T30 ) = ¥p¢Sy,
where ~,o 1is defined by D.9 and
e - r[.l_?(ts t ey % (m, mwﬂ]
] 1

Since T and fm represent conditions behind the shock it is understood

that the unloading relation applies in thelir evaluation.

The variables v,9, to, and S,, may be eliminated from the above
set leaving two equations that can be solved numerically for €, and
myo. Since both forms of stress-strain relation hold on the shock, D.9
and D.11 may be equated to give E;,. Back substitution into the

original set of equations yields the remaining flow values.

IV - The Shock Moving into Continuous Flow

The vertical characteristic through point 8 meets the shock locus
at point 9. The horizontal characteristic that intersects the shock
locus at point 9 passes through some point 12, whose variables are

defined by

X, X, + (1 - HX,

where X 1s written for m, t, v and ¢. The two equations along the

horizontal characteristic,

mg = my oo (g - ty,)

Gy
t  — - €

= (o = (g - Rty - t),)
3

Yoy - U2

the two equations along the vertical characteristic,

m, - m = cR(t9 - ty)

|
m
~—
[}

(g - Rp)(ty - tg)
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and the two shock equations

(0) _ ;
p O vgp - vg ) = (Egp - €4,)8,

Top — Tgr = (vgp = vg )8,

provide six more relations. A second order difference form of the
shock speed is
0 5(S; + 8;) = (mg - my) (g - t;)

9 9

9
In addition, the shock speed and the sound speed at the front face of

the shock are equal, giving

felegpmg) = (0gg = Tg,) Legy - €g;)
for a total of twelve equations in the twelve variables m;,, t,,, vy,,
€12, My, tg, Vap, €ap, €9 , Sy and 5. The subscripts L and R on the

variables v, ¢ and ¢ indicate the left and right sides of the shock

locus, S . Also

[ 1 l .
¢, * CLE (G 5 (my, + mg) ] fle.m) given by (D.11)
[ 1 1 : :
cg ¢ 3 Uegrtdenl = (mg + m) [, fC.m) given by (D.9)
1 1 :
R, f. 5 (€5 * €4, ) 3 (m, * mg) | fle.m) given by (D.11)

1 1
Ry - f.[; (R < (mg + my) ] fle.m) given by (D.9)

The system can be reduced to four equations in mg, €9y, €op) and
€ and solved numerically. Back substitution yields the remaining
variables. It should be noted that if F£ < 0 then point 12 is not

physically between points 6 and 7 in Fig. D.2.
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V - The First Precursor

On the leading precursor ¢ = € m, so that

| |
q ([; (£.q5 ¥ €0, = (m, + mu)]
T ]
i f 5 Ceqn ? £g) 5 (m, + my)
my, m, elty - t,)
(' -
vy = top b ey = ) 7 g - RYCey - ty)

/'(0)

may be solved as a function of mg. The function f(€,m) used in the

evaluation of € and R is given by (D.9),.

Logic of the Method

It can be observed that there is a certain freedom of direction in
the solution in the continuous flow regions. That is, this solution
may be carried out along the vertical characteristics toward the
surface or along the horizontal characteristics to deeper points. This
corresponds to obtaining information near the surface over long time
intervals or at greater depths for shorter periods. Since there is
little interest in the flow near the surface, the organization of the
computation is such as to obtain the flow information as economically
as possible at the greater depths of the material by integrating along

the horizontal characteristics.

D.5 Results and Discussion

Results were obtained using that part of the computer program that
was complete at the close of the project. The program was developed by
steps in such a way that useful information could be obtained at the
conclusion of each step. First, the program was written to handle an
applied loading with a shock front followed by a decay in pressure.

The soil considered followed the simple relation shown in Eq. (D.6),

- = Ae". This step was completed. Then the more complex relation of
Eq. (D.9, was used for the soil. This relation introduced a precursor,
which breaks away from the shock front at some depth and which added
considerable difficulty to the solution. At the close of the project,
the program could handle the break-away of the precursor but could not

follow it very far.
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Several calculations were made for the simple nonlinear solid
defined by Eq. (D.6) that is, for the solid with a purciy concave stress-
strain relation. The attenuation of stress and particle velocity were
affected by curvature (n), geostatic stress, duration of loading, and
stress level. The unique feature of these calculations 1s the capacity
to account for geostatic stress, the initial static stress due to the

weight of the soil above.

Curvature of the stress-strain relation is required for the geo-
static stress to have any effect on the wave propagation phenomena.
That is, if there is no curvature, there is no geostatic effect. 1In
combination, increasing curvature (n) and increasing geostatic stress
tend to decrease the attenuation rate. This trend can be seen in
Figs. D.3 and D.4. The ordinates are the peak stress at any depth divided
by the peak applied stress, or the peak particle velocity at any depth
divided by the peak particle velocity at the surface. The abscissas
are nondimensional arrival time: arrival time of the peak stress or
particle velocity divided by the duration, T, , of the applied stress.
The calculations were made for geostatic stress caused by a soil density
of p=1.6 gm/cm’ or for P = o, the case of no geostatic stress,
From these two figures, the curvature and geostatic stress have different
effects on stress and particle velocity attenuation and the effects are

different for @ = 0,2 and < = 0,3,

Becuase geostatic stress is important, so is the applied stress
level, as shown in Figs. D.5 and D.6. An increase in the ratio of
geostatic stress to peak applied stress appears to decrease the atten-
uation rate. The stress level has only a small effect on particle
velocity attenuation. The curve for no geostatic stress is shown for

comparison in each figure.

The duration, T, , of the loading also affects attenuation because
of the importance of geostatic stress (see Figs. D.7 and D.8). The
nondimensional depth, T/T, , eliminates the duration as a parameter for
the case where there is no geostatic stress. But it also brings
together many real depths at the same abscissa. For instance, at

T/To = 4, twice as much depth is involved for the T, = 10 msec as for
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the 5 msec case. Hence, 1so0 twice as much geostatic stress is involved.
Since stress attenuation is ger.. ally reduced by geostatic stress, we
would expect that longer durations would diminish attenuation: this is
verified in Fig. D.7. The next figure shows that particle velocity is

almost completely insensitive to the duration of loading.

We may conclude from this study that, for soil with a marked
curvature in the stress-strain relation, geostatic stress will be quite
important. It will be necessary to specialize an attenuation prediction
to the stress level, duration, and unit weight of soil as well as for

the values of <= and n.
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