AEDC-TR-66-52

saace a

NBEEDING DETEN

п

AEDC TECHNICAL LIBRARY

MAY ,19 ,1966 DEC 9 1988 AUG 5 1991 ----.... ·

CALIBRATION OF THREE VENTURI AIRFLOW METERING SYSTEMS WITH STING-MOUNTED CENTERBODIES AT CRITICAL AND SUBCRITICAL FLOW CONDITIONS

H. E. Wolff ARO, Inc.

May 1966

AEDC LIBRARY AE 40(600)1200

Distribution of this document is unlimited.

TECHNICAL REPORTS

PROPERTY OF U.S. AIR FORCE AEDC TECHNICAL LIBRARY

ROCKET TEST FACILITY ARNOLD ENGINEERING DEVELOPMENT CENTER AIR FORCE SYSTEMS COMMAND ARNOLD AIR FORCE STATION, TENNESSEE

When U. S. Government drawings specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, or in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Qualified users may obtain copies of this report from the Defense Documentation Center.

References to named commercial products in this report are not to be considered in any sense as an endorsement of the product by the United States Air Force or the Government.

.

CALIBRATION OF THREE VENTURI AIRFLOW METERING SYSTEMS WITH STING-MOUNTED CENTERBODIES AT CRITICAL AND SUBCRITICAL FLOW CONDITIONS

-

.

.

4

H. E. Wolff ARO, Inc.

Distribution of this document is unlimited.

ł

AF - AEDC Arnole AFS Tenn

.

. .

FOREWORD

The work reported herein was done as a part of the TF37-GE-1A Military Qualification Test which was requested by the Aeronautical Systems Division (ASD), Air Force Systems Command (AFSC), for the General Electric Company under Program Element 62405214, Project 3066.

The results of the test presented were obtained by ARO, Inc. (a subsidiary of Sverdrup and Parcel, Inc.), contract operator of the Arnold Engineering Development Center (AEDC), AFSC, Arnold Air Force Station, Tennessee, under Contract AF 40(600)-1200. The test was conducted in Propulsion Engine Test Cell (T-2) of the Rocket Test Facility (RTF) from October 25 to 28, 1965, under ARO Project No. RB0411, and the manuscript was submitted for publication on February 16, 1966.

The assistance received from Mr. R. J. Matz of the Research Branch, Rocket Test Facility, AEDC, contributed significantly to the technical quality of information obtained from this test program.

This technical report has been reviewed and is approved.

Ralph W. Everett Major, USAF AF Representative, RTF DCS/Test Jean A. Jack Colonel, USAF DCS/Test

ABSTRACT

An experimental investigation was conducted to determine the discharge coefficient of a venturi airflow meter with various diameter centerbodies installed. A critical flow venturi for which a theoretical discharge coefficient had been experimentally verified was used as the calibration standard. The discharge coefficients for the test venturi without centerbody and with centerbodies of two different diameters were determined over a range of venturi throat Reynolds numbers from 0.32 to 3.20 x 10^6 at a constant inlet air total temperature of 70° F. The experimentally determined coefficients were in good agreement with the theoretical value for all configurations tested. Maximum deviation (0.3 percent) of discharge coefficient from the theoretical value occurred with the venturi without centerbody operating at critical flow conditions.

CONTENTS

																					Page
	ABST	RAC	т																		iii
	NOM	ENCI	LATU	RI	Ξ.			•													vi
I.	INTR	ODU	CTIO	Ν		•							•								1
II.	APPA	RAT	'US.	•								•		•	•	•					1
III.	PROC	CEDU	RE.								,		•		•			•			3
IV.	RESU	LTS	AND	D	IS	CU	ISS	SIC	ΟN									•			3
v.	SUMN	MARY	OF	R	ES	UI	$_{\rm T}$	S									-	-	-		6
	REFE	EREN	CES							•		•					-				7
	APPE	ENDE	XES																		
	Ι.	Met	hods	of	Ca	lc	ula	ati	ion	ι.					•					•	19
	II.	Tab	ulate	d S	stea	ad	y – ;	Sta	ate	D)at	а				•		-			21

ILLUSTRATIONS

Figure

.

1.	Test Venturi Design Details	-	-	•	9
2.	Test Venturi Centerbody Installation		•	•	10
3.	Standard Venturi Design Details	•	•	•	11
4.	Test Article Installed in Propulsion Engine Test Cell (T-2)	•	٠		1 2
5.	Venturi Installation Photographs a. Standard Venturi Inlet Region b. Test Venturi with Centerbody Installed	•	•	•	13 14
6.	Instrumentation Details (Looking Upstream)			•	15
7.	Test Venturi Discharge Coefficient for Various Configurations Operating at Critical Flow Conditions		•		16
8.	Test Venturi Discharge Coefficient for Various Configurations at Subcritical Flow Conditions	•	•	•	17
9.	Venturi Throat Indicated Critical Pressure Ratio as a Function of Venturi Centerbody Configuration				18

NOMENCLATURE

,

.

•

А	Area, ft ² , in. ²
C_{f}	Discharge coefficient
g	Dimensional constant, 32.174 lb_m -ft/lbf-sec ²
м	Mach number
Р	Total pressure, psfa
Р	Static pressure, psfa
R	Gas constant for air, 53.34 ft-lbf/lbm-°R
Re	Reynolds number
т	Total temperature, °R
v	Velocity, ft/sec
W	Flow rate, lb _m /sec
γ	Ratio of specific heats
μ	Viscosity, lb_{f} -sec/ft ²
ρ	Density, lb _m /ft ³

SUBSCRIPTS

-

1,2,3, etc.	Instrumentation stations
a	Air
cr	Critical
i	Indicated
S	Standard
.t	Venturi throat

,

SECTION I

In performance tests of air-breathing propulsion systems, accurate measurement of airflow is a prime requirement. Venturi flowmeters designed to operate at critical flow conditions have been employed for the past several years at the Rocket Test Facility as a means of obtaining accurate airflow measurements.

Because of the large range of airflows over which air-breathing propulsion systems operate, multiple venturi flow measuring systems are required in order to ensure critical flow conditions in the flowmeter throughout the range of propulsion system flow rates. Test installations do not, however, readily permit changing venturis during a particular test program without large expenditures of time and effort.

A method was developed at the Rocket Test Facility whereby the flow area of a particular venturi is varied by insertion of a centerbody. The test program discussed in this report was conducted to determine the validity of theoretical discharge coefficients for venturis operating with centerbodies installed.

SECTION II

2.1 TEST ARTICLE

Details of the test venturi are shown in Fig. 1. The venturi throat diameter was 10.096 in., giving a throat area of 80.049 in.². The test venturi was a modification of an existing venturi which had a cylindrical throat section. The modification consisted of machining the cylindrical section to produce a minimum diameter section with a continuous circular arc wall contour. As a result of this modification, the diffuser section of the venturi consisted of two separate half-angles of divergence downstream of the minimum diameter section (throat) as shown in Fig. 1.

Details of the three venturi flowmeter configurations calibrated are presented in the following table:

Configuration	Venturi Throat Diameter, in.	Centerbody Diameter, in.	Throat Annulus Height, in.	<u>Throat I</u> ft ²	7low Area in. ²	Equivalent Diameter, in.
1	10.096	(None)	10.096	0,5569	80,049	
2	10.096	6.249	1.923	0.3430	49.387	7.929
3	10.096	7,855	1.120	0.2194	31, 592	6.342

A detailed schematic of the centerbody installation is presented in Fig. 2.

All configurations of the test venturi were calibrated using a standard venturi designed according to the criteria presented in Ref. 1. The discharge coefficient for the standard venturi operating at critical flow conditions had been experimentally determined as described in Ref. 1. A schematic showing design details of the standard venturi is presented in Fig. 3.

2.2 INSTALLATION

A schematic of the test installation is presented in Fig. 4. The standard venturi was mounted in a flange attached to the test cell inlet plenum and exhausted into the test venturi inlet plenum chamber. The test venturi was installed on the downstream bulkhead of the venturi inlet plenum and exhausted into the test cell. The test venturi centerbodies were attached to a centerbody mounting bracket fixed to the venturi inlet mounting flange. The test cell inlet plenum and the test venturi inlet plenum were 72 in. in diameter. A photograph showing the test cell inlet flow-straightening grid and the standard venturi inlet is presented in Fig. 5a. A photograph showing the test venturi inlet with a centerbody installed is presented in Fig. 5b.

2.3 INSTRUMENTATION

Pressure and temperature measurements were made at the stations shown in Fig. 4. Details of instrumentation are presented in Fig. 6. All pressures were indicated on manometers and photographically recorded. Temperatures were obtained by manually recording the millivolt output of iron-constantan thermocouples on a null-balance indicator.

SECTION III PROCEDURE

Air was supplied to the test cell with a moisture content of less than 4 grains/lb. Inlet air total temperature was maintained at 70°F, and inlet pressure was set at the value required to establish the desired Reynolds number in the test venturi throat. The test cell pressure (test venturi exit) was maintained at a level required to produce the desired total pressure ratio across the test venturi. The standard venturi was operated at critical flow conditions for all calibration points.

A minimum of two data samples was recorded at each steady-state operating condition to minimize random error in the data averages. Methods of calculation are presented in Appendix I. Tabulated data are presented in Appendix II.

SECTION IV RESULTS AND DISCUSSION

The venturi calibration test yielded discharge coefficient data over a range of test venturi inlet total pressures from 2 to 12 psia at an air inlet total temperature of 70°F. Venturi throat Reynolds number varied from 0.32 to 3.2 million.

Discharge coefficients were determined for three test venturi configurations at both critical and subcritical flow conditions. Venturi configuration 1 consisted of the basic test venturi with a 10.096-in. diam throat section, configuration 2 was the basic venturi with a 6.249-in. -diam centerbody installed, and configuration 3 was the basic venturi with a 7.855-in. -diam centerbody.

The theoretical coefficients presented were mathematically obtained by using the Tucker technique for determining turbulent boundary layer growth in compressible flow (Ref. 2) and the techniques of Ref. 3 for <u>determining centrifugal force effects on flow at the venturi throat.</u> Perfect gas behavior was assumed for all analyses and test results presented in this discussion.

4.1 VENTURI OPERATING AT CRITICAL FLOW CONDITIONS

The discharge coefficients determined for the three test venturi configurations operating at critical flow conditions are presented in Fig. 7. The experimentally determined discharge coefficient for configuration 1 was approximately 0.3 percent lower than the theoretical value throughout the Reynolds number range from 0.5 to 3.1×10^6 . A trend of decreasing discharge coefficient is noted as venturi throat Reynolds numbers go above 2.0×10^6 .

The test data for configuration 2 in the Reynolds number range from 1.0 to 2.45 x 10^6 are in good agreement with the theoretically determined value. The experimental coefficient ranged from 0.991 at a Reynolds number of 1.45 x 10^6 to 0.988 at a Reynolds number of 2.45 x 10^6 as compared to the theoretical value of 0.9887. As Reynolds number decreases below 1.0 x 10^6 , the discharge coefficient begins to decrease significantly because of the transition from turbulent to laminar boundary layer conditions along the venturi wall.

The discharge coefficient for configuration 3 is also in good agreement with the theoretical levels above Reynolds numbers of 1.0×10^6 . As expected, the coefficients begin to decrease significantly below Reynolds numbers of 1.0×10^6 . For example, the coefficient is 1.1 percent lower at a Reynolds number of 0.32×10^6 than the value at a Reynolds number of 1.0×10^6 .

Generally, excellent agreement with the theoretical discharge coefficients was obtained for all configurations in the Reynolds number range between 1.0 and 3.2 x 10^6 ; therefore, in the region where a fully developed turbulent boundary layer exists, a high degree of confidence can be placed in the theoretically determined discharge coefficients for venturis with sting-mounted centerbodies as well as for those without centerbodies.

The discharge coefficient in the Reynolds number range from $1.0 \text{ to } 3.2 \times 10^6$ decreases as the venturi centerbody diameter increases. This is as expected since the annular height between centerbody surface and venturi throat inner wall becomes less as centerbody diameter increases, and with a smaller annulus height, the relative effect of boundary layer becomes larger.

4.2 VENTURI OPERATING AT SUBCRITICAL FLOW CONDITIONS

The discharge coefficients for the three venturi configurations operating at subcritical flow conditions are presented in Fig. 8 as a function of venturi indicated throat wall static-to-total pressure ratio and Mach number for two Reynolds number ranges. As expected, the coefficients for the venturi configuration with centerbodies are slightly higher than those obtained for the venturi without centerbody because the centrifugal effects are less. For example, at an indicated throat wall static-to-total pressure ratio of 0.7, the discharge coefficients for the centerbody configurations are approximately 0.5 percent higher than the configuration without centerbody. The discharge coefficients in the range of throat static-to-total pressure ratios from 0.57 to 0.60 are not significantly affected by venturi configuration.

A theoretical discharge coefficient for each of the three venturi configurations is also presented in Fig. 8 for comparison with the experimental. The theoretical coefficient calculations were made in accordance with the methods presented in Refs. 2 and 3 for subcritical flow conditions, applying the axisymmetric procedures to the venturi without centerbody, and the two-dimensional procedures to the venturi with centerbody installation.

As venturi throat wall Mach number was decreased, the theoretical discharge coefficient for venturi configuration 1 decreased more rapidly than the experimental discharge coefficient. In the range of throat wall Mach numbers from approximately 0.73 to 1.00, the deviation of experimental from theoretical ranged from -0.5 to +0.5 percent. The deviation became much larger as throat wall Mach number decreased below 0.73.

For the venturi configurations with centerbodies installed, the experimental discharge coefficients were lower than the theoretical throughout the wall Mach number range investigated. Deviation of the experimental discharge coefficients from the theoretical ranged from approximately -0.2 to -0.4 percent in the wall Mach number range from 0.70 to 0.90.

When operating in the subcritical range, venturi discharge coefficients are not significantly affected by Reynolds number in the range of indicated throat static-to-total pressure ratios from 0.57 to 0.60. As the indicated throat static-to-total pressure ratio increases, however, the effect of Reynolds number becomes significant. For example, at a pressure ratio of approximately 0.93 (Fig. 8), the discharge coefficient for configuration 1 ranged from 0.933 to 0.943 at a Reynolds number of approximately 0.47 x 10^6 , whereas, at Reynolds numbers greater than 0.9 x 10^6 , the discharge coefficient was approximately 0.955.

5

4.3 INDICATED VENTURI THROAT CRITICAL PRESSURE RATIO

The indicated test venturi critical throat pressure ratios for the various configurations are compared to theoretical values in Fig. 9 as a function of test venturi inlet total pressure for Reynolds numbers in the range from 1.0 to 3.2 x 10^6 . The measured critical pressure ratio for each configuration was lower than the corresponding theoretical value throughout the range of venturi inlet total pressures investigated. The greatest deviation from theoretical occurred with the venturi having the largest diameter centerbody, and the best agreement was obtained for the configuration without centerbody. For example, at an inlet pressure of 570 psfa, the theoretical critical pressure ratio for the configuration with the largest centerbody (configuration 3) was approximately 5 percent higher than the experimental; whereas, for configuration 1 (no centerbody), this value was only 1 percent. The variation between theoretical and measured critical pressure ratio is the result of the inability to precisely locate the venturi throat static pressure ports.

The experimental data show a significant increase in the indicated throat static-to-total critical pressure ratio when a centerbody is installed in the venturi. For example, at a venturi inlet total pressure of 1000 psfa, the critical pressure ratio for the venturi without centerbody was 0.473. When the 6.25-in.-diam (configuration 2) centerbody was installed, the indicated critical pressure ratio increased to 0.484, and with the 7.86-in.-diam centerbody, the ratio was 0.488.

This variation in indicated critical pressure ratio is the result of throat velocity profile variation between configurations. It will also be noted from Fig. 9 that the indicated critical pressure ratio increases slightly as venturi inlet total pressure increases. The reason for this increase is not known but is perhaps again a result of changing boundary layer displacement thickness in the venturi throat region.

SECTION V SUMMARY OF RESULTS

The results obtained from a flow calibration to determine the effect of installing a sting-mounted venturi centerbody on venturi discharge coefficients are summarized as'follows:

- 1. Experimentally determined discharge coefficients for the test venturi without a centerbody and operating at critical flow conditions agreed within 0.3 percent of the theoretical value throughout the throat Reynolds number range from $0.5 \text{ to } 3.1 \times 10^6$.
- The discharge coefficients determined from the test venturi with sting-mounted centerbodies were slightly lower than those for the venturi without centerbody but agreed within 0.1 percent of the theoretically determined value.
- 3. The discharge coefficients for a venturi with centerbody and operating at critical flow conditions decreased as centerbody diameter was increased.
- 4. At subcritical venturi flow conditions, the discharge coefficient increased as much as 0.5 percent at a throat static-to-total pressure ratio of 0.70 when a centerbody was installed in the venturi. The difference in discharge coefficient obtained for a venturi with and without centerbody decreases as the throat pressure ratio approaches critical.
- 5. Discharge coefficients for a venturi operating at critical flow conditions with a sting-mounted centerbody can be theoretically determined to within 0.1 percent of the experimentally determined mean value.

REFERENCES

- Smith, Robert E., Jr. and Matz, Roy J. "Verification of a Theoretical Method of Determining Discharge Coefficients for Venturis Operating at Critical Flow Conditions." AEDC-TR-61-8 (AD263714), September 1961.
- Tucker, Maurice. "Approximate Calculation of Turbulent Boundary-Layer Development in Compressible Flow." NACA-TN-2337, April 1951.
- Oswatitsch, K. and Rothstein, W. "Flow Pattern in a Converging-Diverging Nozzle." NACA-TM-1215, March 1942.

• RADIUS VALID ONLY IN VICINITY OF THROAT

Fig. 2 Test Venturi Centerbody Installation

.

Fig. 3 Standard Venturi Design Details

Fig. 4 Test Article Installed in Propulsion Engine Test Cell (T-2)

a. Standard Venturi Inlet Region Fig. 5 Venturi Installation Photographs

13

14

b. Test Venturi with Centerbody Installed Fig. 5 Concluded AEDC-TR-66-52

.

Fig. 6 Instrumentation Details (Looking Upstream)

at Subcritical Flow Conditions

APPENDIX I METHODS OF CALCULATION

General methods and equations employed to compute the steadystate parameters presented are given below. Where applicable, arithmetic averages of the pressures and indicated temperatures were used.

RATIO OF SPECIFIC HEATS

The ratio of specific heats, γ , was assumed to be 1.4 at all measuring stations.

AIRFLOW

1. Airflow at station 2 (standard venturi throat) was calculated from the following critical flow equation:

$$W_{a_{s}} = P_{1}A_{2}C_{f_{2}} \sqrt{\frac{\gamma g}{RT_{2}}} \left[\left(\frac{2}{\gamma+1}\right) \right]^{\frac{\gamma+1}{2(\gamma-1)}}$$

and C_{f_2} = 0.9935. C_{f_2} is an experimentally determined flow coefficient (Ref. 1).

2. Indicated airflow at station 6 (test venturi throat) was calculated from the following equations:

(1) Subcritical Operation

$$W_{a_{6_{1}}} = \frac{p_{6}^{A_{6}}}{\left(\frac{p_{6}}{P_{5}}\right)^{\frac{\gamma-1}{\gamma}}} \sqrt{\frac{2\gamma g}{RT_{6_{a}}(\gamma-1)}} \left[1 - \left(\frac{p_{6}}{P_{5}}\right)^{\frac{\gamma-1}{\gamma}}\right]$$

(2) Critical Operation

$$W_{a_{6i}} = P_{s} A_{6} \sqrt{\frac{\gamma g}{R T_{6a}}} \left[\left(\frac{2}{\gamma + 1} \right) \right]^{\frac{\gamma + 1}{2(\gamma - 1)}}$$

DISCHARGE COEFFICIENT

The discharge coefficient of the test venturi was determined from the equation

$$C_{f_6} = \frac{W_{a_s}}{W_{a_{6_i}}}$$

MACH NUMBER

Mach number was obtained from the equation

$$M = \sqrt{\frac{2}{\gamma - 1} \left[\left(\frac{P}{P} \right)^{\frac{\gamma - 1}{\gamma}} - 1 \right]}$$

REYNOLDS NUMBER

Reynolds number was obtained from the equation

$$Re = \frac{\rho V \ell}{\mu}$$

where the characteristic length, ℓ , was taken as the diameter of the test venturi throat for configuration 1 and as an equivalent diameter (based on the throat flow area) for configurations 2 and 3.

APPENDIX II

-

TABULATED STEADY-STATE DATA

Values given are the four significant digits, positive or negative sign, and the power of ten, e.g., $.1237 + 01 = 0.1237 \times 10^{+1} = 1.237$, $.9755 + 00 = 0.9755 \times 10^{0} = 0.9755$

۲

REGALL VENTURI TEST OF TEST DATE 10-25-65 COMPUTED DATE 11-11-65

	PS	P6	w	P.	P	P	P	D	т	м	R	C	-
POIN	r p,	P5	"d s'	.1	.5	5	'5 _r	6	'6a'	"6		ĭt _e	-
NO.		Ŷ	lb/sec	-					°R			0	
1.00	.1247+01	+4761+00	.2191+02	,5521404	.7707+04	.1724+04	,1712+04	.8208403	.5352+03	+1000+01	·3118+01	.9941+00	
2.00	.1250+01	.4751+00	.2190+02	+5521+04	-2707+04	.1724+04	+1713+04	.8191+03	.5353+03	+1070+01	.3118+01	.9941+00	-
3.00		.4736+00	.1835+02	.4596+04	+2251+04	.1439404	+1425+04	+6813+03	+5285+03	-1000+01	.2602+01		
4,00	-1254+01	-4737+00	.1839+0Z	-4603+04	.225L+04	.1439+04	+1422+04	+6815+03	.5278+03	.1000+01	-2602+01	-9933+00	
5,00	.1253+01	.4746+00	.1465+02	3682+04	+1/94+04	.1150+04	+1138+04	.5459+03	-5318+03	+1000+01	-2081+01	.9936+00	
6.00	-1239+01	.4729+00	-1466+02	.3682+04	.1793+04	.1149+04	+1151+04	+5432+03	-5317+03	.1000+01	-2077+01	-9951+00	
7,00	+1255+01	+4741+00	+1104+02	+2761+04	.1340+04	. 8656403	8528+03_	+4104+03	-5273+03	1000+01	-1566+01	+9901+00	
E.00	+1250+01	.4729+00	+1100+02	.2754+04	.1337+04	-8621+03	8522+03	-4076+03	-5283+03	-1000+01	-1559+01	-7916+00	
9.00	.1246+01	-4685+00	.7280+01	.1825+04	.0925+03	.5696+03	.5585+03	.2669+03	-5293+03	-1000+01	-1030+01	.9946+00	_
10.00	-1237+01	.4679+00	+7280+01	.1825+04	_AA16+03	.5696+03	+5593+03	-2665+03	-5293+03	-1000+01	.1030+01	-9946+00	
11.00	-L274+01	.4664+00	+5413+01	.1361+04	.6366+03	.4254+03	+4112+03	,1984+03	,5323+03,	_1000+01	.7694+00.	. 9929+00	
12.00	.1222+01	.4673+00	+5399+01	-1357+04	-6957+03	-4254+03	+4250+03	-1988+03	.5323+03	-1000+01	.7694+00	.9903+00	
13.00	.1176+01	.4680+00	.3596+01	.8986+03	.4260+03	.2813+03	.2818+03	+1317+03	.5262+03	-1000+01	-5087+00	. 9918+00	
14.00	-1176+01	.4606+00	.3581+01	.8951+03	.4245+03	.2792+03	.2836+03	-1286+03	- 5265+03	.L000+01	.5049+00	.9954+00	
15.00	.1086+01	.5826+00	.7192+01	.1806404	. 8740+03	.5752+03	.5625+03	-3351+03	.5312+03		.1028+01		_
16.00	.1066+01	.6006+00	-5997+01	-1756+04	-8494+03	.5646+03	.5542+03	-3391+03	-5310+03	-8854+00	.9992+00	.9773+00	
17.00	-1052+C1	.7275+00	.6399+01	1605+04	.7747+03	.5682+03	.5620+03	,4134+03	.5303+03	.6897+00	.8790+00	9669+00	
18.00	.1052+01	.7383+00	.6217+01	.1560+04	.7536+03	.5682+03	-5571+03	-4195+03	-5303+03	.6728.00	.8649+00	.9508+00	
19.00	.1032+01	.8683+00	.4840+01	+1211+94	.5815+03	5674+03	.5611+03	+4927+03	.5273+03	+4537+00	+6472+00	+9539+00	
20.00	.1012+01	.9370+00	-3494+01	.8733+03	.4135+03	.5745+03	.5742+03	5383+03	.5263+03	.3064+00	.4677+00	-9428+00	
21.00	.1029+01	.9263+00	+3716+01	.9296+03	.4374+03	5692+03	.5590+03	\$5272+03	.5272+03	.3325+00	-4989+00	-9423+00	_
RBQ411 VENT	.1237+01	02 TEST DA1 .4849+00	.1350+02	.3382+04	-1645+04	+1723+04		.8356+03	- 5285+03	.1000+01	-2448+01	.9873+00	
2.00	-1243+01	.4857+00	.1352+02	-3387+04	.1649+04	.1728+04		.8391+03	.5292+03	.1000+01	-2454+01	+9864+00	
3.00	. 7009+00	-4852+00	.1129+0Z	-2833+04	.1376+04	+1441+04		.6990+03	. 53 02+ 03	-1000+0L	.2047+01	.9894+00	
4.00	.7008+00	-4853+00	·1129+02	-2827+04	.1374+04	.1441+04		.6992+03	.5283+03	.1000+01	a2047+01	.9874+00	_
5.00	.1231+01	.4849+00	.9018+01	-2259+04	.1094+04	++1150+04		.5578+03	.5288+03	.1000+01	-1634+01	.9682+00	
6.00	+1228+0L	.4844+00	.9013+01	.2256+04	+1109+04	.1148+04		+5559+03	+5282+03	+1000+01	+1630+01	+9893+00	
7.00	.1230+01	.4842+00	.6809+01	.1708+04	+8258+03	.8642+03		-4184+03	+5302+03	+1000+01	+1228+01	+9944+00	
8.00	.1227+01	.4842+00	.6755+01	.1692+04	+6183+03	.8621+03		.4174+03	+5285+03	+1000+01	+1225+01	+9874+00	_
9.00	.1214+01	.4833+00	.4486+01	.1122+04	+5372+03	.5724+03		.2766+03	+5267+03	.1000+01	+8131+00	.9859+00	
10.00	+1214+01	+4805+00	.4501+01	.1126+04	.5377+03	.5710+03		.2743+03	+5277+03	.1000+01	+8111+00	.9927+00	
11.00	.2095+01	.4806+00	.3315+01	.8325+03	+3941+03	.4233+03		-2034+03	+5315+03	·1000+01	-6014+00	.9896+00	
12.00	-1192+01	.4796+00	,3320+01	.8339+03	.3934+03	.4226+03		.2027+03	+5317+03	+1000+01	-6004+00	- 9929+00	
13.00	-1174+01	.4858+00	.2199+0L	.5509+03	- 2609+03	.2820+03		.1370+03	-5290+03	+1000+01	-4006+00	-9831+00	
14.00	-1178+01	.4795+00	-2200+01	.5513+03	.2605+03	-2806+03	-	+1345+03	.5290+03	+1000+01	-3986+00	-9887+00	
15.00	-1302+01	.4781+00	.4436+01	.1114+04	.5309+03	.5660+03		.2706+03	-5318+03	.1000+01	-8041+00	-9907+00	
16.00	.1313+01	.4791+00	.4455+0L	+1119+04	.5321+03	.5667+03		+2715+03	+5313+03	+1000+01	.8051+00	-9932+00	_
17.00	.1082+01	.5639+00	+4414+01	.1105+04	-5260+03	-5674+03		•3200+03	-5283+03	+9429+00	-8031+00	.9831+00	
18.00	-1085+01	+5769+00	.4392+01	.1100+04	.5245+03	-5674+03		.3274+03	+5283+03	+9224+00	-7991+00	-9805+00	-
19.00	.1060+01	.6990+00	.4103+01	.1027+04	.4873+03	-5717+03		.3996+03	-5282+03	.7340+00	-7222+00	-9693+00	
20.00	.1047+01	.7029+00	.4061+01	.1017+04	-4829+03	.5667+03		.3983+03	-5283+03	.7280+00	-7124+00	-9710+00	
21.00	.1245+01	.4852+00	-1355+02	+3405+04	-1655+04	.1733+04		+8407+03	-5318+03	-1000+01	+2461+01	.9887+00	
22.00	.1241+01	+4859+00	.1360+02	.3405+04	-1657+04	+1735+04		+8428+03	-5282+03	-1000+01	-2464+01	.9875+00	_
23.00	-1245+01	.4863+00	+1361+02	.3406+04	.1657+04	.1736+04		+8442+03	- 5277+03	.1000+01	-2466+01	- 9871+00	
24.00	.1496+01	.4866+00	-1364+02	.3413+04	-1662+04	+1738+04		.8457+03	+5275+03	-1000+01	-2469+01	+9880+00	
25.00	.1503+01	.4842+00	-1364+02	.3413+04	.1661+04	.1739+04		+8419403	-5273+03	-1000+01	-2470+01	-9876+00	
26.00	.1101+01	.5830+00	-1334+02	.3339+04	-1624+04	.1726+04		+1006+04	.5283+03	-9129+00	-2423+01	-9804+00	
27.00	+1105+01	.5880+00	.1333+02	.3338+04	-1625+04	.1730+04		+1018+04	.5285+03	.9051+00	.2424+01	.9785+00	
28.00	.1068+01	.7147+00	1231+02	.3079+04	.1497+04	.1729+04		-1236+04	+5273+03	.7097+00	+2139+01	-9746+00	
20.00	1047101	7126400	1232402	-3081+04	.1499+04	.1729+04		-1234+04	.5272+03	.7114+00	-2143+01	.9742+00	

R80411	VENTUR1	TEST 03	TEST	DATE	10-27-65	COMPUTED	DATE 12-27-65
and the second se					an and an and a second s		

		Ps	PG						-	-			
	POINT	D	P	Wast	P	Pa	Pe	Ps	Pe	6	M	Re.	Ge
	NO	F7	5	- 8.		۷	2	S r	0		0	Т	.6
	NO.			lb/sec	-		—psfa—			°R			
	1.00	.2503401	.4867+01	.7238+01	.1808+04	.8738+03	.1443+04		.7058+03	.5260+03	.5447+00	.1190+01	.9859+00
	2-00	.2503+01	.4888+00	.7237+01	.1807+04	+8729+03	.1441+04		.7046+03	.5253+03	+1000+01	.1638+01	.9861+00
	3.00	-1658+01	+4893+00	.7215+01	+1810+04	.8750+03	.1442+04		.7057+03	.5302+03	.1000+01	.1639+01	+9872+00
	4-00	.1656+01	-4896+00	.T223+01	+1813+04	+8752+03	.1443+04		.7064+03	.5308+03	-1000+01	.1639+C1	+9884+00
	5-00	.1244+01	.4884+00	.7210+01	.1807+C4	.8733+03	.1441+04		.7037+03	+5293+03	+1006+01	.1637+01	.9866+00
	6.00	-1247+01	.4890+00	.7230+01	+1812+04	.8752+03	+1444+74		.7059+03	+5293+73	.1000+01	+1640+01	.9874+00
	7.00	+1104+01	.6E21+00	.6757+01	.1693+04	+8163+73	.1437+04		· 9803+23	.5293+33	.7600+00	.1482+01	.9799+00
	00.8	-1108+01	.6788+00	.6786+0L	-1701+04	·8225+03	·1444+C4		.9799+03	+5293+03	.7650+00	+1495+01	.9775+00
	9.00	.1237+01	.4895+00	.8658+G1	+2172+04	.1050+04	+1732+04		-8477+33	.5303+03	.1000+01	+1968+01	-9865+00
	10.00	.1239+01	.4891400	.8661+01	+2173+04	+1051+04	.1733+34		+8474+33	+5303+03	+1000+01	-1969+01	-9864+00
	11.00	-1242+01	.4897+00	.7226+01	+1813+04	+8768+03	+1444+34		.7069+03	+5307+03	+1000+01	-1640+01	+9881+00
	12.00	+1242+01	-4893+0D	+7227+01	-1911+04	+8764+03	.1444+04		+7063+03	+5293+33	.1000+01	+1640+01	-9870+00
	13.00	.1224+01	+4907+00	+5761+01	.1442+04	.6931+03	.1144+04		+5612+03	-5278±03	+1000+01	+1299+01	-9917+00
	14-00	-1234+01	.4870+00	-5754+01	+1441+04	.6975+03	+1152+34		.5610+03	.5283+03	.1000+01	+1309+01	-9837+00
_	15.00	.1229+01	.4881+00	+4319+01	+1082+04	.5191+33	.8634403		+4214+03	.5293+03	.1000+01	.9810+00	.9861+00
	16.00	+1227+01	+4883+00	+4315+01	+1081+04	+5199+03	+ 5634+23		+4716+03	.5293+03	+1000+01	+9810+00	.9852+0C
	17.00	-1212+01	.4914+00	.2867+01	.7186+03	+4473+ 3	.5744+03		+2823+33	-5294+03	+1000+01	+6577+00	.9840+CC
	18.00	-1205+01	.4891+00	.2868+01	.7193+03	+3406+03	+5737+03		-2806+03	.5302+03	+1000+U1	+6519+00	-9862+CO
	19.00	-1196+01	+4935+00	+2126+61	.5322+03	+5233+03	+4218+03		-2111+03	. 5283+03	.1000+01	+4861+00	.9786+00
	20.00	-1195+01	.4886+00	+2126+01	.5322+03	+2531+03	-4275+03		+2089+03	.5283+03	+1000+01	+4857+00	.9794+00
	21.00	.1176+01	.4948+00	-140H+01	.3522+03	-1687+03	.2840+03		+1405+03	+5272+03	.1000+01	-3227+00	.9755+00
	22.00	.1205+01	-4908+00	-1406+01	.3515+03	-1680+03	.2837+03		.1392+03	+5269+03	_1000+01	.3223+00	.9748+00
	23.00	+1305+01	-4878+00	+2849+01	.7158+03	-3420+03	.5723+03		-2792+03	.5317+03	-1000+01	-6503+00	·9837+00
	24.00	-1309+01	.4897+00	.2848+01	.7158+03	-3417+03	+5744+03		.2813+03	+5322+03	.1000+01	·6527+00	·9801+00
	25.00	.1144+01	.5795+00	-2822+01	.7098+03	-3378+03	.5758+03		-3337+03	+2335+03	.9185+00	.6478+00	.9754+00
	26.00	+1143+01	.5785+00	·2823+01	.7094+03	.3378+03	.5755+03		.3329+03	+5322+03	.9199+00	.6477+00	.9753+00
	27.00	+1096+01	.7235+00	-2567+01	.6433+03	.3045+03	-5758+03		-4166+03	+5292+03	+6960+00	.5629+00	.9646+00
	26.00	+1097+01	.7245+00	+2558+01	.6405+03	-3053+03	+5751+03		.4167+J3	+5285+03	.6944+00	.5614+30	.9625+00
	33.00	-1239+01	+4885+00	.8638+01	.2164+04	-1047+04	.1730+04		+8450+03	+2540+03	-1000+0L	+1965+01	.9842+00
	34.00	-1239+C1	.4889+00	.8660+01	-216 +04	-1049+04	-1730+04		+8461+03	· 5283+03	.1000+91	+1966+L1	,9857+00
	35.00	+1139+01	. 5926+ 00	+8489+01	.2126+04	-1047+04	.1731+04		-1026+04	+5283403	-8979+00	+1934±01	+9748+0C
	36.00	.1138+01	-5996+00	.8466+01	-2120+04	-1026+04	.1733+04		+1039+04	+5283+03	·8820+00	+1927+91	.9737+170
	37.00	-1098+01	.7193+00	.7797+01	.1954+04	-9503+03	.1730+04		+1245+04	-5292+03	.7025+00	+1702+01	.9707+00
	38.00	+1099+01	-7228+00	.8005+01	+1948+34	.9492+03	+1731+04		+1251+04	·4492+03	.6971+00	-1694+01	.9709+00
	43.00	+1230+01	.4882+00	-5786+01	+1450+04	+7010+13	.1156+04		-5645+03	+5292+03	.1000+01	+1314+01	.9863+00
	44.00	+1224+01	.4860+00	-5751+01	+1441+04	.6994+03	+1151+04		.5594+03	-5292+03	+1000+01	-1308+01	.9848+00
	45.00	+1134+01	.5906+00	.5679+01	+1422+04	.6852+03	.1153+04		+6811+03	-5282+03	.9007+00	+1289+01	-9788+0C
	46.00	+1127+01	+5879+00	+5672+01	+1420+34	+6861+03	+1151+04		.6767+03	.5282+03	·9053+00	+1289+01	-9763+00
	47.00	+1090+01	.7144+00	+5243+01	.1313+04	+6299+03	+1151+04		-8723+33	.5282+03	.7102+00	+1140+01	-9755+00
	48.00	.1097+01	.7143+00	+ 5250+01	+1315+04	+6386+03	+1155+04		+8246+03	+5282+03	.7104+00	+1143+01	-9738+0C

R80411 YENTURI TEST 04 TEST DATE 10-28-65 COMPUTED DATE 01-03-66

POINT	P5 P7	P6 P5	was,	P	P2	P5	P5,	P ₆	T _{6a}	M ₆	Re	C _{f6}
NU.		Ŭ	Ib/sec	-		—psfa—			*R			
16.00	-1237+01	.4742+00.	.2193+02	-5511+04	-2705+04	-1731+04		- \$209+03	.5322+03	.1000+01	.3131+01	.9884+00
17.00	.1237+01	-4685+00	.2196+02	.5515+04	.2704+04	+1727+04		. 8092+03	.5315+03	.1000+01	.3124+01	.9912+00
18.00	-1226+01	+4731+00	-1462+02	- 3668+04	.1787+04	-1147+04		- 5426+03	.5302+03	.1000+01	-2074+01	.9928+00
19.00	.1224+01	-4742+00	-1460+02	.3670+04	-1789+04	-1149+04		-5449+03	.5323+03	.1000+01	.2078+01	.9916+00
20.00	.1213+01	-4741+00	-7284+01	-1827+04	.8837+03	.5731+03		.2717+03	.5300+03	-1000+01	.1036+01	+9896+00
21.00	.1213+01	-4741+00	.7267+01	-1822+04	.8930+03	.5724+03		+2714+03	-5297+03	-1000+01	+1035+01	.9882+00
22.00	.1297+01	.4732+00	-7284+01	-1824+04	.8830+03	.5717+03		-2705+03	-5283+03	.1000+01	+1034+01	.9906+00
23.00	-1305+01	+4745+00	.7283+01	+1824+04	.8810+03	.5717+03		.2712+03	.5283+03	-1000+01	+1034+01	.9904+00
24.00	·1045+01	.5849+00	.7085+01	-1774+04	+8573+03	.5681+03		- 3323+03	-5283+03	.9099+00	+1015+01	.9765+0C
25.00	.1042+01	.6003+00	-7014+01	-1756+04	.8538+03	.5699+03		-3421+03	-5285+03	+8859+00	.1009+01	.9682+00
26.00	+1045+01	.6919+00	.6721+01	.1684+04	.8151+03	.5752+03		- 3980+03	-5292+03	.7449+00	·9333+00	.9687+00
27.00	.1032+01	.7188+00	.6470+01	.1620+04	.7842+03	+5724+03		-4114+03	-5283+03	.7033+00	-8965+00	-9598+00
28.00	.1038+01	.7149+00	-6554+01	.1641+04	.7939+03	+5759+03		+4117+03	.5283+03	.7094+00	.9069+00	.9626+00
 25-00	.1022+01	. 6438+00	-5232+01	+1305+04	.6321+03	.5741+03		+4845+03	-5245+03	.4986+00	.7052+00	.9479+00
30.00	.1020+01	.8506+00	-5186+01	-1294+04	.6270+03	+5752+03		-4893+03	-5247+03	+4861+00	.6928+00	.9554+00
31.00	-1013+01	-9350+00	-3427+01	.8582+03	-4134+03	.5752+03		+5395+03	+5283+03	.3037+00	+4645+00	.9327+00
32.00	-1020+01	. 9377+00	.3455+01	+8652+03	-4117+03	+5752+03		+5393+03	.5283+03	.3045+00	.4657+00	.9380+00
33.00	+1231+01	-4733+00	-1463+02	.3662+04	-1784+04	-1148+04		.5434+03	+5278+03	-1000+01	+2077+01	.9901+00
34.00	+1230+01	-4729+00	.1463+02	.3657+04	-1784+04	-1148+04		+5430+03	- 5265+03	-1000+01	-2077+01	.9887+00
35,00	.1059+01	.5779+00	-1430+02	-3585+04	-1746+04	.1145+04		-6615+03	- 5293+03	-9209+00	+2051+01	.9777+00 .
36.00	-1062+01	.5821+00	-1430+02	.3585+04	-1746+04	-1149+04		-6688+03	-5300+03	.9143+00	-2055+01	.9752+00
37.00	.1041+01	.7106+00	-1321+02	.3314+04	-1612+04	.1152+04		+8184+03	.5302+03	.7161+00	.1825+01	.9678+00
38.00	-1041+01	.7132+00	.1316+02	.3302+04	-1606+04	-1152+04		-8215+03	+5302+03	.7119+00	+1818+01	.9667+00
39.00	+1019+01	+8401+00	.1069+02	.2676+04	-1298+04	-1152+04		.9676+03	+5282+03	+5051+00	-1429+01	.9596+00
40.00	.1022+01	-8372+00	.1077+02	.2695+04	+1309+04	-1152+04		.9642+03	.5282+03	-5104+00	+1440+01	-9595+00
 41.00	.1008+01	.9375+00	.7041+01	-1763+04	.8540+03	.1149+04		.1077+04	·5282+03	-3051+00	.9321+00	-9549+00 -
42.00	.1009+01	.9391+00	.6978+01	.1747+04	.8487+03	+1151+04		-1081+04	.5282+03	.3010+00	-9222+00	-9562+00
43+00	-1244+01	-4753+00	.2206+02	.5511+04	-2703+04	.1733+04		.8236+03	.5257+03	-1000+01	+3134+01	.9872+00
44.00	+1240+01	.4757+00	.2211+02	.5507+04	-2102+04	.1733+04		+8244+03	.5227+03	-1000+01	+3134+01	.9866+00
45.00	+1054+01	-5869+00	-2159+02	.5388+04	-2643+04	.1735+04		+1018+04	.5245+03	.9067+00	+3095+01	-9718+00
46.00	+1051+01	.5880+00	-2157+02	.5388+04	.2645+04	+1731+04		.1018+04	.5257+03	.9051+00	.3087+01	+9741+00
 47.00	• 10 39+01	.7085+00	-1985+02	.5001+04	.2453+04	.1733+04		+1228+04	-5350+03	.7193+00	-2753+01	.9687+00 -
48.00	.1036+01	+7292+00	-1957+02	.4929+04	-2415+04	+1731+04		-1247+04	.5347+03	.7011+00	.2706+01	.9668+00
49+00	+1022+01	.8413+00	.1596+02	+4005+04	-1958+04	-1732+04		-1457+04	-5303+03	+5031+00	+2143+01	.9578+00 -
50+00	+1020+01	.8437+00	+1584+02	-3973+04	-1940+04	-1729+04		-1459+04	- 5303+03	-4987+00	-2124+01	.9581+00
51.00	.1006+01	.9437+00	-9973+01	.2517+04	-1220+04	-1726+04		-1629+04	-5368+03	-2888+00	-1332+01	.9534+00
52-00	.1008+01	.9422+00	.1030+02	.2598+04	.1261+04	-1733+04		.1633+04	.5362+03	-2929+00	-1354+01	-9678+00
 53.00	-2000+01	_4746+00	. 2212+02	.5523+04	-2709+04	.1737+04		.8242+03	. 5252+03	.1000+01	+3141+01	.9873+00 _
54.00	+2006+01	+4745+00	-2221+02	.5530+04	+2715+04	-1740+04		·8258+03	· 5227+03	.1000+01	-3147+01	+9866+00
55.00	+1491+01	+4761+00	-2217+02	.5492+04	.2697+04	-1730+04		.8235+03	.5170+03	+1000+01	.3128+01	-9856+00
56.00	-1497+01	-4759+00	-2228+02	-5512+04	-2706+04	.1735+04		.8262+03	+5157+03	-1000+01	.3140+01	-9857+00
57.00	+1235+01	+4740+00	-2225+02	.5491+04	.2701+04	-1727+04		.8188+03	.5130+03	.1000+01	.3124+01	.9869+00

24

UNCLASSIFIED			
Security Classification			
DOCUMENT CO (Security classification of title, body of abstract and indexi	NTROL DATA - R&	D terod when t	he overall report is classified;
1 ORIGINATING ACTIVITY (Corporate suthor) Arnold Engineering Development Ce	enter,	Ze REPOR	ASSIFIED
ARO, Inc., Operating Contractor, Arnold Air Force Station, Tenness	see		
3 REPORT TITLE			
CALIBRATION OF THREE VENTURI AIRF MOUNTED CENTERBODIES AT CRITICAL	LOW METERING	SYSTE CAL FI	CMS WITH STING- LOW CONDITIONS
4 DESCRIPTIVE NOTES (Type of report and inclusive dates) N/A			
S AUTHOR(S) (Leet name, first name, initial)			
Wolff, H. E., ARO, Inc.			
6 REPORT DATE	74 TOTAL NO OF P	AGES	76 NO OF REFS
$\frac{\text{May 1966}}{\text{May 1966}}$	SU SA ORIGINATOR'S RI		ояр(5)
ar contract of shart to AF40(800)=1200			
ь рројест NO 3066	AEDC-TR-6	6-52	
• Program Element 62405214	95 OTHER REPORT this mport)	NO(S) (Any	other numbers that may be assigned
đ	N/A		
10 AVAILABILITY/LIMITATION NOTICES			
Qualified users may obtain copies distribution of this document is	s of this reg unlimited.	ort fr	om DDC, and
11 SUPPLEMENTARY NOTES	12 SPONSORING MILI	TARY ACT	VITY
N/A	Aeronautica Force Syste Patterson A	ul Syst ems Con .ir For	ems Division, Air mand, Wright- ce Base, Ohio
13 ABSTRACT			······································
An experimental investigation discharge coefficient of a ventur eter centerbodies installed. A co- theoretical discharge coefficient was used as the calibration stand for the test venturi without cent two different diameters were detect throat Reynolds numbers from 0.32 air total temperature of 70°F. The ficients were in good agreement we configurations tested. Maximum of coefficient from the theoretical without centerbody operating at con-	on was conduct i airflow me critical flow c had been ex- lard. The di- cerbody and we ermined over 2 to 3.20 x J The experiment with the theo leviation (0. value occurr critical flow	eted to eter wi perime scharg with ce a rang 06 at ntally pretica 3 pero red wit	b determine the th various diam- uri for which a entally verified ge coefficients enterbodies of ge of venturi a constant inlet determined coef- al value for all cent) of discharge th the venturi ations.

UNCLASSIFIED

14		LIN	KA	LIN	КВ	LIN	кс
	KEY WORDS	ROLE	#T	ROLE	WT	ROLE	YI T
venturi	flowmeters						
flow mea	surement					l i	
calibrat	ion		}				
centerbo	dies						
sting-mo	unted						
			ł				
			-				

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address imposed by security classification, using standard statements of the contractor, subcontractor, grantee, Department of Desuch as: fense activity or other organization (corporate author) issuing (1) "Qualified requesters may obtain copies of this the report. report from DDC.' 2a. REPORT SECURITY CLASSIFICATION: Enter the over-(2) "Foreign announcement and dissemination of this report by DDC is not authorized." all security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accord-"U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC (3) ance with appropriate security regulations. 2b. GROUP: Automatic downgrading is specified in DoD Diusers shall request through rective 5200.10 and Armed Forces Industrial Manual, Enterthe group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as author-(4) "U. S. military agencies may obtain copies of this ized report directly from DDC. Other qualified users shall request through 3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. . . . If a meaningful title cannot be selected without classifice-(5) "All distribution of this report is controlled. Qualtion, show title classification in all capitals in parenthesis ified DDC users shall request through immediately following the title. 4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. If the report has been furnished to the Office of Technical Give the inclusive dates when a specific reporting period is Services, Department of Commerce, for sale to the public, indicovered. cate this fact and enter the price, if known. 5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter test name, first name, middle initial. 11. SUPPLEMENTARY NOTES: Use for additional explanatory notes. If military, show rank and branch of service. The name of 12. SPONSORING MILITARY ACTIVITY: Enter the name of the principal outhor is an absolute minimum requirement. the departmental project office or laboratory sponsoring (pay-6. REPORT DATE. Enter the date of the report as day, ing for) the research and development. Include address. month, year, or month, year. If more than one date appears 13. ABSTRACT: Enter an abstract giving a brief and factual on the report, use date of publication. summary of the document indicative of the report, even though 7a. TOTAL NUMBER OF PAGES: The total page count it .nay also appear elsewhere in the body of the technical reshould follow normal pagination procedures, i.e., enter the port If additional space is required, a continuation sheet shall number of pages containing information. be attached. 76. NUMBER OF REFERENCES: Enter the total number of It is highly desirable that the abstract of classified reports references cited in the report. be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the in-8a. CONTRACT OR GRANT NUMBER: If appropriate, enter formation in the paragraph, represented as (TS), (S), (C), or (U) the applicable number of the contract or grant under which the report was written. There is no limitation on the length of the abstract However, the suggested length is from 150 to 225 words. 85, 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, 14. KEY WORDS: Key words are technically meaningful terms subproject number, system numbers, task number, etc. or short phrases that characterize a report and may be used as 9a. ORIGINATOR'S REPORT NUMBER(S): Enter the offiindex entries for cataloging the report. Key words must be cial report number by which the document will be identified selected so that no security classification is required. Identiand controlled by the originating activity. This number must fiers, such as equipment model designation, trade name, military be unique to this report. project code name, geographic location, may be used as key words but will be followed by an indication of technical con-96. OTHER REPORT NUMBER(S): If the report has been text. The assignment of links, rules, and weights is optional. assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s). 10. AVAILABILITY/LIMITATION NOTICES: Enter any lim-

itations on further dissemination of the report, other than those

Security Classification