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ABSTRACT

JThis report is a review of the literature concerning the excitation
of structures by random pressure fluctuations in a turbulent bound-
ary layer and the consequent acoustic radiation. Such radiation isItermed flow noise. The purpose of the report is to determine those
aspects of analysis and experiment on the subject that are pertinent
to the generation of self noise in a sonar. The report is concernedJwith the physical mechanisms governing flow noise, with the pre-
diction of the magnitude and distribution in frequency of flow noise,
and with the discovery of measures that may be taken to reduce its

Sinfluence upon sonar self noise. The outstanding research problems
remaining in the field are pointed out, and recommendations are
made for the direction of further research.
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I. INTRODUCTION

Sonar self noise is a combination of many effects in addition to flow
noise. These include internal electrical noise in the sonar system, noise
from own ship's machinery, sea ambient noise, discrete tones from singing
propellers and appendages, general rattles and bangs from loose equipment,
and, in the case of surface ships, cavitation noise from the propellers or
from cavitation or air bubble impingement on the sonar dome. We do not
concern ourselves with any of these additional effects in this report. Our
interest is directed specifically to noise resulting from pressure fluctuations
in the turbulent boundary layer around the sonar dome at high ship speeds.
Such noise contributes significantly to sonar self noise on deeply submerged
submarines traveling at high speed and plays an important role in surface ship,
torpedo, and towed sonar self noise as well.

The literature relevant to our problem covers a period of about fifteen
years. Most of it is directed toward corresponding problems in aerodynamic
sound involving skin vibration and internal vibration and sound in missiles and
aircraft fuselages. Although much of the work on aerodynamic sound is di-
rectly applicable to the sonar self noise problen' 'here are significant differ-
ences in the sonar problem because of the relatively low flow speeds involved
and the high density of the water medium. One of our purposes is to point out
the effect of these differences.

Sections H1, Ill, and IV of this report briefly survey background ma-
terial pertinent to the principal subject. Section U1 is concerned with semi-
empirical studies of mean velocity distributions in a turbulent boundary layer;
these studies were originally performed to determine frictional drag. In
Section III a framework for the statistical analysis of turbulent boundary layer
flows is constructed, and in Section IV the foundations of the theory of aero-
dynamic sound are discussed.

From these foundations certain analytical relations between wall
pressure fluctuations and velocity fluctuations can be established and are dis-
cussed in Section V. Because of formidable difficulties that stem from the
non-linearity of the relations, only crude results can be obtained. Of much
greater significance are the actual measurements of wall pressure fluctuations
reviewed in Section VI. These provide the statistics of the wall pressure field
that is the random forcing function of our problem. The results in this section
are applicable to flush-mounted sonar transducers where the wall pressure
field, termed pseudo-sound, contributes directly to transducer self noise.
Unfortunately, the engineering usefulness of experimental results obtained with
transducers of finite size has been clouded by controversies over their inter-
pretation.

1rthur Z.Aitlr.•!nr.



Analytical studies of the response of infinite plates and periodically
simply supported plates to wall pressure fluctuations and of the consequent
acoustic radiation from the plates are treated in Section VII. Section VIII
discusses the results of measurements taken to test the validity of these an-
alyses. All tests reported were conducted by installing thin plates in the walls
of wind tunnels and measuring plate vibrations and acoustic radiation fields as
functions of tunnel velocity and plate dimensions. Several of the analyses and
experiments included studies of the effect of structural damping upon plate
vibration and acoustic radiation. The results of both the analyses and the
experiments are summarized in Section IX. Section X gives a summary and
conclusions related to the report as a whole and includes recommendations
for further research on aspects of flow noise related to sonar self noise

For clarity of presentation, notations used by the original investi-
gators have been made to conform to a single notation scheme. This is
particularly true in the identification of pressure correlation and spectral
functions, as no uniformity has evolved in the literature. In some of the
anaiyses, the original derivations have also been altered in an effort to lend
coherence to the report, but care has been taken to retain the basic assump-
tions and conclusions of the originators. In particular, Section VII, the
analysis of Ffowcs Williams and Lyon (1963) has been recast in the framework
originally derived by Kraichnan (1957); this is done in order to explain the
marked difference in the dependence of radiated acoustic power per unit area
upon displacement boundary layer thickness predicted in these papers. How-
ever, the interpretations and comparisons of results, together with the final
conclusions and recommendations, are the responsibility of the present author.

The author wishes to acknowledge the help of a number of colleagues
whose comments aided the preparation of this report. Remarks by J. E.
Barger, K. L. Chandiramani, G. M. Corcos, f. Dyer, J. E. Ffowcs Williams,
F. J. Jackson, R. H. Lyon, G. Maidarik and M. Strasberg were of particular
value.
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II. SEMI -EMPIRICAL RELATIONS FOR MEAN VELOCITY
DISTRIBUTION hN A BOUNDARY LAYER

The foundations of flow noise research, although riot recognized as
such at the time, were laid in the early investigations of turbulent bounda:v'
layer flow by Prandtl, von Kdrman, Nikuradse, and Reichart. The work was
semi -empirical in nature and directed toward determining the frictional resis -
tance to turbulent flow in pipes and over flat plates. Later investigations
treated the effects of surface roughness and flows over various body shapes
where significant pressure gradients occur. A detailed presentation of the
results is given in the book by Schlichting (1955). We summarize the results
of primary interest her:e.

It is now well established (Coles 1956) that an intermediate region
of the turbulent boundary layer produ::ed by flow over both smooth and rough
surfaces satisfies a uniform velocity distribution relation known as the "law
of the wall":

u(y) _ v
In(y-) + C (1)

v. K %

where u (y) is the time -averaged tangential velocity, y is the distance normal
to the wall, and v is the kinematic viscosity of the fluid. The constants
K =0.40 and C ý 5.1 are found to be valid for all boundary layer flows. The
quantity v. is called the friction vejocity and is defined as

v - (2)

Swhere -, is the shear stress at the wall and po is the fluid density, a constant

for low Mach number flows. The quantity y - is evidently a Reynolds number;
V,|

Eq. (1) is valid when it exceeds 70. If we define the boundary layer thickness

6 as that value of y for which u = 0.99U, where U is the constant free-streamIf velocity, Eq. (1) can be written as

-- 5.75 log + (3)v1 10 v*

I3
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When y - <5, a laminar sublayer is found for which 1= v
V V, IV

We denote its thickness , by

V. (4)

If the surface roughness is less than 6. and the wall is essentially smooth, we
It

may approximate Eq. (3) by the relatian

u - 8.74 (y --*) 1/ 7  (5)
V. V

under the assumption that

u y 1/7-r; ( )(6)

T`wo other thicknesses are important; one is the displacement thick-
ness of 6* previously referred to:

6

- - (U-u) dy, (7)SU
0

and the other is the momentum thickness

6

0 j j u(U-u) dy. (8)
0

6 7
Using Eq. (6) it follows directly that 6* . and T - 6.

In the absence of a pressure gradient along the wall,

T (x) = PU) dP
o dx

",'.'here x is the coordinate along the wall in the direction of flow.

Equation (5) defiPes v. empirically for a given u(y), and we can
obtain successively the results

4



T = .o 2 2 5, (10)
0

6(x) = 0.37 x (

and

O(x) = .036 x (.- /5 (12)

The dimensionless friction coefficient Cf - 1 . U - becomes

2

Cf = .0592 (Ux)-1/'5 (13)

with a minor experimental adjustment of the coefficient. The Reynolds number
Ux.Sincreases with distance x from the leading edge of the wall. Here we have

assumed the boundary layer tripped at the leading edge so that it is turbulent
along its length.

In point of fact, the 1/7-power velocity distribution law, Eq. (5), is
valid only for smooth plates at moderate Reynolds numbers. We have used it
for simplicity to permit rapid, approximate calculations of turbulent boundary
layer thicknesses and resistance coefficients. More accurate calculations are
made in the references cited from the more general relation of Eq. (3). The
friction velocity v, is the critical parameter. It is dependent upon wall -ough-
ness and must be obtained experimentally, either from direct measurement of
wall shear stress o or, as is more common, from momentum balance calcu-

10
lations based upon measured v-Plues of mean velocity profiles and pressure
gradients along the wall.

It is physically evidi.nt that the wall shear stress and friction coef-
ficient are markedly increasedi if the roughness exceeds the thickness of the
laminar sublayer for a smootl- wall. Using Eqs. (2), (4) and (13) the approx-
imate relation

F /~x "\l/iO2 • 9 . 2 . - -' ( 1 4 )

5



is obtained as a criterion. f-r admissUble roughnc•s. The right-hand side is a
Lix .5

slowly varying- functon of Rcynolds 11umer. For i = beteen 10 and

10 it is roughly equal to 10C. Note, however, that this is a resistance or
drag criterion. As yet it says nothing directly about the effect of roughness
on turbulent boundary layer pressure fluctuations.

Coles (1956) proposed an extension of the uniform velocity distribu-
tion law of Eq. (1) from an extensive study of turbulent boundary layer measure-
ments involving mean velocity and pressure gradients, smooth and rough sur -
faces, and separated and re-attached boundary layers. His semi-empirical
expression, known as the "law of the wake," is

v, = I In (Y + C + w (5
V* K '.V K' 2 (15)

The function w(y/6) is the additive wake effect for the outer portion
of the boundary layer. Coles tabulates values for w obtained from fitting exper-
imental data; however, a close approximation is

w1 + sinri(y/6 - 1/2). (16)

The constants K and C are the same as in Eq. (1). The parameter 11
is in general a function of the streamwise distance but is constant (- 0.55)
for a constant mean pressure flow. It is given by a simple transcendental
equation

211 - In(I +11) = K - (In)V* V (17)

The boundary layer thickness is redefined implicitly in Cole's form -
ulation by the requirement that

J.2 G ) dw = I

0

used to normalize the wake function w. It follows from the definition of 6*
of Eq. (7) and Eq. (15) that

6*U
= 1+1 (+8)

6



Eq. (15) is a valid representation of the velocity profile everywhere
e^Lxterna t% Lo the SIA~t ianiICXnar vylae * -WIi the Laminar101 sUulayvlr, tile LljnearL
relation

U V
VV

is assumed to hold. This relation is merely an expression of shear stress
proportional to a linear velocity gradient valid for simple laminar viscous flow.

Cole's law of the wake is currently in successful use for determining
mean properties incidental to boundary layer noise studies. All five of the
dimensionless parameters

U - ,v1 , , andfl

can be determined if any two are known. For example, suppose that a velocity
profile u(y) is measured in a particular boundary layer experiment. Then, by
curve fitting the logarithmic part of Eq. (15), the friction velocity v* can be
determined. The displacement boundary layer thickness can be computed
from u(y) and its maximum value U. With y = 6 and ,i = U in Eq. (15) the
parameterli can be determined. Then from Eq. (18) the boundary layer thick-
ness 6 can be computed.

In pipe or duct flow, v* is frequently measured directly in terms of
the static pressure drop over a length of uniform test section. Assuming that
this gradient is small, the use of II •0 .55 and 6 equal to the pipe radius per -
mits one to treat Eq. (15) as a close approximation to the actual velocity dis -
tribution. But more important, perhaps, is the fact that Cole's law of the wake
is redundant; i.e., more measurements are practical than are actually required.
This has permitted the establishment of the important experimental fact that
fully developed turbulent pipe or duct flows satisfy the same mean velocity dis -
tribution law as external turbulent boundary layer flows. By inference it is
highly plausible that their fluctuating velocity components behave similarly.

7
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I. T"11H STATISTICAL ANALYSIS OF TURBULENT BOUNDARY LAYER FLOWS

C ily one statistical property of a turbulent flow has been introduced
thus far, namely, the time average of velocity. C .1. Taylor (1935) (1936) was
the first to apply the methods of statistical mechanics to the study of turbulence.
Higher order ensemble averages of velocity components were studied within the
framework imposed by the laws of conservation of mass and momentum for in-
compressible flow. The theory rests upon two basic hypotheses: first, the
ergodic hypothesis that an ensemble average is equivalent to a spatial average;
and, second, Taylor's hypothesis that a time average at a fixed point in a turbu -

lent flow is equivalent to a spatial average taken along a line in the direction of
mean flow. Many measurements of velocity fluctuation with time have been made
using hot wire techniques as necessary supplements to the theory.

The books by Batchelor (1953), Townsend (1956), and Hinze (1959)
give detailed presentations of both theoretical and experimental results. Although
they contain little theory and no experiments at all related to pressure fluctua-
tions in a boundary layer. they do set the foundations on which our understanding
of flow noise has developed. A brief statement of features of this work pertinent
to flow noise research is therefore necessary.

A velocity correlation tensor is defined as

R = ) u(i (x + r) (19)

where ui(x) is a velocity component at the point x-. The bar denotes ensemble
average, e.g..

R12(_r) = fux(xZ)u,(x" + r ) P(uI Iu U) dul du2

where P(u1 , u2 ) is a joint probability density function. Equation (19) states that
Rij is independent of 5F, imrlying that the flow is spatially homogeneous. Tae
ergodic hypothesis implies that

ui(x*) u (" +r)

R -.(F) = lim f dx'

where V is the volume of integration in i space.

8
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T'MP Foniirir transform

(-k) ]R iil(F) eikr (20)
(2ni)

is called an energy spectrum tensor. It has the form of a wavenumber spectral
density, for by taking the inverse transform we obtain

i(0) M dk (21)

Alternatively, we can take the Fourier transform

fui( . x 2)
ui(k) = ) e di"

where we assume u(x')- 0 exterior to a volume V. It follows that

!t
,- (2~-~

k =Um V ui* (k)u (k) (23)
SVV--+= 1 j(

where u.* is the complex conjugate of ui. These statements can be generalized1
directly to include time variable t and its corresponding frequency variable to,
or specialized to reduce to two space variable . Frequentlv the quantities are

j normalized, e.g., by dividing R1 2 (F) by (U)2 (U*).

It is helpful to keep in mind that the physical properties of the fluid
are the random variables; hence, spatial and time derivatives of velocity yield
space and time derivatives of the velocity correlation, but only k and W multiples
of tbe spectrum tensor. For this reason, spectrum relations evolving from sta -
tistical treatment of momentum and continuity equations are sometimes more
readily treated analytica.ly.

t Equations (22) and (23) are formal statements, since the integral in Eq. (22)
diverges in general for real velocity distributions. A more rigorous approach
is given by Batchelor (1953).

9
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As an exampnle, .e. . th. -a.. corAepis to the fluctuating pres-
sure p(i',t). If the pressure is statistically homogeneous in space end time, the
pressure correlation is

S p(x',t) p(x+rt +T) = R(r, T) (24)

and R(O, 0) is the mean square pressure. The Fourier transform

I . -ik
k(k) = I fR(F, o) e ikr (25)

is called the wavenumber spectral density of the pressure; the Fourier transform

(w) = o-fR(,.T e - iWTdT (26)

is called the frequency spectral density of the pressure; and the Fourier transform

ý(Fr, w) = I f( r, T) . dT (27)

is called the frequency cross spectral density of the pressure. In dealing with
the fluctuating pressure exerted by a turbulent boundary layer on a flat wall (wall
pressure) we shall customarily restrict vectors Z and F to lie in the plane of
the wall by setting their normal components x2 and r 2 equal to zero. The factor
(2TT)- 3 in Eq. (25) is then replaced by (2-,T)- 2 and the integration is carried out
over r, , r 3 only. The vector k has the components k,, ka only in this case.

We must bear in mind that it is practical to measure only time varia-
tions of physical quantities such as velocity and pressure. Yet all of the aver-
ages discussed above are ensemble averages. Clearly the physical circumstances
of a turbulent flow must be such that both an ergodic hypothesis and Taylor's hy-
pothesis can be invoked if there is to be any relationship between experiment and
the statistical theory of turbulence. This point is fundamental to boundary layer
noise research as well as to the general study of turbulence. We need to examine
the applicability of these hypotheses to fluctuating velocities in order to gain in-
sight into their applicability to fluctuating pressures.

10
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Let us consider first the generation of turbulence by placing a fine
mesh grid across the upstream side of the test section of a wind tunnel. Let U
be the mean tunnel flow velocity and consider it directed in the positive xi direc-
tion. Let ui(Zt) be the fluctuating turbulent velocity components. If the tunnel
has been in steady operation for a reasonable length of time, it is clear that a
velocity correlation such as

Ri,+ )= ui(xP,t) u(6 + Ft +)

is not dependent upon t. Hence we may make the ergodic hypothesis that Rij is
equal to the time average

I-Tfo u.(x+rt+r)dt
-• uIi( ,,t

taken over a sufficiently long time T. This time average can be measured by
placing hot wires at the points x and xZ+ r, and performing the time delay and
integration operations on the output signals.

Let us now consider a slowly decaying (or varying) turbulent velocity
field being convected at velocity [3c in the positive x~direction. We have, roughly,
that

u i(x 1x xzt) ý ui (xj - U ct, x 2,X;3,0).

Strict equality would imply that the turbulent velocities are frozen in time in a
reference frame moving with the convection velocity Uc. Taylor's hypothesis
is that this relation is valid when applied to velocity correlations and that, fur -
ther, the turbulence is spatially homogeneous in the moving frame of reference.
Thus for x2 =x3 =r 2 =r 3 =0, say,

uP(x ,t) ut(x 1 +r 1 ,t+ T) = ui(x1 - Uet, 0) u.(x, - Uct + r,- U-, 0)

= R.i(r 1 - U c, 0) (28)

11
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We now have a means of determining experimentally the correlations
required in the statistical analyses. Favre, Gaviglio, and Dumas (1953) demon-
strated the validity of Eq. (28) for grid turbulence by showing that peak values
of the velocity correlations were obtained for r 1  UcT. This form of turbulence
is essentially isotropic in the sense that the velocity correlation Rij(r) is invariant
under rigid rotations and reflections of ui(X), uj('-i I) and 'r. Physically, this
means that there is no directional preference for tu -bulent velocities in free tur-
bulence produced by grids. Lin (1953) showed analytically that Taylor's hypothesis
is valid for isotropic turbulence, provided the root-mean-square velocity fluctua-
tions are much less than the convection velocity Uc.

For turbulent shear flows, such as occur in the boundary layer, there
is less theoretical justification for applying Taylor's hypothesis to velocity cor-
relations. However, Favre, Gaviglio, and Dumas (1958) demonstrated that it
does apply if the convection velocity Uc is taken equal to the mean flow velocity
at the distance x2 normal to the wall at which the hot wire measurements were
taken. In boundary layers, no assumption of general spatial homogeneity can be
made. However, it is customary to assume that the turbulent boundary layer is
spatially homogeneous in planes parallel to the wall. This assumption is made
physically tenable when one considers that similarity must persist in the bound-
ary layer over lengths equal to many boundary layer thicknesses.

We must emphasize that none of the extensive studies of velocity cor-
relations in turbulent boundary layers give us any immediately useful information
about the pressure fluctuations. They do serve two purposes, however. First,
they set a pattern of analysis and experiment on which to model studies of pres -
sure fluctuations. Second, as we shall see, pressure fluctuations are related
to velocity fluctuations through the dynamical equations of motion; hence, informa-
tion that may be inaccessible through pressure measurements can, in principle,
be sought from velocity measurements.

12
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IV. THE FOUNDATIONS OF THE THEORY OF AERODYNAMIC SOUND

Lighthill (1952) published a classic paper giving the theory of acoustic
radiation from free turbulence. This paper is the starting point for all subse-
quent investigations of flow noise. In it he made the first quantitative estimates
of the intensity of acoustic radiation from free turbulence, showing it proportional
to the eighth power of the mean flow Mach number for subsonic flows. He ex-
pressed the equations of motion in the form

_a 1 6P 1 02 TT (29)
a 2x. 2 2 (X. 6x.I I c 0 tae c 0 j

where P is the fluid density and co is the speed of sound in the quiescent portion
of the fluid. The summation convention is used where the same index appears
twice in a term, e.g.

ýz p hap 3 2p P 62p
=- - -I- -F--•

i xX. aX 2  a 2x

1 2

The tensor T__ is defined as

T.. = Pu.u. - T.. - c2P6.. (30)
IJ i j 1J 0 J

where ui is a velocity vector, 6ij is the Kronecker delta (= 1 for i = j and = 0
for i j j). The stress in the fluid is

- = - p ,•. -T'.

where p is the pressure and T' represents the viscous components of stress.ij

13
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In a region of turbulence the dominant term of T.. is the Reynolds
stress Puiu-. In the quiescent portion of the fluid Ti- may be assumed to vanish.
Thus Eq. (19) can be interpreted as a wave equation for the radiation of density
fluctuations outward from a distribution of quadrupoles Ti, representing the
turbulence. By the application of Kirchhoff's formula for a retarded potential
to Eq. (29), Lighthill demonstrated that quadrupole or free-turbulence radiation
intensity obeys the above law involving the eighth power of the Mach number.

On one hand, his result is of considerable importance in the study of
aircraft jet engine noise. On the other hand, it serves to show negatively that
free turbulence noise is unimportant in underwater applications, where the sound
velocity is high and vehicle speeds are low.

Curle (1955) extended Lighthill's theory to include the effect of a rigid
body adjacent to a region of turbulence. He showed that the intensity of radiation
from surface pressure fluctuations on the body induced by the turbulence should
be proportional to the sixth power of the mean flow Mach number. The dominant
contributor to radiated sound in this case is a dipole distribution at the body sur-
face.

Curie's theory was applied by Phillips (1956a) to predict the intensity
of aeolian tones created when a body in a flow field sheds a regular vortex wake.
The radiation from cylinders whirled in still air or placed in subsonic wind tun-
nels was measured by Phillips (1956a), Gerrard (1955), and Keefe (1961); their
findings generally confirm the law concerning the sixth power of the Mach number,
provided proper account is taken of the length of the cylinder over which the shed
vortices are correlated in phase. Dipole radiation of this type can be important
in underwater applications. Ross (1964) showed that it is probably the principal
source of sound from a marine propeller that is not cavitating. In particular,
if the shed vorticity is correlated over a substantial length along the trailing
edge of a propeller blade, singing occurs. This discrete tone noise is an im -
portant contributor to both radiated and self noise when it occurs.

The application of Kirchhoff's formula to Eq. (29) yields a general
expression for radiated density fluctuations

P(Zt) - 1 [T. I dV(F) +- --- [u-b dS(SJ
4Trc 2  oxi 8X j V Tij- x i r I J

0S

(31)
ni

r- ;t f-[ Pl1 i] dS(V?)I

14
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which includes both Lighthili's and Curle's theories. Here r = Ix!-'•i, V is the
volume of turbulence, S is the body surface, ni is a unit inward normal vector
to S and the bracket [ i requires that the quantity inside it be evaluated at the
retarded time t - r/co.

If the surface S is fixed and rigid, niui = 0. Then the only surface
integral that does not vanish is

a j [P.] dSýx_. r i

where Pi = njyi" is the stress vector exerted on the fluid by the surface boundary
element dS. his result forms the basis for the determination of radiation from
finite rigid bodies with turbulent wakes, e .g., aeolian tones.

Equation (31) applies also to the raidiation from a turbulent boundary
layer on a rigid wall. However, if the wa.J is of infinite extent, a result is ob-
tained which has been the subject of controversy for ten years. The simplest
derivation of this result is by means of a reflection principle introduced by
Powell (1960). One first notes that the right-hand side of Eq. (31) vanishes if
the point Z is interior to the surface S. If S is the infinite plane x2 = 0, it is
possible to combine two expressions of the form of Eq. (31), one vanishing for
x2 > 0 and one vanishing for x2 < 0. -This is done by reflecting a turbulent bound-
ary layer flow in the region x2 > 0 to form an image flow in the region x2 < 0.
It then follows by symmetry that only a volume integral of Tij for the real and
image flows remains, provided the flow is assumed inviscid. But this implies
that the radiation must be of quadrupole nature only, and hence the intensity
must obey the law of the eighth power of the Mach number.

An alternative proof of the vanishing of dipole radiation has been given
by Phillips (1956b). A closely related result concerning pressure fluctuations on
the wall was obtained by Phillips (1955) and by Kraichnan (1956) under the assump-
tion that compressibility could be neglected within the boundary layer. Assuming
the turbulence homogeneous in planes parallel to the wall, Phillips' expression is
that

f p(', t)p(i;-, t) dA(r) =0 (32)

X2 0

= 0

15
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where the integral is taken over the entire wall area. We may state equivalently
that the wavenumber pressure spectral density vanishes at zero wavenumber or
that the pressure correlation area on the wall must vanish.

Both of the above related results have important bearings on the gen-
eration of flow noise by turbulent boundary layer pressure pulsations. The first
tells us that direct radiation from the boundary layer adjacent to a sonar dome
cannot be important and we must look to vibration of the dome itself for the
mechanism of flow noise. The second tells us that there are important restric-
tions on the nature of the forcing function causing the dome vibration. In par-
ticular, as we shall see later, the vanishing of the pressure correlation area
weakens the validity of otherwise useful analytical attacks on the problem of a
plate or membrane subjected to random exciting pressures.

16



V. ANALYSES OF WALL PRESSURE FLUCTUATIONS

The fluctuating pressure on a wall adjacent to a turbulent boundary
layer is often termed pseudo-sound in recognition of the fact that it is essentially
non-acoustic in nature. We have already indicated that it is not associated with
any significant far-field radiation if the wall is rigid, flat, and infinite. How-
ever, this pseudo-sound is quite real. It is the flow noise measured by a trans -
ducer placed flush to a wall. It is also the random forcing function that sets a
sonar dome into vibration with consequent acoustic radiation into the interior of
the dome. We must therefore characterize this pseudo-sound in a suitable man-
ner at the outset of any serious investigation of sonar self noise.

The assumption that the flow in the boundary layer is incompressible
leads to a great simplification in the analysis of the relation of pressure fluctua-
tions to velocity fiuctuations. Equation (29) then reduces to

a2 a2 u. u.
a2 p I J (33)

ax. Zx. P ax. 6 x (
I I I j

where Po is the mean fluid density. By inspecting orders of magnitude of velocity
and pressure terms in the equations of motion taken very 11ear a flat, rigid wall,
Kraichnan (1956) showed that the normal derivative of p must be approximately
zero at the wall; i.e.,

( 0 (34)
bx 2

If the mean flow Mach number is small and the wavelengths under con-
sideration are sufficiently large, the neglect of compressibility within the bound-
ary layer is a reasonable physical assumption. It means that the purely hydro-
dynamic pressure fluctuations dominate over the radiated, or acoustic, pressure
fluctuations within the iayer. Not all matters of interest can be dealt with within
this assumption, however. Ffowcs Williams (1964) p-inted out that the inclusion
of compressibility in the analysis alters the conclusion that the pressure correla-
tion area vanishes. lie found that the correlation area is proportional to the
square of the mean flow Mach number. For sonar applications, however, this
result only serves to reinforce the validity of the incompressible flow assumption.
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Using the reflection argument cited above, Kraichnan showed that
Eqs. (33) and (34) imply

a U u.
x 0 dV(Y

p(, t) = -(• f 0 UY dy C)r 5 )
2nf>0 a1OY

where X- is a point on the wall x2 = 0. He also showed that if the normal gradient
of the mean velocity is 65'1/6y 2 then

,)2u. u. aff 6ut
I y j _ 2 A, (3 6 )

aY i 6 i aY 2 aY ,

where u'2 is the fluctuating component of velocity normal to the wall. Hodgson
( 962) has verified experimentally that this is the dominant term of the velocity
derivative products.

To proceed further with the characterization of the statistics of wall
pressure fluctuations, we must make certain broad conceptual simplifications
concerning the turbulent boundary layer and then test the results of these con-
cepts both analytica!ly and experimentally. We consider coordinates xi and x.
fixed in the plane of a rigid, infinite, flat wall. A turbulent boundary layer is
established with a uniform velocity U in the xi direction outside the boundary
layer. For a fixed position x1 , x2  0, x3 , the ensemble average

p(x,.,x1;t) p(xI,x3 ; t + T)

is considered independent of t. Hence by the ergodic hypothesis it is equal to
a measurable time correlation.

If we can consider an essentially frozen pattern of turbulent pressure
fluctuations being convected along the wall at some velocity Uc in the x1 direc-
tion, then with respect to a moving coordinate frame x, = x -Uct, x2 x 2 ,
x3= x we have

P(X,'X1 ; t) = P(",3; 0) =p(x1 -Ut,x;) (37)

cJ
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and hence,

p(x 1 ,x 3 :t) p(xP,x;t + '-) = P(•I + rl , :0) (38)

where r1 = - UCQ. For a well established turbulent boundary layer the further
supposition is made that the pressure correlation is independent of coordinates
x and x.

We have applied Taylor's hypothesis, this time to pressure fluctua-
tions rather than to velocity fluctuations. Under the above assumptions, the
longitudinal pressure correlation at the wail for fixed _3 = x3 is

R(r 1 - UcT, 0;0) = p(-1 ;0) p(x,+ r, - U T;0) = p(x1;t)p(x1+ri;t+-i)C c

(39)

It is clear that the normalized form of R will equal one if 7 = r, /U

No analytical justification exists for the application of Taylor's hy-
pothesis to pressure correlations. Moreover, short of experiment, there is
no physical basis for estimatipg the convection velocity Uc other than that
Uc <U, since a pressure correlation is the integral of velocity correlations by
virtue of Eq. (35). However, if we assume that the wall pressure is statistically
homogeneous in the moving coordinate frame, it follows immediately that

p(x1 , x3 ;t) p(x1 + r, , x. + : 3 ;t+T) = R(r 1 -U , r (40)

where R is the moving-axis pressure correlation.

If then it is assumed that

R(r 1 -Uc,,r 3 ;) = R.(r, - UcT) R3 (r3 )RM() (41)

the measurement of the longitudinal cross -correlation of pressure (Eq. 40) with
r3= 0 will produce peak values of R whenever r, = Uc 7 . Hence Uc can be deter-
mined. The envelope of these peaks is clearly the moving-axis te;nporal auto-
correlation function RM(7), which measures the effect of decay of turbulence on
the pressure correlation. Taylor's hypothesis, of course, assumes that this
function is essentially constant.
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,4rthur 4.1itftl. nr.



The framework constructed above has been used as the basis
for severai significant analyses of pseudo-sound. We shall refer especially to
the studies of Kraichnan (1956), Lilley (1960), and Ffowcs Williams and Lyon
(1963). These papers are strongly influenced by the fact that essentially all
earlier analytical and experimental results concerning turbulent flows related
to velocity statistics rather than to pressure statistics. Equation (35), or the
basic equations of motion from which it is derived, form a means for relating
pressure spectra to integrals involving velocity spectra. Both wavenumber and
frequency spectral densities can be formed from Fourier transforms similar
to Eq. (22) by use of limiting operations similar to Eq. (23). In parallel fashion,
pressure and velocity correlations can be formed, since they are Fourier trans -
forms of the corresponding spectral densities. These analyses aim at reducing
the pressure-velocity relations to tractable form from which physically signifi-
cant properties of the pressure field could be inferred. For example, a spatial
pressure correlation formed from Eq. (35) leads immediately to two volume
integrals of fourth derivatives of fourth-order velocity correlations. Clearly
the simplifying approximation of Eq. (36) is a great aid to achieving any progress.

One might ask if such effort is really worthwhile. Why not simply
measure the pertinent properties of the wall pressure fluctuations directly and
dispense with velocity considerations? For, after all, an adequate experimental
description of the wall pressure field alone would give us the "forcing function"
needed to determine the vibration of a sonar dome and the resulting acoustic
radiation. The answer to this question lies in the following considerations:

a) The correlation area for wall pressure fluctuations vanishes as
the wall b comes of infinite extent. Equivalently, the wavenumber spectral
density of pressure is zero at zero wavenumber. There is merit, therefore,
in dealing with velocity correlations with finite area in this limiting case.

b) One can relate the root-mean -square wall pressure to the mean
shear stress on the wall by use of the pressure-velocity relations. Since the
mean shear stress is a measure of roughness, we have the prospect of relating
wall roughness to flow noise in a systematic manner.

c) The pressure correlation as expressed by Eq. (41) is difficult
both to measure and to interpret. As we shall see later in our discussion of
experimental results, measured values of root -mean -square pressure are
severely influenced by transducer size, and there is ambiguity in interpreting
the relation of convection velocity Uc to the function RM(T) which measures
the decay of turbulence. Recourse to pressure-velocity interrelations is al -
most certainly necessary if a true understanding of the phenomenon of flow
noise is to be achieved.

I
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From the- zimlrini1ri r~ ,.,-,-,1~.

(1956) used Eq. (35), extended to include the reflected velocity field, to estimate
the gross properties of the flictuating wall pressures. Hc found the following
proportionality relations:

Mean squar? pressure 1. 0 " U4

Pressure correlation length scale- L - U0  (42)

Characteristic frequency scale - L"1"- U

where L is the distanc2. from the point of transition from laminar to turbulent
boundary layer flow with free-stream velocity U fixed, and the velocity propor-
tionalities are for fixed position L. The apparent contradiction implied by this
pressure correlation length relation with previously cited findings concerning
the correlation area is perhaps resolved when one considers that spatial homo-
geneity in planes parallel to the wall is certainly not valid near transition. The
lack of dependence upon U is a consequence of the incompressibility assumption.
The characteristic frequency scale cxpresses the dependence of the form of the
pressure spectral density.

Kraichnar. took the frequency-wavenumber Fourier translorm of pres -
sure and the right -hand term of Eq. (33) and solved thc resulting ordinary dif-
ferential equation. (In this and other approaches the spatial coordinates which
are usually transformed are those parallel to the wall, because spatial homo-
geneity cannot be assumed to hold in the normal direction.) He was then able
to obtain art expression for the wavenumber-frequency pressure spectral density
in terms of an integral of the wavenumber-frequency spectral density of the
right-hand term of Eq. (33):

(k If ek(x•2 +x 2 ) S(x, 2 ,xk, u)dx2adx (43)

00

Here k = (k1 , k3 ), k = I and S is the wavenumber-frequency spectral density
of

2•u.u.
1 j

o ax. 8x.
1 J
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" f.r -ixed '"' . .. -1 \ v A ao W then is the mean square
pressure at the wall averaged over the wall.

Equation (43) seems to become singular as k--0 in apparent controdic-
tion to Phillips' result, Eq. (32). However, Kraichnan and Ffowcs Williams and
Lyon demonstrated that the effect of the double derivative of uiuj is to cause

(k, w)-- 0 as k --o 0

The demonstrations depend upon the rapidity with which either velocity correla-
tions or spectral densities vanish as one moves normally away from the wall.
Because of uncertainty as to the asymptotic relations involved, none have been
considered as complete proofs. Recent experimental data, Hodgson (1962),
tends to support the basic validity of the result.

Kraichnan applied the simplifying approximation, Eq. (36), to Eq. (35)
to obtain an estimate of the relation between the root-mean-square wall pressure
and the wall shear stress:

P- ~ 6T0

Lilley improved upon this estimate by a somewhat more straightforward analysis
which avoided a difficult integration in Kraichnan's work and obtained

VP2z- 4.6-°

The e';sential assumptions involved the form of the mean velocity gradient
8ff• /6 and the form of the velocity correlation R2 (r1 ,x 2 ,r 3 ). Lillhy took

2 2
the former from Coles' (1956) experimentally derived law of the wake. He
chose the latter to have the form it would have in isotropic turbulence. This
permitted the use of Laufer's (1954) measurements of the root-mean-square
normal velocity component and Grant's (1958) measurements of the ratio of the
velocity scale of turbulence to the displacement thickness of the boundary layer
to obtain the above estimate.
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VI. MEASUREMENTS OF WALL PRESSURE FLUCTUATIONS

The first extensive measurements of wall pressure fluctuations were
those of Harrison (1958). Small, flush-mounted pressure transducers were in-
stalled in the wall of a subsonic wind tunnel. Root-mean-square pressure, pres-
sure spectral density, -..d longitudinal and lateral pressure correlations (using
pairs of transducers) were obtained for a tunnel wind speed U of from 50 to 200
feet per second.

Harrison found the root-mean-square pressure to be

-ip- 1 2

' 9.5x10 q, q= oU

and the convection velocity (see Eq. (41)) to be

U z0.8Uc

His measurements of pressure spectral density are plotted in dimensionless
form in Figure 1. The experimenial form of the pressure spectral density
.(f) used by Harrison is related to i(,x) of Eq. (26) by the relations

S= 2-rf , -pff) = 4.T )

Equation (11) shows that the displacement boundary layer thickness 6" is roughiy
proportional to the distance from the point of transition to turbulent flow. Hence
Kraichnan's proport,.orality relations, Eq. (42), imply that

where the form of the function V is given in Figure 1. Harrison's data have
been replotted to confoi m to this notation.

Harrison's mueasured pressure spectral density falls off abruptly for

, 6*/U > 1.0. This effect is due, in part, to the failure of his transducer to

resoive the high-frequency portion of the spectrum. The problem of correcting
for the effect of finite transducer size is the subject of several other investiga--
tions which we shall discuss later.
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Harrison's longitudinal pressure correlations were obtained in nar-
row frequency bands. Thus, he actually measured the real and imaginary parts
of the longitudinal cross spectral density; i.e.,

¢(r 1,O,f) = U(rl,f) + iV(r 1 ,f) (44)

where

PO(XIt) Po(X, + r,,t)
U (r f,0 -L

p 0(xl,t) p (xj + rl, t
V(rl,f) : A f 0

Po signifies the filtered output signal, and a time average is taken experimentally.
The ergodic hypothesis is employed to equal time and ensemble averages under
the assumption that the process is stationary in time.

For a sufficiently narrow bandwidth, the normalized form of U(r1 , f)
should equal

fr1
cos 2TT-

c
if the turbulence were frozen. In other words, U is determinable from measure-
ments of U(r1 , f) under Taylor's hypothesis.

Any deviation from a cosine form for U(r1 , f) should be indicative of
the decay of turbulence. Following Bennett (1956), Harrison assumed the rela-
tion

p(x1 +r' ,t) = ci(t) +S(t) +Y(t) (45)

where y(t) is that part of the downstream wall pressure that is uncorrelated
with the upstream pressure, i.e.,

p(x 1,t) Y(t) = 0
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and at(t) and ý(z) combine with p(xl,t) to yield U(r,,f) and V(r 1 ,f) respectively.
He then plotted (see Bennett (1957, p. 30)),

i2
l•I} rf)1 2 •v M

= I1- (46)
[.() 2  ý Mf)

against rif/Uc as a measure of the coherence of p(x1 + r1 1 t) with p(x1 ,t). In
this expression, ý,(f) is the frequency spectrum of Y(t).

Clearly, the frequency transform of Eq. (44) is the longitudinal cross-correla-
tion of pressure, Eq. (40), with r 3 = 0. The moving-axis temporal autocorrela-
tion function RM(T) and the measure of pressure coherence

• (f)
Y Y

•(f)

both describe the decay of turbulence in terms of wall pressure but not in an
equivalent fashion.

We have written Harrison's expressions in a manner that would imply
that spatial homogeneity is assumed. This was done only to achieve conformity
with the approaches of other investigators. In point of fact, Harrison did not
assume spatial homogeneity in the plane of the wall; hence his approach is some-
whate more general than those of later investigators.

Franz measured wall pressure frequency spectral densities and rms
pressures on the submarine USS Albacore over a range of ship speeds and at
various locations from near the bow back to about one-quarter of the ship's
length from the bow. His results are reported in the review by Richards, Bull
and Willis (1960). They are in general accord with the wind tunnel results shown
in Fig. 1. The high-frequency portion of the spectrum is reduced for transducers
located forward in the thin portion of the boundary layer. This is indicative of
the expected loss of transducer resolution. Of particular interest is the fact that
pressure spectra measured on a hydrophone located within the hull in the forward
free-flooding portion of the hull could also be plotted non-dimensionally as in
Fig. 1. The data collapsed to a single spectrum line for all ship speeds except
the lowest speed. His results are considered excellent confirmation of the con-
clusion that boundary-layer pressure fluctuations are the cause of sonar self -
noise at all ship speeds above that where machinery noise dominates and below
the speed of onset of dome or propeller cavitation.

Willmarth (1958), (1959), (1965), Willmarth and Wooldridge (1962),
and Wooldridge and Willmarth (1962) carried out an extensive series of measure-
meents of wall pressure fluctuations. This work is significant in several respects.
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The effect of the ratio of transducer radius to displacement boundary layer
thickness, R/6*, upon the wall pressure spectral density is clearly established.
Figure I shows Willmarth's (1962) pressure spectral density measured beneath
a thick turbulent boundary layer with R/6* = 0.166. We have also plotted
Willmarth's 1959 spectra taken with large transducers. It is evident that the
high-frequency portion of the spectrum is lost for large values of R/6*.

Willmarth found for a smooth wall that

F-_ 5.7 x 10 q 0 2.6

but for a rough wall that

S8 .5 x 10 q ;- 3 .7 to

5p 0

His experiments involving roughness were very limited, but they do
point out that a significant increase in root-mean-square wall pressure occurs
when the wall is roughened. This, together with the effect of the ratio R/6 ,

may explain the wide variations in Jp2/q as reported by various investigators.

The effect of roughness upon the ratio 1/P/ is less easy to understand and
deserves further investigation, particularly since the semi-empirical resuits of
Kraichnan and Lilley indicate this ratio should be independent of roughness.

Willmarth measured space-time wall pressure correlations directly,
rather than through narrow frequency bands. His data can therefore be inter-

preted in the form of Eq. (41). His results, together with those of Bull, Wilby,
and Blackman (1963), are summarized in Fig. 2. Three typical correlations
are shown together with the envelope RM(T) of Eq. (41). Bull found that the
envelope was lowered as the Reynolds number U6 */v increased. Some difficulty
in interpreting the longitudinal correlation data arises.

Willmarth finds the convection velocity Uc to be dependent on trans-

ducer spacing: asymptotically, U,, 0.56 U for r1 /6* - 0 and Uc approach-
ing 0.83 U for large values of r, / . A physical explanation for this effect is
that the large turbulent eddies occupy the outer portion of the boundary layer

tWillmarth and Wooldridge's (1962) data on rms wall pressures and freqx-ency

spectra were corrected by Willmarth (1965). We have incorporated the c .rrec-

tions in this report.
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and hence have a high convection velocity. The small eddies lie farther in and
travel more slowly. Since the small eddies decay more rapidly, they have little
influence on correlations taken with large longitudinal transducer separations.
On the other hand, for small transducer separations, the nearby small eddies
have not decayed appreciably and have a major influence on the correlations.
Thus, one should expect both Uc and RM(T) to be wavenumber- dependent.

The longitudinal spatial correlation of wall pressure R(r1 , 0, 0) is
plotted in normalized form as a function of r,/ 6 * in Fig. 3. Measurements
taken by Willmarth and Wooldridge (1962), Bull, Wilby and Blackman (1963),
and Maestrello (1965a) can be compared. Only those of Bull show the negative
correlation (for r 1 > 46") required by Pbillips' theorem. The agreement is
not good; moreover, no data exist for transducer separations r1 < 0.66*.

In Fig. 4, the lateral spatial correlation of wall pressure, R(O, r3 , 0),
is plotted in normalized form as a function of r /6*. Here also we may compare
the measurements taken by several investigators. All correlations are positive.
The early data of Harrison appears too high and is probably influenced by
acoustic tunnel noise.

Maestrello and Bull also measured spatial correlations at intermediate
angles to the mean flow direction and plotted isocorrelation curves R(F,0)
= const. in the r l , ra plane. As may be inferred from Figs. 3 and 4, the curves
of Maestreilo are elongated in the r1 direction while those of Bull are elongated
in the ra direction for small correlation values. For large correlation values
near r = 0 there is a tendency toward isotropy. However, the data at small
transducer separations are too scanty for this to be a firm conclusion.

Considerable work remains to be done in the measurements of spatial
correlations to verify the existence of negative longitudinal correlations, to
establish the isotropic character of R(F,0) near r- = 0, and to resolve the present
disagreement as to the orthotropic nature of R(-r,0) for large I r-

_Corcos (1962), (1963)2 (1964) studied the difficulties involved in the

measurement of Uc, ý(W), and pl by narrowband analysis and related his con-
clusions to the measureme;mts of Willmarth and Wooldridge and other investiga-
tors as well as to his own measurements of wail pressure fluctuat:ons in fully
developed turbulent pipe flow. He concerned himself particularly with the
measurement of spectral de,;sity (Lu) and cross spectral density ý( r, w).
Writing the complex quantity T, W) as

"-4 ic2•(r,aw) = l•Je
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lie postulated that what is actually rmeasured is

(I' Rel le* t L-
R 0_(0,0)_- _-= C(r,w) cos(x -IT) (47)

Ro(0,0o) + (w)

where Ro(,-,) is the output cross correlation from a narrowband filter centered
on frequency w. Thus

S(?,w) = (w) C(rW) (r w) (48)

where C(0,O) = 1 and a(0,w) = 0.

Both C and a are dimensionless functions of -r,w, a convection velocity
UC, a turbulence time decay constant V, and some suitably defined longitudinal
and lateral correlation iengths X1 , X. If we exclude dependence on correlation
lengths on the basis of Phillips' theorem, then for r3 = 0, by dimensional analy-
sis,

C(r ,0,W) ; A(r ,r,
C C

[rW r )

aO(r1 ,0 ") = g '

Corcos chose a -=T- and A(r 1 , W) = A, yielding

S(r, ,0,U) = A.() A 1 e U c 1(49)

R 0( ) (
Ro(0,A0) c os j- (r,-UcT) " (50)

He then determined Uc = -:,I /a from the ratio of the magnitudes of the real and
imaginary parts of the cross spectral density for fixed r1 and w. The function
A was then determined as the amplitude of the measurement. Correspondingly
for r. = 0, the function

CQ0, r 3 ,) = -(51)
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was determined and the assumption was made that

/ r,w

We may relate Harrison's work to that of Corcos' by noting that

(r _1_L) Y (f)

U = 1 (f)

Both investigators therefore assumed that the decay of turbulence could be rep-
resented as a function of the dimensionless ratio rW/LJ/C .

Applying the ideas of Uber(A and Kovasnay (1953) on the mapping by
linear operators of a random function of several variables to the problem of
the resolution of wall pressure by a transducer of finite size, Corcos found that
the spectral density l m(w) measured by a transducer could be represented as

m(f) f •(rpu)6(r) dr (53)

where a (?) is a function of the transducer geometry only and 0 (', LJ) is given by
Eqs. (48) and (52) above. Corcos then com uted 0 (;) for round and rectangular

transducers, obtained the functions A 2-f-|, BjL) from the measurements

of Willmarth and Wooldridge, and then obtained the ratio ým(w)/ý(m )as a func-

tion of - for a round transducer of radius R by numerical incegration of
Uc

Eq. (53).

Corcos applied his results to correct published measurements of
' (w), in particular those of Willmarth and Wooldridge for which an excellent
ratio R/6* = 0.166 had been obtained. Even in this case he found a significant
lack of resolution of high frequencies with the integrated effect that

- =0.61

Pý

where the subscript m again denotes measured data.
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Corces pointed out that the difficulty in characterization of boundary
layer noise can be turned to advantage in sonar applications. A flush-mounted
transducer of sufficiently large radius will gain a noise attenuation equal to the
ratio ým(W)b6 (w). The incoming acoustic signal will be affected only by the
directivity index of the transducer. He gave the example of ship speed n Uc =
20 ft/sec, R = 1 ft, f = 300 cps for which the noise attenuation factor was

% (w) 0.659 U o
m c =2.32 x

Bull, Wilby, and Blackman (1963), at the University of Southampton,
also carried out measurements of pressure spectral densities and space-time
correlations in nai .ow frequency bands. Bull (1961) used the assumption of a
separable cross-correlation function, Eq. (41), of an almost frozen field of
turbulence with constant spatial scale to reach the conclusieq that A(r 1 ,w) should
not only be independent of w but also be approximately equal to the moving-axis

temporal autocorrelation function R (-.L-) . He recognized that measure-

ments appeared to show the contrary but pointed out that the use of too wide a
filter bandwidth or the presence of background noise in the measuring equipment
could lead to an apparent dependence upon w. In his 1963 paper, however, this

viewpoint was modified. He considered that Corcos' function A( should
U

pertain to the high-wavenumber components of the pressure field which rapidly

lose coherence. On the other hand, A (r1W-should be replaced by a function of

-c alone for the low-wavenumber components. This view is in general accord

with our remarks based upon dimensional analysis.

In Fig. 5 Corcos' longitudinal similarity function is plotted together
with Bull's narrowband measurements of the same quantity. Corcos converted
Willmarth and Wooldridge's (1962) measurements o.A RM(r) taken in two fairly

wide frequency bands (300 to 700 cps and 3000 to 5000 cps) to A( U-- by the
argument transformation

r Wr"- 1

tiE U
C C
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where w denotes band center frequency. A surprisingly good collapse of the two
curves for RM(¶) was achieved in this way. Bull's measurements, taken through
one-third octave filters, show a strong dependence upon r /6* at low frequencies.

In Fig. 6 comparisons of Corcos' and Bull's determinations of the

lateral similarity function B( )C-can be made. Corcos converted Willmarth's

measurements of R(O, r 3 ,0) taken in the above two frequency bands to U U)
by the argument transformation C

r wr
3 3

X3 U "
C

Similarly to the above longitudinal case, Bull's more refined measurements
show a strong dependence on r3 /6* at low frequencies.

Willmarth and Roos (1965) approached the problem of pressure resolu-
tion from a different viewpoint from that ef Corcos. They sought an expression
for -v() in terms of 'nj('r,w) and 0(1), or transforms thereof, and then used
Corcos' similarity hypothesis and empirical relations to represent ý..( (r, ()
rather than (7, LL). Using the wavenumber transform .tfk of the transducer
,eme,,- funct-ioGn(). they obtained the relations

M kT (2r) '(k, 7.)* (k), (54)m

I f (k w)T-T7 f M .- dk , (55)
m (k)-

where

-, f R e-i kdr -""2T7.)2

A curious circumstance resulted. For a circular transducer of radius R ,

where J, (kR) is the Bessel function of first kind of order one. At wavenumbers
corresponding tothe zeros of J,, the integrand of Eq. (55) becomes infinite for
the form of W( k, w) following from Corcos' assumption applied to rm(r, U)
instead of to F i, W). However, the frequency transform of Eq. (54) indicates
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that (k, u) has precisely the same zeros as ;'(k). The difficulty with Corcos'
model applied to Fr( -, x) is that the measurements upon which the similarity

functions A and B are based were not taken with sufficiently small transducer
separation.

Willmarth and Roos obtained a new estimate for ..'(W)/•(w) using the
similarity functions A and B in Eq. (51) but truncating the integration short of the
first zero of .1( k). Th.e effect of this truncation was to make •mw)/¢(i)dependent
upon R/6* as well as upon LLR/Uc. By graphical integration of Eq. (55) they
found i*(uw)/ G(i)to correspond to Corcos' results for WR/Uc : 1. For
WUR/ic > I their results show Corcos' correction to be too great. Willmarth
has reported informally that lie has tried to apply Eq. (55) and Corcos' model to
correct his own experimental data for four different sizes of transducers (see
Willmarth and Wooldridge (1962)). The corrections made the larger transducers
yield higher values of !(,) at high frequencies than the small transducers.

A criterion for the validity of correiation models was proposed by
Ffowcs Williams (1960) for velocity correlations and applied by Chandiramani
(1965) to wall pressure correlations. Suppose R(r, -) is a one-space dimensional
cross-correlatio)' measured in a reference frame moving at the convection
velocity Uc. Then for sufficiently small values r and 7,

R(r,) S R(0,)
(56)

- R(r, 0)

Inequalities (56) in fact uniquely define a convection velocity as-.:ociated with the
broadband cross-correlation function. For if a ridge of local maxima of the
cross-correlation measured in any refcrence frame exists, then it follows that
there is only one ref-e.rence frame moving at Uc in which this ridge cannot be
detected. Under the assumption that the wall pressure is a stationary random
function of space and time in any reference frame, it follows that if r = r-Uct,
the cross-correlation R measured in a fixed reference frame is related to R by

R(r,) =R(r -- ) . (57)

It then follows that for sulficicntly small :,

R(0,) R(U c, -

SR(U -,0) (58)
c
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Chandiramani (1965) puinted out that certain models of the cross-
spectral density used in recent analyses of experimental measurement; of wall
pressure do not satisfy inequalities (58).

Bull (1961) used the approximate relation for r. = 0,

M( r_.) ii:rffr•,) •RM e9 U
c c

If one takes the frequency transform of this relation, one finds that

R(U C, 0) < R(0, T)

in contradiction to FfowcsWilliams- criterion. One may readily show that
Corcos' (1962), (1963), (1964) model of the cross-spectral density also fails
to satisfy the criterion if the criterion is assumed to hold for cross correlations
measured in narrow frequency bands.

Expressions (56) and (57) lead to the more general inequality

R(r,T) - R(U ,).

Chandiramani pointed out that this inequality implies that the proper method of
determining UC. from R(r,-) experimentally is to maximize R by varying r with
Sfixed. Most determinations of Uc, however, have been mace by fixing r and
va Lying -,. That these two methods are not in general equival :nt is evident
from the example of the separable corre!ation

R(r,-) = R. (r-Uc-RM(T)

for which

6R !0 but aR RrrU - Tr=U M
r =

Since Ri (7) < 0 for - > 0, the latter method yields too large a value for Uc.

The determinations of Uc from cross-spectral densities made by Harrison and
Corcos suffer from essentially this same deficiency.-

It appears that the first of the inequalities of Eqs. (56) and (58) as well as the
iaequality of (58a) are valid whenever a convection velocity Uc can be established.
"-he second and stronger inequalities of Eqs. (56) and (58) are only plausible,
for it is possible to construct space-time correlations for which these in-
equalities do not hold.
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The error in Uc determinations by the usual experimental techniques
is not of itself particularly important for Rj14 0r) .•O if the decay of turbulence is
sufficiently slow. Thus Corcos' choice of a(r L,w) = ritw/Uc is not a gross ap-
proximation. On the other hand, the use of the similarity function A(r 1 ,U) =

A(r ix/Uc) leads to the more fundamer,.al difficulty that the resulting corrections
to frequency spectral densities measured with transducers of finite size are too
large at high frequencies. Chandiramani proposed the alternative concept of a
narrowband cross-correlation measured through a (hypothetical) wavenumber
filter. One thus obtains instead of Eq. (48) the relation

0,-T = A-ikU c7
•(kI,O,T) I T(k) A(kUcT)e

where A(kUcT) is essentially RM(T) but for the wavenumber component k1 only.
No difficulties with Ffowcs Williams' inequalities arise-from this approach.
One can utilize existing experimental data simply by making appropriate conver-
sions

k,- U r, -- U 7
U - Cc

Chandiramani used the following generalization of the wavenumber-frequency

transform of Eq. (41) and writes the spectrum as

k, ) (k) M Uc(k); w - k, Uc)

where 6 is the wavenumber transform of R (--). In turn,

-kU•

a.
R M() A(k 1Uc7) = e

whereCL::. 9 from Willmarth's measurements of R(r 1 , 7). lie assumed M(k) to he
isotropic in k, but to be related to a finite correlation radius (an invalid assump-
tion by Phillips' theorem). He then calculated the correction to ý(w) for finite
transducer radius in the manner of Corcos but found the correction factor for
high frequencies to be much less significant than Corcos found it to be. His
method permitted the ratio of transducer radius to displacement boundary layer
thiclaiess to influence the correction in general acc:irdance with expurimental
trends. We note, however, that this ratio is introduced into Chandiramanms
analysis in an entirely different fashion from the manner in which it appeared in
that of Willmarth and Roos.

Chandiramani followed Corcos in that he assumed the form of the
true •(k, xi, but he did not accept Corcos' similarity variables. Willmarth and
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Roos used the similarity variables but applied them to the form of the measured
_ ( r, w). It would appear desirable to adapt Chandiramani's approach to measured
data. This would require, however, an experimental realization of the concept
of a narrowband wavenumber filter.

Chandiramani made the interesting observation that a transducer of
finite area should measure essentially the moving-axis frequency spectrum
'M(w) at high frequencies rather than the fixed-axis frequency spectrum (

An experimental confirmation of this analytical conclusion would be difficult
because of internal high-frequency noise problems in measuring equipment. It
would be desirable nevertheless. For as we shall see later, ýPij) or, equiva-
lently, the temporal decay of wall pressure turbulence is an important quantity
in determining structural response.

Gilchrist and Strawderman (1965) measured the responses of two
piezoelectric transducers in one-third octave frequencý hands to boundary layer
pressure fluctuations in a pipe flow facility over a range of convection velocities.
fhe effective radius of each transducer was determined by measuring its voltage
response to the loading of a weighted pin located at successively increasing radii
from the center. The ratio of the spectral densities of the two transducers should
equal the ratio of Corcos' (1963) correction factors, with all quantities expressed
in terms of wr/Uc. The ratio of effective radii was 2.56, and the spectrai den-
sities were determined over a range .01 < wr/Uc < 4.

Gilchrist and Strawderman constructed an experimental correction
factor for transducer diameter by an iterative use of their data for Jr/Uc from
.01 to 4. The agreement with Corcos' semi-empirical correction factor was
within experimental error over this dimensionless frequency range. It appears,
however, that this confirmation of Corcos' result is not valid for transducer
radius corrections signiiicantly greater than the 2.56 ratio used in their experi-
ment. Corcos' similarity hypothesis is implicit in their work as well and hence
was not tested.

It would be premature to assess the relative nmrits of the several
viewpoints currently held concerning the proper statistical representation of the
wall pressure. In spite of the high degree oi refinement of measurement tech-
niques, basic questions remain concerning the interpretation of experimental
results. We have emphasized only the situation of a fully developed turbulent
boundary layer adjacent to a smoodh, flat plate. The effects of surface rough-
ness, pressure gradient, flow separation, and transition remain largely un-
explored.
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VAL, i•r INFL.UEINCLUI' !JZ'"T¶.UCU U-tt.ON FLOW NOISE

Except for the special case of flush-mounted transducers, all sonars
are mounted inside free-flooding domes. The domes are usually constructed of
thin steel plates welded over a rib-like frame. A few domes have been con-
structed of fiberglass or rubber; we shall not discuss these specifically, although
our remarks in general apply to such domes as well.

There is some point in reminding ourselves from time to time as to
the purpose of a sonar dome. It .s to permit sonar operation at speed; that is,
to eliminate the violent self noise that would occur from cavitation and turbulence
resulting from flow about the non-streamlined sonar elements. That there is n(,
other reason has been demonstrated in at least one instance where low-speed
sonar performance was actually improved by removing the dome.

Despite the purpose of the dome, its design has heretofore been based
on criteria not directly associated with flow-noise reduction, Its hydrodynamic
form is dictated by drag and cavitation considerations, and its structural form is
a compromise between strength and acoustic signal transmission requirements.
Domes have not been designed to minimize flow noise, because no quantitative
criteria for the effects of smoothness, form, and structure on internal acoustic
radiation from boundary layer pressure pulsations have been available.

Turbulent boundary layer pressure pulsations excite principally bending
wvaves in the sonar dome structure. These bending waves, in turn, cause acoustic
radiation both outside and inside the dome. rhe internal radiation is detected at
the sonar transducer as self noise from flow. In reality, both the vibratory mo-
tion of the dome and the internal acoustic field are reverberent; hence, the actual
self noise measured by a transducer element is a spatial average over all wave
fronts to which the element is responsive. Both near-field characteristics of
plate radiation and transducer directivity must play an ultimate role in a calcu
lation of the self noise received.

Because of the complexity of the total problem, most analytical investi -
gations have been restricted to the determination of far-field radiation from
either infinite or bounded flat plates excited by boundary layer turbulence.
Ribner (1956) and Corcos and Liepmann (1956) studied the case of the infinite
plate. Kraichnan (1957) gave the earliest treatment of the case of a periodically
.,upported plate. A significant limitation of this work is that the effect of acoustic
loading on plate vibration is largely neglected. Such an approximation is valid in
air, where mass loading of the air on the plate is negligible and the damping from
acoustic radiation is small compared with the internal or applied structural damp-
Ing of the plate. In water, however, neither of these effects is necessarily small,
and the problem is thus much more difficult.
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The problem for an infinite plate in water can be formulated as
follows: The equation for small normal displacement il (x1 , x3 , t) of a plate
excited by wall pressure p (x1 , x3 , t) is

DV 4 rj+p hr tt = P_-P++p (59)

whr D=1 Eh3

whereD 12 (1 -I) is the flexural rigidity of the plate, h is the plate

thickness, Pp is the plate density, and E and o are Young's modulus and Poisson's
ratio, respectively. Structural (hysteresis) damping of the plate can be crudely
accounted for by writing E (1 +i e) in place of E, where e is the material loss
factor. Alternatively, one can insert an arbitrary Rayleigh damping term
P ph 8 1tt in the left hand side of Eq. (59).

The terms P+ are the acoustic radiation pressures above and below the
plate. The radiation field is related to the plate vibration by the boundary con-
dition.

__ - I¢ (60)

and the Bernoulli equation

P = - o -t(61)

where Po is the fluid density and 0(x1 , x2 , x3 , t) is the fluid velocity potential.
The fluid velocity potential must satisfy the wave equation

2 1
V2 0- 1- tt = 0 (62)

0

where co is the speed of sound in the fluid.

By taking Fourier transforms of the above relations we can write the
wavenumber -frequency spectral density of the field pressure P at a distance
x 2 from the plate as

- 2 Re YX x W)--. e ex (c, w) (3
• (x2 , k, W) 2 4 (63)

f 
1p)2 i P-p4 k - Rey+4
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wherey= y "k2 -k 2o , ko = L/C ' " (W, u) is the wavenumber-frequency spectral
00 0

density of the wall pressure, and k =- where the plate wave speed C
p Cp

satisfies the dispersive relation

c2 = (64)

p p h1

By integrating Eq. (63) over k. the frequency spectral density of field pressure
may be obtained. A fAither integration over L will then yield the mean square
field pressure. Both quantities derived in this manner are averages over the
plate surface. Thus the probilem of predicting the radiation field at a distance
x2 from a plate undergoing turbulent boundary layer excitation described by
% (k, u) can in principle be solved explicitly. The effect of fluid loading, indi -
cated by the term v, adds a severe complexity, and no general solutions have
as yet been obtained.

We may note from Eq. (63) that when k < k0 , Re) = 0 and hence no
attenuation of "f with increasing x2 occurs. It is also evident that when k = k-%
we should expect a marked increase in the magnitude of tf. Since k. is usual!y
significantly less than kp at frequencies 1 of interest in sonar applications, the
previously cited result that

S(k. &)---O as k - 0

implies that the dominant contributoi-. to the radiation field comes from wave-
numbers near kp,

A remark is in order concerning the representation of the wall pres-
sure spectrum k(', v) under the assumption of convected frozen turbulence.
From Eq. (41) with R- ( ) = 0 (no decay) the pressure correlation can be
written as

p(x:,xa;t)p(x,+r,, x-+r; t+) =R(r; )=R (r. -U , rz:) . (65)

Note that it is not necessary to factor Ro into R: (r. -U :,. (r:)

We have the basic relation

(k, j) I R (r;-I)eik -r+i dr d (66)
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Introducing Eq. (65) into (66) and changing variables of integration to
=r 1 - UcT, ' = we can show directly that

t ~ = ~ K) 'f "R;0) e-i (k, +k 3 x3 ) d• dx-

where 6 is the Dirac delta function. But

-(k, L-) e d ( 2 7) 2  R(r, 7)e dr

hence, setting T = 0 in the relation we obtain

•(k,) =5 -U k,) f (k, u) dx

6 6(L,-U k,) •(k) . (67)

Eq. (67), or modifications of it for known R\M (T) 1 1, form a basis
for the spectral representation of the turbulent wall pressure as a forcing function
on the plate.

Ribner (1956) dealt vdth the radiation from an infinite flat plate sub-
jected to a convecting frozen field of turbulence. He ignored the effect of
radiation loading upon plate vibration; hence, instead of Eq. (63) he obtained
the equivalent of the relation

-_2Re Yx2 (8rf(x 2 ,k',J,)= e -2e •(k,w) •(68)

For, wall pressure convecting at velocity Uc without decay

R(r,)R (r: -U , r3)0 c

for which

S(k', s) =(k, U c- x) •(

by Eq. (67). Then
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ýf jf6Xf(2 Zw k

- 2 Reyx2 (k)dk.3 (69)
S e ~

S p h) 4 _ (269
P [ - I y k, -0-

w

A far-field pressure frequency spectrum, lim ýf (x2, W), is finite

onlifReyO.Howve, f U< ankl±- X2 ý

only if Rey = 0. However, if Uc < co and k1 = , this cannot occur for any k33 .

Thus an infinite plate subjected to a subsonic frozen convected pattern of wall
pressure cannot radiate to the far field.

Ribner therefore chose to compute f (0, k) dk, the mean square

field pressure at the plate surface averaged over the plate surface. He intended
to assume isotropy of the wall pressure in the plane of the wall as expressed by

R(r, 0) p2 e , r r

Here fR (r, 0) dr = p5i 2rrX2 , where X is a correlation radius. However, he
inadvertently used a three-dimensional transform

(k) = 2 ,k2 (70)

7,~2 (1 +k2 X 2 )2

instead of the proper two-dimensional transfcrm

•(k)l p-= k
2-. (1 +k2X2) 3 2 2(71)

as his wavenumber spectrum. He then introduced structural hysteretic damping
by replacing kp by kp (I+ -), where e is the material loss factor. The effect
of the plate, then, is to filter e (k) in a narrow wavenumber band about k = kp
His calculations, based on the assumptions that ' is proportional to 6" and
U c : U, led him to the conclusions that for x 2 = 0,
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-" U5 5* U S"
2-f (0, k) h3  for small,

(72)
U3 6* U 6"

for largeh C h

Here Ct, [ E(I a 2 ) is the longitudinal (bulk) speed of sound in the plate.

In light of later investigations, Ribner's presumably accidental choice
for ý (k) was fortuitous. For as given by Eq. (70), ý (k) - 0 ask - 0 in
accordance with the requirements of Phillips' theorem. Had Ribner used the-.4

M(k) given by Eq. (71) corresponding to rigidly convected isotropic wall pressure,
he would have found

-U 4 6*2 U 6*"p2• as -

(73)

Uh U 6*
6 Cs Ch

Corcos and Liepmann (1956) also treated the case of the infinite plate.

They used Rayleigh's classical formula

tt)y' t - T.(74)(XP t2 :V/ -

2~ T/

2

for the determinatijn of P in terms of . They give the impression that a

bounded region of plate vibration is being considered by requiring x2 < < R where
-y I r R is the domain of integration in Eq. (74). However, the admittance function

they use is essentially the same as that of Ribner, Eq. (68)*, and is devoid of any
finite plate resonances. Their work differs from that of Ribner in that they are
led from Eq. (74) to consider a correlation area X2 of plate acceleration given by

"ýf(0, 0) ). f¥ Y 0 ) d r

where

, ) -" T , t) -- r, t +
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From this they obtain the approximate relation

.n 2

(2 0 (-) x2f yd (75)

at a point x many X-lengths away from the plate.

They next assume a rigidly convected pattern of isotropic wall pres-
sure with correlation radius proportional to 6*. The "radius" X is found to be
proportional to Ch/U by utilizing the fact that only wavenumbers k = kp con-

tribute significantly to P2 . Small Rayleigh damping is included in the plate
equation, and the result

F2 h2 f \(76)

is obtained. The function f is not determined explicitly, as they did not specify
the form of Z(k). It is clear, however, that neither Ribner's relations,
Eq. (72), nor those of Eq. (73) can be obtained from Eq. (76). One suspects
that the approximation of Eq. (75) is at fault.

Kraichnan's (1957) analysis differs from that of Corcos and Liepmann
in several respects, not the least of which is its complexity. He attempted to
infer more specific information about ý ( k, Lu) from the theory of boundary
layer pressure pulsations. He assumed that the infinite plate was made up of
a flat array of square, mechanically independent sections of side L satisfying
boundary conditions of zero displacement and zero bending moment at the edges.

Two features of Kraichn, i's assumed wall pressure spectrum are
worthy of note: FirsL, the frequency spectrum (integral of '(k. W) over k) is

assumed to cut off at - of the order of one, Second, he noted that the
Uc

approximation of Eq. (36) neglects transverse contributions to the wall pressure
spectrum which might be dominant at low wavenumbers. The resultant form of
the frequency spectrum which he assumed does not correspond well with
measurements; hence, the conclusions he drew from his an,!ysis are subject
to this limitation.

Although Kraichnan also neglected the effect of fluid loading on plate
vibration, he did make a significant contribution by considering the effects of
resonant modes of finite plate vibration under the assumption of Z, Rayleigh
damping in each mode. Equation (59) with the right-hand side set equal to zero,
together with the boundary conditions of zero displacement and zero bending
moment at the edges of a square plate of side L, yields the orthonormalized
eigenfunctions
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si (n ___ (77)

Inn -L sin\ L ] (nrL

for integer m anrl n.

The corresponding eigenvalues or natural frequencies ann of the plate
are given by the relation

k( +k M 2) T(AT )2= k 2 mn (78)

We note in Eq. (78) that the resonant frequency umnn is proportional to
the square of the mode numbers m or n.

To obtain the vibratory response of a finite plate, Kraichnan expanded
the temporal Fourier transforms of the normal wall velocity and the wall pressure
in terms of the eigenfunctions; i .e.,

v(x'w)=-iw-n(x, V%=j: Vm(W) -n(X)

m, n (79)

p (x, Uw) : F Fmn (W) T~nn(x)

m, n

The modal admittance is determined from the transform of the plate
equation as

v (w) (0y w= mn -i__ ___

mn F (W) p h -(uR i? i3w) " (80)
mn p mn

From the orthogonality of the eigenfunctions and the wall pressure cross
spectral density relation

i-r -9ý(r, wu) = Him (2T) p (x, w) p (x +r, - w) f (!.Cw) e dk

T T (81)

the modal frequency spectral density of wall pressure can be derived as

mn (mr.) Fmn (-W)
T (82)

16T4 m 2 n 2  -cos(mrr-k1 L) x-cos(nr--k 3 L) -"

L6  J ((2 ) - 2
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From Eq. (80) it follows that the modal frequency spectral density
of normal wall velocity is

V = <rn2 T2r)v (v (Uw)= I (83)mn Tnmn n (w) Ymn ,.W83
T-. T

Certain physical facts are evident from Eqs. (82) and (83). The modal
pressure frequency spectrum ýmn(v) is clearly controlled by wavenumbers coin-
cident with the modal wavenumbers. It then follows that the modal velocity
spectral density Vmn (w) is peaked at the plate resonant frequencies. This close
interrelation between wavenumbers and frequencies could perhaps have been
anticipated by an inspection of Eq. (78), expressing the frequency-wavenumber
relation for free standing waves on a finite plate. The cosine terms in Eq. (82),
however, represent a "smearing" of the response over zones in k1 k3 wavenumber
space, each centered on the discrete points representing the wavenumbers of the
eigenfunctions. By comparison, the wavenumber-frequency relation for an in-2 Fj
finite plate is the continuous relation !k = k2 = k2 = U f- , which controls

p D
the field pressure response as shown in Eq. (63).

One cannot proceed further with the analysis of the vibratory response
of a finite plate or with the determination of the resultant field pressure wave-
number-frequency spectral density without making an important additional
physical assumption. It is clear by Eq. (79) that if one were to attempt to corr-
pute, say, the frequency spectral density of normal velocity of the plate, contri -

butions of a very complex nature would arise from coupling between different
plate modes. Kraichnan made the assumption that contributions to the vibratory
response and to the field pressure from different plate modcs are statistically
uncorrelated. He further assumed that contributions to the field pressure from
different vibrating plate elements are statistically uncorrelated.

One can demonstrate formally that the contributions of different normal
modes of a square plate to the wavenumber -frequency normal velocity spectral
density V (k, ..u) are statistically uncorrelated in the special case where the wall
pressure correlation function R (r, 7) is written (in contradiction to Phillips'
theorem!) as

R(r, 7) = p2 AS(r 1 ) 5(r 3 )R_(7) (84)
1

where A is the correlation area. The cross spe!ctral density of wall pressure
corresponding to this correlation also contains the Dirac delta functions
6 (rj) 6 (r3 ). It is this fact that permits the use of the orthogonality of the normal
modes %an in the derivation of the result
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V(k, w) =4r 2  IY(w) I rnwmnrn, n I nmn

(85)

1 - cos (k, L-m n) I -cos(k 3 L -n-r)
x((k, L)2 -_(M.)2 ) 2 ((k3-L2 - (n-.)2)=

Clearly, each mode contributes independently to the velocity spectrum.
The modal admittance IYmn (w) 2 is obtained from Eq. (80). The modai fre-
quency spectral density of wall pressure ýmn (w) is given by Eq. (82). For the
particular correlation function chosen in Eq. (84) it can be shown that 6rn (w) ;s
independent of mode numbers m and n.

In Eq. (84) the convection velocity U is assumed zero. Equation (85)
cannot be established for finite convection velocity. However, as we shall see
later, Dyer (1958) has given a plausible argument leading to necessary conditions
for the validity of Eq. (85) when Uc > 0.

The use of delta functions in Eq. (84) implies a flat wavenumber spec-
trum for wall pressure in the neighborhood of k = 0. In other words, the plate
dimension L must be large compared to all wavelengths of importance in the
driving wall pressure spectrum. This circumstance cannot hold if Phillips'
result that ý (k, u)) - 0 as k - 0 is accepted. One can see that the obstacles in
the way of orderly analytical progress are indeed formidable.

Neglecting the effect of radiation loading on plate vibration, Kraichnan
found the frequerzy spectral density of radiated sound power per unit area to be

k<ko 1 V(k, w)
P(0) = P fc k • ] dk (86)

Wavenumbers k>ko do not contribute to the radiated sound energy, for
they wot Id be associated with a purely reactive radiation loading on the plate.
This fact is also evident from Eq. (63). One should note that P (w) is not equiva-
lent to the integral of ýf (x2 : k, w) over k space. For large x2 , however, we
have the relation

1 k<ko k 2  
-, -.

P(w) = lim f f1 - (i-) 'f(X2, k, w) dk (87)

X-? 0 0 0
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*. It would appear that Eq. (86) signifies a marked increase in the con-
tribution to P (w) of wavenumbers k near the crizical wavenumber ko. However,
Maidanik has shown (in an unpublished i.nvestigation that the neglected radiation
resistance becomes infinite at k = ko. and hence V (k, w) must become zero as
k approaches ko with sufficient rapidity that the contribution to P (w) at k = ko is
in fact null, quite independently of the nature of the driving wall pressure
spectrum ý(k, w).

Kraichnan then utilized Eqs._.(82), (83), (85), (86), and his assumed
form of the wall pressure spectrum O (k, w) to obtain quantitative estimates
of P(w). The estimates treat the contribution from turbulence-mean shear in-
teraction, denoted by the approximation of Eq. (36), independently of the contri -
bution of the turbulence -turbulence interaction contributions. The latter are
found to be important only at low wavenumbers. The copcept of a hydrodynamic
critical frequency is introduced, i.e., the resonant frequency of the plate mode
with bending-wave velocity equal to the convection velocity Uc. For the case of
turbulence-mean shear driving wall pressure and critical structural damping,
the average radiated sound power per upit area,

11r =f P(w)dw

is shown to be markedly greater when the hydrodynamic critical frequency is
greater than the cutoff frequency of the driving spectrum than when it is less.

For low constant damping and distributed convection velocity, he inte-
grates the radiated frequency spectrum for the contribution from turbulence-mean
shear interaction between the hydrodynamic critical frequency and the cutoff fre-
quency o0 the driving spectrum to obtain for x2 -.

I - U" for < <1
r h3  UL

3 ,* Cth (88)

- U for U > > I>h UL

Kraichnan's results show a very strong dependence of far-field mean
square sound pressure upon 5". This is a direct consequence of the fact that he
has assumed that his wall pressure wavenumber spectrum (k -0 as k - 0. For
•_(k) is even in k and hence ý (k) = 0 (k0) near k = 0. But 6 (k)has dimensions of
p2 x (length) 2 and hence k (Ic) -. p 5'4 k2 near k = 0 . Kraichnan assumed that
S(k) would have this form up to a cutoff wavenumber k • 6" and be zero for
larger wavenumbers. Had he chosen ý (k) of the form p2 6" k2 exp (-k2 

6*2),

for example, he would have obtained ý (k) -- p2 6*2 for k ; 6". Since P (w) and

Hr are dependent on wavenumbers k =_kp , the resonant wavenumbers of the
structure, it is clear that the radiated sound is very sensitive to the form of the
wall pressure spectrum assumed.
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A numerical example is helpful at this point. Let us consider a
simply supported structure of three-foot-square steel plate., of 1/4" thickness
excited by a boundary layer with Uc = 20 ft/sec and * = 0.02 ft. For water
co •5000 ft/sec and for steel C,• 17: 000 ft/sec. The hyd .odynamic critic-l
frequency is

U

f - r; • ~2 cps

the acoustic critical frequency is

C 2

f - 0C 40,000 cpsa 2 iYx C t

the lowest plate resonance frequency, corresponding to'm n = 1. is

f 1 77 cps

and the cutoff frequency of the wall pressure spectrum is

U
f . Z 150cps
c.o. 2"*

The spacing between resonant frequencies of the plate elements is
about 20 cps. According to Kraichnan's form of .(k), only the lowest frequencies
would contribute to P(x) and 1tr would be proportional to &.. On the other hand,
the exponentially decaying form of • (k) would contribute to P-(i) at higher
resonant frequencies as well, with the contribution at fc.o. proportional to ;*.

As a final remark on Kraichnan's work, we note that he gave no
explicit consideration to the effect of the decay of turbulence upon the wail pres-
sure spectrum. From physical considerations, one would expect that the cutoff
frequency would be significantly increased if there is a finite decay time.

The response of structures to a convecting field of turbulent boundary
layer pressures has been treated by an independent approach in a related series
of papers: Lyon (1956a). (1956b); Dyer (1958), (1959); and Maidanik (1961).
In these papers Green's function representations of solutions to finite and infinite
plate vibrations are used in conjunction with the space-time correlation repre-
sentation of the driving wall pressure. The approach is thus distinct from the
Fourier transform -spectral density representations of Corcos and Liepmann and
Kraichnan. Because of the interrelations that exist between the two approaches.
results stemming from the same physical assumptions should bx. comparable.
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Thille Green's function---correiation function approach is characterized
as follows:

(a) The wall pressure correlation R (r, T) is assumed to have
a finite correlation area and can be approximated by a
product involving delta functic. ts.

(b) The Green's functions are expressed in infinite series of
the normal plate modes. In consequence, the astsump-ton
is made that contributions from different normp! caor-.s
are statistically uncorrelated.

(c) The effect of radiation loading on plate vibration is not
directly taken into account.

(d) Vibrational displacement cross correlations are obtained
that are not averages over the vibrating surface.

(e) The method does not appear to be particularly suited to
the calculation of an unbounded radiation field resulting
from structural vibration.

Items (b) and (c) are not new. Item (a) is new. It cannot be logically
justified if Phillips' theorem is accepted. On the other hand, its use permits the
establishment of criteria for the validity of the assumption in item (b). Item (d)
is advantageous; it permits consideration of a single structural clement rather
than an infinite array of elements as used by Kraichnan. Moreover, one can
obtain the mean square vibratory displacement at a point on the structure inst .ad
of only the average of this quantity over the surface. Item (e), however, is the
penalty which must be paid for the advantage obtained in item (d). As we shall
see later, Dyer has shown that item (e) is not necessarily a penalty in sonar
self-noise problems where a bounded radiation field is involved.

Lyon (1956a) developed the form of the correlation R (r, T) from basic
principles of the theory of probability. He considered a random source field as
a summation of "eddies" centered in space-time with independent random ampli-
tudes. each with the same probability density. The probability density of
occurrence of an eddy in space was assumed to be uniform over the space in
question, and the temporal probability of occurrence of an eddy was assumed to
satisfy a Poisson distribution. For the special case where the amplitude of a
one-dimensional eddy takes the values + I with equal likelihood and the eddy
travels with velocity v in the positive x direction while decaying exponentially
in time with time constant 8, he found

SR (r, -T) = 6(r-V T) e-T (89)
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where m is the average number of eddies created per unit time per unit length.
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quently used for the correlation function for turbulent wall pressure and provided
a probabilistic framework for the construction of more general analytical expres-
sions for correlation functions to correspond to experimental results.

He pointed out further that the response of any linear system to such
a random forcing function could, in principle, be obtained in the following manner:

Suppose 0(r, t) is the response to f(r, t), i.e.

X 0(r, t) = f(r, t) (90)

where~is a linear differential operator. Then one can write

t

0(r, t) = dt r Gd(r', t; r,t ) f(r ,t ) (91)
fJ 0J 0 0 0 0 0

where G (r, t; r , t ) is the Green's function of the system satisfying

- -4 r4

X G(r,t; ro t ) = &(r-r ) 6(t-to) (92)

and the boundary conditions of the problem. The correlation function of the
I response is therefore
I t t

0 (r,t )(r', ) fdtfdt'fdrofd-r'

SxG(r, t; r ,t )G(r', t'; r',t) f(r , t) f(r', t,) . (93)

Lyon (1956b) applied this methodology to the problem of the excitation
of a string of length L by a moving field of turbulence with pressure correlation

j R (r, 7) = •" X 6(r-U cT)e-:T / (94)

where X is the correlation lengt-h. The linear operator in this case is X(rl),
where n is the normal displacement of the string. The governing differential

equation is

0 ) I +83r 2 _ f (x, t) (9),•(O •tt + t -crxx P*.(5
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is given by c = T/P, where T is the tension and Pt the lineal density of the string.
The Green's function for this problem is wyell known; see Morse (1948).

Lyon used the Green's function in the form of a series of normal modes
of the string. Because of the finite convection velocity UC, he had to assume that
the normal modes were statistically uncorrelated in determining the modal mean
square velocity response of the string. The principal result of this investigation
was the discovery of the aforementioned hydrodynamic coincidence effect.

Lyon's result isyerhaps more simply visualized by deriving the mean
square velocity response v2 , where v - Trt, for the case of an infinite string by
applying the spectral approach to Eqs. (94) and (95). One finds that

V- =fV(k, w) dk dw

(96)
= p2 X 2 Wf iudk dw

P 2 (a7) J I (kP-C2 -UP) 2 + Uw2 Q2 ][I +(kU .. W~)2M2]

The first bracket in the denominator of Eq. (96) is familiar. It simply
indicates that the resonant response when k =1 is limited only by the damping
factor 0. The second bracket, however, shows-the hydrodynamic coincidence
effect. It has a minimal value when k =W! . By rewriting this bracket in the
form Uc

2

I + k W1 (kc9)2

one can see that the ccincidence effect is large if c 6>>k-1 . Thus one may expect
the coincidence effect to be marked only for small wavelergths. If one turns now
tc the case of a finite string, it is intuitively evident, and Lyon demonstrated it
to be true, that the modal mean square displacement will be large for a high mode

dln
nurnter n when k -

n U *
C

Lyon made an experimental verification of this result by exciting a steel
rAb1-3n under tension with turbulent flow and measuring the reflection of a colli -
,,.ated beam of light from the vibrating ribbon. The reflected light actuated a

hl.ototube whose output -oltage was passed through a 1/3 octave filter, a squaring
circuit ,nd integrator, and then to a recorder. The recorded signal was con-
sidered to be proportional to the mean square displacement of the ribbon for the
mode lying in the 1/3 octave band selected. A strong hydrodynamic coincidence
effect was found for mode numbers n between 5 and 20, although considerable
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variation in I11" _-fl the_. expcte " was ,*.. depending upon moun number.
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Here Lyon assumed Uc was the mean stream flow velocity. Recently McCormick
(1965) has dtilized the same basic technique as a measure of Uc and reported
that he found the ratio of Uc to mean stream velocity to be about 0.8. This is in
general conformity with the results of Harrison and Willmarth.

Dyer (1958), (1959) extended Lyon's methods to the case of a finite
damped plate excited by a turbulent boundary layer with a pressure correlation
function initially chosen to be of the form

R (r, T) p exp [(r _-U 7)2 +r 4 (97)

The quantity X is the radius of a correlation area for wall pressure.
The quantity e has the same meaning as before. It is the correlation time for
the moving-axis autocorrelation function. The frequency spectral density of
wall pressure corresponding to Eq. (97) can readily be shown to be

(w) p 1 (9
Sw 2 (9 8)

TTW 1
0

where
Uc I

iJ - +- (99)
0

Equation (98) can be made to correspond reasonably well with

Willmarth's experimental data by a judicious choice of the parameter wo.

Dyer specialized the form of his pressure correlation to

R(r, 7) " p' A 6(r 1 -U 7) C (r3 ) e-I_ (100)c9

in order to render his analysis tractable.

The Green's function for a finite plate is formally similar to that for
a finite string, except for the appearance of a double series in the normal
modes rlmn and natural frequencies Wmn. In Dyer's approach the modal expon-
ential time decay factor contains the effects of hysteretic damping as well as
Rayleigh damping. Hysteretic damping is introduced by writing the flexural
rigidity of the plate as D (I + i C), where e is the hysteretic loss factor. Assum-
ing statistical independence of modes, Dyer calculated the modal normal velocity
correlation as well as the modal mean square response of the plate. He endeavored
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to justify the assumption of statistical idiiepcndence of modes by a study of the
double series representation for the correlation function o" plate response where
the driving wall pressure correlation was of the form of Eq. (100). He obtained
a necessary condition for statistical independence of modes

U < < L. (101)

It is evident that if one chooses a wall pressure correlation of the form
of Eq. (100), an additional necessary condition is

X < < L . (102)

Maidanik (1961) studied the ,,. 'nse of a finite string to a convecting
random pressure field with a space-time ,-,rrelation of the form of Eq. (97)
with rs = 0. He obtained an explicit expression for the normal displacement
cross -correlation as a doubly infinite sum of modal contributions and then showed
that the coupling terms are negligible compared with the individual mode terms if
inequalities (101) and (102) are satisfied. He further showed the delta function to
be a good approximation to an exponential spatial correlation for the forcing
function for all modes with wavelengths much greater than a correlation length.
His results obviously could be generalized to the case of a simply supported plate
and thus substantiate Dyer's conditions for the statistical independence of modes.

Dyer's results differ from those of Kraichnan in that he emphasized
the role of the decay of turbulence by use of a finite decay parameter 9 and a
fixed convection velocity Uc. He found again that the modal mean square velocity
response of the plate is maximized at hydrodynamic coincide, ce. In the case of
a square plate, this occurs when the modal bending wave speed cp given by
Eqs. (64) and (78) is related to the convection velocity by

U
c nfl

-- 
(103)

P
L-

provided that the inequality mrr > > L is satisfied. The inequality is physically

equivalent to that of Lyon for the case of string excitation and requires that the
convected turbulent pressure field must decay in a distance greater than an
m -th modal wavelength if hydrodynamic coincidence is to be important.

Dyer pointed out, however, that in underwater applications, the fre-
quency range of interest, the structural form of sonar domes, and the convection
velocities normally obtained conspire to make the convection velocity much smaller
than that required for the coincidence effect to become important. He therefore
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directed his attention to the case where L < < imn and obtained approxi-

mate expressions for the modal mean square response for special cases of low
damping and high frequencies.

Dyer continued his analysis to consider radiation into a closed fluid-
filled box. One side of the box was the vibrating plate and the other sides were
considered to be pressure release surfaces. This case is a reasonable approxi-
mation to the problem of sonar self noise and is fortunately amenable to analytic
solution. For the case where the bending wave speeds of interest are much less
than the speed of sound in the medium, Dyer found that the effect of interior
radiation loading could be included by adding a modal mass impedance to that of
the plate. The radiation to an outer unconfined space involved the difficulties we
have noted earlier and could be treated only approximately.

By considering the average number of modes

r-- 2

N3L Af (104)

in a frequency band Af where Ct, is the longitudinal bulk velocity in the plate,
Dyer found that the mean square interior acoustic pressure in a band of width Af
was

2

)band - A (P mn v2 Af. (105)

Here A is the correlation area and mn denotes a mode within the band. Equation
(105) refers to the interior field pressure at the plate surface; hence, for
Af -. 0, p2 / Af corresponds to ýf(0; k, ui) integrated over k space rather than to
the quantity P (w) calculated by Kralchnan.

The work of Dyer and Maidanik is open to the criticism that the use of
delta functions, or functions that have the delta function as a limiting form, to
represent the spatial correlation of wall pressure contradicts Phillips' theorem.
We note, however, that the only experimental data supporting Phillips' theorem
are those of Bull~which show negative longitudinal correlation R (rl, 0, 0) for
r, > 4 6" . But one could use the model

R(r, 0, 0) = p- sin Kr
Krj

as an approximation to Bull's measurements. This function exhibits negative
correlation and also has the delta function as its limiting form as K -" -. It
appears that Maidanik's analysis can be adapted to this function without altering
his conclusions.
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The question of whether or not Phillips' theorem is satisfied by the
particular correlation model used in the analysis of structural response does
not appear to be especially important, if we are interested in determining the
"structural response to a particular pressure field whose statistical properties
have been determined experimentally. The difficulty comes when one wishes
to relate structural response to properties that characterize a wide class of
boundary layer flows. Then the pr(cdicted dependence of structural response on,
say, the displacement boundary layer thickness 6* is strongly influenced by the
choice of correlation model.

Dyer's work is a significant attack on the problem of sonar self noise,
but its limitations must be recognized. The noise received by a transducer
located at a distance from the plate can be treated only in an approximate manner.
Furthermore, the effect of transducer size and directivity on the noise it receives
remains to be studied.

Ffowcs Williams and Lyon (1963) used the spectral approach to study
the response of infinite and periodically simply supported plates to turbulent
wall pressures. Utilizing Kraichnan's expression for the radiated power per unit
area k <ko -P (t) = Po0e0 V kk, w)dk

[( )] i,' (86)

they expressed V (k, w) for the infinite plate in tetras of the wavenumber-frequency
spectral density of the wall pressure a (k, w) and the plate admittance as

V (k,w) = - (106)
(p h' lC2) k -kk (+iZ)j 2

where , is the plate loss factor. They assumed

4 (k, w) 51 (k I) ýJ3 (k3 )M U (w-kj) (107)

and inves'igated the case of low .speed flow Uc !- 0. They used the experimentally
derived relations for ýj (kj) and 3 (kQ3 ) determined from R, (rj) and R3 (r 3 ) of
Figures .; and 4, respectively:
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2 k• 2 .4I (k1) I 2
Ti 2 X 2)2

(108)

i X2

T (I) +k3 -

with , 5.4 6* and X,3 ! 2 6* based on Hodgson's (1962) measurements of longi-
tudinal and lateral spatial correlations of wall pressure.

They noted that k > > ko for most low-speed flow applications. For

example, for a 1/4" steel pfate in water. kp > k. for frequencies below

fa 40 kcps. Hence for k < < ko ,

2

k- -k 4 (1+i,) 2  ke

p p

fk <ko (k) dk - 50 6* p 2 k-

0

from Eqs. (108), and, consequently.

C o Co 6*4P(w) - 50 0p2 (109)
c' P•h2 "•~w

0 p

The numerical factor in Eq. (109) is about 1/20th that found by Ffowcs
Williams and Lyon. it appears that an error in calculation crept into their work.
However, the basic result that the radiated power spectrum is proportional to
Li times the moving-axis frequency spectrum of wall pressure is valid. This is
an extension of Ribner's result, in that far-field radiation from an infinite plate
occurs only through the mechanism of the decay of turbulence. For, in the case
of no decay, ýM (w) = 6 (w) . Equation (109) then indicates only a d-c response.
This, of course, is a consequence of setting Uc = 0, for now there is no time-
varying quantity left to produce either a vibratory response or an acoustic radia-
tion.

For an infinite plate, Eq. (109) indicates that P (w) is proportional to

6*4, as predicted by Kraichnan for periodically simply supported plates. This

follows from the assumption that only the low-wavenumber components of the wall
pressure contribute to far-field radiation. These, in turn, are governed by
Eqs. (108), vwhich satisfy Phillips" theorem in the sense that
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•(k) -. 0 as k -. 0

The situation for a periodically stiffened plate is markedly different
from that for an infinite plate. For P, < < 1, V (k, w) is governed byresonant
response of the various plate modes; hence, we are interested in ý(k, w) at
relatively high wavenumbers r"Iher than at very low wavenumbers. The fre-
quency range of interest for s. pplications is

C 0
- <W<Wa =h x C -L" a - - C .

For this frequency range, hydrodynamic coincidence effects are not
important, and the radiated power per unit area is associated both with the decay
of turbulence and the presence of plate boundaries.

We can place the analysis of Ffowcs Williams and Lyon in the frame -
work of that of Kraichnan given in Eqs. (77) through (87). Neglecting the effect
of radiation loading upon vibratory response and assuming the statistical inde-
pendence of modes, the radiated power spectral density per unit area can be
written as

P(w) =4~ IYmn(W) o 1j~i32 00,w d ocoC RAD (110)
m, n-

where the modal radiation efficiency is

L, L3 o :1:.3 ,dk* (m:)

RAD I T, cos a

with

Cos = L1 kol
k2

1

SI2 - 2 ,rn-nN2  cos (m7-kL,) (112)

LkL1 i

and

11 12 2={nw= I-cos(nr-k 3 L3 )

L3/
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The technique used to evaluate P (w) is similar to that used by Dyer.
One considers a narrowband Aw about % and obtains

+ A
P'W'~dw;:z14 h) c. -a ~ iio

P(%k)Awf N'~ 'k ( 2 j~ I3~ k, w )dkxcT
9_4 -LI 00 ID0 (Pp h re n, n0

o 2 inb-•
(113)

where the loss factor e < < I and the number of resonant modes in Ax is

N 4LL 3  Aw (114)4rr•Cz

I TT
for sufficiently high frequency e . The factor -- is approximately

e q u a l to w + -WAL ) o p

o 2

f - Ymn (w)12

o 2

for any natural frequency of the plate in the Lw band.

The remainder of the calculation involves taking the average of the
product of two integrals over all natural frequencies in the A6m band. Both integrals
involve the dimensionless functions i1, and 12 . Smith and Lyon (1964)
found

2 6(k, -- ) + 6(k, +--•-) fork, near± -T

and (115)
2 -

J, (2) for kr- < < m_..•_ ,L< < m l or2
~ 2 muL

*62SI �~has a similar representation, wxith n replacing m and L3 replacing L,

Equation (114) indicates a uniform distribution of modes in wvavenumber
space '- iz, since ,"""J = 2k ,C,- Ak. Hence the summation in Eq. (113) can be re-
placed by %i integration over a circular band in k, k3 space. The situation
pertinent to the sonar self noise problem is shoun in Figure 7. For Wh <u% <% we
are dealing with modes that are acoustically slow but hydrodynamically fast.
"These modes include both corner modes and edge modes. One can show, using
Eq. (1IZ), thaW
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x2 D

i 2 a a + 2(LI+L) L3 (116)
N RAD T ,3 .,_ ,_ its rr2 I 1- I6

m,n 0 r -a
in tLw

corner modes edge modes

where
2nc

x 0
a W

a

In a typical sonar application, the edge-mode contribution dominates
over that of corner modes. Ffowcs Williams and Lyonused an average radiation
efficiency GRAD based upon edge-mode contributions alone. Maidanik (1962) has
given more accurate calculations of modai radiation efficiencies.

ForRM(T) =e ,IT 1 M ) = 1+6 1 0 " Equations (107)

and (115) then yield

f -Tn p 2 (mr nn .
f 1 111 1131 (k,lq L3 )l-@ O \1, T \ T----L 3 /0

An average radiation efficiency having been calculated, the summation
in Eq. (113) can now be replaced by an integration over wavenumbers

'! =kp =2 ,rnSp -(-- + = ,

2TT
1) q n") f , 0)d = A (k).

N -L 1- L3  2 • TT J p(2IT) 2  t p
in AW 0

Here At (k ) is termed -an effective correlation area of wall p-essure by Ffowcs
Williams and Lyon.

By combining Eqs. (113) through (117), one obtains the result

1 I RAD At -- a
0 Tr e R 1+u• 2  (118)0 o

where
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I

R = P h Cto p

is the driving point impedance of an undamped infirite plate and
C o °YRAD

"RAD o w p hop p

is the radiation loss factor. By considering only edge-mode contributions to the
average value of CRAD in Eq. (116), Eq. (118) can be expressed alternatively,
assuming w 0 >>1, as I

0

Idc p- 1A (119)
0p h) o rdc0 0

where 3
r = ew i1sec-

in a typical application and d is a mean free wave path defined by

d L L3 plate area I
LI, +L 3  plate perimeter I

hi principle, an analytic expression for At (k ) can be obtained by per-
forming the integration in Eq. (117) using the expressions for ( ( 1) and 3 (k3 )
given in Eq. (108). Ffowcs Williams and Lyon chose, however, to perform a
numerical integration based upon Hodgson's (1962) data for R, (r1 ) and the form
of 23 (k3 ) given in Eq. (108). Their result is shown schematically in Figure 8
together with the-At (kp) that would result from Kraichnan's (1957) assumption
of the form of ý (k)

If an average value of At proportional to 6*2 is assumed, then in a i
scaling situation where wo 0 is held constant, it follows from Eq. (119) that
P(WO) -u 3 . 5* S/2 h-3 2 . The integrated sound power per unit area will be I

P (uo) dw- U 45 -*3/2 h 3 2 over a fixed range of wo 0 . Ffowcs Williams and
Lyon inadvertently neglected a factor 9 in their analysis at this point and hence
obtained proportionalities increased by a factor U 6* -1 from these. .1

An alternative interpretation of Eq. (1.19) can be made by applying
it and Figure 8 to calculate the total acoustic power radiated per unit area for
a particular sonar application. For Uc = 20 ft/sec, h = 1/4", Cl= 17,000 ft/secI
for steel, co =5000 ft/sec for water and 6* =0.2', we have XC, z,100 sec-' and
G z0.3 see. For a frequency range of 500 to 2000 cps, k p* lies between I

66

.irthur O).•ittc.ir. 77

s....--.--.------ ...



15

- FFOWCS-WILLIAMS a LYON (1963)

1 10

i At (kp)
*,2

!£

I

5

IA
*4 2 KRAICHNAN (1957)It /_

/ ,*-2 kp 4

II --At =0

0 0.38 1 2 3

kp8*

FIG. 8 EQUIVALENT CORRELATION AREA FOR
WALL PRESSURE
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1.12 and 2.24, Fro~n Figuare R wv vay use the approximation

A t/6* ;. 2(k p6*)4

If we integrate Eq. (119) over this frequency range, using p"lO" P- U4

and assume L. = L3 = 4 feet, say. the power radiated per unit area is about

2f w2P(w)d - 1.8 x 10-9 watts/cm2

We note that for L. = L,-= 4 feet, the frequency of the fundamental
plate mode is 128 rad/sec. This is sufficiently low for the mode density in the
frequency range w: < W < W2 to satisfy the conditions of the analysis.

Assuming for simplicity that the flow parameters are uniform over a
sonar dome and that all dome surfaces are equidistant from an internal trans-
ducer, the corresponding sound pressure level of flow noise at the transducer
would be 36 db (re I rib). This prediction is much too high. A more reasonable
estimate can be obtained by accounting for the effect of radiation loading upon
plate vibratory levels in an approximate fashion. If in Eq. (118) we assume that
essentially all of the plate loss factor s comes from radiation damping, we should
have z ; 2 -RAD, a quantity about 50 times as great as the value we have used.
If this is done, the sound pressure level at the transducer is reduced by 17 db.
Although such an approach is physically plausible, it only serves to emphasize
that the neglect of radiation loading in the analysis of plate vibrations is not a
good approximation when the plate is water-loaded.

Two other directions for improvement in the calculation of radiated
power per unit area can be pointed out. The first is analytic. We note that the
average radiation efficiency ORAD is an average over wavenumbers involving
both edge and corner modes. The correct average can be carried out directly
from Eq. (113) and the total contributions from edge and corner modes computed.
The second direction for improvement is essentially experimental. From Fig-
ure 8 and our example above, it is clear that the *iigh -wavenumber components
of - (k) are important to the sonar problem. These components are governed by
the spatial correlations of Figures 3 and 4 at small values of rl/6* and r3 /6*.
Experimental data at these values, however, are lacking. We need essentially
the curvatures of R1 (rj) and Ra (r3 ) at their origins.
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As a final remark, it is now clear why Kraichnan's predictions of
th,- radia,•, por- per :unit area arc de-ndent upo ..... II Figure S we
can see that he had used a form of ý(k) proportional to 6* k2 throughout its

p
entire non-zero range. Such a form would be useful for calculations involving
an infinite plate but not a plate with a practical resonant mode distribution.
Kraichnan's analysis, oi course, was carried out before any experimental
data on wall pressure fluctuations were available.
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Viii. MEASUKEMENTS OF SOUND RADIATED BY BO[NDARY-
LAYER-EXCITED PANELS

In recent years, experimental programs have been conducted at soy-
eral activities to measure both the vibratory response of panels and the related
radiated sound power. Typically a thin panel is installed flush in the wall of a
wind tunnel or air duct. A turbulent boundary layer is established on one side
of the panel by operating the tunnel or duct at subsonic flow speeds. The vibra -
tory displacement of the panel is measured. In some of the experiments the side
of the panel away from the flow is made a portion of the wall of a reverberant
chamber. If the chamber is independently calibrated using a known sound source,
it is possible to obtain the sound power radiated by the panel by a sound pressure
measurement within the chamber. The sound power measured in this manner
is the average over the surface of the panel.

Characteristically, these experimental programs encompass essen-
tia!lv all of the experimental measurements discussed earlier. mean velocity
profiles, r.m .s. wall pressures, wall pressure frequency spectra, wall pres -
sure space-time correlations, etc. The investigators have also endeavored to
relate their findings to one or more of the analytical predictions considered here.

We shall discuss the results of three series of investigations. The
first was conducted at the University of Minnesota and reported by Tack, Smith,
and Lambert (i961) and Tack and Lambert (1962). The second was conducted
at the University of Toronto and reported by Ludwig (1962), el Baroudi, Ludwig,
and Ribner (1963), and el Baroudi (1964). The third was conducted at the Air-
plane Division of the Boeing Company and reported by Maestrello (1965a),
(1965b), (1965c), (1965d). The first investigation concerned itself with vibra -
tory response alone; the second and third investigations were concerned with
both vibratory response and radiated sound.

Since these investigations were conducted in air, none are entirely
applicable to the sonar self-noise problem. Fluid loading is negligible, and
the hydrodynamic critical frequencies are significantly greater than the lowest
panel resonant frequencies, in contrast to the usual situation in a sonar appli -
cation. This latter circumstance is caused by the great difficulty in obtaining
a usable radiated -sound -to -ambient -noise ratio at very low air flow speeds or
with thick panels. However, to the extent that these experiments verify the
basic assumptions and results of the analytical studies of structural response,
they are useful in substantiating predictions for conditions pertinent to the sonar
self -noise problem.
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The Minnesota studies were based on Dyer's model of the wall pres-
sure correlation function R(r , ,). Tack, Smith and Lambert (1961) measured
the properties of this function and found that U. U, the centerline velocity of
the tunnel. but that the correlation lengths A. , A 3 and the decay time • were
functions of U and of frequency L . Tack and Lambert (1962) computed the root

/-:2mean square modal displacements rrim in a manner equivalent to that of Dyer

but used a spectral rather than a Green's function approach. Working with a

simply supported bar, they compared their calculated values of mwith

measured values for mode numbers m = 5, 7, 9, and 11 and tunnel speeds U
from 20 to 100 meters/sec. No significant variation in displacement boundary
laver thickness was possible in their test set-up.

I-_

The forms of the plots of ../ 2 versus U for computations and measure-
m

ments were quite similar. However, it was necessary to use .ilp 2 = 10i- q
to get a good fit to the experimental data; the more generally accepted value of

.!p _6 x 10-3 q from Willmarth's data gave calculated values of .frm2 that

were 65% too low. Tack and Lambert credited this discrepancy to uncertainties

in measurements of Jp2. This is certainly poss-: e. A rough wall alone would
be enough to account for the difference. It is also possible that the assumed
form of R(r, .) is at fault, or that one cannot really consider modal coupling

to be negligible. We note, however, one other possibility, the measurements

of ./n- were made at the center of the bar, an anti -modal point for the modes

in question. The calculated value of A I is an average over the length of the
bar and hence should be significantly less than the measured value.

No strong peaking of modal response was found at hydrodynamic coin-
cidence speed, in contrast to Lyon's earlier experimental results. Tack and
Lambert conclude that this lack of peaking is caused by X , , ),. a and 9 being
dependent on U and .u. We recall that Kraichnan achieved the same effect bv
requiring U to he variable.

c

The experiments at the University of Torp;ito were conducted using
11 -square steel plates of thicknt.sses .0015", .002", .004" and .008". Each
plate was clamped in a duct test section wall surrounded by a reverberant
chamber. Two duct sizes, 12" by 8" and 12" by 1", were used to permit the
effect of variation in 6" to be studied. Centerline flow velocities up to 180 ft/sec
were used. Ludwig (1962) reported principally on mean velocity, wall pres -
sure and sound field measurements. El Baroudi (1964) reported on wall pres -
sure and plate vibratory displacement space-time correlation measurements.

71



The wall pressure spectral density measurements for the 8" duct were
taken wvith a transducer diameter to displacement boundary layer thickness ratic
d/5* = .092. Dimensionless plots of the spectral density show a gradual down -

ward slope up to f 6*/11 = 2.5 with a sharp drop thereafter. For the l" duct,
,d/6* = 0.74; however, no clearly defined cutoff frequency was found, although
the downward slope did increase above f 5*/U = 0.3. The minimal transducer
separation for both longitudina! and lateral space-time wall pressure correla-
tion measurements was about 2"5*; hence, these data are of limited utility.

Radiated sound power measurements in the reverberation chamber
showed that

j P(w)d w- - U
h

where B = 5 for the .0015" and .002" panels, 0 = 5.5 for the .004" panel and
6 <E < 8 for the .008" panel. P(tw) exhibited an upper cutoff frequency pro -
partional to U/h for the thinner panels, but proportional to U 2 /h for the .008"
panel.

Ffowcs Williams and Lyon (1963) interpreted these experimental
results in terms of their analytical studies. They considered that the principal
contribution shou Wd have come from modes with frequencies below the hydro -
d-y.namical critical frequency, which for the .002" panel at U = 100 ft/sec came
at 1000 cps. They concluded that

e 8• 2U•
. P(U)dw- h-

in this circumstance.

A calculation based on the assumptions that the principal contribution
came from frequencies above the hydrodynamical critical frequency and that
A t 5* 2 would yield

t

P(M)dw-

a result more closely in accord with Ludwig's experiments. If, in fact, the
frequency range considered by Ludwig in his power calculations varied from
test to test -- as seems implied by the signal-to-noise difficulties he encountered,
dependence on U and 6* to fractional powers could result. Further clarification
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of this matter must await the results of more experiments of this type. The
weak dependence of radiated sound power upon 6* found by Ludvig is somewhat
questionable. It is based essentially on only two values of . *. It would have
been desirable for Ludwig to have related his mean velocity profiles to Coles'
law of the wake, especially for the I" duct. This narrow-duct flow may not
truly correspond to a turbulent boundary layer flow.

El Baroudi measured longitudinal space-time and lateral spatial
vibratory displacement correlations and compared the longitudinal results with
correlations calculated by Dyer's theory. Isocorrelation curves plotted as
functions of r, and UcT showed general qualitative agreement between measure -

ment and calculation. A rough tendency for ridges to appear along the line
ri = Uci could be inferred in both cases for small values of r, and -. El
Baroudi conjectured that the restriction UcO << L invoked by Dyer to justify the
neglect of mode coupling could be given the physical interpretation that vibratory
waves running at convection velocity existed in the plate. Since these forced
waves would decay at the same rate as the pressure correlation, the restriction
served to insure that reflections would be important only near panel edges. As
noted above, the measured correlations tend to confirm this observation in a
qualitative sense.

El Baroudi's calculations of rms modal displacement response for a
simply supported plate included the effect of modal coupling. He compared the
measured rms displacement with the total rms displacement calculated for all
modes considered to contribute significantly. Comparisons were made at the
plate center and at a position near the upstream edge of the plate. Two general
results were obtained: 1) the contribution of modal coupling to the calculation
was small, and 2) the calculated values were consistently higher than the
measured values. The latter result was attributed to Dyer's use of a delta -
function form for the spatial wall pressure correlation, a point source loading
being considered to yield a greater response than a distributed loading.

Maestrello carried out a series of experiments at Boeing similar to
those conducted at the University of Toronto. He used thicker panels (0.020",
0.040", 0.060" and 0.080") and flow speeds up to 700 ft/sec. His panels were
I"" by 12" areas milled out of 3/4" alh.minum plate, and the edge constraint was
more nearly cantilever than in the Tc ronto tests. His test setup did not permit
a study of variation in 6".

Maestrello (1965a) (1965c) found statistical characteristicz of the
wall pressure essentiallyjthe same as those of Willmarth. He fitted them to a
correlation model for R(r, T) similar to that of Dyer, Eq. (97). He did not,
however, carry out an analytical prediction of the vibratory displacement or of

the radiated sound field.
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For free-stream Mach numbers M <0.4 he found by reverberation
chamber measurements that

JP(w) dw-- -M5 h'.

For M > 0.4, however, he found

J p(w; )dw--M 2•. h- 1

except for the thickest panel, which continued to show M 5 dependence. He
attributed the change in Mach number dependence to the fact that the thinner
panels exhibited significant hydrodynamic coincidence effects at the higher flow
speeds.

Maestrello found that P(w) had both a lower and an upper cutoff fre -
quency. The radiated power spectrum fell off sharply outside of the range set
by these two frequencies. The lower cutoff frequency was set by the funda-
mental panel mode. The upper cutoff frequency was roughly proportional to

U1, 2 h-" 3 . These results appear, in general, to extend those of Ludwig
to panels of greater thickness.

Maestrello also measured the longitudinal space-time correlation of

vibratory panel displacement. His results agree with those of El Baroudi, in
that isocorrelation lines tended to be directed parallel to r, = Uc-r, indicating
the presence of forced vibrational waves moving at the convection speed.
Correlation plots for the thickest panel tested did not show this tendency.
Maestrello considered this as further confirmation that the hydrodviamic
coincidence effect was not significant in this case. His longitudinal vibration
correlation was an even function of -. for r, > 0, implying the possibility of
forced vibrational waves moving at -U-, presumably resulting from reflections
at panel edges. This interpretation must be considered as tentative, for one
could propose t&e alternative argument that edge reflections result in resonant
standing waves. Maestrello is continuing his investigation of this pGint by
measuring correlations for panels of various lengths.

Bull, Wilby, and Blackman (1963) determined experimentally the fre-
quency spectra of the normal velocity of plate vibration. They were able to vary
F* independently of stream velocity U by placing the test plates at various dis -

tances along their wind tunnel wall. A range 0.0525" < 6 * < 0.1775" was
obtained in this manner.

As we might expect, the vibration spectra they obtained showed strong
peaks at the plate resonant frequencies. They found the very interesting result
that these peaks were, in general, lowered when the boundary layer thickless
was increased. The type of analysis we conducted in Section VII would have shown
that, at least for the hydrodynamically fast modes, the opposite should have
resulted.
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IX. THE EFFECT OF STRUCTURAL DAMPING UPON
PLATE VIBRATION AND RADIATED SOUND

We have deferred consideration of the effect of structural damping on
plate vibration and the radiated sound field until this point in order to give a
fairly self-contained treatment of the matter. We saw earlier that structural

damping can be included in the plate equation in the form of hysteretic damping
by use of a complex Young's modulus E(I-ic), with e a material loss factor.
The presence of the imaginary i indicates that either a discrete frequency
excitation or a excitation frequency component of the form e-i'•t is being con-
sidered. The use of a Loss factor implies that stress in the plate is a linear
function of both strain and strain rate. The loss factor e is found experimentally
to be a rather complex function of the excitation frequency ,". For this reason

modal loss factors are often introduced in analytical studies of plate vibration.
From analogy with the case of a simple oscillator, a number of measures of
damping equivalent to the loss factor are found in the literature, e.g., the

percent of critical damping, 100 x w-•here • . an= 2qalt, rQ
C C

factor whereQ =1 c.

With less physical justification, a normal-velocity-dependent, or

Rayleigh, damping can be introduced by adding a term of the form Rlt to the
plate equation. Although this form of damping has -)een used to simulate
structural damping, it is perhaps better suited to the task of approximating
plate damping resulting from radiation of sound generated by the vibration itself.
We have already noted that no general solution for the problem of a vibrating

plate coupled to an unbounded acoustic field has been found; hence, all present
treatments of radiation damping are at best only approximations.

Structural damping has been included in all of the analytical studies
of plate response we have reviewed for the very practical reason that it was
2mpossible to get any answers without including it. Since all of the investigators

essentiaily neglected the effect of radiation loading, all resonant responses wouldIM
have been infinite in the absence of structural damping.

jModern welded steel struct'ires have very little inherent structurp1
damping. They tend to have Q's of the order of 100 or more over a wide fre-

quency range. It is possible to reduce the Q's to values of the order of 10, how-
ever,, by use of applied damping treatments. The problem here is to determine
what effect this increased structural damping will have on ' .te vibration, and,
more pertinently, on the resulting radiation.
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Dyer (1958) (1959) was the first to establish an analytical criterion
for effectiveness of ,tructural dar-nisping in redc•,ing boundary layer noise. F
his study of modal mean square vibratory displacements he found that for fre-
quencies substantially greater than the hydrodynamic critical frequency (but less
than the acoustic critical frequency) a transition frequency exists below which a
given increase in modal loss factor will cause a significant decrease in modal

mean square displacement fl 'I . Above this frequency the same increase in e

will have little effect. 'nis transition frequency is given by Dyer as

I
f =1

t ;T-T9

where ' is the temporal decay factor of the turbulent boundary layer and is
roughly

U

This transition frequency is not very precisely established. Tack and Lambert
(1962) estimated it to be about one-half of Dyer's value. It serves, however, to
give a quantitative idea of the frequency range in which applied damping should
be an effective vibration reduction measure. Dyer chose an example typifying
a sonar application where for U = 20 ft/sec and 6* = 0.02 ft, he found

a 3 x 10 sec and ftz 1000 cps. He considered that an applied damping
treatment should be effective for frequencies from that of the lowest plate mode
up to ft ; 1000 cps in this case.

For the particular interior radiation problem treated by Dyer (a rec-
tangular box with all sides pressure release surfaces except the plate side),
the modal mean square field pressure at the plate is proportional to ri 2.

mn
Hence the transition frequency should be a criterion for sound reduction as well
as for vibration reduction. One -must be cautious about generalizing this near-
field result; if there is far-field radiation then there is radiation damping. It
may be difficult to structurally damp a mode that already has high radiation
damping. On the other hand, it is unnecessary to damp a mode with low radia-
tion damping. Structural damping is most effective for modes that lie between
these extremes.

For very low damping, either structural or radiation, the vibratory
displacement or field pressure frequency spectra above the hydrodynamic
critical frequency are formed essentially from resonant-mode responses. How-
ever, if the damping is high, non-resonant-mode responses become significant.
Kraichnan (1957) treated analytically the rather extreme case of critical
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structural damping under the assumption of statistical independence of modes.
In principle, if the damping is sufficiently high the modal resonant frequencies
arc shiC sLuffilcitettly rar from their undamped naturai frequencies so that
modal coupling will result from this reason alone. Very limited experimental
evidence exists regarding the value of structural damping in reducing boundary-
layer-excited vibration and sound, but what does exist is quite favorable. Tack

and Lambert measured mj on a damped and undamped simply supported bar
m

over a range of flow speeds from 20 to 100 meters/sec. For modes m = 5 and

7 a reduction in Q from over 100 to less than 10 produced reductions in 2

by factors of from 5 to 10. The corresponding mode frequencies f5 "• 800 cps,
f7 z 1500 cps wvCre below ft ; 3000 cps because of the relatively high speeds and
thin boundary layers used. Hence Dyer's criterion was not tested. If we
(cautiously) translate these results to a sound pressure level reduction for Dyer's
internal radiation problem, we have reductions of from 14 to 20 decibels for
these modes.

Maestrello (1965a) placed two layers of damping tape on clamped
plates of 0.020" and 0.080" thickness and measured the effect on the total
radiated sound power level and power spectral density in a reverberant cham-
ber. Damping applied to the 0.020" panel reduced the sound power level by
about 18 db, with the principal reductions coming from frequencies above
1000 cps. The 0.080" panel showed a sound power level improvement of only
about 3 db, largely because the response at the fundamental panel mode domin-
ated the spectra and was unaffected by the damping treatment. Responses above
tlis fundamental were reduced by roughly 6 db.

Dyer's transition-frequency criterion could not be tested directly
against Maestrello's results, as the modal loss factors of the panels have not
yet been reported. Using Maestrello's reported valuo of 0 % 10-a sec and
estimating C £ 0.2 we obtain ft P 1500 cps. However, very significant power
level reductions were obtained above this value of ft

It is clear that more investigations of the type conducted by Tack and
Lambert and Maestreilo are needed to clarify the role of structural damping in
reducing boundary layer noise. It would be particularly desirable from the view-
point of the sonar self noise problem to conduct such tests in water rather than
in air, so that a more realistic assessment of the effect of radiation damping
could be obtained.
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X. SUMMARY AND CONCLUSIONS

In spite of a number of questions that remtin regarding both analytical
and experimental results, substantial progress has been made in the past dozen
years in understanding the basic mechanisms of boundary layer noise. A num-
ber of qualitative conclusions are now available for application to the design of
sonar domes and transducers to reduce the flow noise contribution to sonar self
noise. It is not too much to expect that we shall shortly be able to reduce these
conclusions to quantitative form. This will permit design decisions to be made
on the basis of over-all signal-to-noise ratio for desired operating speeds.

It is difficult to single out any one piece of research as the most sig-
nificant contribution to our understanding of flow noise. As we have pointed out,
oversimplifications and, on occasion, errors have occurred in both analytical
and experimental studies. Investigators disagree on a number of significant
points. Such is to be expected. The problem is one of the most difficult in the
whole area of applied mechanics. However, each investigation we have reviewed
has contributed to the general understanding. Perhaps the most significant ad-
vances were obtained at two points of the development: the first came with the
experimental determination of wall pressure statistics, the second with the an-
alyses of the response of plates to wall pressure excitation. The former per-
mitted investigators to move past the difficult theoretical problem of relating
wall pressure to velocity fluctuations. The latter served to emphasize those
characteristics of the boundary layer that are important in determining the
vibratory response of plates and the resultant sound field.

A limited amount of work remains to be done on the statistics of wall
pressures for well developed turbulent boundary layers adjacent to smooth, fiat
walls. For example, the integral correlation lengths contained in the spatial
correlation R (r, o) are not well defined. The most recent plots of measured
isocorrelation curves for this function, such as those of Bull, Wilby. and Black- i
man (1963) and Maestrello (1965a), are in sharp disagreement. It is particu-
larly important that the curvature of R (?, o) be established in the neighborhood
of r = 0. More experimental determinations of the temporal decay term 9 I
and the mean square wall pressure -p would be desirable because of their
importance in determining plate response. The question of the resolution of
transducers of finite size remains in an uncertain status. It must be settled -

hopefully through a novel. experiment - as it has an important influence on both
the determination of plate response and the performance of flush-mounted trans-
ducers.

We have seen that much of the analytical and all of the experimental
work involving plate response and re-radiation has been done for air loading
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rather than for water loading. The analytical approach has been to compute the
n~~~atnL Whea". . .n v•n• , .. .. 11 • - -L •. .;0 -. 1r ....... :LCC ... 01•plt ............ ~ e ~ fi• ~i~lirofi-hg tdie •ffect of

radiation loading, and then to determine separately the radiated power. Yet
even the crudest calculation of the resulting radiation into water shows that its
influence on the vibratory level must be very significant. One approach toward
removing this discrepancy is indicated in the development for an infinite plate
in Section VII leading to Eq. (63). The complexity evident there is troublesome
but not impossible to deal with.

It will probably be much more difficult to analyze the forced vibration
of a plate with a resonant-mode distribution under the influence of radiation
loading. Here the criteria for statistical independence of modes must be care-
fully re-examined. If radiation damping is sufficiently large, it too will induce
significant mode coupling. Criteria for mode independence will therefore have
to include damping as weil as the spatial and temporal scales and the convection
velocity of the turbulent wall pressure. Digital computation techniques will
probably have to be applied more extensively than heretofore so that the orders
of magnitude of coupling terms can be established.

The utility of structural damping as a means of reducing flow noise
cannot be firmly established on an analytical basis until the questions involving
radiation damping have been settled. Here again, criteria for the frequency
range over which structural damping is effective (such as those of Dyer) must
be re-examined. Additional criteria involving the required magnitudes of struc-
tural loss factors will have to be developed.

The most practical experimental means of studying flow noise in
water is by use of buoyant or gravity-prope*led submerged bodies. Acoustic
wavelengths in water are too great, boundaries are too near, and ambient noise
levels are too high for most water tunnels and towing basins to be of much serv-
ice. Most buoyant or gravity-propelled bodies used in the past were too small.
Uncertainties related to Reynolds -number scaling of their boundary layers and
to structural scaling were unavoidably introduced. A large - perhaps quarter
scale - buoyant or gravity-propelled test vehicle appears to be a much needed
experimental tool for studying flow noise on sonar domes.

The paucity of experimental data relating surface roughness to flow
1 noise has blen alluded to frequently in this review. We recall that the displace-

ment boundary layer thickness 8 * has been shown to be important - if contro -
versial - parameter in the determination of the radiated acoustic power. Yet
Coles' formulation of the laws of the wall and of the wake (discussed in Section I1)
indicates that 8* is dependent upon the friction velocity ve or, equivalently, the
wall shear stress To . But these latter quantities, in turn, depend upon surface
roughness. Clearly, an analytical and experimental evaluation of the relation of
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surface roughness to radiated acoustic power is nf.,eded if one is to answer thie
prar.i.... snnti a ,,, d ,,,,e , u ust be to keep flow noise within
acceptable limits.

The effect of surface roughness, however, is only one aspect of the
boundary layer that requires further study. Profitable directions for further
work on wall pressure statistics lie in the application of experimental techniques
already developed for the study of more general flows. A limited effort in this
direction has been carried out at Southampton by Bull, Wilby, and Blackman (1963),
who measured wall pressures in the transition region between laminar and turbu-
lent boundary layers. Such studies should be extended to deal with adverse pres-
sure gradients, flows in interference regions, and separated flows. Although
Bull found no significant change in mean square pressure in the neighborhood of
normal transition, the question is open as to whether or not sharp increases in
fluctuating pressures will occur where transition has been delayed by use of
compliant coatings or other means.

A substantial clarification of the problem of structural response and
re-radiation of sound was achieved when the analytical model of a periodically
simply supported plate was introduced. We have seen that for frequencies of
interest in sonar applications phenomena related to hydrodynamic or acoustic
coincidence are quite unimportant. The radiated acoustic power is produced
primarily by resonant response of structural modes to wail pressure fluctuations.
It is sensitive to the distribution of resonant frequencies, to radiation and struc-
tural damping, and to certain statistics of the wall pressure, namely the wave-
number spectrum at high wavenumbers and of the moving-axis frequency spec-
trum of the wail pressure. The customarily measured fixed-axis frequency
spectrum is of itself relatively unimportant, except in relation to flush-mounted
sonar transducers.

As useful as the model of a periodically simply supported plate has
been, we must recognize its limitations. Actual stiffened sonar domes have
much more complex boundary conditions. They may have modes of vibration
which contribute significant radiation that cannot be modeled in this manner.
In mathematical term!', eigenfunctions which are products of sinusoids do not
form a complete set, Further investigations involving more general boundary
conditions would be desirable.

Finally there remains a significant gap between the analyses and ex-
periments yielding zicoustic radiation from plates and the determination of how
this radiation affects the self noise as measured by a sonar array. Two differ-
ent aspects of this radiation have been predicted and measured, namely, the
sound pressure level and the sound power level per unit area, together with
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their corresponding frequency s:pectra. it wouid appear that tie sound prcs-
sure information is useful primarily in predicting near-field effects sich as
would occur when a sonar transducer is placed very near the dome surface.
On the other hand, the sound power information should yield essentially the
reverberant field level existing throughout a central region of the dome. The
dome, however, is not really a reverberant chamber, and account should also
be taken of shadowing and directivity effects associated with large sonar ar-
rays that occupy a significant fraction of the dome volume. Analysis of these
aspects of the flow noise problem should be directed toward determining the
significant measurements to be taken in full-scale experiments with sonar
installations aboard ships. Very little guidance of this sort is evident from
the current literature of the problem.
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SECTION II

U free stream velncity in positive x or xi direction

u(y), •(Y,) mean flow velocity in direction of U parallel to a
uwall; Y -= Y2 is a distance normal to the wall

K, C universal constants of the law of the wall

v* friction velocity =

T wall shear stress0

P density of quiescent fluid0

6 boundary layer thickness

,V kinematic viscosity of the fluid

thickness of the laminar sublayer

*displacement boundary layer thickness

momentum boundary layer thickness

T0

C friction coefficient = 1

orf of 2e~ nme P 0U

x distance along a wall in direction of U

10 .o UxSR xReynolds number =

S*Listed in order of appearance in the text.
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w(y/6) Coles wake function

II ~~~~~form parnintrn v f '1,c ofteak

SECTION III

x,r displacement vectors, x = xi, r r.

.th
u. fluctuating velocity component in i directionI

R.ij() spatial velocity correlation tensor = u.i( ),a(x +i?)

P(u I u 2) joint probability density function

k wavenumber vector

U (k) energy spectrum tensor or velocity wavenumber
spectral density tensor

u (k) wavenumber transform of u.( )1 1

t time

p(x, t) fluctuating pressure

time variable

R(r, 7) space-time pressure correlation = p(x,t) p(x'+ r,t+ 7)

x( k) wavenumber spectral density of pressure

U3 radial frequency

frequency spectral density of pressure

•( r, w) frequency cross spectral density of pressure

V integration volume

T integration time

U convection velocit.
c
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P fluid density

c 0speed of sound in quiescent fluid

6ij Kronecker delta (= 1 for i = j, 0 fori$j)

T.. Lighthill's turbulence tensor

fluid stress tensor

viscous components of fluid stress

S surface area

r
L ] retardation operator t-- - r/c

r distance, either 1,0 or Ix'- _41

n n. unit inward normal vector to surface S

P. stress vector exerted on the fluid by a surface element
1 dS P. = n.--..

A wall area

SECTION V

u2  fluctuating velocity component normal to a wall

x. moving frame coordinates, x, = x, - U t1 - C

R(r, -) moving axis wall pressure cross correlatien function

R M(-) moving axis pressure temporal autocorrelation function
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L distance from boundary layer transition point in dircc-

2a u.u.
"S(x,xv k',x) wavernumber-frequency spectral density of P o 6"xi'40 o

SECTION VI

v p root-mean-square wall pressure

q dynamic pressure - P U2
0

Z(f) experimental frequency spectral density of wall pres-

sure

f frequency in cps = TIT

ý(rl f) experimental cross spectral density of wall pressure

U(r 1 , f) real part of .(r 1, f)

V(r 1 , f) imaginary part of .(r1 , f)

po(x, t) filtered output wall pressure signal

f filter center frequencv

A3 f filter bandwidth

o(t) component of downstream wall pressure contributing
to U(ri If)

a(t) component of downstream wall pressure contributing

to V(r 1 , f)

Y() uncorrelated component of downstream wall pressure

•.(f) experimental frequency spectral density of Y(t)
T
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d transducer diameter

R (F, ) filtered output cross correlation of wall pressure

a phase angle of cross spectral density of wall pi essure
= r , -/U

C( F, x) amplitude function of filtered output cross correlation
of wall pressure

A -cB U(rc) Corcos' similarity functions, C(r,w) A ( + : B

R transducer radius

p ? mean square wall pressure measured by a transducer
of finite area

-m(w) frequency spectral density of wall pressure measured
by a transducer of finite area

.(r) transducer geometry function

k( k) wavenumber transform of ,( r)

J, Bessel function of first kind of order one

(k, T) wavenumber transform of R( r', I)

m(C, T) wavenumber transform of R( F, 1) as measured by
transducers of finite area

SECTION VII

r,( i, t) normal displacement of a plate

P +radiated acoustic pressure above and below a plate

D plate flexural rigidity = 12 E
12 (1 - 02)
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E ung tu:i.iu

h plate thickness

o Poisson's ratio

.0 plate densityP

material loss factor

0 quiescent fluid de~nsity

fluid velocity potential

P (x2 , k, w) wavenumber -frequency spectral density of field pres-
sure P

k acoustic wavenumber = -

o c
0

I
y = '\1k2 _-k2

0

Rey real part of Y

k plate wavenumber = -

p c

c plate free bending wave speed = D D
P P hCpp

P

displacement = r1 - U Tc

x correlation radius of wall pressure

CL longitudinal (bulk) speed of sound in plate LPP1-
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II radius of bound region of plate used by Corcos anti
Liepniann

'( r:, ") space-time correlation of plate acceleration

L length of side of a square plate

1 mn orthonorma lized plate eigenfu nction

mn plate eigenfrequencv

v( x, x) frequency transform of plate velocity

".( x, x) frequency transform of plate displacement

v mn() modal velocity coefficient

F mn(x) modal wall pressure coefficient

Y mn() modal plate admittance

Rayleigh damping coefficient for plate

-mn () modal frequency spectral density of wall pressure

V mn() modal frequency spectral density of normal plate
velocity

A correlation area of wall pressure

V( k, x) wavenumber -frequency spectral density of normal
plate velocity

P(W) frequency spectral density of radiated sound power per
unit area

T rI radiated sound power per unit area averaged over the
plate and over time

O(k') order of magnitude of kV
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T 12

f nydrodynamic critical frequency = C

a. plate radius of gyration a = 12

m average number of e R( ics per unit time per unit length

v eddy velocity

time constant for Add+y , cay

linear differential ,pei-ator

6(-rt )response function

f( F, t) forcing funci ion

G( r, t;r ,t) Green's function re!ated to X

c wave velocity of a string c2 = T/-

T string tension

P.! lineal density of a string

1, natural frequency of a string
n

k mode wavenumber of a string
n

N' average number of plate modes in a frequency band Af

"- (k1 ) longitudinal wavenumber spectral density of wval
pressure

41 longitudinal correlation length of wall pressure

-r' (ks) lateral wavenumber spectral density of wall pressure

lateral correlation length of wall pressure

Sradial hydrodynamic critical frequency = 2-f.

h h
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I a radial acoustic critical frequency = 27'f

l 2, 2 finite plate weighting functions

COS;"

k2
0

L,, La plate dimensions

N average number of plate resonant modes in LI, = 2N'

RAD modal radiation efficiency

a acoustic wavelength at the acoustic critical frequencya

A (k ) effective correlation area of wall pressure at plate
wavenumber k

p

RAD radiation loss factor

R driving point impedance of an undamped infinite plate
= 3:2 h xC,

p

r damping parameter

d mean free bending wave path = 2 - late area
plate perimeter

m bar eigenfunctionm

U
M Mach number = U

C
0
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SECTION IX

C x 100 percent of critical damping
Cc

Q quality factor = -Z

f 1

fDyer's transition frequency -tI

1I
I
!

I-
I
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