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Abstract 

In this report a systematic mathematical method is introduced for the 

solution of problems involving two coupled modes in a coupled system with 

varying parameters. These problems involve systems of linear differential 

equations with varying coefficients. 

By the use of a linear transformation of the dependent variables and 

a double diagonalization process, the coupled mode equations are reduced to 

two decoupled Riccati equations. The final form of the general solution is 

obtained in terms of four varying coupling coefficients and a transform 

parameter. 

To illustrate sime applications of the method, solutions of two special 

cases which have been solved previously by other workers are obt ined. The 

solutions for a number of special cases, in which the varying coefficients are 

specified or interrelated, are also obtained. Further possible applications 

are indicated. 
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Introduction 

During the past decade, workers in different branches of Physics and 

Engineering have published a considerable amount of material on the applica- 

tion of coupled mode theory to various kinds of coupled systems.1"8 As far 

as the mathematical theory is concerned, most researchers have considered 

only special cases of coupled systems having, constant parameters or slowly 

varying parameters.5»7 In the latter case approximate solutions have been 

obtained. Recently, in their study of Faraday rotation in a ferrite rod, Huang 

and Fan considered the case in which two self-coupling coefficients are equal 

and one of the mutual coupling coefficients is equal to the negative-conjugate 

of the other. 3 This report extends the treatment further to more general case 

of varying parameters, and a systematic mathematical method is introduced to 

solve the problem of two coupled modes in a coupled system. 

In coupled mode theory, the behavior of a coupled system is described in 

terms of the normal modes of the uncoupled system. The equations that charac- 

terize the behavior of two coupled modes takes the form: 

da i 

dz -JT- = A(z)al + B(z)a2 (1-a) 

da 2 
-fö- = C(z)a1 + D(z)a2 (1-b) 

In these expressions, a. and 32 are mode amplitudes of the coupled system, and 

A(z), B(z), C(z), and D(z) are mode coupling coefficients which may be any 

arbitrary functions of z. By the use of a linear transformation of the depen- 

dent variables and a double diagonalization process, we are able to obtain 

general solutions of the coupled mode equations in terms of the four varying 

parameters A, B, C, D, and a transform parameter ho, which is a particular 

solution of a generalized Riccati equation. Since the particular solutions of 

the generalized Riccati equation have been widely studied, and numerous results 

■x: m r- 
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are available in the literature of non-linear differential equations,9"15 

general solutions of equations (1) can be obtained for a large number of 

special cases. The solutions that we have studied can be applied to many 

different types of systems. What is of interest here is that the results are 

of such generality that they allow the description and classification of a 

wide class of devices in a significant manner. 

Further applications of our solutions to the structures of log-periodic 

antennas, traveling wave antennas, and directional couplers are indicated in 

the concluding remarks. 

I.  General Solutions of Coupled-Mode Equations 

This section is devoted to solving the two dimensional coupled-mode equa- 

tions by linear transformations of the dependent variables. In order to 

simplify the writing, we express the coupled mode equations in matrix form. 

Let 

..hi      w-.\M BU)1 
[aaj Lc(z)      D(z)J 

Equations (1) in matrix form become 

i'  =   [A]ä (3) 

where the prime denotes differentiation with respect to the independent variable 

z. Now, we introduce the following transformation of the dependent variables 

in equation (3).11 Let FRJ be a continuously differentiable, non-singular 

matrix for z^ 1 z < s^* Under the linear change of variables a ■♦ g, where 

(3) is transformed into 

i' = [R]'
1
 {[A ] [R] - [R]')* (5) 



For» our purpose, we choose   TRT   specifically to be 

./Adz 

(6) 

It is easy to show by matrix algebra that 

i' =  [s]i (7) 

where -/(A-D)dz rsM   sI2-|    ro B.-^™-] (8) 

For a second transformation, let us again assume that   fT"]  be a continuously 

differentiable non-singular matrix in the same range of z as considered in the 

first transformation:  i.e. Zj <. z <. Zj.    Under the linear change of dependent 

variables g -► y, where 

g s   [T] y (9) 

(7) is transformed into 

y'   =   [T]"1  {[S ] [T] -    [T]'} y (10) 

Let us choose   FT] specifically to be 

Then (10) becomes after some mathematical manipulations 

y'   =   [L]y (12) 

where 

co = f1" Il2l = fsi2t21 0   1 
Ll21       I22J L0 s2ltl2j 

(13) 

tu  and t2i are transform parameters which are particular solutions of the 

following differential equations: 

1 ==. »11       1 mjm^t j*ir       —■^^F'^^fcTs: — 
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t|2 - sl2 + S21t{2 = 0 (lU-a) 

^l - S21 + S12t21 = 0 ^-V 

and s^» S21 are "t^e matrix elements given specifically in (8). 

Since   ^LJ   in (13) is a diagonal matrix, solutions for the y's can 

easily be found by solving the decoupled differential equations of (12). 

They are 

.    1*12*21** 
yj = Cj e (15-a) 

/S21t12d2 
y2 = c2 e (15-b) 

where Cj and c2 are constants of integration. 

According to transformation (9), we have 

.     1*12*21** . IhSlZ** /ic     , 
gj   s y1  + t12y2 = Cj e t c2t12 e (16-a) 

/sl2t21dz        i    /s21t12dz 
«2  r t2iyi ♦ y2 s cit21 e + c2 e (16-b) 

Also, from the transformation (u), and the expressions for the g's in (16), 

we obtain 

1*12*21** . 1*21*12^ ,   ,     , 
al  s clrll  e + c2rnti2 e (i7-a) 

,        , 1*12*21** , 1*21*12** 
a2   =   Clr22t21  * "*■   C2r22   e (17-b) 

Using the following transformation of the dependent variables  in (14), 

UJ       UJ 
where   [UJ   is given as 

0 'L Js[o      .'u-H 

(18) 

(19) 

-^^ 
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We then obtain from (IH) 

h[2 - (A-D) h12 ♦ Ch}2 * B (20-a) 

hjj + (A-D) h21 + Bh^ = C (20-b) 

Also, (17) becomes under the transformation of (19) 

/s12Unh12dz t /S2lUl2h21d2 

li " ciku %i T "a^iim (21-a) 

/si2U22h21dZ /SjjUjjhj^Z 
a2 * Clr22t2l e + C2r22 e (21-b) 

Substituting all the elements of   [R] ,    [s] , and   [ü]   specified in (6),  (8), 

and (19), we finally obtain the general solutions of the coupled mode equations 

(1): 
/(A+Bh21)dz        i /(D+Ch12) dz (22-a) 

a.   = c.  e ♦ c2hj2 e 

/(A'i-Bh21)dz |    /(D+Ch12)dz (22-b) 
a2 s clh2l e ♦ c2 e 

where h12and h21 are transform parameters which are particular solutions of the 

generalized Riccati equations (20-a) and (20-b), respectively.    It must be 

noted that in (22) h12 and h2.  should be subject to the condition that 

hl2h2l ~ 1 ^ 0' which follows from the non-singular requirement on transform 

matrix   L'^J• 

Realizing that parameters h.2 and h2.  are related through the differential 

equations  (20), we can further eliminate one of these parameters.    It can be 

shown that if h0 is a particular solution of (20-b),  l/h0 will be a particular 

solution of (20-a).    In order to satisfy the condition that h.2h21 - 1 r* 0, 

1/hg and h. cannot be used as transform parameters for h12and h2j, respectively, 

at the same time. 

Let 1/hQ be a particular solution of (20-a).    Then by Euler's theorem con- 

cerning the generalized Riccati equations (see appendix A), we find that 

*■   <     ■ ^Jl.P'A.V ^i^^^^-^ — 
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h0 + 
exp /(D-A-2Bh0)d2 

/B exp {/(D-A-2Bh0)d2} • dz 

is also a particular solution of (20-b). Since the quantity 

exp / (D-A-2Bh0)d2 
h12h2l - 1 = 

h0 /B exp {/(D-A-2Bh0)dz} • dz 

does not vanish in the interval z^ <. z < Zj, in general, l/hg and the above 

expression are appropriate transform parameters for the system (22). The result 

of substituting the above particular solutions for the h's in (22-a) is 

exp / (D-A-2Bh )dz 
a. = c! exp /[A + B(h +  )l«dz 

/B exp{/(D-A-2Bh0)dz} • dz 

♦ cl r— exp / (D + 7—) dz 
2 h0 h0 

-cj !"/ B exp{/(D-A-2Bh0)dz} • dzl.exp / (A ♦ Bh0)dz 

+ c« TJ- exp / (D + ~) dz (23) 
2 h0 h0 

From (20-a), it is found that 

~ exp /(D + |p)dz s k exp /(A+B^)dz (2H) 

where k is an arbitrary constant.    Then (23) is reduced to 

al  s [cl  /B exp{ /(D-A-2Bh0)dz}   •  dz + cj.exp /(A+Bh  )dz (25-a) 

Similarly, we have 

a2  s(cih0  / B «xp{/(D-A-2Bh0)dz)   •  dz +      Cj  exp{/(D-A-2Bh0)dz 

♦ c2h0 )exp /(A+Bh0)dz (25-b) 

where h0 is a transform parameter which is a particular solution of the well- 

known generalized Riccati equation (20-b), and c  , c    are constants of 

integration. 



Following the same procedures, we may obtain the solutions in a slightly 

different form. They are 

al slclh0 + c2fh^/c exp{/(A-D-2Ch0)dz} • dz 

+ exp{/(A-D-2Ch0)dz} ] \'exp/(D+Ch0)dz (26-a) 

a2 = [Cj + c2 C exp{/(A-D-2Gh0)dz) • dz] exp/(D+Ch0)dz (26-b) 

where hQ is a particular solution of the generalized Rlccatl equation (20-a), 

and ci, C2 are constants of integration. 

Our general solutions of the coupled-mode equations have thus been obtained 

by three successive linear transformations of dependent variables and a double 

diagonalization process. There is a transform parameter Involved in our solu- 

tions, which is a particular solution of a generalized Rlccatl equation. The 

problem of finding general solutions of the coupled-mode equations is now re- 

duced to that of finding a particular solution of a generalized Rlccatl equation, 

The next section will be concerned with a discussion of the generalized 

Riccati differential equation. A method of obtaining particular solutions 

of the generalized Riccati equation Is given in Appendix B. 

II. The Generalized Riccati Equation 

It is customary to give the name "generalized Riccati equation" to any 

equation of the form     , 
^+ Py + Qy2 = R (27) 

where P, 0, and R are given functions of z. 

This equation has considerable theoretical importance, since its 

solutions are free from movable brand, points and can have only movable 

poles.10 It is a special case of the Abel equation.  It is supposed that 

neither R nor Q is identically zero.  If Q = 0, the equation is linear; 

if R = 0, the equation is reducible to the linear form by taking 1/y as 

a new variable. 
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It has been shown by Euler that, if a particular solution of the genera- 

lized Riccati equation is known, the general solution can be obtained by two 

quadratures; if two particular solutions are known, the general solution 

is obtainable by a single quadrature. And it follows from theorems by 

Weyr and Picard that, if three particular solutions are known, the general 

solution can be effected without a quadrature. 

The equation (27) is easily reduced to a linear equation of the second 

order by taking a new dependent variable u defined by the equation 

s 1 dlog_u (28) 

^  Q   dz 

The equation then becomes 

d?u+ (p  1 gjdu.QR^ 0 (29) 

dz2      Q dz  dz 

Conversely, if in the general linear equation of the second order 

d2u  „ du 
Pn ^-^ + Pi ^r + Po u = 0 (30) 

dz' 
0 — T rl dIT r2 

(where Pg, P^, Pj are given functions of z), one may write 

u = JW* C31) 

From which the equation defining y becomes 

which is of the same type as (27).  The complete equivalence of the generalized 

Riccati equation with linear equation of the second order is consequently 

established. 

In the following sections, we will apply our method to a number of 

special cases for which solutions have been previously established by other 

workers. 



III. Uniform Coupling of Two Lossless Modes of Propagation 

Consider two waves with time dependence e   which are weakly coupled. 

It can be shown that the coupled-mode equations for this situation are 

daj 

-dr= - ^iai + ci2*2 (33-a) 

da2 

1& "  C2iai   "  ^2a2 (33-b) 

The c.- and c., are the mutual coupling coefficients per unit length.  The 

coupling is assumed uniform over the length of the coupler, so that c,, and 

c  are independent of z.  The modes are assumed lossless. For this case, 

the matrix elements of LAT are constants. Let 

[       rAu)   aun    r^   c12i 
Lc(z)  D(z)J   L c21 -jßj 

O**) 

where 8., ß2, c^» and Cgj are independent of z, 

rrom (3H), (20-b) becomes 

h1 - j(e1-ß2) h + c12h
2 = c21 (35) 

A particular solution of (35)  can easily be found to be 

where 

o g 
h    = - A-tan ß z + j -4- (36) 

c12 D C12 

ßd = -V- (37> 

and 

ßb  =   /ßd2   +C12C21 <38) 
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Substituting (36) in (25) leads to 

-c19 -     -jß z 

a2 

["•12 T       J0a 
c^ -g— ) sin ß z + c2cos 6b2      e (39-a) 

r jßd jßd ßb T     ^V 
=   I (c.  + c, —5- ) sin ß. z - (c, -^ + c, —^ ) cos  ß. z      e      a (39-b) 

L    l c12 b 1    ßb        2 C12 b J 

where a    + a Bl + ß2 
ßa = —y— (40) 

Equations (39) can be rewritten in a different form 

-lY^ -]Y2Z 

al - hl e + A2 e (Hl-a) 

l2 

where 

and 

1        r JT1 JT2'n 
=   j—-   hvßj)  Al   e +   (Y2+ßl)  A2  e J (U1"b) 

Y,   =  ß    +   ß, (42-a) 
'I        a        b 

Y2   =   ßa -   ßb (42-b) 

Here Yi  anci Yo are normal mode propagation constants and A., A-  are arbitrary 

constants. 

These solutions agree with those obtianed by other methods. 

IV.    Coupled-Mode Description of Guided Wave Propagation through a Ferrite Rod 

A general set of coupled mode equations for wave propagation in a wave- 

guide partially filled with a gyromagnetic medium has been derived by Huang 

and Fan.      They are 
da 
~=-K    a    -K    a (43-a) 
dz ee e        eo o 

da 
o = _ K    a    _K    a (43-b) 

dz oe e        oo o 
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Also 

K (z) = K (z) 
ee     oo 

K (z) = - K (z) 
eo       oe 

where the K's are varying mode coupling coefficients. 

In order to solve this set of equations, we write 

[A] 

A(z)  B(z) 

C(z)  D(z) 

-K (z)   K (z) 
ee      eo 

eo      ee 

Then (20-b) becomes 

h' - K (h2 + 1) = 0 
eo 

It is easy to show that a particular solution of (46) is 

hft = tan / K  dz 0     *    eo 

Substituting h    in (25), we obtain the general solutions of (43): 

a.  = 

(«♦»♦-a) 

(»♦»♦-b) 

(U5) 

(»♦6) 

(«+7) 

[cl  / (-Keo) exp{/2Keo tan(/ Keodz) dz}   *  dz + c2 1 

• exp   [- / {Kee -     Keotan( /Keo dz)} • dz J 

=   P-CI/K    sec2(fK    dz)dz+ c0l • cos(/K    dz)»exp(-/K    dz) !        1 '    eo '    eo 2 1 '    eo r    '    ee 

=   f- c,tan(/K    dz) +c, l.oos(/K    dz)  •  exp(-fK    dz) |        i        '  eo 2 j '  eo '    ee 

=   P- c,  sin( /K    dz) + c, cos(/K    dz)l.exp(-fK    dz) 1 '   eo 2 ;   eo      j        ^     '    ee 

d.      -/(K    +JK    )dz        d,      -/(K    -jK    )d 1        ;     ee J eo 2        '    ee      eo 

/T 
ee "  eo e + 

rs C+S-a) 

t 
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a_ = ^- Cj tan2( /Keodz)+ c2 sec2( / K^dz) 

+ c, tan( /K dz) I • cos( / K dz) • exp(-/K dz) 
2    ' eo  J      ' eo ' ee 

= Fc. cos(fK dz) + c- sin(/K dz) 1 • exp(-/K dz) 
I  1 CO        " ©O    I 6C 

d,  -/(k +jK )dz   d,  -/(K -jK )dz 
1   '  ee J eo       2   '  ee J eo 

-'in' 2        ' ' ee " eo 
  e (»♦8-b) 

where dj and dj are arbitrary constants. These expressions agree with the 

solutions given in Reference 3. 

V.  Case (i) 

and 

Here we consider the situation in which 

A(z) = D(z) 

B(z) = C(z). 

(U9-a) 

(H9-b) 

For this special case, the generalized Riccati equation (20-b) becomes 

h' + B(h2-1) = 0 

A particular solution of (50) is 

h    = coth / Bdz 

The solutions which follow are then 

a j s   fci/B exp{ /- 23 coth(/Bdz) dz)   •  dz + Cjl 

• exp / {A + B coth( /Bdz)}  «dz 

=   Fcj /Bcsch2( /Bdz)dz + CjUCsinh/ Bdz)  • exp( /Adz) 

(50) 

(51) 
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= (  - c.cosh/Bdz ♦ c.slnh/ßdz) exp(/Adz) 

dj e 
/(A+B)dz /(A-B)dz 

+ d2 e (52-a) 

a, * {cj coth2( /Bdz) + Cj sech2( / Bdz) + c    coth( / Bdz)} 

•  (sinh/Bdz)  • exp( /Adz) 

= - d2 e 
/(A+B)dz 

+ d2 e 
/(A-B)dj 

(52-b) 

If B(z) and C(z) are purely Imaginary, then B(z) = - C (z).    This situation 

represents a passive coupling mechanism in the coupled-mode of propagation. 

VI.    Case (ii) 

Case (ii) deals with the situation in which 

And 

A(z) = j [0(z) ■»• PjnU)] 

D(z) -  j [8(z) - p2n(z)] 

B(z) » c(z) * jy3n(z) 

(53-a) 

(53-b) 

(53-c) 

where 8(z) and n(z) are any arbitrary function of z and y., p2, y are 

arbitrary constants. Substitution of (53) in (20-b) yields 

h' + j(yl*y2) nU) h ♦ jy3 n(z) h2 * jy3 n(z) 

A particular solution of (54) is 

(5*0 

h * j / 1 ♦ (^)2 tan(y / 1 ♦ &2    j  n(z)dz) - J (55) 

^r--t 
"^^ ■«■ 
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The results obtained by substituting of (55) into (25) are 

al = rcicos^ / n(z)dz + C2{j sinX / n(z)dz + y cosX / .•;(z)dz}J 

yI-y2 
• exp j / {ß(z) ♦ —T— n(z)} • dz (56-a) 

a2 = Ccl ^sinX / n(z)dz - j cosX / n(z)dz} 

+ c cosX / n(z)dz ] • exp j / {ß(z) + -^- ß(z)} • dz      (56-b) 

where   

/    2  /l+y2 2 
- / W3 + (-2-) (57) 

When y, is real, we have the condition B(z) = - C (z). This is the passive 

coupling case in which the group velocities of the waves are in the same 

direction. 

VII. Case (iii) 

Here we consider A, B, C, and D to be related in the following manner: 

A(z) = j [6(z) + M1n(z)] (58-a) 

D(z) = j [ß(z) - u2n(z)] (58-b) 

C(z) = - B(z) = jy3n(z) (58-c) 

For this situation, the particular solution of (20-b) can be found to 

be 

h0 » - j / (^)2-l tanh u3/(^) -1 / n(z)dz + ^ (59) 3' ^2 

"— '"^i- 'sm^^r^wmm^- 
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The general solutions for a. and a, are then 

aj = I Cjcosh K I  n(z)dz + c.ijsinh tc j  n(z)dz t -z cosh ic / n(z)dz} 

• exp jCyj+pj) / n(z)dz 1 • exp j / {ß(z) + —^— n(z)}dz       (60-a) 

i, = j c.{jsinh K j  n(z)dz - r- cosh K f  n(z)dz 

+ c2{cosh ic / n(z)dz} • exp jCpj+yj) / n(z)dz 

exp j / {B(z) + —5— n(z)}dz (60-b) 

where 

/ i-^r-)    -  W,2 (61-a) 

UJ+MJ 
(61-b) 

If C(z) and B(z) are purely imaginary, C(z) = B (z). This is the active 

coupling case in which the group velocities for the two waves are in opposite 

directions. 

VIII. Case (iv) 

In this case we consider the relations 

A(z) * D(z) (62-a) 

B(z) = t  C(z) (62-b) 

The approximation (62-a) is a fundamental assumption commonly made when treat- 

ing a pair of weakly coupled modes.  Under this assumption, we will neglect 

the second term, which is small compared with others, in the generalized 

Riccati equation. 



If. 

Thus (20-b) becomes 

h' t B(2) h2 = 1 B(z) (63) 

h0 = tan / Bdz (61) 

The expression (6*0 is a particular solution of (63) taking the positive sign, 

and 
h0 = coth / Bdz (65) 

is a particular solution of (63) corresponding to the negative sign. On 

substitution of these particular solutions in (22), we obtain approximate 

solutions for aj and aj. 

With the upper sign in (62-b), we have 

al  1 "cl C ^ ^Bexp / (D-A)dz} • dz 1 cosh / Bdz + c2sinh / Bdz j 

• exp / A dz (66-a) 

a2 " j cA   [/{Bexp / (D-A)dz) • dz] coth2(/ Bdz) 

+ exp / (A-D)dz • sech2 (/ Bdz) 1• sinh / Bdz + c cosh / Bdz | exp j  Adz 

(66-b) 

With the lower sign in (62-b^ we have 

a »{ Cj j" / {Bexp / (D-A)dz} • dz  sin / Bdz + c cos / Bdz \ 

• exp / Adz (67-a) 

a2 «/{Cj (- [/ ( Bexp / (D-A)dz) • dz 1 tan2 / Bdz + exp / (A-D)dz 

:2 / Bdz j« cos / Bdz - c2sin / Bdz j» exp / Adz (67-b) sec 
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IX. Concluding Remarks 

A systematic method has been Introduced to obtain solutions of the two 

dimensional coupled-mode equations with varying coefficients. Some special 

cases for which solutions are already known have been given to illustrate the 

application of our method. The solutions of sections V-VIII may be applied 

to physics 1 problems: e.g. directional couplers, microwave antennas, etc. 

The coupled-mode theory of propagation has been applied by R. A. Sigelmann 

and D. K. Reynolds in their study of a traveling wave antenna with broad band- 

width.8 Because of the systematic method of solving the coupled-mode equations 

developed here, it may be possible to find solutions for the log-periodic 

structure by the coupled mode approach. 

It is also anticipated that the coupled mode theory as applied to propaga- 

tion problems will have further application in the design of broadband 

directional couplers in which the coupling mechanism is of the log-periodic type, 
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Appendix A 

Euler's Theorem Concemlng the Generalized Rlccati Equation; 

It has been shown by Culer that, if a particular solution of the 

generalised Rlccati equation is known, the general solution can be obtained 

by two quadratures. 

To prove the result, let yQ be a particular solution of 

dz 

and write y « yg ♦ —• The equation in v is 

$r ♦ Py + Qy2 = R (A-l) 

1^ - (P +  2Qy0) v + 0 =  0 (A-2) 

of which the solution is 

v exp{- /(P ♦ 2Qy0)dz} - / Q exp{- /(? + 2Qy0)dz}   • dz = 0 (A-3) 

and, since b - i     -K » the truth of the theorem is manifest. 
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Appendix B 

Particular Solutions of the Generalized Riccati Equation 

Sometimes one or more particular solutions can be found by inspection 

or by a lucky guess.    More formal procedures apply in dertain cases. 

I.      The form of the generalized Riccati equation is 

y'  = f(x) + g(x)y + h(x)y2 (B-l) 

Let y = u(x)/h(x) and (B-l) is converted into 

u' = F(x) + G(x)u + u2 (B-2) 

where F(x) = f(x)h(x); G(x) = g(x) + JT •    If both F(x) and G(x) are 

polynomials. See Sections (a), (b), (c) in turn.  If f(x), g(x), and 

h(x) are polynomials, it will not necessarily be true that G(x) is a 

polynomial, hence the methods of those sections may not apply; see, how- 

ever. Section (d) for a possible procedure, 

(a)  The equation becomes 

u'U) = F(x) + u2 (B-3) 

and F(x) is a polynomial with G(x) = 0. There are two possibilities. 

(i)  The degree of F(x) is odd. There is no polynomial solution of 

(B-3); hence, none of (B-l). 

(ii) The degree of F(x) is even. Two possible polynomial solutions may 

exist. To find them, first note that if P(x) were a polynomial of 

even degree 2n, then / P(x) could be expanded in series of the form, 

. bi      b2 
P(x) = ax   +a    ,x~    +••••+3.+ — + — +.... 

n n-1 0       x      x2 

Perform such an expansion on / - F(x) but stop the calculation with 

the constant term. Call this result X(x); it is a polynomial of 

degree n, if F(x) is of degree 2n. The coefficients in the 
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polynomial could be found by a simple modification of the square- 

root extraction method of elementary algebra, by the undetermined 

coefficients, or by expansion in a Maclaurin series. 

If the differential equation has special polynomial solutions, 

they are given by 
u = 1 X(x) 

Test both of them, for both, one, or neither may satisfy the differen- 

tial equation. If neither is a solution of (B-3), there are no 

polynomial solutions of (B-3) and hence none of (B-l). 

(b) G(x) 4  0.  Let u = w(x) - £^- and (B-2) becomes w2(x) * H(x) + w 

where UH(x) + G2(x) -  UF(x) + 20'(x). The equation in w(x) is similar 

to (B-3); hence, with slight modifications the procedure is very much 

like that in (a). Calculate 

Q(x) = G2 - UF - 20' 

There are two cases. 

(i)  The degree of Q(x) is odd. There is no polynomial solution of 

either (b-2) or (B-l). 

(ii) The degree of Q(x) is even. Expand / 0(x) as in (a) ag^in, stop- 

ping with constant term and call the resulting polynomial X(x). 

There are two possible polynomial solutions of (B-2) 

Test both, for neither may satisfy the differential equation, 

see (c). 

(c) Q(x) is a constant. This is the necessary and sufficient condition 

that both solutions of (b) satisfy the differential equation. There 

are two cases. 
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(i)  X(x) = k ^ 0. Introduce a new variable with the relation 

2     v 

so that (B-2) becomes 

v'Cx) = 1 + kv 

kx  1 
It is separable with solution v = ce  + r- and the corresponding 

solution of (B-2) is 

(G+k)  , kx  lv.1 
u = j— + (ce  + ^) 

Two special polynomial solutions of it result with c = 0, •». 

(ii) X(x) s k = 0. The equation in v(x) becomes vMx) + 1 = 0, which 

is separable, with solution v + x = c. The solution of (B-2) is 

G   1 
U ' " 2 " c-x 

(d)      Polynomial coefficients: 

Suppose that (B-l) has the form 

♦(x^'   =  f(x) ♦ g(x)y + h(x)y2 (B-«») 

where all of the coefficients are polynomials. Assume it to have a 

special polynomial solution yj = R(x) and use a new variable y = u + yj 

so that it becomes 

♦(x)^ = F(x)u + h(x)u2 

where F(x) -  g(x) + 2h(x)R(x). If there is a polynomial solution of 

(B-U), having the form u = (x-a) , m ^ 1 then ^(x) will also contain 

a factor (x-a). This property restricts the possible types of poly- 

nomial solutions. Unlike the previous cases, where only two possible 

polynomials may exist, the more general solution can have a larger 

number of such solutions. See (e) for further discusrion of this case. 
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(e)  Several polynomial solutions 

Given (B-U), any specified number of polynomial solutions can be 

constructed. The general solution can be taken as 

cf^x) + f2(x) 
y = cfjU) + fu(x) * 

If fjf^ - f2f3 i  0, then (B-l) can be written in the form of (B-U) 

with ♦(x) = fjf^ - f2f3; f(x) = fjfg' - fi'^; g(x) = fjfj' - fgfj 

+ f-.f,' - fj 

Now suppose that the f.(x) are polynomials.  Select f.(x) = 0; 

choose any polynomials desired as fix) and f^x). Assign n special 

values Cj, Cj, *••» c to the arbitrary constant and require that 

Vi    " MVi    h(x) = f3f^,  - W- 

f2(x) = (0^3 + fi»)  (C2f3 + fi»)  ••••  (c ^3 + f^) 

The differential equation (B-U) will have (n+1) polynomial solutions, 

f2 
y = 0  and  y. = r f .f    i = 1, 2, ••• , n 

The special solution y = 0 can be avoided and (n+1) special solutions 

retained if the variables are transformed with the relation 

u(x) = g(x) + P(x) where P(x) is any polynomial. 

The considerations of this section could be very helpful in construct- 

ing an equation with a predetermined number of polynomial solutions. 

II. The following properties of the generalized Riccati equation sometimes 

apply in attempting to solve it. 

(a)  Removal of the linear term 

The result, which is similar to (B-3) can be achieved in three 

different ways. It might then be treated as in I, but see also (b) 

for a special case. 
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(i)  Let y = u(x)e*(x), ♦(x) = / g(x)dx and (B-l) becomes 

u'(x) = F(x) + G(x)u2 (B-5) 

where F(x) = f(x)e'*(x), G(x) = h(x)e*(x). 

(ii) Let y = u - v(x), v(x) = 2j?,*? . If g, h are differentiable and 

h(x) i  0, the result is again like (B-5) but now with 

B2 
F(x) = f + v' - 5jj- ;  G(x) = h(x) . 

(iii) Let y = u(z) e*(x); ♦(x) = / g(x)dx; z = - / he*dx.  In this case 

(B-l) becomes 

u'U) = F(z) - u2(z) (B-6) 

with F(z)h(z) = - f(z) e"2* 

(b)  Relation between the coefficients when certain relations exist between 

the coefficient of (B-l) its solution may be easy to obtain, 

(i)  Look for two constants a, b with |a| + |b| > 0 so that 

a2f + abg + b2h = 0 

If a = 0, then f(x) = 0 and the equation is linear. If a ^ 0t 

then y. = b/a is a particular solution of (B-l). A simple case 

arises iff + g + h = 0, for then a = b = 1 and y. = 1. 

(ii) Use (a)to remove the linear term in (B-l). Then if F(x) is propor- 

tional to G(x) in (B-5), the result is separable. In the original 

variable and functions the requirement is f(x) = A2h(x)/exp(2 g(x)dx) 

where A is a constant for proportionality. The solution of (B-l) 

is then 

y = / ^ tan(/ /"fh dx + C);    fh > 0 

if fh < 0, replace tan by tanh and insert a minus sign under both 

radicals. 

ETSC^ 
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(iii)    Assume that a special solution of (B-l) exists so that 

2hyl = X(x) - g(x) 

where X(x) is determined from the relation 

f(x) s hyj2 - X(x)y1 + y^ 

The last equation imposes a severe restriction on the form 

of f(x) but if it is satisfied, yj can be found. A few 

cases that might be tested are 

X = 0, Uf = g2/h - 2(g/h)' ; 

X = - h'/h, Uf s 2(^)" - 2(g/h)' - hd/h)'2 + g2/h ; 

X = g - 2 /"fh, 2g = U /lh  + f'/f - f7h . 

III. If all the tests in I and II fail, transform the equation into one of 

second order. Change the dependent variable by the transformation 

yh(x) u(x) + uMx) = 0; in U(x) + / yh(x)dx = 0 

The result i 

u'^x) + P(x)u' + Q(x)u = 0 

where p(x) s - (g + h'/h), Q(x) = f(x)h(x). It is linear and of second 

order. Such equations have been studied extensively and this may be the 

most suitable procedure unless the given first-order equation has some 

special property. 

IV. There are fourteen transforms listed below in pairs for solving a certrin 

class of Riccati's equation.   The intermediate steps dealing with 

transforms and solutions of these equations are avoided. However, it 

is appropriate to cite the first case of the transforms listed below 

to explain the intermediate steps omitted. Take transform 1, 

y = 2/(Pz + Qz'). (B-7) 
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Substitute this into a generalized Riccati's equation. 

y' « a(x)y + ß(x)y2 ♦ yi*) (B-8) 

where a, B and y  are undetermined variable coefficients and only a can 

become zero, typical of Riccati's class of equations. 

Substitute (B-8) into (B-7) 

Qz'2 - P'z2 - (Q'z1 + Qz")z + (Pz + Qz')az ♦ ßz2 

= (Pz + Qz' + 2PQzz,) (B-9) 

There are four places where z2 appears on the other hand, there are two 

places where z'2 appears. The key idea is to eliminate terms z2 and 

z'2 in (B-9), thus degenerate (B-9) into a first-order linear differential 

equation. Because z'2 appears in two places, the unique choice for Y(X) 

is made first. 

Y(x) = om (B-10) 

The coefficients for z2 are collected to specify o(x) and ß(x), 

P2 
- P'+ oP + ß - -^ 0 . (B-ll) 

Note that there are three ways of specifying while retaining (B-8) in 

Riccati's class of equations. If 

a = 0 (B-12) 

then 

If 

then 

If 

P2 0 S P- + L. 

P 
aSQ 

ß' « P' . 

o « (log P)' 

(B-13) 

(B-1U) 

(BIS) 

(B-16) 
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then 

P2 

6 = ~ (B-17) 

Judging from t iese developments, it is quite obvious that a transform 

of type . 
y a PiT^T (B-18) 

does not solve a Riccati's equation. If (B-18) is substituted in (B-8), 

there is only one place where z2 appears. This forces P to zero to 

eliminate the term of z2. If P is zero in (B-18), y is not related to 

another variable z. Following the above steps, the transforms listed 

below are obtained and may be applied for exact solutions for a certain 

class of Riccati's non-linear differential equations. Only fourteen 

transforms in pairs are listed below but it is possible to find many more 

transforms in pairs. 

Transform 1: 

solves 

y - fTToT- (B-19) 

y' + (P' + ^-)v = i (B-20) 

y. + Ü.+ p.y2 = 1 (B.21) 

+ Pizi = i 

Transform 2: 

solves 

y« + (logeP)'y + Z-jL- = | (B..22) 

y = (Pz:Qz,) (B-23) 

v2       P2 
y« + ^-= P' + i~ (B-2«0 

y' - ^♦^ = P' (B-25) 

y» - (logeP)'y ♦ ^- = ^- (B-26) 
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Transform 3: 

z ••• PQz' 

solves 

y = T-AnTT (B-27) 

y» - [ß(x) - ^] y + ß(x)y2 = ~ (B-28) 

where ß(x) is any arbitrary function of x. 

Transform U: 

y = "V0''' (B-29) 

solves 

1       V2 
y' + CY(X) - PQ^ y + PQ = Y<x) (B-30) 

where Y(X) is any arbitrary function of x. 

Transform 5: 

solves 

y. + (P-Q')y- = p (B.32) 

0' 

Transform 6: 

solves 

y. + ^ (Q-^'y2 = P (B-33) 

^ - (log QVy + ^- = P (B-3't) 
6      Q2 

s (Pg f Qz') (B.35) 
y     PQz 

y. + Py2 s (PlQl) (B-36) 

Q2 

y. . ^.+ Py2 = (Q-l). (B-37) 

y' + (log QVy + Py2 = — (B-38) 
e Q2 

ITV SMaMV^B^'VHHMMV'T'^^QRHE^P^^^^^n'r''.^""VMBVV^^B^Hpi^lBl^B^B^--' ***-im    '*** *— * "j 
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Transform 7: 

. 

solves 

Transform 8: 

solves 

y s (PQz + z') 

y' + [(PQ)2 + (PQ)'^2 = 1 

y' + PQy + (PQ)^2 = 1 

y' ♦ [log PQD'y + (PQ)2y2 = 1 

, (PQz +  z') 

y' ♦ y2 = (PQ)2 + (PQ)' 

y' - PQy + y2 = (PQ)' 

y1 - Clog PQ]' + y2 = (PQ)2 

(B-39) 

(B-UO) 

(BU]) 

(B-U2) 

(BU3) 

(B-UU) 

(B-U5) 

(B-U6) 

Transform 9: 

solves 

-   ?z 

y '  (Pz + Qz') 

y' - [ß(x) - |] y ♦ ß(x) y2 = | 

where B(x) is any arbitrary function of x. 

Transform 10: 

y = 
_ (Pz » Qz') 

Pz 

solves 

y' ♦ [Y(x) - |] y * £Z_ = Y(X) 

where Y(X) is any arbitrary function of x. 

(B-U7) 

(B-U8) 

(B-U9) 

(B-50) 

■,*-*■■• J 
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Transform 11: 

solves 

-    Q» 
y ' (Pz + Qz') 

P  Q B(x) r  +(Cloge(^]' ♦^.ü^üü)y+ ß(x)y2 = 1 

(B-51) 

(B-52) 

where B(x) is any arbitrary function of x. 

Transform 12: 

(Pz+Qz1) yS-lJi  
solves 

y. .('t[log Pj. .2^xL}ytyI. (x) 

(B-53) 

(B-5H) 

where Y(X) is any arbitrary function of x. 

Transform 13: 

PQz 

solves 

Transform 1U; 

solves 

y+ cÄ+(^),:,y2sPQ 

y' ♦ y ♦ C^)' y2 s PQ 

y' - (log^O)' y + ^Q s PQ 

PQz 

y' *PQy2 - ^♦^ 

y« - y ♦ PQy2 « (^)' 

y» + (log^O'y + PQy2 = ~ 

(B-55) 

(B-56) 

(B-57) 

(B-56) 

(B-59) 

(B-60) 

(B-61) 

(B-62) 

^ 
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V.  A Table of Solutions of Riccati's Equations. 

Tabulated exact solution of y'(x) + P(x)y(x) + Q(x)y (x) = R(x)    1 

A particular solution Required interrelationship 

(i) a e-/Pdx R = a*0 e-
2/Pdx 

(ii) 
1 

R -   P 

/Qdx + b 
K -   

/Odx + b 

(iii) /Rdx + c Q -     P             1 
/Rdx t c          j 

(iv) 
P 

" Q R = - (|)' 

(v) R 
P 0 ■ (£)• 

(vi) J  * / Q P = - (tn /T). 

(vii) 

e-/(P-2Q)dx_/pe-/(P-2Q)dxdx.a 

e-/(P-2Q)dx + /pe-/(P-2Q)dxdx + a 
R = 0 - P                j 

j 

(viii) 

/pe./(P+20)dxdx + b_e-/(P+20)dx 

/pe-/(P.2Q)dxdx+b+e-/(P+20)dx 
R = 0 + P               | 

These 

NOTE: a, b, c are arbitrary constants.                     j 

eight table entries represent a great number of specialized cases. 
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