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Introduction 
In this paper we consider extensions! of the current theory of general- 

ized network problems-  (from a linear programming viewpoint) to cover 

situations in which the nonzero entries of the generalized incidence matrix 

may be random variables.   Our extension involves an interpretation of the 

constraints as chance constraints and thereby the extended problem becomes 

a chance-constrained programming problem.   Wc solve this problem for the 

optimal zero-order rule and,  in doing so, we obtain a chance-constroU?2d 

problem which is the dual of our original problem.    This dual chance- 

constrained problem is obtained through the use of dual "deterministic 

equivalents."   Thus, we extend to this class of models, the chance-constrained 

duality theorem of [z] which allowed random variables only in the stipulations 

vector.    Further extensions of the chance-constrained duality theorem to 

other general models will be forthcoming elsewhere. 

We discuss the interpretation of this dual problem and show how it can 

be used to help solve the given problem.    We also show that our results hold 

regardless of the distributions of the random variables involved in the problem 

Finally, we indicate how similar techniques can be used to handle the case in 

which the primal objective function is also stochastic in nature. 

investigation of this problem was motivated by consideration of the 

problem of optimal design of wastewater treatment plants discussed in [3J. 

In that problem, the nonzero elements   c.   in the generalized incidence 
iJ 

matrix represent "process factors" associated with the jth process.   In partic- 

ular,    c.   is the factor by which the amount of flow out of process   j   differs 
J 

from the flow into process   j as a result of the flow undergoing the jth process. 

From the nature of the problem it is clear that   «.   is a random variable, 
J 

since the efficiency with which the process operates depends on such 

stochastic quantities as the density or composition of the flow,  the tem- 

perature of the treatment chambers and ingredients,  etc.    Hence   e.   is not 
J 

constant but rather fluctuates in some way over a range of possible values. 

Thus,  it is not possible in general to specify a flow pattern,  in advance, which 

U    See [l], Volume II, page 628 ff. 



will be optimal (or even physically feasible) for all possible values of the   €.. 

However, we can find a flow pattern which is both feasible and optimal within 

certain preassigncd probability limits.    This type of interpretation leads to 

constraints which are conveniently expressed in the form of chance-constraint. . 

Thus our problem becomes one of finding the optimal flow pattern within the 

probability limits specified by our chance constraints.    Interestingly enough, 

since this is not true generally for dual deterministic linear programming 

problems, for our particular problem we are able to give the dual chance- 

constrained problem a meaningful physical interpretation. 

As we indicated above we will solve our chance-constrained problem for 

the optimal zero order rule.    Zero order rules were used in [4] in a discus- 

sion of PERT-type scheduling problems in which the dual stipulations vector 

of project completion times was assumed to be random.    However, in con- 

trast to the work in [4] in which the object was to interpret the PERT problem 

as a chance-constrained programming problem and also to study the 

distribution of total project completion time we are concerned here with the 

computational aspects of our model as well as with the theoretical results 

already mentioned.    Specifically, the deterministic equivalent for our problem 

turns out to be a deterministic generalized network, and thus can be solved 

using existing algorithms for such problems (see [5j,   [6j, [?]).    In 

particular, we show that for a certain class of problems the deterministic 

equivalent can be solved using the one pass algorithms presented in [6]. 

Extensions of these one pass algorithms to include problems which involve 

decision rules more general than the zero order rule are under investigation. 

Generalized Network Problems:   Deterministic Case 

A (pure) network is an oriented connected graph with the following 

additional features:   associated with each link (or arc) is not only a direction 

but a unit cost of flow and associated with each node (or vertex) is a quantity 

representing an influx or efflux.    Flow is regarded as taking place along the 

links from nodes at which influx is present to nodes at which efflux is to occur; 

flow on any link incurs a per unit cost in an amount given by the cost asso- 

ciated with that link.    Capacitated networks, meaning networks in which there 
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is an upper bound to the flow on each link, are not considered here. 

Such a network, having   m   nodes and   n   links,  can be described by its 

incidence matrix  A, an   m x n   matrix in which the jth column (corresponding 

to link j) contains   -1   in row   k,  +1   in row   q,  and zeros elsewhere when link 

j   leads from node   k _to node   q.    An m-vector,    b,  contains in its ith posi- 

tion the influx (with   a - sign) or efflux (with   a + sign) associated with node   i; 

the n-vector,    c,  contains in its jth position the unit cost associated with link 

j- 
If it is desired to minimize total cost while satisfying the influent and 

effluent restrictions, the optimal flow pattern   x   is the solution to the linear- 

programming problem: 

(1) 

Minimize T 
c   X 

Subject to: Ax = b 

x ^ 0, 

where   x = x.   is the flow on link  j; and the ith constraint is a 
J 

statement of the Kirchoff conservation condition at the ith node.    There exist 

many variations on this theme (for example,  some of the equations in (1) may 

be replaced by inequalities) but all such variations can be converted into 

problems with structure of (1). 

A generalized   network differs from the above in that the nonzero 

entries in   A   are not required to be   + 1,   although it is still required that 

each column have exactly two nonzero entries which are of opposite sign.    It 

is clear that,   by appropriate scaling of the columns of  A   and the correspond- 

ing elements of   c,   an equivalent problem may be obtained in which the 

negative  element in each column of  A   is equal to   -1.    The positive element 

in the jth column of  A   will be denoted   k..    The flow on link  j   may be 

regarded as incurring a cost of   ex.   and then being subjected to amplification 
•I      J 
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{or attenuation) by the factor   k..    Thus the flow along link  j   is amplified by 

a factor   k.   during the course of its traversal of link j.   This is in contrast 
J 

to the pure network case where all   k. = 1. 
•I 

The dual to (1) is 

T 
Maximize w   b 

(2) Subject to wTA ^ cT 

In order to understand the meaning of the dual constraints we proceed 

as follows.    First, note that the dual variable   w.   is associated with node   i 
i 

and that there is one dual constraint for each link (i, j) in the network. 

Second,   recall (from linear programming theory) that a basic optimal 

solution to (2) will have at least  m   constraints satisfied as equalities; any 

m   such equations serve to specify a basic solution to the primal problem. 

Satisfaction of the remaining constraints of (2) is,  in fact, a criterion for 

optimality of the corresponding basic solution to (1). 

Suppose now that we were to interpret   w.   as representing the per unit 

net decrease in cost which would be obtained supposing that it were feasible 

to increase the flow out of node   i  along link (i, j) by modifying the flows on 

the other links of the network.    The   w.   are thus "virtual" quantities in the 

same sense that virtual quantities appear in other fields such as mechanics, 

etc.—       Since increasing the flow along link (i, j) by one unit involves 

increasing the flow into node   i   by one unit and increasing the flow out of 

node   j   by   k..   units,  the per unit net decrease in cost which would be 

obtained by such a change is   k..w. + (-w.) = k.. w. - w..    Thus, under this e ij   J i        ij    J        i 
interpretation of the dual variables,   w.,    the dual constraints state that the 

(per unit)   net decrease  or "virtual decrement" in cost which would be 

obtained by increasing the flow along link (i, j) by one unit must be less than 

or equal to the per unit actual cost increase,    c...    which would be incurred 

by such a change,  i.e. ,    k..w. - w. ^  c.   for each link (i,j).    Hence a flow 

pattern is optimal (i.e. , results in a set of  w.   which satisfy the dual 

1/    See [8] and [l], pp.  646 ff. 



-5- 

constraints) if and only if a change in the flow along any link would cost more 

than the benefits which would be obtained from such a change.    This then is 

the interpretation we will give to the dual variables and constraints. 

In concluding this discussion of deterministic generalized networks one 

further property of such problems should be noted,  namely that any general- 

ized network is equivalent to one in which at most one link with   k.. ^ 1   is 

positively incident on any node (see Figure 1).    Algebraically this means 

that, with no loss of generality, the matrix A   in (1) can be assumed to have 

at most one positive entry per row which is not equal to   1.     To see this 

refer to Figure 1 in which the nodes   i*  and   r*  are adjoined to the original 

network,  in order to convert the original network shown in (a) to the one in 

(b) which has the required property.    Henceforth we shall assume that all 

networks under discussion possess this property.    Moreover,   in accordance 

with the above diagram,  all links which have attenuation factors associated 

with them will be denoted by link  (j, j*)   and the attenuation factor will be 

JJ* 

Generalized Network Problems:   Chance-Constrained Formulation 

We now turn to consideration of the case in which the attenuation factor 

for link   (j,j*)    is permitted to be a random variable.   We place no restric- 

tions on the distribution of this random variable, other than to assume that 

the joint distribution of all the   k.  .^   is known.    Thus we allow the possibil- 

ity that some of the   k.   .^   may be dependent,   some may be discrete, others 

continuous, etc.    Note, however, that our assumption implies that   F.   .„, (. ;, 

the marginal cumulative distribution function of   k.   .,,.,    is known. 
J.J* 

Due to the random nature of the attenuation factors it may no longer be 

possible to exhibit a priori (i.e. , before the values of the random variables 

have been observed) a flow pattern which satisfies the generalized Kirchoff 

conservation conditions at the nodes for all possible values of   k.   .....    We can 

attempt,  however, to specify a flow pattern which,  after   observations of the 

k.   .„,,     has the property that at node   j*   total influx must be greater than or 

equal to total efflux (100 -a.*) per cent of the time.    In other words,  the 

flows specified should not demand large amplification factors in order to be 
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realized any more than some specified proportion (i. e., a.^)   of the time. 

Thus the generalized Kirchoff node condition which constitutes the con- 

servation condition at the ith node becomes the chance constraint 

(3)       P ) k..,,,   X..,.,   5 \       X.A       V        X,   *   +   fc*!.5   «•* 

i«S(j*) k€R(j*) 

where S(j*) is the set of i for which there is a link from j* to i, and 

R(j*) is the set of k for which there is a pure (i.e., unattenuated) link 

from k to j*. Any constraints for which the attenuation factors are not 

random should be reproduced in their deterministic form, along with the 

nonnegativity constraints. 

Hence our problem can be written as 

Minimize        S     r-x.. 
i.j       ^ ^ 

(4) Subject to 

Pik..^  X..,.   ^       V X.*.   — \ X. .„+   b. 
) JJ*     JJ* /_ J*i 2~ kJ J 

icS(j*) kcR{j*) 
* \    s:   aj* 

for all links   (j,j*)   with random  k...   . 
JJ* ' 

JJ*      JJ* kcRfj*) kJ* i.S(j*)        J*1 J* 

for all links with deterministic   k..A 
JJ<' s 

x.. 2.    0. 
ij 

We must remark that the chance constraints in (4) could just as ea; ily 

be written as 
iTi i «■  c  

J' 
P( ) ^  «.„ 
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with no change in our interpretatioxx or subsequent results.    The reason we 

have written the constraints in the form 

is so that the resulting deterministic equivalent constraint (see (5) below) 

will be similar in appearance to the other deterministic constraints in (4). 

In accordance with procedures such as those discussed in [6] and I?]» 

the constraints of (3) give rise to the deterministic equivalent constraints 

(5)       F:*   (cr.jX..,,,   + Y X, .„   - T X.,..   =   b.^ 

k€R{j*) i<S(j*) 

Thus, the deterministic problem which is equivalent to (1) is 

Minimize        £   ex.. 
i.j     ^    lJ 

subject to 

JJ*      J*      JJ* ^ kj* L- j*i j* 
k«R(j*) i^SCj*) 

(6) for all links   (j.j*)   with random   k..^  . 
J J 

k-*   X...   + N x. .„   — V X.^.     =     b.A JJ*      JJ* L~ kj* /. j*i j* 
k€R(j*) i€S(j*) 

for all links with deterministic   k..^,   . 
JJ*   ' 

x..   ^    0. 
ij 

Since (6) is an ordinary linear programming problem it has a dual; 

specifically: 



m 
Maximize        2     w.   b. 

i=l       1     1 

(7) Subject to k. w. - w. S c.. 

where   k..    is either   k..*   or   F7.A   (a.±)   in the appropriate instance, 
ij JJ* JJ*      J* 

Note that (7) is of the exact same form as (2) and can be similarly 

interpreted.    The only difference is that whenever   k..^   is random we 

replace it by the   a.^   fractile point of its marginal distribution. 

Moreover,  (6) is equivalent to the chance-constrained problem: 

m 
Maximize        2     w.   b. 

1=1      1     1 

Subject to P(k.. w. - w.   ^   c..) ^ a.,   for links (i.j) for 

which   k..   is random, 

k.. w. - w. - c.   for links for which   k.. is 

deterministic. 

Thus (8) and (4) are dual chance-constrained programming problems 

according to the terminology first introduced in [Z] ,   e.g.:   (a),they employ 

the same data;  (b),the functional value in (8) is less than or equal to that in 

(4) for any pair of feasible solutions to their constraints; and (c),the optimal 

values of the objective functions of (4) and (8) are equal. 

Extensions and Specifications 

First, we note that if the   c.   are also permitted to be random variables 

and the objective in (4) is to minimize total expected cost,  then   c.   may be 

replaced by its expected value,    c.,    and all of the preceding results remain 

valid. 

Next,  we restrict our attention to a more special situation.    Let us now 

assume that the generalized network has the following special features: 
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(a) Exactly one node has nonzero net efflux. 

(b) Exactly one node has nonzero net influx. 

(c) There is no availability limitation at the influent node (or, 

alternatively, there is no restriction at the effluent node). 

Then the constraint at the influent node (node 1) is   S x.. 2- -M, 
j     lJ 

where   M   may be as in the regularization techniques described 

in [8],  an element from the(non-Archimedian) Hubert exten, i.: . 

field. 

(d) All   c.   are nonnegative. 

(e) All   k..^   are contained in the interval (0,1) with probability one. 

Under these assumptions the deterministic problem (6) can be solved using 

the one pass algorithm discussed in [6]. 

It is of interest to note that the wastewater treatment problem we 

mentioned in our introduction and discussed in [3]  is of this special form. 

Thus we have solved an extension of the wastewater   problem which permits 

process factors to be random.    This result secures for us the possibility of 

solving the wastewater model,  deterministic or chance-constrained,  by one 

pass through the network using the techniques developed in [6],  a fact which 

was not previously known even for the deterministic case. 
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