RADC-TR-66-7, Volume |
Final Report

ADVANCED COMPUTER ORGANIZATION STUDY

Volume | - Basic Report

Donald L. Rohrbacher

ADE31870

TECHNICAL REPORT NO. RADC-TR- 66-7
April 1966

Distribution of this document is unlimited

CLEARINGHOUSE
FOR FEDLnRAT, SCIENTIFIC AND

N \I’ AT, INTFORIMATION
vlarccopy | uucmfiehe

33, 0 05 0, 7,4}7021»0”

ARCHIVE GOPY

Corlr | Information Processing Branch
Rome Air Development Center
Research and Technology Division
Air Force Systems Command
Griffiss Air Force Base, New York -

When US Goverament drawings, specifications, or other data arc used for any purposc other
than a definitely related government procurement operation, the government thereby incurs
no responsibility nor any obligation whatsoever; and the fact that the government may have
formulated. furnished. or in any way supplied the said drawings. specifications. or other
data is not to be regarded. by implication or otherwise, as in any manner licensing the
holder or any other person or corporation, or conveying any rights or permission to manu-
facturer, use, or sell any patented invention that may in any way be related thercto.

Do not return this copy. Retain or destroy.

— A *-rwj

-

ADVANCED COMPUTER ORGANIZATION STUDY
Volume | - Basic Report
t
: Donald L. Rohrbacher

Distribution of this document is unlimited

FOREWORD

This technical documentary report records the efforts and achieve-
ments on the advanced computer crganization study conducted by Goodyear
Aerosvace Corporation, Akron, Ohio. The secondary report number assigned
to this document by the company is GER-1231L4, This report is published
in two volumes: Volume One, Advanced Computer Organization Study, Basic
Report, and Volume Two, Advanced Computer Organization Study, Appendixes.

The study was conducted for the Rome Air Development Center (RADC)
Air Force Systems Commend, under Contract AF30(602)-3550, Project LS9k,
Task LSGLO6, The RADC project monitor was Mr. Fred Dion, EMIIT. The
report covers the lh-month period ending 30 November 1065,

Appreciation is extended to Dr. John Holland, University of Michigan,
vwhose consulting services were extremely valuable in both the develcopment
and concep”ion of many uf the ldeas presented. The major contributore
to this study wereD. L. Rohrbacher (project engineer), Dr, K. E. Batcher,
P. A. Gilmore, and G. W. Lahue. CFubstantial contributions also were made
by G, P, Flliott, Dr. C. C. Foster, and U. C, Gilliland.

3
b
&

This technical report has been reviewed and is approved,

Approved:

Approved:

Colone.,
Chief, Intel and Info Processing Div

FOR THE COMMANDER:

Chief, Advanced Studies Group

ii

ABSTRACT

Advanced general-purpose computer organizations capable of parallel data
processing wére studied. To achieve maximum system pe-formance from
highly parallel-computer organizations, new solution models and programming
techniques must be developed. Hence, the following three areas were investi-

gated simultaneously:

1. - Applications - Study of problems and their inherent de-
gree of parallelism, and development oi theoretical so-

lution models for use on a parallel processor

2. Programming - The programming oi parallel solution

models on the postulated computer organizations

3. Machine Organization - Development of machine imple-

mentations capable of parallel data processing

This study resulted in the design of two computer organizations (designated
Machine I and Machine 1I) capable of parallel data processing and fast sorting
and table searching in memory. These machine organizations were possible
because of the development of a special memory that permits many processing

and input-output units to access memory simultaneously without conflict.

The applications effort was focused on the development of solution models which
exploited the maximum amount of parallelism resident within a problem. Two
major problems were investigated: a dynamic programming problem, and par-

allel compilation,

Detailed piugrams were written for the dynamic programming problem on Ma-
chine 1 and a parallel compilation algorithni on Machine II. These same prob-
lems also were programmed on the IBM 7090 to provide a standard of compari-
son. In both cases, the parallel processing capability of the machines afforded

significant increases in speed of program execution.

-1ii-

5
¥
A

‘ ¥
L

v

i e g oA - -
:.:av%;;w v ki n =

~m fy. .

"3

TABLE OF CONTENTS

INTRODUCTION

SUMMARY.
1.

i~

[N

MACHINE ORGANIZATION

Introguction

-3

)
o

Approach
Machine Organization .
Applications .

Programrming

Fiexible Intercommaunication,

Machine] Organization

Machine 1I Organization .

N de W D e

Conclusgions
APPLICATIONS EFFCORT .
1

Numeric Prollem Area
Introduction

-

-

.

Comparison of Machines I and Il

.

Paraile!l Nonnumeric Processing

.

Recommendations for Follow-On Effert .

*

Sorting and Merging-Separating Networks .

-
3

;

TABLE OF CONTENTS

Section Title
b. Dynamic Programming Technique
€. Other Techniques., “ .
3. Nonnumeric Probiem Area
a. Introduction ., . . e e e e e e e e
b. Parallel Comp:latmn e e e e e e
\'s PROGRAMMING« .
I Machinel o o ...
2. MachineIl.
3. Machine J and the Dynamic Programming Problem
4. Mackine [and the Compilation Problem . . .
vl COMPARISON OF MACHINESTIANDII
vil RECOMMENDATIONS FOR FOLLOW-ON EFFORT,
. General
&. Machine Organization . . . e e
a. Parallel Nonnumeric Prm.essor
b. Paraliel Input/Quiput
¢. Interrupts , e e e e e e e e
g. Priority . , . e e e e e e
€. Multiaccess Systuns .
1. Other Applications of M.Lhme Com epts
g- Feasibility Model. e e e
3. Apphcations - Programming. . . ., .
a. Macre Instructions . e e e
E- Flow Diagramming Tec hmques e e e
¢. Program Comparison Problema . .
¢ Commler o . o0 0 000000 L
e. Library duuroutines, ., L,
LIST GF REFERENCES . . ., . . . 0 o 0 v v v v v 0 0.
“via

71
71

71
71
71
72
12
72
73
73

73

73
T4
74
74
78

Figu re

1a

1!

Table

il

t

LIST OF ILLUSTRATIONS

Title

————

Symbol for a Comparison Element , ., . .
A 12°-NOR Comparison Element
Diagram of a Multiaccess Memory .

A Multiaccess Memory with 29 . _,p+l Wcrds and 2P
Requests . .

Block Diagram of Machine [.

Paraliel Computation of a Seventh-Jegree Polynomial
Bleck Diagram of Machine 1I.

Example of a Program Struciure in the MPC

Fxampie Cata Structure with &« Program Working on

Several Parts of It Concurrentdy
Parallel Compilation Aigorithm,
Processor Usage

LIST OF TABLES

“Taitle

Characteristics of Merging and Sorting Networks |

Sample Program for Paralle! Computation of Seventh
D!"grt‘_(‘ }}‘kly““"?“l T Y v . L L

pf':'“‘dl“nl“’ }‘3"“3?"3"- CR S S S Y ' PO .- s " a

avile

20
22
26
28
30

33
52

ol

v

%

a

A T i

6

L

K

p

A

1

SECTION I - INTRODUCTION -

The next major advance in computer capability will result
from radical changes in basic computer organizations ‘rather
than from increased computing speed. These new computers

will be highly parallel machines capable of performing many

- d'“ferent operations simultaneously. Such advanced computer

organizations wili necessitate basic changes in pregramming
and structuring of solutions to problems. Under Contract

AF30(602)—3 550, Gooayear Aerospace conducted a 14-month

'study and investigation of such computer organizations. Ad-

vanced general-purpose computer organizations capable of
parallel data processing were investigated. This report pre-
sents the approach, results, and conclusions encompassing
the application, programming,- and machine organization as-

pects ot the study.

Section II summarizes the program including some of the
more significant results and-conclusions. The remainder of

this volume presents the major efforts in greater depth.

Volume Two contains the appendixes, which detail the various
stixdy efforts.. The appendixes are referenced at the appro-

priate points in Volume Ore.

ol

- SECTION II - SUMMAKY

wEi Dy

PR LR R

APPROACH .

The primary objective of this program was the study and development of
advanced computer org;nizatiohs. The study resulted in the design of a
general-purpose computer capable of parallél data ‘f)rocessing'. To achieve
maximum understandking of parallel process:ag and the computer cbnﬁgu-
rations required to achieve it, and also to avoid generalizations conc-rn-
ing parallel processing, the study eftort was focused on the develoyiy :at

of only two machine organizations (Machines I and 11). Fur‘thermbre, ouly
two problems {dynamic programming and pérallci compilation):m"ere ana- -
1yze-d in depth, with parallel solution models being developed and detailed

computer programs written.

To achieve maximum system performance from highly parallel campute~
crganizations, it is necessary to develop new solution models and program-
ming techniques. Hence, the following three areas were investigated. si-

multaneously: -

1. Applicaticns - Study of problems and their inherent
degree of parallelism, and develor.ment vt theoreti-

cal solution models for use on a parallel processor

(&S]

Prégramzni—ng - The programming of parailel solu-

tion models on the postulated computer organizations

3. Machire O}ganization - Development of machine im-
plementaticns capable of parallel data processing,

with modifications made in accordance with the de-

- siewt il

veiopments in the applications and programming

areas . ' »
. {

|

B e e s e

SECTION II - SUMMARY

s

2. MACHINE CRGANIZATION

The largest problem in the aesign of a computer capable of parallel data

processing was the design of the communication facility between the proc-

essors. Ideally, eacn processor should be alluwed to communicate with

any other processoar. _Machine orgarizations such as the SOLOMON ap-

proach the communication problem by ailowing each processor to commu-

S nicate with only a small number of the other processors. However, this

technique requires the structuring of problems so that the required com-

" munication is 2long the paths built into the machine.

Since some problems

L BT

cannot be struccured to fit the particular machine, the use of such machines

- is restricted.

Two sorting techniques developed at Goodyear Aerospace provided the ba-

sis tor a practical solution to tais communication problem. Special sort-

iﬁg and merging-separatin_g'networks based cn these techniques allow any

processor to communicate with any other.

and merging networks is a comparison element. Such elements accept and

put. These networks made possible a memory orgenization having the fol-

lowing characteristics:

The basic elemient of sorting

compare the magnitude oi ~vo input words and order the words on the out-

1. Tle contenis of the memory are inaintained iu nu-

merical order

2. - It has a content-addressing capatility

It permits m=any processars and 1/0 units to access.

memory sirnultaneousiy withou! conflict (for exam-

.) ple, 1024 simultaneous accesses for a 22, 000-word

memoryj

The Machine I organization utilizes this memory in ccnjunction with many

processing units and 1/0 devices.

ing features:

The resuiting computer has the follow -

1. Parallel data processing capability

.4T

1

R i e S e L e e

P

e

e

e g 9
T - a

-

vl R D, . e B T 7 ot TS O

SECTION II - SUMMARY

2. Flexible communication between any processors
3. Parallel I/O clannels

4. - Freedom of processor assignment {(no need to re-
program if processors are added, if a processing
unit fails, or if other programs are run simultane-

ously)

5. Fast sorting and table searching in memory

Machine II was designed using the same basic sorting and merging-sepa-
rating networks as Machine I. However, an additional sorting network,
called the multiproc.essc.r control (MPC), was added to assign tasks to the
processing units. A block of instructions is read into the MPC znd all in-
structions that can be executed simultaneously are automatically assigned
to processing units for execution. Machine II has the same basi: capability
as Machine I plus the added advantage of the MPC. However, the proces-
sor assignment capability possessed by the MPC is restricted to those sets

. o{ instructions that can be fitted toa treelike structure.

The development of Machine I and Machine II comprised the major portion
of the machine organization effort. However, some emkbkryonic ideas were
developed for an organization intended primarily for parallel nonnumeric
processing. It was found that the characteristic distinguishing numeric
from nonrumeric problems is the addressing of operands. In a numeric
problem; ﬁtost operands are addressed by their unique labels; in a non- .
numeric problem, most operands are addressed by their properties (at-
tributes). These two methods can be called "explicit addressing" and "im-

plicit addressing, " respectively. Sorting and merging-separating networks

pussess the kinds of properties needed for implicit addressing.

3. APPLICATIONS.

Efforts 12 the applications area were directed toward the analysis and de-

.velopment of solution models suitable for implementation on a parallel

5.

r—] ——— T —

e e e e - i i : N S P A -

SECTION II - SUMMARY .

processor. Problems of contemporary interest were examined to deter-
mine the de-gree of parallelism resident within them. = Problems were
restructured to the extent that greater parallelism could be achieved. So-

lution models were _then specified to exploit the maximum amount of paral-

lelism resident within a problem consistent with the parallel processor

configurations developed under the machine organization area of the study.

3
H

Dynamic programming was the major numeric problem area examined.

i

AR

This is a mathematical technique devised by Richard Bellman for solving
‘certain types of maximization problems. Analysis of the technique re-
vealed the existencc of extensive inherent parallelism. This was exploited

in a solution model that speciiied an extensive restructuring of the tech-

SNSRI

nique. The restructured solution model made possible significant gains

in speed of execution on a paraliel processor.

Ve

“Several other nuinerical problems were studied, including Jacobi's method
of eigenvalue determinatioh, relaxation solution for a system of linear al- -
gebraic equaticns, and numerical solutions to Laplace's equation. Each
technique possessed sufficient inherent parallelism to make good use of

the parailel processing capability in the machine organizations.

The parallel compilation of higher programming language statements was
chosen as an example of a nonnumeric problem for major consideration.
This choice was quite natural since investigation inta the structure of par-
allel processor configurations and parallel execution of coded routines un-
avoidabiy led to the consideration of parallel compilation. Parallel com-
pilatioﬁ would permit all processing units not being used 1n execution of
programs tc be utilized in the compilation of the next programs to be exe-
R cuted. This would maximize the utilization of the parallel processor's

hardware.

It was found that not only could many statements be compiled simultane-

ously, but parallelism also could be exploited in the compi‘ation of each

4

individual statement. Several parallel compilation algorithms were de-

veloped.

T e T grt——re s e e a— I~ A——a. - v ——— ——
N L RE——— . i E
; ’ " -

o B TRy e U
e tleamme oo . . P, B

) P SVEIRN

SECTION II - SUMMARY

MNP P T N L

A short effort was directed toward the development. of a programming

#
X

-
S

language designed specifically for a parallel processor. The goal was to
develop a language that could compactly denote the execution of parallel

operations and that would allow, and indeed promote, ease of conceiving -
and expressing the structure of parallel sciution models. The work‘could :
providc the basis for future expanded program effort. N

-~

4. PROGRAMMING

The final proof of the usefulness of any computer organizatioa rests with
the programmer. In this study, two paraliel processor programs were
written. The parallel sclution model for the dy-narnic programming prob-
lem was programmed on Macnine I and a parallel compilation algorithm
was programmed on Machine II. In addition, sequential solution models_
for the same prdblems were programmed on the IBM 7090 computer to
provide a comparison, Since the primary objective was to determine the
needed machine capabilities and programming tecliniques, no attempt was
- made to optimize the prbgrams and extract maximum parallelism from the

prdblems.

Problem solution time for the dynamic programming problem on Machine I
was 16 msec as opi)osed to 150 to 220 msec for the sequential machine.
"Therefore, solution time on Machine I was 9 to 14 times faster than the
IBM 7090 computer. This can be attributed to the availability of the many
processors capable of independent and simultaneous action on the contents

of any word in the multiaccess sorting memory.

Proceséor loading reached a peak of 60 processing units out of a possible
512 proposed available processors. The average number of processors

for the problem execution time was only 22,

Had the problem been sufficiently large to use the full 512 processors at 3
the peak period, Machine I would have had a speed advantage of 76 to 119
to 1. . In addition, many processors would have been available at nonpeak 5

times for other uses, such as compiling.

-7-

SECTION II - SUMMARY -

The execution of the parallel compilation algorithm for Machine II required
53.6 msec. Considering the number of statements to be compiled as N, .
then the ratio of the compilation timte of the IBM 7090 to that of Machine II

is N to 27. The parallel compilation time is independent of the number of
-statements and will remain relatively constant at 54 msec. The time for

sequential compilatio'n increases linearly with the number of statements.

S
=3
B
il
i
e
iﬁ
3

%

When the number of statements exceeds 27, then the parallel processor
time for compilation is less than that for the IBM 7090 computer. If 256
processors are available, then Machine II can average 219 statements
every 54 msec. The speed advantage would then be 219/27 = 8 tc 1 over
“the IBM 7090. It ié believed that if tirne had permitted one of the othér
parallel compﬂation algorithms to be programmed, additional speed ad-

vantage would have been realized.

AR W .
i YR Ry et s PN £

5. COMPARISON OF MACHINES I AND II

Both Machine I and Machine II are composed of sorting and merging-sepa-

s

rating networks and processing units. Each has a large merging-separat-
ing memory; Machine II also has a smaller full-sorting memory (MPC).
This additional Machine II hardware is offset by the fact that the Machine I
processing units afe much more complex. . The type of program parallel-
ism most economically implemented on Machine I consists of the parallel-
ism existing between independent blocks of a program. Very short strings
of independent instructions can be executed in pai‘allel but ucually the cost

of setting up indices to maintain control is prohibitive.

In contrast, Machine II exhibits parallel executioﬁ capability on the same
levels as Machine I and in addition recognizes instruction level parallelism
independent of the programmer. Any independent strings of instructions
are automatically executed as soon as the required operands are present. .
However, speed is sacrificed to obtain this additional capability provided

for Machine II by the MPC, On a strictly sequential program, Machine 1

can obtain and execute two instructions every 30 psec, while Machine II

has an instruction execution time ranging between 13.8 and 96. 6 ysec, de-

pending on the instruction.

SECTION II - SUMMARY

The basic processor of Machine I considered as an entity is not unlike the
processors found in contemporary sequential machines. It has the nor{nal
arithmetic, quctient, and index registers and access capability to any word
in memory. Hence, with some small degree nf effort, an existing program
could be, with modifications consistent with changing from one machine to
another, run on Machine I with only one processor assigned. Machine II
would require more extensive reprdgramming of the existing program and,
generally, it 1s expected that the program would have to be significantly

revised to take advantage of the parallelism within the machine.

RECCMMENDATIONS FOR FOLLOW-ONEFFORT

Future work on this program should be carried out with the machine or-
ganization effort independent of the applications and programming effort.
While many facets of the machine organizaticn work need further séudy,

the greatest knowledge can be obtained if the programming.and applicatiors
efforts are not forced to be continually modified as a result of machine
chanées. Furthermore; Machines I and II as they are currently defined
have many capabilities that have not been utilized and hence it is believed
that the applications and programming effort should focus attention on how

to exploit these existing capabilities.
Items suggested for further study include the following:

1. Machine organization
Parallel nonnumeric processor
b. Parallel I/0
c. Interrupts
d. Priorities
e. Multiaccess systems
f. Other applications of machinefoncepts

g. Feasibility model

2. Avpplications and programming

a. Macre instructions

-9.

RS b SR
'

e i

B

Y S

Flow diagramming techniques
Program comparison problems
Compiler '

Library subroutines

.10-

SECTION 1II - MACHINE ORGANIZATION

1. INTRODUCTION

Mulitiprocessors that possess a flexible communication structure can be

built. The need for such structures is discussed and the networks afford-

ing this capability (sorting networks) are described. Three machine or-

zanizations using these networks are presented. They differ mainly in

their machine language structure; these differences affect the utilization

of the flexibility in communication afforded by the hardware.

2. FLEXIBLE INTERCOMMUNICATION

The largest problem in the design of any mulriprocessor is the design cf

the communication facilities between the processors. If two or more proc-

essors are working on the same problem, they must be able to communicate

. with each other. One technique is to allow each process r to communicate

with only a small number of the other processors (limited intercommunica-
tion). The common form employed is a two-dimensional array in which

each processor can communicate with its neighbors to the right, left, up,

and cown. This technigne gives rise to the question of structuring prob-

lems "space-wise" so that the communication required in the problems is

along paths built into the machine, Some problems cannot be structured to

fit the particular machine, and thus this technmque is good only for limited-

purpusc machines.

Another technique is to allow each processor to communicate with any other
processor (flexible intercommunication). The largest problem here is to
do it without an inordinate amouni of hardware. One solution is to huild

what looks like a telephone exchange and allow only a small number of the

processors to converse at any one time. This gives rise to the question of

-11-

1A o PR W K< - z

St T W e

5% 2o G Nt s

‘ﬂ-}!

= Gt A, YA

T U e B AR

A

N
5&;
B

SECTION III - MACHINE OFGANIZATION

‘structuring problems "time-wise" so that at no time will problems require
more conversations than the machine will handle. Usually, this is so com-
plex that no consideration is taken of it in the programming of problems;

any tie-ups in the communications that occur are accepted as a fact of life.

These zonsiderations lead to a study of networks to see if any networks ex-
ist which, without an inordinate amount of hardware, will allow n input
lines to be connected 0 n output lines with any permutation (n may be in
the hundreds or thousands). Such a network would allow flexible intercom-

munication without communication "tie-ups, " as discussed below.

3. SORTING AND MERGING-SEFPARATING NETWORKS

Any network capable 3f sovting (2rranging in numerical order) a set of data
can be used as a flexibie communicatiocn network. The input lines send in
iteme of data tagged with output-device addresses. The network scrts the
data orn the tags and the devices on the cutput iines read their respective
data items. Two sorting techniques develnped at Goodyvear Aerospace,

odd-even sorting 2 and bi-tonic sorting (see Yolume Two, Appendix V),

have the right kind of characteristics for this problem.

The basic element of a sorting network and a merging network is a com-
parison element. This element has two inputs and two outputs (see Figure
1}, When two numbers are applied to the inputs, the element compares
their valuey and presents the higher-valued number or its H output and the
lower-valued number on its L output (if they have equal vaiues, their con..
mon value is preserted on both outputs). Many different rezalizations of a
comparison element are possible, including the i3-NOR realization shown
)

in Figure 4, which operates with data transferred serially, and the paral-

lel transfer realization described in Voiume Two, Appendix VII.

A sorting network is built up from merging networks by the well-known

"sorting-by-merging” technique; for example, tc sort eight items, first

-

‘Suporior numbers in the text refer to items in the List of References,

-12-

e

SECTION III - MACHINE ORGANIZATION

A memmenfiiiod ‘ - L

FA>B THENL = BAND N = A

|FA§!.TMENL=AANDH

Figure 1 - Symbol for a Comparison Element

compare successive pairs to form four crdered lists of length two, then
merge these lists two 2t a time to form two ordered lists of length four,
then merge these to form one ordersd list of length eight. A merging
netwerk can be constructed from comparison elements using the odd-even
techniquvl or the bi-tonic technique of Appendix V. The construrtion of
udd-eve: merging networks and the construction of bi-tonic netwarks are
described in Item 3 of Appendix VI, Table I illustrates various charac-
teristics of merging networks and sorting networks canstructed by these

two techniques,

As an cxample, a sorting network for 1024 items would have 55 levela
and 14,003 elements of built using the odd-even techmgue, A comparison
element audch as that of Figure 1 should realize a delay time of less than

100 nyec gz;._xqﬁ.mm sorting network from these clements would asort E
i loaw than 5.5 usec. This illustrates the main charactoristic of these
sarting networks: large sets of items can be sorted gquickly, which makes

them practical for th. ommunication retworks of multiprocessors. Tio -

-13. ;

£

£
-
&

5 N s el W AT PRSRN

P

e

(A

6:

v

/N

CLOC

RESET

__.&_“
P

Figure 2 - A 13-NOR Comparison Element

- c— w~~«-wwwm "
a s g ¢ . e~

e e £ 8

SECTION III - MACHINE ORGANIZATION

TABLE I - CHARACTERISTICS OF MERGING AND SORTING NETWORKS

PR a9

Characteristic Odd-even Bi-tonic

Levels required to merge 2P

items with 2P items ptl ptl-
Comparison elements required to)

merge 2P items with 2P items pr + 1 (p+ 1)2p -
Levels required to sort 2P items plp + 1)/2 plp +1)/2
Comparison elements required to) -
sort 2P items . (p2 -p+t 4)2p -2 1 (p2 + p)zp-- 2

other characteristic is the amount of hardware involved. The only other
“well-known network that will flexibly connect 1024 inputs to 1024 outputs
is a 1024 by 1024 crossbar with 1,048,576 cross points; the 24, 063 ele-

ments of a sorting network ;:ompares quite favorably.

When a multiprocessor is considered, there is the additional requirement
of buffering on the communication network. Without buffering, the pro-

gramming of problems would be corplicated by the need for planning each
transfer carefully so no two processors would want t¢c send data to a third

processor simultaneously. This leads to consideration cf using the com-

B

munication network as the main machine memory. By this means, not only

is buffering provided but also freedom in processor assignment. It would
be no longer necessary to know which processor is doing what; to transfer
a variable from one processor to another, one processor stores the vari-
able in memory with a given label and the other processor reads it by re-

ferring to the label, Neither processor needs to know the location of the

other. Freedom of processor assignmen’ allows a program to be written

without worrying which processcrs are unavailable because of other con-

currently operating programs or because of prncesscr malfunctions.

Discussed here is modification of a sorting network to form a multiaccess

memory, and construction of a simpler device, a merging-separating

-15-

i = ‘ “ ~ - v

3
H
£
i

PR NS

SECTION_III - MACHINE ORGANIZATION

memory. Storage capability can be added to a sorting network simply by
adding it to the comparison elements. For instance, thé 13-NOR com-
parison element of Figure 2 can be modified by inciuding a shift register
stage in each of its.outputs {or inputs). When a sorting network is con-
structed-out of these modified elements {(an odd-even scrting network
would require extra stages in certain places to equalize delays), the re-
sult is a set of shift registers interconnected sc that their respective con-

tents are arranged :n order while being shifted. -

A_diagram of a multiaccess memory ic shown in Figure 3. The output of
the sorting network travels through some control logic elements into a set
of shift registers and then to the input of the sorting network. A typical

memory word has the following format.

~ ADDRESS AR DATA

-

//—:Tau‘r

HIGH END

SORTING NETWORK

SHIFT CONTROL
REGISTERS <—__—— LOGIC <__.,‘ WITH STORAGE

CAPABILITY

Low END = wpur

k BYPASS ,

Figure 3 - Diagram of a Multiaccess Memory

-16-

S i g
» TR ey '- .

B A— e

SECTION Il - MACHINE ORGANIZATION

e i e i

Empty words are cleared to zeroes and rno addresses are used above a cer-

tain !limit (thcse addresses will be used i rcading as explained below)..

The shift registers are long enough to handle the address field.

ing action sorts th words by their addresses with all empty words accumu-

lating at the low «nd of memorv.

To write a word, oanc of the input lines

interrupts the recirculation of one of the «mpty words and substitutes an

address and item of data in the format shown alaove.
will then place it in correct relation with the other words in memory. Many

writes may take place simultaneously.

The sorting action

To read a word, one of the input lines sends in a rcad rcquest or a read

- and erase -equést. These have the following formats.

ADDRESS TO 8E READ

10

QUTPUT LINE

ADDRESS TO BE READ

01

OUTPUT LINE

READ REQUEST

READ AND ERASE REQUEST

- The sorting action moves the request to a position just below the word re-

quested. When the 10 or 01 pattern following the address field passes

through the control block, the following action occurs:

1. The sorting network output of the word above the

- request is switched to the shift register of the re-

quest (this causes the data field of the word requested

:0 replace the request's data field)

2. The sorting neiwork cutput of the request bypasses

the shift register (substituting the output line code

for the address)

3. If the request is a read and erase and the addresses.

agree, the output of the shift register of the word

above the request is gated off (substituting an empty

word for the memory word)

R PR JE YRR e

-17-

The scrt-

:
el

. - et 1m0 A H

SECTION III - MACHINE ORGANIZATION

4. If the addresses agree, a 11 is substituted for the

original request code.

If more than one request i8 below a memory word, somewhat similar ac- .

tion occurs to transfer the memory word data f{ield to all requests. As -

a result of this action, the request is modified to look as follows:

f
[OUTPUT LINE 1" DATA FIELD OF MEMORY WORD

Output line codes have higher values than addresses so the request trav-
els to the high end of memory on the succeeding movement through the
sorting network, arriving at one of the output lines. To make sure it
gets to the correct output line, a read request is entered each memory
cycle for each output line whether the particular line wants to -read or
not; chis guarantees that a request will appear on each output line every
cycle and that the sorting action will arrange them in numerical order.

AMany reads may be taking place simultaneously along with many writes.

This memory has some characteristics that make it different from nor-

mal computer memories:

1. It has many input lines and many output lines, all

reading and writing without queuing problems

2. More than one word may be stored at a»éiven ad-
dress. Instead of overwriting an old word, a new
word overwrites an empty word, Words at the
same address will be ordered by their data fields
and a read request to the address will read the »

least-valued word.
3. Some addresses may be lacking words.

Characteristic (2) is valuable for sorting a set of items; they nezd only

be stored with the same addreas. Characteristic (3) can be used to

-18-

SECTION I1I - MACHINE ORGANIZA rION

synchronize several processors working on the same problem; if proces-
sor Y expects an item of data with label Z irom processor X, it need only
look for address Z to see if processor X has stored it. Only new words,
read requests, read and erase requests, and erased words are changing
places in the memory; most of the sorting capacity of the network is not

being used. This consideration leads to investigation of simpler networks.

If the read requests, the read and erase requests, and new-words are or-
dered before enteriné memory, then only a merge is needed to combine
them with the ordered-memory words rather than a complete sort. To

read out. a means is required for moving all requests to one end of memory
after they have read their respective memory words; this is called sepa-
rating. A memory using these techniques is cailed a fnergix.g-separatiqg

memory.

Merging causes words at one end of memory to be "sprinkled" througwhout
memory and separating causes words "sprinkied” throughout memory to
be collected at one end of memory; this suggests that the topology for a
éeparatmg network should be the inverse of the topology fc;r a merging ne:-
werk. Item 3 of Appendix VI describes separating networks based on the

inverses of bi-tonic merging networks.

Item 3 of Appendix VI also describes a multiaccess merging-separating
memory with serial data transfer., Generally speaking, new words and re-
quests are sorted and then merged with the memory words. Words to be
separated out (read requests and erased words) are flagged and then sepa-
rated out by a separating network., The read requests and erased words
are sent to another separating network, which splits these two sets. The
read requests are then sorted with respect to outpﬁt rhannel codes and sent

out. Figure 4 shows the block diagram.

Items 2 and 3 of Appendix VII describe pavallel merging-separating memo-
ries. Words are transferred in parallel rather than serially, leading to
about a 2-to-1 specd advantage over serial memories. The anmount of

equipment n a parallel inemory 18 greater than that of a serial memory

-19.

¥
3
~

TN G v amais i e i gt agW i

) T . CHANNEL
i CHANNEL RETURNS
; - REQUESTS

!) ﬁ ¢
J ’ NzP+1

. -

RE-SORT
SORT 2P - < =~

PN =
I~
[

. N

2P REQUESTS i OF 2P . 2P * 1

REQUESTS

- 5

) ERASED ;
WORDS
2P EMPTY ..

2p+] -—D

WORDS 1 -<_

d 2P 1
BOTTOM BOTTOM

2 | GATES \
a b \ _
1 F Nog TRANSFER |] Na)

Tor | Toe

\E —T :)

FEAS

+
Figure 4 - A Multiaccess Memory with 29 - 2P L Words and 2P Requests

-20-

SECTION III - MACHINE ORGANIZATION

but not by a large factor. There are more kinds of elements than
in the sc¢rial version. A comparison between serial and parallel memories
should include wiring studies as this may be the determining factor in a

choice between them.

Either version of » merging-separating memory is faster than a sorting
memory of the same capacity because merging is faster than sorting. To
1llustrate this, consider a 32, 768-word memory with 1024 access lines.

A sorting memory would require 120 steps to sort. Two sort cycles are
required to read a word: one to get the request to the word, one to get the
request from the word to theioutput channel. Words could be entered eacn
sort cycle so the memory cycle time 1s 120 steps and the access time is
240 steps. A parallel merging- separating memory requires 55 stef)s to
sort the 1024 new items, 15 steps to merge, 15 steps to separate out eras-
ures and read requests, !l steps to separate erasures from read requests,
and 55 steps to sort the 1024 read requests by channel number. This is a
total of 151 steps for accessing. The cycle time of the parallel merging-
scparating memory includes 30 steps: 15 to merge, 15 to separate. 1f

the step times were equal, the parallel merging-separating memory would
have a cycle time 1/4 that of the sorting memory ind an access time 151/
240 that of the sorting memory. These figures are not quite true because
scparating steps are longer in the merging-separating memory; circuit
studies using typical integrated- caircuit modulcs indicate a 2-to-1 ratio be-
tween scparating and otner steps. Using this result, an advantage of 2. 67
to 1 1s obtained in cycle time and a 1. 44-t¢- 1 advantage 1n access time for

the mergimg-separating memory versus tae sorting memory.

Hardware requirements of the three memories (sorting, serial merging-
separating and parallel merging-separating) are not very different. All
three require a shift register stage for cach bit and this scems to be a ma-
jor cost item. Wiring studies probably will show the largest differences
i cost between the three types. Machine orgamizations using these meme-

ries are discussed below,

2l

el

-

#‘F‘"""‘“"

4
¥
-

E

05 N it R il B PO R AT BT

SECTION III - MACHINE ORGANIZATION

MACHINE I ORGANIZATION

The block diagram of Machine Iis shown in Figure 5. A multiple-access
merging-separating memory as described previously forms the main
machine communication network and memory. Memory storage may be
backed up with disk storage, tape storage, core storage. etc., connected
to the I/O chanuels along with other I/0 devices. A number of proces-
sors (100 to 1000) are connected to other memory input and output chan-
nels, each using three channels (permitting a processor to get two oper-

ands and a next instruction each cycle time).

I/0O control is obtained as follows. Each channel is given a unique ad-
dress in memory into which processors store I/O control words tagged
with priority fields. A nonactive 1/0 device interrogates its address
periodically until it obtains a control word from its queue, at which time

it performs the desired operation.

Control of the processors is obtained as follows. The first word of each

OUTPUT CHANNELS

WORDS
FOR CUTPUT

OPERANDS, NEW INSTRUCTIONS
Fa
11 <

MULTIPLE-ACCESS

o

B

R

MERGING-SEPARATING
MEMORY PROCESSOR PROCESSOR PROCESSOR
i - AN
g~

NEW WORDS

AND READ S
R:QUESTS SEFARATING
NETWORK
INPLY .
\ CHANNELS
e NEW TASK
REQUESTS

Figure 5 - Block Magram of Machine |

J22.

bl

o ——— e e RS, R - e - 3 ——— . —
PR y ” . . L, -

%

it o . . oo ‘o N [A,

SECTION III - MACHINE ORGANIZATION

ta. < to be performed is stored in ihe highest memory address. FEach word
may have two instructions, the second of which is a jump to the program to ‘
be performed. Any inactiver processor sends its code to the\separating net-
work (see Figure 5), which gathers all such codes at one end and transmits -
them to the high end of memory over the new task request channel. Each
request interrogates a memory word and if its address 1s all ones it flags
the word and inserts 1ts code. The word will then fall out of memory in
the scparating phase and be sent to the processor. By this means, many

processors can be started simultaneously on tasks waiting for execution.

More discussion of Machine I appears in Appendix VI, Items 4 and 5, and

Appendix IV,
Basically, Machine 1 has the following features:

-1. Parallel processing capability {lexibly interconnected
(any unit can read or write 1nto any memory address
so any structure hetwecen processors can be imple-

mented)

i~

Parallel I/O channels

3. Freedom of processor assignment (no need to repro-
gram 1if new modules are added, 1f modules fail, or

if other programs are started)

4. Fast sorting and table searching in memory

5. MACHINE Il ORGANIZATION

Machine JT was designed to have improved facilities over Machine I for di-
viding tasks 1nto subtasks and for commumecating between subtasks. [n
Machine 1, a task starts subtasks by storing "task control words"” in the
highest memory address to be fed to available processors. [n many prob.

lems, it can be expected that several subtasks will be sharing a commaon

.

L23.

-

Wiy ontm o ginae TR

SECTION III - MACHINE OPERATION

program and working with different data. % The two instructions in a task
control word are used for this purpose; cne can specify a data index

and the other the start of the program. When a subtask is running, any

communication between it and other subtasks and ary communication with
its previous intermediate results takes place using mei. rv addresses. If
several subtasks share a common program, the unique index in each sub-
task is used to assign unique addresses to each subtask for this pur-
pose. This lecads to housekeeping problems, especially when the exact
number of subtasks is unkiown., The effect of this problem depends strong-
ly on the amount of communication required in the subtask either with itself
(previous intermediate resulis) or with other subtasks, and in some cases

¥ it rnay be severe enough to negate any time saved by "paralleling” the pro-

gram.

An example showing this problem follows. Let there be a vector of length

n containing a set of numbers, xl, xZ. . e ey xn, in continuous memory
X

. . 1 - « . <
addresses. It is desired to compute e " for 1 = 1 2 n and to store these
values 1n another n-vector, Zyy Ta e e zn. The value of n and the
&
starting addresses are given to the program at execution time. A seventh-

: . X
degree polvnoimial approximation to e’ is selected:

S 2 A (B ¢ x(C 4 x(D+ x(E ¢ x(¥ + G+ HONY)) .

One wav to compute this is to use the {amiliar multiply-add 1teration, This
takes 14 steps, One program suffices with an index register taking care
ot the different xl's and ¢ 's. Another wayv 1s to comnpute the polynonaal

1

rearranged as tollows:

NS (A Bx) O ¢ xT(D X)) ¢ xC(E ¢ Gx) » H(xS))

o
This situation arses in a multiprocessor program sor the same reasons that a
loep arixes in a seqguential provessor program. When ecach member of & set
of data ha® to be covered by & batv sei of operations, the programmier finds
it convenent to write ane program and cover the et by chasging indices, With
o a seguential processor, the program s applied te one member at a time; with

a multiprocessor, the program may be apphed to all members simultaneously.

-24-

L 0 . Ao R . L npwo.
W,RWC—.-\ — : ——— “W .

SECTION III - MACHINE OP. RATION

Figure 6 shows how it can be computed in five steps using more than one
processor. However, this will be difficult to apply in Machine I because
of the amoun! of communication between the various parts; each variable
to be communi«ated requires a unique address associated with the index,
i. Housekeeping, store, and load steps would have to be added to the
steps of Figure 6, negating much if not all the time savings. There is
alsc the problem of reserving enough memory addresses for the inter-
mediate results. The first way would be the only practical method on
Machine I.

It can be expected that many arithmetic processes and other processes
rising in practice will have "flow diagrams" similar to that of Figure 6;
thus, a machine that coula andle therm without the difficulties in memory
addresses of Machine I would have more utility. Machine II was designed

with this in mind.

The basic machine language of Machine Il was selected to allow easy pro-
gramming of diagrams such as Figure 6. Note that everv operation in
Figure 6 receives twn inputs while an output may be used in anywhere
from onc to six different places. This is an example of the fact that all
normal computer operations involve one or two operanda. The basic in-

struction format is:

NUMBER OPERATION CODE FIRSY OPERAND SECOND OPERAND

i [)]

The number ficld containg the label for the instruction, the operation code
specifies what to do with the operands, and the two operand fields contain
the number fields of the instructions that generated the operands (the re-

sult of any instruction is tagged with the number of the instruction so other

instructions may refer to it). As an example, a program for the compu-

tation of Figute & is given in Table II. Note that there may be gaps in the

-25-

.. m«.

&
A

1

%

SECTION I1II - MACHINE OPERATION

%

i 1

i)

MULTIPLY
) 2
a8Xx X

MULTIPLY

t |

MULTIPLY
EX GX

MULTIPLY

ADD ULTIPLY
A+ B 2 3
8X cx x

MULTIPLY

F
MULTIPLY ADD
D+ EX n x2 F + GX

!

ADD MULTIPLY MULTIPLY A
2 3 4 o 2
A+ B8X +CX ox® + Ex x> £+ GX + HX
ADD 2 s MULTIPLY
s
A+BX +tCX + + E
Bx +C oXx” + EX ex3 s ox® ¢ nux’

AQD

A+BX+CX ¢+

vt HX

Figure 6 - Parallel Computation of a Seventh-Degree Polynomial

-26-

SECTION III - MACHINE OPERATICN

TABLE II - SAMPLE PROGRAM FOR PARALLEL COMPUTATION OF

SEVENTH-DEGREE POLYNOMIAL

QOperation
Number code A B Results
1 X :
2 ADD 37 38 A+Bg(4...+Hx7
5 MPY 1 10 Bx
6 MPY 1 g %
7 MPY : 43 Ex
1c MPY 1 45 Gx
li ADD 39 5 A+ Bx
13 MPY 41 6 cx?
17 MPY 1 6 x>
20 ADD 42 7 D + Ex
23 MPY 46 6 Hx?
25 ADD 14 10 F + Gx
27 AuD 11 13 | A +Bx+Cx°
31 MPY 17 20 px> + Ex?
33 MPY 6 17 x>
__35 ADD. 25 2 F + Gx + Hx’
37 ADD 27 31 A+Bx+...+Ex
18 MPY 33 35 Fx> + Gx® + Hx |
39 A
10 B
11 C
12 D
3 E
"o F
45 . i . G
46 - . l . H \
«27-

e

P T

SECTION ill - MACHINE OPERATION

numbering and the numbering need not correspond to the order in which

instructions are performed (Instruction 2 is performed last, for example).

Machine II iz designed to look at a Block of instructions such as that in the
foregoing paragraph and to perform them in the correct order, executing
many simultaneously if processors are available and the program admits
it. Thus, a prograrhmer can introduce parallelism in a task without the
bother of task cc;ntrol words. To do this, it is necessary to interpose a
multiprocessor control unit (MPC) between the processors and the memory

(see Figure 7).

A program block is defined as a set of 1 to 256 instructions stored at one
memory address (the instructions including the number fields are written
in the data fields of the memory words). A prograrﬁ block is executed
whenever it is read into the MPC, Parallel channels (1024) between
memory and the MPC permit reading of several blocks simultaneously

and at any one time the MPC may contain several blocks, each in various

i | TASK
[}
‘e LEVEL
10 1o |---1 1o PROC | | PROC |~=-=] PROC «-—I COMPUTER
A0RY I
HEQUEST enon MUL TI PROCESSOR
— MEMORY
SORTER =% conTROL (MPC)
(MRS)

Figure 7 - Block Diagram of Machine I

.28-

SECTION 111 - MACHINE OPERATION

stages of execution. When executed, the operand tields of the instructions

refer to results within the same block (except for a few special operations),

A block is read intc the MPC by a "start" instruction in a block already in
the MPC which specifies its memory address. A vlock may have several
copies of itself in the MPC at any time; each copy is treated as an inde-
pendent unit so operand fields in each copy refer to results in the same

copy.

When a Bwlock A reads in a Block B through a start instruction, there may
be some variables it wants to transmit to B. Operations SPB (Shift Pre-
vious Block) and SPR (S.hift Previous Relative) in Block B can read results
in A for this purpose. Return transfers of data can be obtained with BRG~
(Bring) operations in A to read results in B. These operations allow A
and B to communicate with each other in the MPC without memory refer-
ences, reducing the problem of uniqﬁc: memory addresses discussed pre-
viously. When Block A has several start instructions, each reads in a
separate block. The Liocks it reads in may contain more start instructions

to read in other blocks, etc,

Thus, at any time, a program in Machine 11 will have the structure in the
MPC of one or more trees (see Figure 8 fbr an example). The program
started with one block (read in by the supervisory program), which started
others, ctc. A completed block (all instructions performed) is dropped
from the MPC when all connecting blocks have completed all data transfers
from it, leaving room in the MPC for new blocks. Interblock communica-
tion in the MPC is only allowed over hinks that still exist (of course, by
memory references any block can communicate with any other unless it

vioclates memory protection).

Conditional executions are obtained by conditional start operations; a block
is started if and only if a condition (for example, that some result is posi-

tive) is met,

Memory protection in a multiprogramming environment 1g8 obtained by

SECTION III - MACHINE OPERATION

BT,
S~
-

-~
L) COMPLETED BLOCKS NO LONGER IN THE MPC

s
p f
b -2
3
LiE
x

3

-

3

3
£
£
%

O BLOCKS STILL BEING EXECUTED

Figure 8 - Example of a Program Structure in the MPC

giving each program a private code stored in the leftmost part of all its
addresses. All memory references are specified with the program giving
the rightmost part and its code giving the leftmost part. A special start
instruction allows execution of supervisory routines for special purposes,

such as I/0.

These are the basic characteristics of the machine language of Machine 11.
Appendix XIV gives a fuller discussion. The general implementation is

described below with a fuller discussion in Appendix XV.

The implementation of the MPC (see Figure 7) uses a full-sorting memo-
ry. The MPC words are in seven different regions. The I/O region
contains words being inputted or outputted by I/O channels. An I/O buf-
fer region stores words waiting for transfer to the I/O region. New blocks
enter the MPC through the memory region. Each instruction in tnc new
block creates three MPC words: two operand requests (formed from the

¢ operand fields) and an operation word. The operation word is stored in

-30-

——

SECTION III - MACHINE OPERATION

the instruction region. The operand requests go to the result region where
results of all blocks are kept. The requests read the operands and then
join the corresponding operation words in the instruction region. When
all three words are joined, the three are sent to the processor_region to
be executed by one of the processors. The seventh region is the pointer
region, which stores the interblock links. A fuller description of the MPC
is given in Appendix XV, Item 7. The memory request sorter (see Figure
7) is a sorting memory that arranges memory requests ‘read and write)

from the 1/O devices and processors into order and transmits them to

- memory. it is described in Appendix XV, Item 6.

The task level cornputef assigns priorities to tasks in a multitask situation.
Priorities are dynamic, changing with machine usage and supervisory con-
trol. - The task level computer measures machine usage by each task and
changes priorities accordingly. Its presence simplifies the supervisor and
makes possible a priority scheme wherein each task can be asgigned a cer-
tain percentage of machine capacity and given execution time at regular in-
tervals. A discussion of the task level computer is given in Appendix XV,

Item 5,

Machine II has better communication facilities between subtasks (intrablock
communication and interblock communication along links without using
memory), but as shown in Figure 8 the program structure in the MPC is
limited to one or more trees. Some problems may not fit this condition
and memory transfers will be required. Thus, Machine 1I does not com-
pletely solve the problem stated at the beginning of this discussion (Item &).
A more flexibie vrganization specifically designed for nonnumeric proces-

sing is described below,

PARALLEL NONNUMERIC PROCESSING

As discussed in the beginming of Item 5 above, there is a programming
problem in flexible multiprocessors. The machine allows any subtask to

communicate with any other subtask so data transfers must be specified -

-31-

- M_. . e e) g

SECTION III - MACHINE O+ ERATION

in the programs; a fixed structure machine does not have the problem be-
cause the machine itself limits possible transfers to a small set. Data
‘transfers between tasks in Machine [are specified using memary addres-
ses; when one program contrcols several subtasks there is the problem of
creating unique addresses for the several subtasks. Machine II allows data

transfers within a program block and data transfers between linked blocks

2
:
i
2
3
'

m the MPC without the use of memory addresses. If the program can be

fitted with a tree-like structure, this technique can be used, otherwise

R

memory addresses must be emplcyed. An 1deal machine should allow any

subtask to be linked with any other subtask for data transfer without the

> M i

worry of explicitly labeling the subtasks; this allows one program to con-
- trel several subtasks concurrently since explicit labeling of operands is not

required in the program.

As an example, an ideal machine should accept a set of data on which some
structure cr topology has been imposed (the structure is dictated by the
problem and not by the machine). Figure 9 gives an example data struc-
ture. [t should be possible to write a program for this machine that will
treat one or more pai-ts of this structure simultaneously without knowing
the exact labels linked to certain items (the solid nodes) and specifies op-
erands relative to the solid nodes by paths; for example, it may specify ite
cross-hatched items with the path A, B, F, or C', F (the prime means io
travel backward over a link). It may also use "constants" linked to the pro-
gram (the node linked to the program with a G link). The program should
he capable of changing the structure, adding new items and new links, and

deleting items and links. It should also be able to do pattern searching.

With this kind ot machine, prohlemis can be programmed without the worry
of memory assignment and its attendant datficulties when one program co -
trols several tasks simultaneously. Such a i:achine should be very versa-
tile; nonnumeric as well as numeric problems will be casily treated. To
show this, it first should be asked what is . ant by nonnumeric as norm-
v ally applied to problems. The words numeric and nonnumeric are nmusno-

Imers since many nonnumerie preblems contain numbers. The distinguishing

-32.

SECTION 111 - MACHINE OPERATION

PROGRAM

Figure 9 - Example Data Structure with a Program Working on

Several Parts of It Concurrently

.33.

SECTION III - MACHINE OPERATION

characteristic seems to be the addressing of operands. In a nonnumeric
problem, most operands are addressed by their properties (attributes).
The terms "explicit-addressing” and "implicit-addressing” come closer

to describing the actual truth. Next, it should be asked what kinds of prop-

erties are asked for in implicit addressing. They seem to fall in three

classes:

1. Properties dependent on the item per se; for exam-

2
:
)
i

le whether it is larger or smalier than sorme thres-
o
hold, the patteru of ! its it has in some field, etc.

Content-adidressing lescribes this class well.

2. Maximum or romimum properfies such as being the
A largest or smallest item in some set. This might

be called limit-addressing.

3. Structural or topological properties. Is the 1tem
related to its "neighbors”" 1n a certaina way, etc.

This might be rcalled structure-addressing.

With a sorting memory, a parallel nonnumeric proressor could be buill to
handle all three classes. Appendin XVI discusses asuitable sorting miemory,
It stores two words for each link in the data structure, a (orward word and

a backward word. This permits use of a link in either direction. Three
fields n a word indicate an initial node label, a link weight, and a terminal
node labe! Concurrent searches can be varried oud to retrieve incident
links on a set of nodes. This peruuts fast structure-addressing (a fast
pattern search algorithin s shown in Appendix XVI). By allowing a node
toocarry tmore than ane item and by storing node cortents in the sorting
einory. fast bt addeessing 1= obtamerd (since the nodal contents are

ordered).

Content addressing can be replaced by structure-addressing by the tnch-
maue of hnking an ttem to tts attributes instead of storing the attributes 12
the ttenm. Appendin XV] discusses this turther. This gives the machine a

multicomparand content-addressic g facility (several different programs

14

SECTION 11l - MACHINE OPERATION

may be operating concurrently) so.it may perform many content-addressing
problems faster than a normal conient-addressable memory (CAM) with its

one comparand.

Time limitations in the study prevented the completion of a machine design
based on the foregoing considerations. Appendix XVI discusses the sorting

memory to be used along with a fuller discussion of nonnumeric processing

in general and how this machine would compare with other nonnumeric

processors (both hardware and software).

The flexible implicit addressing capability of this machine would cure most

of the problems discussed in the beginning of Item 5.

CONCLUSIONS

It has been shown that a multiprocessor needs a flexible intercommunica-
tion structure to permit the processing load tc be distributed among the
processors. Sorting networks and memories based on sorting networks

are a means of providing this structure without undue amounts of hardware.

Three different machine organizations are discussed using sorting net-
works. They differ in how operands are addressed Machine I requires
assignment of memory addresses while Machine II permits some intercom-
munication without memory assignment. The third organization, oriented
toward nonnumeric problems, should allow intercommunication without ex-
plicit addregsing, A study of these organizations shows that the language
in a fiexible communication structure machine must be carefully designed

to pernut programs to use the flexilnlity effectively.

.

-35.

,_.,_t;‘

PN,

SECTION 1V . APPLICATIONS EFFORT

W«-
e

g

i. GENERAL

Included in the original goal of the applications area etfort of the advanced

?; computer organization study was the selection and analysis of two problems
?“ suitable tor implementation on a parallel processor. Each of the problems
‘? selected was to be subjected to a thorough analysis to determine its inher-
e¢nt parallelism. Restructuring of the problem was to be done to the extent
i that greater parallelism could be achieved. Sclution models were then to
ot be constructed that would allow the exploitation of the greatest degree of

;t parallelism resident in the problem consistent with the capabilities of tha

‘ parallel processor developed 1n the study. The first problem selected

i was numeric, the second was nonnumeric. A discussion of the results

L obt :ned in both the numeric and nonnumer « areas tollows.
Y 2. NUMERIC PROBLEM AREA

% da. Inlrudu_t_'iln“xl

¥

imtial etforts 1n the numeric problo m area were directed toward
malysis ot the dynanue programming techmque. Po: himinary analy -
-is revealed the presence ot potential parallelism in dynamic pro-
stamraning and the technmque was selected as the basis tor the tirse
problem to be studied, Subsequent to the completion ot the tirst
problen study {dyvnaonie programmang), an tnvestipation was initiated
to determine o technique to be used as o basis tor the second problem
cttort, Amuong the techmques mvestigated were Jacobi ' s ethod o
corenvalue deternnation, relasation solution ot o gy stem ot linear
dibebrasc cquations, and sumerical solutions of Laplace’'s cquation.

Floach was seen to possess setficient parallelism to warrant its use

S IR e *
ey ;‘”Mw ‘-°-'—r~ 7",@

l:.

SECTION IV - APPLICATIONS EFFORT

as a basis for the second problem effort, However, it was decided
to choose a nonnumeric second problem, A general discussion of
results obtained in the numeric problem area is given below. A de-
tailed d.scussion of the dynamic proegramming technique study is
given in Appendix I; a detailed diecussion of the numeric techniques
investigated during the second prcblem selection effort is given in
Appendix VIII. |

o

Dynamic Progiamming Technique

(1) Discussion

Dynamic programming it a inathematical technique devised by
Fichard Bellman for the solution of maximication problems of

the following type:

Let x be a resource that is to be divided among some n activities

in amounts x,, X,, . . . , X_such that
1 2 n

o]

X, = x (1)

and X 2 0 for all i's.

Let the return realized froin allocating X, to the ith activity be

denoted by gi(xi) wtere

v
o

g;(x;)
(2)

[}
(&)

gi(O)

Let the total return realized bv allocating x in amounts Xpr X
Cee o X to the activity functions gl(xl), gz(xz). . e ey gn(xn)
be denoted by

n

\ = .
Rn(xl, Xos v oe e s X E gi(xi) (3)

i=1

-38-

b

-

SECTION IV . APPLICATIONS EFFORT

The problem, then, is to maximize the return function (3) over

the space

Sn(X) - (xlt xzn e e e 4, X)

=x,xi?0 . (4)

The dynamic programming technique specifies a procedure for
determining an optimal allocation of the resource x in amounts
Xyr Xpu e e X that is, an allocation of the resource x for

which the return function {3) is maximized. The specification

of an optimal ailocation rests on the construction of the segquences
fl(x), fz(x;, e e, fn(x) (5)
and
xl(x}, xz(x), e Xn(x), (6)

where fn(x) is defined by
_ max .
f (%) = sk(x)[Rk("l’ Xpi e e xk)l. (7)
It is easily deduced that

f,(x) = g,(x) (8)

and it may be shown that the following recursive relation holds

max

f.({x) =
K 0% x

R CRCNES SCEEN] (9)
.

The terms of the sequence (6) :.re then defined by identifying
xk(x) as the allocation to gk(xk) for which fk(x). defined by (9),
is maximized. Equations (8) and (9) provide an inductive method

for determining the sequences (5) and (6), and reduce the problem

-39.

- ——

SECTION 1V - APPLICATIONS EFFORT

of maximizing one function of n variables to the problem of maxi-
mizing n functions of one variable. The value of fn(x), of course,

gives the maximum return possible for the return function (3).
* (2) Illustration of the Computational Procedure

As an illustration of the computational procedure, consider the

meaximization of a function

Pha s

n
Ré(xl’ xzr x3p x4; xs; x6) = E gl(xi) (10)
i=1
under constants
x. 20
i
6 (ll)
E x = 2.0}.
1

i=l
The problem then is to maximize (10) over the space

6

5.

i=1

56(2.0) = (xl, X, X

2 *3 X4 X5 Xg)

= 2.0, x >o}. (12)

The maximization wouid proceed by construction of the sequences
(5) and {6). The maximum return realizable by allocating the re-

source to the first activity only is given by

" f,(x) = g,(x) .
f
The maximum return possible from the first two activities is
then determined by computing
max
- fz(x) = . . [gz(xz) + fl(x - xz)] .
S

SECTION IV - APPLICATIONS EFFORT

wrf

(3)

The maximum return possible from the first three activities is

determined by computing

_ max

f3(x) = o < . g3(x3) + fz(x - x3)] .
N

The inductive method of computing the sequence (5) continues

until the maximum return possible from all activities is deter-

mined by

max

. . gb(xb) + fs(x - x6) l .

fb(x) =
The sequence (6) is determined by recording the values for which
the maximizations are effected. The actual calculation of the se-
quences (5) and (6) requires that the resource range [O, x] be

discretized by some partition,
0=t <t, <...<t =x, (13)

where t, = iA for some fixed A, The partition (13) can then be
compactly denoted by 0(A)x; that is, from zero through x in
steps of A. In the case of the example problem, the partition
might be 0(A)x = 0(0.1)2.0for a A of 0.1. Given a partition
such as (13), each activity function, gi(x), must be calculated
at each point of the par*ition. Similarly, the construction cf
the sequence fl(x), fz(x), . e e fb(x) requires that fi(x) be

calculated at each point of the partition since the construction

k +

Parallel Features

of f 1(x) requires the values of fk(t) for ¢ = 0(AQA)x.

Certain features of the dynamic programming tech: ique are im-
mediately seen to be amenable to parallel computation. Since

the return functions involved in the maximization process are e

-41- .

SECTION IV - APPLICATIONS EFFORT

mutually independent, they can be evaluated in parallel. Further,

the values of a return function for each point in a partition such

as (13) may be computed in parallel. By restructuring the dynam-
ic p‘rogramming technique, additional parallelism may be realized.
The heart of the dynamic programming technique is the construc-

tion of the sequences (5) and (6), namely

fl(x), fz(x). e e fn(x)
and

xl(x), xz(x), e e xn(x) .

Now the method for constructing the sequences (5) and (6), as
outlined above, is sequential in nature. But it need noi be. In-
stead of recursively calculating the functions f:"x), fz(x). e« o v
fn(x), one may :pecify a concurrent pairwise maximization of
the activity functions and thus inject zdditional parallelism into
the dynamic programming technique. Consider the sample prob-
lem given above. The problem is to maximize the return func-

tion

6
Ryl xp0 X3 x40 x50 %) = 2: £,(x;)

i=1

under the constraints

i=l

Paralle]l maxiniization of the return function cen be achieved by
treeing the maximization process into three !:veais of parallel

computation as follows.

-42-

SECTION IV - APPLICATIONS [2FFORT

Level 1l - for x = 0(0.1)2.0, compute:

. max '
u,(x) = [s(v)+a(x-y)],
‘ ! 0y Sx 2 1
{yl(x) = y at which the maximum occurs .
(_ max
“Z(X) = 0 < < IG4(Y) + 33(" - Y)] ’
: =Y¥=X
Lyz(x) = y at which the maximum occurs .

Level 2 - for x = 0(C, 1)2.0, compute:

U3(x) = max lg6(Y) + gs(x - Y)] ’
0y <Sx
) s s
Ly3(x) = y at which the maximum occurs .
[max
u,lx) = [u (v)+u(X-y)].
) 4 0 ;5 x 2 1
y4(x) = y at which the maximum occurs .

Levei 3 - for x = 0(0.1)2.0, compute:

- max
us(x) = 0 < . [u4(y) + u3(x - y)] ,
S y=S x
ys(x) = y at which the maximum occurs .

Ther u5(x) gives the maximum possible return for a resource x.

By treeing the dynamic programming maximization process in
the fashion described above, the number of computational levels
required can be reduced from the n required for sequentia! exe-
cution to approximately Inz(n) for paralle execution. It is
shown in Appendix I that for a small optimizatio;l problem such
as (10), parallel methods can reduce the total number of com-
putational levels required from 251 to 24. For larger problems,

even greater advantages can ve achiuved.

-43' ¢

£
*
&
B
.

(752

R e

L2

Pl

y -

SECTION IV - APPLICATIONS EFFORT

cl

Other Techniques

(1)

(2)

R i o
B -

5 l. T
.

.

ok

Discussion

Prior to the selection of a nonnumeric second problem, several
numerical techniques were examined for parallel characteristics.
They include Jacobi's method of eigenvalue determination, re-
laxation methods, and a numerical solu‘.on to Laplace's equation.
Tnese techniques are reviewed in detail in Appendix VIII; a gen-

eral discussion follows below.
Jacobi's Method

Jacobi's method is a mathematical technique for finding the eigen-
values and eigenvectors of a real symmetric matrix., The meth-
od 1s based on the following well-known theorem from matrix

algebra:

Let A = (aiJ) be an n-by-n real eymmetric matrix. Then there

exists an orthogonal matrix U such that

U'AU = D|A,A,, . ..,]=D. (14)
i P4 n
where U' denotes the transpose of U, D = D[Al, AZ’ Cee A
denotes a diagonal matrix, andAi, i=1,2, ..., nare the

eigenvalues of A,
Since in (14) U is orthogonal,

AU = UD (15)
and hence the columns of U are the eigenvectors of A.

Jacobi's mcthod specifies the construction of a sequence of ortho-

gonal matricers Tl' TZ' e e Tk suc . that

Tk'T '...TlATTz...T = C, (16)

k-1 1 k

where C is an n-by-n matrix whose off-diagonal elements are

arbitrarily close to zero and whose diagonal elements are arbi-

trarily close to the eigenvalues of A. The columns of the matrix

-44.

- G- . ,?.- ———— ‘?W e
A
\ i

SECTION 1V - APPLICATIONS EFFORT

TITZ oo Tk are then arbitrarily close to the eigenvectors of A.
It is shown in Appendix VIII that the construction of the sequence
T, T T, involves operations that are readily adaotable

lt' 2' . . . ’ k
to parallel execution, These operations include the searching of

a set for the element of greatest magnitude, and extensive matrix
operatirns., Searching a set for the element of greatest magnitude
is an operation well suited to the sorting capabilities of Machines 1
and II (see Appendices VI and XV). *

(3) The Relaxation Technique

Relaxation is a term originally applied bv Southwell to a class of
iterative methods for solving a system of linear equations. The
term has since come to connote a broad class of methods for the
approximate reformulation of physical problems in terms of sys-
tems of linear equations to be solved. An example of this ex-
panded use of the term relaxation is offered below where a nu-
merical solution to Laplace's equation is discussed. In *he strict
sense, the relaxation technique provides a method for solving a
system of linear algebraic equations, expressed in matrix form

as
AX = B, (17)

where A is an n-by-n coefficient matrix of known constants, X =
(xi, Xor X3 0 v v xn) is a column vector ¢f unknowns, and B =
(bl’ bZ' v bn) is a column vectior of known constants.

The relaxation technique is an iterative procedure that specifies
a sequence Xli Xz.)(k()(i = (xil. xiz, e e x:‘)) of ap-
proximations that converges tu the solution vector X, Discussions
of necessary and sufficient conditions for convergence may be
found in Volurne Two, Appendixes I, XIV, and XV, and in Ref-
erence 2. The technique assumes an in,itial guess ?(1 and com-
putes successively vectors Ri = (rll rZ‘. c e r;)of "residu-

45. l
* s .

s T — - Y Mm-~m e
35 N . N

~
L]

als" defined as

%M el o

SECTIQN 1V - APPLICATIONS EFFORT

(4)

!

R. = B . AX. - (18)
1 1

fori=1,2,...,k

The residual vector Ri provides a measure of the closeness of

the approximation Xi to X. Based on a rezidual vector Ri’ the
. Th

41+ The

process continues until the elements of the residual vectcr are

relaxation technique specifies a new approximation Xi

sufficiently close to zero to satisfy a pre-established convergence

criterion such as R.l' R. € ¢ or
1

(il
The relaxation method involves the repeated execution of the
operations of matrix multiplication and addition, multiplication
of a vector by a scalar, and searching a set for the element of
largest magnitude. Each of these operations is well suited to
parallei ¢xecution, and the operation of finding in a set the ele-
ment of largest magniiude may be accomplished rapidly on a

parallel processor having sorting capability.
Numerical Solution to Laplace's Equation

Discussed herein is the numerical solution of Laplace's equation
over a rectangular region, R. It is assumed that R is partitioned
by an equally spaced rectaagular mesh and that Dirichlet bound-
ary conditions are specified. Given a function u(x, y) for which

Laplace's equation obtains over R, one writes

azu+azu = 0 (19
5:‘7 a—-yz-- .)

Letting the interval for the mesh over R be denoted by A&, the

partial derivatives for u(x, y) may be approximated by

-46-

SECTION 1V - APPLICATIONS EFFORT

ou _ u(x + 4, y) -ux, y) W i
A]

DX
du _ u(x, y +4) - u(x, y)
3 5 -

p (20)

azu' u(x + 4, y) - 2ulx, y) +ulx -4, y)
3x2 AZ

e

azu ulx, v + 4) - 2u{x, y) + u(x, y - 4)
ayz AZ ! py

o

ana the difference equation counterpart cf (19) may be written as
ux, y) = gluxt Ay rux oAy tulx, yrA) bulx, y - 8] (@21)

Equation (21) approximates u(x, y) at each interior mesh point
of R by the average of "north, south, east, west neighbors."
Other such difference equation approximations to u{x, y) at in-

terior points of R are available.

Iterative solutions to Laplace's equation based on approximations
such as (21) converge (see Appendix XIV) and are often called
"relaxat.on solutions." A sequential iterative solution would
pa>reed by ordering the interior mesh points of a region R and
cyclicly applying the approximation over the ordering until some
specified convergence criterion is met. In a sequential pass
over the ordered interior mesh points of R, two possibilities

for updating the values for u(x, y) at cach interior mesh point
are available: (!) as each new approximation to u(x, y) is gen-
erated at a point. 1t is made avalable for subsequent calcula-
tions in the pass; (2) each pointwise approximation to u(x. y)
made in a given pass uses only point values available at the end
of the preceding pass. The former (latter) method of updating
often is called the method of successive (simultanmaous) displace-

ments.

.8

-47.

L S T éa’n‘m .

SECTION IV - APPLICATIONS EFFORT

The numerical solution to Laplace's equation over a rectangular
region partitioned by ain equally spaced rectangular mesh is spe-
cified easily in terms of an approximation such as {21) and the
mefhod of simultaneous or successive displacements. Iterative
numerical solutions to Laplace's equation over a mesh begin by
assuming some initial values for u(x, y) at interior points. Clear-
ly, the greater the accuracy of the initial approximations, the
more rapid should be convergence. Appendix VIII describes a
method ior rapidly computing initial approximaticns to u(x, y)
over a mesh based on known boundary values. The methods of
approximating u(x, y) is well suited for parallel execution and is
called paraliel fill-in (PFI).

The numerical solution to Laplace's equation over a mesh is well
suited to parallel computation. For a parallel processor of suf-
ficient size, a processing unit could be assigned to each of the
interior mesh points. Each unit would then compute and store,
in an iterative fashion, approximations to u{x, y) at its assigned
point. In the event that the number of interior mesh points ex-
ceeded the number of processing units, each unit could be as-
signed a block of interior mesh points and the iteration would
proceed "parallel by block and sequential %+ point within a block."
A test for convergence based on maximum pointwise change in
approximation values between successive iterations could be ac-
complished readily cn Machines I and Il due to their rapid sort

capability.

3. NONNUMERIC PROBLEM AREA

a.

Introduction

The second problem sclected for the advanced computer organizatios.
sti.dy was the paralle]l compilation of higher language programming

statements. The language selected for use was MAD.z The selection

-48.

SECTION 1V - APPLICATIONS EFFCRT

of parallel compilation was quite natural in that investigations of
parallel processor configurations and parallel execution of coded
routines lead to consideration of compiling source programs, written

in a higher language, in parailel.

Prior to the second problem situay, a short effort was directed to-
ward the construction of a language designed specifically for a paral-
el processor. The goal was to construct a language that would allow.
and indeed promote, ease of conceiving and expressing the structure
ol parallel solution models. Results of the eifort are presented in
detail 1in Appendix IX. A gceneral discussion of parallel compilation

follows. A detailed discus<ion will be found in Appendixes X and XI.

- b. Parallel Compilation

In the process of compiiation, a sequence of statements written in a
higher language. such as MAD, 1s translated 1into a sequence of
machine laxguage statements. The compilation process usually

will decompose higher (... guage statements into a "matr:x form of
‘riples and then from the matrix establish a se. of machine language
statements. Included in the compilation process 1s the handling of

such considerations as dimension, mode, and storage allocation,

he compilation algorithim developed during the second problem ef.
tort deals only with the decomposition of higher language statements
inte triples. The staterients themselves are restricted to replace -
ments nvolving nonsubscorinted variables. It s assumed tnat ihs
statements are written in MAD and that the precedence hierarchy

ts thal o Arden, Galler, and Giabam.,) The precedence hierarchy
1n humited te the set ol eperators given an Fable [T It s further
susumed that the replacemnent statesments are stored. svmbaol by

symbol, in an ordered hist. For example. the MAD statement
F - A+ B* LABS, (C:s D) -

1% assumed to he stored 1n a [1st as tollows.

.49

gy sy omn e

i i

il -rl

-

SECTION IV - APPLICATIONS EFFORT

, é %

0 b

1 F
2 =
3 A
4 4
5 B
6 * (23)
7 . ABS.
8 (

9 c

10 +

1) D

12)

13 .

TABLE 1II - PREC-EDENCE HIERARCHY

Operator Descripticn . | Precedence

.ARS. Absolute value Highest
. P, Exgorentiation ‘
- Unary minus

%/ Multiplication,
division

K U Plus, minus

= Equals (substi-
tution) : %

F.4,(.) | Begin statement, Lowest
and statement,
open parenihesis,
close paren-
thesis

.50-

. - S Y

Lo

SECTION 1V - APPLICATIONS EFFORT

As shown in Appendix X, the triples corresponding to (23) are just

(o + D

0 . ABS. R1

B * R2 (24)

A + R3 . :;a
F = R4 "

where Ri denotes the resultant from the ith triple (row). Then (24)

would be read, row by.row, as:

C+D

Rl =

R2 = LABS. (R1)
R3 = B + R2
R4 = A+R3

[LoD e _> ' . _"and fin&lly :

_— ;) F =R4 = A+ B* +ABS, (C + D)

ST

which is just (22).

In parallel cempilation, the aim is to examine simultaneously in suc-
cessive passes many statements suc: as (22) stored in the fashion of
(23), and to form on each pass all poseible triples and statement
simplifications for the entire set of statements. An algorithm for
effecting parailel compilation war developed during the second prob-
lem effort and is summarized in Figure 10,

The tests (operations) indicatad in Figure 10 are applied on each
pass to a list such as (23). Sequences of items taken 3, 4, or Sata
time (blanks are ignored) that meet certain -onditions are sought,

If the indicated conditions obtain. iriples are formed and/or state- -
ments dimplified as indicated., As the structure of the flow chart
in Figure 10 indicates, the four operations may be executed cor-

allel, all tie substitution statements oif a source language (MAD)
-5}.

currently and the algorithm will be capable of Jecomposing, iu par- i
i

ERCIES IS

A R

SECTION 1V - APPLICATIONS EFFORT

037IvD 30 YTua
WNVIS

»
A MO ANVAINSSM

240 NOIAVIOT 404 30wl

i

(1]

£

ui

tALd3 LSIT

SuO.vuaeO - A 'g'®
sIeviNvA T B A

ON LOd N}
ONIDE

Q?Q‘ .Q.‘
FAY-y ('}ey m Ay Ay
Q»_! g A u»w> ® 0

INOS 3CS INOS WINOS
Lo = n je~- ‘sSAv’ 3P
-.>-I‘ t'A 9 ‘vuK‘IVEE ‘§

INON A'm'gAD INON eha «

gawA4

.

*Q NOILYH D90

€ NOILVEIJO #

* T NO! L V¥ 3O

I NOILLVMISO %

Figure 10 - Parallel Compilation Algorithm
-52.

|
Rl A 3

PRI U - -

o e et

-

- g g oy &%
#E REE ey . SN

"SECTION 1V - APPLICATIONS EFFORT

progre. into a string of triples ready for final assignment (machine
language). Several passes through the loop may be required; the

nurmher will depend on the size and complexity of the program to be

compiled. The operations indicated in Figure 10 proceed as follows:

1. Operation | iooks for quadruples ABCD where
A is an operator -. -
B is either a * -y OF an " JABS."
C is a variable

D is an operator such that P(D) ¥ P(B)
where P(x) denotes the precedence ot x
as given in Table I

It is assumed that B is the ath item on the input
list. C is removed and B is replaced~by the
variable Ra' A triple is fcrmec of 0, B, and

C and its resultant is stored in Ra.

v

Cperation 2 looks for all quintuples ABCDE
such chat

A; C, and E are operators

B and D are variables

P{A) < P(C) ¢ P(E)
It is assumed that C is the Bth item on the in-
put list. B and D are removed, C is replaced

by Rﬁ' and a triple is formed of B, C, D with
resujtant RB.

3. Operation 3 removes parentheses surrounding
single variables

4. Operation 4 removec all sequences FA4where
A 12 a variable

A step-by-step example of the application of the compilation al-
gorithm may be found in Appendix X.

It will be noted that the triples generated on each pass correspond

-53.

i s il IR v AP N

&
b
2
W

A

ST

[P

St

= ,)
=
5
.

e

SECTION 1V - APPLICATIONS EFFORT

to basic arithmetic operations that can be performed at the time of

the pass. Hence, the compilation algorithm generates triples suit-

- able for parallel execution and provides a first approach to the recog-

nition of low level parallelism within a source program,

The parallel compilation algorithm was programmed for Machine 1I
(see Appendix XIII for details). The programming proved to be dif-
ficult and the: results suggested the desirability of modifying the
algorithm. Modification seemed desirable because impleméntation
of the algorithm in the form of Figure 10 required the initiation of
an excessive number of parallel processor "tasks" (see Appen-
dixzs XV and XVI), led to extrémely cumbersome control programs,
and failed to yield anticipated levels of speed advantage for parallel

over sequential compilation.

As a means of cbviating the problems of implementation, the follow-
ing modifications were considered: (1) preliminary translation of
input statements to reverse Polish rotation, and (2) innovations in
the utilization of the paraliel processor programming language.
Both modifications were investigated with fruitful results. An un-
expected result of the investigation was the development ofa com-
pletely new form of the compilation algorithm. The results of the
modifications are detailed in Appendix XI.

Although insufficient ti.me was available to investigate the modifica-
tions in detail, preliminary investigations indicate that the first two
modifications are easily programmable but do not result in signifi.
cant speed advantages. The restructured algorithm appears to pro-
vide maximal utilization of parallelism resident in the compilation
process and should offer significantly increased compilation speeds,

-54-

SECTION V - PROGRAMMING

1. MACHINE I

" Machine 1 is composed of many identical processors, each having the capa-
bility of simultineously accessing by content any location in the self-sort-
ing memory. There are 512 processors in Machine I, each having a pro-

gram counter, instruction register, accumulator, quotient register, and
six index registers. These registers are analogous to those in conventional

computers.

The program counter generates instruction addresses. The instruction
register is composed of an upper and lower half, each is capable of con-
taining a 36-bit instruction and contains the current instruction to be exe-
cuted. The accumulator is similarly composed and can be considered as

two 36-bit registers, upper and lower, or as one 72-bit register. The
quotient register is organized similarly to the accumulator. The index
registers in each processor have a desirzble cap#bilifcy - any three may
be added together with the contents of the address field of the instruction
to generate an address, an operand, or a shift count.

The inherent sorting capability of Machine I significantly reduced the exe-
cution time of a porticn of the dynamic programming problerii. The deter-
mination of the largest return out of a number of possible returns was comn-
pletely resolved via the sort memory. The various possible combinations
of returns were calculated and stored with the same address. The charac-
ieristics of the memory allowed the larger «f two or more numbers always
to return at the "top" of the sorted table after one machine cycle. In the
dynamic programming problem, the routines were such that only two num-
bers were sorted per machine cycle, but che technigue is not limited to

only two. For large-scale sorting, any number of elements could be sorted
in the same length of time - one machine cycle.

-55.

Y

o i e, A S B R RS R R

5.
&

]
z
o
E1
3
2

remotat g

SECTION V - PROGRAMMING

The instruction set for Machine I is an extersion of cne that might be found
on a contemporary machine;‘ One class of instructions .considers the con-
tents of the address field as the cperand which is modifiable by index regis-
ter combinations. Class 2 instructions treat the contents of the address
field as the operand address, alzo modifiablc by the index register. Class
3 instructions treat the contents of the address field as a shift count that is
modifiable by the index registers, Class . inatructions allow inter-regis-

ter transfers within a processor as detailed in Appendix IV.

Some instructions are peculiar to Machine 1 and ware useful in synchroxﬁz-
ing operations when multiple processors were operating on a common prob-
iem. The nonpresence jump instruction when executed causes a jump to

some location when the address of the word requested from memory by the

previous fetch type instruction is not the same as the operand address in

- the inatruction. A typical application would be when two processors are

operating in conjunction on a problem - one generating a piece of data that

" the other is looking for - clearly an indication is necessary that the correct

data have been acquired. It should be mentioned that any request for
memo-=y data always returns a piece of data, either the correct word or
the word whose value is next higher than the request word: This is a

characteristic of the sorting memory.

There also is a set of instructiqns that allows searching for single words,
or searching for the s:sallest word between limits. These instructions are
desirable for searching internal areas of a list without requiring examina-
tion of the entire list, If the upper and lower bounds of the list are known,
limit words lying within these hounds can be used to isolate portions of the
list directly. With the erase options available with the search instructions,
either single or multiple eatries withia & list can be isolated and erased
using only one instruction as explained in Appendix IV. '

The insteuction execution time for Machine I for a two-instruction word ia

30 usec.

Machine I is best suited for advantageous use of parallelism that exists

56

SECTION V - PROGRAMMING

between independent blocks of a program or between independent programs.
Multiple bra nches within a program to start independent blocks of the pro-
gram can be programmed easily. The ends of the branches are joined viz
the nonpresence jump instructions. Independent programs such as a com-
piler and numerical and nonnumerical problems can be executed in paral-
lel. {Of course, this assumes some form of supervisory control incorpor-
ating processor loading, problem execution timne, and memory loading
information to eliminate or reduce conflicts between different problem

programs.)

A major point of interest in Machine I is its content-addressing capability.
In conterhporary machines, the memory is addressed by the absolute ad-
dress of the word in question. In Machine I, any word in memory may

have any name (address) assigned to it, When the usefulness of-this word

-has expired, it is erased and the word is then available to any processor

for naming. An added é.dvantage to the ccntent-addressing capability is
then the more efficient use of the available memory, since blocks of
memory are not assigned permanently to a particular program but float
arbund, so to speak, wherever needed, dependent, of course, upon the
programmer's maintenance of a clean memory withnin his program; that i,

the erasure of data no longer needed.

MACHINE II |

Machine Il is a parallel processor with the ability to access simultanecusly
by content many locations in a self-sorting memory. There are 256 proc-
essors in Machine 1I, each having access to program instructions in the
multiprocessor control unit (MPC). There are no registers, such as in-
struction counter, accumulator or index, as such, accessible to the pro-
grammer Instructions that generate a result are, when executed, re-
placed by the result. These instructions, however, are not executed until
the operands are available. Hence, the sequential nature of an instruction

string is preserved where necessary by the sequential availability of the

-57.

e,

TR a0k S

Y

;
.

T

SECTION V - PROGRAMMING

operands. On the other hand, independent strings of instructions are exe-
cuted in parallel as soon as the requisite data are presented to the several
strings. This type of parallelism is inherently available in Machine II in
addition to the capability of paralle! execution of independent blocks of a
program or of independent programs (see Appendix XV).

The instruction set for Machine II is similar to that found in a two-address-
per-instruction machine. The arithmetic instructions contain in their ad-
dress fields the addresses of the two operands. The logical instructions
are similar and quite extensive and comprise all possible functions of two
Boolean variables in terms of the "and," "or," and "not" operators. Shift
instructions enable left and right shifting of operands that may be located
within the current program block or in the previous program block. Data
to be carried along through a program are passed from block to block by
means of the shift instructions, The "bring" instruction enables a program
block to retrieve a piece of data generated by a block that is started by the

block in which the bring instruction resides.

"Read memory" and "read memory indirect" instructions aliow access to
the main sorting memory. "Threshold search" allov/s retrieval cf the word

in memory whose contents at the given address a-: just above a threshold.

"Start" instructions enable a black to order the execution of a subsequent
block, and to establish the priority of the started block. Conditivnal starts
have the same result as the start except that it is based on the condition or

state of some word in the curre~t block.

Most instructions have an "erase" option attached whereby either or both
operands may be erased after instruction execution. This ia desirable to
maintain a clean memory. There is an explicit erase ‘notruction that per-
mits erasure of all words . the previous block that lie hetwaen twn limir.
ing words. An "erar: pravious black relative" allows erasure betwaeen
lirnit3 reistive to the slart instruction that started the current block. An
"m wait" . struciian pe rmits starting of a block on the condition that all
memor' operations in the bir.cr have been completad.

.58.

s

= T U

SECTION V - PROGRAMMING

the basic computation routire quite fast in relation - the more complex

Instruction execution time varies from one to seven MPC cycles or from
13.8 to 96. 6 piec. The pirticular processor executing an instruction,
howe.er, is active for no more than one cycle and the result, if a result

is generated, is available the subsequent cycle ‘see Appendix XV).

The types of parallelism that can be executed most easily on Machine II
are instruction level parallelism and independcent program parallelism. £

3
3
&
]

The machine removes from the programmer the recognition of instruction
level parallelism through its ability to execute instructions whenever the
reqigite operands are available. The recognition of independence in pro-
gram blocks is still the programmer's responsibility, and is his problem
to program so that the machine can execute the problem in minimum time.
Independent programs can, of course, be execu t:4 simultanecusly, limited
only by the size of the memory and MPC _(see ApJendix XIV).

MACHINE I AND THE DYNAMIC PROGRAMM.ING PRQBLEM

The dynamic programming probiem was chcsen because of wide interest

in this area and techniques developed fcr parallel processors might be use-
ful. The problem is characterizaed by a nuimnber of independent functions
that deiine a return for a given resource ansignment. Returns are calcu-
lated for all values of the available resource for all activity functions. In
essence, all combinations of activity fun~tica recurus are examined to de-
termine which r'»am!;iz;ationo of resource assignments wiil give the maxi.
mum return fcr each of the possible resource uiignmcnt;.

In the probiem choson for Machine [, there were six independent activity

functions. Some were relatively simple and exhibited a very high degree

of sequential independonce. Activity functions 3)(x) and gz(x) were of this
nature. At first glance, and independent from the problem as a whole, it
would be natural 'o assign processors to the cal- ulation of the various re- b,
turns vie a treeing program to miniinize the computaticn time., However, :
this was not done because the simplicity of the funci.ons involved made the

u”.

- -

SECTION V - PROGRAMMING

activity functions. It so ﬁappened that there were pairs of activity func-
tions whose rouiine execution times were similar. The outputs of these
activity function pairs were used as the inputs to the maximization routine-
that would determine for a given res&urqe the best allocation of that re-
source. In this manner, as soon as a pair of returns was genérated, the
maximization routine immediately calculated the best allocation, These

rmaximized returns were, in turn maximized with other maxirnized returns

until a table was generated giving the final allocation of any resource for a

maximum return (see Appendix III).

4

3
h
AT P R D R D]

The rnore complex routines, g3(x) and g4(x), exhibited parallelism that
could realistically be extracted to speed up problem solution. Portions of
these routines were broken away and executad in parallel. Additionally,

these routines were treed; that is, the number of processors assigned to

‘the ccmputation of returns doubled for each level of the tree.

The maximization routines took advantage of the inherent capability of the
sorting memory to determine the maximum return from two functions for
a given resource. - The returns for various combinations of resource allo-
cation were stored in memory wi'th-a. common name, with the lya.rger i'eturn_
automatiéa]ly sorted to the top whrere .it was picked oﬁ'. The recommended
resource allocation for the given resource was then stored in a table with
similar recommendations for all other va'lues of allowable resource. This

table was the goal of the problem.

With a given input resource, tiie recommended assignment then could be

' found that would generate the largest return,

The problem for Machine I was numerical in nature, required the gener-

, ation of tables, required table sorting, exhibited a high degree of parallel-
| ’ ism, and resulted in the development of treeing and timing tecaniques to
arrive 2t a reasonably oprimum solution time.
Problem soclution time for the 1ynamic programming problem on Machine
Fin:

I was 16 msec as opposed to 150 to 220 msev for the reguential machine

-60-

S S

e oAy o g 05§ s T RS T e SR T RS R TR M St e 1y ATl 2.

- el

SECTION V - PROGRAMMING

Solution time on Machine 1 was 9 to 14 times faster than the sequential

machine; this can be attributed to the availability of the many processors
capable of independent and simultaneous action on the contents of any word

in the multiaccess sorting memory.

- Processor loadirig reached a peak of 60 processing units out of a possible

512 proposed available processors. The average number of processors 4

for the problem execution time was only 22 (see Figure 11).

If the corv pui. had been fully utilized at the peak period on a larger prob- :
. lem, then the sr:ed advantage would hiave ranged from 512/60(9-14) = V

(76 to 119):1, In «ddition, many processors would have been available at

nonpeak times for other uses such as compiling, If the average loading

of the processors is.considered, then the speed advantage would be 512/

22(9-14) = (207 to 322):1.

4. MACHINE II AND THE COMPILATION PROBLEM

" The compilation problem for Machine II was chosen because it was

60

/\.

N

»
[}

‘7\\\\ T

Q 1,480 2080 4,320 5,760 7,200 8,640 10,080 11,820 12,960 14,400 15 740
TIME (MICRCSECONDS)

PROCESSOR USAGE
~N
o

Figure 11 - Processor Usaye

-61.

i e e AT 8 1 i of

e o : N . R LT Lt)
S PV P W VAL Y9l 1ok SO SN - e e el U i e el

.SECTION V - PROGRAMMING

believed that there would be a mgmﬁcant advantage to he able to compde
while snmultaneously executmg other programs. It was realued thet the
whole compiler could not be implemented in this study and hence a portlon‘
of the compiier was chosen to demonstrate feasibility. The portion chosen
was the scanning of the substitution statement and generation of the corre-

sponﬂ.ng object programs for a limited nvmber of typical operatlons.

" The prcblcm basically consu.ted of scanning an input stat ement, distin-

~ guishing between variables and nonvariables, determmmg precedence re-

lations of the operators, and forming a sequenze of machine instructions

that when executed would generate the desired result.

The scanner implemented was of the Po'ish type. " Each element of the sub-

stitution staterment was examined to determi..e if it was a variable or non-

E) T L g
,

variable. -

Variables are immediately transferr=d to the output string. Nenvariables.

or operators, if their precedence is equal to or less than the precedence
oi\the operator currently cn top of the stack, are transferred to the output
5 liét. As snon 1s an cperator is transterred to the output list, there is then
a triple composed of ‘wo oterands and one operator that are used to form

a sequence cf niachite instruciions. The triple removed from the output
list is replaced hy a vuriable ia the form of the triple's resultant address.
Depending upcn the operator, oune of a number of generator programs is
started that generates the actual machine language instructions. The gen-
erator programs cperate simultan=cuvsly with the scanner once the triple

" has been removed from the output list.

The operations considered ir the substitution statement were floating point

arithmetic, exponentiation, unary rinus, abs 'ute value, and equality (see
Appendix XIIH). '

The execution of the parallel compilation algorithm for Ma-hine II raquired
53.0 msec. Considering the number of statemei ts to be coripiled as N,

then the rates of the compilation time of Machine II tu that of the IBM 7090

AR e A e
o H

SECTION V_- PROGRAMMING

is N:27. The parallel compilation time is independent of the number of

statements and remains relatively constant at 54 msec. The time required
for sequential compilation increases linearly with the number of statements. 1
When the number of statements exceeds 27, the parallel processor time for

compilation is less thun that for the IBM 7090.

If 256 processors are available, then Machine Il can average 256/1.17 =

219 statements every 54 msec. The speed advantage would then be 219/27 =
8:] over the IBM 7090. If timin~had permitted one of the other parallel

PRI

compilation algorithms to be programmed, additional speed advantage would

have been realized.

RO TSR AP MU I < rromer e

B el i T e - R L R I R R o LI WAL SV G 3

SECTION VI . COMPARISON OF MACHINES I AND 11

Both Machine I and Macbhine 1l are composed of sorting networks, merging-
 separating networks, and processing units. Both have a large merging-
separating memory, but Machine 1I also has a smaller, full-sorting memory
(MPC). This additional hardware for Machine II is offset by the fact tﬁat the

processing units in Machine I are much more complex than those in Machine II.

~ -

A basic processor of Machine I censidered as an entity is not unlike the proc-
essors found in contemporary sequential ma'chines.v It has the normal arith-
metic, quotient, and index registers and aécess capability to atny word in
memory. Hence, with some small degree of effort, an existing program
could, with mod_iﬁcations consistent with changing from one machine to an-
other, be run on Machine 1 with only one processor as.signed. - Considering
speed of execution, the average problem so assigned wbu\ld be slower on

Machine I because of the increased instruction execution time. -

However, for the execution of an iterative program, the sequential execution
time increases linearly with linear data output while the time required for
parallel execution increases linearly with exponential increase of data oufput.
The exponeﬁtial increase is due to the binary treeing program used to assign
processors to a problem. The number of processors active on a problem via
the binary tree increases by a power of two for each level of the tree. The
tree could conceivably be ternary, octal, or decimal where from each node
‘or active prccessor, 3, 8, or 10 more processors are started. Some tech-
niques to minimize the time required to start these processors and to pre-
vent program monopoly of processors to the detriment of other programs ‘

are necessary for these options (see Appendixes 1II and XIV).

Machine II programs require data passing, index simulation, multiple test.
ing for branches, subsequent block testing, and varying degrees of instruc-

tion layout within a block, Simple existing programs easily incorporated in

-65-

g, g B e R 8 A N e e e AR SR I SRR 2 RS

SECTION VI - COMPARISON OF MACHINES 1 AND 1I

a Machine Il bl;ock might be executed as fast or faster than on a sequential
machine. The amount of parallelism at the instruction level would be the
determining factor, In this instance, the 96,6 usec required for data pass-
ing has been eliminated and the instructions most likely to be encountered

have execution times of 41.4 to 55.2 usec (see Appendixes XIII and XV).

I'reeing of processors is p_ermiésible in Machine Il and the same advantages
accrue as with Machine I. Requisite data for the consistent operation on and
generation of problem data must be passed to each activated processor. The
treeing process would be most useful for execution of programs operating on
independent subsets of the problem. Experience has shown that control prob-
lems develop when treeing is used to start processors operating on data lists

in which subsets of the data are not independent of each other.

Generally, it is expected that existing programs would have to be significantly

revised to take advantage of the parallelism found in Machine II.

Machine I programs are stored in the main memory and regardless of how
many processors are operating on a program, ~there‘ is only one copy of the
program, The same techniques used in writing an iterative loop for a se-
quential machine are used similarly in Machine I for writing programs that
allow multiple processing. Pertinent data naming lists, base locations, and
temporary storage addresses are passed to each activated processor. These
data are :.ored in the same relative registers of all processors active on the

problem and according to instruction are treated the same by all processors,

Index passing in the treeing operation requires temporary storage of the in-
cremented indices and a processor start with the first executed instructions

requesting the index values stored in the temporary locations,

Machine Il programs are also stored in main memory; however, copies of
this original are made in the MPC whenever it is to be executed. Multiple
executions require multiple copies., An extensive treeing of programs should
be accompanied by program disposal of unneeded data to prevent overloading

of the MPC and subsequent rejection of incoming program blocks.

.

SECTION VI - COMPARISON OF MACHINES 1 AND 1I

The two memories also require distinct instructions for accessing data stored

in them. This distinction is a consideration to be kept in mind when program-

ming; data generated by a program usualiy are found in the MPC unless stored

explicitly in the main memory, original data normally are found in the main

-

memory unless explicitly transferred to the MPC, .

The processors in Machine 1 are controlled more easily by the programmer
than in Machine II, Each procéssor called for in Machine I is rnade acﬁtive by
a specific instruction, Multiple processors usually are ‘“cal‘ledrfor by making
each activated processor execute a portion of the program, whicn in turn calls
for additional processors. The limit is reached by incrementing a’counter
for each processor staxjped. The count is passed to each‘proceésor started

and compared with some limit beyond which no more processors are started.

Processor usage in Machine 1I is not directly controllable by the programmer
in the sense of activating a processor explicitly by instruction., The program-
mer can segment the program into blocks, and squeeze instruction level and

block level parallelism out of his problem, but the processors only become

" active when a program block is stored in the MPC. Only those instructions

within a block whose operands are available are executed. The sequential
nature of a string of instructions is preserved by thz sequence of operand
availability. The parallel nature of independent strings is recognized by the

machine through the avaiiability ot the requisite operands.

The type of program parallelism most economically implemented on Ma.
chine I consists of the parallelism existing between independent blocks of a
program. Very short strings of independent instructions can be executed in
parallel but usually the cost of setting up indices to maintain control is pro-
mibitive and the short strings are periormed in sequence buried in larger in-

dependent strings.

In contrast, Machine 1l exhibits parallel execution capability on the same
levels as Machine I and in addition recognizes instruction level paralleham
independent of the programmer (see Appendix XV). Any independent strings
of instructions are executed as soon as the required operands are present.

-67-

i b5

s T s e e ISR S R T

i
W

SECTION VI - COMPARISON OF MACHINES 1 AND 1I

If ruch a string, for example, has as operands two constants that were passed
to the block containing the string, and possibly a similar string, then the two
strings, if of similar length,iwould generate their resuitant at the same time.
Howcver, speed is gacrificed to obtain this additional capability provided for
Machine Il by the MPC., Machine I is capable of obtaining and executing two
instructions every 30 usec. Machine II has an instruction execution time

ranging between 13.8 and 96,6 psec, depending on the instruction,

For bcth Machine I and 11, problem znalysis and flow charting should reveal
areas of potential parallelism. Flow charting should reveal areas of inde-
pendence within a program that can easily be formulated for Machine I or
Machine II. Completely independent blocks can be executed in any sequence.
Where théte is sequential dependence at some point in the program, then to
prevent waiting for a result it is best to have executed the relatively inde-
pendent block before the result is actually needed. This entails starting a
processor at some point prior in time by an amount of time equal to the time
required to generate the desired result. In Machine I, the result would be
stored in memory with su.ne name attached. This result would be available
directly to any processor possessing the name. In Machine 1I, the result
could be left either in the MPC or the memory. Leaving the result in the
MPC is undesirable because in this case the only block that can easily reach

the result is the subsequent block started.

Storing the result in main memory makes it available to any progr_m block
posgessing the name. The name in this case wculd have to be pasa=d along

or generated at the point where the independent parallel paths joined.

Flow chariing generally will not display .nétruction level parallelism that
Machine U recognizes readily., Only the actual machine language program

will show 1t.

The maintenance of a clean memory 18 8 necessity in both Machines ! and 11,
The demands are not nearly as stringent in Machine | as in Machine lI. Data
whoee i« 7. : has been outlived can either be erased promptly or accu-

mulated w. o ~sed collrctively., There 18 122y shance of overloading the

-68.

1 S T i ST

i llecanca o At

ET— % e R . o o .

SECTION VI - COMPARISON OF MACHINES I AND 11

main memory in Machine 1 than there is in overloading the MPC in Machine 1.
Main memory in Machine] is essentially working memory while the MPC i-
essentially working memory in Machine 1. All information generated in
Machine 1l resides at least temporarily in the MPC and may reside in the
main memory if explicitly stored there. So, it is apparent that the same de-
mands for a clean memory in Machine 1 also exist for Machine II, but Ma-
chine Il has the added requirements of absolute cleanliness in MPC at the

risk of trash accumulation and possible program lockouts from the MPC.

Sorting operations in Machines I and I! are accomplished almost independently
of programming efforts. If a list of items is given or is being generated, a
sorted list is available one machine cycle after the last item is placed on the
list. The programming consists essentially in placing items on the list and
naming each item the same. Since the names are ail the same, sorting pro-
ceeds through a comparison of the magnitudes of the data in the data fields of
the items, This process was used advantagenusly in the maximization routine
of the dynamic programming programs for Machire 1. Any item added to the
list occupies a position ordered relative to all other items on the list after

one machine cycle,

~69.

il o= 2 "

diiish o2

S S R R

SECTION VII - RECOMMENDATIONS FOR FOLLOW-.ON EFFORT

GENERAIL,

As a result of the work performed on this study, rnany areas in need of
further investigation have been identified. It is the purpose of tkis sec-

tion to describe some of these areas.

It is recommended that future work on this program be carried out with

the machine organization effort independent of the applications and pro.
gramming effort., There are many facets of the machine organization

work in need of further study, Lut it is velieved that the greatest knowl-
edge can be obtained if the prograrmming and applications efforts are not
forced to be continually modified as a result of machine chauges. Further-
more, Machines ! and Il contain many capabilities that have not been uti-
lized and hence it is believed that the application programming effort
should {ocus its attention on how to exploit this existing capability.

MACHINE ORGANIZATION

a. Parallel Nonnumeric Piocessor

It is recommended that the davelopment o{ the parallel nonnumeric
proceesor started in the study be continued,

1o

Para.lel input/Dutput

Without some means for the parallel inputting and outputting of data,
the parallel processor will lose much of ite speed advantage on rany
probiems, Even conventional computers are 1/0O bound on many
problems. especially those which process large formatted files, It
should be noted tiat the parallel processor organization, as it existe
¢t this time. is already capable of accepiing or tranamitting data on
many lines simultaneously. Hence. whai is neaded is a device that

'1‘.

PR

B e S CRT R UERUE S

e 4

o st

Hdet »"%Wmmw A.~r.»mwm>~mm»mﬁmw s S e %’%ﬁﬁm

!

AL e E . - - . RPN SERRra— e S

~ SECTION V1 - RECOMMENDATIONS

ja

ie capaBle of receivingor providing information on these many lines
at the same time. An approach should be developed or postulated

for further use in the study.

Inter ruBt s

The interrupt mechanism by which extra program conditiors are

~

sensed and acted on should be investigated and extended in the light

of the mult‘iprocessing facility of the parallel processor.

Input/output, processor and priority.interrupts may occur simul-

taneously and wil) require servicing.

Hardware, software, and logic techniques will be needed to devise a

method of solution.

- Means of enabling any set of interrupts for each of the programs be -

ing executed in parallel should bé developed; i.e., different programs

may specify different sets of interrupts to be recognized.
Priority

In any computing-installation, some form of priority is operative.
With a multiprocessor facility where the priorities of the problems
in the machine cover a wide range, a method of assigning processors

to problems is demanded.

The method of implementation may be absorbed by both the hardware
and software, Special instructions that allow specification of a prob-
lem's priority may be implemented. Some ideas for a dynamic pri- -
ority scheme were developed for Machine II, but they are in need of
elaboration and must also be added to the other machine organiza-

tions.

Multiaccess Systems

There is considerable current interest in multiaccess systems, such
as JOSS, in which many users can have simultaneous access to some

central computing facility., Parallel processors seem ideally suited

“72-

SECTION Vil - RECOMMENDATIONS - -

e -
TRl S S Ve s il s e el

-
S

(2N

jos

'

. APPLICATIONS - PROGRAMMING

AL BT i

to rr!ul'tiaccess computing. Implemented in a multiaccess system, a

X

-
b
4

parallel processor could handle, simultanecusly, on-line computing

requests from.many users. Unused processing units could be used

efficiently to do processing not requiring.on-line execution.

Hence, not only will a parallel precessor allow multiple user access

\
o

but will permit highly efficient hardware utilization. N

Other Applications of Machine Concepts

~

Portions of the computer organization, such as the sortii. network,
nave potential appiications other than in computers. As ‘hese por-
tions of the design are developed,. their other uses car also be in- -

vestigated.

Feasibility Model

In order to prove the concepts developed and to help the study of
items above, it is advisable to build a model of a sorting network.
It can be used as a multiaccess memory and by connecting some
small-scalf; computers, I/O gear, etc., to it, a parallel processor)
can ' ¢ built. The cost of such a-model can be extrapolated to arrive

at good cost figures for larger networks.

Macro Instructions

- Concurrent with etforts directed toward the design and efficient "1tili-

zation of parallel processcrs kas been the realization that processing
capabilities resident in parallel processors give rise to new ways of
thinking about and solving problems. Attempts to write parallel so-

lution models and express the operations involved in 2 compact nota-

tion have already led to the development of a preliminary system of =
macro instructions for a parallelvprocessor (see Appendix 1X). The
development of the preliminary list of macro instructions was due to -
an effort tc express compactly the operations charactericing ptoble_m;s e

-73.

S SIS

"ﬁ B+ i et

X

s Ay v ¥l v

it BB
B

IR eTY o o [PRSP SRV TR

o da.

.

FRREE Y

SECTION VII - RECOMMENDATIONS ° N

- b. Flow Diagramming Techniques

- C.

d.

and structuring possible methods of solution. .Investigations aimed
at the further development of macro instructions should suggest aew
conceptual modes in which problems and possil;le solution$ may be
analyzed. and provide insights into the nature and significance of
parallelism within a problem and methods for exploiting it by new

computational procedures.

-

Techniques to indicate parallelism in the problem on a flow charting
level are needed. Indications oif time iequired for completion of sec-
tions of a program would be useful ir allocating processors te 2nable

processor usage distribution.

Program Comparison Problems -

In many areas of investigation, appropriate problems should be
chosen as a ymeans of demuonstrating ana comparing the relative ef-

ficiency of the parallel processcor with a sequential machine. -

Large formatted file processing where the inpat/cutput ioad is high
could be used to compare system &fficiencies while exercising input/

output and interrupt areas of investigation.

Sample problems could dernonstrate the efficiency of the parallel com-
piler and execution of the object program. Subroutines using the
content-addressing and sorting capabilities of the paraliel processor

could be compared using the same problem.

This effort will aid in determining how to make use of all the capa-

bilities resident in the ranachine organization.

Comeiler

The investigation of the MAD compiler should be continued with a
detailed examinaticn of some of the other paraiiel compilation al-
goritams in Appendix XI. In particular, the statements currently

being considered should be extended to include Boolean expressions.

T o—

e s mi i e e e

SECTION VII - RECOMMENDATIONS

- This investigation naturally ieads to a consideratior of the tradeoff

tetween a fact compiler with relatively slow object-program execu-

-tion and a relatively slow compiler with fast object-program exeécu-

tion. In the former, maximurn parallelism resides in the compiler

and in tne latter in the object program.

It is believed that the compiler output may iniluence hardware or-
ganization and that pavallel execution of the object program may be

eacisr with a revised machine organization.

A closely related prodiem i3 e one of aliowing the programmer to

specify by statement the para:ielism in the problem.

Library Subroutires

A st,udy of typical subroutines generally available o computets should
be conducted. The cbjective would be to determine how the multi-

processing, associative, content-addressing, and sorting capaoilities

‘of ihe parallel processor can be used to execute these types of sub-

>

routines more efficiently.

R ey

EREIRERAS 240 PRI R e T e U S

g

}
1

1IST OF REFERENCES

- 1. Batcher, K. E.: A New Internal Sorting Method. Akron, Ohio,
Goodyear Aerospace Corporation, GER.

2. University of Michigan Computing Center: Michigan Algorithm
Décoder. Ann Arbor, Mich., June 1963,

- 5. Arden, B., Galler, B., and Graham, R.: "An Algorithm for
-~ Translating Boolean Expressions." Journal of the ACM, April B
-~ _ 1962. '

o OV R Ry e et R 8 RS TS

L
ok

REIE T

4. "Procedure Oriented Language Statements to Facilitate Parel-
lel Processing.” Communications of the ACM, May 1965,

-77-

MNCLASSIFIED -
Security Classification B

DOCUMENT CONTROL DATA - R&D

(Sscurity classilication of title. body of abstract and indexing annctation muet be entered when the overall report is cla«-ilied)

1 ORIGINATING ACTIVIYY (Corporate author) 2o REPORT SECURITY C LASSIFICATION
Unclassified
Goodyear Aerospace Corp . Izt cmour
3 REPORY TITLE
Advanced Computer Organization Study
LVolumes T and IT.
4 DESCRIPTIVE NOTES (Type of report end inclusive dates)
Final Repdrt August 196k - November 1065
8§ AUTHOR(S) (Last name. firat name. initisl)
kohrbacher, Donald L. ’
| .
6 F_PORT DATE 70 YOTAL NO. OF PAQES 75 NO. OF REFS
- Avril 1966 L
fa CONTRACT OR GRANT NO. 948 ORIGINATOR'S REPORT NUMI‘&(‘)
40 (£02) =3550 _
b PROJECT NO. GER‘12311‘
L oG
¢ :) $2. OTHER REPORT NO(S) (Any other numbere thet mey be sssigned
d. RADC -7
16 AVAILABILITY/LIMITATION NOTICES

Distribution of this document is unlimited. . o

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Rome Air ﬁevelopment Center
GAFB, N.Y, 13hk0.

13 amsTRacT. AOvanced general-purpose computer organizations capable of parallel data
orocessing were studied. To achieve maximum system performance from highly parallel
ed. Hence, the following three areas were investigated simultaneouslys

1. Applicaticns = Study of problems and their inherent degree of parallelism, and
Hevelopment of theoretical solution models far use on a parallel processor.

2. Programming - The programming of paralel solution models on the postulated
_pcmuter organizatinns,

3. Machine Organization - Developmeht of machine implementations capable of par-
1lel data processing,) '

is study resulted in the design of two computer arganizations (designated Machine

and Machine II) capable of parallel data processing and fast sorting and table seagch-

ng in memory. These machine organizations wers possible because of the development

pf a special memory that permits many processing and inputecutput units to access
memory simultaneously without conflict,

The applications effort was focused on the development of solution models which
exploited the maximum amount of parallelism resident within a problsm, Two major

broblems were investigated: a dynamic programming problem, and parallel compilation,
Detailed programs were written for the dynamic programming problem on Machine I arnx

computer organizations, new solution models and programming techniques must be develpp-

parallel compilation algarithm on Machine II, These same problems also were progr
n the IBM 7090 to provide a standard of comparison. In both cases, the parallel pr

essing capability of the machires afforded significant increases in speed of progr
ecution,

DD 7o, 1473 UNCLASSIFIED

Security Classification

il

e

Ciar g

UKCLASSIFIED

Security E_l‘nsiﬁcation

KEY WORDS

LINK C
RQLE WY

LINK B
ROLA LA

LINK A
RO . & L)

Cemputer
. Programming
Numerical Analysis

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address
of the contractor, subcontracter, grantee, Department of De-
fense activity or other organization (corporate author) insuing
the report.

‘2a. RF.PORT SECUNTY CLASSIFICATION: Enter the vver
all security classification of the report. Indicate whether
‘‘Restricted Data” is included. Marking {s to be in accord-
ance with appropriate security regulations,

2b. GROUP: Automatic downgrading is specified in DoD Di-
rective 5200. 10 and Armed Forces Industrial Manual. Enter
the group number. Also, when applicable, show that optional
markings have been used for G:>up 3 and Group 4 ac author-
ized.

3. REPORT TITLE: Enter the complete report title in ail

capital letters. Titles in all cases should be unclassified.
If a meaningful title cannot be selected without classifice-

tion, show title classification in all capitals in parenthesis
immediately following the title. :

4. DESCRIPTIVE NOTES: If eppropriate, enter the typ: of
report, e.g.,.interim, progress, summary, annual, or final.
Give the inclusive dv.es when e specific reporting period (-
covered, - .

5. AUTHOR(S): Enter the name(s) of author(s) as shown on
ot in the report. Enter last name, first name, middle initial,
If xilitary, show rank and branch of service. The name of
the principal athor is an absolute minimum requirement.

6. REPORT DATZ: Enter the date of the report as day,
month, year; or month, year. If more than one date appears
on the report, use date of publication,

74. TOTAL NUMBER OF PAGES: The total page count
should follow normal paginatiou procedures, i. e, erter the
number of pages containing information,

76. NUMHER OF REFERENCES: Enter the total number of
references cited in the report.

8a. CONTRACT OR GRANT NUMBER: 'f sppropriste. enter
the applicable number of the contract or grant under which
the report was written.

8b, 8, & 8d. PROJECT NUMBER: Enter the appropriste
military department identification, such as project numbee,
subproject number, aystem numbers, task numbaer, etc.

9a. ORIGINATOR'S REPORT NUMBER(S):: Entcr the offi-
cial report number by which the docuinen? will be identified
and controlled by the originsting octivity. This neuber myst
be unique to this report.

96. OTHER R.PORT NUMBER(S): If \he report has besn
assigned any other report numbers (either by the originato:
or by the sponaor), siso enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any lin-

itations on further dissemination of (b report, other than those

imposed by security classification, using standard stiutements
such as:

(1) *‘Qualified requesters may obtain copies cf this
report from DDC.”’

(2) ‘*Foreign announcement and disseminition of this
teport by DDC is not authc; .=d.”

(3) “U. 8. Government agencies may obtain copies of
this report directly from DDC. Other qualified DDC
users shal! request through

(4) **U. S. military agencies may obtaia copies of this
report directly from DDC. Other qualified use:s
shall request through

(5) ‘*‘All distributior of this report is controiled Qual-
ified DDC users shall request through

”

If the report has been furnished to the Office of Technical
Services, Department of Commerce, for sale to the public, indi-
cate this fact and enter the price, if known

1L, SUPPLEMENTARY NOTES: Use for additional expiana-
tory notes.,

i2, SPONSORING MILITARY ACTIVITY: Enter the name of
the departmental project office or laboratory sponscring (pay-
ing for) the research and develogment. Incilude sddress.

13. ABSTRACT: Enter an abstract giving & brief and factual
summary of the document indicative cf the report, even though
it may also appear elsewhere in the body of the technical re-

port. If additional space is required, a continuation sheet shall’
be attached.

It is highly desirable that the abstrect of clasaified reports
Le uncluseified. Each paragraph of the abstract shall ¢nd with
an indication of the military security classification of the in-
formation in the paregraph, represented as (T3), (S). (C). or (U)

There is no limitation on the length of the sbatract. How-
ever, the suggested length is from 150 to 228 words.

14. KEY WORDS: Key words are technicelly meanmnghil terms
or short phranes thet charecterize 4 report and may be used ss
index satries for catsloging the report. Key worde must be
selected so thet no security classificstion is required. ldenti-
ﬂot_l. such as equipment mode! designation, trade name, militery
project code asme, goographic location. may be used se key
words but will be (ollowed by an indicetion of techaicel con-
text. The susignment of hinks, rules. sad weighta s optional.

" -

Security Classification

