
RADC-TR-66-7, Volume I
Final Report

ADVANCED COMPUTER ORGANIZATION STUDY

0 Volume I - Basic Report

SmDonald L. Rohrbacher

TECHNICAL REPORT NO. RADC-TR- 66-7
April 1966

Distribution of this document is unlimited

CLEAR IN G110 US E
F O P, F PnD-E'A , sCU NT FIC A N D

-'T A. iN•;O•-MAT1ON

-,jie.p I micof iehel

(I Information Processing Branch

Rome Air Development Center
Research and Technology Division

Air Force Systems Command
Griffiss Air Force Base, New York.

When US Governmen't drawings, specifications, or othzr data are used for any purpose other
than a dvfinizely related government procurement operation, the government thereby incurs
no responsibility nor any obligation whatsoever; and the fact that the goverr~ment may have
formulated, furnished, or in any way supplied the said drawings. specifications. or other

data ji not to be regarded, by implication or otherwise, as in any manner licensing the
holder or iny other person or corporation, or conveying any rights or permissivn to manu-
facturer, use, or sell any patented invention that may in any way be related thereto,

Do not return this copy. Retain or destroy.

ADVANCED COMPUTER ORGANIZATION STUDY

Volume I - Basic Report

Donald L. Rohrbacher

Distribution of this document is unlimited

i$

Wi

FOREWORD

This technical documentary report records the efforts and achieve-
ments on the advanced computer organization study conducted by Goodyear
Aerospace Corporation, Akron, Ohio. The secondary report number assigned
to this document by the company is GER-12314. This report is published
in two volumes: Volume One, Advanced Computer Organization Study, Basic
Report, and Volume Two, Advanced Computer Organization Study, Appendixes.

The study was conducted for the Rome Air Development Center (RADC)
Air Force Systems Command, wuder Contract AF30(602)-3550, Project h594,
Task h5oW06. The PADC project monitor was Mr. Fred Dion, EMIIT. The
report covers the 1i-month period ending 30 November 1065.

ADpreciation is extended to Dr. John Holland, University of Michigan,
whose consulting services were extremely valuable in both the development
and concep'ion of many Df the ideas presented. The major contributors
to tt s study wereD. L. Rohrbacher (project engineer), Dr. K. E. Batcher,
P. A. Gilmore, and G. W. Lahue. Substantial contributions also were made
by Go P. Elliott, Dr. C. C. Foster, and U. C. Gilliland.

This technical report has been reviewed and Is approved.

Approved:T1IAN

Chief, 1 o Processing Branch

Approved: ..ýN

Colon,. • AF//
Chief, intel and Info Processing Div

FOR THE COMMANDER:

NGI J BELMAN
Chif, Advanced Studios Group

ii

ABSTRACT

Advanced general-purpose computer organizations capable of parallel data

processing were studied. To achieve maximum system performance from

highly parallel computer organizations, new solution models and programming

techniques must be developed. Hence, the following three areas were investi-

gated simultaneously:

1. Applications - Study of problems and their inherent de-

gree of parallelism, and development oi theoretical so-

lution models for use on a poarallel processor

2. Programming - The programming of parallel solution

models on the postulated computer organizations

3. Machine Organization - Development of machine imple-

mentations capable of parallel data processing

This study resulted in the design of two computer organizations (designated

Machine I and Machine 11) capable of parallel data processing and fast sorting

and table searching in memory. These machine organizations were possible

because of the development of a special memory that permits many processing

and input-output units to access memory sinultaneously without conflict.

The applications effort was focused on the development of solution models which

exploited the maximum amount of parallelism resident within a problem. Two

major problems were investigated: a dynamic programming problem, and par-

allel compilation.

Detailed pograms were written for the dynamic programming problem on Ma-

chine I and a parallel compilation algorithm on Machine II. These same prob-

lems also were programmed on the IBM 7090 to provide a standard of compari-

son, In both cases, the parallel processing capability of the machines afforded

significant increases in speed of program execution.

-iii-

.,4

Nt

TABLE OF CONTENTS

Section Title

I INTRODUCTION

II SUMMARY 3

1. Approach 3

i. Machine Organization 4

3. Applicati ng s. 7

S5. Comparison of Machines I and U. 8

6. Reconmiendtions for Follow-On Effert 9

I WI MACHIINE ORGANIZATION

1. Introd(tction

"2. Flexible Intercommunicatin 1

3. Sorting and Merging-Separating Networkm . . . 12

4. Machine I Organization 2

5. Mat hine II Organization 23

6. Parallel Nonnumn:eric Processing 31

"7. Cont lusions 35

IV APPLICATIONS EFFORT 37

I. GCneral 37

2. Nuierc Problem Area 37
a. Introduction7

I.. -

TABLE OF CONTENTS

Section Title PA.e

b. Dynamic Programming Technique . . 38
c. Other Techniques 44

3. Nor-numeric Problem, Area 48
a. Introduction 48
b. Parallel Compilation 49

V PROGRAMMING 55

1. Machine I 55

2. Machine UI 57

3. Machine I and the Dynamic Programming Problem 59

4. Machine II and the Compilation Problem 61

VI COMPARISON OF MACHINES I AND II 65

VII RECOMMENDATIONS FOR FOLLOW-ON EFFORT,. 71

1. General 71

Z. Machine Otganization 71
a. Parallel Nonnumeric Processor 71
b. Paraliel Input/Ouzpi;t 71
c. Interrupts '7
•. Priority. 7?.
e, Multia,:-ess Systtvns 72
I. Other Applications of Machine Concepts. 7 7i
1. Feasibility ',od 73

3. Applicalions - Prograniming 73

a. MAcrc. In~xtructions 73
. Flow Diagramrtnung Tecthniques.. 74

c. Prostram Comparison Problemr... 74
't. C OF REr................................. 74

L1.I7 i F O F RE F T"NCFS.- 77

LIST OF ILLUSTRATIONS

Figure Title P

I Symbol for a Comparison Element 13

2 A I"-NOR Comparison Element 14

3 Diagram of a Multiaccess Memory 16

4 A Multiaccess Memory with 2q - 7pl Words and 2P
Requests 20

5 Block Diagram of Machine I 22

6 Parallel Computation of a Seventh-Degree Polynomial 26

7 bl•ck Diagram of Machine Ii. 28

8 Examlple o; a Program Structure in the MPC 30

q. EXmpie Fata Structure with a Program Working on
Sev'ural Parts of It Concurrently 33

I(Paralh~l Co'mpilation Aigorithm 52

11 Protessor Usage 61

lAST OF TABLE-S

('tt1rAt tteriotc, of Merging i*WJ Sorting Networkh . €

11 ~ Sample |lrivrait fgr Paralr* (1nCmpitation of ,vvn.h

I. Pr' d ' trriy. .•......

'."

-VI:I.

-sr2-

dr.

SECTION I INTRODUCTION-I
The next major advance in computer capability will result

from radical changes in basic computer organizations rather

than from increased computing speed. These new computers

will be highly parallel machines capable of performing many

-d'£ferent operations simultaneously. Such advanced computer

organizations will necessitate basic changes in programming

and structuring of solutions to problems. Unrder Contract

AF30(602)-3550, Gooayear Aerospace conducted a 14-month

stud, and, investigation of such computer organizations. Ad-

vanced general-purpose computer organizations capable of

parallel data processing were investigated. This report pre-

sents the approach, results, and conclusions encompassing

the application, Frogramming,- and machine organization as-

pects of the study.

Section II summarizes the program including some of the

more significant results and-conclusions. The remainder of

this volume presents the-major efforts in gieater depth.

Volume Two contains the appendixes, which detail the various

study efforts.. The appendixes are referenced at the appro-

priate points in Volume One.

"Nt

-p:

SII-1-

iii I I i I H -nuln In n nN~ nm m • iu u-I~ll I • il

SECTION II- SUMMARY

I. APPROACH

Tire primary objective of this program was the study and development of

advance-d computer organizations. The study resulted in the design of a

general-purpose computer capable of parallel data processing. To achieve

nmaximum understanding of parallel processa1I und the computer configu-

rations required to achieve it, and also to avoid generalizations con,'rn-

ing parallel proce-ssing, the study effort was focused on the developi-i -at

of only two machine organizations (Machines I and II). Furthermore, oily

two problems (dynamic programming and parallel compilation) , rere ana-

lyzed in depth, with parallel solution models being de-veloped and detailed

computer programs written.

To achieve maximum system performance from highly parallel compute-:

crganizations, it is necessary to develop new soluLioni models and program-

ming techniques. Hence, the following three areas were investigated, si-

multaneously:

1. Applications - Study of problems and their inherey't-

degree oi parallelism, ind develorrnent ot theoreti-

cal solution models for use on a parallel processor

2. Programming - The programming of p arallet solu-

tion models on the postulated computer organizations

3. Machine Organization - Development of machine im-

plementations capable of parallel data processing,

with modifications made in accordance with the de-

veiopments in the applications and programming

areas

.-3. .

SECTION U - SUMMARY

2. MACHINE ORGANIZATION

Thce largest problem in the design of a computer capable of parallel data

procossing was the design of the communication facility between the proc-

essor. Ideally, eacn processor should be allowed to communicate with

any' other processor. -Machine organizati,%ns such as the SOLOMON ap-

proach the communication problem by allowing each processor to commu-

nicate with only a small number of the other processors. However, this

technique requires the structuring of problems so that the required com-

i"nunication is along the paths built into the machine. Since some problems

cannot be struccured to fit the particular machine, the use of such machine3

is restricted.

Two sorting techniques developed at Goodyear Aerospace provided the ba-

sis lor a practical solution to this communication problem. Special sort-

ing and merging-separating networks based cn these techniques allow any

processor to communicate with any other. The basic element of sorting

and merging networks is a comparison element. Such elements accept and

compare the magnitude of .vo input words and order the words on the out-

put. These networks made possible a memory organizati3n having the fol-

lowing characteristics:

1. The contents of the memory are -naintained in nu-

merical order

2. "It has a content -add:-essing capability

3. It permits invny Processors and I/O units to access

memiory sirm.ltaneousiy withou' conflict (for exam-

ple, 1024 simultaneous accnss.v.s for a 321.000-word

memory)

The Machine I organization utilizes this memory in ccnj,,ction with many

processing units and I/O devices. Thc resulting computer has the fol_*,)j.-

ing features:

1. Parallel data processing capability

-4-

SECTION II - SUMMARY

2. Flexible cbmmunication between any processors

3. Parallel 1/0 cl-annels

4. Freedom of processor assignment (no need to re-

program if processors are added, if a processing

un;it fails, or if other programs are run simultane-

ously)

5. Fast sorting and table searching in memory

Machine II was de-signed using the same basic sorting and mergin-g-sepa-

rating networks as Machine I. However, an additional sorting network,

called the multiprocesscer control (MPC), was added to assign tasks to the

processing units. A block of instructions is read into the MPC .nd all in-

structions that can be executed simultaneously are automatically assigned

to processing units for execution. Machine II has the same basi.- capability

as Machine I plus the added advantage of the MPC. However, the proces-

sor assignment capability possessed by the MPC is restricted to those sets

o• instructions that can be fitted to-a treelike structure.

The development of Machine I and Machine II comprised the major portion

of the machine organization effort. However, some embryonic ideas were

developed for an organization intended primarily for parallel nonnumeric

processing. It was found that the characteristic distinguishing numeric

from nonr_-umeric problems is the addressing of operands. In a numeric

problem,- most operands are addressed by their unique labels; in a non-

numeric problem, most operands are addressed by their properties (at-

tributes). These two methods can be called "explicit addressing" and "im-

plicit addressing, " respectively. Sorting and merging-separating networks

possess the kinds of properties needed for implicit addressing.

3. APPLICATIONS

Efforts in the applications area were directed toward the analysis and de-

veloprnent of solution models suitable for implementation on a pa:rallel

-5-

SECTION H - SUMMARY

pr',cessor. Problems of contempoi-ary interest were examined to deter-

mine the degree of parallelism resident within them. Problems were

I& restructured to the extent that greater parallelism could be achieved. So-

lution models were-then specified to exploit the maximum amount of paral-

lelism resident within a problem consistent with the parallel processor

configurations developed under the machine organization area of the study.

Dynamic programming was the major numeric problem area examined.

This is a mathematical technique devised by Richard Bellman for solving

certain types of maximization problems. Analysis of the technique re-

vealed the existence of extensive inherent parallelism. This was exploited

in a solution model that specified an extensive restructuring of the tech-

nique. The restructured solution model made possible significant gains

in speed of execution on a parallel processor.

Several other numerical problems were studied, including Jacobi's method

of eigenvaI-ue determination, relaxation solution for a system of linear al-

gebraic equations, and numerical solutions to Lapla-ce's equation. Each

technique possessed sufficient inherent parallelism to make good use of

the parallel processing capability in the machine organizations.

The parallel compilation of higher programming language statements was

chosen as an example of a nonnumeric problem for major consideration.

This choice Wras quite natural since investigation intQ the structure of par-

allel processor configurations and parallel execution of coded routines un-

avoidably led to the consideration of-parallel compilation. Parallel corn.-

pilation would permit all processing units not being used in execution of

programs to be utilized in the compilation of the next programs to be exe-

"cuted. This would maximize the utilization of the parallel processor's

hardware.

It was found that not only could many statements be compiled simultane-

ously, but parallelism also could be exploited in the compilation of each

individual statement. Several parallel compilation algorithms were de-

veloped.

-6-

- i

SECTION II - SUMMARY

A short effort was directed toward the development, of a programming
language designed specifically for a parallel processor. The goal was to

develop a language that could compactly denote the execution of parallel

operations and that would allow, and indeed promote, ease of conceiving -

and expressing the strutcture of parallel 5c'ution models. The work could

provide the-basis for future expanded program effort.

4. PROGRAMMING

The final proof of the usefulness of any computer organization rests with

tht programmer. In this study, two parallel processor programs were

written. The parallel solution model for the dynamic programming prob-

lem was programmed on Machine I and a parallel compilation algorithm

was programmed on Machine II. In addition, sequential solution models

for the same problems were programmed on the IBM 7090 computer to

provide a comparison. Since the primary objective vas to determine the

needed machine capabilities and programming techmiques, no attempt was

made to optimize the programs and extract maximum parallelism from the

problems.

Problem solution tirme for the dynamic programming probletin on Machine I

was 16 msec as opposed to 150 to 220 msec for the sequential machine.

Therefore, solution time on Machine I was 9 to 14 times faster than the

IBM 7090 computer. This can be attributed to the availability of the many

processors ca-able of independent and simultaneous action on the contents

of any word in the multiaccess sorting memory.

Processor loading reached a peak of 60 processing units out of a possible

512 proposed available processors. The average number of processors

for the problem execution time was only 22.

Had the problem been sufficiently large to use the full 512 processors at

the peak period, Machine I would have had a speed advantage of 76 to 119

to 1. In addition, many processors would have been available at nonpeak

times for other uses, such as compiling.

-7-

I
SECTION II - SUMMARY

The execution of the parallel compilation algorithm for Machine II required

53.6 msec. Considering the number of statements to be compiled as N,

then the ratio of the compilation time of the IBM 7090 to that of Machine II

is N to 27. The parallel compilation time is independent of the number of

statements and will remain relatively constant at 54 msec. The time for

sequential compilation increases linearly with the number of statements.

When the number of statements exceeds 27, then the parallel processor

time for compilation is less than that for the IBM 7090 computer. If 256

processors are available, then Machine HI can average 219 statements

every 54 msec. The speed advantage -would then be 219/27 = 8 te I over

the IBM 7090. It is believed that if time had permitted one of the other

parallel compilation algorithmrs to be programmed, additional speed ad-

vantage would have been realized.

5. COMPARISON OF MACHINES I AND II

Both Machine I and Machine II are composed of sorting and merging-sepa-

rating networks and processing units. Each has a large merging-separat-

ing memory; Machine II also has a smaller full-sorting memory (MPC).

This additional Machine U1 hardware is offset by the fact that the Machine I

processing units are much more complex.. The type of program parallel-

ism most economnically implemented on Machine I consists of the parallel-

ism. existing be-tween independent blocks of a program. Very short strings

of independent instructions can be executed in parallel but uLually the cost

of setting up indices to maintain control is prohibitive.

In contrast, Machine II exhibits parallel execution capability on the same

levels as Machine I and in addition recognizes instruction level parallelism

independent of the programmer. Any independent strings of instructions

are automatically executed as soon as the required operands are present.

However, speed is sacrificed to obtain this additional capability provided

for Machine II by the MPC. On a strictly sequential program, Machine I

can obtain and execute two instructions every 30 Visec, while Machine II

has an instruction execution time ranging between 13. 8 and 96. 6 ILsec, de-

pending on the instruction.

-8-

* _ • A. _mi -

SECTION II - SUMMARY

t

The basic processor of Machine I considered as an entity is not unlike the

processors found in contemporary sequential machines. It has the normal

arithmetic, quotient, and index registers and access capability to any word

in memory. Hence, with some small degree of effort, an existing program

could be, with modifications consistent with changing from one machine to

another, run on Machine I with only one processor assigned. Machine II

would require more extensive reprogramming of the existing program and,

generally, it is expected that the program would have to be significantly

revised to take advantage of the parallelism within the machine.

6. RECOMMENDATIONS FOR FOLLOW- ON'EFFORT

Future work on this program should be carried out with the machine or-

ganization effort independent of the applications and programming effort.

While many facets of the machine organizaticn work need further study,

the greatest knowledge can be obtained if the programming.and applicatiors

efforts are not forced to be continually modified as a result of machine

changes. Furthermore; Machines I and II as they are currently defined

have many capabilities that have not been utilized and hence it is believed

that the applications and programming effort should focus attention on how

to exploit these existing capabilities.

Items suggested for further study include the following:

1. Machine organization

a. Parallel nonnumeric processor

b. Parallel I/O

C. Interrupts

d. Priorities

e. Multiaccess systems

f. Other applications of machine concepts

g. Feasibility model

2. A oplications and programming

a. Macro inst .'uctions

"-9-

- I I I l l l

SECTION II- SUMMARY

b. Flow diagramming techniques

c. Program comparison problems

A. Compiler

-e. Library subroutines

-10-

SECTION III - MACHINE ORGANIZATION

1. INTRODUCTION

Multiprocessors that possess a flexible communication structure can be

built. The need for such structures is discussed and the networks afford-

ing this capability (sorting networks) are described. Three machine or-

ganizations using these networks are presented. They differ mainly in

their machine language structure; these differences af'fect the utilization

of the flexibility in communication afforded by the hardware.

2. FLEXIBLE INTERCOMMUNICATION

The largest problem in the design of any multiprocessor is the design ef

the communication faciiities between the processors. If two or more proc-

essors are working on the same problem, they must be able to communicate

with each other. One technique is to allow each process r to communicate

with only a small number of the other processors (limited intercommunica-

tion). The corr.inon form employed is a two-dimensional array in which

each processor can communicate with its neighbors to the right, left, up,

and down. This technique gives rise to the question of structuring prob-

lems "space-wise" so that the communi-ation required in the problems is

along paths built into the machine. Some problems cannot be structured to

fit the particular machine, and thus this technique is good only for limited-

purpose mac hines.

Another technique is to allow each processor to commruinicate with any other

processor (flexible iritercomnimunication) The largest problem here is to

do it without an inord;nate amouni of hardware. One solution is to build

what looks like a telephone exchange and allow only a small number of the

processors to converse at any one time. This gives rise to the question of

-11-M

4!

SECTION I!I- MACHINE OP.GANIZA7ICJN

structuring problems "time-wise" so that at no time will problems require

niore conversations than the machine w-ll handle. Usually, this is so com-

plex that no consideration is taken of it in the programming of problems;

any tie-ups in the communications that occur are accepted as a fact of life.

Thes- ~ons ide rations lead to a study of networks to see if any networks ex-

ist which, without an inordinate amount of hardware, will allow n input

lines to be connected to n output lines with any permutation (n may be in

the hundreds ot thousands). Such a network would allow -flexible intercom-

mnunication without con-ununication "tie-ups, " as discussed below.

3. SORTING AND MERGING -SEPARATiNG NETWORKS

Aniy network capable Df sor~ting (arranging in numerical order) a set of data

can be used as a flexibie communicationi network. The input lines send in

iteini oI data tagged-with output-device addresses. The network sorts the

data or. the tags and the devices on the output iines read their respective

data items. Two sorting techniques develnped at Goodyear Aerospace,

odd-even .13orting Iaand hi-tonic sorting (see Volume Two, Appendix V),

have the right kind of charac~eristics for this problem.

The basic element of a sorting network and a merging network is a corn-

parison element. This element has two inputs and two outputs (see Figure

I). When two n'irbers are applied to the inputs, the element Compares

their values; and peesents the higber-.valued number on its H output and the

lower-valued number on its L output (if they have equal vaiiues, their COW.-

mon valuie is presented on both outputs). Many different realizations of a

comparison element are possible, including the il-NOR realization shoýwn

in Figurt' 2, which operates with data transferred serially, and the paral-

lid transfer realization described in Volume Two, Appendix VII,

A sorting network is buLilt uip from merging networks by the well-known
"!sorting-by-rerging" technique; for example, te sort right items, first

a Speio numbers '.n the text refer to items in the List of References.

SECTION III - MACHINE ORGANIZATION

OF A > B. THEN L = S AND H L A

IF A < U, TMEN L = A AND M = S

Figure I Symbol for a Comparison Element

compare successive pairs to form fouz ordered lists of length two, then

merge these lists two at a time to form two ordered lists of length four.

then merge these to form one ordered list of length eight. A merging
nvtwerk can be constr'ucted from comparison elemeskts using the odd-even

I
technique or the bi-tonic techniqizc of Appendix V. The con.trurtion of

udc.-eve. rmergng networks and the construction oi bi-tonic networks are
described in Item 3 of Appendix VI. Table I illustrates various charac.
teristtcs of merging ntctworks and sorting networks constructed by these

two e C Oliques•,

As att wcirmple, a sorting network for 1024 items would have M, 14...' la

-1A .! 4, 06 o lements if butit using tho odd-oven trrhniqute. A compa•iston
elrnitent *,_,h as that of Figure I should realise a delay time of loes than

100 nwe #,o a .. i-04-ttrm sorting network from these elemente would sort

a lotl thanr ýS. , user. This Mlhustraoes the main characteristtc of these

sorting.- etwrks: Uarge set% of items can be sorted quickly. which makes
them pra ctit-Al for th -tmvinuni-catin -etworks of multiprocessors. Tr-*

-13-

44

'Max

j $1'SECTION Il - MACHINE ORGANIZATION

. 8 A)_

I -I

--.

j C LO(

%k (A

-<1, RESET

Figure 2 - A 13-NOR Comparison Element

-14-

SECTION III - MACIUNE ORGANIZATION

TABLE I - CHARACTERISTICS OF MERGING AND SORTING NETWORKS

Characteristic Odd-even Bi-tonic

Levels required to merge 2p

items with 2p items p + 1 p + I-

Comparison elements required to -

merge 2p items wizh 2p items p2p + i (p + 1)2p-

Levels required to sort 2P items p(p + 1)02 p(p + 1)/2

Comparison elements required to

sort-2p items (p- Z - p + 4)2 P -2 1 (p2 + p)2 p--2

other characteristic is the amount of hardware involved. The only other

"well-known network that will flexibly connect 1024 inputs to 1024 outputs

is a 1024 by 1024 crossbar with 1,048,576 cross points; the 24,063 ele-

ments of a sorting network compares quite favorably.

When a multiprocessor is considered, there is the additional requirement

of buffering on the communication network. Without buffering, the pro-

gramming of problems would be rmrnplicated by the need for planning each

transfer carefully so no two processors would want tc send data to a third

processor simultaneously. This leads to consideration ef using the com-

muni.cation network as the main machine me,ýmory. By this means, not only

is buffering provided but also freedom in processor assignment. It would

be no l6nger necessary to know which processor is doing what; to transfer

a variable frorn one processor -to another, one processor stores the vari-

able in memory with a given label and the other processor reads it by re-

ferring to the label. Neither processor needs to know the location of the

other. Freedom of processor assignmen' allows a program to be written

without worrying which processers are unavailable because of other con-

currently operating programs or because of processor malfunctions.

Discuissed lihre is modification of a sorting network to form a multiaccess

mnemory, and construction of a simpler device, a merging-separating

-15-

OIii

V
SECTION MI - MACI-W-E ORGANIZATION

/

memory. Storage capability can be added to a sorting network simply by

adding it to the comparison elementn. For instance, the 13-NOR com-

parison element of Figure 2 can be modified by inctuding a shift register

stage in each of its-outputs !or inputs). When a sorting network is con-

structed-out of these modified elements (an odd-even sorting network

would require extra stages in certain places to equalize delays), the re-

sult is a set of shift registers interconnected sc that their respective con-

tents are arranged in order while being shifted.

A-diagram of a multiaccess memory is shown in Figure 3. The output of

the sorting network travels through some control logic elements into a set

of shift registers and then to the input of the sorting network. A typical

memory word has the followving format.

ADDRESS DATA

S~HIGH END

SSHIFT CONTROL /.•SORTING NETWORK

REGISTERS" LOGIC 41.---WITH STORAGE

, CAPABILITY

_LOW END INPUT

SBYPASS

Figure 3 - Diagram of a Multiaccess Memory

-16-

SECTION IlI MACHINE ORGANIZATION

Empty words are cleared to 7eroes and no addresscs are used above a cer-

tain limit (these addresses will be used ir. reading as explained below).-

The shift registers are long enough to handle the address field. The scrt-

ing action sorts th words by their addresses with all empty words accumu-

lating at the low %-nd of memory. To write a word, ome of the input lines

interrupts the recirculation of one of the '.mpty words and substitutes an

address and item of data in the format shown ahwve. The sorting action

will then place it in correct relation with the other words in memory. Many

writes may take place simultaneously.

To read a word, one of the input lines sends in a read request or a read

and erase -equest. These have the following -formats.

ADDRESS TO BE READ t0 I OUTPUT LINE 10 0 REA REQUEST

ADDRESS TO BE READ 01 OUTPUT LINE 0 -0 READ AND ERA4SE REQUEST

The sorting action moves the request to a position just below the word re-

quested. When the 10 or 01 pattern following the address field passes

through the control block, the following action occurs:

1. The sorting netw-ork output of the word above the

request is switched to the shift register of the re-

quest (this causes the data field of the word requested

to replace the request's data field)

2. The sorting network output of the request bypasses

the shift register (substituting the output line code

for the address)

3. If the request is a read and erase and the addresses

agree, the output of the shift register of the word

above the request is gated off (substituting an empty

word for the menmory word)

-17-

of

i - SECTION m - MAChKNE ORGANIZATION

4. If the addresses agree, a 1 1 is substituted for the

original request code.

IE more than" one request is below a memory word, somewhat similar ac-

tion occurs to transfer the memory word data field to all requests. As

a result of this action, the request is modified to look as follows:

OuTPUT LINE 11 DATA, IELO OF JEMORY WORD

Output line codes-have higher values than addresses so the request trav-

els to the high end of memory on the succeeding movement through the

sorting-network, arriving at one of the output lines. To make sure it

gets to the correct output line, a read request is entered each memory

cycle for each output line whether the particular line wants to -read or

not; chis guarantees that a request will appear on each output line every

cycle and that the sorting action will arrange them in numerical order.

Many reads may be taking place simultaneously along with many writes.

This memory-has some characteristics that make it different from nor-

mal computer memories:

1. It has many input lines and many output lines, all

reading and writing without queuing problems

2. More than one word may be stored at a given ad-

dress. Instead of overwriting an old word, a new

word overwrites an empty word. Words at the

same address will be ordered by their data fields

and a read request to the address will read the

least-valued word.

3. Some addresses may be lacking words.

-'" Characteristic (2) is valuable for sorting a set of items; they need only

be stored with the same address. Characteristic (3) can be used to

-18-

SECTION III - MACHINE ORGANIZAfION

synchronize several processors working on the same problem; if proces-

sor Y expects an item of data with label Z from processor X, it need only

look for address. Z to see if processor X has stored it. Only new words,

read requests, read and erase requests, and erased words are changing

places in the memory; most of the sorting capacity of the network is not

being used. This consideration leads to investigation of simpler networks.

If the read requests, the read and erase requests, and new-words are oi-

dered before entering memory, then only a merge is needed to combine

them with the ordered-memory words rather than a complete sort. To

read out, a means is required for moving all requests to one end of memory

after they have read their respective memory words; this is called sepa-

rating. A memory using these techniques is called a mergiihg-separating

memory.

Merging causes words at one end of memory to be "sprinkled" throughout

memory and separating causes words "sprinkled:' throughout memory to

be collected at one end of memory; this suggests that the topology for a

separating network should be the inverse of the topology for a merging ne;;-

work. Item 3 of Appendix VI describes separating networks based on the

inverses of bi- tonic merging networks.

Item 3 of Appendix VI also describes a multiaccess merging-separating

memory with serial data transfer, Generally speaking, new words and re-

quests are sorted and then merged with the memory words. Words to be

separated out (read requests and erased words) are flagged and then sepa-

rated out by a separating network. The read requests and erased words

are sent to another separating network, which splits these two sets. The

read requests are then sorted with respect to output rhannel codes and sent

out. Figure 4 shows the block diagram.

Items 2 and 3 of Appendix VII describe parallel merging-separating memo-

ries. Words are transferred in parallel rather than serially, leading to

about a 2-to- I speed advantage over serial memories. The amount of

equipment in a parallel memory is greater than that of a serial memory

-19-

!.

SECTION IMI - MACHINE ORGANIZATION

CHANNELCHANNEL RETURNS

REQUESTS

¢N

g
N2P + 1

SORT RE-SORT

2P REQUESTS OF 2P 2P I

ERASED f,

2 P EMPTY WORDS

WORDS WO

BOTTOM BOTTOM
GATE GATES

0 N -2 T RA N S F ER -- -N 2 q

TOP TOP i

2P +

Figure 4 - A Multiaccess Memory with Zq - P + I Words and 2P Requests

-20-

-. No W_ NM OW40.

ARf

SECTION III - MACHINE ORGANIZATION

but not by a large factor. There are more kinds of elements than

in the serial version. A comparison between serial and parallel memories

should include wiring-studies as this may be the determining factor in a

choice between them.

Either version of - merging-separating memory is faster than a sorting

memory of the same capacity because merging is faster than sorting. To

illustrate this, consider a 32, 768-word memory with 1024 access lines.

A sorting memory would require 120 steps to sort. Two sort cycles are

required to read a word: one to get the request to the word, one to get the

request from the word to the output channel. Words could be entered eaci

sort cycle so the memory cycle time is 120 steps and the access time is

240 steps. A parallel merging. separating memory requires 55 steps to

sort the 1024 new items, 15 steps to merge, 15 steps to separate out eras-

ures and read requests, 11 steps to separate erasures from read requests,

and 55 steps to sort the 1024 read requests by channel number. This is a

total of 151 steps for accessing. The cycle time of the parallel merging.

separating memory includes 30 steps: 15 to merge, 15 to separate. If

the step times were equal, the parallel merging-separating memory would

have a cycle time 1/4 that of the sorting memory Lnd an access time 151/

240 that of the sorting memory. These figures are not quite true because

separating steps are longer in the inerging- separating memory; circuit

studies using typical integrated- circuit modul, s indicate a 2-to-I ratio be-

tween separating and otnier steps. Using this result, an advantage of 2.67

1o I is obtained in cycle time and a 1. 44-to- 1 advantage in access time for

he merging- separating miiemory versus tie sorting memory.

Hardware requirements of the three memories (sorting, serial merging-

separating and parallel merging- separating) are not very different. All

three require, a shift register stage for each bit and this seems to be a nip -

.o)r t(st item. Wiring studies probably will show the largest differences

in tost between the three types. Machine organizations using these memot-

ries are (list ssstd below.

-1

_____ _____

- • • • -

SECTION III - MACHINE ORGANIZATION

4. MACHiNE I ORGANIZATION

The block diagram of Machine I is shown in Figure 5. A multiple-access

merging-separating memory as described previously forms the main

machine communication network and memory. Memory storage may be

backed up with disk storage, tape storage, core storage. etc. , connected

to the I/O channels along with other I/O devices. A number of proces-

sors (100 to 1000) are connected to other memory input andoutput chan-

nels, each using three channels (permitting a processor to get two oper-

ands and a next instruction each cycle time).

I/O control is obtained as follows. Each channel is given a unique ad-

dress in memory into which processors store I/O control words tagged

with priority fields. A nonactive I/O device interrogates its address

periodially until it obtains a control word from its queue, at which time

it performs the desired operation.

Control of the processors is obtained as follows. The first word of each

OUTPUT CHANNELS
• _.WORDS

1:5, OR OUTPUT

,,OPEAD, NE,., INSTRUCT 'ION

MGNERI

CHNEWf WORDS. dE T

REQEST SEARTING[S

Figure 5 - Block l~agram of Ma, hine I

-22-

I

SECTION III - MACHINE ORGANIZATION

ta..x to be performed is stored in the highest memory address. Each word

may have two instructions, the second of which is a jump to the program to

be performed. Any inactive processor sends its code to the separating net-

work (see Figuire 5), which gathers all such codes at one end and transmits

them to the high end of memory over the new task request channel. Each

request interrogates a memory word and if its address is all ones it flags

the word and inserts its code. The word will then fall out of memory in

the separating phase and be sent to the processor. By this means, many

pro•essors can be started simultaneously on tasks waiting for execution.

More discussion of Machine I appears in Appendix VI, Items 4 and 5, and

Appendix IV.

Basically, Machine I has the following features:

-1. Parallel processing capability flexibly interconnected

(any unit can read or write into any memory address

so any structure between processors can be imple-

mented)

2. Parallel I/O channels

3. Freedorn of processor assignment ino need to repro-

gram if new modules are added, if modules fail, or

if other piograms are started)

4. Fast sorting and table searching in memory

MACIIINP II ORGANIZATION

Machine 11 %%as designed to have improved facilities over Machine I for di-

viding tasks into subtasks and for communicating between subtasks. In

Ma hine I, a task starts subtasks by storing "task control words" in the

highest nieiory address to be fed to available processors. In many prob-

hviis. it cfan be expe, ted that several subtasLs will be sharing a cominion

-i - -~.~~~'--24

SECTION III - MACIUNE OPERATION

a
program and working with different data, The two instructions in a task

control word are used for this purpose; cne can specify a data index

and the other the start of the program. When a subtask is running, any

communication between it and other subtasks and any communication with

its previous intermediate results takes place using mne. 'rv addresses. If

several subtasks share a common program, the unique inde..- in each sub-

task is used to assign unique addresses to each subtask for this pur-

pose. This leads to housekeeping problems, especially when the exact

number of subtasks is unk.;own. The effect of this problem depends strong-

ly on the amount of communicatio-n required in the subtask either with itself

(previous intermediate results) or with other subtasks. and in some cases

it may be severe enough to negate any tire saved by "paralleling" the pro-

gram.

An examplh showing this problem follows. Let there be a vector of length

n containing a set of numbers, xl, x2, . ., X , in continuous memory
X.

addresses. It is desired to compute e fer I = i = n and to store these

valhes in another n-vector, zI. , z The value of r ind theS~n
startinru addresses are given to the program at execution time. A seventh-

x .
degree polvnoo-ial approximation to e is selected:

e z A f x(B - x(C + x(D + x(E + x(F + x(G + fx))))))

On,, way to computthis is to use t0- familiar multipl--add iteration. This

takes 14 steps. One prog ram suffices with an index register taking (are

,,t the diffvre'nt xI's and t.'s. Another way is to oinpitt' the polynei',a.

rearrariged as hlows:

f ((ix) ýC~ 2)) + (iD # Ex)) # x 5((F' 4 Gx) #1(

aThis iituatin arises im a muntti)ro'es or program jur thr same reasons that a

lo,q) ar.•es in a svquýential prmwe.sor program. When, eat h mrber of a set
of data ha-i to be co w' red by a ba• ic set of operaitons, the programmer finds
it t .*n 'enivnt to w rit. tint, program aind ,•ver the set by cha'iging mddices. With
a seq'wnttai pr .e st-z,, the proitran z* aapplied to one menmber at a tinie; with
a nmultproc',,sor, thhe program may be appliedi to all menmiberr sin,'Itane11ig l-y.

-2. 4-

70 Iw

SECTION III - MACHINE OPI.RATION

Figure 6 shows how it can be computed in five steps using more than one

processor. However, this will be difficult to apply in Machine I because

of the amount of communication between the various parts; each variable

to be communi ated requires a unique address associated with the index,

i. Housekeeping, store, and load steps would have to be added to the

steps of Figure 6, negating much if not all the time savings. There is

also the problem of reserving enough memory addresses for the inter-

mediate results. The first way would be the only practical method on

Machine I.

It can be expected that many arithmetic processes and other processes

rising in practice will have "flow diagrams" similar to that of Figure 6;

thus, a machine that coula -.andle them without the difficulties in memory

addresses of Machine I would have more utility. Machine II was designed

with this in mind.

The basic machine language of Machine II was selected to allow easy pro-

grarnming of diagrams such as Figure 6. Note that every operation in

Figure 6 receives tw- inputs Nhile an output may be used in anywhere

from one to six different places. This is an example of the fact that all

normal computer operations involve one or two operands. The basic in-

struction format is:

NUM69A OPIEMATION COOC FIRST apgRA14O S1CO0 OftRANO

The number firld contains the lubel for the instruction, the operation code

spvcific# what to do with the operands. and the two operand fields contain

the nutnher firlls of the instructions that generated the operands (the re.

stilt of any instruction is tallgged with the number of the tnstruction so other

mostrtati~ons may refer to it). As an example. a program for the compu.

tatimo of Figutr 6 its given in Table 1. Note that there may be gap* in the

I --wow

j,

SECTION III - MAC~INE OPERATION

13 G
MULTIPLY MULTIPLY MULTIPLY MULTIPLY

ADDMLTPL MULTIPLY MLIL o

Figure 6 -Parallel Computation of a Seventh-Degree Polynomial

-26-

SECTION III - MACHINE OPERATIC•T

TABLE II - SAMPLE PROGRAM FOR PARALLEL COMPUTATION OF

SEVENTH-DEGREE POLYNOMIAL

Operation
Number code A B Results

1 x

2 ADD 37 38 A+Bx. +Hx 7

5 MPY 1 to Bx
2

6 MPY 1 x

7 MPY i 43 Ex

iC MPY 1 45 Gx

Ii ADD 39 5 A -f Bx

13 MPY 41 6 Cx 2

17 MPY 1 6 x

20 ADD 42 7 D + Ex

23 MPY 4b 6 Hx 2

25 ADD 44 10 F + Gx

27 A-A) 11 13 A + Bx + Cx

31 MPY 17 20 Dx3 + Ex4
5

33 MPY 6 17 x

35 ADD 25 2V F + Gx + Hx2

37 ADD 27 31 A + Bx *. + Ex 4

38 MPY 33 35 Fx5 + Gx6 + Hx7

40 .B

41 . . .C
41D42. .j.n

43 E

44 . F

4 S G

-27.

WWI

SECTION MI - MACHINE OPERATION

numbering and the numbering need not correspond to the order in which

instructions are performed (Instruction 2 is performed last, for example).

Machine II is designed to look at a block of instructions such as that in the

foregoing paragraph and to perform them in the correct order, executing

many simultaneously if processors are available and the program admits

it. Thus, a programmer can introduce parallelism in a task without the

bother of task control words. To db this, it is necessary to interpose a

multiprocessor control unit (MPC) between the processors and the memory

(see Figure 7).

A program block is defined as a set of 1 to 256 instructions stored at one

memory address (the instructions including the number fields are written

in the data fields of the memory words). A program block is executed

whenever it is read into the JIVPC. Parallel channels (1024) between

memory and the MPC permit reading of several blocks simultaneously

and at any one time the MPC may contain several blocks, each in various

Fiur ... Bloc Dgrm of COMPUTER

-2-I
Figr 7 -o- pit

-28-

SECTION II - MACIUNE OPERATION

stages of execution. When executed, the operand fields of the instructions

refer to results within the sami block (except for a few special operations).

A block is read into the MPC by a "start" instruction in a block already in

the MPC which specifies its memory address. A Ulock may have several

copies of itself in the MPC at any time; each copy is treated as an inde-

pendent unit so operand fields in each copy refer to results in the same

copy.

When a Block A reads in a Block B through a start instruction, there may

be some variables it wants to transmit to B. Operations SPB (Shift Pre-

vious Block) and SPR (Shift Previous Relative) in Block B can read results

in A for this purpose. Return transfers of data can be obtained with BRG

(Bring) operations in A to read results in B. These operations allow A

and B to communicate with each other in the MPC without memory refer-

ences, reducing the problem of unique memory addresses discussed pre-

viously. When Block A has several start instructions, each reads in a

separate block. The ,iocks it reads in may contain more start instructions

to read in other blocks, etc.

Thus, at any time, a program in Machine II will have the structure in the

MPC of orte or more trees (see Figure 8 for an example). The program

started with one block (read in by the supervisory program), which started

others, etc. A completed block (all instructions performed) is dropped

from the MPC when all connecting blocks have completed all data transfers

from it, leaving room in the MPC for new blocks. Interblock communica-

tion in the MPC is only allowed over links that still exist (of course, by

memory references any block can communicate with any other unless it

violates memory protection).

Conditional executions are obtained by conditional start operations; a block

is started if and only if a condition (for example. that some result is posi.

tive) is filet.

Memory protection in a multiprogramming environment is obtained by

Vg..

SECTION III - MACI-NE OPERATION

. ;7 / I ,

COMPLETED BLOCKS NO LONGER IN THE MDC

.40 BLOCKS STILL BEING EXECUTED

Figure 8 - Example of a Program Structure in the MPC

giving each program a private code stored in the leftmost part of all its

addresses. All memory references are specified with the program giving

the rightmost part and its code giving the leftmost part. A special start

instruction allows execution of supervisory routines for special purposes,

such as I/0.

These are the basic characteristics of the machine language of Machine II.

Appendix XIV gives a fuller discussion. The general implementation is

described below with a fuller discussion in Appendix XV.

The implementation of the MPC (see Figure 7) uses a full-sorting memo-

ry. The MPC words are in seven different regions. The I/O region

contains words being inputted or outputted by I/O channels. An I/O buf-

fer region stores words waiting for transfer to the I/o region. New blocks

enter the MPC through the memory region. Each instruction in Ine new

block creates three MPC words: two operand requestb (formed from the

E operand fields) and an operation word. The operation word is stored in

-30-

~~:.mum

k

SECTION III - MACJIUNE OPERATION

the instruction region. The operand requests go to the result region where

results of all blocks are kept. The requests read the operands and then

join the corriesponding operation words in the instruction region. When

all three words are joined, the three are sent to the processor region to

be executed by one of the processors. The seventh region is the pointer

region, which stores the interblock links. A fuller description of the MPC

is given in Appendix XV, Item 7. The memory rs-quest sorter (see Figure

7) is a sorting memory that arranges memory requests 'read and write)

from the I/O devices and processors into order and transmits them to

memory. it is described in Appendix XV, Item 6.

The task level computer assigns priorities to tasks in a multitask situation.

Priorities are dynamic, changing with machine usage and z:upervisory con-

trol. The task level computer measures machine usage by each task and

changes priorities accordingly. Its presence simplifies the supervisor and

makes possible a priority scheme wherein each task can be assigned a cer-

tain percentage of machine capacity and given execution time at regular in-

tervals. A discussion of the task level computer is given in Appendix XV,

Item 5.

Machine II has better communication facilities between subtasks (intrablock

communication and interblock communication along links without using

memory), but as shown in Figure 8 the program structure in the MPC is

limited to one or more trees. Some problems may not fit this condition

and memory transfcrs will be required. Thus, Machine II does not com-

pletely solve the problem stated at the beginning of this discussion (Item 5).

A more flexibie organization specifically designed for nonnumeric proces-

sing is described below.

6. PARALLEL NONNUMERIC PROCESSING

As discussed in the beginning of Item 5 above, there is a programming

pr'oblem in flexible multiprocessors. rhe machine allows any subtask to

.ommnunicate with any other subtask so data transfers must be specified

-31-

SECTION III - MACHINE Ok-ERATION

in the programs; a fixed structure machine does not have the problem be-

cause the machine itself limits possible transfers to a small set. Data

transfers between tasks in Machine I are specified using memory addres-

ses; when one program contre's several subtasks there is the problem of

I creating unique addresses for the several subtasks. Machine II allows data

transfers within a program block and data transfers between linked blocks

in the MPC without the use of memory addresses. If the program can be

fitted with a tree-like structure, this technique can be used, otherwise

memory addresses must be employed. An ideal machine should allow any

subtask to be linked with any other subtask for data transfer without the

worry of explicitly labeling the subtasks; this allows one program to con-

trol several subtasks concurrently since explicit labeling of operands is inot

required in the program.

As an example, an ideal machine should accept a set of data on which some

structure or topology has been imposed (the structure is dictated by the

problem and not by the machine). Figure 9 gives an example data struc-

ture. It should be possible to write a program for this machine that will

treat one or more parts of this structure simultaneously without knowing

the exact labels linked to certain items (the solid nodes) and specifies op-

erands relative to the solid nodes by paths; for example, it nmay specify 11'e

cross-hatched items with the path A, B, F, or C', F (the prime means 'o

travel backward over a link). It may also use "constants" linked to the pro-

gram (the node linked to the program with a G link). The program should

be capable of changing the structure, adding new items and new links, and

deleting items and links. It should also be able to do pattern searching.

WVith this kind o0 machine, problems can be progran•med withoiut the worr%:

, c mneory ass igirnent and its attendant ditfi ult ies when one prog ral co C-

trols several tasks simultaneously. Such a i-achine should be very versa-

tile; nonnumeriw as well as numeric pcoblems will be eas•Iy treated. To

show this, it first should be asked what is n, ant by tioniumeric as norm-

ally applied to problems. The words numeric and nornumeric aret misno-

rrers since many nonnumeric problerns contain numbei s. The (ilstinguIshfiný

K
SECTION III - MACHINE OPERATION

IA

C
F

F D

EN
EN

/N
/N

PROGRAM

A /

AA

Figure - -.ample Data Structure with a Program Working on
Several Parts (f It Comurrently

-33.

SECTION III -MACHINE OPERATION

chaactrisicseems to be the addressing of operands. In~nonnun ric

problem, most operands are addressed by their properties (attributes).

The terms "explicit-addressing" and " implicit- add ressing " come closer

to desc.ribing the actual truth. Next, it should be asked what kinds of prop-

erties are asked for in implicit addressing. They seemi to fall in three

cl1ass5e s:

1. Properties ctependent on the iteni per e: for exam-

ple whether it is larger or srralier than som~e thres-

hold, the tpattte fh o' , :s it has in some field, etc.

Content-addres sing describes this class wcll.

2. Maxirmuii or Tniinlmun propertie s such as being the

largest oJr smnallest ,tervi in sornei set. This miaiht

be (alledl lirnit-addressing.

3. Structural or topological properties. Is the item

related to its "neighbors" in a ce-rtain way, etc.

This might be ralled structure-addressing.

W ith a so rting memio ry , a pa rallelI noinunum*rit.c prof es sor (could be bui ilt to)

handle all three t la-;ses . A ppendi_\ X VI dIi scusses a suitable sorting nienio ry.

'It si)rt's two wor ds for each linik in the (data st ruc tu re a f4 rwa rd word atrd

a backward wvord. This p rin it's ýise of a link in cit her (lire ct ion. Three

t vlds ni a \v; rd inrd i tar an initial n' .de label, a link wei ght,. aiA. a terrniiina I

nodev lab&l ('znii rrent seoar, hes tan be ka rried fl!.L !to ret rieve incident

oiý,(n a set o)f nodes. 'This perrinits fast strt fthire-adldrt'ssing (a fast
pattern sevaroh algor~ith is sholwn In opedxXI.lýahwing a tiode

'It iarr' itiwrte than one itetii andi hý s!,'ring node tor'*nxt.s In the sorting

wi I ýii wr %,. i. t Iiiii iu t add res sint, o~bta !:I'i (4 11,n . 1 th., fl'dal i 'im en s EA r"

t 1 rtiv r(,d)

Cont .n' arddresr~ tifg ani hr replace~d by - t ruttu rv- addIres YI m bv the t- h.

niciiqw of Ii ktng an itemi toý its i tttribtutes inst cad of s to ring the at r ibitar t".

I- 04,111. AJppuod(ix XVI 0-4u~s~ ti~ ittrmthe-. shr tiave. thuf rmitt hifr it

I I Il% t, omu IPA rAhd s!titeilt ,Ad etlrssi factIt ty (%eve'era I di ff- r.-nt lprio rams.

'4ý

SECTION III- MACHINE OPERATION

may be operating concurrently) so.it may perform many content-addressing

problems faster than a normal content-addressable memory (CAM) with its

one comparand.

Time limitations in the study prevented the completion of a machine design

based on the foregoing considerations. Appendix XVI discusses the sorting

me:rory to be used along with a fuller discussion of nonnumeric pruL.essing

in general and how this machine would compare with other nonnumeric

processors (both hardware and software).

The flexible implicit addressing capability of this machine would cure most

of the problems discussed in the beginning of Item 5.

7. CONCLUSIONS

It has been shown that a multiprocessor needs a flexible intercommunica-

tion structure to permit the processing load tc be distributed among the

processors. Sorting networks and memories based on sorting networks

are a means of providing this structure without undue amounts of hardware.

Thr-ee different machine organizations arc discussed using sorting net-

works. They differ in how operands are addressed Machine I requires

assignment of memory addresses while Machine II permits some intercom-

omunication without memory assignment. The third organization, oriented

toward ,iornumeric problems, should allow intercommunication without ex.-

plicit addi-es-;ng. A study of these organizations shows that the language

i a flexible comnumnication structure machine must be carefully designed

.t pe.rmilt prog rams to use the flexibility effectively.

-3-

- - - -. - . 4.

SECTION IV - APPL.UCATIONS EFFORT

1. GENERAL

• •iIncluded in the original goal of the applications area effort of the advanced

computer organization study was the selection and analysis of two problems

suitable lor implementation on a parallel processor. Each of the problems

seleý,tc(-,as to be subjected to a thorough analysis to determine its inher-

,nt parallelism. Restructuring of the problem was to be done to the extent

triat greater parallelism could be achieved. Solution models were then tu

be constructed that would allow the exploitation of the greatest degree of

(•: parailelismn resident in the problem consistent with the capabilities of the

parallel prt, essor developed in the study. The first problem selectedIwas !nmeit c. the second was nonnumeric. A discussion of the results
r)hf ýned in broth the numeric and nonnumer c areas follows.

2. NtMERIG PROBLEM AREA

, hit l rodic tiun

in•itial etih rts in the numeric probl in adrea were directed toward

,1i tlysis o0 the d'ixi prlogramming tetc jimque. Ili, !tininary anal% -

-:s reve tld thhe presence ot potential pralle lisr Iln d, nam ic pro-

.t1iiii lIg ,nd tilt- ntt-'liqiitt'%as selected as tht' bA lfor tile first

r !it, i bt. h stilditld. q ba ic' lte1t to the (m ilpletllIon of tile tirst

1 ~nt'I tlz k It d N11d,4111iii prog~rammtting), an w .:.-i iiti.ttcd

t- (.,tv rinnt, .& let hnique to ht, ,tse|d b ta ba is ft)r thte set mind pr ti|blett

rti . .ntlio ig fl it- t te hn ultItes invi'stigatcH %,v r , ,l obi- b itiethod u.;

p,.i t'ivl rit |dA-t~r m .ttrh t)ln, rel txation + t 'oltit t .)n of .% P stc l of ti me ar

IIt~t,'r.i , uvqtliatmon% , mnd 5alfIleris ,l. iiolutlion.- of qippli, tqoatton.

h. % as s t'ell n to posses i, .4,lfivi ,it t parall-Lk .- '- to w arr4tit its use

i
- - - m m .~I n W W17

I
SECTION IV - APPLICATIONS EFFORT

as a basis for the second problem effort. However, it was decided

"to choose a nonnumeric second problem. A general discussion uf

results obtained in the numeric problem area is given below. A de-

tailed d;scussion of the dynamic programming technique study is

given in Appendix I; a detailed discussion of the numeric techniques

investigated during the second problem Melection effort is given in

Appendix VIII.

b. Dynamic Programming Technique

(1) Discussion

Dynamic programming ie a mathematical technique devised by

Richard Bellman for the solution of maximization problems of

the f0illowing type:

Let x be a resource that is to be divided among some n activities

in amounts x 1 , x 2, . ., Xn such that

n

xi =x (1)
i= 1

and x. . 0 for all i's.
1

th
Let the return realized from allocating x. to the i activity be1

denoted by gi(xi) wl-.ere

gi(x.) > 0

gi(O) 0,

Let the total return realized by allocating x in amounts x 1 , x 2 ,

Sn to the activity functions gl(xl), g2 (x 2), . . . , gn(xn)

be denoted by

n
R" n (XIs x2f n = n gi(xi d (3)

i=-1

-38-

SECTION IV APPLICATIONS EFFORT

The problem, then, is to maximize the return function (3) over

the space

S nx) {(x, x 2, . . xn) It xi
I ~i= 1

=x, x. O0% • (4)

The dynamic programming technique specifies a procedure for

dete' mining an optimak allocation of the resource x in amounts

x1,x 21 .. xn; that is, an allocation of the resource x for

which the return function (3) is maximized. The specification

of an optimal allce'ation rests on the construction of the sequences

fI(X), f2 (x), fn(X) (5)

and

x Xl I: , X A(x } . . . (nX)6)

where fn (x) is defined by

fkW)= maxXR,(x*x xl (7)fk~ SkX Rk{ l' x...xk}

it is easily deduced that

f1 (x) gI(x) (8)

and it may be shown that the following recursive relation holds

f k(x) = 0 max < Igk(Xk)' fk - I(x "'*k)] " (9)
xk

The terms of the sequence (6) i.re then defined by identifying

Xk(X) as the allocation to gk(xk) for which fk(x), defined by (9),

is maximized. Equations (8) and (9) provide an inductive method

for determining the sequences (5) and (6), and reduce the problem

-39-

--!

SECTION IV- APPLICATIONS EFFORT

of maximizing one function of n variables to the problem of maxi-

mizing n functions of one variable. The value of f (x), of course,

gives the maximum return possible for the return function (3).

(2) Illustration of the Computational Procedure

As an illustration of the computational procedure, consider the

maximization of a function

n

R 6(x 1 , x', x 3 , x 4 ' x 5 , x 6) = gi(xi) (10)
i- 1

under constants

x. > 0

1

j~x 2.{ 011
i=1

The problem then is to maximize (10) over the space

6

S 6(2.0) = (x , x 2 x 3 , x 4 , x5 , x 6) x.

2.0, xi > 0 . (12)

The maximization wouid proceed by construction of the sequences

(5) and (6). The maximum return realizable by allocating the re-

source to the first activity only is given by

fl(x) = g(x)

The maximum return possible from the first two activities is

then determined by computing

f2(x) 0 max [g 2 (x2) + fI(x - x2)]

-40-

SECTION IV - APPLICATIONS EFFORT

The maximum return possible from the first three activities is

determined by computing

f 3(x) max [g 3 (x 3) + f2 (x - x 3)]'

The inductive method of computing th• sequence (5) continues

until the maximum return possible from all activities is deter-

mined by

f6(x) max [g6(x 6)+ f5 (x x6)].
0 -x 6 x

The sequence (6) is determined by recording the values for which

the maximizations are effected. The actual calculation of the se-

quences (5) and (6) requires that the resource range 10, x] be

discretized by some partition,

0 = t I < t 2 < .• < t n = X , (13)

where t. = iA for some fixed A. The partition (13) can then be
1

compactly denoted by O(A)x; that is, from zero through x in

steps of A. In the case of the example problem, the partition

might be 0(A)x = 0(0. 1)2. 0 for a A of 0. 1. Given a partition

such as (13), each activity function, gi(x), must be calculated

at each point of the par*ition. Similarly, the construction of

the sequence fI(X), f2 (x) ... , f6 (x) requires that f.(x) be

calculated at each point of the partition since the construction

of fk + I(x) requires the values of f k(t) for 'L 0(A)x.

(3) Parallel Features

Certain features of the dynamic programming tech, ique are im-

mediately seen to be amenable to parallel computation. Since

the return functions involved in the maximization process are

-41- b

-i

SECTION IV - APPLICATIONS EFFORT

mutually independent, they can be evaluated in parallel. Further,

the values of a return function for each point in a partition such

as (13) may be computed in parallel. By restructuring the dynam-

ic programming technique, additional parallelism may be realized.

The heart of the dynamic programming technique is the construc-

tion of the sequences (5) and (6), namely

fl(X), f2(x)..... f.n(x)

and

x I(X), x 2 (X), , x n(x)

Now the method for constructing the sequences (5) and (6), as

outlined above, is sequential in nature. But it need not be. In-

stead of recursively calculating the functions; f,',x), f(x) .W.

f n(x), one may zpecify a concurrent pairwise maximization of

the activity functions and thus inject additional parallelism into

the dynamic programming technique. Consider the sample prob-

lem given above. The problem is to maximize the return func-

tion

6

R 6 (Xl' x 2 ' x 3 ' x4 ' x;s x 6) a -I(xi)

i=l

under the constraints

x >0

4 xi= Z. 0
' i=l1

Parallel maximization of the return function con be achieved by

treeing the maximization process into three !¼vels of parallel

computation as follows.

4Z

- 4?.

SECTION IV - APPLICATIONS 14-OFFORT

Level 1 - for x - 0(0. 1)2.0, compute:

r (x) max ga(Y) + g(- Y)
0 -0 < y<x tlA +

yl(x) = y at which the maximum occurs

U2 (x) = max 9g4 (y) + g3 (x - Y)1
0Zx 0- y =

< < x1

y2 (x) = y at which the maximum occurs

Level 2 - for x O(C. 1)2.0, compute:

f u3 (x = max lvl + -
u3(x) 0 < y < x1b'(x +yt

y 3(x) = y at which the maximum occurs

(u4 mx) ma uIly) + UlX - y) Y4()=0< /< 2

Y4 (x) = y at which the maximum occurs

Levei 3 - for x = 0(0o 1)2. 0, compute:

u5 (x) = max u(Y) + u,(x - V)l
05 y(= ..0 <

ys(x) = y at which the maximum occurs

Ther u5 (x) gives the maximum possible return for a resource x.

By treeing the dynamic programming maximization process in

the fashion described above, the number of computational levels

required can be reduced from the n required for sequentia\ exe-

cution to approximately In,(n) for parallb" execution. It is

shown in Appendix I that for a small optimiration problem such

as (10), parallel rnethods can reduce the total number of com-

putational levels required from .51 to 24. For larger problems,

even greater advantages can :e achivved.

-43-

NE --------
A

I
SECTION IV - APPLICATIONS EFFORT

c. Other Techniques

(1) Discussion

Prior to the selection of a nonnumeric second problem, several

numerical techniques were examined for parallel characteristics.

They include Jacobi's method of eigenvalue determination, re-

laxation methods, and a numerical solu',on to Laplace's equation.

These techniques are reviewed in detail in Appendix VIII; a gen-

eral discussion follows below.

(2) Jacobi's Method

Jacobi's method is a mathematical technique for finding the eigen-

values and eigenvectors of a real symmetric matrix. The meth-

od is based on the following well-known theorem from matrix

algebra:

Let A = (a ij) be an n-by-n real Eymmetric matrix. Then there

exists an orthogonal matrix U such that

U'AU = DIA11 A, Z ' n D (14)

where U' denotes the transpose of U, D = D[Al, A2 An]

denotes a diagonal matrix, and A., i = 1, 2 n are the1

eigenvalues of A.

Since in (14) U is ortK)gonal,

AU = UD (15)

and hence the columns of U are the eigenvectors of A.

Jacobi's .. c*thod specifies the construction of a sequence of ortho.

gonal matrice_' T 1 , T 2 1 Tk suc that

TIkATT . . . Tk =C (16)Tk'Tk- .T A 1 T...I

"where C is an n-by-n matrix whose off-diagonal elements are
41, arbitrarily close to zero and whose diagonal elements are arbi-

trarily close to the eigenvalues of A. The columns of the matrix

-44-

A&!

SECTION IV - APPLICATIONS EFFORT

T T T . Tk are then arbitrarily close to the eigenvectors of A.

It is shown in Appendix VIII that the construction of the sequence

TIr, T2f T k involves operations that are readily adantable

to parallel execution. These operations include the searching of

a set for the element of greatest magnitude, and extensive matrix

operati-ns. Searching a set for the element of greatest magnitude

is an operation well suited to the sorting capabilities of Machines I

and II (see Appendices VI and XV).

(3) The Relaxation Technique

Relaxation is a term originally applied by Southwell to a class of

iterative methods for solving a system of linear equations. The

term has since come to connote a broad class of methods for the

approximate reformulation of physical problems in terms of sys-

tems of linear equations to be solved. An example of this ex-

panded use of the term relaxation is offered below where a nu-

merical solution to Laplace's equation is discussed. In *he strict

sense, the relaxation technique provides a method for solving a

system of linear algebraic equations, expressed in matrix form

as

AX = B, (17)

where A is an n-b-, n coefficient matrix of known constants, X =

(x i, x2 , x 3 xn) is a column vector of unknowns, and B

(bI, b 2, . . . b) is a column vector of known constants.n

The relaxation technique is an iterativ- procedure that specifies

a seqience X1. X = (X I , X n)% of up.

proximations that converges tu tbp solution vector X. Discussions

of necessary and sufficient conditions for convergence may be

found in Volume Two, Appendixes 1, XIV, and XV, and in Ref-

erence 2. The technique assumes an initial guess XI and com-Ii, I

putes successively vectors R. r r 2 . . . rnof "residu-

als" defined as

-45-

IFlbk

SECTION IV - APPLICATIONS EFFORT

R. = B -AX. (18)
1 1

for i 1, Z, k.

The residual vector R. provides a measure of the closeness of

the approximation X. to X. Based on a residual vector R., the

relaxation technique specifies a new approximation X. TheI+I
process continues until the elements of the residual vector are

sufficiently close to zero to satisfy a pre-established convergence

criterion such as R.. R. < f or

max l\(
k r k

The relaxation method involves the repeated execution of the

operations of matrix multiplication and addition, multiplication

of a vector by a scalar, and searching a set for the element of

largest magnitude. Each of these operations is well suited to

parallel execution, and the operation of finding in a set the ele-

ment of largest magnitude may be accomplished rapidly on a

parallel processor having sorting capability.

(4) Numerical Solution to Laplace's Equation

Discussed herein is the numerical solution of Laplace's equation

over a rectangular region, R. It is assumed that R is partitioned

by an equally spaced rectangular mesh and that Dirichlet bound-

ary conditions are specified. Given a function u(x, y) for which

Laplace's equation obtains over R, one writes

a2-U-+ -z- 0 (19)

Letting the interval for the mesh over R be denoted by A, the

partial derivatives for u(x, y) may be approximated by

-46-

7'

SECTION IV - APPLICATIONS EFFORT

au _ u(x + A, y) - u(x, y)
eJx A '

au _ u(x, y + A) - u(x, y)

azu u(x+A, y).2u(x, y)+u(x-A, y) (20)

6x Taz

a2 u_ u(x, y + A) - 2u(x, y) + u(x, y - A)

ay 71)
ana the difference equation counterpart of (19) may be written as

u(x, y) = I u(x + A, y) + u(x - A, y) + u(x, y + A) + u(x, y - A)] . (21)

Equation (21) approximates u(x, y) at each interior mesh point

of R by the average of "north, south. east, west neighbors."

Other such difference equation approximations to u(x, y) at in-

trior points of R are available.

Iterative solutions to Laplace's equation based on approximations

such as (21) converge (see Appendix XIV) and are often called
"relaxation solutions." A sequential iterative solution would

p,--,--r by ordering the interior mesh points of a region R and

cyclicly applying the approximation over the ordering until some

specified cunvergence criterion is met. In a sequential pass

over the ordered interior mesh points of R, two possibilities

ior updating the values for u(x, y) at tach interior mesh point

are available: (1) as each new approximation to u(x, y) is gen-

erated at a point, it is made available for subsequent calcula-

Lions in the pass; (2) each pointwise approximation to u(x. y)

made in a given pass uses ornly point values available at the end

of the preceding pass. The former (latter) method of updating

often is called the method of successive (simultaneous) displace.

menrt#.

-47-

SECTION IV APPLICATIONS EFFORT

The numerical solution to Laplace's equation over a rectangular

region partitioned by an equally spaced rectangular mesh is spe-

cified easily in terms of an approximation such as (21) and the

methods of simultaneous or successive displacements. Iterative

numerical solutions to Laplace's equation over a mesh begin by

assuming borne initial values for u(x, y) at int!rior points. Clear-

ly, the greater the accuracy of the initial approximations, the

more rapid should be convergence. Appendix VIII describes a

method !or rapidly computing initial approximations to u(x, y)

over a mesh based on known boundary values. The methods of

approximating u(x, y) is well suited for parallel execution and is

called parallel fill-in (PFI).

The numerical solution to Laplace's equation over a mesh is well

suited to parallel computation. For a parallel processor of suf-

ficient size, a processing unit could be assigned to each of the

interior mesh points. Each unit would then compute and store,

in an iterative fashion, approximations to u(x. y) at its assigned

point. In the event that the number of interior mesh points ex-

ceeded the number of processing units, each unit could be as-

signed a block of interior mesh points and the iteration would

proceed "parallel by block and sequential ty point within a block.

A test for convergence based on maximum pointwise change in

approximation values between successive iterations could be ac-

comphshed readily cn Machines I and 11 due to their rapid sort

capability.

3. NONNUMERIC PROBLEM AREA

a. Introduction

The second troblem selected Nor the advanced computer organizatiow,

study was the parallel compilation of higher language programming

statements. The language selected for use was MAD. he selection

-48-

MR_
- - -!

SECTION 1V - APPLICATIONS EFFORT

of parallel ,ompilation was quite natural in that investigations of

parallel processor configurations and parallel execution of coded

routines lead to consideration of compiling source programs, written

in a higher language, in parailel

Prior to the second problem stuliy, a short effort was directed to-

ward tie construction of a language designed specifically for a paral-

el processor. Ths goal was to construct a language that would allow.

and indeed promote, ease of conceiving and expressing the structurc

ol parallel solution models. Results of the effort are presented in

detail in Appendix IX. A gcneral discussion of paralli-l compilation

follows. A Jetailed disct•sion will be found in Appendixes X and XI.

b. Parallel Compilation

In the proces• of compilation, a sequence of statements written in a

higher language. such as MAD, is translated into a sequence of

mathine la ,guage statements. The compilation process usually

-ill decompose higher .guage tatements into a rnatr'x form of

'I ples ard then fruni the matrix establish a se; of machine language

statements. Included in the Lompilation process is the handling of

.|Ch considerations as dimension, mode, and storage allocation.

1'ht- com• ilatitn algorithm developed during the second problem ef-

tort deals only witti the decomposition ut higher Ltngudge stateme nts

nttt triples. Thr state,-'k-nts themselves are restricted to replace-

mt•e: v.-,')lvmg nonsaabscr inted %,r abrsles. It i a.tvsurned tnat tht

,.a te it it iii - t re writtten in- MAlD and t0,1 the pretedence hierarchy

i.* tni a! t, Ardr:en G ller, -intl Gia:1ail . The prre. dente hlertrch,

In nit ted to the stt ti tsper.oturs given in l'able Ill It ts turther

,4%!4t1,tird thi. thO- roplAtenw t.t state iients are v tito rd. svmbol by

Rititjtul. in .tt ordered lhot. For example. thr MAD stmtenent

F A A\- 13 .ABDS. (C i D)

114 avutimed t, be stored in a list 4s iollows.

-49

41

SECTION IV - APPLICATIONS EFFORT

3 A

4 +

5 B

6 * (23)
7 .ABS.

8
9

10 +
1! D

12)
13

TABLE III - PRECEDENCE HIERARCHY

Operator Descriptiin Precedence

ABS Absolute value Highest
P. Exr.n.entiation

Unary minusu
* , / Multiplication,

division

+- Plus, minus

- Equals (substi-
Stution)

4, Begin statement, Lowest
end statement,
open parenthesis,
close paren-
thesis

-- so

- 50-

SECTION IV - APPLICATIONS EFFORT'

As shown in Appendix X, the triples corresponding to (23) are just

C + D

0 ABS. RI

B * R2 (24)

A + R3

F = R4

where Ri denotes the resultant from the ith triple (row). Then (24)

would be read, row by row, as:

RI = C+D

Uz = .ABS. (RI)

R3 = B + R2

R4.= A+R3

ansi finally

F R4 = A + B* .ABS. (C + D)

which is just (Z2).

In parallel cemnpilation, the aim is to examine si-nultaneously in suc-

cessive passes many statements suc-1 as (22) stored in the fashion of
(23), and to form on each pass all poseible triples and statement

simplifications for the entire set of statements. An algorithm for

effecting paraiel compilation wav developed 0uring the second prob-

lem effort and is summarized in Figure 10.

The tests (operations) indicated in Figure 10 are applied on each

pass to a list such as (?3). Sequences of items taken 3. 4. or 5 at a

time (blankc are ignored) that meet certain :conditions are sought.

If the indicated conditions obtain. triples are formed and/or state-

ments airnplhied as indicated. As the structure of the flow chart

in Figure 10 indicate3, the four operations may be executed con-

currently and the a0gorithm wIl be capable of decomposing, in, par.

allel, all tie substiiution statements of a source language (MAD)-51-

SECTION IV - APPtICATIONS EFFORT

00

LAI.

00

cz~

- z

j 0__

SECTION IV - APPLICATIONS EFFORT -

progrz,-n into a string of triples ready for final assignment (machine

* language). Several passes through tht loop may be required; the

nuriber will depend on the size and complexity of the program to be

compiled. The operations indicated in Figure 10 proceed as follows:

I. Operation I looks for quadruples ABCD where

A is an operator

B is either a - " or a , .ABS."u

C is a variable

D is an operator such that P(D) f- P(B)
where P(x) denotes the precedence oi x
as given in Table I

It is assumed that B is the ath item on the input

list. C is removed and B is replaced by the

variable R . A triple is formed of 0, B, and

C and its resultant is stored in R

2 Operation 2 looks for all quintuples ABCDE

surh that

A, C, and E are operators

B and D are variables
P(A) < P()iP(E)

It is assumed that C is the pth item on the in-

put list. B and D are removed. C is replaced

by R 01 and a triple is formed of B, C, D with

resultant R .

3. Operation 3 removes parentheses surrounding

single vatrAblep

4. Operation 4 removes all sequences ýAiwhere

S" A is a variable

A step-by-step example of thi application of the compilation al-

gorithni may be found in Appendix X. I
It will be noted that the triples generated on each pass correspond

-53-

"04.

SECTION IV - APPL.CATIONS EFFORT

to basic arithmetic operations that can be performed at the time of

the pass. Hence, the compilation algorithm generates triples suit-

able for parallel execution and provides a first approach to the recog-
nition of low level parallelism within a source program.

The parallel compilation algorithm was programmed for Machine II

(see Appendix XIII for details). The programming proved to be dif-
ficult and the results suggested the desirab'lity of modifying the

algorithm. Modification seemed desirable because implementation

of the algorithm in the form of Figure 10 required the initiation of

an excessive number of parallel processor "tasks" (see Appen-

dixes XV ar.d XVI), led to extremely cumbersome control programs,

and failed to yield anticipated levels of speed advantage for parallel

ove-r sequential compilation.

As a means of c-bviating the problems of implementation, the follow-

ing modifications were considered: (1) preliminary translation of

* * input statements to reverse Polish rotation, and (2) innovations in

the utilization of the parallel processor programming language.

Both modifications were investigated with fruitful results. An un-

expected result of the investigation was the development of a com-
pletely new form of the compilation algorithm. The results of the

modifications are detailed in Appendix XI.

Although insufficient time was available to investigate the modifica-

tions in detail, preliminary investigations indicate that the first two

modifications are easily programmable but do not result in signifi-

cant speed advantages. The restructured algorithm appears to pro-

wde maximal ut~ilization of parallelism resident in the compilation

process and should offer significantly increased compilation speeds.

-54-

SECTION V - PROGRAMMLNG

MACHINE I

Machine I is composed of many identical processors, each hav-ng the capa-
bility of simultineously accessing by content any location in the self-sort-

ing memory. There are 512 processors in Machine I, each having a pro-
gram coanter, instruction register, accumulator, quotient register, and

six index registers. These registers are analogous to those in conventional

computers.

The program counter generates instruction -addresses. The instruction

register- is composed of an upper and lower half, each is capable of con-

taining a 36-bit instruction and contains the current instruction to be exe-

cuted. The accumulator is similarly composed and can be considered as

two 36-bit registers, upper and lower, or as one 72-bit register. The

quotient register is organized similarly to the accumulator. The index

registers in each processor have a desirable capability - any three may

be added together with the contents of the address field of the instruction

to generate an address, an operand, or a shift count.

The inherent sorting capability of Machine I significantly reduced the exe-

cution time of a porticn of the dynamic programming problem. The deter-

mination of the largest return out of a number of possible returns was coin-

pletely resolved via the sort me'nory. The various possible combinations

of returns were calculated and stored with the same address. The charac-

teristics of the memory allowed the larger cf two or more numbers always

to return at the "top" of the sorted table after one machine cycle. In the

dynamic programming problem, the routines were such that only two num.

bers were sorted per machine cycle, but the technique is not limited to

only two. For large-scale sorting, any number of elements could be sorted

in the same length of time - one machine cycle.

-55-

SECTION V - PROGRAMMING

The instruction set for Machine I is an extersion of one that might be found

on a contemporary machine. One class of instructions considers the con-

tents of the address field as the operand which is modifiable by index regis-

ter combinations. Class 2 instructions treat the contents of the address

field as the operand address, also modiflable by the index register. Class

2 3 instructions treat the contents of the address field as a shift count that is

modifiable by the index registers. Class instructions allow inter-regis-

ter transfers within a processor as detailed in Appendix IV.

Some instructions are peculiar to Machine 1 and were useful in synchroniz-

ing operations when multiple processors were operating on a common prob-

lem. The nonpresence jump instruction when executed causes a jump to

some location when the address of the word requested from memory by the

previous fetch type instruction is not the same as the operand address in

the instruction. A typical application, would be when two processors are

operating in conjunction on a problem - one generating a piece of data that

the other is looking for - clearly an indication is necessary that the correct

data have been acquired. It should be mentioned that any request for

memory data always returns a piece of data, either the correct word or

the word whose value is next higher than the request word. This is a

characteristic of the sorting memory.

There also is a set of instructions that allows searching for single words,

or searching for the s:,dllest word between limits. These instructions are

desirable for searching internal areas of a list without requiring examina-

tion of the entire list. If the upper and lower bounds of the list are known,

limit words lying within these bounds can be used to isolate portions of the

... i list directly. With th, erase options available with the search instructions,

either single or multiple entries withL• a list can be isolated and erased

using only one instruction as explained in Appendix IV.

The instruction execution time for Machine I for a two-instruction word is

30 usec.

Machine I is best suited for advantageous use of parallelism that exists

Oct6

SECTION V PROGRAMMING

bctween independent blocks of a program or between independent programs.

Multiple 6ranches within a program "o start independent blocks of the pro-

gram can be programmed easily. The ends of the branches are joined vit.

the nonpresence jump instructions. Independent programs such as a com-

piler aud numerical and nonnumerical problems can be executed in paral-

lel. (Of course, this assumes some form of supervisory control incorpor-

ating processor loading, problem execution tine, and memory loading

information to eliminate or reduce conflicts between different problem

programs.f)

A major point of interest in Machine I is its content-addressing cap,&bility.

In contemporary machines, the memory is addressed by the absolute ad-

dress of the word in question. In Machine I, any word in memory may

have any name (address) assigned to it, When the usefulness of-this word

has expired, it is erased and the word is then available to any processor

for naming. An added advantage to the ccntent-addressing capability is

then the more efficient use of the available memory, since blocks of

memory are not assigned permanently to a particular program but float

around, so to speak, wherever needed, dependent, of course, upon the

programmer's maintenance of a clean memory within his program; that l..

the erasure of data no longer needed.

Z. MACHINE II

Machine II is a parallel processor with the ability to access simultaneously

by content many locations in a self-sorting memory. There are 256 proc-

essors in Machine II, each having access to program irstructions in the

mliltiprocessor control unit (MPC). There are no registers, such as in-

struction counter, accimulator or index, as such, accessible to the pro-

grammer Instructions that generate a result are, when executed, re-

placed by the result. These instructions, however, are not executed until

the operands are available. Hence, the sequential nature of an instructio:i

string is preserved where necessary by the sequential availability of the

-5?-

SECTION V - PROGRAMMING

operands. On the other hand, independent strings of instructions are exe-

cuted in parallel as soon as the requisite data are presented to the several

strings. This type of parallelism is inherently available in Machine U in
addition to the capability of parallel execution of independent blocks of a

program or of independent programs (see Appendix XV).

The instruction set for Machine 11 is similar to that found in a two-address-

per-instruction machine. The arithmetic instructions contain in their ad-

dress fields the addresses of the two operands. The logical instructions

are similar and quite extensive and comprise all possible functions of two

Boolean variables in terms of the "and," "or, " and "not" operators. Shift

instructions enable left and right shifting of operands that may be located

within the current program block or in the previous program block. Data

to be carried along through a program are passed from block to block by

means of the shift instructions. The "bring" instruction enables I program

block to retrieve a piece of data generated by a block that is started by the

block in which the bring instruction resides.

"Read memory" and "read memory indirect" instructions aliow access to
the main sorting memory. "Threshold search" allows retrieval cf the word

in memory whose contents at the given address a-z ,Just above a threshold.

"Start" instructions enable a block to order the execution of a subsequent

block, and to establish the priority of the started block. Conditionalstarts

have the same result as the start except that it is based on the condition or

state of some word in the curre-t block.

Must instructions have an "erase" option attached whereby either or both
operands may be erased after instruction execution. Thbs is desirable to

'1 maintain a clean memory. There is an explicit erase ' natruction that per-

mits erasure of all words .' the previous 'block that lit hetween twe limit.
ing w-ards. An "era" i prvious hlciek relative" 4lows erasure between
lirnic4 r-iAtiv- to tht aslrt instruction that started the current block. An

u "m wait' - stru(ii.n Ix rmits atarting of a block on tVAe condition that all
menorv operations in the birwi have been completed.

-58-

SECTION V - PROGRAMMING

Instruction execution time varies from one to seven MPC cycles or from

13. 8 to 96. 6 piec. The particular processor executing an instruction,

howe. er, is active for no more than one cycle and the result, if a result

is generated, is available the subsequent cycle ,see Appendix XV).

The types of parallelism that can be executed most easily on Machine II

are instruction level parallelism and independcnt program parallelism.

The machine removes from the programmer the recognition of instruction

level parallelism through its ability to execute iastructions whenever the

re. .i.ite ope rands are available. The recognition of independence in pro-

gramn blocks is still the programmer's responsibility, and is his problem

to program so that the machine can execute the problem in miniimrm time.

Independent programs can, of course, be execulLA simultaneously, limited
only-by the size of the memory and MPC (see Aryendix XIV).

3. MACHINE I AND THE DYNAMIC PROGRAMIM'ING PROBLEM

The dynamic programming problem was chcsen because of wide interest

in this area and techniques developed for parallel processors might be use-

ful. The problem is characterized by a nwnber of independent functions

that define a return for a given resource assignment. R*turns are calcu-

lated for all values of the available resource for all activity functions. In

essence, all combinations of activity funetica reie,- a-re examined to de-
termine whit h combina;ions of resource assignments w4a live the maxi-

mum return fer each of the possible resource assignments.

In the prob'em chosen for Machine I. there were six independent activity
functions. Some were relatively simpie and exhibited a very high degree
,if sequentia••nidependonce. Activity functions al(x) and £Z(x) were o tis

natur,. At first gI4ncr,. Asnd in•ipendent from tht problem as a whole, it

would be natural to assign processors to the cal- lation of the various re.

turns via a treetng program to mninlae the comwnulttio time. However.
this was not done because the simplicity of the futt•cl,ý%n involved madwetho

.the basic computation routire quite fast in relation the more complex

_S9.I

SECTION V - PROGRAMMING .,

activity functionis." It so happened that there were pairs of activity func-

tions whose routine execution times wert similar. The.outputs of these

activity function pairs were used as the inputs to the maximization routine-

that would determine for a given resource the best allocation of that re-

source. In this manner, as soon as a pair of returns was generated, the

maximization routine immediately calculated the best allocation. These

maximized returns were. in turn maximized with other maximized returns

until a table was generated giving the final allocation of any resource for a

"maximum return (see Appendix III).

The more complex routines, g3 (x) and g 4 (x), exhibited parallelism that

could realistically be extracted to speed up problem solution. Portions of
these routines were broken away and executed in parallel. Additionally,
these routines were treed; that is, the number of processors assigned to

the computation of returns doubled for each level of the tree.

The maximization routines took advantage of the inherent capability of the

sorting memory to determine the maximum return from two functions for

a given resource. - The returns for various combinations of resource allo-

cation were stored in memory with a common name, with the larger return

automatically sorted to the top wlhere it was picked off. The recommended

resource allocation for the given resource was then stored in a table with

similar recommendations for all other values of allowable resource. This

table was thc goal of the problem.

With a given input resource, th•e recommended assignment then could be

found that would generate the largest return.

The problem for Machine I was numerical in nature, required the gener-

ation of tables, required table sorting, exhibited a high degree of parallel-

ism, and resulted in the development of treeing and timing tecaniques to

arrive at a reasonably optimum solution time.

Problem solution time for the lynamic programming problem on Machine

I was 16 msec as opposed to 150 t, 120 rnt s, Tor t'i,' ?cqnentiA1 rrachine

-60-

7ý

- -

SECTION V - PROGRAMMING

Solution time on Machine I was 9 to 14 times faster than the sequential

machine; this can be attributed to the availability of the many processors

capable of independent and simultaneous action on the contents of any word

in the mu'tiaccess sorting memory.

Processor loading reached a peak of 60 processing units out of a possible

512 proposed available processors. The average number of processors

for the problem execution time was only 22 (see Figure 11).

If the cor• puL', , had been fully utilized at the peak period on a larger prob-

fern, then the srT-ed advantage would have ranged from 512/60(9-14) -

(76 to 119):1, In .,4ddition, many processors would have been available at

nonpeak tirmes for other uses such as compiling. If the average loading

of the processors is considered, then the speed advantage would be 512/

22(9-14) = (207 to 322):l.

4. "ACHINE II AND THE COMPILATION PROBLEM

The compilation problem for Machine II was chosen because it was

60 4

tW40

20•

0 1,440 2zreo 4,320 5,760 7,200 8,640 10,080 11,520 12,960 14,400 IS,740

TIME (MICROSECONDS)

Figure 11 - Processor Usage

-61.

SECTION V - PROGRAMMING

believed that there would be a aignificant advantage to he able to compile

while simultaneously executing other programs. It wa.s realized thit the

w'hole compiler could not be implemented in this study and hence a portion

* of the compiler was chosen to demonstrate feasibility. The portion chosen

was the scanning of the substitution statement and geaeration of the corre-

sponding object programs for a limited number of typical operations.

Tbe problcm basically consisted of scanning an input statement, distin-:

guishing between variables and nonvariables, determining precedence re-

"lations of the operators, and forming a sequen,:e of machine instructions

that when executed would generate the desired result.

Srhe scanner implemented was of the Po'isli tvpe. Each element of the sub-

stitution statement was examined to determin.e if it was a variable or non-

variable.

"Variables are immediately transferr-d to the output string. Nonvariables.

or operators, if their Preceden:e i! cqiuai to or less than the precedence

of the operator currently cn top of the stack, are transferred to the output

list. As snon is an Gper,*tor is transferred to the output list, there is then

a triple composed of two ob-erands and one operator that are used to form

a sequence cf nr-achi:.e in~tz_,ctions. The triple removed from the output

list is replaced by a va.rlable ia Lhe form of the triple's resultant address.

Depending iupen the operator, one of a number of generator programs is

started that generates the actual machine language instructions. The gen-

erator programs cperate simiiltan'eovsly with the scanner once the triple

has been removed from the output list.

The operations considered ir the substitution statement were floating point

arithmetic, exponentiation, unar, minus, xbs 'ute value, and equality (see

Appendix XIII).

The execution of the parallel cempip.'ation algorithm for Ma, hine II r-quired

53. t msec. Considering the number of statemel ts to be com'piled as N,,

then the rates of the compilation time of Machine II to that ')f the IBM 7090

-62-

SECTION V - PROGRAMMING

is N:27. The parallel compilation time is independent of the number of

statements and remains relatively constant at 54 msec. The time required

for sequential compilation increases linearly with the number of staWements.

When the number of statements exceeds 27, the parallel processor t.-ne for

compilation is less than that for the IBM 7090.

If 256 processors are available, then Machine II can average 256/1. 17 =

219 statements every 54 msec. The speed advantage would then be 219/27 =

8:1 over the IBM 7090. If timi-had permitted one of the other parallel

compilation algorithms to be programmed, additional speed advantage would

have been realized.

-63.

+I

SECTION VI - COMPARISON OF MACHINES I AND II

Both Machine I and Machine 1I are composed of sorting networks, merging-

separating networks, arid processing units. Both have a large merging-

separating memory, but Machine II also has a smaller, full-sorting memory

(MPC). This additional hardware for Machine II is offset by the facj that the

processing units in Machine I are much more complex than those in Machine II.

A basic -processor of Machine I considered as an entity is not unlike the proc-

essors found in contemporary sequential machines. It has the normal arith-

"metic, quotient, and index registers and access capability to any word in

memory. Hence, with some small degree of effort, an existing program

could, with modifications consistent with changing from one machine to an-

other, be run on Machine I with only one processor assigned. Considering

speed of execution, the average problem so assigned would be slower on

Machine I because of the increased instruction execution time.

However, for the execution of an iterative program, the sequential execution

time increases linearly with linear data output while the time required for

parallel execution increages linearly with exponential increase of data output.

The exponential increase is due to the binary treeing program used to assign

processors to a problemn. The number of processors active on a problem via

the binary tree increases by a power of two for each level of the tree. The

tree could conceivably be ternary, octal, or decimal where from each- node

or active processor, 3, 8, or 10 more processors are started. Some tech-

niques to minimize the time required to start these processors and to pre-

vent program monopoly of processors to the detriment of other programs

are necessary for these options (see Appendixes III and XIV).

Machine II programs require data passing, index simulation, multiple test-

ing for branches, subsequent block testing, and varying degrees of instruc-

tion layout within a block. Simple existing programs easily incorporated in

-65-

• , - Will

SECTION VI - COMPARISON OF MACHINES I AND II

a. Machine Il block might be executed as fast or faster than on a sequential

machine. The amount of parallelism at the instruction level would be tWle

determining factor. In this instance, the 96. 6 usec required fer data pass-

ing has been eliminated and the instructions most likely to be encountered

have execution times of 41.4 to 55.2 usec (see Appendixes XiII and XV).

.Treeing of processors is permissible in Machine U and the same advantages

accrue as withMachine I. Requisite data for the L.onsistent operation on and

generation of problem data must be passed to each activated processor. The

treeing process would be most useful for execution of programs operating on

independent subsets of the problem. Experience has shown that control prob-

lems develop when treeing is used to start processors operating on data lists

in which subsets of the data are not independent of each other.

Generally, it is expected that existing programs would have to be significantly

revised to take advantage of the parallelism found in, Machine II.

Machine I programs are stored in the main memory and regardless of how

many processors are operating on a program, -there is only one copy of the

program. The same techniques used in writing an iterative loop for a se-

quential machine are used similarly in Machine I for writing programs that

allow multiple processing. Pertinent data naming lists, base locations, and

teniporary storage addresses are passed to each activated processor. These

data are >1 red in the same relative registers of all processors active on the

problem and according to instruction are treated the same by all processors.

Index passing in the treeing operation requires temporary storage of the in.

cremented indices and a processor start with the first executed instructions

requesting the index values stored in the temporary locations.

"A Machine II programs are also stored in main memory; however, copies of

this original are made in the MPG whenever it is to be executed. Multiple

executions require multiple copies. An extensive treeing of programs should

be accompanied by program disposal of unneeded data to prevent overloading

of the MPG and subsequent rejection of incoming program blocks.

-66-

inmunnn mnnumu unn nmum m mnunnnmlnmnnnuumuninunm • man

SECTION VI - COMPARISON OF MACHINES I AND II

The tvo memories also require distinct instru,.tions for accessing data stored

in them. This distinction is a consideration to be kept in mind when program-

rming; data generated by a program usually are found in the MPC unless stored

explicitly in the main memory, original data normally are found in the main

memory unless explicitly transferred to the MPC.

The processors in Machine I are controlled more easily by the programmer

than in Machine 11. Each processor called for in Machine I is made active by

a specific instruction. Multiple processors usually are called for by making

each activated processor execute a portion of the program, which in turn calls

for additional processors. The limit is reached by incrementing a'Counter

for each processor started. The count is passed to each'processor started

and compared with some limit beyond which no more processors are started.

Processor usage in Machine II is not directly controllable by the programmer

in the sense of activating a processor explicitly by instruction. The program-

mer can segment the program into blocks, and squeeze instruction level and

block level parallelism out of his problem, but the processors only become

active when a program block is stored in the MPC. Only those instructions

within a. block whose operands are available are executed. The sequential

nature of a string of instructions is preserved by the sequence of operand

availability. The parallel nature of independent strings is recognized by the

machine through the availability of the requisite operands.

The type of program parallelism most economically implemented on Ma.

chine I consists of the parallelism existing between independent blocks of a

program. Very short strings of independent instructions can be executed in

parallel but usually the cost of setting up indices to maintain control is pro-

nibitive and the short strings are performed in sequence buried in larger in-

dependent strings.

In contrast, Machine II exhibits parallel execution capability on the same

levels as Machine I and in addition recognizes instruction level parallelism

independent of the programmer (see Appendix XV). Any independent strings

of instructions are executed as soon as the required operands are prewent.

-67-

.7, -, i ai

SECTION VI - COMPARISON OF MACHINES I AND I1

If ruch a string, for example, has as operands two constants that were passed

to the block containing the string, and possibly a similar string, then the two

strings, if uf similar length, would generate their resultant at the same time.

However, speed is Racrificed to obtain this additional capability provided for

Machine IX by the MPC. Machine I is capable of obtaining and executing two

instructions every 30 psec. Machine II has an instruction execution tirme

ranging between 13.8 and 96, 6 isec, depending on the instruction.

For bcth Machine I and II, problem analysis and flow charting should reveal

areas of potential parallelism. Flow charting should reveal areas of inde-

pendence within a program that can easily be formulated for Machine I or

Machine II. Completely independent blocks can be executed in any sequence.

Where there is sequential dependence at some point in the program, then to

prevent waiting for a result it is best to have executed the relatively inde-

pendent block before the result is actually needed. This entails starting a

processor at some point prior in time by an amount of time equal to the time

required to generate the desired result. In Machine I, the result would be

stored in memory with sutne name attached. This result would be available

directly to any processor possessing the name. In Machine U1, the result

could be left either in the MPC or the memory. Leaving the result in the

MPC is undesirable because in this case the only block that can easily reach

t•ie result is the subsequent block started.

Storing the result in main memory makes it available to any progr-m block

possessing the name. The name in this caie wculd have to be passed along

or generated at the point where the independent parallel paths joined.

Flow charting generally will not display nnatruction level parallehsm that

Machine U recognizes readily. Only the actual machine language program

will show it.

The maintenance of a clean memory is a necessity in both Machines I and 11.

The demands are not nearly as stringent in Machine I as in Machine U. Data

who•e • has been outlived can either be erased promptly or aecu.

mulated Thurved lite•:'e. ý,- Oh , ance of overloading the

-68-

•-~~~ ~~ --ý V•°+ iI,

SECTION VI - COMPARISON OF MACHINES I AND II

main memory in Machine I than there is in overloading the MPC in Machine U.

C • Main memory in Machine I is essentially working memory while the MPC i-

essentially working memory in Machine 1U. All information generated in

Machine II resides at least temporarily in the MPC and may reside in the

main memory if explicitly stored there. So, it is apparent that the same de-

mands for a clean memory in Machine I also exist for Machine 11, but Ma-

chine II has the added requirements of absolute cleaniifess in MP3C at the

risk of trash accumulation and possible program lockouts from the MPC.

Sorting operations in Machines I and II are accomplished almost independently

of programming efforts. If a list of items is given or is being generated, a

sorted list is available one machine cycle after the last item is placed on the

list. The programming consists essentially in placing items on the list and

naming each item the same. Since the namer are ail the same, sorting pro-

ceeds through a comparison of the magnitudes of the data in the data fields of

the items. This process was used advantageously in the maximization routine

of the dynamic programming programs for Machine I. Any item added to the

list occupies a position ordered relative to all other items on the list after

one machine cycle.

6

69

-6'5

-~ SECTION VII -RECOMMENDATIONS FOR FOLLOW-ON EFFORT

1. GENERAL,

As a result of the work performed on this- study, many areas in need of

further investigation have been identified. It is the purpose of this sec.

tion to describe some of these areas.

It is recommended that future work on this program be carried out with

the machine organizetion effort indepen-ient of the applications and pro.

gramnming effort. There are many facets of the machine organization

work in need of further study, !jut it is olixeved that the greatest kflowl.

edge can be obtained if the programming and applications efforts alre not
forced to be continually modified as a result of machine chazages. Further-'I more, Machines ! and 11 curtain many capabilities that have not bren uti-
lized and hence it is believed that the applicistion programming effort
should focus its attention on how to exploit this existing capability.

2. MACHINE C)RGAN1ZATION

a. Parallel Nonnumeric PLIceSsor

It is recommended that the d"~velopment of the parallel nonnumeric

proceteor started in theu itudy be continued.

b. Para.'eIl ;npul/output

Without some meaans for the parallel inpubtting and outputting of data.

the parallel processor will lose much of its speed advantage on rna~iy

Lrboa Evncneninlcoptr re10bun nmn

problems.~ ~ ~ ~ ~ eseial tht hc rcs il omta i ,I

SECTION VII - RECOMMENDATIONS

is capable of receiving-or providing information on these many lines

at the same time. An approach should be developed or postulated

for further use in the study.

- c. Interrupts

' The interrupt mechanism by which extra program conditior13 are

sensed and acted on should be investigated and extended in the light

of the multiprocessing facility of the parallel processor.

Input/output, processor and priority -interrupts may occur simtkl-

taneously and will require serviUi.ug.

Hardwa-re, software, and logic techniques will be needed to devise a

S$ method of solution.

-t Means of enabling any set of interrupts for each of the programs be-

ing executed in parallel should be developed, i. e., different programs

may specify different sets of interrupts to be recognized.

d. Priority

- In any computing installation, some form of priority is operative.

With a multiprocessor facility where the priorities of the problems

in the machine cover a wide range, a method of assigning processors

to problems is demanded.

The method of implementation may be absorbed by both the hardware

and software. Special instructions that allow specification of a prob-

lem's priority may be implemented. Some ideas for a dynamic pri-

ority scheme were developed for Machine II, but they are in need of

elaboration and must also be added to the other machine organiza-

tions.

e. Multiaccess Systems

There is considerable current interest in multiaccess systems, such

as JOSS, in which many users can have simultaneous access to some

f central computing facility. Parallel processors seem ideally suited

-72-

S::,,, •) ,.,• •

SECTION VII - RECOMMENDATIONS -

to multiaccess computing. Implemented in a multiaccess system, a

parallel processor could handle, simultanecusly, on-line computing

requests fron.imany users. Unused processing units could be used

efficiently to do processing not requiring-on-line execution.

Hence, not only will a parallel processor allow multiple user access

but will permit highly efficient hardware utilization.

f. Other Applications of Machine Concepts

Portions of the computer organization, such as the sortii network.

nave potential appiications other than in computers. As tne:se por-

tio-ns of the design are developed, their other uses can also be in-

vestigated.

g. Feasibility Model

In order to prove the concepts developed and to help the study of

items above, it is advisable to build a model of a sorting network.

It can be used as a multiaccess memory and by connecting some

small-scale computers. I/O gear, etc., to it, a parallel processor

can e built. The cost of such a-model can be extrapolated to arrive

at good cost figures for larger networks.

3. APPLICATIONS - PROGRAMMING

a, Macro Instructions

GConcurrent with efforts directed toward the -design and efficient 'Itili-

zation of parallel processors 1-as been the realization that processing

capabilities resident in parallel processors give rise to new ways of

thi)ALking about and solving problems. Attempts to write parallel so-

lution models and express the operations involved in a compact nota-

tion have already led to the development of a preliminary system of

macro instructions for a parallel processor (see Appendix IX). The

development of the preliminary list of macro instr'uctions was due to

an effort to express compactly the operations characterizing problems

-73-

MW,

SECTION VII - RECOMMENDATIONS-

and structuring possible methods of solution. Investigations aimed

at the further development of macro instructions should suggest new

conceptual modes in which problems and possible solution! may be

analyzed. and provide insights into the nature and significance of

- parallelism within a problem and methods f~r exploiting it by new

computational procedures.

I b. Flow Diagramming Techniques

3 Techniques to indicate parallelism in the problem on a fJow charting

level are needed. Indications oi time required for completion of sec-

tions of a program would be useful in allocating processors to enable

processor usage distribution.

c. Program Comparison Problems

In many areas of investigation, appropriate problems should be

chosen as a -n.eans of demonstrating and comparing the relative ef-

ficiency of the parallel processor with a sequential machine.

Large formatted file processing where the inpat/cutput ioad is high -

could be used to compare system aificiencies while exercising input/

output and interrupt areas of in;,estigation.

Sample problems could dernonstr:.te the efficiency of the parallel com-

piler and execution of the object program. Subroutines using the

content-addressing and sorting capabilities of the parallel processor

could be compared .using the same problem.

This effort will aid in determining how to make use of all the capa-

bilities resident in the machine organization.
4

d. Compiler

The investigation of the MAD compiler should be continued with a

detailed examinaticn of some- of the other parailel compilation al-

goritalmsin Appendix XI. In particular, the statements currcntly

being considered should be extended to include Boolean expressions.

-74.

i

.'V ii . . . =- ... -• m •" - _ • • •.

SECTION VII - RECOMMENDATIONS

This investigation naturally leads to a considek-ation-of the tradeoff

*letween a fact compiler With'relatively sl,•w object-program execu-

-tion and a relatively slow compiler with fast object-program execu-

tion. In the iormer, maximum parallelism resides in the compiler

and in tne latter in the object program.

It is believed :hat the compi-ler output may influence hardware or-

ganiz•.tion and that parallel execution of the object program may be

easier with a re-ised machine organization.

A ciosely related probiem i3 dte one of allowing the programmer to
-4 "

specify Lby statement the parailelism in the problem.

e. Library Subroutinees

A study of typical subroutines generally avýalable to computers should

be conducted. The objective would be to determine how the multi-

processing, associative, content-addressing, and sorting capabilities

of the parallel processor car-be usfed to execute these types of sub-

routines more efficiently.

a!

-75-

~L

t

i I.IST OF REFERENCES

S1. B atcher, K . E . : A New Internal Sortin• M ethod. Akron, Ohio,
SGoodyear A erospace C orporation, G ER -II759.

S2. University of M ichigan Com puting Cehter: M ichigan Algorithm

S! D •coder. A nn A rbor, M ich., June 1963. '

S. Arden, B., Galler, B., and Graham, R. : ':An Algorithm for
SY - Translating Boolean Expressions. " Journal of the A CM , April
S196z.

S4. "P rocedure O riented Language Statem ents to F acilitate Parel-
lel Processing. " Cummunications of the ACM, May 1965.

8

-77-

'flICLASSLPIED
Security Classification

DOCUMENT CONTROL DATA - R&D
(Security classification of flltS.. body of abstract final ndezing-anaotation nust be entered whemn the overall report to eta-, fied)

I ORIGINATIN G ACTIUi'Y (Corporate au~thor) I*. REPORT 99CURtTY C LASSIFICATION

Goodyear Aerospac:e Corp lb GROUP

3 I"EPORT TITLE

Advanced Computer Organization Study
Volumes I and II

4 DESCRIPTIVE NOTES (7vp. of report and Inclusive date#)

Final Retx~rt August 1064~ - November 1065
5 AUTHOR(S) (Laset name.. first name. isitlial)

IPohrbacher, Donald L.

6 PV2PORT DATE T7@ TOAL NO. OF PAGSE 7b. NO. Of AMPS

-A'Dril 1966 1558 L
8a CONTR4CT OR GRANT NO. #a. ORIGINATOR'S REPORT NUMOXII(S)

b. PROJECT No. GEP-.12314

6 O. O,11 ap RSPORT NO(S) (A ny whthe minapbere Ifet iny be aesai~ev
.ask j '

__________._________ RADC ýýR6-7I1I . A V A IL ABILITY/LIMITATION NOTICE$

Distribution of this document is unlimited.

I1I SUPPLEMENTARY NOTESSIt. SPONSORING MILITARY ACTIVITY

Rome Air Development Center
_____________________ GAFB,_N.Y._13440.O

13 BSRACT- dvanced general-purpose computer organizations capable of parallel data
prozessing were studied. To achieve maximum system performance from highly parallel
comnuter organizations, new solution models and programming techniques must be devel op-
ed. Hence, the following three areas were investigated simultaneously:
1. Applications - Study of problems and their Inherent degree of parallelism, and

development of theoretical solution models for- use on a parallel processor.
2. Programming - The programming of paralel solution models on the postulated

:omtuter organizatinns.
3. Machine Organization - Development of machine implementations capable of par-

a.i.el data processing.
Tis study resulted in the design of two comput~er organizations (designated Machine
Iand Machine II) capabl.e of parallel data processing and fast sorting and table ase h-

Lng in memory. Thebe machine organizations were possible because of the development
DI a special memory that permits many processing and input-cfutput units to access
nemory simultaneously without conflict.I

The applications effort was focused on the development of solution models which
Rxloited the maximum aamant of parallelism resident within a problem. N~o major

roblems were investigated: a dynamic programnming problem, and parallel compilation.
Detailed programs were written for the d~ynamic prograamuing problem on Machine I as

iparallel compilation alger.4thm on Machine -I. Those same problems also were prosrr d
)n the IBM 7090 to provide a standard of comparison. In both cases, the parallel pr
-essing capability of the machires afforded significant increases in speed of progr
Lecution.

DD 1JANS. 14713 UNCLASSIFIED
siecurity Clmassification

Wi7

$ ~UNCLASSTFI1ND
SecurityClassification-_______ ______

I.KEY 110040 LINK Ai LINK M LINK C

Cemputer
Programming
Numeical Analysis

INSTRUCTIONS
1. ORIGINATING ACTIVITY: Enter the name and address imposed by security classification, using standard stritements
of the contractor, subcontractor, grantee, Department of De- such as:
fense activity or other organization (corporate author) issuiing (1) "Qualified requesters may obtain copies ct thisthe report. reprt from DDC."
2a. RE.PORT SECURTY CLASSIFICATION: Enter the ovr (2) "Foreign announcement and disseminact'on of thisall security classification of the report. Indicate whetherreotb Cisntahzit-"

ance with appropriate security regulations. (3) "U. S. Gotemnment agencies may obtain copies of

2b. GROUP: Automatic downgrading is specified in DoD Di- thsreort dhllreuetl fhromuDgh te qaiie Drective 5200. 10 and Armed Forces Industrial Manual. Enterusrshlrqettrog
the group number. Also, when applicable, show that optional
rt.drkings have been used for (..ý)up 3 and Group 4 as author- (4) "U. &. military agencies may obtaia copies of thisized. report directly from DDQ_ Other qualified users
3. REPORT TITLE: Enter the complete report title in all shall request through
capital letters. Titles in all cases should be unclassified. t
If a meaningful title cannot be selected without classifica-
tion, show title classification in all capitals in parenthesis (5) "All distributior of this report is controlled. Quall-
immediately following the title. ified DDC issers shall request through
4. DESCRIPTIVE NOTES. If appropriate, enter the typ~i of_________________
report, e.g.,.interim, progress, summary, annual, or final. If the report has been furni shed to the Office of TechnicalGive the inclusive dunes when a specific reportiuig qporicvd Services, Department of Commerce. for sale to the public, indi-covered. -. cate this fact and enter the price. if known.
5. AUTHOR(S): Enter the name(s) of author(s) as shown on IL SUPPLEMENTARY NOTES. Use for additional explana-
or in the report. Entei last name, first name, middle initial, tory notes.
If -riliary. show rank and branch of service. The name of
the principal '*thor is an absolute minimum requirement. 12. SPONSORING MILITARY ACTIVITY: Enter the name of

thie departmental project office or laboratory sponsoring (par-b. REPORT DAT!., Entet the date oi the report as day, ing for) the research and development. Include address.
month, year; or month, year. If more than one date appears
,,i the report, uae date of publication. 13. ABSTRACT: Enter an abstract giving a brief and factual

7j. OTA 14UBEROF AGE&Thetotl pae cunt summary of the document indicative of the report, even thougli
shoul ToAllo nUrmBROPAE Thtoal pagintospoeueL. couteth it may also appear elsewhere in the body of the technical re-

ehold nliw nrma painaios prcedres Le. eterthe port. If additionai space is required, a continuation sheeat shall'number of pages containing information, be attached.
7b. NUMBER OF REFERENCE& Enter the total number of It is highly desirable that Uth abstract of classified reports
references cited in the report. be uncluassified. Each paragraph of the abstract shall end with
sa. CONTRACT OR GRANT NUMBER: If apprepriate. enter an indication of the military security claasificatioa of the ln-
the applicable number of the contract or grant under which formation in the paragraph, repressented as fTsJ, (s). (ci, or (u)
the report was written. Thene is no limitation on the length of the abstract. Now-
Sb, 8L. & 9d, PROJECT NUMB3ER Enter the appropriate ever, the suggested length is from 1S0 to 22S woids.
militatry department identification, euch so project number.
subiproject number, aystemk numbers, took number, etc. 14. KEY WORDS: Key words are Itchaicsll, meaninagful terms

Or short Phrases that characterisi. a report and may be used so
9a. ORIGINATOR'S REPORT NUEM(3): Unto,1 the offi- Index entries for Cataloging the reort.L Key weerds must be
cial report number by which the docutselnt will be identified selected so that ano security clossslfication ts required. Ideeti.
and controlled by the Originating activity. This number mswt flore, such as equiPPmeNt model dostpatiem, trade ag"me slittIsy
be unique to thir, report. Project codei Rome. e00POepi location, may be wsed of key
4b. OTHiER R,!PORT NUMBER(S): lItthe report has betiu words but will be followed by an inmilction of techaleel cost-
a saigned any other report numbers (@other by the oelidracto text. The asaigameast of Itah. rules. sad wei~t is ptional.
o, by Cho apon8or), als0 enter this number(s),
10. AVAIL ABILITY/LIMITATION NOTICES& Enter any lIa'-
Rtations on further dissemination of the report, other then those*

_U3CLASSIF1F:D
St~curity Clelificatigm

