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ABSTRACT

To save storage, a program is usually
written so that each variable assumes
several values. As a result, a pro-
gram is usually difficult to understand
and prone to errors. For an important
class of programs, it will be shown that
they can be written with complete free-
dom in the naming of variables; leaving
the task of minimizing storage require-
ments to the computer itself.
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NOW_

Optimal Assignment of Computer Storage by Chain

Decomposition of Partially Ordered Sets

by

George B. Dantzig and Gary H. Reynolds

THE PROBLEM: Given a sequence of n steps, on the k-th step a value vk is

computed as a fLiction Fk of the previously computed values v1 , v2 ,..., Vk.i

In general, only a subset of these is required to compute vk . We are inter-

ested in finding the minimal number of locations in the memory of the computer

to store the values v. so that they will be available for computing the suc-

cessive functions Fk . A saving in the number of locations occurs whenever a

value v k is stored in the same location as a previously computed vi , which

is no longer needed for step k+l, k+2,..., n

MOTIVATION: Consider the following trivial example:

Step Inputs

1. v given v 0 v2

2. v2 = given v3

3. V3 = VI + v2 v4

4. v4 =v2 + v 3 v5

5. v5 =v 3 + v4  utput

6. Output V 5

The arrows in the figure indicate the node values needed to compute v,, v2 ,..

Thus v3 requires vI and v2 , etc. The logical dependence is, accordingly,
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V 2 = F2 (constant given)

V3 = F3 (v1 , v2 )

v4  = F4 (v2, v3 )

V5 = F5 (V3 , v4 )

Output = F6 (v5 )

A programmer who is a memory miser would notice the dependence of one step on

another and would store v3 in the same location as vI (since vI is not needed

after step 3), v4  in the same location as v2 , and v5 in the same location as

v3 * Only two locations are needed which he calls, say, 'x' and "y". He accordingly

writes the following program:

step

1. x = given input

2. y - given input

3. x - x+y

4. y = y+x

5. x = x+y

6. output x

or some such nonsense, which we will refer to as "memory misering algebra."

This multiple use of the same symbol is a recognized cause of program error.

It is one of the primary reasons why one programmer has the greatest difficulty in

understanding a program written by another (or even one by himself). To avoid mul-

tiple use of the same symbol for memory misering, a programmer can make use of spe-

cial instructions which will direct the machine language compiler to store the values

of different symbols in the same location. This is of some help, but leaves the

task of conserving storage location up to the programmer and again is subject to
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error.

Our thesis is that memory misering ii essentially clerical in nature, a task

unworthy of the programmer's time. We will show for one important class of pro-

grams that the task oF conservation of memory location can be done efficiently by

the machine as part of its translation of a program into machine language.

SOLUTION: Define for each vk an interval of storage. If Vk is last needed to

compute F,, , then its interval of time for storage is from step k+l to tk -

and is denoted by

I(Vk) - [k+], tkl

We define an interval I(vk) as coming before another interval I(vkl) when

lyk < k'+l , which we write as

I(v.) < I(vk,) if tk < k'+l

The set of intervals forms a partially ordered set under this ordering relation.

It is obviously transitive. No ordering is given between two overlapping intervals;

such intervals are said to be unrelated. A subset of intervals I(vj.), i(v),...SJ2

,I(vj ) is said to be complete!y ordered if

I G jl ýý< ! V < ..j2 <"• llVjs

J2 j

We will refer to such a completely ordered subset as a chai.n. Obviously, values

V ' 'v. ,...,v. associated with the intervals in a chain may all be stored in

the same storage location.

The problem of finding the minimal number of storage locations is thus the same

as that of decomposing a partially ordered set into disjoint subsets, each of which

is completely ordered. This is called a chain decomposition. A constructive pro-

cedure for doing this is given by one of the authors, joint with Alan Hoffman El[,
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'S',i,,g u'anLgu With ugDwurlgi-t ineorem isj. in our speciai appiicat;on nere

to the partially ordered set of intervals, there is available, however, a much

easier procedure. This can be found in Ford and Fulkerson [3]. Applied here, it

yields:

RULE: Store vk in the sane lo:ation as any v. not needed for any step after k.

It is obvious that the application of the rule provides a valid storage pro-

cedure and it is probably equally obvious that the rule yields a minimal number of

storage locations. We will, nevertheless, give a formal proof.

Up to step k , let Tk. be the subset of locations used to store t-e values

vI, v2 ,... ,Vk_ . Let L be any location in the set Tk.1 , and vi the last value

stored in L at the start of step k . Several values may have previously been

stored in L , but vi refers only to the last ,bne stored in L up to step k

let IL be the storage interval-of this v.

It is clear that vk cannot be stored in L if IL overlaps with I(vk)

If I(vk) overlaps with every interval IL for all LeTk.I , then it is necessary

to increase the set of storage locations in order to store vk. In this case, the

number of storage locations in Tk has to be one greater than Nk.1 , the number of

locations in T .I . In general, Nk = I + Nk.1 or hk = N . Let us suppose

that on step k , there was a location LCTk.I such that I(L) does not overlap

with I(vk) , but that a location E not in Tk.1 was used instead for storing

Vk . Note that on subsequent steps the vaiues stored in L or E could be inter-

changed if on step k , location L were used in place of I . This interchange

never increases the count of the locations used and the count could even be de-

creased if L is never used and is dropped,

Thus we have shown that there always exists a minimal storage selection that

always stores for each k the value vk in Tkl1 unless !1 for all LeTk.I
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... i.s .•o .hU thLat any selection with this property

is minimal. Let k k be the lowest index k such that N M = Max Nk ; then
k

1. + Nk. = N * . Thus every interval IL for LeT overlaps with that of

i(v *) . But each such interval begins before I(v *) , hence ail overlap with
k k

the value k*+ 1 , the start of interval t(v *) . Thus all Nk* intervals of

k k

T have the value k*+ I in common, and constitute a set of N * urnrelated
k- k

intervals in the partially ordered set of intervals.

Note that N k happens to be also equal to the number of storage locations

selected to carry out the computations. Associated with each location LeTk is

the subset of values vi stored in L on steps 1,2,...,n . The intervals

I(v 1 ) of these vi are completely ordered, hence form a chain.

Thus for each LeT * , there is associated a mutually exclusive chain, and
k

every interval in the original partially ordered set belongs to one of these

chains. Thus we can decompose the partially ordered set into Nk* non-over-

lapping chains. Since it is obvious that each member of any group of unrelated

elements must belong to different chains, the minimum chain-decomposition must

always be greater or equal to the maximum number of unrelated elements. Hence,

when N * , the number of chains in some decomposition, happens ro be the same
k

as the number of elements In some set of unrelated elements, we conclude that

this can only occur when the partially ordered set has been decomposed into a

minimal number of chains. This completes our proof. The discussion just given

is a paraphrase of the usual proof of sufficiency of the following:

. ? :., . .. ...
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DILWORTH'S THEOREM: The maximum number of unrelated elements in a partially or-

dered set is equal to the number of chains in a minimal decomposition.

APPLICATION IF THE NUMBER OF STEPS IS SMALL: The task of the compiler will be to

set up a correspondence between location addresses and symbols used in the progrdm.

If there are n steps and n is reasonably small, then the following pro-

cedure will accomplish the minimum storage of the program. Only if the program is

to be executed many times would the method to save storage given below be worthwhile

Set aside n locations Ak for recording tk P the last step for which vk

is needed for computation. Scan each step t in turn and record 't in Ak f

vk is required on step t, to compute v. •rhe final value of t recorded in

each Ak is •'t k Note that for any v. which is not required on some subsequent

step (such as vn the value in A. is i. = 0 .
I I

Set up a way of generating the names of up to n-l addresses which will be

called upon as required as a source of additional addresses for storing vi . The

addresses to be assigned for storing vi wiil be stored in n locations

B1, B2 ,...,B n as follows: Generate an address and store in B , except store 0

if It = 0 . For each k = 1,2,..., n , store 0 in Bk if k = 0 1 otherwise,

the same address as in B. where i0  is the first i 0 < k such that 0 < t o<_ k

If there exists no such i 0 , then generate a new location address and store it in

Bk . Note that 0 in Bk is to be interpreted as not requiring an address for

vk . To prevent the re-use of t,.i (since it is now superceded by tkk), the value

of t.. in A. is replaced by "+o1" and the process is then iterated. Finally,

assign the address in B. to vi

WE-



IF T.,UC , lO TEP WS LARGE: A simple example will suffice to show a funda-

mental difficulty of the previous procedure when the number of steps is large or

unspecified until execution time. The following rouwine (assuming no mistakes)

can be used to (inefficiently) rearrange m numbers in ascending order:
M.

Input (X1], x12,...,Xlm]

s For i = 2,3,....m

le. A. = xi

for j =,2,...,(m-l)

x.ij = Min[A. i-i , ]j+I JI, ' -1, l

Ai ,j+i 2_ Max [Aij ' i-i ,j+l

X. =A.I',m I',m

Output [Xml, Xm2,*...XMM)

We will call this a generic algorithm because m is not specified until execution

time. Here we wish to make a prior decision of what values are to be stored in t•,e

same location to be used whatever be the eventual value of m . This particular

routing computes 2m2 + m different values. For m = 1,000, say, it would not be

practical to apply the method of the previous section. A little study shows that
k.

all the A.. may be stored in a single location and all the vectors,j

fx il x i,2""'Xi,m in the same m locations as fx Hen,,

only m+l memory locations are required by this routine to sort m numbers.

This illustrates the more important problem which we are working on, namely that

of analyzing the structure of generic routines (i.e., those with unspecif;ed para-

meters) to determine the minimal assignment to storage prior to specification.
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