
ORC 66-6
March 1966

Q0

9 9PTIMAL ASSIGNMENT OF COMPUTER

WRAGE BY CHAIN DECOMPOSITION OF

PARTIALLY ORDERED SETS

by

George B. Dantzig and Gary H. Reynolds

CLEARINGI I G USEN
FOR FED1IAL SCIENTIFIC AND

TECHNIFA-. INFOI••IATION
HAarcopy Microf iche

I40 u jH------ / o sl •

OPERATIONS RESEARCH CENTER

COLLEGE OF ENGINEERING

UNIVERSITY OF CALIFORNIA- BERKELEY

-

OPTIMAL ASSIGNMENT OF COMPUTER STORAGE BY CHAIN

DECOMPOSITION OF PARTIALLY ORDERED SETS

by

George B. Dantzig and Gary H. Reynolds
Operations Research Center

University of California, Berkeley

March 1966 ORC 66-6

This research has been supported by the Office of Naval Research un-
der Contract Nonr-222(83), and the National Institutes of Health
under Grant GM-9606 and the National Science Foundation under Grant
GP-4593 with the University of California. Reproduction in whole or
in part is permitted for any purposes of the United States Govern-
ment.

-INK-

ABSTRACT

To save storage, a program is usually
written so that each variable assumes
several values. As a result, a pro-
gram is usually difficult to understand
and prone to errors. For an important
class of programs, it will be shown that
they can be written with complete free-
dom in the naming of variables; leaving
the task of minimizing storage require-
ments to the computer itself.

- _7 -

NOW_

Optimal Assignment of Computer Storage by Chain

Decomposition of Partially Ordered Sets

by

George B. Dantzig and Gary H. Reynolds

THE PROBLEM: Given a sequence of n steps, on the k-th step a value vk is

computed as a fLiction Fk of the previously computed values v1 , v2 ,..., Vk.i

In general, only a subset of these is required to compute vk . We are inter-

ested in finding the minimal number of locations in the memory of the computer

to store the values v. so that they will be available for computing the suc-

cessive functions Fk . A saving in the number of locations occurs whenever a

value v k is stored in the same location as a previously computed vi , which

is no longer needed for step k+l, k+2,..., n

MOTIVATION: Consider the following trivial example:

Step Inputs

1. v given v 0 v2

2. v2 = given v3

3. V3 = VI + v2 v4

4. v4 =v2 + v 3 v5

5. v5 =v 3 + v4 utput

6. Output V 5

The arrows in the figure indicate the node values needed to compute v,, v2 ,..

Thus v3 requires vI and v2 , etc. The logical dependence is, accordingly,

2

V 2 = F2 (constant given)

V3 = F3 (v1 , v2)

v4 = F4 (v2, v3)

V5 = F5 (V3 , v4)

Output = F6 (v5)

A programmer who is a memory miser would notice the dependence of one step on

another and would store v3 in the same location as vI (since vI is not needed

after step 3), v4 in the same location as v2 , and v5 in the same location as

v3 * Only two locations are needed which he calls, say, 'x' and "y". He accordingly

writes the following program:

step

1. x = given input

2. y - given input

3. x - x+y

4. y = y+x

5. x = x+y

6. output x

or some such nonsense, which we will refer to as "memory misering algebra."

This multiple use of the same symbol is a recognized cause of program error.

It is one of the primary reasons why one programmer has the greatest difficulty in

understanding a program written by another (or even one by himself). To avoid mul-

tiple use of the same symbol for memory misering, a programmer can make use of spe-

cial instructions which will direct the machine language compiler to store the values

of different symbols in the same location. This is of some help, but leaves the

task of conserving storage location up to the programmer and again is subject to

:- 7{- :-• "- .i l l NI I I ilI I ! I I HI I I I I INI

3

error.

Our thesis is that memory misering ii essentially clerical in nature, a task

unworthy of the programmer's time. We will show for one important class of pro-

grams that the task oF conservation of memory location can be done efficiently by

the machine as part of its translation of a program into machine language.

SOLUTION: Define for each vk an interval of storage. If Vk is last needed to

compute F,, , then its interval of time for storage is from step k+l to tk -

and is denoted by

I(Vk) - [k+], tkl

We define an interval I(vk) as coming before another interval I(vkl) when

lyk < k'+l , which we write as

I(v.) < I(vk,) if tk < k'+l

The set of intervals forms a partially ordered set under this ordering relation.

It is obviously transitive. No ordering is given between two overlapping intervals;

such intervals are said to be unrelated. A subset of intervals I(vj.), i(v),...SJ2

,I(vj) is said to be complete!y ordered if

I G jl ýý< ! V < ..j2 <"• llVjs

J2 j

We will refer to such a completely ordered subset as a chai.n. Obviously, values

V ' 'v. ,...,v. associated with the intervals in a chain may all be stored in

the same storage location.

The problem of finding the minimal number of storage locations is thus the same

as that of decomposing a partially ordered set into disjoint subsets, each of which

is completely ordered. This is called a chain decomposition. A constructive pro-

cedure for doing this is given by one of the authors, joint with Alan Hoffman El[,

4

'S',i,,g u'anLgu With ugDwurlgi-t ineorem isj. in our speciai appiicat;on nere

to the partially ordered set of intervals, there is available, however, a much

easier procedure. This can be found in Ford and Fulkerson [3]. Applied here, it

yields:

RULE: Store vk in the sane lo:ation as any v. not needed for any step after k.

It is obvious that the application of the rule provides a valid storage pro-

cedure and it is probably equally obvious that the rule yields a minimal number of

storage locations. We will, nevertheless, give a formal proof.

Up to step k , let Tk. be the subset of locations used to store t-e values

vI, v2 ,... ,Vk_ . Let L be any location in the set Tk.1 , and vi the last value

stored in L at the start of step k . Several values may have previously been

stored in L , but vi refers only to the last ,bne stored in L up to step k

let IL be the storage interval-of this v.

It is clear that vk cannot be stored in L if IL overlaps with I(vk)

If I(vk) overlaps with every interval IL for all LeTk.I , then it is necessary

to increase the set of storage locations in order to store vk. In this case, the

number of storage locations in Tk has to be one greater than Nk.1 , the number of

locations in T .I . In general, Nk = I + Nk.1 or hk = N . Let us suppose

that on step k , there was a location LCTk.I such that I(L) does not overlap

with I(vk) , but that a location E not in Tk.1 was used instead for storing

Vk . Note that on subsequent steps the vaiues stored in L or E could be inter-

changed if on step k , location L were used in place of I . This interchange

never increases the count of the locations used and the count could even be de-

creased if L is never used and is dropped,

Thus we have shown that there always exists a minimal storage selection that

always stores for each k the value vk in Tkl1 unless !1 for all LeTk.I

5

faog*Ple,%C ,,.I, ~ I I,, I U. .. ~.. .L ,.• ------. .L-•

... i.s .•o .hU thLat any selection with this property

is minimal. Let k k be the lowest index k such that N M = Max Nk ; then
k

1. + Nk. = N * . Thus every interval IL for LeT overlaps with that of

i(v *) . But each such interval begins before I(v *) , hence ail overlap with
k k

the value k*+ 1 , the start of interval t(v *) . Thus all Nk* intervals of

k k

T have the value k*+ I in common, and constitute a set of N * urnrelated
k- k

intervals in the partially ordered set of intervals.

Note that N k happens to be also equal to the number of storage locations

selected to carry out the computations. Associated with each location LeTk is

the subset of values vi stored in L on steps 1,2,...,n . The intervals

I(v 1) of these vi are completely ordered, hence form a chain.

Thus for each LeT * , there is associated a mutually exclusive chain, and
k

every interval in the original partially ordered set belongs to one of these

chains. Thus we can decompose the partially ordered set into Nk* non-over-

lapping chains. Since it is obvious that each member of any group of unrelated

elements must belong to different chains, the minimum chain-decomposition must

always be greater or equal to the maximum number of unrelated elements. Hence,

when N * , the number of chains in some decomposition, happens ro be the same
k

as the number of elements In some set of unrelated elements, we conclude that

this can only occur when the partially ordered set has been decomposed into a

minimal number of chains. This completes our proof. The discussion just given

is a paraphrase of the usual proof of sufficiency of the following:

. ? :.,

6

DILWORTH'S THEOREM: The maximum number of unrelated elements in a partially or-

dered set is equal to the number of chains in a minimal decomposition.

APPLICATION IF THE NUMBER OF STEPS IS SMALL: The task of the compiler will be to

set up a correspondence between location addresses and symbols used in the progrdm.

If there are n steps and n is reasonably small, then the following pro-

cedure will accomplish the minimum storage of the program. Only if the program is

to be executed many times would the method to save storage given below be worthwhile

Set aside n locations Ak for recording tk P the last step for which vk

is needed for computation. Scan each step t in turn and record 't in Ak f

vk is required on step t, to compute v. •rhe final value of t recorded in

each Ak is •'t k Note that for any v. which is not required on some subsequent

step (such as vn the value in A. is i. = 0 .
I I

Set up a way of generating the names of up to n-l addresses which will be

called upon as required as a source of additional addresses for storing vi . The

addresses to be assigned for storing vi wiil be stored in n locations

B1, B2 ,...,B n as follows: Generate an address and store in B , except store 0

if It = 0 . For each k = 1,2,..., n , store 0 in Bk if k = 0 1 otherwise,

the same address as in B. where i0 is the first i 0 < k such that 0 < t o<_ k

If there exists no such i 0 , then generate a new location address and store it in

Bk . Note that 0 in Bk is to be interpreted as not requiring an address for

vk . To prevent the re-use of t,.i (since it is now superceded by tkk), the value

of t.. in A. is replaced by "+o1" and the process is then iterated. Finally,

assign the address in B. to vi

WE-

IF T.,UC , lO TEP WS LARGE: A simple example will suffice to show a funda-

mental difficulty of the previous procedure when the number of steps is large or

unspecified until execution time. The following rouwine (assuming no mistakes)

can be used to (inefficiently) rearrange m numbers in ascending order:
M.

Input (X1], x12,...,Xlm]

s For i = 2,3,....m

le. A. = xi

for j =,2,...,(m-l)

x.ij = Min[A. i-i ,]j+I JI, ' -1, l

Ai ,j+i 2_ Max [Aij ' i-i ,j+l

X. =A.I',m I',m

Output [Xml, Xm2,*...XMM)

We will call this a generic algorithm because m is not specified until execution

time. Here we wish to make a prior decision of what values are to be stored in t•,e

same location to be used whatever be the eventual value of m . This particular

routing computes 2m2 + m different values. For m = 1,000, say, it would not be

practical to apply the method of the previous section. A little study shows that
k.

all the A.. may be stored in a single location and all the vectors,j

fx il x i,2""'Xi,m in the same m locations as fx Hen,,

only m+l memory locations are required by this routine to sort m numbers.

This illustrates the more important problem which we are working on, namely that

of analyzing the structure of generic routines (i.e., those with unspecif;ed para-

meters) to determine the minimal assignment to storage prior to specification.

8

REFERENCES

r"] Dantzig, G.B. and P.J. Hoffman, "Dilworth's Theorem on Partially Ordered
Sets", Linear Inequalities and Related Systems, Annals of Mathematics Study
38, Princeton University Press, pp. 207-214 (1956).

r2] Dilworth, R.P., "A Decomposition Theorem for Partially Ordered Sets,"
Annals of Math.5j)pp. 161-166 (1950).

r3] Ford, L.R., Jr., and D. R. Fulkerson, Flows in Networks, Princeton University
Press (1962).

r4] Fulkerson, D.R., "Note on Dilworth's Decomposition Theorem for PartiallyOrdered Sets," Proc. Am. Math. Soc. 7, PP. 701-702 (1956).

Unclassified
Secudty Classification

DOCUMENT CONTROL DATA- R&D
(S.curity cl..llolcdtiorn of title, body of abatiect anid Ind.oain4 anwtatlon okust h• ontoved ie. the • 1•,•1`r.1 f.Pf It J leokteillfd)

I ORIGINATING ACTIVI-Y (C-oMote Outhmo) 2o_. REPORT SECURITY CLASSIFICATIONI. I nlassified
University of California, Berkeley 2z6, 6ROUP

3 REPORT TITLE

Optimal Assignment of Computer Storage by Chain Decomposition of Partially
Ordered Sets

4 DESCRIPTIVE NOTES (Type o report and incue'lve dete#)

Research Peport
S AUTHOR(S) (Loot nrOm. first hrame, Inltial)

Dantzig, George B. and Reynolds, Gary H.

S. REPORT DATE 70. TOTAL NO. Of PAGES 7b. NO. OF' ftKp
March 1966 9 4

La CONTRACT OR GRANT NO. So. ORIGINATOR'S REPORT NUMISERS)

Nonr-222(83) ORC 66-6
b PROJECT NO,

NR 047 033
C! Sb Hr 7 o~ouR NO(S) (Any other numbere Star may be asoi~vd

d

10 A VA IL ABILITY/LIMITATION NOTICES

Distribution of this document is unlimited.

It SUPPLEMENTARY NOTES 12 SPONSORING MILITARY ACTIVITY

Mathematical Sciences Division

13 ABSTRACT

To save storage, a program is usually written so that each variable assumes
several values. This technique also leads to programming errors. For an
important class of programs, it will be shown that they can be written with
complete freedom in the naming of variables; leaving the task ot minimizing
storage requirements to the computer itself.

DD I JAN$, 1473 Unclassified
Security Classification

u T• .. . •.

Unclassified
Security Classificatno_

KEY WORDS LIN K A LINKS 8 LINK JK-YW•SROLE WT R'OLIE WT ROL., WT -

Computer Storage
Chain Decomposition

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address imposed by secutrity classification, using standard statements
of the contractor, subcontractor, grantee, Department of De- such as:
fense activity or other organization (corporate author) issuing (1) "Qualified requesters may obtain copies of this
the report. report from DDC."

2a. REPORT SECURITY CLASSIFICATION: Enter the over- (2) "Foreign announcement and dissemination of this
all security classification of the report. Indicate whether
"Restricted Data" is included. Marking is to be in accord- report by DDC is not authorized."
ance with appropriate security regulations. (3) "U. S. Government agencies may obtain copies ofthis report directly from. DDC. Other qualified DDC
2b. GROUP: Automatic downgrading is specified in DoD Di- users shall request through

rective 5200. 10 and Armed Forces Industrial Manual Enter

the group number. Also, when applicable, 3how that optional
markings have been used for Group 3 and Group 4 as author- (4) "U. S. military agencies may obtain copies of this
ized. report directly from DDC. Other qualified users

3. REPORT TITLE: Enter the cor.plete report title in all shall request through
capital letters. Titles In all cases should be unclassified.
If a meaningful title cannot be selected without classifica-
tion, show title classification in all capitals in parenthesis (S) "All distribution of this report is controlled. Qual-
immediately following the title, ified DDC users shall request through

4. DESCRIPTIVE NOTES: If appropriate, enter the type of I_."__

report, e.g., interim, progress, summary, annual, or final. If the report has been furnished to the Office of Technical
Give the inclusive dates when a specific reporting period is Services, Department of Commerce, for sale to the public, indi-
covered. cate this fact and enter the price, if known.

5. AUTHOR(S). Enter the name(s) of author(s) as shown on IL SUFPLEMENTARY NOTES: Use for additional explana-
or in the report. Enter last name, first name, middle initial, tory notes.
If military, show rank and branch of service. The name of
the principal tuathor is an absolute minimum requirement. 12. SPONSORING MILITARY ACTIVITY: Enter the name of

the departmental project office or laboratory sponsoring (par,
6. REPORT DATE Enter the date of the report as day. ing for) the research and development. Include address.
month, year. or month, year. If more than one date appears
on the report, use date of publication. 13. ABSTRACT: Enter an abstract giving a brief and factual

summary of the document indicative of the report, even though
7a. TOTAL NUMBER OF PAGES: The total page count it may also appear elsewhere in the body of the technical re-
should follow normal pagination procedures, i.e., enter the port. If additional space is required, a continuation sheet shall
number of pages containing information. be attached.

7b. NUMBER OF REFERENCES: Enter the total number of It is highly desirable that the abstract of classified reports
references cited in the report, be unclassified. Each paragraph of the abstract shall end with
8e. CONTRACT OR GRANT NUMBER: If appropriate, enter an indication of the military security classification of the in-
the applicable number of the contract or grant under which formation in the paragraph, represented as (Ts), (s), (C), or (U).
the report was written. There is no limitation on the length of the abstract. How-
8b, 9c, & 1d. PROJECT NUMBER: Enter the appropriate ever, the suggested length is from 150 to 225 words.
military department identification, such as project number,
subproject number, system numbers, task number, etc. 14. KEY WORDS: Key words are technically meaningfl terms

or short phrases that characterize a report and may be used as
Vs. ORIGINATOR'S REPOR NUMBER(S): Enter the offi- index entries for cataloging the report. Key words must be
cial report number by which the document will be identified selected so that no security classification is required. Idesti-
and controlled by the originating activity. This number must fiers, such as equipment model designation, trade name, military
be unique to this report, project code name, geographic location, may be used as key

9b. OTHER REPORT NUMBER(S): If the report has been words but will be followed by an indication of technical coa-

assigned any other report numbers (either by the originator tcx:. The assignment of links, rales, and weights is optional.

or by the sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES. Enter any lim-
itations on further dissemination of the report, other than those

DD I ,,o 1473 (BACK) Unclassified
Security Climmification

