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Generation of Turbulence in Couette Flow

between Excentric Cylinders.

1.) Intrcductory

Couette flow is besides the Hagen-Polseulle flow the
fundamental experiaent for the study of the flow properties
of 1iquids and the study of stability and transition to tur-
bulence in ducts. Although the theory of stability was most
successful by discovering the generation of cellular vorti-
ces [1] when the centrifugal forces act stabilizing there
does not exist a complete understanding of the transition
phenomencn to turbulence which was observed[1,2,}.4] when
the centrifugal forces act stabilizing. An example fo: the
first case 1s a rotating inner cylinder and the outer cylin-
der at rest and for the second case the outer cylinder rota-
ting and the inner cylinder at rest. Only recehtly 1t'was
pointed out [5] that the observed transition could have been
caused by vibrations or excentricities which were produced
by imperfecticns of the Couette apparatus used in the experi-
ments. The use of ball bearin s:, large ratios of the length
to the diameter of the cylinders, large dimensions and cylin-
ders bent from sheet point to the likelihiood of such itiperfec-
tions. When annihilating excentricities and vibrations it in-
deed was found [5] that the flow 1s completely stable up to
Reynolds numbers jet not attained. Also the tnecoretical stavui-
lity proof on the basis of small two-dimensionzl perturbations
shows stability [5,6]. rfurthermore witi determiiied excentri-~
cities transition to t:..ulence w=c obtained with a definite
dependency on the lieynoids nunb. . Jherc ..em to be eriough
indications ‘or the creatio. of turbulen .. by excentricities.
It is the purpose of this i... .stig-.“ion .o give a *‘“eorctical
explanation of this transition phenomenon i1 the .. .ence of
excentric cylinders.




Transition can be caused either by fleow instabllity or
by separation. In the latter case there occurs near the wall
counter flow wich initiates transition. Preliminary experi-

mental observations gave strong evidence f{or this type of tran-

sition. Therefore the investigation will deal with the sepa-
ration effect opposite to the original intention.

2.) General assumptions and notations.

As mentioned before a rotating outer cylinder and the
inner cylinder at rest will be assumed. Plane motion will be
regarded. This means that this investigation refers to rela-
tively long cylinders so that end effects will not influence
the middle part of the flow.

The center of the inner cylindzr will be regarded as cen-
ter of reference (fig. 1. The excentricity of the outer cy-
linder of radius r, will be denoted by e. The ratio e/r, is
regarded as smnall so that nigher orders of thls ratio can te

neglected. The discussion of the bourdary condlitions will show




that the satisfaction of these conditions at the excentric

boundary involves rather cumbersome nunerical calculations.
Therefore the outer boundary will be altered some what in

the way that the boundary conditions will be shifted from

the excentric to a hypothetic centric circular boundary with
- the same radius as the excentric boundary. In the case of a
sanall ratio of the excentricity to the mean width of the gap
this is of negligible influence whereas at larger excentrici-
ties the boundary conditions give a periodically alternating
in- and outflow at the hypothetical boundary. One may say
that these conditions are still in the nelghborhood of the -

- real boundary conditions if the excentricity is a 'larger frac-
tion of tne average width of the gap.

Navier-Stokes equations will be considered with out ne-
glecting any terms. However the lnertia terms will be lineari-
zed by assuming as mean flow the Couette flow between centric
cylinders. Therefore only small perturbations should be gene-
rated by the excentricity. This means that the investigation
is restricted to excentricities which are small in comparison
Lo the mean width of the gap.

The linearization is not in agreement with the physical
problem of separaticn. Indeed separation is an effect of fi-
nite inertia forces as fluid particles are subjected to a fi-
nite deceleration. Therefore the calculations presented here
can only show the tendency to separation. One can not expect
that the calculated values of the parameter which characteri-
zes separation will be 1in good agreenent with experimental
values. The comparison with own experiments will show that
the calculat.d values are to smalil. But this lack in agree-
ment characterizes all calculations of similar problems as
the mathematical difficulties are invincible with out the sia-
plification of linecarization.

3.) Boundary conditions.

Tne clircuinterential velocity of the outer tinder will
be denoted by U¥. With the ceater of reference i.. the center
of the inner cylinder one has according to f'ig. 2 the tangean-




Fig 2

tiul and radial coaponents

U, = U¥cosy US « - U sing (3

)

Introducing the geometric relatious
HWSnp = esing |, v,cosp e+ ecose = (2

one obtalns

U“-U‘%(%-%cuy), U,‘--U‘%%sincp (>

From (2) one derives

¢ = ecos @ ¢ 1:.1’4- $.‘ sin‘e

The series cxpaasion is, 1f the dimensionless excentricity




18 introduced

é-.- gcose o%[4- {--3.-: 5‘(4—c032¢)] -6

With the above mentioned assumptlion

: 6
e« 1 (
and the notétions
f'% ' Q'% , A-‘C/Q (7d
one obtalns |
(7v

o=@ (1+Acosg )

This gives when introduced in (3) the following expressions
for the tangentlial and radial compouents of the circumferen-
tiul velocity U¥ of the outer cylinder

UF = US U* = - U A sin @ (8

’

Introducing the mean width

"."Z-f. . | (9
and
8.-%:- :q-ﬂ . (10

the second equation (8) can also be written
‘ L]
Uy‘ = nu Tf"'& ﬂﬂv | (4'1

This shows thal excentricities of the order €*« 1
influence only the radial veloclity component.

The width of the gap 1is

he v-v, +0cosg (12




Then

h=h(1+ 'ﬁcosw (13
Later tne variable

y = ,:;% (14

will be introduced. It is the dimensionless distance from
the inner wall. The valie of y at th: outer boundary is &
according to (10). (13} glves

(15

on: obtains

1
5 = §,(4¢xcosq) (17
As the calculations will be restiricted to
1
x «f « 1 (18
tae higher powers of & can be approximated by
(19

&= 8:(402«cos<p) , 8= 8,’ {(A+3acosp) |

Iv w21l be snoun that the limitation (18) is not absolu-
tely necessary. levertiwless 1t will be introduced as other-
wise the calcuiations gel to extensive,

4.) Basic cquations.
J

Denoting by u the tangentlul by v the radicl veloceity
(f1g.') by p pressure, vy » kinesatic vic csity, by index v, ¢
diifereatiutlons with respecet tor,e@ the vier-Ctokes equa-
tions for the circunferentlal and rudial direction refering
to trhe twodirensional niotion a:e

TVU, * Udy + UV --%p,Ov[uwyy;'-%,oi‘;?o%v,]Y (20

u \4
vv,'i",-v,--; s-%h *”[Vw’;v:‘%’!ff"%\“v] (21




Introducing the stream function y defined by

u=-9y, , v'%Vv |
ahd differentiating (20) with respect to r, (21) with resject
to ¢ then eliminating the pressure and introducing Laplaces
operator .

ay= v s Ly v Ly,
“one fihally obtains

| VvAV*v -9 0y, = vrady (22

The stream funciion will be coapoued of two parts y* of the
wean Ilow and ' of the perturbatlion

Yy = yEey
As mentioned before for the mean flow the Coucite flow

baetween centric cylinders will vuc introduced the velo-
cities of whicn are '

U .- Y 1 | 5
WeUsoagt (B-2) 0 Fw eV o

]

With this (22) is transformed to

Uay, -y, 8y, - W Ay, =vrady' . (24

Linearizing tnls equation by neglcecting the second order teoas
iy writiog vy lor ' and Introuucing the abbreviation

- Vv | (29
v, \3

[&r-1v
one obtains

' Y

- 2 26
K(G-1)ay, = rrasy. (26

The variable y defined by (14) will be in.rodaced. iue:n . .e

.

equation
K“Y’Y‘)[‘”Y)t"’vw s (1syly,y ”r'm] = [Hoy)'vm, » l(hy)’ym -
=y
“ 1oYWy (407D ¢4 Ypy = L (10Y) Yy, *2(4¢y)‘w"" ov,,,,_]
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5.) Soiuticn for zero inertia terms.

Accordéing to the geometry of the problem a s~iution
..riodic in the circumrerential anglec ¢ (fie. %, 18 to te
expected., Svluticns with thils property are well known for
vanishing incruvia terns as the basic egquatlons then are
reduced to the blharmonic differential equations. One has
with tne dimensionless radius r = r/r,

"y =a,sainrea,yt cccse(by o by sb,rt . byriny)
rcas2o(c,rte c,v“oc,r' ¢+ C, )

0(.053? (d‘v’o d‘V.’ od,Y' S d,V" )

Jrom this one obtains the velocity components

Uuas -y,
= - io,v";la,v scos@ (b, -brte3brieb, sbiny) (28
v€os 29 (c, Ly -26,v2 + 8¢,v) )

scosdg (3d,r* -3d,vy* .5d,v* - dyr?)

v}

v=€-y, 2~ { sing (bebr?sbriebinr)
sisiml@ ey scrtve,ydaryr?)

+3yn 3, (d"‘.‘dl.. bd‘ v? . qu") (29

* - }




The boundary conditions Um V = 0 at v= 1 give

bye b, s+ by =0 Q ¢+ 2q; =0

€+ & vCec, =0 b‘-b;§3b. ¢b, =0

IC, - 2‘. Q“C’ L4 0

o o

Introducing (7,8) in (28,29) one obtains for the outer boun-
dary, when powers of ¢ are developad into power series of A
and only first order terms in A are regarded

~U¥ = @,Q(1-2¢os9) «2a,Q(1+Acosq)
scoso[b, - bg*(1-2Acos ) +3b,¢*(1+2Acos )
+b,(14lng ) «b, In(1+Acos @) |
ocosz'p[zc,qu‘lcosv)-Zc‘q"(q-szlcas ¢)
+%c, P (1+3Acos @)

L

UAsing = sing[b,e b @(1-2Acos¢p) « by¢* (14 2Acos @) + b, inq
+b,In(1+ 2cos @) ]
+23in2¢p[c,p (16 Acos @) o c, ¢ (1-3A cos @)
+ c,e‘(hs)&cosv)oc,q"(‘l-,lcoscp)]

Rearranging terms with respect to multiples of ¢ one obtains

-U® = @,¢%+2a,0 ¢« b 0°A +3b,0'A 42 hA
scos¢ [~@, @ A +2a,pA :,b, -bgte3b¢" ¢ by(1+InpQ)
+CQA « 3¢, ¢7A + 6¢,9'A]
+¢0329[b,q"/\ +3b0% £ Ab, +26¢¢ -2¢,07 + ¥, 0% - ]

-
*o 0

VEAsing = sing[be bygl v bg* s bBInp +c,01 -3¢, oA +3GA00-¢ A7)
+sin2@[-b, @*A + b,g*A + B A +2¢,Q ¢ 2¢,¢” + 26,0% 2cy 07" - ]




Equalizing terms with the same multiples in ¢ on the
right and left side one obtains 5 equations which together
with the 5 equations (30) for the inner boundary determine

the 1o constants a,, a}.b1.b2, Bas Lys Cqs o) C3s Cye
The numerical evaluation of the constants is given in
table I for A= 0,08. Teruas including G6¢ are considered to
show the convergence. Cne sees that it is surficient to
consider cocflicients up to d that means up to the terms

containing ¢ .

This solution surely would not be sufficient to show the
separation effect. It merely should demonstrate the satisfac-
tion of the conditions at an excentric boundary. However this
solution is part of the solution whic.. considers the lineari-
zed inertia terms. This will be cshown later.

Table I
4= 0,381917028 £4= -0,019382031

ay= ",792011255 d
= -0,896005614 d,= 0,167656633 .= -0,036423168

i 2 2

b,= -2,103841k4o0 d}= -0, 198725803 f3= 0,008220391

Ly= 7,531828055 d4= -0, 350847855 £,= 0,047584208

b3= -5,327986714 e, = -0,023912624 g,= 0,011262653

b*= 25,51962.761 e = 0,022420572 65= o,o182oo65j

¢,= =3,047627428 e5= 0,023554611 &4= -0,000352103
¢y= =1,135904752 e,= -0,022047551 g,= -0,023111201
¢, = 0,955061233

. = 5,2276700.:2

6.) Cclution considering linearized iner.i: terms.

Slaiiar oo %l

vroression

s
y=Lf(ycossp « }; g, (y) sin s¢

;2 soluticen for zero ineriia terms ihe

4




will be introduced with the power series
[ J . o .
b= Eaiy' . g X miy (32

The coordinate y 1s defined by (14). Introducing this expres-
sion into the basic equation (27), then putting the terus of
cos s¢ , sin s¢ to zero and comparing equal powers of y one
obtains equations with which the coefficients or each series
can be expressed by the first four ones. To satisfy the con-
ditions at the outer boundary one has to introduce the expres-
sion (17, 19) for Yy and its powers. Powers and products of

tus sy, sin s will occur which can be expressed by the sinus
and cosin.: of multiples of the angle @ as shown in section 5
for zero lnertia terms. Then each s- term in (32) would demand
the determination of four constants from che boundary condi-
tions.

These evaluations indeed would be exceedingly cumbersome.
Therefore the limitation (18) will be introduced so that the
excentric boundary may be replaced by a centric boundary with
radius r,. Now instead of (31) the expression

Y e[fcy) oS @ + gy sinq’] (23
with

.- . ) . '
fs= ;a.-y‘ , g-g_m,-y‘ (o4

is sufficient.

The following procedure is similar to tne one mentioned be-
fore: Putting the terms of cos¢ and of sin¢g to zero and
comparing equal powers of 'y one outains equations which
allow to express the series coefliclients By the first four
ones of each series. Tils is a similar method used by Girt-
ler to treat the free boundury layer flov nea: a corruga-
ted plate [7] .

The followWing expressions are obtaincd for the variouys
coefficients a, m. The laborious derivation will be omitted
here.




Following this way one first obtains by introducing
(33) in (27) the differential equation

{cosp (-F" -2fT+3F" - 3f +3f)
esing(-g"-2g" +3g° -39’ ¢ 3g)]
vy {cos@[-¥f"-6f"+ 6f-3f" + K(-29 + 29'-29")]
esing [-4g7-69" +6g° -3g" + K(2f -2f'+2f")]}
oy [cos @ [~ 6f"=6f+3f" +K (=g +39' +59°)]
ssing [-69” -69" +39° + K( f -3 -5f")]}
sy {cosq [-4F" -2f" + K(g'+49°)]
ssng[- 49" - 297 oK (~f' -4£°)]}

&y. {(OS,['("*KQ.] + ‘iﬂQ[-g” "'xf.]} =0

Then introduacing the seri:s cxpansions {34%) ror f,g and
expressing the scries coef'ticiants by the filrst four ones
o' each series the followiig expressions are obtained, wnen

the conditions u =v =0 .t the inner boundary are introduced
(See (44)).

a a a
2

mzs - 0,5 m; + 0, 25 "‘12 (35
a, a a i
9 =045 2 - 0,25 m2 + K* o,0: ) (%6

5 3 2 2
a a, m, - n

6 = -0,424 2+ 0,25 e + l((t V02 - 4+ 0,01€ a2) (37




aq a. a, i my o, m,
= 0,410714 mJ - 0,25 " + K(+ o,0380952 a” - ©,0142857 ©)
"7 3 2 3 2 (31
a8 ) aj 82 + m3 - . m2
e, ™ ~0,4017857 s 025 7+ K(T o,0252857 a” + 0,01%0552, )
o , 3 2 3 2
- k2.0,00079365 22 ]
» A ’ (Jzy
: in
2
a a : a m m
m? = 0,39583 m} = 0,25 m2 + K( +0,022857 >t 0,02240079a2
2 3 2 3 2
. a
+ Kz(-o,ooo661375 %+ 0,0010582 m2 ; (.o
lay 2
a. a a m m.,
m. = =0,3916 m3 + 0,25 ‘02 + K (T o,0780690 aj + 0,011954, ~)
1 3 2 3 :
. ay :s
+ K“(0,00128307 m. = ©s001190476 <) (41
> 2
a a, a _ . m, i,
all =0,38865 > - o,25 2+ K o0,0365225 .- Y o,otisur7 7y
11 ) “o > -

I
r

-‘.i’ I = 4

2 , a, L a2 } - PR
+ K“(-0,00180014 m’ + 0,001257816 “ + K (% o,0000112072 >

A, [P

)‘ >4
(%2
o dj 2, m, _ ;
=z 2 a? -y
7 < g
a a
2 ., 3 .
+ K" ( 0,002215007 ~ - 0,00 12500 2)
an m,
3. e
} I plr m"’ + 0 ma
+K-“( + 0,00000801667 a~ ~ 0,0000248%17 a ) L

2




These expressions show clearly the influenc: of inertia
forces which 1s represented by the terms dependent on K.
Indeed in the expressions for the coefficients the first two
terms which are independent of K represent exactly the be-
fore mentioned solution for zero inertia terms. One confirums
this easily by replacing the variable r by y and by deveclo-
ping in power serles of'y . One notices that the series are
not absolutcly convergent in K and this means according to
the definition of K also in the Reynoldsnumber. The first
influence of inoertia forces occurs in as, ags m5, mg with the
first power of K . Then in the three following expressions
for the pairs a, m the quadratic power of K 1s added. ThLe
next three expressions contain also the third power and so
on. Therefore thls series expansion . only can be used for re-
latively smull R ynolds numbers. Thls 1s a well known pecu-
larity which for example also occurs when applying the nethcd
of successive approximation [8] . A

The expressions (35 to 43) refer to the boundary condition
u=v =0 at the inner cylinder wherey= 0 . This gives

fco) = fo) = g(o) = g't0) = © : (44
what means, that
Q, s a, » m, am = 0 (45

It may be added, that for arbitrary boundary conditions
aty =0 the expressions (25 to 43) contain the following
additional terms

a (a, - a_)
4 1 0
= see =0 125 -
my, ’ (my - m,)
a,. (a2, - a) m m
5 o] + 1 = - o
= ese + O 1:) - + K(— 00016 . + O 010 . )
g ’ (m1 mo) a, ’ a,
6 1625020 © 20 LK (F 0,03 01 o005 )
= oo e -O, - + + 0,0 - 0,0
Mg (m1 mo) ’ 2, ’ o

A




b
m7

ag
fg

a
m

11
11

+ Kj(; 0,00000561167

442
Mo

1o
1o

(s,
= ,.., ¢ 0,1696u} (n
v 4

¥ 0,02619047 °)

(a

L)

m
0,026 305 a ) +K?

(a

e + 0’177083 (m1

2 8,
K“(0,00102513
m,

(a1-
1

+ K2(- 0,00167659

.« = 0,17T41071 (m1 -
1

- a,)
- m)

~a )

+ K(t 0,0428571

m, ) + K(+ 0,0498512

' a,
(-0, ooo, 682,

- ao)

- m )

- 0,00085978873

a_)

o

a4
m t 0,00123677
1

(ay-a))

m,

+ k(¥ o, 0551587

m

24

a
+ 0,0003546825 m? )
‘o

m

84

ao )
mO

mo) + x(l 0,0592808 a

a

.m 41}

Q
°)
o

0,0254117 ao

m1

. + 0,180681

- m
+ 0,0249851 _9) « K2(
&q

(a1' aO)

‘0,18 (m1_ mo)

(m1'

=

0,002297 36
i,

m, o, m
) - 0,00000561167 ao

- m
+ K(+ o,c6.1729 a

+ ¢
mo) + K(‘ 0,062)446 a

L 0,00 152898 m°
- Q

1

a

)

¥ 0,0258433 ao
o

)




a

a
LI 0,0017529% mo )
0

+ K2( - 0,002864902 -
"1

m m
+—K3(t 0,0000 184384 a1 ¥ 0,0000164242 a° )
1 o}

The first boundary condition in (&) for the outer boundary
y=48 1s satisfied by the mean flow whilst the second one in
(8) has to be satisfied by the secondary flow. Hence thc boun-
dary conditions for the secondary flow are

. 46
ue 0, ve Ut L sing (
§+1
Introducing (33,3%4) one obtains
(47

£4) s g'(d) «0 , gtdyw 0 , fcd) = U*

The boundary conditions (44,47) give eight equations to
determine the elght constants a,s 8,5 Ay aj, Mys Mys My m?.
A: mentioned above the conditions (44) yleld a, = &, = = 1,
Sv that the four equations (47) still have to be soived. This
work was carried through numerically with the ald ol computers.

= 0,

7.) Numerical calculaticrs.

The numerical quantities inserted for &,Q (10) are
=02 Q= 42
Due to the before mentioned senlconvergence of tne seri
expansion there exlst certain limits for the Reynolds nunb
beyond of which the convergence is not any moive satisfaciory.
With the assumed value &,= 0,2 the limit isK= 104. With (2v)

’

this corrusonds to a Reynolds number
RQ L] .!l;_r' -'f"’O'

Tie calculations were perforned i, two values of K, -espec-
tively Re. The boundary condiiions (47) give the foilos’ =
expressions

1.)K=3. 102, Re = 1,32 .




f(d) « 002601 a, + 0005206a, + 0,025806 m, + 0,004302 m, = U*

g(é) =-0025406 a, - Q004302 @, + 0026011 m, + 0005206 m; = 0

4

f(8) =-04505% a, + 001557 @, + 054345 m,

001557 m, = 0

*

g'(d)s -05¥345a, - 009745 a, ~ 015057 m,

The solution is

a, = 56,0:0623 U® m, = -54,48119 U*
(48
ay = -161,82121 0% Ry = 416,26530 U*
2.) K= ‘IOI;, Re = 4,4 . 103
§(6) = - 0M3305 a, - 0016182 a, - 0,030515m, - 0,0455¥1m; = U*
G(d)= Q030515 a, + 0045511 a, - OMEE0S m, - Q016132 m; « O
§(8)= 0578207, + 0090828a, + OW3482 m, + 0146802 m; = 0
g'(d,.- qmm az - 0,4“802 a; ¢ 0,57‘207 m,; ¢ 0,0”'2‘ m’ -0
The solution is
a, = -20,40309 V* my, = 2,6348y u* (4y
ay = 119,69077 U® my = 38,2726 U*

Now the excentricity can be evalucted for +hich sepu. .-
tion will occur. It is to be expected that separation fiicust
occurs at the inner boundury y = 0 . The begliuiing of separa-
tion will be characterized by the zero value ol the
derivative of the total circumfeiential velocity iIn radial

direction. This means

U'(0) s+ u'(e) =0 (50




(23) gives

- B4 2 (yoa- 4
Vi = gidoy Vet - 535) (51a

Vo) = 3@y U aer)

Inserting - 0,2 one obtains
Viy) = 272 Ut (1 g5p)

(51b
V(o) = 5¥5. us
By difrerentiation of (3%) one derives
uly) = ~€{fCy) cosp + 9°(y) sin 9}
s -e{[2a, + 6a,y + .. Jcos g + [2m, s Emyy + . Jsing}
W(0) = - ;{la, cosgp + 2m, sin,}
(52
Introducing (£1,52) in (50) one obtains
545 U% —¢ (2a,cosp + 2m sngp) = 0 (53

The cocificients were calculated before for two values of

K in (47,48). Therefore (53) determines the eritlical excen-
tricity for certain angles ¢ . The smallest excentriclty ob-
talned should be regarded as the critic:. value. It is sulfli-
cient to calculate the excentricity iIn euc . case for two an-
gies. '

1.)K =3 - 10°

° 5,45yt

i
O
'
n
™
»

0

?

0,04867, e = 1,01392

@ = 270° 5,45 U + 2em,

]

0]

€ = 0,05006 e = 1,042 0 inm
2.y kK = 10" X
» = 180° €=0,0%97,, e = 1,8687, .nm
¢ = 90° € = 1,03506 . e =21,5%6375 mn
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8.) Compariscon with experiments.

To prove the theory experiaments were perfor.aed
with-a Couette aparatus the cylinders oi’ which were
excentric. The dimensions ol the apparatus were the

following
r, = 21 i R = 1,1y
ry = 25 .am § = 0,19
e = 0,5 13 2; 2,5 3 .m € = 0,0476 (e = 1m2)

As shown in t'ig 3 no.ball bear.ngs were used lor the

support of' the lnner cylinder. The occurance oi' separation
was oubserved visualy with a techniyue described ecarlier (9] .
With the excentricity e = 1,5 mn there w~as found a critical
Reynolds nunber ior separation Re = U%%/v = 1,0y . 10"
[© ], These experiments were nuw extended to the beiore
amentioned excentricities. With e = 0,5 mm no separation
could be observed up to the Reynulds'number 4 . 105. The
criticali deynolds nunbers wh.ch were observed are plotted
in fiy 4. As th.s r'lgure shows there exlsts a definite de-
pendence on the excentr.city. This conf'iras the supposition
that turbulence 1s generated by separation.

The calculation for Re = 1,3 . 103 gave separation with
€ = u,u48. This excentricity w#as realized in the experi.aciuts
and as 1'ig 4 sho«s the corresponding Reynolds number ior
separation is 2,1 , 104. One sves that the theoret.ical valuw
is 16 times to smnall. This seeas to be a satlslactory agree=-
aent 'or a tirst order approxiasat.on.,

It may be meatiovned that earlier calculations of the se-
paration at a corrugated plate shuved a sensitive 1in:luecice
of the corrugation [7] . Now according to the experimental
comparison this sensitivity seems to be .aore ini'luenced by
the degree of approximation thaa by physical eifects. This
Makes an evaluation ol the inertls l'orces necessary. ’
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