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Generation of Turbulence in Couette Flow

between Excentric Cylinders.

1.) Intrcductory

Couette flow is besides the Hagen-Poiseuile flow the

fundamental experimaent for the study of the flow p.operties

of liquids and the study of stability and transition to tur-

bulence in ducts. Although the theory of stability was most

successful by discovering the generation of cellular vorti-

ces (13 when the centrifugal forces act stabilizing there

does not exist a complete understanding of the transition

phenomenon to turbulence which was observed [1,2,3,4] when

the centrifugal forces act stabilizing. An example foe' the

first case is a rotating inner cylinder and the outer cylin-

der at rest aud for the second case the outer cylinder rota-

ting and the inner cylinder at rest. Only recently it was

pointed out [51 that the observed transition could have been

caused by vibrations or excentricitles which were produced

by imperfections of the Couette apparatus used in the experi-

ments. The use of ball bearin.-., large ratios of the length

to the diameter of the cylinders, large dimensions and cyliin-

ders bent from sheet point to the likelihood ol' such i.:ieL'fCec-

tions. When annihilating excentricities and vibrations i' in-

deed was found [5] that the flow is completely stable -p to

Reynolds nuumbers jet not attained. Also the tneoretical staAi-

lity proof on the basis of small two-diiaensional perturbations

shows stability [5,61. Purthermore witi. deteriiiied excentri-

cities transition to tl .lence wrc obtained with a definite

dependency on the Reynoids nuwnb . 2herc .- em to be enou"h

indications :'or the creatio:. of turbulei.Q by excentricities.

It is the purpose of this i:. stiE°.tl .o give a ' eototical

explanation of this transition phenomenon ii. the jence of

excentric cylinders.



Transition can be caused either oy flo;; instability or

by separation. In the latter case there occurs near the wall

counter flow wich initiates transition. Preliminary experi-

mental observations gave strong evidenrce for' this type of tran-

sition. Therefore the investigation will deal with tne sepa-

ration effect opposite to the original intention.

2.) General assumptions and notations.

As mentioned before a rotating outer cylinder and the

inner cylinder at rest will be assumed. Plane motion will be

regarded. This means that th4s investigation refers to rela-

tively long cylinders so t..at end effects will not influence

the middle part of the f lo.i.

The center of the inner cylinder will be regarded as cen-

ter of reference (fig. 1,." he excentricity of the outer cy-
linder of radius rI will be denoted by e. The ratio eiri is

regarded as srmiall so that higher orders of this ratio can be

neglected. The discssiori of the boandary conditions will show
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that the satisfaction of these conditions at the excentric
boundary involves rather cumbersome nuierical calculations.
Therefore the outer boundary will be altered some what in
the way that the boundary conditions will be shifted from

Lite excentric to a hypothetic centric circular boundary with

the sare radius as the excentric boundary. In the case of a

saiall ratio of the excentricity to the mean width of the gap

this is of negligible influence whereas at larger excentrici-

ties the boundary conditions give a periodically alternating

in- and outfloa at the hypothetical boundary. One may say

that these conditions are still in the ne-!ghborhood of th-

real boundary conditions if the excentricity is a larger frac-

tion of the dverage didth Of the gap.

Navier-Stokes equations will be considered with out ne-

glecting any terms. However the inertia terms will be lineari-

zed by assuming as mean flow the Couette flow between centric

cylinders. Therefore only b'all perturbations should be gene-

rated by the excentricity. This means that the investigation

is restricted to excentricities which are small in comparison

to the mean width of the gap.

The linearization is not in agreement with the physical

problem of separation. Indeed separation is an effect of fi-

nite inertia fC-ccs as fluid particles are subjected to a fi-

nite deceleration. Therefore the calculations presented here

can only show the tendency to separation. One can not expect

that the calculated values of the parameter which characteri-

zes separation will be in good agree.nent with experimental

values. The comparison with own experimnents will show that

the calculated values are to smail. But this lack in agree-

ment characterizes all calculations of similar problems as

the inathematical difficulties are invincible with out the sii-

plificatlon of linearization.

3.) Boundary conditions.

Tne circuinferential velocity of thte outer Linder wiii

be denoted by U*. With the center of reference i.. the center

of the inner cylinder one has according to fig. 2 the tangea-
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tiaLL and radial coi~ipoznerits

tJuos Ut, U' Sivir(

Introducing the geom~etric relatio~r~s

%4 snr . esiiin r~cosr# *castw (2

onke obtains

( fcOv), u1 S I $in

From. (2) one derives

e Cos .............

The series expansion is, if' the dimensionless excentricity

Ire

Fig.2



is introduced

I Cos p I~~ 4$ t(-cos2,p)(5

With the above mentioned ansumrption

and the notations

€qu. A-i/ (7a

one obtains

(7b-,,e (i. Acos rb"•(T

This gives when introduced in (3) the following expressions

for the tangential and radial components of the circumferen-

tial velocity Us of the outer cylinder

Uf" - (4U. . U* A sin q

Introducing the ineaxi wi&th

U. z-. (9

arid
BI,,I h wrq- (lo

the second equation (8) can also be written

This shows that Qxcentric.ites of the order (*( 4

influence only the radial velocity componenL.

The width of the gap is

h e. + e C. os (p (12



Then

h h.(1i + cos•; (13

Later tue variable

r-• re(14
re

will be introduced. It is the dimenstonless distance from

the inner wall. The value of y at the out#.r boundary is
according to (lo).(13) gives

k ( os (15

'.:itn the nota'ion

on,-- obtains

SSx Co P) (17

As the calculations will be restricted to

0 a t<( I (18

tne higher poders of' 4 can be approximated by
(i•

S= &(4.2'cco,3) 4 ,,.3acosp)

It will bv ýrio;ri thait the ilmitation (1) is not absolu-

tely zecuss~ry. Neverth=eless it will be introduced as other-

wisý! tUv calculitions get to eAter:sive.

4.) Basic equations.

Dtcroting by u the tangenti:tl by Y the radial velocity

(fig. I•) by p pressure, by v kine.:mtitc vi• osity, by Index v,T

dif.oretlris eith r1useet to r, t A• .:ier-?topes equa-

tions for tho circuinferential azd oudill ,iectLio.i refering

to the twodt:-ensIonal riotion a:ie

rVVUr P W Wi (AV + - ( -#~ *UT + (2o

U r& T V, V v,.

v v,9 -0 [.-L, +[v k - _k -- ,] (21



Introducing the stream function y defined by

and differentiating (2o) with respect to r, (21) with reslect

to q then eliminating the pressure and introducing Laplacf.s

operator

one finally obtains

V? -a.v *, raa (22

The stream function will be conpo.;ed of two pacts V* of the

wiean flow and V' of the perturbation

As mentioned before for the ;nean flow the Cuat!*te flow

between centric cylinders will uv. introduced the velo-

.cities of which are

With this (22) is transformed to
U0,,,r, .V9, a V, Y- -6, Y,, ( 2

Linearizing tnis equation by neglecting thz second oL'dLr t,.z s

i;- V' writin.g y !'oi, V' atid int'oLiuc lng +trc abbreviation

one obtains

- (26

The variable y defined by (14) wiil be in,.rodiced. Ti;,!:, ... e

equation

K(zy #ya)[if, y)t1 ,, f (-y)t, *9,J [(1.y)'V rV L(4+Y)'Y yr *-

(40'Y) 1V~V (4 #Y) V4 If V - Z (4 # Y) V* ,(4Y VVY ,"



5.) Souution foc zero inertia te;rms.

According to the geometry of the problem a s,'ution

-:iodic in the circumf'ercttial angle q(fi2. ' is to be
expectej. Sult.tlons with this property are well known for
vanishinig inertia ter:ns as the basic equa.lions then are
reduced to the biharmonlc differential equations. One has
with tne dimensionless radius r = r/ro

f * r #ar" cos ýp (b•,r * kY". # b, , bIn)

*C s39(dv 3.div'.dr d,v'," )

.rom this one obtains the velocity components

U a -

= - I a, 4."r oa,, v o , , -, 3 , .• # 0 ,,lt, (28

*cos 2qV (c,.lr -zc "v' + A# SV3  )

*cos.3T (3dj,- -3d•"* . d YO - d4 "')

+ ... I

V= : a - ( ss r (*.kb," *bpv' "b,?" )

---1 i T (c." *C•"e , C,v .* ' :, )

+ 4 s. 1qp (,, r ' d," . d ") (29
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The boundary conditionsi u- v = 0 at v-4 give

b,, b', . 0 2a s 2aj .0
b4. €, . sc-o Ga,-b@• u0

, C(,a *0 4- s#.3osk
(.3o

2 c, 2c•a 4c 0

Introducing (7,8) in (28,29) one obtain. for the outer boun-

dary, when powers of a are developed into power series of A

and only first order terms in A are regarded

-U a a,#q4 (4 -ACOSV) 2a., q(4,-AcOSq,)

C.OoS ilb. kq"(1- zAcos rp) + 3Ne(4. 2 Acos v)

+COS - s1P [2 q(4.+ A cos)- 2c,) q(,-3Acos )

+ b, Ii( # 3Acos p)]

,•.Zs /c,(f Sl4,.cos *). c (1•• 2Acos03, )

4 ., q'(4. 3 A cos,) # c,q- (I- cos s)]

Rearranging terms with respect to multiples of p one obtains

+ c 3qA 3, f"'A + 6c, q'A]

+COS 24fbjqeA .3 bq4A,. fkb,# .Zc~q - 2cq'J #. q'... J

4$As .t°•vf.e *c.A -AcA sin. 4.Sigo[c.A f--

+ sn2z4(- b,'A ,bq 'A• ' b..A cq ,ZCf * Zc9'&C,,f'4 .... j



Equalizing terms with the same multiples in T on the
right and left side one obtains 5 equations which together
with the 5 equations (30) for the inner boundary determine
the lo coz.stants a2P a3,bl,b 2 , b., u4, ci 2 0 a, c,4.

The numerical evaluation of the constants is given in
table I for A= o,o8. Turiac incluaing 6T are considered to
show the convergence. One sees that il is sufficient to
consider cofflicients up to d that means up to the terms
conxiainin& 35* .

This solution surely would not be sufficient to show the
separation effect. It merely should demonstrate the satisfac-
tion of the conditions at an excentric boundary. However this
solution is part of the solution whic.i considers the lineari-
zed inertia terms. This will be shown later.

Table I
a2= ",792o112) d1 = 0,381917o28 fl= -u,o19382o31

a,= -o,896o05614 d2 = o,167656633 f 2 = -0,036423168

b 1= -2,1o5 8 414oo d,= -o,19 8 7258o9 f3= o,oo822o991
U2- 7,431828oj5 d4 = -0,35o847855 f 4= o,o475842o8

b3= -5,327986714 el= -o,o23912624 g1= o,o11262653

b.= 25,51l962)761 e2 = o,o2242o572 G2= o,o182oo651

c1= -5,o0t762h428 e3= o,o2355)611 g= -0,006352103

c2= -1,135!)o4752 e,,= -o,o22o47531 g4 = -o,o231112oi
c-= o, 955•6 23

= ),22767o6-,2

6.) solution considering linearized__ire__i terms.

Ai:•iirr •o :! solutiori for zero ine:'A'•a terms Lh•

(.)e Cos sp og,(Y) S; (9



will be introduced with the poaer series

g(Y)-ay" iy (32
'4

The coordinate y is defined by (I14). Introducing this expres-
sion into the basic equation (27), then putting the terms of
cos st , sin s to zero and comparing equal powers of y one
obtains equations with which the coefficients or each series
can be expressed by the first four ones. To satisfy the con-
ditions at the outer boundary one has to introduce the expres-
sion (17, 19) for y and its powers. Powers and products of
cus s• sin sf will occur which can be expressed by the sinus
and cosinrl'; of multiples of the angle g a6 shown in section 5
for zero inertia terms. Then each s- term in (32) would demand
the determination of four constants from uhe boundary condi-
tions.

These evaluations indeed would be exceedingly cumbersome.
Therefore the limitation (18) •tlI be introduced so that the
excentric boundary may be replaced by a centric boundary with
radius rI. Now instead of (31) the expression

Se[fcy) cos P g(y) si] (33

with

is sufficient.
The following procedure is similar to tne one mentioned be-
fore: Putting the terms of cost and of sinf to zero and
comparing equal powers of y one obtains equations whichi
allow to express the series coefficients by the first four
ones of each series. This is a similar method used by OrJrt-
ler to treat tht free boundary layer flowj nea: a corruga-

ted plate [71

The following expressions are obtained for the various
coefficients a, m. The laborious derivation will be omitted
here.



Following this way one first obtains by introducing

(33) in (27) the differential equation

tca.c (-f"- zr.•F' - sf' #3f )

..si V (-g' - Ze .3g" - 3g'- eg3)]

+y (cos qP[-' f"- 6f'. 6f'-3f'. K(-2g . Zg'-2g9)]

+JiltqV [-,g"-6g" ,6yg -3g' # K(2f -2f'2f')2

+ y&{cos , r-6f'-6f- 3f" K (-g- . 39' .sTg')]

.*sin [-6g --69q" +3g" K( f - 3f' f

9 (cosv r-mif" - ifr K ( '. t'9)j

+s• 9P 4y-'vs - 2.q +K (t -f' -v f' )]}

,y6 {Cos 9 -f".O'g*] # sq,-'v -Kf'3) 0

Then 1ntrod~cing t~he seris cxpalhsions (:4) for f,g and

expressing the series coef1'icieaits 1q Lh- fiest four ones

of each series thz- follow.'jg expndssions are obtained, whien

the conditions u = V =0 .•t the inner boundary are introduced
(See (44)).

4a3 a2
"4= -0,5 + o,25 2(35In 4 -In .11 2

a a.. a25= o,5 0 - 0,25 + Kk+_ ojo0 ) (36In5 In3 m 2 -2

d 6 =a= m. 2
-o,425 ;3 + o,25 + K (+ 0,o. 0 o,o16 2 (37

m6



a o.410714 a 0 ,25 a 2 + K(; OsO380952 M3 t 001l42857m2)
n7 M, 112  a 3 2

a8  a -o41~5 3  U ,2 2  'nrn
-o.4o785- + o 2!) + +~ o0-,ýo)2835 3 ;o0ul,,o-.52 *

-K 
2 .O,OU0796:) a 2

2(3

a 03983 3- 05a 2 +K( ;o,07o~ m E+nn,

2 EL 2

22

'3 5 2

a'o - ,5 1 + -,215 + K t o,o,'ý369o 3 ~ f) 4
a :lo1  3 ~ 25

+ K 2(o~ool283o7 3.'- o,oolljo4y16 2n 4

alla1  a 2  m-+
0 ,38863 o ,25 + KC o, o36(,225 o-ol,6+

'3 2 -,(

a2  a a
+ (-oQ,olo4 a32 + ,02561 + K.~ 0, 0001- 2

a' a 2

III Mo +o,25oI +oK o, aý' + Uoo2401y

a a2
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These expressions show clearly the influence 1of inertia

forces which is represented by the terms dependent on K.

Indeed in the expressions for the coefficients the first two
terms which are independent of K represent exactly the be-

fore mentioned solution for zero inertia terms. One confirms

this easily by replacing the variable r by y and bV develo-

ping in power series of y . One notices that the series are

not absolutely convergent in K and this means according to

the definition of K also in the Reynoldsnuzber. The first

influence of in _rtia forces occurs in a 5 , a 6 , m5, m6 with the

first power of K . Then in the three following expressions

for the pairs a, m. the quadratic power of K is added. The

next three expressions contain also the third power and so

on. Therefore this series expansion only can be used fouL re-

latively smnll R ynolds numbers. This is a well known pecu-

larity which for example also occurs when applying thu :nethcd

of successive approximation f81 .

The expressions (35 to 43) refer to the boundary condition

u = v = 0 at the inner cylinder wherey = 0 . This gives

fo() - (0o) . gq o) ( g0o) . 0 (44

what means, that

a6 a . M, n,, . 0 (45

It may be added, that for arbitrary bounciary conditions

at y = 0 the expressions (35 to 43) contain the following

additional terms

a4  (a, - a.)

N ... -o,125 (mI1 - in)

S(a - ao) m)
m= ... + o, 15 (al - + K(+ ,o16 oo16 a

m 5  1~ '110 )

"a6 - (a1 -a.) ml + o,o25 )
m- ... -o, 1625a 1 a+K(o - 5 0)m06 '(ao- n)a



m +. o.169643 (a1  m a) + K(± o,0428571 a1
ID7  (n- 0) 1

0,0oo2619047 a 0 )
0

a8  (a - ao) mi
n- v717 (m11 - MO) + K;o,o498512 al

m0

t oo26905ao) +)?(-o,ooo796825 al+ o,ooo59!6825 ,,o
0

a 9 (ai- a0 ) + o5~' u n0
mn (+1 00703) +K( t 0,5558 +l o,o25843,-

29 ami aoal

+ K2(o~oolo2513 al- 0,0008597883 0o
mi l

ID 0  -0 17 1 (al- ao + K(; 0,0592808 Ma -. o,o254117 a110

2 a a
+ K (2 o,oo167659 m1+ o~oo123677 m 0

ID 1  0

a (ai- a0 ) i

m + o1 (o6 1 -(m m + K(± o,o625446 a'

o,o249851 0O K2 (ooo22J73b a1  ,058) a.

aoIn +,1 n

+ o3;0.,00oo561167 a1l + 0,00000561167 0o
al ao

M12 -o,18 (m1- a0o) + K(; o,o6-1.2729 al+ 0,o2459-',o 0 *



K2aI a

+ K2 ( - o,oo2869o2 1 + ooo175295 a )M I no

+K3(- o,oooo0184384 l1 ; o,oooo164342 ao
al a0

The first boundary condition in (b) for the outer boundary

y-S is satisfied by the mean flow whils' the second one in

(8) has to be satisfied by the secondary flow. Hence tLh. bowui-

dary conditions for the secondary flow are

us 0 Nus - - sin P(46

Introducing (33,74) one obtains

f'(,) .g'() .0 , g(d) 0 . .V (47

The boundary conditions (44,47) give eight equations to

determine the eight constants a0 , a,, a 2 , a 3 , Mo, m19 m'2, M..

A:- mentioned above the conditions (44) yield ao = al = Ie= :"11=O.

Su that the four equations (47) still have to be solved. This

work was carried through nunerically with the aid of coMputerCi.

7.) Numerical calculations.

The numerical quantities inserted for &,q (lo) Lre

&- 0,2. , q a ,.2

Due to the before wentioned senlconvergence of tne :3r.i

expansion there exist certain limits for' the Reynolds r•.mb

beyond of which the convergence is not any moee satisfac'tor-.

With the assumed value 8,= o,2 the limit is K= lo 4. With (2-1

this corrv- onds to a Reynolds number
Re " -"40

Tiie calculations were performed f( , two values of K, -espec-

ti.vely Re. The boundary condi'±ons (47) give the f1, ilo," ,

expressions

I.) K = 3 • 1o3, le = 1,32 • 7)



f(d) .. 0,0ZO'tl a, , 0,00CZ06 as * 0,o0806 ml . 0,001#302 m U

9 (41) -o, oz106al- 0,C'0030z as , 0,0260o! 9,, * Oo,0506 m, 0 0

f(,) .- o,s5057 a, l 0,01557 a. * 0,os3'5 ma * 0,0975s , a• 0

' (J). -0,593•,5a - 0,097t5 a, - 0,15057 m1 ' 0,0o557 m, • 0

The solution is

a2  2 56,o3=3 UJ -54,48119 U(

a, = -16M,8;:')1 U3 = 416,2653o Us

2.) K - 10, Re = 4,4 103

f(d) - 0,,441505 aS - 0,016hZ a, - O, 00515 mt - o, 001SF1 ms m U*

g(J). qo3•5S1 as + 0,045SY la - 0,441f05 m, - 0,016112 m3 - 0

f'($)- OiSISZO7as + 4090821 as + 0,"i-3, 1W O .L 0,4'610L 1ii3 - 0

'()- 0,4sM al - 0,446102 as, .+ 0,57Z07 m2 0,090•fo ms - 0

The solution is

a 2 = -3o,4o3o9 U' M2 = 2,6348i U' (49

a3 = 11i9,6.o-7 U m 3 = 38,2726") U*

Now the excentricity can be evaluated for .ihich sept..-

tion will occur. It is to be expected that separation fi:'t

occurs at the inner boundary y = 0 . The beginiii:ng of separa-

tion will be characterized by the zero value of the

derivative of the total circum'feiential velocity in radial

direction. This mneans

U'(0) u'(o) . 0 (50



(23) gives

U .y- 6.1 U" (y. - -80621) 4#Y (51a

I(y) * U (1. )

Insertirng . o,2 one obtains

I)(y) - 2._- U' (,..4.y)h) (5lb

U, (0) U 5,?.., uS

By differentiation of (33) one derives

#'(yj -{f (y)CosIF 9, (y) sin 90

u(o).- EfZO.LCO# Cos, M silI

(52

Introducing (51,52) in (5o) one obtains

5,I.S'U* -e (2aa, cost * 2m , s " 0 (53

The coefficients were calculated before for two values of

K in (47,48). Therefore (53) determines the critical excen-

tricity foz' certain angles V. The smallest excentricity ob-

tained should be regarded as the critLicý. value. It is suffi-

cient to calculate the excentricity In ea,. case for two an-

gles.

1.) K =3" 1o 3

S= 00 5,45 VJ - 2 . a 2 = 0

j = 0,04867, e - 1,o1302 in~n

S= 27)0T 5,45 U* + 2 ma = 0

S= 0,05006, e = 1,u42. o rmm

2.) K= 104

S= 180o e = 0, o.8"' k, e - 1,86875 nm

= 900 C - 1,03506 . e -21,56375 mm



8.) Comparison 4ith experiments.

To prove the theovy experi.ients were perfor.ned

witha Couette aparatus the cylinders of' which were

excentric. The dimensioxis of" tne apparatus were the

f'olloing

r = 21 ian =10%0

r 1 = 25 .,ai 6 o,19

e = o,5; 1; 2; 2,5; 3 ,nm = o,o4+y6 (e = Iron)

As shown in fig 3 no ball bear.Lngs were used for the

support of1 the inner cylinder. The occurance o0 separation

was observed visualy with a technique described earlier (]91
With the excentrlcity e = 1,.& min there was found a critical

Reynolds nunber for separation Re = UIJv/v = 1,bo . lo4

1 1 , These experiments were now extended to the beiore

.nentiuned excentricities. With e = o,5 mm no separation

could be observed up to the Reynolds number 4 . 1A The

critical 11eynolds nwnbers wh.ch 4ere observed are plotted

in fie 4. As th~s figure shows there exists a delinite de-

pendetice on the excentr'..city. This confil.ns the sup[ositiur'

that turbulence is generated by separation.

The calculation for Re = 1,3 . 1o3 gave separation witn

l = o,o48. This exce.itricity was realized in the experi.ie:its

and as f'ig 4 sho4s the corresponding Reynolds nLmber ifor

separation is 2,1 . lo4. One sees that the theoret.cal valV

is 16 tl.uwes to smnall. This see.ns to be a satisf'actory a,'ee-

:ient ifor a first order approxinatl-.on.

It may be mentioned that earlier calculations of the :Se-

paration at a corrugated plate shuaed a sensitive in.luezice

of the corrugation [7] • Noq according to the experimental

comparison th.Ls sensitivity seems to be more iii'luenced by

the degree of approximation tha•i by physical e'f'ects. This

.iakes an evaluation oU1 th±e inertia forces necessary.
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