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RAPID DETERMINATION OF SATELLITE ORBITS FROM DOPPLER DATA* 

by 

Robert R. Newton 

Applied Hiyslcs Laboratory, Johns Hopkins University 

Silver Spring, Maryland 

Abstract 

In the orbit determination procedure described in this paper, 
the set of physical quantities fitted in the computations is not the set 
of basic measurements made by the ground stations. Rather, it uses the 
basic measurements on a pass-by-pass basis, together with a preliminary 
estimate of the orbit, to determine a fictitious position of the tracking 
station for each pass. It can be shown that the error in station position 
is also a representation of the error in satellite position at the center 
time of the pass. Thus, for each pass, a new estimate of satellite 
position is formed, and a new orbit is chosen to fit these positions. 
It should be possible to apply this method to any type of tracking data. 
With Doppler data, the convergence of the orbit determination position 
is much faster than that of the conventional method. 

*This work supported by the United States Department of the 
Navy, Bureau of Naval Weapons, under Contract NOw 62-06o4-c. 
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RAPID DETERMINATION OF SATELLITE ORBITS FROM DOPPLER DATA 

Introduction 

The basic method used for determining satellite orbits from 

Doppler data is that of making a least squares fit to the Doppler data 

[1] . That is, given a set of measurements of Doppler frequency versus 

time, and a preliminary estimate of the orbit parameters, a theoretical 

calculation is made of the Doppler frequency at the observation times, 

based upon the preliminary parameters, and the parameters are then varied 

until the theoretical values best fit the observed values in a least- 

squares sense. In the accurate application of this basic method, there 

have always been two basic difficulties. 

The first basic difficulty is that of eliminating spurious data, 

that is, data obtained when the tracking station is not operating 

accurately, or is not locked on to the satellite signal. Tht most 

reliable method found yet for doing this is that of the "navigation pre- 

processor" [2]. In this pre-processor, a preliminary orbit is combined 

with Doppler data for a single pass to "navigate" the station, that is, 

to find a position for the station that best fits the data, again in a 

least squares sense, assuming the given orbit to be correct. The residuals 

numbers in square brackets refer to the references. 
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for all individual data points are then calculated, and any point with a 

2 
large residual is almost sure to be spurious . 

The second difficulty is the slow convergence of the iterative 

process used in replacing the preliminary set of parameters by an improved 

set. The final orbits obtained are quite accurate [3]> but many iterations 

are needed to find them. Typically, ten iterations are required to improve 

an orbit with an initial error of 2 km. r.m.s. to one that is at the 

accuracy limit allowed by the current knowledge of the gravity field, about 

j- km. r.m.s. This slow convergence may be tolerable when the data are 

being used for research, but is a serious problem in the day-to-day 

maintenance of an accurate orbit, and is an acute problem in the first 

orbit determination of a newly launched satellite. For example, the 

design orbit of 196(2 |3M1(ANNA IB) differed from the actual orbit by only 

1 part in 200 for the period, by .007 for the eccentricity, and by 

comparably small amounts for the other parameters, but about fifty 

iterations were required to find an orbit at the limiting level of accuracy. 

This paper will show that the navigation pre-processor, which 

provided a superb answer to the data deletion problem, can also be used 

to yield a rapidly convergent orbit determination process. It is believed 

that this method has the same limiting accuracy as the standard method. 

2 
It is not the purpose of this paper to analyze data deletion, 

but one point should be noted. If the data points that are deleted 
depend upon the orbit used, the deletion is probably not valid. In the 
actual use of the method, the criteria for deletion have been chosen to 
make the set of rejected points highly stable with respect to variations 
in the orbit; thus the rejected data are not consistent with any possible 
orbit and are hence spurious. 
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General Description of the New Method 

Guler [2] has used the position results given by the pre-processor 

to study the Internal consistency of orbits determined from Doppler data. 

He bases this use upon a theorem that the error in station coordinates 

deduced for any pass Is a valid representation of the error In satellite 

coordinates at the center of the pass, provided that the velocity error 

Is negligible (as would be expected for an orbit determined by fitting 

data over a long time span). 

This theorem obviously does not apply when using an orbit that 

Is not yet well determined, and a forteriori does not apply in the Initial 

orbit determination for a new satellite. However, let us assume for the 

moment that the Inferred station position does represent the orbit position 

error with some adequacy even under these circumstances. We can then 

outline the following procedure for orbit determination. 

Start with Doppler data for several passes (preferably from more 

than one station and spanning at least one orbital period in time), and 

with any estimate of the orbit, such as the design orbit for a new 

satellite or an orbit updated from an earlier epoch for an already tracked 

satellite. Next, take the data for each pass in turn, and determine a 

"position" for the station based upon the pass data and the orbit estimate 

(at the same time performing the deletion of spurious data), and determine 

the correspondlrig vector error in station position. Then calculate the 

position vector of the satellite in the assumed orbit at the center time 
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of the pass, and subtract the vector error in station position.    Thus, for 

the center time of each pass, we have a new estimate of satellite position, 

and from this set of estimated positions, we can derive a new estimate of 

the orbit. 

This method has one great advantage over the conventional 

ethod.    It is necessary to handle the Doppler data only on a pass-by-pass 

basis and not over the entire tracking interval.    Further, when the data 

are handled they are used only in estimating a station position, which has 

only three degrees of freedom;  this involves less manipulation of the 

data than does the estimating of an orbit, with six degrees of freedom. 

In the VlHP system, which involves thousands of data points    per day 

per satellite, this is an important advantage. 

It is not a priori obvious whether the proposed method should 

have slower or faster convergence than the conventional method.    In the 

few tests that have been performed to date, the convergence has been much 

faster, for reasons that are not yet understood. 

It is now necessary to determine the effects that errors In the 

velocity vector of a satellite have upon the station coordinates inferred 

from that pass, in order to Justify the basic assumption of the method. 

"This method should be superior to methods that involve compressing 
the data by fitting spans of data to arbitrary functions such as polynomials, 
and then computing synthetic data points from these functions.    It is 
difficult to use arbitrary functions with an accuracy comparable to that of 
the basic data; with the current quality of Doppler data, it is necessary 
that the arbitrary functions be free of bias to about one part in 105 of the 
Doppler frequency, or about one part in 1010 of the received frequency. 
Using this viewpoint, one may describe the present method as one in which 
the Doppler data are replaced by three numbers,  capable of representing all 
of the data for an entire pass without bias. 
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Effect of Satellite Velocity Error Upon Inference of Station Position 

Let r be the correct position vector of an observing station, 
"s 

let r (t) be the correct orbit of a satellite, let 

S - £0 - Is ' (1) 

and let R by the magnitude of R. The correct range rate w(t) Is then 

w(t) = (^ . R)/R , (2) 

neglecting the velocity of the station produced be the Earth's rotation. 

As long as the error In the estimated orbit dominates instrumental errors, 

we may also take this to be the experimental range rate measured by the 

Doppler shift. 

Let r(t) be an approximate orbit and let 

6r(t) = r(t) - r^t) (3) 

be the error In this approximate orbit.    Further,  let r   be an Inferred 

station position, calculated by combining the experimental values of the 

range rate with the approximate orbit, and let 

£ = r    -r (I*) 

be the error In Inferred station position. 
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Using a station position r and an orbit r(t), the theoretically 
-n 

computed range rate w (t) is 
XJu 

V*) ■ it • (E - ^"/IE ■ £„1 • 

If we eliminate r    and r using Eqs.  (3) and (k), and keep terms through 

first order in &r and p, this can be written 

r+>,(t) = R"1^  .  R + j-    .  (5r - p) + R  .  6f - (f*    . R)[R .  (8r - p)/R2: 

in which R and R still refer to the correct orbit and station position, as 

defined in Eq. (l). 

The residual 5w(t) = w (t) - w(t) at time t is hence 

Bw(t) = R^KBr - ß).^ - RC^. R)/R2)] + R . 6r}  .   (5) 

The position error p is determined by varying £ (but not 5r or 5r) until 

the r.m.s. of the residuals at all of the time points during a pass is a 

minimum. 

Before minimizing the residuals, let us simplify 6w(t) somewhat. 

Defining a vector v by 

vi = R x (f^ x R)/R  , (6) 

we can rewrite Eq. (5) as 
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-1 
6w(t) = R {v • (6r - £) + R . 8f} (?) 

v. is a vector in the plane containing R and f , normal to R, whose magnitude 

equals the component of satellite velocity normal to R. We can further 

simplify by choosing the time origin. Since the time of closest approach 

can be determined with considerable accuracy even with a wrong orbit, take 

a specific epoch near this time as the origin. Then, if 8r. and 5r denote 

the position and velocity errors at this epoch, we can approximate 5r(t) 

by 8r^ + t 6r^ during a pass. Then 

6w(t) = R"1^ . (8^ - p) + (tv±+ R) . Si^} .        (8) 

Clearly, if 8r is negligible, the r.m.s. residual will be a rainlraura when 

£ = ^Li'  as Guler [2] stated. 

To find p, we square 6w(t), sum over all time points, and divide 

by the number of time points, thus forming the variance of the residuals. 

We then equate to zero the partial derivatives of the variance with respect 

to the components of £, and solve the resulting equations for p. Since 

this is such a well-known process, we go directly to the results without 

giving details. The equations to be solved for p can be expressed in terms 

of two matrices A and B having the dimensionless coefficients 

(9) 

e«g * N"1   *   {v_L»(^)tVxB(t/) + VV1/nR2(t/)J 
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In these, v , v -, and RQ refer to rectangular components of the vectors 

v and R, n is the mean motion, and t/are the time points at which data are j_   - * 

available. £ satisfies the equation 

A[(p - Br^/a] = B^/na) , 

in which a is the semi-major axis. Finally, the solution for p is 

(ß/a) = (5^/a) + aC&^/na) (10) 

with a = A-1^. 

It facilitates discussion to fix a particular coordinate system. 

Let the average orbit during a pass lie in the yz plane, and let the true 

station position lie in the xy plane, z is then the "along-track" coordinate. 

If the orbit is not too eccentric, only four coefficients of the a matrix 

are of appreciable size: these are a , a , a , and a    . *^ yz'    xz      zy'     zx 

The first two of these give position errors perpendicular to the 

trajectory resulting from the velocity error along the trajectory, the 

second two give position error along the trajectory resulting from the 

"cross-track" velocity errors 6r.  and Br.  . It is thus appropriate 

to combine the four coefficients into two. 

/  2 .   2.1/2 ,       2   . 2x1/2 -,,v 
CTC,L = (ayz + CTxz ^ /  '        aL,C = (CTzy + azx ^ /  '      ^ 
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In Table 1, we give some values of on T and o       calculated for 

several circular orbits of radius a, for each of three values of 6, the 

maximum elevation angle reached by the satellite during the pass. We have 

assumed that the data used cover 855^ of the time that the satellite is above 

the horizon. 

In Eq. (10), there is no necessary relation between &r and Br 

for any one pass, but on the average the dimenslonless errors &£./a and 

6r./na should be of the same size, since a is the average radius and na is 

the average velocity. Then if the coefficients of a were less than unity, 

the difference between p/a and Br./a would be less in magnitude than 6r./a, 

and the substitution of £ for 6r. would yield an improved estimate of the 

orbit. 

From Table 1, we see that a   is less than unity over the range 
L, v 

of parameters studied. Therefore the "along-track" coodinate, the phase, 

is always improved by this process, c? T , on the other hand, is greater 

than unity, and the "cross-track" coordinate tends to be degraded. If 

CT _ were also less than unity, there would be no question about the conver- 

gence of the process; as matters stand, we are unable to give a rigorous 

theory of the convergence. 

Our speculation is that the process is convergent if aT _ is 
XJf\J 

less than unity, almost regardless of the size of a_ T. Our reason is 

that the phase almost entirely controls the eccentricity and the position 

and time of perigee. Further, if the data cover a full revolution or more, 

the phase, because of the relation between a and the period, controls a 

more strongly than the altitude does. These four parameters control the 

altitude and the "along-track" velocity that will be computed from the new 
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Table 1 

Effect of Errors in Satellite Velocity Upon Inferred Station Position 

a 
Earth Radii 

1.2 

l.k 

1.6 

1.8 

2.0 

Degrees 

15 

U5 

75 

15 

1*5 

75 

15 

45 

75 

15 

U5 

75 

15 

^5 

75 

C,L 

2.15 

3.10 

8.56 

1.8U 

3.02 

8.61* 

1.26 

2.55 

7.82 

2.13 

1.66 

5-94 

5.26 

1.26 

2.88 

0.354 

0.190 

0.U5 

0.U90 

0.291 

0.226 

0.563 

0.352 

0.278 

0.607 

0.392 

0.315 

0.636 

0.k22 

0.342 
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orbit, thus we can expect that the new orbit will yield improved estimates 

of the cross-track position, in spite of the large values of a T. That is, 

we improve our estimates not because a T is small, but because we decrease 

the quantity that a. T multiplies. 

Of course, we cannot improve the orbit if a   is too large. The 

criterion of convergence is probably one that depends upon the product of 

a_ _ and a. „, and the critical value of the product is probably comparable 
C,L     LfL 

to S"/61 vimes the number of revolutions spanned by the data. The reason 

for this guess is that an increment 6a in a changes the altitude by just 

5a on the average, but changes the phase by Sn^a/a for each revolution. 

The reason that ar  T is so large is that we have tried to infer 

both altitude and horizontal cross-orbit position of the tracking station 

from the data. If the orbit were linear, this would be a singular process, 

and (jn  T would be infinite. For low orbits, the portion of the orbit 

used is nearly linear, and the process is nearly singular. As the value 

of a increases, the curvature of the orbit becomes more significant, and 

the process becomes well-conditioned. This probably accounts for the 

tendency of ar  T in Table 1 to decrease with increasing a. This tendency 

is combatted by the tendency for the "fix" to become les? precise as 

altitude increases, and at sufficiently large a, a-, T might start to increase. 

An Experimental Test 

In the experimental testing we have done of the rapid orbit 

determination, we did not use exactly the method that has been described, 

because of the problem just mentioned. Instead of finding the station 
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position, in three dimensions, that best fits the orbit and the data, we 

find the best fit in two dimensions only. That is, in seeking the best 

fit, we constrain the inferred position of the station to lie on the 

horizontal plane through the nominal station position. 

We can analyze the situation for this method of fitting by 

returning to Eq. (8) and allowing the vector p to have only horizontal 

components. The analysis is now more cumbersome because the symmetry 

of the former problem is lacking, and we shall only describe the nature 

of the results. 

If we analyze p into components parallel and perpendicular 

to the satellite sub-track, the result for the parallel component 

is unchanged. That is, the values of aT „ in Table 1 still apply. The 
Li, v 

sensitivity of the perpendicular component to error in the parallel 

velocity is considerably reduced, to about unity or less. However, this 

component of £ no longer has any necessary relation to Br..  The 

horizontal component of 6r normal to the average orbit plane shows up 

one-for-one in p. The vertical component of 8r. also shows up in p. 

An increase in altitude of the satellite moves the inferred station 

position toward the orbit plane. Overall, the magnitude of the difference 

between £ and 5r\ , which is the main item of interest, is about the same 

whether p is allowed two components or three, while the calculations are 

faster if we allow only two. 

We applied the modified method to the launching of ANNA IB 

(1962 Sn-l) on an experimental basis. We used the data from the first 

pass received after injection, the data from the pass one revolution 

later over the same station, and data from three other stations within 
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the same revolution. In Table 2, we compare the orbital elements obtained 

from this determination with those determined by the standard method using 

data for the first full 2k hours. The present method required only ten 

iterations; the standard method required about fifty. 

The agreement between the two orbits is quite good, particularly 

in the most critical parameter a. The values for the time and argument of 

perigee differ considerably but this is an unimportant consequence of the 

low eccentricity of the orbit, since coordinates computed from the two sets 

of parameters differ by only about ten kilometers. Ten kilometers is not 

a serious error for this early stage in the satellite life: Just after 

launching, thermal and vacuum conditions are changing rapidly inside the 

satellite, hence, the satellite frequency is changing rapidly, and the 

Doppler data are not accurate. 

In the calculations summarized in Table 2, we started both 

methods from the design orbit for the satellite. We later gave the present 

method a severe test by starting with an orbit known to be seriously in 

error. We chose a so as to make the period wrong by about two minutes, 

and chose the phasing to be so far off that the actual satellite was not 

above the horizon at the times that the starting orbit said it was. The 

present method=still found a good estimate of the orbit in about fifteen 

iterations. 

We have also tested the present method by taking an accurate 

orbit, determined after the satellite has stabilized, and finding the 

precessing ellipse that best fits the orbit. Since an ellipse is the 

orbital description used In the present method, this gives the best 



Table 2 

Comparison of Orbit Parameters Obtained From Doppler Data 

Satellite: 

Epoch: 

ANNA IB (1962 0ul) 

October 31.0, 1962 

Present Method Standard Method 

Semi-major axis 

Eccentricity 

Inclination 

Longitude of node 

Argument of perigee 

Time of perigee 

Approximate time 
span of data used 

1.17717 

0.00672 

50°.124 

55°•7^5 

200°. 77 

6it53S.5 

2 hours 

1.17721 

O.OO67O 

50°.185 

55°.693 

186°.70 

6198s.5 

2k hours 
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possible orbit that the present method could find. Applying the present 

method to the same data, we find no significant difference between the two 

elliptical orbits. 

Extensions of the Method 

With most iterative procedures, there is a region of convergence 

such that we converge to the solution starting from any point within the 

region. We can expect that this applies to the present computation process. 

If so, the process should continue to converge until it is blocked either 

by errors in the data or errors in the computation of an orbit from a given 

set of parameters. With this method as it exists at present, the orbital 

computation accuracy is by far the limiting one, because we have used a 

precessing ellipre as the orbital description. When we modify the orbit 

computation to agree with the computation used in the standard method, 

we can expect that the two methods will have the same accuracy. 

The basic method is not limited to use with Doppler data. It 

can be used with any type of data that is capable of yielding a reasonable 

estimate of station position, given data from a single pass and an assumed 

orbit. So far as we can see, this applies to radio interferometric, radio 

ranging, or optical data, provided enough data points are obtained during 

a pass. An orbit computation process based on this method could then use 

any type or combination of types of data. One needs only a "station fixing" 

subroutine for each type of data. The output of the data from each pass, 

of whatever type, is then a station position error, which is assumed to 

represent the satellite position error at an epoch near the center of the 
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pass. All of the subroutine outputs then go to a single orbit determination 

routine, which takes the individual new estimates of satellite position, 

with weighting factors if desired, and finds the orbit that best fits these 

position estimates. 
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