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The development of our knowledge of the buckling of thin-walled
circular cylindrical shells subjected to axial compression is outlined a
from the beginning -of the century until the present, with particular
-emphasis on advances made in the last twenty-five years. It is shown .
that practical shells generally buckle under stresses much smaller than |
the -classical critical value derived by Lorenz, Timoshenko, .Southwell
and Flilgge. A first explenation of the reasons for the discrepancy was
given by Donnell and the problem was explored in detail by von Kérmin,
Tsien and their collaborators. More recently, Yoshimura discovered the
existence of an inextensional displacement pattern which the wall of
the shell can suddenly assume, and Koiter found an explanation of the
sensitivity of the buckling stress to:small initial deviations from the

exact circular cylindrical shape.

In the last few years further interesting discoveries were made
in Jepan and in California regarding the effects of details of the
boundary conditions, and many additional numerical results were obtained
with the aid of high-speed electronic digital computers. Improvementis
in experimental techniques have also contributed significantly to a
clarification of the problem and to an establishment of the unavoidabile
deviations from the exact shape as the major causes of the large differ-

ences between theory and experiment.
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INTRODUCTION

Theodore vonuKéymén, in whose memory this lecture is being pre-
sented, is best known for his werk in aerodynamics. Neverthelesg it
is appropriste to speak about structures in a von Kdrmin Memorial

Lecture because few, if any, research meén have contributed as much as

.did von Kdrmin to the solution of problems of structural siability.

His doctoral thesis (von Kdrmin 1908, 1910a) is the foundation of the
theory of buckling at stresses exceeding the £lastic limit of the
material. It shows that the buckling load of a short ¢olumn can be
calculated from & modified Euler formule in which Young's modulus of
elasticity 1is replaced by a combination of the tangent modulus and
Young's modulus, generally known as the von Kdrmdn modulus. In spite
of some recent attempts to replace the von Kdrmén buckling load with
the tangent-modulus load, it is now perfectly clear (Hoff 19654) that
the von Kdrmdn load is, and will always be, the correct and the only
solution of the buckling problem of short columns in the classical,

or Eulerian, sense.

An equally important; and even more original, contribution of the
men whom we honor today is the explanation of the snap-through type of
buckling of thin shells subjected to compression. In a series of papers
{von Kdrmdn et al. 1939, 1940, 1941) he an his collaborators proved the
existence of equilibrium states corresponding to large deformations of
the compressed shell. These states are responsible for the low experi-
mencal values obtained and for the perplexing behavior of the shell
when 1t buckles. These topics will be discussed at some length in the

body of the paper.
-1 -
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But it would be fooldsh to try to assess the importance of von
Kﬁrmﬁﬁ's work on the basis of his published contributions to aerodyramics
and structural stebility: The 111 original papérs reprinted on the 1838
pages of his .Collected Works (von Karmin 1956)- deal also with siress
analysis, plasticity, hydrodynamics, flight mechanics, jet and rocket
propulsion, combustion, physics, mathematics, and airplane, missile and

machine design. They were written in four languages, English, German,

French and Hungariah. The mother tongues of Dr. von Kdrmin's friends,

colldaborators and students are even more numerous, and the influence of
von Kdrmén on mechanics, aeronautics and astronautics will always be

felt in all the -countries of the world.
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THE DEVELOPMENT OF THE CLASSICAL BUCKLING FORMULA

Axisynmmetric, Buckling

The classical buckling formula is usually written in the form
« -1/2
Ta1 = [}(1ev2i] E(h/a) =~ 0.6E(h/a) - (1)

where g is the critical value of the uniform axial stress, E is

cl
Young's modulus of elasticity, v Poisson's ratio, h the thickness

of the wall of the circular cylindrical shell, and a the radius of

the middle surface of the shell. Essentially this expression was

derived by Rudolf Lorenz, a civil engineer in Dortmund, Germany, ih

1908. Starting out from the expressions in volume 5 of Foppl's Tech-
nische Mechanik (Poppl 1898), Lorenz developed the equations governing
the axisymmetric deformations of initially slightly inaccurate thin-
walled circular cylindrical shells subjected to uniform axial compression.
For simply supported circular edges he represented both the initial
deviations from the exact shape and the additional displacements due to
the locad by Fourier sine series and obtained the critical value of the
stress as the one at which the denominator of one of the particular
solutions vanished; thus Implying an increase of the deformations beyond

all bounds. 1He also found a good approximation to the correct expression

for the wave length A\ :
N LAY 1/2
x = wll2®)] T (@an)*2 = 1.72(an) (2)

Since this wave length is small for thin-walled shells, and since
a small change in the relatively large number of waves in the axial

direction changes but siightly the buckling stress, Eqs.(1) and (2) can
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be assumed to represent with engineering accuracy the tuckling stress
and the wave length of moderately long shells, Thevéxéressions become
rigorously correct in the limit when the length L¥ increases indefi-
nitely, but, of course, very long shells can buckle as Euler columns,

without any bulges or waves developing in the shell wall.

Lorenz' formulas can be obtained from the two equations given here
by setting Poisson's»ratio equal to zero. Thus his buckling stress was
too low by 5 percent, and his wave length was too short by 2% percent.
The correct formulas were first given in a Western European language by
Timoshenko in 1910, although they were probably published earlier in

Russien. In his Zeitschrift fir Mathematik und. Physik article the

buckling stress is derived once by the energy method, and a second time
through solution of an eigenvalue problem defined by a fourth-order
ordinary differential ejuation and suitable boundary conditions, and

identical results are obtained by the two approaches.

Chessboard Type of Buckling

The general case of buckling, without the restriction to axially
symmetric deformations, was first tackled by Rudolf Lorenz in 1911. He
started out from Love's so-called first approximation shell theory and
assumed that the displacements in the axial direction, designated as
the u* displacements (see Fig. 1), were negligibly small. He arrived
at a sixth-order partial differential equation which he solved in the

‘presence of the following boundary conditions:

vE = w* = M = 0 when x* = O,L¥ (3)




Here v* and w* are the displacements in the circumférential and
radial directions, Mx is the axial bending moment resultant, «x* the
axisl coordinate, and L* the length of the shell. He alsc established
that the inclusion of the u* displacement in the theory would yield an
eighth-order differential equation whose solution would not differ

appreciably from that of the sixth-order equation.

The numerical results of the calculations were presented in graph-

ical form. They are in good agreement with values computed from Eq.(1).

A rather complete treatment of the problem of elastic stability was
given by Southwell in 191L4. Starting from Love's theory of thin shells,
he derived and solved fthe equations defining the neutral equilibrium of
a thin circular cylindrical shell subjected to simultaneous axial com-
pression and lateral pressure. The same problem was treated again by
Fligge in 1932 without reference to Love's theory. It follows from
both treatises that Egs.(1l) and (2) define the buckling stress of the
axially compressed shell of moderate length in good approximation, and
that of the infinitely long shell accurately, provided that buckling
takes place symmetrically to the axis (see Fig. 2). When buckling is
of the chessboard type (Fig. 3), Bq.(l) is still correct with the
limitations given, but Eq.(2) is replaced by a condition connecting
the axial wave length with the circumferential wave length. The wave
lengths are thus indeterminate; all that can be said is that knowledge

of one wave length allows the calculation of the other.

These conclusions, and a comparison of the theory with test results,
can be found in Timoshenko's Theory of Elastic Stability (Timoshenko 1936).
The validity of Eq.(l) in the case of the chessboard type of buckling was

probably first established by Timoshenko in 191k.
-5 -
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CRITICISM OF THE -CLASSICAL RESULTS

?gckliggngtterhs

Figures 2 and 3 represent the two. classical biickling patterns
derived from the linear theory. The fofmer can be observed easily if
tests -are made with tubes of comparatively small 'g/h ratio, .say 30,

and: if thé material of the tube is capable of large plastic deformations,

which is the case, for instance, with mild steel. The deformations shown

in Fig. 2 are permanent; the pattern cannot be observed when the defor-
mations are entirely elastic. But the theory of buckling presented
assumes perfect elasticity of the material which constitutes an incon-

sistency not easy to resolve.

The situation is even worse with the chessboard pattern shown in

Fig. 3. It is the reproduction of a drawing and not a photograph of an
actual test specimen, as is Fig. 2. The reason for not showing a photé-
graph is that the pattern, although clearly defined by the solution of
the equations governing buckling, has never been observed in actual
experiment. The shape of a thin-walled perfectly elastic specimen after
buckling can be seen in the photograph of Fig. 4, As this differs con-
siderably from the former two patierns, the conclusion must be reached
that the agreement between buckled shapes predicted by theory and those

observed in experiment is very poor.

The Work of Fliigge

In his classical Habilitationsschrif't, that is formal lecture pre-

sented when he was appointed Privatdozent® in GOttingen, Filigge (1932)

¥ Adjunct Professor
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compared the results of his analysis with data: on &xperiments described

in the technical literature. As he was unable to find test results oa *ﬁ

axially compressed shells, he manufactured and tested a number of rubber
and celluloid cyl;n@ens in the Institute for Applied MEChaniqs in the
University of G&ttingen. The length-to-radius ratio of the specimens
varied between 1.76. and 5, &nd their radius-to-wall thickness ratio frém
90 o 138. :Ali the‘sﬁecimens buckled -elastically, and the ratio of the

experimentalrbuckling stress t6 the buckling stress accbrdingrtoqup(l)

‘ranged from-0.52 to 0,65 for the celluloid cylinders.

io explore the prsibie causes of this discrepancy, Fliligge studied
carefully the boundary conditions and the effects of small initial
deviations from the exact shape. In the classical approach the stability
of the equilibrium is examined when a perfectly cylindrical shell is under
the effect of a uniformly distributed axial compressive stress ¢ . Bub
if the simple support boundary conditions exist at the moment of buckling,
they must have been in existence during the entire loading process during
which the average axiel stress was brought from zero to its value o .
Now it is well known that the shortening of the shell ‘L*O/E is accom-~
panied by an increase in the radius amounting to vao/E , and evidently
this increase is prevented by the simple support provided in the two end
sections of the shell. ‘Under an axial compressive stress o the shell

must therefore have the shape shown in Fig. 5 before it buckles.

In his investigation, Fliigge solved the sixth-order ordinary differ-

ential eguation defining the axially symmetric deformations of a shell

Poansms  om—r

whose end sections are prevented from expanding during the loading process.
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He found that -at the beginﬁing'of the 1oading the major portion of the
shell is cylindrical, and the meridian is slightly curved only near the
supports. -As tvhe intensity of loading approaches the critical value,

the curved region extends toward the middle of the cylinder, several
waves appear along the meridian, and the amplitudes of the waves increase
uhtil they become infinitely large at the classical critical value of
ﬁhe-comp;essive stress. Considerably below this value, however, the
stresses at the.cfests-qf'the waves can be large enough to cause perma-
nent deformations even though the average stress. Ty is below the

elastic limit of the material.

Similarly, Fliigge showed that a small initial deviation from the
exact shape in the form of a sine function of the axial coordinate
multiplied by a sine function of' the circumferential coordinate is
increased during loading and tends to infinitely large values as the
classical critical stress ir approached. From this fact again large

stresses and inelastic deformations follow below the critical load.

Since Fliigge's experimental buckling loads differed relatively
little from the theoretical critical loads, the two studies just sketched
appeared to suffice for an explanation of the diserepancy. Buit in exper-
iments carried out in connection with the rapid development of thin-
walled aluminum alloy airplane sbructures in the early nineteen thirties
shells having radius-to-thickness ratios up to 1500 were tested (Lundquist
1953, Donnell l93h). As these specimens often failed at stresses as low
as 15 percent of the classical theoretical value, Fligge's explanation

of the causec of the disagreement was no longer sufficient.

-8 -




NEW SOLUTIONS OF THE CLASSICAL EQUATIONS

The Semi-Infinite Shell with & Free Edge

In 1999 the present author read a paper by Nachbar in which the
effect of pressurization upon the influence coefficients of rotationally
symmetric shells was evaluatéd. When applied to the spherical shell of
not too small s0lid angle A at the edge, the result was that the
influence coefficients kij , that is the genéralized edge displacements

caused by unit -edge stress resultants, could be expressed as

§#+l .
ki3 = %ijo 2x+1 i 1= (ka)
K, =k, z—= if id (kb))
ij ijo 2x +1 -
In these equations kij is an influence coefficient in the presence of
pressurization, and kijo the same influence coefficient when the shell

is not pressurized. The symbol x was defined in the Nomenclature as
the pressurization parameter and was given in terms of other symbols

defined elsewhere.

Since the derivations contained no step that would invalidate the
results if the internal pressure acting upon the shell were exchanged
for an external pressure, it was reasonable to assume that x = = 1/2
would correspond to the classical buckling stress given in Eq.(1l). This
equation is known to be valid for spherical shells under external pressure,

and the edge displacements can be expected to increase without bounds when

unit stress resultants are applied to the edge in the presence of the

-9 -
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eritical stress in the shell. With x = - 1/2 naturally all ’Che‘ikij

of Egs.(l') tend to infinity.

When this conjecture was checked, it turned out that x = -1
rather than x = = 1/2‘ corresponded to the classical critical value of
the external pressure. This implied, of course, that thée free edge\of
a spherical cap would become unstable at one-half the critical pressure

of the complete spherical shell.

Because of the nature of the governing equations, the same result
could be anticipated to hold also in the case of the thin-walled cir-
cular cylindrical shell. A simple derivation (Hoff 1961) presented at
a symposium honoring Dr. von Kdrmin on his 80th anniversary proved
indeed that the buckling stress of a semi-infinite circular cylindrical
shell whose near edge is perfectly free to deform is one-half the classical
value. A unit length of the free edge is assumed to be subjected to a
stress resultant ocrh vwhose magnitude and direction remain unchanged
during the buckling process (see Fig. 6) in agreement with the Eulerian

concept of buckling.
The eigenvalue problem was stated in the following form:

A (c‘x/E)li»Khw"-i- ity = 0 (5)

where the dirferentiations indicated by superscripts must be carried out
with respect to a non-dimensionalized sxial coordinate x . This, and

the non-dimensionalized radial displacement w are defined by

x = x¥/a w = w*/a (6)

- 10 -




The following éonstants were introduced in the analysis:

bt = 12(1-v2)(a/n)? = h(E/Uél)? D= Eh3/1g(l-v2) (7)

The critical value ot$ of the uniform axial stress ok is the .one

that satisfies the homogeneous boundafy conditions

Mx =0 = y" when x = O
(8)
V= - (~D/a2)w"'= 0, " when x = O
and yields bounded vealues for all displacements and stresses when
X - » in the solution of Eq.(5). This value was found to be
0'cr/ocl = 1/2 (9)

for the semi-infinite shell that buckles axisymmetrically. It is perhaps
worth noting that the second of Eqs.(8) expresses the fact that a small
transverse shear force Gcrh sin tanulw‘ zvccrhw{} must act on the edge
of the shell if the direction of the applied axial compressive load

remains unchanged while the generator at the edge of the shell rotates

during buckling.

The restriction of axisymmetry in the deformations was removed in
a follow-up paper by Nachbar and Hoff (Nachbar et al. 1961, 1962) and

the critical stress of the semi-infinite shell was found to be

UCI‘/UCJ. = 0.38 <lo)'

- 1] -
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Ohira's Solution

In the discussion of a lecture the author gave to the Japan Society
of Aeronautics at Meiji 'University in Tokyo in April 1963,1Hiroiqhi 5hira,
a young associate professor at Kyushit University, disclosed that he had
obtained approximately 1/2 for p for semi-infinite shells with the
near -edge simply supported (Ohira 1961). He had discovered that changes
in the classical boundary conditions relating to displacements and stresses
in the tangent plané to the middle surface can lead to such a reduction
in the buckling stress. Ohira used a relatively complicated differential

equation and obtained solutions with the aid of a digital computer.

The Donnell Equations

It occurred to the author of the present papér that a closed-form
solution of the equations defining the buckling of thin-walled circular
cylindrical shells should be possible, and that it should yield the
same low buckling stress as that obtained by Ohira, if the latter's
solution was correct. To check this conjecture, he and his graduate
student Rehfield set up ‘the problem (Hoff et al. 196ka, 1965c) with the
aid of Donnell's small displacement equations. These equations were
originally published by Donnell in 1933, when he was a research associate
in the Guggenheim Aeronautic Laboratory of the California Institute of
Teshnology whose director was von Kdrmén. The equations became popular
after Batdorf had used them extensively in the solution of a number of
stability problems, and checked their accuracy against other available
theoretical solutions and %est data (Batdorf 1947). Another check of

their accuracy was presented by the author when he compared the roots

- 12 -
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of thé characteristic equation corresponding to Donnell'’s equation with
those obtainable from other 'shell equations aveilable in the literature

(Hoff 1955)..

The Donnell equations différ from the many other equations definipg
the deformations cf thin,ciréular~cyiindjicai:sheiis.in so flar as they
are much simpler and more symmétric in their structuré than most of the
others. At the same time they are sufficiently ac yrate ip problemé:or
buckling if the number N of waves around the ci%éumference is laxge
enough. It is advantageous to write the equatigns in -a non-dimensional
form, as was done by the author (Hoff et al. 1954) in the absence of
prestresses in the median plane. A further simplification was proposed
by Nachbar in 1962 who normalized the coordinates and displacements for
the case of uniform-axial prestress: For the present purposes the most

convenient form of the equations is

Vuw

i}
rxf

- 2w (11)

XX s

VAF

Vo (12)

where the normslized coordinates are defined as
X 1/2 1/2
x = (x*/a)(2E/o ;) ¢ = ¢*(2E/q ;) (13)
and the displacements are given by

ws (wfa)(@E/e )2 v e (/e )R v s ()
(1)

In these expressions ¢ has the value given in Eq.(1) and p 1is the

cl

ratio of the critical stress Oy of the present theory to the classical

value
- 13 -
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p=oc_Ja (15)

-

The stress function F 48 implicitly defined by the following expressions
for the membrane sitresses -acccompanying buckling (that is, not including

the prestress o = o )

o /E = :F‘,W %/E = F TX(P/E = - F o (16)

Finally it is noted that subscripts following & comma indicats differ-

entiation and the biharmonic operator Vh is defined as

v = (" /ax") + 2(3%/25P) + (/06" 2 (17)

Derivation of the Classical Solution

It is easy to show that the solution of Egs.(11) and (12) is the

classical buckling stress of Eq.{1l) if the classical displacement pattern

is assumed. Indeed, with
w = sin mx sin ng (18)
Equation (12) yields

2
F = —-—m-—jg sin mx sin ng (19)

(m +n)

Substitution in Eq.(1ll) leads to the condition

72+ 27" = 2 (20)

where

2
i)
7 = (n°n°) /m2 (21)

- 14 -
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If Z 1is conmsidered a continuous varisble, the condition of a minimam
of p is that the derivative of the left-hand member of Eq.(20) with

respect to Z vanishes. Thus

whose solution is the condition imposed on the two reduced wave numbers

2
§m2+n2) /m? = 1 (23)

Finally substitution in Eq. (20) gives
p=1 (24)
which is the classical solution.

Of course, there must be an integral number of waves around the
circumference, and an integral number of half-waves along the length of

the shell. The first condition can be written as
1/2 . '
N = n(2E/acl) = integer (25)

If N 1s assumed, n computed, and m determined from Eq.(23), in

general, the number of half-waves in the axial direction

M¥ = ML*/ma (26)

M= m(2g/s )2 (27)

el

will not be an integer. However, the value will be close enough to an
integer in an engineering approximation whenever the shell is very long.
This is the reason why Eq.(1) has been accepted generally as the buckling

rormila.
- 15 -
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InAé régént>paper‘Mhﬁn-nachbar and Nachbar have shown that a sta-
= tistical .and prqbébiliS£icsanalySis of the solution for preécﬁibed
,nominai diménsioﬁs and prescribed manufacturing tglerénces in the
dimensions lgads,tg most probable wave numbers and buckling stresses
that aré in reasongble agreement with experimental AQta (Mann-Nachbar

et al. 1965).
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When the number of half-waves in the axial direction is an integer,

obviously

vE W =0 at x* = O,L* (28)

e A sl o B
~

But from Egs.(16) -and (19) it follows that

¢ =¢ =0 and Tx(p?é 0 at x* = 0,L* (29)

This implies that w =0 and 5y = 0 at x* = 0,L*¥ and thus
v=0 at x¥ = O,L* (30)
It can be concluded therefore that the classical solution implies that

w=w__=0 =v=0 at x* = 0,L* (31)

Generalization of the Simple-Support Conditions

This is obviously not the only possible generalization to a cylin-
drical shell of what is usually assumed to represent simple supports
(w=w wx = 0) for an ordinsry beam. The four fundamental sets of

)

boundary conditions proposed by the author (Hoff et al. 196Lka, 1965¢)

for the circular cylindrical shell are:
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$§2 w=0 w__=0 u=0 T_.=0 ‘ > *
P XX x¢ (32)
S83 w=0 w_ =0 g =90 v =0 '
yXX. X
ssh w=0 w__=%0 u=0 v 20
s XX

'Evidéntly, the'SSS condition corresponds- to the:ciassi@él solution.

t$xperiments performed.in the ordinary tension-compréssion testing machine

should be represented by cases SS2 or SS4, depending upon the friction,

or its absence, between testing machine and tést specimen.

The study of the eéffects of the boundary conditions on the buckling
stress began with the analysis of the semi-infinite shell. At the near
end of the shell, where the exial compressive load was applied, one of
the four sets of boundary conditions givén in Egs.(32) was prescribed:
At the far end, x - o , the displacements and stresses were required to

remain bounded.
‘The solution wés assumed in the form
w = e’ sin np (33)

Substitution in Egs.(1l). and (12) yiélds eight values for p ; these
roots weré first published by Nachbar in 1962. Of the eight, four roots
have positive real parts; these must be ruled out for the semi-infinite
shell because of the conditions at infinity. The remaining four provide
us with four solutions of the type shown in Eq.(33), each multiplied by
an unknown integration constant. The constants must then be determined
from that one -of the four sets of boundary conditions given in Egs.(32)

which 1s prescribed at x = O , Since the conditions are homogeneous,
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a non-trivial sélutign of the four simuitaneous linéar.equatiOQS"existé
only if the determinant forméd of the coéfficienté of the. unknowns
vanishes. Solutfon of €his buckling condition ylelds for cases SS1

and"S‘SZ’}tw
p.= 0.5+ [ia(l -y i] (h/a) o (34)

The dots 1ndicate terms that -are of the second and of higher powers of
‘(h/a) . They must bg~disgarde@.becau5e in the derivation of the differ-

ential equaﬁioné siﬁilaf*terms Qere‘Qisregardeqh

The lowest critical stress corresponds to N = 2 as the case
N = 1 must be ruled out since it represents u rigid-body displacement
rather than an elastic deformation of the cross-section of the .shell.

With N =2 , Eq.(34) becomes.
p 0.5+ 1.21(h/a) + . . . (35)

Sinée h/a << 1, the critical stress ratio is one-half in a first
approximation.

Unfortunately the Donnell equations are reliable only when
N2 >> 1 , .as has already been mentioned. It would appear therefore
that Eqs.(34) and (35) cannot be trusted. But this is not the case,
because the actual velue of N is not important for very thin-walled
shells. For instance, when a/n = 1000 , the assumption of N = 2
yields p = 0.50121 . The Donnell -equations are already satisfactory
when N= b . But with this value Eq.(34) gives p = 0.50484 which
is the same result for all practical purposes. The fact that the
buckling stress is insensitive to N indicates that Egq.(35) is accept-
able even though it was derived from Donnell's equations for N= 2 ,
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This conclusion was ccnfi:mednwheh;the author -and his do¢ctoral

student T. C. Sogng\recalcuiatedlthe‘critic&l S£ress valuss 6n the basis

of ‘Sanders" differéntial equations, As Fig. T shows, the difference

between the results based -on Donngll's and Sanders® equations is hardly
noticesble (HOff et al. 1964b, 1965b). On the athér hand, the Sanders
equations are -considered to be the best first-approximation theory foday,
and they are certainly valid when N = 2 (Sanders 1959). The drawback
of Sanders' equations is that their characteristic fOOts cannot be given
in closed form. Thus Soong had to evaluate the critical stresses with

the aid of a digital computer.

‘Shells of Finite Length

On the other hand, the author has succeeded (Hoff 196l4a, 1965c) in
obtaining closed-form solutions for the buckling stresses of shells of
finite length when both circular edges are simply supported in accord-
ance with the conditions SS1. In this ccase all the eight solutions. .of
the type given in Eq.(33) must be retained, but the eight-by-eight

buckling determinant breaks up into two four-by-four determinants, one

of them defining symmetric buckling, and the other antisymmetric buckling.

Of the two types of buckling, the one whose deformations are symmetric
with respect to the plane perpendicular to the axis and situated half-
way between the two end planes of {the shell yields the lower buckling
stress. For engineering purposes the value of p can be taken as 1/2

for all values of the length L* of the shell (see-Fig. 7).

On the basis of the closed-form solutions (Hoff et al. 196ka, 1965¢)
and (Hoff 196ka, 1965c) as well as the digital computer solutions (Hoff

et al. 1964b, 1965b) it can be stated that shells of all lengths whose
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=§éges are free fgffqygtg~¢ L VﬁoﬁArestriét@dﬁ:énd»afe,f:ge to displace
ié;tgéuc%réﬁéiéfentigl direction ( v nct réstfiqtéGDAbgckle at one-
hélf the ¢lassical ériticqi vélué of thé:axial compressive stress,

except ﬁhaﬁ thé critical stréss is even lower when the edges ere entirely
fxee; iﬁ théulattef/case o =;b.5« fqr=éxisymmetric buckling, and 0.38
£0r multi@obéd«buékling for the semi-infinite shell, For short shells

p can be much'smaller, as can be segﬁ from the report by*Hbff and -Soong
(goff/gt al. 1964b, 1965b). 1In all other cases gf’boundéry-cppditions
the minimal value of the critical stress ratio p 1is unity or gréater.

A summary of this work was presented t0 the Eleventh International

Congress of Applied ‘Mechenics {Hoff 1964b).

A further~digita; computer solution of the classical equations was
published recently by Thielemann and Esslinger (Thielemann et al. 1964).
For shells of finite length they obtained buckling stresses equal to the
one .given by the classical formula of Eq.(1l) when the length of the shell
was equal ko or greater than the natural wave length of the shell and
the boundary conditions were those designated in this paper by the code
symbols SS3 and SSk. The same results were obtained for the cases §F24
RF3 and RF4, where the symbols RF indicate rigid end fixation and the
numerals have the same meaning as in Eqs.(32). When the length of the
shell was decreased further, the buckling stress increased. The same
effect of the length was also found to exist for shells reinforced longi-

tudinally or circumferentially.
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'Régg‘ﬁt‘ ’V’o}x_ by, 6h3_1»r§

The resglts‘quotedfare«iﬁ.chplete agreenment withlthosé obtained:
byréhira, In,gareéent private éOmmunicatign‘$o the -author, Erofessopri
‘Ohira states: ™I got ﬁhe original idea of attempting local buckling
theory when I crushed é,nﬁ@bef of ‘Coca ‘Cola paper cups in a do-it-
yourself laundry during the time I was ‘staying at Purdue in 1958".
His efforts to develop a. theory were successful and in 1961 he presented
his first paber on the low buckling stresses ofvsemi-infinite shells
with modified simplessupport conditions (Ohira 1961). The following
year this work was enlargéd (Ohira 1962), and in 1963 a detailed paper
on the subject was presented to the Fifth International Symposium on
Space Teéhnology end Science. The .solutions were calculated with the
aid of a digital computer and detailed diagrams were presented for the
SS3 and Ssk cases as well as for two cases of a free edge; in one of
these the wu displacement was kept constant, as in the ordinary testing
machine, while in the second all displacements were free. The former
resulted in p = 0.5 , and the latter in p = 0.38 . It is noted that
unpublished calculations carried out at Stanford University confirm the
value 0.5 for the first of the two firee edge conditions. 1In all the

numerical work v was taken as 0.3 and a/h as 300 .

As yet unpublished reports by 5hira, whose material has already
been presented at open meetings (Ohira 1964, 1965), deal with the
buckling of shells of finite length. In particular, in the paper of
1965 the edge conditions are assumed to be more severe at one end than
at the other. The result is a satisfactory decrease in the number of
waves at buckling and in the buckling stress as the length of the shell

ig increased.
- 21 -
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e Guestion of Priorsty
e qﬁgétién of priority in the aiscovery of scientific information
is alvayé gn'iﬁtereSting:oﬁe, althoﬁgh perhaps~not«an(imp9ftant one..

" Tt appears froim the preceding parééréphs that Lorenz was the first to
:célculgéé the gritigé; gtresses -of axially compressed circular cylindrical
shells fof‘bqth the axisymmetric and the general cases of buckling. Of
course, his rgsults were not quite aécurate,‘an@ were later impréved»upon
'by'Timqshenko im the case of axisymmetric buckling, and by Southwell and
Timoshénké in the géneral case. The classical formule of Eq.(l) was

apparently first derived by Timoshenko.

The discovery of the existence of ‘other solutions of the classical
equations yielding buckling stresses smaller than the classical one was - ,

made independently by 6hira~and by the author and his collaborators. The

first oral presentation of the discovery was made by Hoff at a symposium
honoring Dr. von Kdrmidn in Washington on May 11, 1961. The text of <he
telk was published and distributed to a limited number of recipients
(about 200) as a Stanford University report in August 1961; the volume
? honoring Dr. von Kdrmén, on the other hand, appeared only at the end of
1962. In a similar manner, Ohira's first oral presentation was made to
the Eleventh Japan National Congress of Applied Mechanics gometime in

' 1961 but the proceedings of the congress appeared in print only in 1962

| or 1963. There were sigrificant differences between the two solutions.
- Ohira dealt with the general type of buckling of semi-infinite shells
with a simply supported edge while the solution by the present author
was valid for the axisymmetric buckling of semi-infinite shells with a

perfectly free edge. Moreover, Hoff's solution was in closed form,
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while Ohira had obtained his results with the aid of a digitél compuber.
Hoff's result was generalized in 1962 by Nachkbar and Hoff to hold for

the general case of bu¢kling.

Up to this point, Ohira and Hoff had wcﬁkeé independently, without
knoviedge of each éther‘s work. .Subsequently Hoff -acknowledged that his ‘
cioéedﬁform solutions for the simply supported édge were undertaken after
he had~received information of Ohirs’s digital computer solution.
Siﬁilarly, in his paper presented to the Fifth intérnationél Symposium.
on Space Technology énd‘Sciehée iﬁ)1963,'§hira acknowledged that his
latest results dealing with free edges were -ohtained after he had received

information on Hoff's and Nachbar's work.

For a clarification of these problems the dates of first presen-
tation and/or publication of néw results have been collected in Table 1.
It is well to remember, however, that proceedings of conferences generalLly

appear :a year or more after the date of the conference.

Significance of New Solutions

It is equally incovrect to overestimate or to underestimate the
significance of the new solutions of the small-displacement equations.
From the theoretical standpoint they are most interesting as they show
that solutions other than the classical one exist for the problem of
the buckling of axially compressed thin-walled circular cylindrical
shells even though the problem is defined by linear equations. As a
matter of fact the only distinction of the classical solution is that

it is the easiest one to obtain.
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'From¥éqprébtiqéi’Standpoiﬁt.the'ﬁew solutions éhg#nthat a thin

'f - - v ‘§hei1 éléééd“bepﬁpéh»thé:piéténs of a testing machine-caprbuékle.anywhere
| 5étwgen‘2§ = 0.5 gnd 1.0 ,-@eﬁénding~9h_the frictiop betweehrspéqimen
qnéitéstihg machine, This ﬁaét<certainlyhelps to explain the large

) scatter observed in the test resuits.

If the design enéinecr maintains that he already has enough empir-

ical information ontthe practical buckling strésses of thin shells to
make him’uninterestéd in refinements of the theory; one can counter his

critiéiém by saying Ehap ﬁhe empirical information is only on shells

already built, and not on new types of shells t0 be constructed in the

futuré. Improvements to be brought to shell design in the future can

ERPEY A

be evaluated in advance only if a complete and reliable theory has been

A S S

established, and the new soiutions of the classical linear shell

equations meke a contribution to this goal.

Of course, most shells in engineering have their edges attached
- to -other shells, or to reinforcing rings. It is almost obvious that
such rings can provide an almost perfect restriction of the circumfer-
ential displacements. This was shown to be the case in a recent pub-
lication by Almroth (1965b). On the other hand, as yet unpublished
calculations carried out at Stanford University indicate that a relax-
ation of the boundary restraint over the distance of a single half wave
can reduce the buckling stress significantly. Such a relaxation can be

the consequence of a broken rivet or a poor bond.
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THE DISCOVERIES: OF VON KARMAN. ‘AND HIS co;:i;ABQRATLQR’s
Between 1939 and 1941, Dr. Thepdore von Kérmin and the very capable

and enthusiastic group of students and research men gatherediaround him o
in the Guggeénheim Aeronautic Laboratory .of the California Institute of
Technology laid the foundations of the large-displacement theory of the
buckling of thin shells (von Kdrmén et al. 1939, 1940, 1941; Tsien 19k2a,b).
Kérmén was puzzled on the -one hand by the large difference between the
complete predictability of the buckling stress of rods and thin plates, ~;’
and on the other hand by the ver& substantial difference between theoret- {
ical and experimental values of the stress at which thin shells collapsed.
He also observed that the development of buckles and bulges was gradual
with elastic rods and plates while it was sudden, and even explosive, with
shells. After buckling, columns and plates continued to carry the buckling
load, and were even capable of supporting further increased loads, but
with shells the load supported after buckling always dropped to a fraction
of the buckling load. 7Yet the equations defining the equilibrium and the
stability of rods, plates and shells were all based on the same well-proven

hypotheses of the theory of elasticity.

Sudden buckling with a drop in the load carried had been observed
by von Karmén much earlier (von Kdrmdn 1910a) in the case of short columns.
The phenomenon had been explained by him completely as an interaction
between the inelastic behavior of the short column and the elasticity of
the testing machine (see also Hoff 1961). But von Kdrmén was reluctant 1
to accept a similar explanation for the puzzling behavior of the shell, 'i

because very thin-walled shells appeared to recover completely after
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rémoval Qf_thé losd and thus they showed the same phenofiendn without

‘plastic deformations.

The clue to the puzzle seemed to lie in the form of thé solution
of the classical equations, as given in Eq.{18). ‘Evidently the expres-
sion forthe radial displacement w remains valid if the right-hand

member of the equation is multiplied by - 1 ; it represents displace-

~ments of equal magnitude in the inward and outward diréctions. But

real shells testeéd in the laboratory always show a preferénce to buckle
inward, and their displacements in thé outward direction are much
$maller than those oriented inward. It appears therefore that the
classical equations fail to represent properly the difference between
the inward and outward directions in the case of shells while they are
perfectly satisfactory in the case of rods and plates. This difference
must be a consequence of the curvatiure of the shell because in all
other respects the basic hypotheses upon which stability theory is built
are equally valid for rods and plates the one hand, and shells on

the other.

The only manner in which this shortec ing of shell theory could be
remedied was to add terms to the equations thr~t were non-linear in the
displacements. But relativeliy simple equations containing such terms
had already been developed by a former collabc btor ¢f von Kérmén,

Lloyd H. Donnell, who had worked in the Guggerhei Aeronautic Laboratory
of the California Institute of Technology betwe n 1930 and 1933, To
the linear terms of his small displacement equetions (Donnell 1933)

wvhich were to become famous later, Donnell added the non-linear terus
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contained in thesv§nukéfmén large-deflection plete equations {von Kdru#n
1910b)* to obtain what are generally known today as the von KérméneDonﬁell
1arge-d;splacem¢nt shell eguations '(Donnell 193k), The trouble with
theseﬁequations is of course ‘that they cannot be solved rigorously because

they are not only non-linear, but also of a veéry high order {the eighth).

In his paper of 1934 Donnell showed an upusual amount of ingenuity
and engineering insight when he introduced for the radial displacements
at buckling expressions equivalent to those that are considered today

the mostrimportant ones in the representation of the shape of the buckles:
* - (¥ T % ; * D % T ) z
w¥ = A, cos (wx /Lx) cos (ny*/Ly) + Ao cOS (2mx /Lx) - (36)

where y* = ag* is the circumferential coordinate,. L; aad L; are
the half-wave lengths in the axial and: circumferential directions;\and
All and AEO are constants. After substitution of this expression in
his compatibility equation, he obtained a rigorous solution for the
stress function. He used the principle of virtual displacements to

calculate the load necessary to maintain equilibrium at any value of

the amplitude of the buckles.

Donnell also assumed that the shell was inaccurately manufactured.
For the small initial deviations from the exact shape he introduced an
expression of the type represented by Eq.(36) with the values of the
constants somewhat complicated functions of the nominal geometry of the

shell. The shell was assumed to fail when the stress at the crest of

* Apparently Donnell was not aware of the existence of these equations
when he derived his large-displacement theory.
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the- buckles reached the yield styess of the‘ma¥erial'of which the shell
was constructed, Donnell ended his paper by proposing a semi-empirical
design formula; based on his analysis an& test results, in which three
materiél constants appeared, namely Young's modulus, Poisson's ratio,

and tae yleld stress.

The first innovation in the analysis by von Karmén and Tsien (von
Kérmén et al. 1941) was the introduction of a buckle pattern based on
yvisual observation of the shells after failure. The pattern was defined

by the following expression for the radial displacement:

w¥ = A .+ A

00 * Ay €08 (mx*/a) cos (ny*/a) + A, cos (2mx* /a)

+ A, cos (2ny*/a) (37)

The first term in the right-hand member represents the classical small-
displace:.cunt solution. The sum of the second and third terms with

AOE = A20 defines deformations quite similar to those of the middle
portion of the test specimen of Fig. 4, but, of course, the mathematical
expressions imply a continuous set of buckles covering the entire surface
of the shell. Such a pattern, denoted the diamond pattern, can be real-

ized oniy if a close-fitting mandrel is placed inside the shell (Horton

et al. 1965) (see Fig. 8).

The compatibility equation

(l/E)Vi{'F = —(l/a)w’:‘x*x* + (W":‘X*y*)a - w":‘x*x*ny*y* (38)

was solved rigorously after the expression of Eg.(37) was substituted

for w* in the right-land member. The second of the von Kérmédn-Donnell
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equation is¥

1) IV * o Y "* ¥* - R
(D/h) w ow’x*x‘ + F,y*y*w,X*x* 2F,x*y*w,x*y*

+ iF,x*xﬁ-“"fﬁyg» + (l/ a;)F Rl 1(‘39 )

where < ¢ 1is the initial axial compressive stress causing buckling and
F is a stress function from which the additional membrane stressés
accompanying buckling can be calculated, This equation was not solved
directly, but instead the direct approach of the variational calculus
was used when the total potential energy of the system was minimized with
respect to the three independent displacement parameters AOO » All and
A20 = A02 .

From the three conditions of a minimum of the total potential energy
the three constants could be c¢alculated, and thus the value of the initial
compressive stress - g that corresponds to equilibrium could be deter-

mined for prescribed values of the parameters p and n . Of these u

was defined -as the ratio of the wave léngths
u=m/n (ko)

and n was proportional to the square of the number of waves around the

circumference

1. = n2(h/a)

In one set of curves representing the results of the calculations

(k1)

u was arbitrarily taken as one because the wave length ratio was found
to be close to unity in specimens after they had buckled in the testing

machine. The parameter of the family of curves was 1 , and the minimal

* This is in essence the form in which the equation was given by Kempner.
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‘absolute value of the stress was

-0 = ‘0-19453'(“1;/8")3 | | (k2)

m

The reiationship'between the stress and the shorteniﬁg‘ eL* -of the
distance between the two ends of the,gylindrical shell was also cal-
culated and plotted, The curve obtained differed Tittle from the one

labeled "Case 1" in Fig. 9, which was obta%nedwby%KEmpnér in 1954,

In Fig. 9, the stress o 1s the axial stress, and it is considered
positive @hen compressive. The abscissa is the average compressive
strain € multiplied by the ratio a/h . The gap between the straight-
line and theé curved portiodns of the diagram was not filled in because
computation of the intervening unstable states of equilibrium involves
great difficulties. In their 1941 paper, von Kdrmin and Tsien also
calculated the equilibrium curve for u = 1/2 and obtained a minimum
for o which was negative indicating tension. They attributed this
unlikely result to the inaccuracies of their analysis. As a matter of
fact, they were very modest about their contribution to science and
stated that their rough first approximation to the true solution of the

problem would have to be replaced by a much more rigorous solutiuh.

Yet von Kérmdn and Tsien accomplished a great deal. They discovered
the existence of three states of equilibrium corresponding either to a
prescribed displacement of the loading head .of the testing machine
(loading in a rigid testing machine), or to a prescribed value of the
load (so-called dead-weight loading). They conjectured that in the
first part of the loading process the states of stress and shortening

would follow the straight-line portion of the diagram (Fig. 9) which is
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stable in the presence of infinitesimal disturbances; thisivould hapren,
however, only if the shell were perfect geometrically and If it had been -

built of & completely homogeneous and isotropic linearly elastic materisl.

In the presence o6f initial deviations from uniformity the maximum b2
value of the compressive stress would be smaller than that indicated by
the letter € in Fig. 9, and the difference between the numerical value
0.605 for (o/E)(a/h) and the experimental value would increasé with
increasing values of the initial deviation. HéweVer,“the rapdom nature
of the 1pitial deviations makes it very difficult to evaluate the
practical maximal value of the buckling stress. Hence von Kdrmén and
Tsien suggested that for design purposes the engineer use the minimal
value of the equilibrium stress, that is 0.194E(h/a) ;. from»an‘unbuckled
state corresponding to a somewhet higher value of the stress the cylin-
drical shell would jump into a state of large disSplacements, and the
minimsl Stress just quoted could well serve as a lower limit to the stress

at which the Jjump could take »lace.

Von Kérmdn and Tsien also concluded that the elasticity of the
testing machine would have a significant effect on the stress at which
the jump takes place and that disturbances of the test, such as vibrations
of the foundation of the testing machine, would be an important contrib-
uting factor to the early failure of the specimen. These two conclu-

sions were to be proved incorrect by later investigators.

The same can be said of the ingenious Tsien criterion proposed in
1942 (Tsien LO42b). On the basis of a detailed and completely rigorous

analysis of a non-linear model of a shell, namely a column supported
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igte;ally,by an arﬁitrary nunber of nonlinear springs (Tsien 19&23),

. Tsien sugggéted»ﬁhat the minimel equilibrium stress of Fig. 9 be replaced

asxtheilqwér‘bquhé of the practical buckling stress by that pérticular
stress value gt>which the strain energy before buckling is equal to the
strain energy after buckling,inﬂa test in a perfectly rigid testing
machine, In a:so-called dead-weight test, the total potential energy
takes the place of the sirain energy. Tsien realdized that he was replac-
ing a lower bound by another lower bound. ‘However, Tsien's lower bound
was higher, and thus closer to the empirical buckling stress, than the
earlier one, and the scanty experimental data against which the Tsien
criterion was checked indicated satisfactory agreement between theory
andAexperiment. Incidentally, a slightly simpler non-linear model than

the one studied by Tsien had been analyzed earlier by H. L. Cox in 1940.

Systems for which the Tsien criterion is a poor approximation were
meﬁtioned by Fung and Sechler in a rather complete survey dealing with
the instability of shells (Fung et al, 1960) and presented at the First
Symposium on Naval Structural Mechanics held at Stanford University in
1958. Much recent experimental -evidence, to e discussed later, also
shows that the proper answer to the question of the practical buckling

stress of thin shells is not furnished by the Tsien criterion.
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THE YOSHIMURA BUCKLING PATTERN

Although the investigations of wvon Kérmdn and his collaborators
have resulted in the discovery of the physical and mathematical reasons
for the parpiexing behavior of the axially compressed cylindrical shell,
it was left to Yoshimeru Yoshimura, an imeginative professor in the
Aeronauticel Research Institute of Tokyo University, who, unfortunatelég
died relatively young, to find the geomeiric reason for this physical
behavior. Yoshimura proved in a Japanese paper putlished in 1951 that
the middle surface of the circular cylindrical shell is developable into
a polyhedral surfaée consisting of identical plane triangles; such a
surface is shown in Fig. 10. His work was republished in English by

the Netional Advisory Committee for Aeronautics in 1955.

The shell can therefore be transformed into such a polyhedral
surface without stretching its middle surface, that is without causing
any membrane stresses to develop. Small bending stresses -are required,
of course, to eliminate the initial curvature of what are the plane
triangles after buckling, and the curvature becomes infinite along the
edges of the triangles which form the ridges of the polyhedron. It is
not obvious whether in the limit as h/a approaches zero the work
necessary to produce the infinite curvature along the ridges of a
perfectly elastic shell is finite or infinite, but for an ideally
elastic-plastic material certainly a finite amount of work suffices to
develop the ridges. But the bendaing stiffness of the thin wall of the
shell is proportional to h3 while its extensional stiffness is pro-
portional to h . Hence a practical shell is likely to have a tendency
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' to- avoid extensicnal deformations more and more as its. thickness is
decreased. For this redson very thin shells can be expected to buckile
in accordance with the Yoshimura pattern while thicker ones -should have

more ample curvature along the ridges.

This conclusion is borne out by experiment except for one important

modification: the diamond-shaped buckles of Yoshimura appear only in one:
or two rows rather than cover the entire surface of thé shell as can be
seéen from Fig. 4. This difference must be a consequence -of the con-

ditions at the boundaries because the pure Yoshimura pattern is incom-

g e

patible with the circular edge of the cylindrical shell.

The Yoshimura pattern was discovered independently by Kirste in
1954. It was also enthusiastically adopted and studied by Ponsford in
‘the Guggenheim Aeronautic Laboratory of the California Institute of

‘Technology (Ponsford 1953).
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FURTHER DEVELOPMENT OF THE LARGE-DISPLACEMENT THEORY

During the quarter of .a century tﬁat has passed since the publi-
cation of the von KérméneTsien paper of l9hl, mos: of the advance in our
understanding of the buckling of circurar cylindrical shells subjected
to uniform axial compression has been achieved through investigations X i
using the von Karmén-Donnell equations and the techhiques developed in
that paper A number of corrections and improvements were made by
Leggett and Jones in 1942 (but due to war conditions their paper was
distributed widely only in 1947), by Michielsen in 1948, and by'Kémpner
a doctoral student of the author, ir 195%. 1In particuler, the totéi
potential energy was minimized with respect to the parameters p and
n defined in Egs.(40) and (41). This minimization showed that the
buckled state found by von Kdrmén and Tsien for tension (for u = 1/2 )
was not a state of equilibrium and thus eliminated an inconsistency from
the theory. The results of Kempner's analysis are shown in Fig. 9 as

the curve labeled "Case 1",

The analysis was extended to orthotropic shells in a paper presented
by Thielemann at the Durand Centennial Conference (Thielemann 1960) and
the results of the calculations were compared with experiments carried
out by Thielemann with extreme care. This work was continued by
Thielemann in & report to a NASA conference held at Langley Field in
1962 in which he objected to the minimization of the total potential
energy with respect to the wave lengths because evidently only integral

numbers of waves can occur in the shell. It is not clear, however, from

- 35 -

»%




h
s [N b
o O
’6‘3’ .~

N e

o

R A v Foroden o
e e

N

T e ghanvr 2
P it

PR

e

s

B3
des o7
WGP
)

the very»cbncise paper hat pracedure ha infre, ~ged to peplecs tals
AN 7 L&

minimizetion, - - a2
" Thielemann used slectronie di gita; comoaters to solve, {n an
approximate manner, the von Kérmén-Donnell equations. The vse of the
digital computer was exploited even more eompletely by Aimroth who
investigated many combinations of the verious terms in the series
[o4]

J=0

[\/JS

gk 08 (Ime/1) cos (smaet/i) (1)

T
o

in order to obtain the minimum of the total potential energy. The

PR L

curves labeled "Case 2" and "Case 3" in Pig. @ represent Almroth's

results; in the calculations of the former only the coefficients AOO

11 2 'AEE N A20 and Aho were assumed to be different from zero

while in the latker the coefflicients AS% and ABO were sloo included

In order to maske the computstional work tolerable, all the coef/licients

A

not listed were assumed to be zero.

It can be seen that for @ Tiged value of ea/n the equilibrium
stress decreases as the number of terms considered is increased. Tae
important question to ask is therefore where the limiting curve is
situated when the number of terms considered is further increased and
made to approach infinity. Almroth felt that his nire-term* approxi-
mation (not shown in the figure) spproached closely enougb the limiting
curve; he was unable to obtain asignificant changes by selecting different
coefficients, or considering additiousl ones. Moreover, his results
were in excellent agreement wiih those ohtalned hoth theoreticnally and
experimentally by Thielemann (1962)
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The author of fhe present paper was not convinced thétyAlmroth's
nine-tern approximation was a sufficiently good approximation to the
limiting curve but he réalfzéd that it would be extremely difficult to
continue the process by .adding more and more terms to the displacement
expression. In particular, the replacement of the products and powers
of trigonometric terms by trigonometric terms of multiple anglesiwas
such a lengthy job in the analysis of the problem that it was almost
impossible to .avoid errors. TFor this reason the aﬁthor suggested that
this work should be programmed for the computer; the method dgveloped
for this purpose has been described in two reports (Madsen et al. 1965b;

Bushnell et al. 1965).

With the aid of this computer program the author and his collabora-
tors (Hoff et al. 1965a) succeeded in calculating equilibrium curves on
the basis of up to lk-term approximations. Th« manner in which the
equilibrium stress decreases with the number of terms considered for a
fixed value of ea/h can best be seen from the entries under casés L, 5
and 6 in Table 2. The normalized stress values are not minimal values
in this instance, but they correspond to ca/h = 3.4 . They are 0.0856,
0.0706 and 0.0528 when the number of terms retained is 8, 10 and 12.
When two more terms were added to the series the value of (o/E)(a/h)

became 0.0427, which is the minimum of the curve labeled "Case T" in

Fig. 9.

* In the discuszion that follows the A term is not counted when the
total nusber of terms is indicated. The value of A is obtained
from considerations of the continuity of deformations, and not from a
minimization.

- 37 -

- ) L T e G TR A T




This value is substaitially smaller than Almroth's 0.0652. It is slso
smaller th#n the value of 0.0518 obtained. by Sobey (1964b) with & 23-term
gﬁpfoximationa 'Thé«inclugiohréf such ‘a large number cf terms was~pos§ible
only begcause of the availability of a :superior computer program. The
regason why Sobey's stress value is‘higher for 23 térms than the author's
value for 14 terms is tha. many of the coefficients of the terus retained
by Sobey have very small numérical values; Hence these terms &re unimpor-
tant in the definition of the displacement pattern. Incidentally, Sobey's
paper had a very limited distribution and was unknown to the author at the
time he wrote his paper Jointly with Madsen -and Mayers.

The most interesting result of the paper by Hoff, Madsen and Méyers
(1965a) is the observation that with incréasing numbers of terms retained
in the expression for w. the coefficients of the terms of the double
Fourier series approach the values characterizing the Fourier expansion of
the Yoshimura buckle pattern. At the same time, p , n and o approach
Zero.

It appears therefore that the shell buckles into an exact Yoshimure
pattern, with a finite wave length in the axial direction but a vanishing
wave length in the circumferential direction (n = O).% At the seme time
n = N2h/a approaches zero; since the number of waves around the circumfer-
ence cannot be lees than two, obviously h/a must approach. zero. In other
words, the limiting curve obtained when the number of terms is increased and
made to approach infinity is a rigorous, but trivial, solution because it is
valid only for an infinitely thin shell. Evidently the stress under which
an infinitely thin shell can be in equilibrium after buckling is infinitely

small.

% ,
Another possibility is a finite wave length in the circumferential
direction and an infinite wave length in the axial direction.

~ 38 -

——

*t e e e o e e - g g v e+ ve————

"
— ) w - 3 . e - - > -
A e - e . e - A
S

[V X S SRS RO, S

_ e . .

1




The solution of bhis puzzle(was présentedAin g follow-up report
b& Maﬁséﬂ andzﬁoff (1965a). For a given cylindrical shell, that is for
a prescribed vaiue of a[h ,. T cannot assume a value smaller than
ha/h . Hente minimizétidﬁ with respect to 1 means a differentiation A
of the total pétential energy with respect to 1 , setting the resulting
exﬁression equal to zero, and solving for 1 , provided that a value
equal to or greater than ha/h is obtained by this procedure (and pro-
vided ;ﬁat the inaccuracy connected with the replacement of the integral
values of N with a continuous function is considered admissible). If
the value obtained for 17 is less than bha/h , it has to be replaced
by ka/h . In this menner a lower bound exists for 7 and the minimal

value of the postbuckling stress is greater than zero.

In another extension of the large-displacement investigations
initiated by von Kdrmdn and Tsien in l9hl, the behavior of initially
slightly inaccurate circular cylindrical shells was studied (see Fig.ll).
The importance of initial deviations from the exact shape had been
recognized much earlier as it had already been studied by Flﬁgge in
1932 and by Donnell in 1934, But in 1950, Donnell and Wan greatly
altered the procedure followed by Donnell sixteen years earlier and
developed a new method of calculation which was to be copied by several
other investigators. Through a rather complex reasoning, and on the
basis of his broad experience in engineering, Donnell came to the con-
clusion that the most dangerous initial deviations of the middle surface
of a circular cylindrical shell from the exact shape could be represented

by the equation
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aa/n = (UAD) 1t P10 /®) 20,y = U AT ORRR) 2oryR) (u)

where U 1is the unevenness parameter and f(x*,y*) the function given
in Eg.(37). The additional radial displacements caused by the load were
represented in the same form and were multiplied by an amplification
factor. The compatibility equation (38) was solved rigorously for the

stress function F . The expressions for w:ot and F  were then sub-

‘stituted in the expressions for the total potential energy and the

expression s» obtained was minimized with respect to the amplifiéation

factor and A A

oo 2 Bgp s M and n ,

This implies that the shape of the displacements g&used by the
loads was taken to be the same as the shape of the inifial devistions.
This is 6bviously a restriction on ihe generality of the solution, but
in view of the difficulties inherent in any solution of the governing
equationé_it_;s a Justifiable one. If thg minimization had been\carried
out only with respect to the amplification factor, the result could be

accepted as a usable approximation. Unfortunately, the total potential

'energy was also minimized with respect to the parameters defining the

shape of initial deviations. This means that the system whose total
potential energy was minimized was not defined at ali;'but changed its

initial shape during minimization. A correct and complete analysis

sheul’ define the Iniviad shape by corns o the coefficients Ail s

%go s Agg and phe additional displacements by means of the coefficients

Az;'j A;O , Aé2 . The minimization should then be carried out with
respect to Ail s A;O and Aée , and not with respect to the coefficients
o] o] o]

All , A20 and A02 .
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The same error can be found in a number of publications based cn
the paper by Donnell and Wan; they sre the articles by Loo (195L4), Lee

(1962) and Scbey (196kb).

The error was avoided by Madsen and Hoff who used a two-term
expression to define the shaie of initial deviations and a three-term
expression for the ajditional displacements (Madsen et al. 1965a). The
minimization was carried cut with respect to the three coefficients of

the additional displacements and the results are shown in Fig. 11.

It is evident from this figure that small initial deéiations from
the exact cylindrical shape have a large effect upon the maximum load
carried by the compressed shell; and it is worth noting that this maximum
load is the only quantity that can be observed directly in a compression
test. TFor instance, an initial amplitude of the nonsymmetric :deviations
amounting to. one-tenth of the wall thickness coupled with an amplitude
of the axisymmetric deviations amounting to one-fortieth of the wall
thickness reduces the maximum load to 60 percent of the classical value

calculated for the pérfect shell.

A more complete calculation by Almroth (1965b, 1966) resulted in

somewhat lower maximal values of the stress.

All the soluticns of the large-displacement equations quoted assume
that the shell is very long end that its surface is completely covered
with uniform bulges after it has buckled. Yet Fig. 4 clearly shows that
in the laboratory shells buckle only over a small area and that the
remainder of their surface remains smooth. This fact was already mentioned

by Yoshimura (1951). The localized buckle puttern was introduced into an
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energy $clﬁtion of the 1arge~displacem§n£ equations by Uemurs, a former
co6llaborator: of Yoshimura, while he was wprking‘bp1a researcﬁ projeét
at Stanford Univérsity. His soiﬁtion~(Uemura 1963, 196U4) indicates a
tendency on the part of the shell to prefer locéal buckles to uniformly
distributed ones, but the resulbts are hot really conclusive because of
the comparatively small nunber of terms retained in the seriesarepre-

senting the radial displacements.

This chapter would be incomplete without mention of the efforts
made to check whether the von Kérmin-Donnell equations are sufficiently
7éccurate for an analysis of the postbuckling behavior of thin-walled
circular cylindrical shells. On the one hand it is easy to show that
the Donnell expressions for the membrane strain are completely inadeguate
to represent the inextensional deformations of the Yoshimura pattern
when there are 5 to 10 triangles around the circumference of the shell
(Hoff et al. 1965a), and on the other the curvature expressions become
Inaccurate and the stresses can exceed the yield stress of' the material
when the computations are carried out with the retention of more and
more terms of the infinite series for a prescribed value of the a/h
ratio. The latter two observations were made by Mayers and Rehfield

in a report published in 196k.

Moreover the tremendous effort made by many investigators in the
last 25 years has resulted only in a reduction of the value of the
coefficient k in the buckling stress formula o = kE(h/a) , but
the value of k has remsined a constant, independent of the a/h ratio.
Experiments show, however, that k can be as low as 0.3 when a/h is
100, and 0.06 when a/h is 3000.
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It was desirable therefore to investigate the effect upon k of
the use of equations more accurate than the von Kérmin-Donnell equations.
‘This was dohe by Mayers and Rehfield in the paper ciﬁed; they found,
however, that the dependence of k on the a/h ratio is negligibly
small. The same conclusion was drawﬁ-by Tsao (1965) and by Madsen and
Hoff (1965). Unfortunately, the calculations of the fofmér were shown
to be unreliable by Mayers and Rehfield. In the Madsen-Hoff article perfectly
rigorous membrane strain expressions and almost perfectly rigorous cur-
vature expressions were developed for arbitrarily large displacements and
for strains that are small compared to unity. The calculations involved
the minimization of a total potential enery; expression containing more

than 12,000 terms,

The perplexing conclusion must be drawn therefore that even though
displacement patterns can easily be devised for which the Donnell strain-
d*splacement and curvature-displacement relations are grossly inadequate,
and although these relations form the basis of the von Kdrmdn-Donnell
large-displacement equations, repiacement of these equations by more
accurate ones does not change noticeably the equilibrium states obtain-
able from the equations. The explanation of the paradox is probably
that the procedures used to solve the equations always lead to displace-
ment patterns involving so many waves around the circumference that the

shell can be considered a shallow one.
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THE EFFECT OF PREBUCKLING DEFORMATIONS

It has already been mentioned that in his fundamentél paper of ;
1932 6on the buckling of cylindrical shells, Fliigge investigated the
effect on the buckling load of deformations that occur during the loading
of the shell before it buckles. These deformations arise because of the
tendency of the compreésed shell to expand uniformly, and because of the
restriction of this expansion at the supports. Fliigge's study indicated ]
that because of the prebuckling deformations the yield stress of the
material is reached in the shell slightly before the critical Vvalue of
the stress is reached even though the critical stress is well within the

elastic limit of the material.

Recently ‘the problem was attacked again by two investigators who
worked almost simultaneously and euntirely independently, without knowledge .
of each other's work: 3But in this new research the full power of the
electronic digital computer was used to obtain the results. In the
United States the veteran investigator Manuel Stein (1962, 1964) and in
Cermany the young research man G, Fischer (1963) solved first the rela-
tively simple axisymmetric problem of the prebuckling deformations. Next
extensive computer programs were develez<d for the solution of the lin-
earized stability problem of the deformed and still axisymmetric, but no

longer cylindrical shell.

When the results were finally compared, surprisingly Fischer's
buckling stress was found to be about twice as high as that obtained by

Stein. The former showed buckling at about 82 percent of the classical
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eritical stress while the latter's shélls buckled at stresses amounting
to 42 to 48 percent of the classical critical value. The Aiscrepancy was -
explained when the~nawxsolutions~of.the clagsical linear equations obtained

by Ohira and Hoff, described at the beginning of this paper, became known. {f

In his analysis Fischer used the boundary conditions designated by the .

code symbol SS3, and Stein thase denoted 552 (see Egs.(32)).

A fipal comparison of the two solutions was made by Almroth {1965b)
who studied eight sets of boundary conditions, nsmely those indicated by
the present author by the symbols SS1 to SSh, -and RF1 to RF4. He éon-
firmed Stein's and Fischer's solutions and concluded that the effect upon .

the buckling stress of the boundary conditions was large, and that of the

prebuckling deformations was small.

- .i..“«upuu-t“
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THE KOITER THEORY

?robably the eésiest way to acquire an understanding of the funda-
mental idea of the Koiter théory is to wprk‘out‘an example in some detail,
ard for the example the non-linear model of a shell anslyzed recently by

the author (Hoff 1965a) may well be chosen. The model (Fig. 12) consists

of two pinsgpinted bars whose common end point is supported laterally by

'3£ a8 non:linear spring, and whose far ends are under the action of equal
:}% -
; and opposite forées. P . In the original paper the bars were elagtic

) % and Ewo Iinear springs attached to their far ends represented the elas-

tigity:of the testing machine. Since the effect of these features of
the model on the buckling phenomenon is small, they are omitted from the

% present analysis in order to save space and effort.
The spring force S 1is characterized by the equation
S = QKf(O (k5)
where the non-dimensional displacement ¢ is defined as
¢t = /b= (y/n) - (e/h) (46)

and e and h are the eccentricity of the system and the initial
vertical component of the length of each bar. In the original publication

the spring characteristic was defined as

S = lOOq3 - 200n2 + 1057 (u7)

A graph of this relationship is shown in Fig. 13. 1In the present paper

the quantities appearing in Eq.(k5) are defined as

-
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K=5251b : k= 10 in.
£(e) = o’ ratf et | (48)

a5 = (100/105)100 a, = - (200/105)10

2

It is useful now to study the equilibrium and the stability of the
system with the aid of énergy considerations. The strain energy W
stored in the non-linear spring when it is displaced a distance ¢h
to the right is

d
W = 2hk f £(g)ag (49)

o

where § is a dummy variable representing the instantaneous value of

{ .. The potential V of the external loads being
= - 2Pu (50)

where u 1is the axial displacement of the ends of the bars, the total

potential energy U 1is

W€
U= 2th f(e)de - 2Pu (51)
(o]

From the geometry of the system (Fig. 12) it follows that

1/2 , 1/2
u~h - [ no4ely? ,/ = h{} -1 +82 - (¢+9)7] / } (52)
where
&= e/h (53) ]
- 47 -
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Substitution in Eq..(51) yields

B T SO P At
; U=2nKy/ f(e)ae - ;{1 -.[:}+s8 - (L+3) 1 {54)
g with
i
“ x = P/K (55)
-
i First the system without eccentricity, the so-called perfect system,
£
' é will be examined. TFor such a system
* U = 2hk £{g)as -Al1 - (1-¢7) ‘}= 0 (56)
Y o)
since
f
; e=0=5 (56a)
In agreement with the principle of virtual displacements the first
variation of the total potential energy must vanish for .equilibrium.
The variation must be carried out with respect to the only independent
displacement quantity ¢ . One obtains
5 -1/2
U = (au/ag)st = 2nK|f(L) - AG(1-t7) |8t = O (57)
This equation has two kinds of solutions. Since f(0) = O , evidently
one solution is
« {=0 (58)
This means that the system is in equilibrium in its fundamental state,
the initial straight-line configuration, whatever the value of the load
factor N\ .
» - 48 -
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In addition, equilibrium is possible for certain combinations of

load and displaceément characterized by

| PRI . |
re (1/0)(-t7)  £(t)  wvhen 1 #40 (59)
This equation defines a buckled state adjacent to the fundamental state
which will be called the adjacent state.
The stability of the fundamental state depends upon the sign of the

secornd derivative of the total potential energy: From Eq.(57) one

obtains:

: -3/2
(8°u/at?) = ehx[f"(g) - A (1-7) ] (60

But for the fundamental state € = O ; hence

(aeu/‘g‘?)\t:o = 2nk{£'(0) - 1) (61)

From Eq.(48) evidently
£1(0) = 1 (62)

Consequently the fundamental state is stable when X < 1 and unstable

when A > 1 ., The critical point is characterized by

Nep = 1 that is P = 525 1b (63)

The critical point is a bifurcation point, or branching point, where
equilibrium configurations adjacent to the fundamental configuration
appear for the first time in the loading process. The brancning point

is labeled Q in Fig. 1k.

Koiter was the first to call attention to the importance of the
stability of the system in the branching point itself. There the second
derivative of the total potential energy is zero and thus stability

..)_1,9..
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<idepends/on the derivatives of higher order. From Eq.(60) the third

derivative is easily obtained:

» z T , A '5/2
(‘dsu/d';°) = amc[r%;)_-. Aa(1-t%) ] (6k)

Since in the branching point { =0 and A= 1, the expréssion becomes

(a%u/at’) t=0 = 2nke"(0) ‘ (65)
=1

From Eq. (48) one calculates

£7(0) = 22, = - 4000/105 = - 38 (66)
Thus
(a%/at) g = - T61K £ 0 (67)
=l

When the second derivative of the total potential energy vanishes
and at the same time the third derivative is not zero, the system is
unstable (see, for instance, Hoff 1956). Evidently in such a case the
equilibrium corresponds to a minimax, and the total potential energy
decreases during a small positive excursion if it increases Auring a
small negative excursion, and vice versa. Koiter has shown that under
such conditions the system is very sensitive Lo small initial deviations

from the perfect shape.

This sensitivity can be checked if the imperfect system is
investigated. The total potential energy is given by Eq. (54); its

first derivative is

- 50 -
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wﬁ;—am{@);&p&@ﬁav g&{]/} (68)

With a non-vanishing eccentricity e = h& the above expression of the

principle of virtusl ddisplacements has only one solution:

' /2
n= (8) et [1e 65 - <;+a)22f/ (69)

The second derivative of U is

. +~3/2 ’ :
2 g )
) U/dga = zhng'(g)-x(1+52)E§-+52- (g+5)2:} (70)
For sufficiently small absclute values of & and A this expression
is certainly positive; hence the load-displacement curve defined by
Eq.(69) is stable when the load is small. The stability vanishes when
the second derivative becomes zero, .Subs&itution of the expression for

x from Eq. (69} and equation to zero of the second derivative result in

-1
£1(2) - (1487) (148) 1487 - (148)7] 2(¢) = 0 (71)

When ¢ and © are sufficiently small, this simplifies to
£1(¢) - (t+8) e (k) = 0 (72)

In view of the graph of S = 2Kf({) shown in Fig. 13 this equation
has no real solution when & and { are negative. The curves repre-
senting the displacements of a system whose eccentricity is negative
are stable everywhere. A critical point can exist, however, when B
and { are positive, but this criticel point is not a branching point

but & limit point, that is a maximum of the load-displacement curve.

The curves shown in Fig. 14 indicate that the maximum of the load
reached by a slightly imperfect system can be much lower than the
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.claSSicaiicﬁitica} iqé&ﬂéf ﬁieiperfééékéyéteﬁ; ?big:iSnaiWQyé'thé case
whén the branching point of the pérfect-System.épqint -Q in Fig. 1) is

unstable.

Thg'qpp0§ite is true wihen the~brahching point of the perfect system
is $tabl§, as wil% now be ‘shown. Let us attach a Sééopd~spring‘t0‘the
joint Of the system shown in Fig. 12, but in the opposite direction.

The horizontal force §' provided by the second spring will then be

St = 1ooq3 * 200n2'+'105n | (73)

To maintain unchanged the classical critical load; the dimensions
of 'the springs will be reduced until -each provides only one-half the
forece it did before. ' The combination of the two springs will now be

characterized by

" = (1/2)(8+8%) = 100n° + 1057 (7%)

and in Egs.(48) tlie only change to be made is to write

£(2) = agt> + ¢ (75)

The total polential energy expression of Eq.(56) and bhe expressions
for the derivatives given in Egs.(57), (60) and (64) remain unchanged.
Again, the bifurcation of the equilibrium states occurs at P = 525 1b
and the fundamental state is stable below, and unstable above this value.

But the second derivative of f£({) is different:

£(¢) = 6¢ (76)

In the fundamental state this obviously vanishes. Hencé in the branching
point
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A=l ’ ‘ - » = 5

(@0/at) =0

Theqstability‘df the 'system: in the branching ﬁgint.ﬁdg'depends on the.

sign of the fourth derivative of the total potentigl -energy. From ‘ : J}

Eq.(64): one obtains . » : - ‘ é:
o1 f o “1/2° e o

d'vjag = ehx[,f"' (1) - (1) (2-8) ] (78) B

At the critical point this ‘becomes
(a*u/athy, = 2rk [T (0) - 3] : -~ (19)
b §=O - ; A b - px
A1
But from Eqs.(48) and (75)
£ (1) = 6a, =600(100/105) (8) .

It can be concluded therefore that in the branching point the fourth
derivative::of the total potential energy is positive, and thus the

equilibrium of the branching point is stable,

The equilibrium states were also investigated in the presence .of
small initial eccentricities and the curves representing the behavior
of the system are shown in Fig. 15. It can be seeén from the figure
that imperfections have no significant effect upon the load the system

can carry.

. Figure 15 is representative of the behavior of a flat rectangular
plate compressed in its: plane with its edges simply supported. After
buckling the load can be increased further and small devietions from

flatness have little effect on the load-carrying capacity .of the plate.
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Figure ibﬁis~éhéfé¢téiisti¢'bf’the ﬁghavior of an ‘axially compressed

thiﬁ-wﬁlléﬁféirdqlér cylindrical shell, The maximum load, it can: carry
is greatly affeéted by small deviations from.the=eXact:cylindriqai~shapé

and the load drops suddenly when the critical value of the imperfect

system is reached in %heftéstids’machin§»~

‘The connection between postbuckling behavior and the.étéﬁiiityfdf

the system was explored in detail for such complex sSysteéms as shells;

.and criteria for determining the stability of thg‘b;ahching~pqint were

estéblished rigorously in a dbcﬁofal dissertation written by Koiter in

1945, Unfortunately; the dissertation was published in thé Dutch

language and for a long time it &id not receive the attention it merited.

A concise presentation of the principles involved was made by Koiter at
the Symposium on Non-Linear Problems in Madison, Wisconsin, in 1963 and
the prlnting,qt the paper in the Pnoqeedlngs‘of the,symppsium has con-

tributed .greatly to.the recognition of ‘the importance :of the theory in

the analysis -of structural stability. A thifdnpublication by the same

author (Koiter 1963*) contains a rigorous solution for the imperfect

circular cylindrical shell.

It follows from-Koiter's .general theory that the ratioc p of the

maximum stress of the imperfect shell to the classical eritical stress

of the perfect shell is given by the equation

oy = [H/27(1-v )] ® (102 (81)

if the imperfections are axially symmetric and . 1is the ratio of the

amplitude of the sinusoidal initial deviations from the exact circular
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- cylindrical shape and the wall thickness. Introductioh.of the neéw

:symbols

Zz =1 - P / . )

. Ji/2 )
Y Y e : Ay

¢ = [27(1v7)/] v 22484 ‘ (82)

permits the writing of the solution of Eq.(81) in the form
%1 " %r oy e 2 s a2 ~
2= 2t o - (cf2) +C 1L+ (c/h)) o (83)
: el | |

When C/4 << 1, this is equivalent to.

7 = cl/ 2. (1/2)c + (~1;/8)c3/ 2 4. . (84).

In an earlier paper (Madsen et al. 1965a) it was proposed that in
a first épprokimation the inital deviation amplitude should be assumed
to be proportionéal to the radius Of the shell. Since ¢ is this
-anpaitude divided by the wall thickness. h ., one can.write

v = K*(a/h) (85)
The formulas given lead to reasonable agreement with experimental data,
as was indicated by the author in his lecture at the Seventh International
Aeronautics Congress in Paris (Hoff l965b), if the value .of K* is
chosen as Zl.O.,4 « If one wants to obtain a formula valid for less care-
fully manufactured specimens he ‘may choose

% -u‘

K* = 4x20 (86).
Substitutions yield

-3
C = 107"(a/h) (87)
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ffhé Koiter théory hds. recently been taken ip by investigators at
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J. M. P. Thompson (Thompson 1961, 1963, 196%)* and in the latter by
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* Part of Thompson's work was carried out at Stanford University.
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‘EXPERIMENTAL VERIFICATION

The development of the theory hes -always goné hand in hand with
increasingly éaréful;experimentétich. ‘No details willrbergiven here of
-experiments conducted to. determine: the buckling stresses.of circular
cylindrical shells. It may be ggntiéﬁéq, however, that the derivation
'Qf'tﬁé_glassic;l bgckliﬁg‘sﬁress formula was preceded by Lilly's experi-
ments in. 1908, and that the revival of interest iQ'bngIingAthébries in.
the thirties was paralleled by fhe experimental»wq?k of Robertson (1928,
1929), Fliigge (1932), Wilson and ‘Newmark (1933);iLundquist:(1933),

Donnell (1934) and Kenemitsu and Nojima (1939).

In the more recent past largebscaié experiments. were carried oﬁt
with specimens of large a/h ratios by Harris, Suer, Skene and Benjamin
in 1957 and by Weingarten, Morgan and -Seide in 1965. vThielemann (1960,

| 1962) also made a large humber of tests at the time whén: he worked out
his theory of the buckling of Qrthétropic circular cylindrical shells.

The fact that tests in very rigid and in very elastic testing
machincs lcad to the same buckling stress, and that consequently the
Tsien criterion must be ccisidered invalid, has been confirmed for
circulaer cylindrical shells by Horton, Johnson and Hoff in 1961 and by
Almroth, Holmes -and Brush in.1964. The same proof was brough recently-

for complete spherical shells by Carlson, Sendelbeck and Hoff (1965).

The sensitivity of axially compressed circular cylindrical shells
to small initial deviations from the exact shape was demonstrated by

Babcock and Sechler (1962, 1963) when they tested a series of very
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L‘ accurately fabricated shell speciﬁens with built in and. careful& measured
- deviatlons. The manufacturing pronedure used in these invpstigatlons had
:: originally been 1ntroduced by ‘Thompson in 1960 who- had produced &hin

- spheres by the electroplating method. With theﬁbest specimens of this
. 1:

5 kind Babcock and Sechler reached 76 percent of the classical cr1t1c31

. =stré§s?wpen_th§ :g/h’ ratio,wgs=890; mng“values of p= qcr/dcl

obtained by Almroth, Holmes and Brush ranged from 0.43 o 0.73. Even
‘higher values, up £6 0.9, were reported by Temnyson (1963, 1964) when

the afh:3ratio Qf,speciﬁeﬁs'madéw¢f'a photoelastic material was tetween

100" and* 170..
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PABLE. 1

CHRONOLOGY OF SOLUTTONS OF SMALL-DISPLACEMENT EQUATIONS

Author
Lorenz

Timoshenko

Lorenz
‘Southwell

Timoshenko

‘Flﬁgge

‘Hoff

5hira

cte
1908
1910:

1911
191k
191k

1932
1961
1961

Nachbar & Hoff 1961,1962

Ohira

1963,1964

Hoff & Rehfield 196k,1965-

‘Hoff

Hoff & Soong
Thielemann &
Esslinger
Ohira

Ohira

Almroth

1964,1965

1964 ,1965
1964

1964 ,1966( 2)

1965,1966(?)

1965,1966(?)

‘Description Of ‘Work
Axisymmetric buckling stress (approximate)

Classical formula for axisymmetric buckling
stress ;

Buckling stress in genergl’caSex(gpproximatéy"

Buckling stress in genéral case

Buékling stress in genérsl case (classical
formula?) B ‘

More gereral derivdtion of buckling stress
-and exploration of reasons for -disagreenent
with experiment Y
‘Closed-form solution of axisymmetric buckling
of semi-infinite .shell with free edge; p=0.5

Digital computer solution .of general buckling
of semi-infinite shells with simply supported
edge; p = 0.5

Closed-form.-solution of general buckling of
semi-infinite shell with free edge; . =0.38

Digital computer 'solution of general buckling
of semi-infinite shell with various edge
conditions

Closed-form solution of general buckling of
semi-infinite shell with simply supported edge
Closed-form solution of general buckling of
finite shell with simply Supported'edges

Digital computer solutions. of general buckling

of finite shells with various boundary ¢onditions

Digital computer solution .of general buckling
of finite shells with or without reinforcement

Digital computer solution of general buckling
of finite shell with simply supported edges

Digital computer solution of general buckling
of finite shell with dissimilar edge condition

Digital computer solution of general buckling
of finite shells with elastic edge constraint
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Chessboard Type of Buckling.
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FIG. 4.

Photograph of Thin-Walled Shell after Buckling.

(courtesy of W. H. Horton)
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