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4 SUMMHY

The, development of 6ur knowledge of the -,buckling of thin-walled

circular cylindrical shells subjected to axial compression is outlined'

from the beginning -of the century until the present, with particular

emphasis on advances made in the last twenty-five years. It is shown

that practical shells generally buckle under stresses much smaller than

the classical critical value derivedby Lorenz, Timoshenko, Southwell

and FlUgge. A first explanation of the reasons for the discrepancy was

ri given by Donnell and the problem was explored in detail by von Krmn,,

Tsien and their collaborators. More recently. Yoshimura discovered the

existence of an Inextehsional displacement pattern which the wall of

-i the shell can suddenly assume, and :Koiter found an explanation of the

sensitivity of the buckling stress to small initial deviations from the

exact circular cylindrical shape.

In the last few years further interesting discoveries were made

in Japan and in California regarding the effects of details of the

boundary conditions, and many additional numerical results were obtained

with the aid of high-speed electronic digital computers. Improvements

*in experimental techniques have also contributed significantly to a

clarification of the problem and to an establishment of the unavoidable

deviations from the exact shape as the major causes of the large differ-

ences between theory and experiment.
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INTRODUCTION.

Theodore yon- K~r~mn, in whose memory this lecture is being pre-

sented., is best ,known for his work in aerodynamics. Nevertheless it

is appropriate to speak about structures in a von ,Karman Memorial

Lecture because few. if any, research men have contributed as much as

did von K~rnn to the solution- of problems of structural stability.

His doctoral thesis (von, Kgrman 1908, 1910a) , is the foundation of the

theory of buckling at stresses exceeding the elastic limit of the

material. It shows that the buckling load of a short &olumn can be

calculated from a modified Euler formula in which Young's modulus of

elasticity is replaced by a combination of the tangent modulus and

Young's modulus, generally known as the von Kgrm~n modulus. In spite.

of some recent attempts to replace the von KSrm'n buckling load with

the tangent-modulus load, it is now perfectly clear (Hoff 1965d) that

the von KSrman load is, and will always be, the correct and the only

solution of the buckling problem of short columns in the classical,

or Eulerian, sense.

An equally Important, and even more original, contribution of the

man whom we honor today is the explanation of the snap-through type of

buckling of thin shells subjected to compression. In a series of papers

von Karman et al. 1939, 1940, 1941) he an his collaborators proved the

ex.stence of equilibrium states corresponding to large deformations of

the compressed- shell. These states are responsible for the low experi-

mencal values obtained and for the perplexing behavior of the shell

P' when it buckles. These topics will be discussed at some length in the

body of the paper.
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But it would be foolish to trf to assess the importance of von

K~rM'nJa's work on the basis of his published contributions to aerodynamics

and structural stability. The ill original papers reprinted on the 1838

pages of his Collected Works (von KSrm~n 1956) deal also with stress

analysis,, plasticity, hydrodynamics, flight mechanics, jet and rocket

propulsion, combustion, physics, mathematics, and airplane, missile and

machine design. They were written in four languages, English, German,

French and Hungarian. The mother tongues of Dr. von Karman's friends,

collaborators and students are even more numerous, and the influence of

von Orman on mechanics, aeronautics and astronautics will always be

felt in all the countries 'of the world.
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THE DEVELOPNT OF THE CLASSICAL BUCKLING FORMULA

Axisymmetric Buckling

The classical buckling formula is usually written in the form

cl E (l"2/ E(h/a) - o.6E(h/a) (1)

where a is the critical value of the uniform axial stress, E is

Young's modulus of elasticity, v Poisson's ratio, h the thickness

of the wall of the circular cylindrical shell, and a the radius of

the middle surface of the shell. Essentially this expression was

derived by Rudolf Lorenz, a civil engineer in Dortmund. Germany, in

1908. Starting out from the expressions in volume 5 of Fbppl's Tech-

nische Mechanik (F~ppl 1898), Lorenz developed the equations governing

the axisymmetric deformations of initially slightly inaccurate thin-

walled circular cylindrical shells subjected to uniform axial compression.

For simply supported circular edges he represented both the initial

deviations from the exact shape and the additional displacements due to

the load by Fourier sine series and obtained the critical value of the

stress as the one at which the denominator of one of the particular

solutions vanished, thus implying an increase of the deformations beyond

all bounds. He also found a good approximation to the correct expression

for the wave length X :

-1/4X = VE12 (1-v2)_l (ah) 1/2 - 1.72(ah).,"/ 2  (2)

Since this wave length is small for thin-walled shells, and since

a small change in the relatively large number of waves in the axial

direction changes but slightly the buckling stress, Eqs.(1) and (2) can



be assumed to represent with engineering accuracy the buckling stress

and the wave length of moderately long shells. The-expressions become

rigorously correct in the limit when the length L* increases indefi;

nitely, but, of course, very long shells can buckle as Euler columns,

without any bulges or waves developing in the shell wall.

Lorenz' formulas can be obtained from the two equations given here

by setting Poisson's ratio equal to zero. Thus his buckling stress was

too low by 5 percent. and his wave length was too short by 2 percent.

The correct formulas were first given in a Western European language by

Timoshenko in 1910, although they were probably published earlier in

Russian. In his Zeitschrift fUr Mathematik undPhysik article the

buckling stress is derived once by the energy method, and a second time

through solution of an eigenvalue problem defined by a fourth-order

ordinary differential equation and suitable boundary conditions. and

identical results are obtained by the two approaches.

Chessboard Type of Buckling

The general case of buckling, without the restriction to axially

symmetric deformations, was first tackled by Rudolf Lorenz in 1911. He

started out from Love's so-called first approximation shell theory and

assumed that the displacements in the axial direction, designated as

the u* displacements (see Fig. I), were negligibly small. He arrived

at a sixth-order partial differential equation which he solved in the

-presence of the following boundary conditions:

V*= w* = Mx = 0 when x* 0,L* (3)
x
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Here v* and w* are the displacements in the circumferential and

radial directions, M is the axialbending moment resultant,, x* thex II

axial coordinate, and L* the length of' the shell. He also established

that the inclusion of the u* displacement in the theory would yield an

eighth-order differential equation whose solution would not differ

appreciably from that of the sixth-order equation.

The numerical results of the calculations were presented in graph-

ical form. They are in good agreement with values computed from Eq.(1).

A rather complete treatment of the problem of elastic stability was

givenby Southwell in 1914. Starting from Love's theory of thin shells,

he derived and solved the equations defining the neutral equilibrium of

a thin circular cylindrical shell subjected to simultaneous axial com-

pression and lateral pressure. The same problem was treated again by

Fligge in 1932 without reference to Love's theory. It follows from

both treatises that Eqs.(l) and (2) define the buckling stress of the

axially compressed shell of moderate length in good approximation, and

that of the infinitely long shell accurately, provided that buckling

takes place symmetrically to the axis (see Fig, 2). When buckling is

of the chessboard type (Fig. 3), Eq.(l) is still correct with the

limitations given, but Eq.(2) is replaced by a condition connecting

the axial wave length with the circumferential wave length. The wave

lengths are thus indeterminate; all that can be said is that knowledge

of one wave length allows the calculation of the other.

These conclusions, and a comparison of the theory with test results,

can be found in Timoshenko's Theory of Elastic Stability (Timoshenko 1936).

The validity of Eq.(l) in the case of the chessboard type of buckling was

probably first established by Timoshenko in 19.14.

-5- -------------------------------- :



CRITICISM OF THE -CLASSICAL RESULTS

Buckling Patterns

Figures 2 and 3 represent the two- classical buckling patterns

derived from the linear theory. The foi mer can be observed easily if

tests are made with tubes of comparatively small a/h ratio, ,say 30,

and if the material of the tube is capable of large plastic deformati6ns,

which is the case, for instance, with mild steel. The deformations shown

in Fig. 2 are permanent; the pattern cannot be observed when the defor,

mations are entirely elastic. But the theory of -buckling presented

assumes perfect elasticity of the material which constitutes an incon-

sistency not easy to resolve.

The situation is even worse with the chessboard pattern shown in

Fig. 3. It is the reproduction of a drawingand not a photograph of an

actual test specimen, as is Fig, 2. The reason for not showing a photo-

graph is that the pattern, although clearly defined by the solution of

the equations governing buckling, has never been observed in actual

experiment. The shape of a thin-walled perfectly elastic specimen after

buckling can be seen in the photograph of Fig. 4. As this differs con-

siderably from the former two patterns, the conclusion must be reached

that the agreement between buckled shapes predicted by theory and those

observed in experiment is very poor.

The Work of Fliigge

In his classical Habilitationsschrift, that is formal lecture pre-

sented when he was appointed Privatdozent* in Gbttingen, Flgge (1932)

* Adjunct Professor

----- -----



compared the results of his analysis with data, on _xPeriments described

in the technical literature. As he was unable to find test results ot

axially compressed ,shells, he" manufactured and tested, a number of rubber

and celluloid cylinders in the Institute for Applied Mechanics in the

University of -Gttingen. The length-to-radius ratio of the specimens

varied between 1.76 and 5, and their radius-to-wall thickness ratio from

90 to i38. Al-l the specimens buckled 'elastically, and the ratio of the

experimental buckling stress to the buckling stress according to Eq. (1)

ranged: from -0.52 to -0-65 for the celluloid cylinders.

To explore the possible causes of this discxepancy, Fiugge studied

carefully the boundary conditions and the effects of small initial

deviations from the exact shape. In the classical approach the stability

of the equilibrium is examined when a perfectly cylindrical shell is under

the effect of a uniformly distributed axial compressive stress a . But

if the simple support boundary conditions exist at the moment of buckling,

they must have been in existence during the entire loading process during

which the average axial stress was brought from zero to its value a .

'Now it is well known that the shortening of the shell L*a/E is accom-

panied by an increase, in the radius amounting to vaa/E , and evidently

this increase is prevented by the simple support provided in the two end

sections of the shell. Under an axial compressive stress a the shell

must therefore have the shape shown in Fig. 5 before it buckles.

In his investigation, Fl~gge solved the sixth-order ordinary differ-

entlal equation defining the axially symmetric deformations of a shell

whose end sections are prevented from expanding during the loading process.

-7-
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He found that at the beginning of the loading the major portion of the

shell is cylindrical, and the meridian is slightly curved only. near the

supports. -As the intensity of loading approaches the critical value,

the curved reg-ion extends toward tne middle of the cylinder, several

waves appear along the meridian, and the amplitudes of the waves, increase

uhtil they become infinitely large at the classical critical value of

the coipressive stress, Considerably below this value- however, the

stresses at the crests of the waves can be large enough to cause perma-

nent deformtions even though the average stress ar is below the

elastic limit of the material.

Similarly, FlUgge showed that a small initial deviation from the

exact shape in the form of a sine function of the axial coordinate

multiplied by a sine function of the circumferential coordinate is

increased during loadingand tends to infinitely large values as the

classical critical stresz ic approached. From this fact again large

stresses and inelastic deformations follow below the critical load.

Since FlUgge's experimental buckling loads differed relatively

little from the theoretical critical loads, the two studies just sketched

appeared to suffice for an explanation of the discrepancy. But in exper-

iments carried out in connection with the rapid development of thin-

walled aluminum alloy airplane structures in the early nineteen thirties

shells having radius-to-thickness ratios up to 1500 were tested (Lundquist

1933, Donnell 1934). As these specimens often failed at stresses as low

as 15 percent of the classical theoretical value, FlIgge's explanation

of the causes of the disagreement was no longer sufficient.

-8-



NEW SOLUTIONS 'OF THE CLASSICAL EQUATIONS

The Semi-infinite Shell with,a Free Edge

In 1959 the present author read a paper by Nachbar in which the o0

effect of pressurization upon the influence coefficients of rotationally

symmetric shells was evaluatd,. When applied to the spherical shell of

not too small solid angle Ve at the edge, the result was that the

influence coefficients kij , that is the generalized edge displacements

caused by unit-edge stress resultants, could be expressed as

ki ki 4x +7 if i =j (4a)

k k 1 if j (4b)
ij ijo 2x +1

In these equations kij is an influence coefficient in the presence of

pressurization, and k.. the same influence coefficient when the shellijo

is not pressurized. The symbol x was defined in the Nomenclature as

the pressurization parameter and was given in terms of other symbols

defined elsewhere.

Since the derivations contained no step that would invalidate the

results if the internal pressure acting upon the shell were exchanged

for an external pressure, it was reasonable to assume that x = - 1/2

would correspond to the classical buckling stress given in Eq.(l). This

equation is known to be valid for spherical shells under external pressure,

and the edge displacements can be expected to increase without bounds when
I

unit stress resultants are applied to the edge in the presence of the

9



critical stress in the shell. With x = - 1/2 naturally all the kij

of Eqs..(it) tend to inf inity.

When this conjecture was checked, it turned out that x = - 1

rather than x = 1/2; corresponded to the classical critical value of

the external pressure. This implied, of course, that the free edge .of

a spherical cap wouldbecome unstable at one-half the critical pressure

of the complete spherical shell.

Because of the nature of the governing equations, the same result

could be anticipated to hold also in the case of the thin-walled cir-

cular cylindrical shell. A.simple derivation (Hoff 1961) presented at

a symposium honoring Dr. von Kgrmn on his 80th anniversary proved

indeed that the buckling stress of a semi-infinite circular cylindrical

shell whose near edge is perfectly free to deform is one-half the classical

value. A unit length of the free edge is assumed to be subjected to a

stresb resultant a h whose magnitude and direction remain unchanged

during the buckling process (see Fig. 6) in agreement with the Eulerian

concept of buckling.

The eigenvalue problem was stated in the following form:

wIV+ (o /E)4K4w"+ 4K14w = 0 (5)

where the differentiations indicated by superscripts must be carried out

with respect to a non-dimensionalized axial coordinate x . This. and

the non-dimensionalized radial displacement w are defined by

x : x*/a w = w*/a (6)

-10-



The following donstants were, introduced in the analysis:

42 2 2 2
4K = 12(1-v )(a/h)- iL(E/a) D = Eh /2l(1-v ) (7)

The critical value ar of the uniformaxial stress a, is the onecr x

that satisfies the homogeneous boundary conditions

M =0 = w" when x = 0
'X

(8).

V = - (/a 2 )w"'= a..rhW' when x =,0

and yields bounded values for all displacements and stresses when

x - co in the solution of Eq.(5). This value was found to be

0r/acl = 1/2 (9)

for the semi-infinite shell that buckles axisymmetrically. It is perhaps

worth noting that the second of Eqs.(8) expresses the fact that a small

transverse shear force, a h sin tan lw' = hw' must act on the edgecr cr

of the shell if the direction of the applied axial compressive load

remains unchanged while the generator at the edge of the shell rotates

during buckling.

The restriction of axisymmetry in the deformations was removed in

a follow-up paper by Nachbar and Hoff (Nachbar et al. 1961, 1962) and

the critical stress of the semi-infinite shell was found to be

acr/acl = 0.38 (10)

-
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Ohira's Solution,

In hthe discussion of a lecture the author gave to the Japan Society

of Aeronautics at Meij-i 'University in Tokyo in April 1963, Hiroichi Ohira,

a young associate professor at IydshS University, disclosed that he had

obtained approximately 1/? for p for semi-infinite shells with the

near edge simply supported (Ohira 1961). He had discovered that changes

Sin the classical boundary conditions relating to displacements and stresses

in the tangent plane to the middle surface can lead to such a reduction

in the buckling stress. 0hira used a relatively complicated differential

equation and obtained solutions with the aid of a digital computer.

The Donnell Equations

It occurred to the author of the present paper that a closed-form

solution of the equations defining the buckling of thin-walled circular

cylindrical shells should be possible, and that it should yield the

same low buckling stress as that obtained by 6hira, if the latter's

solution was correct. To-check this conje.ture, he and his graduate

student Rehfield set up the problem (Hoff et al. 1964a, 1965c) with the

aid of Donnell's small displacement equations. These equations were

originally published by Donnell in 1933, when he was a research associate

in the Guggenheim Aeronautic Laboratory of the California Institute of

Technology whose director was von K4rman. The equations became popular

after Batdorf had used them extensively in the solution of a number of

stability problems, and checked their accuracy against other available

theoretical solutions and test data (Batdorf 1947). Another check of

their accuracy was presented by the author when he compared the roots

-12 -



of the characteristic equation corresponding to Donnell's equation, with

those obtainable from other shell equations available in the l-iterature

(Hoff 1955).

The Donnell equations differ from the many other equations defining

the deformations cf thin circular cylindtical shells in so far as they

are -much simpler and more symmeotric in 'their structure than most of the

others.. At the same time they are sufficientlyac- a ate in -problems: of

buckling if the number N of waves arbund the citcumference is large

enough. It is :advantageous to write the equations in a non-dimensiontal

form, as was done by the author (Hoff et al. 1954) in the absence of

prestresses in the median plane. A further simplification was proposed

by Nachbar in 1962 who normalized the coordinates and displacements for

the case of uniform ;axial prestress; For the present purposes the most

convenient form of the equations is

V4w -F - 2pw (11)

,xx x
V 4 F = - w (12)

where the normalized coordinates are defined as

x = (x*/a)(2E/a01)l/2 p= (p(2E/cl)l  (13)

and the displacements are given by

u = (u*/a)(2E/al)1/2 v = (v*/a)(2E/acl)1/2 w = (w*/ia)

(114)

In these expressions acl has the value given in Eq.(l) and p is the

ratio of the critical stress a of the present theory to the classicalor

value
-13j
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p = acr/Ic (15)
P acr/ cl

, The stress function F is implicitly defined by the following expressions

for the ebrane stresses -acccompanying buckling (that is, not including

the prestress ax = c ),:'j Ocr

c /E = :F, aE=F = - ,(16)

Finally it is noted that subscripts following a zomma indicatr differ-

entiation and the biharmonic operator V is defined as

VZ =[o(/x 4) + 2( 4 x 2 2) + /NoJ4D z (7

Derivation of the Classical Solution

It is easy to show that the solution of Eqs.(ll) and (12) is the

classical buckling stress of Eq.(l) if the classical displacement pattern

is assumed. Indeed, with

w sin mx sin no (18)

Equation (12) yields

2
F-- m 22 sin mx sin ny (19)

(m2 +n )

Substitution in Eq.(ii) leads to the condition

z + z- 2p (20)

where

2 2 (2I2
--= (m t-n ) / (21)

- 14 -
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If Z is considered a continuous variable, the condition of a minimum

of p is that the derivative of the left-hand member of Eq. (20) with

respect to Z vanishes. Thus

1 - Z 2  0 (22)

whose solution is the condition imposed on the two reduced wave numbers

k m 2+n 2 ) /n 2 1 (23i)

Finally substitution in Eq. (20) gives

p = 1 (24)

which is the classical solution.

Of course, there must be an integral number of waves around the

circumference, and an integral number of half-waves along the length of

the shell. The first condition can be written as

N = n(2E/ cl)1/2 = integer (25)

If N ts assume&, n computed, and m determined from Eq. (23), in

general, the number of half-waves in the axial direction

M* = ML*/va (26)

where

M= m(2E/jcl) 1 /2 (27)

will not be an integer. However, the value will be close enough to an

integer in an engineering approximation whenever the shell is very long.

This is the reason why Eq.(l) has been accepted generally as the buckling

formula
-15-
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In a recent paper Mann-Nachbar and Nachbar have shown that a sta-

tistical and probabilistic analysis of the solution for prescribed

nominal dimensions and prescribed manufacturing tolerances in the

dimensions leads to most probable wave numbers and buckling stresses

A that are in reasonable agreennt with experimental data (Mann-Nachbar

et al. 1965).

When the number of half-waves in the axial direction is an integer,

obviously

w=w = 0 at x* =, 0L* (28)
'1 ''xx

But from Eqs. (16)and (19) it follows that

a = C = 0 and -r 0 at x*= 0,L* (29)

This implies that w = 0 and a = 0 at x* = 0,L* and thus

v 0 at x* = OL* (30)

It can be concluded therefore that the classical solution implies that

w= W xx = ax = v = 0 at x* = 01L* (31)

Generalization of the Simple-Support Conditions

This is obviously not the only possible generalization to a cylin-

drical shell of what is usually assumed to represent simple supports

(w = w = ) for an ordinary beam. The four fundamental sets of

boundary conditions proposed by the author (Hoff et Al.. 1964a, 1965c)

for the circular cylindrical shell are:

- 16 -



SSl W='0 w -0 a =0' : 0.,xx x Xq
SS2 w=0 w -0 u=O = 0

,XXP

SS3 w=0 w =0 =O =O 0,xx x

SS4 w= 0 w =0 u-- D v 0,x

.Evidently, the SS3 condition .corresponds to the ciassical solution.

:Experiments performed in the ordinary tension-compressioh testing machine,

should be represented by cases SS2 or ss4,, depending upon the friction,

or its absence , between testing machine and test specimen.

The ,study of the effects of the boundary conditions on the buckling

stress began with the analysis of the semi-infinite shell. At the near

end of the shell, where the axial compressive lad was applied, one of

the four sets of boundary conditions given in Eqs.(32) was prescribed.

At the fir end, x * c , the displacements and stresses were required to

remain bounded.

'The so'Iution-was assumed in the form

w = epx sin no (33

Substitution in Eqs.(ll). and (12) yields eight values for p ; these

roots were first published by Nachbar in 1962. Of the eight, four roots

have positive real parts; these must be ruled out for the semi-infinite

shell because of the conditions at infinity. The remaining four provide

us with four solutions of the type shown in Eq.(33), each multiplied by

an unknown integration constant. The constants must then be determined

from that one of the four sets of boundary conditions given in Eqs.(,32)

which is prescribe6 at x = 0 . Since the conditions are homogeneous, {
- 17 -



a non-trivjal solution of the four simultaneous linear equations exists

only if the determinant f ormed of the coefficients of the unknowns

vanishes. Solutfon of this buckling, condition yields for cases. SS1

and S52

p._0.'5,+ [12(1--v,)l2l 2 (/) 34

The dots indicate terms that are of the second and of higher :powers of

t(h/a) . They must be discarded because in the derivation of the differ-

.ential equations similar terms were disregarded.,

The lowest critical stress corresponds to N = 2 as the case

N = 1 must be ruled out since it represents : rigid-body displacement

rather than an elastic deformation of the cross-section of the shell.

With N = 2 , Eq. (34) becomes.

j -0.5 + 1.21(h/a) + . . . (35)

Since h/a < 1 , the critical stress ratio is one-half in a first

approximat'on.

Unfortunately the Donnell equations are reliable only when

N2 >> 1 , as has already been mentioned. It would appear therefore

that Eqs. (34) and (35) cannot be trusted. But this is not the case,

because the actual value of N is not important for very thih-walled

shells. For instance,, when, a/h = 1000 , the assumption of N = 2

yields p = 0.50121 . The Donnell equations are already satisfactory

when N = 4 But with this value Eq.(34) gives p = 0.50484 which

is the same result for all practical purposes. The fact that the

buckling stress is insensitive to N indicates that Eq.(35') is accept-

able even though it was derived from Donnell's equations for N = 2

-''"18 -



7-775-7

This conclusion was conkirimed wheh the author and his doctoral

student T. C, Soongrecalcuiated the critical stress values on the basis

of Sanders differential equations. As Fig. 7 shows, the difference

between the results based on DQnnell's and Sanders' equationz is hardly

noticeable (Hoff et al. l964b), 965b). On the other hand, the Sanders

equations are considered to be the best first-approximation theory today

and they are certainly valid when N = 2 (Sanders 1959). The drawbdk

of Sanders' equations is that their characteristic roots cannot be given

in closed form. Thus Soong had to evaluate the critical stresses with

the aid of a digital computer.

-Shells of Finite Length

On the other hand., the author has succeeded (Hoff 1964a., 1965c) in

obtaining closed-form solutions for the buckling stresses of shells of

finite length when both circular edges are simply supported in accord-

ance with the conditions SS1. In this 'case all theeight solutions-,of

the type given in Eq.(33) must be retained, but the eight-by-eight

buckling determinant breaks up into two four-by-four determinants, one

of them defining symmetric buckling, and the other antisymmetric buckling.

Of the two types of buckling, the one whose deformations are symmetric

with-respect to the plane perpendicular to the axis and situated half-

way between the two end planes of the shell yields the lower buckling

stress. For engineering purposes the value of p can be taken as 1/2

for all values of the length L* of the shell (seeFig. 7).

On the basis of the closed-form solutions (Hoff et al. 1964a, 1965c)

and (Hoff 1964a, 1965c) as well as the digital computer solutions (Hoff 1
et al, 1964b, 1965b) it can be stated that shells of all lengths whose
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,edges are free tor tate-( w not restricted) and are free to displace

in the circuaferential direction ( v not restricted) buckle at one-

j half the classical critical value of the axial compressive stress,

except that the critical stress is even lower when the edges are entirely

free. In -the latter case P = 0.5 for axisymMetric buckling, and 0.38

for multi-lobed-buckling for the semirinfinite shelli For short shells

p can be much smaller, as can be seen from the report by Hoff and Soong

(Hoff et al. 19,6b, 1965b),,in all other cases ofboundary conditions

the minimal value of the critical stress ratio p is unity or greater.

A summary of this work was presented to the Eleventh International

Congres of Applied Mechanics (Hoff 1964b)i

A further digital computer solution of the classical equations was

published recently by Thielemann and Esslinger (Thielemann et al. 1964).

For shells of finite length they obtained buckling stresses equal to the

one given by the classical formula of Eq.(l) when the length of the shell

was equal to or greater than the natural wave length of the shell and

the boundary conditions were those designated in this paper by the code

symbols SS3 and SS4. The same results were obtained for the cases RF2,

RF3 and RF4, where the symbols RF indicate rigid end fixation and the

numerals have the same meaning as in Eqs.(32). When the length of the

shell was decreased further, the buckling stress increased. The same

effect of the length was also found to exist for shells reinforced longi-

tudinally or circumferentially.
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Recent Work by 6Ohira

The results quoted are in complete agreement with those obtained i'

by Ohira. In a redent private communication to the -author, Professor

0hira states: "I got the original idea of attempting local buckling

theory when I crushed a, number of -Coca -Cola paper cups in a do-lt

yourself laundry during the time I was staying at Purdue in 1958" .

His efforts to develop a'theory were successful and in 1961 he presented

'his first paper on the low buckling stresses of semi-infinite shells

with modified simple-support conditions (Ohira 1961). The following

year this work was enlarged (6hira 1962), and, in 1963 a detailed paper

on the subject was presented to the -Fifth InternationalSymposium on

Space Technology and Science. The solutions were calculated with the

aid of a digital computer and detailed diagrams were presented for the

SS3 and SS4 cases as well as for two cases of a free edge; in one of

these the u displacement was kept constant, as in the ordinary testing

machine, while in the second, all displacements were f re. The former,

resulted in p = 0.5 , and the latter in p = 0.38 . It is noted that

unpublished calculations carried out at Stanford University confirm the

value 0.5 for the first of the two free edge conditions. In all the

numerical work v was taken as 0.3 and a/h as 300 .

As yet unpublished reports by 6hira, whose material has already

been presented at open meetings (6hira 1964, 1965)', deal with the

buckling of shells of finite length. In particular, in the paper of

1965 the edge conditions are assumed to be more severe at one end than

at the other. The result is a satisfactory decrease in the number of

waves at buckling and in the buckling stress as the length of the shell

is increased.
- 21 L



* The: Question of 'Priority

The question f 6priority in the discovery ,of scientific information

is always an ihteresting one, although perhaps not an important one..

It appears from the preceding paragraphs that Lorenz was the first to

calculate the critical stresses of axially compressed circular cylindrical

shells for both the axisymmetric and the general cases of buckling. Of

course, his results were not quite accurate, and were later improved upon

by Timoshenko inithe case of axisymmetric buckling, and by SQuthwell and

Timoshenk0 in the general case. The classical formula of Eq.(l) was

apparently first derived by Timoshenko.

* The discovery of the existence of other solutions of the classical

equations yielding buckling stresses smaller than the classical one was

made independently by Ohira,and by the author and his collaborators. The

first oral presentation of the discovery was made by Hoff at a symposium

honoring Dr. von Kgrman in Washington on May ll 1961. The text of 6he

talk was published and distributed to-a limited number of recipients

(about 200) as a Stanford University report in August 1961; the volume

honoring Dr. von Kgrman. on the other hand' appeared only at the end of

1962. In a similar manner, Ohira's first oral presentation was made to

the Eleventh Japan National Congress of Applied Mechanics sometime in

1961 but the proceedings of the congress appeared in print only in 1962

or 1963. There were significant differences between the two solutions.

Ohira dealt with the general type of buckling of semi-infinite shells

with a simply supported edge while the solution by the present author

was valid for the axisymmetric buckling of semi-infinite shells with a

perfectly free edge. Moreover, Hoff's solution was in closed form,

- 22 -
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while 6hira had 1obtained his results- with the aid of a digital comater.

fHoff's result was generalized in 1962 by Nachbar and Hoff to hold for

the general case of buckling.

'Up to this point, -hira and Hoff had worked independently, without

knowledge of each other's work. Subsequently Hoff acknowledged that his

closed-form solutions for the simply supported edge were undertaken after

he had received information of Ohirars digital computer solution.

Similarly. in his paper presented to the Fifth International Symposium

on Space Technology and Science in 1963, Ohira acknowledged that his

latest results dealing with free edges were 6btained after he had received

information on Hoff's and Nachbar's w6rk,

For a clarification of these problems the dates of first presen-

tation and/or publication of new results have been collected in Table 1.

It is well to remember, however, that proceedings of conferences generaily

appear -a year or -more after the date of the conference.

Significance of New Solutions

it is equally incorrect to overestimate or to underestimate the

significance of the new solutions of the small-displacement equations.

From the theoretical standpoint they are most interesting as they show

that solutions other than the classical one exist for the problem of

the buckling of axially compressed thin-walled circular cylindrical

shells even though the problem is defined by linear equations, As a

matter of fact the only distinction of the classical solution is that

it is the easiest one to obtain.
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'L...-From--a,_practica1 -tandpoint - the new solutions show that a thin

shell pl6ddbet~en the :latens of A testing machine-can buckle anywhere

'between 0. =O5 And, 1. 0 -deplending on the friction between specimen

atd* testinlg machine.' Th.is fact certainly helps to explain the large

sc{tterobserved in the test results.

If the design engineer maintains that he already has enough empir-

ical information on the practical buckling stresses of thin shells to

make him uninterested in refinements of the theory)-one can counter his

criticism by saying that the empirical information is only on shells

already built, and not on new types of shells to be constructed in the

~future-. Improvements to be brought to Shell design in the future can

be-evaluated in advance only if a complete and reliable theory has been

established, and the new solutions of the classical linear shell

equations make a contribution to this goal.

Of course, most shells in engineering have their edges attached

to other shells, or to reitforcing rings. It is almost obvious that

such rings can provide an almost perfect restriction of the circumfer-

ential displacements. This Was shown to be the case in a recent pub-

lication by Almroth (1965b). On the other hand, as yet unpublished

calculations carried out at Stanford University indicate that a relax-

ation of the boundary restraint over the distance of a single half wave

can reduce the buckling stress significantly, Such a relaxation can be

the consequence of a broken rivet or a poor bond.
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THE DISCOVERIES OF VON KARMAN AND HIS COLLABORATORS

Between 1939 and 19+1, Dr. Theodore von Karman and the very capable

and enthusiastic group of students and research men gathered around him

in the Guggenheim Aeronautic Laboratory of the California Institute of'

Technology laid the foundations of the large-displacement theory of the

buckling of thin shells (von Karman et al. 1939, 1940, 1941; Tsien 1942ab).

Karman was puzzled on the-one hand by the large difference between the

complete predictability of the buckling stress of rods and thin plates,

and on the other hand by the very substantial difference between theoret-

ical and experimental values of the stress at which thin shells collapsed.

He also observed that the development of buckles and bulges was gradual

with elastic rods and plates while it was sudden, and even explosive, with

shells. After buckling, columns and plates continued to carry the buckling

load, and were even capable of supporting further increased loads, but

with shells the load- upported after buckling always dropped to a fraction

of the buckling load. Yet the equations defining the equilibrium and the

stability of rods, plates and shells were all based on the same well-proven

hypotheses of the theory of elasticity.

Sudden buckling with a drop in the load carried had been observed

by von Kgrman much earlier (von.Karman 1910a) in the case of short columns.

The phenomenon had been explained by him completely as an interaction

between the inelastic behavior of the short column and the elasticity of

the testing machine (see also Hoff 1961). But von Karman was reluctant

to accept a similar explanation for the puzzling behavior of the shell,

because very thin-walled shells appeared to recover completely after

-25-
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removal of the load and thus they showed the same phenomenon without

plastic deformations.

'The clue to the puzzle seemed to lie in the form of the solution

of the classical equations, as given in Eq.(18). Evi&ntly the expres-

sion forthe radial displacement w remains valid if the right-hand

member of the equation is multiplied by - i it represents disPlace-

ments of equal magnitude in the inward and outward directions. But

real shells tested in the laboratory always show a preference to buckle

inward, and their displacements in the outward direction are much

smaller than those oriented inward. It appears therefore that the

classical equations fail to represent properly the difference between

the inward and outward directions in the case of shells while they are

perfectly satisfactory in the case of rods and plates. This difference

must be a consequence of the curvature of the shell because in all

other respects the basic hypotheses upon which stability theory is built

are equally valid for rods and plates the one hand, and shells on

the other.

The only manner in which this shortc ing of shell theory could be

remedied was to add terms to the equations that were non-linear in the

displacements. But relatively simple equations containing such terms

had already been developed by a former collab .or r von Karman,

Lloyd H. Donnell, who had worked in the Guggenhei Aeronautic Laboratory

of the California Institute of Technology betwe n 1930 and 1933. To

the linear terms of his small displacement equations (Donnell 1933)

which were to become famous later, Donnell added the non-linear terms
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contained in the von .Kgrman large-deflection plate equations (von Karman

19l0b)* to-obtain what are generally known today as the von Kgrman-Donnell

large-displacement shell equations '(Donnell 1934). The trouble with

these,,equations is of course that they cannot be solved rigorously because

they are not only non-linear, but also of a very high order (the eighth).

In his paper of 1934 Donnell showed an unusual amount of ingenuity

and engineering insight when he introduced for the radial displacements

at buckling expressions equi:.ralent to those that are considered today

the most important ones in the representation of the shape of the buckles:

A cos cos (try*/L*) + A cos (2'lnc*/L*) (36)
11 x y ' 20 x

where y* = ayP is the circumferential coordinate, L* a id L* are
x y

the half-wave lengths in the axial and circumferential directions, and

A 1 and A20 are constants. After substitution of this expression in

his compatibility equation, he obtained a rigorous solution for the

stress function. He used the principle of virtual displacements to

calculate the load necessary to maintainequilibrium at any value of

the amplitude of the buckles.

Donnell also assumed that the shell was inaccurately manufactured.

For the small initial deviations from the exact shape he introduced an

expression of the type represented by Eq.(36) with the values of the

constants somewhat complicated functions of the nominal geometry of the

shell, The shell was assumed to fail when the stress at the crest of

1
* Apparently Donnell was not aware of the existence of these equations

when he derived his large-displacement theory.
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the buckles reached the yield stress of the material of which the shell

was constructed. Donnell ended his paper by proposing a semi-empirical

design formulaj based on his analysis and test results, in which three

material constants appeared, namely Young's modulus) Poisson's ratio,

and the yield stress.

The first innovation in the analysis by von Kaan and Tsien (von

Karman et al. 1941) was the introduction of a buckle pattern based on

visual observation of the shells after failure. The pattern was defined

by the following expression for the radial displacement:

w*=A +A cos (ux*/a) cos (ny*/a) + A20 cos (2mx*/a)= 00 1Al2

+ A02 cos (2ny*/a ") (37)
(

The first term in the right-hand member represents the classical small-

displacef,,nt solution. The sum of the second and third terms with

A A defines deformations quite similar to those of the middle
02 20

portion of the test specimen of Fig. 4, but, of course, the mathematical

expressions imply a continuous set of buckles covering the entire surface

of the shell. Such a pattern, denoted the diamond pattern, can be real-

ized only if a close-fitting mandrel is placed inside the shell (Horton

et al. 1965) (see Fig. 8).

The compatibility equation

(1/E)V 'F = -(Ia)w*x *X* + (w**y) 2  w*X**)= -XY Ixx ,Y*Y (38)

was solved rigorously after the expression of Eq.(37) was substituted

for w* in the right-land member. The second of the von Karman-Donnell
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eauation is*

(D670.* - + F) ~ 2F W').X x )X X* )' .Xi: *

+<F - + (1/a), F 39)

where a - is the initial axial compressive stress causing buckling and

F is a stress function from which the additional membrane stresses

accompanying -buckling can be calculated. This equation was not solved

directly, but instead the direct approach of the variational calculus

was used when the total -potential -eergy of fhe system was minimized- with

respect to the three independent displacement parameters A00 , A1 1 and

A20 = A02

From the three conditions of a minimum of the total potential energy

the three constants could be calculated, and thus the value of the initial

compressive stress - a that corresponds to equilibrium could -be deter-

mined for prescribed values of the parameters p and q . Of these 4

was defined -as the ratio -of the wave lengths

= /n (4o)

and I was proportional to the square of the number of waves around the

circumference

n2 (h/a) 
(41)

In one set of curves representing the results of the calculations

i was arbitrarily taken as one because the wave length ratio was found

to be close to unity in specimens after they had buckled in the testing

machine. The parameter of the family of curves was , and the minimal

* This is in essence the form in which the equation was given by Kempner. 4
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'absolute value of the -stress was

- = n = .1E(h/a)- (2)

The relationship between the-stress and the shortening eL* of the

T distance between the two ends of the .cylindrical shell was also cal-

culated and plotted, The curve obtained differed little from the one

labeled "Case 1" in Fig. 9, which was obtained by Kempner in 1954.

In Fig.. 9', the stress a- is the axial stress., and it is considered

positive when compressive. The abscissa-is the average compressive

strain e multiplied-by the ratio a/h . The gap between the .straight-

line and the curved portions of the diagram was not filled in because

,computation of the intervening unstable states of equilibrium involves

great difficulties. In their 1941 paper, von. Krman and Tsien also

calculated the equilibrium curve for 4 = 1/2 and obtained a minimum

for a which was negative indicating tension. They attributed this

unlikely result to the inaccuracies of their analysis. As a matter of

fact., they were very modest about their contribution to science and

stated that their rough first approximation to the true solution of the

problem would have to be replaced by a much more rigorous solution.

Yet von Karman and Tsien accomplished a great deal. They discovered

the existence of three states of equilibrium corresponding either to a

prescribed displacement of the loading head .of the testing machine

(loading in a rigid testing machine), or to a prescribed value of the

load (so-called dead-weight loading). They conjectured that in the

first part of the loading process the states of stress and shortening

would follow the straight-line portion of the diagram (Fig. 9) which is
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stable ih the presence of infinitesimal disturbances; this would happen,

however, only if the shell were perfect geometrically and if it had been

built of a completely homogeneous and isotropic linearly elastic material,

In the presence of initial deviations from uniformity the maximum

value of the compressive stress would be smaller than that indicated by

the letter C in Fig. 9, and the difference between the numerical Value

0.605 for (a/E)(a/h) and the experimental value would increase with

increasing values of the initial deviation. HoweVer. the random nature

of the initial deviations makes it very difficult to evaluate the

practical maximal value of the bucklihg stress. Hence von Kgrman and

Tslen suggested that for design purposes the engineer use the minimal

value of the equilibrium stress, that is 0.194E(h/a) ; from an unbuckled

state corresponding to a somewhat higher value of the stress the cylin-

drical shell would jump into a state of large displacements, and the

minimal stress just quoted could well serve as a lower limit to the stress

at which the jump could take place.

Von Karmon and Tsien also concluded that the elasticity of the

testing machine would have a significant effect on the stress atwhich

the jump takes place and that disturbances of the test, such as vibrations

of the foundation of the testing machine, would be an important contrib-

uting factor to the early failure of the specimen. These two conclu-

sions were to be proved incorrect by later investigators.

The same can be said of the ingenious Tsien criterion proposed in

1942 (Tsien 1942b). On the basis of a detailed and. completely rigorous

analysis of a non-linear model of a shell, namely a column supported
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laterally by an arbitrary number of nonlinear springs (Tsien 192a),

Tsien suggested that the minimal equilibrium stress of Pig. 9 be replaced

as the lower bound of the practical buckling stress by that particular

stress value at which the strain energy before buckling is equal to the

strain energy after buckling, in a test in a perfectly rigid testing

machine,. In a :so-called dead-weight test, the total potential energy

takes the place of the strain energy.. Tsien realized that he was. replac-

ing a lower bound by another lower bound. However, Tsien-'s lower bound:

was higher, and thus closer to the empirical buckling stress, than the

earlier one, and the scanty experintental data against which the Tsien

criterion was checked indicated satisfactory agreemcnt between theory

and experiment. Incidentally, a slightly simpler non-linear model than

the one studied by Tsien had been analyzed earlier by'H. L. Cox in .940.

Systems for which the Tsien criterion is a poor approximation were

mentioned by Fung and Sechler in a rather complete survey dealing with

the instability of shells (Fung et al. 1960) and presented-at the First

Symposium on 'Naval Structural Mechanics held at Stanford University in

1958. Much recent experimental-evidence, to be discussed later, also

shows that the proper answer to the question of the practical buckling

stress of thin shells is not furnished by the Tsien criterion.



THE YOSHIMURA BUCKLING PATTERN

Although the investigations of von Karmn and his collaborators,

have resulted in the discovery of the physical and mathematical reasons

for the perplexing behavior of the axially compressed cylindrical shell,

it was left to Yoshimaru Yoshimura, an imaginative professor in the

Aeronautical Research Institute of T6ky8 University., who, unfortunately,

died relatively young, to find the geometric reason for this physical

behavior. Yoshimura proved in a Japanese paper published in 1951 that

the middle surface of the circular cylindrical shell is developable into

a polyhedral surface consisting of identical plane triangles; such a

surface is shown in Fig. 10. His work was republished in English by

the National Advisory Committee for Aeronautics in 1955.

The shell can therefore be transformed into such a polyhedral

surface without stretching its middle surface, that is without causing

any membrane stresses to develop. Small bending stresses -ae required,

of course, to eliminate the initial curvature of what are the plane

triangles after buckling, and the curvature becomes infinite along the

edges of the triangles Which form the ridges of the polyhedron. It is

not obvious whether in the limit as h/a approaches zero the work

necessary to produce the infinite curvature along the ridges of a

perfectly elastic shell is finite or infinite, but for an ideally

elastic-plastic material certainly a finite amount of work suffices to

develop the ridges. But the bendi.ng stiffness of the thin wall of the

shell is proportional to h3 while its extensional stiffness is pro-

portional to h Hence a practical shell is likely to have a tendency
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to- aVoid extensional deforriations more and more as its. thickness is

decreased. For this reason very thin shells can be expected to buckle

in accordance with the Yoshimura pattern while thicker ones should have

more ample curvature al-ong the ridges.

This conclusion is borne out by experiment except for one important

modification: the diamond-shaped buckles of Yoshimura appear only in one,

or two rows rather than cover the entire surface of the shell as can be

seen from Fig. -4. This difference must be a consequence -of the con-

ditions at the boundaries because the pure Yoshimura pattern is incom-

patible with the circular edge of the cylindrical shell.

The Yoshimura pattern was discovered independently by Kirste in

1954. It was also enthusiastically adopted and studied by Ponsford in

the Guggenheim Aeronautic Laboratory of the California Institute of

Technology (Ponsford 1953).
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PURTHER tEVL0WNT OF-T17 LRGE-PISPIACEMNM~THEORY

During the quarter of a century that has passed since the publi-

cation of the von Kgrman-Tsien paper of 1941, most of the advance in our

understanding of the buckling of circular cylindrical shells subjected

to uniform axial compression has been achieved through investigations

using the von -Krmn-Donnell equations and the techniques developed in

that pape- A number of corrections and improvements were made by

Leggett and Jones in 1942 (but due to war conditions their paper was

distributed widely only in 1947), by Michielsen in 1948, and by Kempner

a doctoral student of the author, in 1954. In particular, the total

potential energy was minimized with respect to the parameters p and

defined in Eqs. (40) and (41). This minimization showed that the

buckled state found by von Kgrman and Tsien for tension (for g = 1/2 )

was not a state of equilibrium and, thus eliminated an inconsistency from

the theory. The results of Kempner's analysis are shown in Fig. 9 as

the curve labeled "Case 1".

The analysis was extended to orthotropic shells in a paper presented

by Thielemann at the Durand Centennial Conference (Thielemann 1960) and

the results of the calculations were compared with experiments carried

out by Thielemann with extreme care. This work was continued by

Thielemann in a report to a NASA conference held at Langley Field in

1962 in which he objected to the minimization of the total potential

energy with respect to the wave lengths because evidently only integral

numbers of waves can occur in the shell. It is not clear, however, from
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the very concise vaper what procedure he intro iee to repd thir

minimization-.

Thielemann used electronic digital comi.dtev' to EoRce, ir, an

approximate manner, the von VCrman-Donnell equations. Tht u.se o tie

digital computer was exploited even more completely by Al.trotfx who

investigated many combinations of the various terms in the series

> vi

wikA. cos (jirx*jL*) cos (kraO*/J*)
j O0 y L0

, : +. J ;= O k =: O

in order to obtain the minimum of the total potential energy. The

curves labeled "Case a_" and 'Case 3" in Fig. 9 represent Alifuotn's

results; in the calculations of the former only the coefficients A00 ,

A 11 A,22 A20 and A40 were assumed to be different from zero

while in the latter the coefficients A3 end A60 were alio included
33 60

In order to make the computntional work tolerable, all the coef:icients

not listed were assumed to be zero.

It can be seen that for , f'Jed value of ea/h the equilibrium

stress decreases as the number of terms considered is increased. The

important question to ask is therefore w ere the limiting curve is

situated when the number of terms considered is further increased and

made to approach infinity. Almroth felt that his nire-termi* :pproxi-

mation (not shown in the figure) approached closely enough the limiting

curve; he was unable to obtain significant changes by selecting different

coefficients, or considering additional ones. Moieover, his results

were in excellent agreement wjih those obtaJned both thforettcnIly rind

experimentally by TV-,e ,mum, (19(2).
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The author of the present paper was not convinced that Almroth's

nine -term -approximation was a sufficiently good approximation to the

limiting curve but he realized that it would be extremely difficult to

continue the process by adding more and more terms to the displacement

expression. in particular:, the replacement of the products and powers

of trigonometric terms by trigonometric terms of multiple angles was

such a lengthy job in the analysis of the problem that it was almost

impossible to avoid errors. For this reason the author suggested that

this work should be programmed for the computer; the method developed

for this purpose has been described in two reports (Madsen et al. 1965b;

Bushnellet al,. 1965).

With the aid of this computer program the author and his collabora-

tors (Hoff et al. 1965a) succeeded in calculating equilibrium curves on

the basis of up to 14-term approximations. Tht manner in which the

equilibrium stress, decreases with the number of terms considered for a

fixed value of ea/h can best be seen from the entries under cases 41 5

and 6 in Table 2. The normalized stress values are not minimal values

in this instance, but they correspond to ea/h = 3.4 . They are O..0856,

0.0706 and 0,0528 when the number of terms retained is 8, 10 and 12.

When two more terms were added to the series the value of (a/E)(a/h)

became 0.0427, which is the minimum of the curve labeled "Case 7" in

Fig. 9,

* In the discussion that follows the A term is not counted when the

total nuniber of terms is indicated. The value of A00  is obtained
from considerations of the continuity of deformations, and not from a
minimization.
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This Value is-substahtially smaller than Almroth's 0.0652. It is also

smaller than the value of 0.0518 obtained by Sobey y(1964b) with a 23-term

approximation. The inclusion of such a large number of terms was possible

only because of the availability of a superior computer prbogram. The

reason why Sobey's stress value is higher for 23 terms than the author s

value for 14 terms is tha. many of the coefficients of the terms retained

by Sobey have very small numerical values. Hence these terms are unimpor-

tant in the definition of the displacement pattern. Incidentally, Sobey's

paper had a very limited distribution and was unknown to the author at the

time-he wrote his paper jointly with Madsen and Mayers.

The most interesting result of the paper by Hoff, Madsen and Mayers

(1965a) is the observation that with increasing numbers of terms retained

in the expression for w the coefficients of the terms of the double

Fourier series approach the values characterizing the Fourier expansion of

the Yoshimura buckle pattern. At the same time, ± , n and a approach

zero.

It appears therefore that the shell buckles into an exact Yoshimure

pattern, with a finite wave length in the axial direction but a vanishing

wave length in the circumferential direction (p = 0).* At the same time

= N2h/a approaches zero; since the number of waves around the circumfer-

ence cannot be less than two, obviously h/a must approach zero. In other

words, the limiting curve obtained when the number of terms is increased and

made to approach infinity is a rigorous, but trivial, solution because it is

valid only for an infinitely thin shell. Evidently the stress under which

an infinitely thin shell can be in equilibrium after buckling is infinitely

small.

Another possibility is a finite wave length in the circumferential
direction and an infinite wave length in the axial direction.
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The solution of this puzzle was presented in a follow-up report

by Madsen and Eoff (1965a),. For a given cylindrical shell, that is for

a prescribed value of a/h , i cannot assume a value smaller than

4a/h . Hence minimization with respect to I means a differentiation

of the total potential energy with respect to i , setting the resulting

expression equal to zero, and solving for 7 , provided tl:at a value

equal to or greater than 4a/h is obtained by this procedure (and pro-

vided ,hat the inaccuracy connected with the replacement of the integral

values of N with a continuous fanction is considered admissible). If

the value &btained for I is less than 4a/h , it has to be replaced

by 4a/h . In this manner a lower bound exists for q and the minimal

value of the postbuckling stress is greater than zero.

In another extension of the large-displacement investigations

initiated by von Karman and Tsien in 1941, the behavior of initially

slightly inaccurate circular cylindrical shells was studied (see Fig.ll).

The importance of initial deviations from the exact shape had been

recognized much earlier as it had already been studied by Fiigge in

1932 and by Donnell in 1934. But in 1950, Donnell and Wan greatly

altered the procedure followed by Donnell sixteen years earlier and

developed a new method of calculation which was to be copied by several

other investigators. Through a rather complex reasoning, and on the

basis of his broad experience in engineering, Donnell came to the con-

clusion that the most dangerous initial deviations of the middle surface

of a circular cylindrical shell from the exact shape could be represented

by the equation
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w*/h =(U/w2 (* L* 2 ) (x*,y*) (Ua2 / 1 5 Nh 2 ) f(x*,y*) (44)0 x y

where U is the unevenness parameter and f(x*,y*) the function given

in Eq.(37). The additional radial displacements caused by the load were

represented in the seine form and were multiplied by an amplification

factor. The compatibility equation (38) was solved rigorously for the

stress function F . The expressions for wo and F were then sub-
tot

stituted in the expressions for the total potential energy and the

expression s, obtained was minimized with respect to the amplification

factor and A2 0 , A0 2 , m and n

This implies that the shape of the displacements caused by the

loads was taken to be the same as the shape of the initial deviations.

This is obviously a restriction on the generality of the solution, but

-in view of the difficulties inherent in any solution of the governing

equations it is a justifiable one. If the minimization had been carried

out only with respect to the amplification factor, the result could be

accepted as a usable approximation. Unfortunately, the total potential

energy was also minimized with respect to the parameters defining the

shape of initial deviations. This means that the system whose total

pote:tial energy was minimized was not defined at all, but changed its

initial shape during minimization. A correct and complete analysis

2 nhe u.L defile thi : h,, hpr; by .r "he coefficients AI

0 00,- A and the additional displacements by means of the coefficlentb
02

, A , A . The minimization should then be carried out withPr 20 02
1 1 1

respect to All , A20  and A02 , and not with respect to the coefficients
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The same error ,can be found in a number of publications based on

the paper by Donnell and Wah; they are the articles by Loo (1954), Lee

'(1962) and Sbbey (1964b).

The error was avoided byMadsen and Hoff who used a two-term

expression to define the shaipe of initial deviations and a three-term

expression for the additional displacements (Madsen et al. 1965a). the

minimization was carried out with respect to the three coefficients of

the additional displacements and the results are shown in Fig. 11.

It is evident from this figure that small initial deviations from

the exact cylindrical shape have a large effect upon the maximum load

carried by the compressed shell; and it is worth noting that this maximum

load is the only quantity that can be observed directly in a compression

test. For instance, an initial amplitude of the nonsymmetric deviations

amounting to one-tenth of the wall thickness coupled with an amplitude

of the axisymmetric deviations amounting to one-fortieth of the wall

thickness reduces the maximum load to 60 percent of the classical value

calculated for the perfect shell.

A more complete calculation by Almroth (1965b, 1966) resulted in

somewhat lower maximal values of the stress.

All the solutions of the large-displacement equations quoted assume

that the shell is very long and that its surface is completely covered

with uniform bulges after it has buckled. Yet Fig. 4 clearly shows that

in the laboratory shells buckle only over a small area and that the

remainder of their surface remains smooth. This fact was already mentioned

by Yoshimura (1951). The localized buckle pattern was introduced into an
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energy solution or the large-displacement equations by Uemura, a former

collaborator of Yoshimura, while he was working on a research project

at Stanford University. gis solution (Uemura 1963, 1964) indicates a

tendency on the part of the shell to prefer local buckles to uniformly

distributed ones, but the results are bot really conclusive because of

the comparatively small number of terms re-tained in the series repre-

senting the radial displacements.

this chapter would be incomplete without mention of the efforts

made to check whether the von Karman-Donnell equations are sufficiently

accurate for an analysis of the postbuckling behavior of thin-walled

circular cylindrical shells. On the One hand it is easy to show that

the Donnell expressions for the membrane strain are completely inadequate

to represent the inextensional deformations of the Yoshimura pattern

when there are 5 to 10 triangles around the circumference of the shell

(Hoff et al. 1965a), and on the other the curvature expressions become

inaccurate and the stresses can exceed the yield stress of the material

when the computations are carried out with the retention of more and

more terms of the infinite series for a prescribed value of the a/h

ratio. The latter two observations were made by Mayers and Rehfield

in a report published in 1964.

Moreover the tremendous effort made by many investigators in the

last 25 years has resulted only in a reduction of the value of the

coefficient k in the buckling stress formula acr = kE(h/a) , but

the value of k has remained a constant, independent of the a/h ratio.

Experiments show, however, that k can be as low as 0.3 when a/h is

100, and 0.06 when a/h is 3000.
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It was desirable therefore to investigate the effect upon k of

the use of equations more accurate than the von Karmn-Donnell equations.

This was done by Mayers and Rehfield in the paper cited; they found,

however, that the dependence of k on the a/h ratio is negligibly

small. The same conclusion was drawn. by Tsao (1965) and by Madsen and

Hoff (1965). Unfortunately, the calculations of the former were shown

to be unreliable by Mayers and Rehfield. In the Madsen-Eoff article perfectly

rigorous meiJbrane strain expressions and almost perfectly rigorous cur-

vature expressions were developed for arbitrarily large displacements and

for strains that are small compared to unity. The calculations involved

the minimization of a total potential enetr'," expression containing more

than 12,000 terms,

The perplexing conclusion must be drawn therefore that even though

4isplacement patterns can easily be devised for which the Donnell strain-

d splademeht and curvature-displacement relations are grossly inadequate,

and although these relations form the basis of the von Kgrman-Donnell

large-displacement equations, replacement ot these equations by more

accurate ones does not change noticeably the equilibrium states obtain-

able from the equations. The explanation of the paradox is probably

that the procedures used to solve the equations always lead to displace-

ment patterns involving so many waves around the circumference that the

shell can be considered a shallow one.
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THE EFFECT OF PEUC ING FORMATIONS

It has already been mentioned that in his fundamental paper of'

A 1932 on the buckling of cylindrical shells, FlUgge investigated the

effect on the buckling load of deformations' that occur during the loading

of the shell before it buckles. These deformations arise because of the

tendency of the compressed shell to expand uniformly and because of the

restriction of this expansion at the supports. FlUgge"s study indicati~d

that because of the prebuckling deformations the yield stress of the

material is reached in the shell slightly before the critical Value of

the stress is reached even though the critical stress is well within the

elastic limit of the material.

Recentlytheproblem was attacked again by two investigators who

worked almost simultaneously and entirely independently, without knowledge

of each other's worki But in this new research the full power of the

electronic digital computer was used to obtain the results, in the

United States the veteran investigator Manuel Stein (1962,. 1964)' and in

Germany the young research man G. Fischer (1963)- solved first the rela-

tively simple axisymmetric problem of the prebuckling deformations. Next

extensive computer programs were develcped for the solution of the lin-

earized stability problem of the deformed and still axisymmetric, but no

longer cylindrical shell.

When the results were finally compared, surprisingly Fischer's

buckling stress was found to be about twice as high as that obtained by

Stein. The former showed buckling at about 82 percent of the classical
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critical stress while the latter's shells buckled at stresses amounting

to 42 to 48 percent of the classical critical value. The discrepancy was

explained when the new, solutions- of the classical linear equations obtained

by Ohira and Hoff., described at the beginning of this paper.. became known. 

In his analysis Fischer used the boundary conditions designated by the

code symbol SS3, and Stein those denoted SS2 (see Eqs.(32)).

A final comparison of the two solutions was made by Almroth (1965b)

who studied eight sets of boundary conditions, namely those indicated by

the present author by the symbols SS1 to SS4j and RFl to RF4. He con-

firmed Stein,'s and 'Fischer's solutions and concluded that the effect upon

the buckling stress of the boundary conditions was large, and that of the °

prebuckling deformations was small.

5
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HE KOITER THEORY

Probably the easiest way to acquire an understanding of the funda-

,rental id8,a of the Koiter theory is to work out an example in some detail,

and for the example the non-linear model of a shell analyzed recently by

the author (Hoff 1965a) may we'l be chosen. The mode- (Fi 12)consists

of two pin-jointed bars whose common end point is supported laterally by

a non-linear spring, and whose far ends are under the action of equal

and opposite fordes P . In the original paper the bars were elastic

Aand two linear springs attached to their far-ends represented the elas-
ticity of the testing machine. Since the effect of these features of

the model on the buckling phenomenon is small, they are omitted from the

present analysis in order to save space and effort.

The spring force S is characterized by the equation

S, 2=KfW (45)

where the non-dimensional displacement is defined as

= n/h = (y/h) - (e/h) (46

rnd e and h are the eccentricity of the system and the initial

%rerrical component of the length of each bar. In the original publication

the spring characteristic was defined as

S = lOO 3 - 2oo 2 + lO5r (47)

A graph of this relationship is shown in Fig. 13. In the present paper

the quantities ap--aring in Eq.'(45) are defined as

-46-
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a3 + -a + (k8)

at = (100/105)-100- = - (200/105)10

It is useful now to study the equilibrium. and the stability of the

system with the aid of energy considerations. The strain energy W?

stored in the non-linear spring when it is displaced a distance h

to the right is

V 2hkf f(t)dt (4.~9)
0

where is a dummy variable representing the instantaneous value of

The potential V of the external loads being

V = - 2Pu (50)

where u is the axial displacement of the ends of the bars, the total

potential energy U is

U 2hKJ f( )d - 2Pu (51)

0

Frpm 'the geometry of the system (Fig. 12) it follows that

u ~ h - [h +e2y~ - [y j8 h ( +)2]/}) (52)

where

> e/h (53)
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'Substitution in E q.(57) yields

> 2ith 2

(55.)

First the system without eccentricity, the so-called perfect system,

will -be examined. For such a system

U 2hK f(g)dP-Xl- ./ 0 (56)

since

e 0 o- (56a)

In agreement with the principle of virtual displacements the first

Variation of the total potential energy must vanish for equilibrium.

The variation must be carried out with respect to the only independent

displacement quantity . One obtains

8U = (dU/d )b = 2hK[f()- xg(1- 2)0 (57)

This equation has two kinds of solutions. Since f(O) 0 evidently

one solution is

S= 0 (58)

This means that the system is in equilibrium in its fundamental state,

the initial straight-line configuration, whatever the value of the load

factor X
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In addition, equilibrium is possible for certain combinations of

load and displacement characterized by

X f- when, o (59)

This equation defines a buckled state adjacent to the fundamental state

which willbe called the adjacent state.

The stability of the fundamental state depends upon the sign of the

second derivative of the total potential energyi, From Eq.(57) one

obtains:

(d 2 / -3/21
(d~/a~) =2hK~f() W X(l- )J(6)

But for the fundamental state = 0 ; hence

(d2 U/d) 2hf' (o) (61)

From Eq. (48), evidently

fl(o) = 1 (62)

Consequently the fundamental state is stable when < and, unstable

when X > 1 The critical point is characterized by

Xcr = 1 that is Pcr ='525 lb (63)

The critical point is a bifurcation point, or branching point, where

equilibrium configurations adjacent to the fundamental configuration

appear for the first time in the loading process. The brancning point

is labeled Q in Fig. 14.

Koiter was the first to call attention to the importance of the

stability of the system in the branching point itself. There the second

derivative of the total potential energy is zero and thus stability

- 49 - 1
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depends on the derivatives of higher order. From Eq. (60) the third

derivative is easily obtained&:

S(a3U/d-a ) = 2hf ) -(64)

Since in the branching point = 0 and X 1 the expression becomes

(A3u/d 3) 0 = 2hkf""(0)

From Eq. (48) one calculates

£fl"(o) = 2a = 4000/105 - 38 (66)

Thus

(dU/dt'3) t=o - 76hK j 0 (67)

When the second derivative of the total potential energy vanishes

and at the same time the third derivative is not zero, the system is

unstable (see, for instance, Hoff 1956). Evidently in such a case the

equilibrium corresponds to a minimax, and the total potential energy

decreases during a small positive excursion if it increases during a

small negative excursion, and vice versa. Koiter has shown that under

such conditions the system is very sensitive 1o small initial deviations

from the perfect shape.

This sensitivity can be checked if the imperfect system is

investigated. The total potential energy is given by Eq.(54); its

first derivative is

- 50 -



-/- 0 2hk t- 2 (68)

With. a non,-vanishing eccentricity e h5 the above expression of the

principle of virtual displacements has only one solution:

(t5=,:[l 2 B (69),

,The second-derivative of' U is

d2U/d 2 = 2hK{'( )-x(1+5 2)[1+5 2- (++B)2]/ (70)

For sufficiently small absolute values of 5 and X this expression

is certainly positive; hence the load-displacement curve defined by

Eq. (69) is stable when the load is small. The stability vanishes when

the second derivative becomes zero, Substitution of the expression for

X from Eq. (69) and equation to zero of the second derivative result in

f'( ,) -(l+s2)( +)-L+ 2  ( +5)2]'i( ) 0 (71)

When t and 5 are sufficiently small, this simplifies to

f( - ( -+) f(Q) = 0 (72)

In view of the graph of S = 2Kf(t) shown in Fig. 15 this equation

has no real solution when 6 and, t are negative. The curves repre-

sent ing the displacements of a system whose eccentricity is negative

are stable everywhere. A critical point can exist, however, when 6

and t are positive, but this critical point is not a branching point

but a limit point, that is a maximum of the load-displacement curve.

The curves shown in Fig. 14 indicate that the maximum of the load

reached by a slightly imperfect system can be much lower than the
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classical critical load: -of' the perfect system. This, is .always t-he case

when the 'branching point of the perfect system (point Q in, ig. i4) is

unstable.

The opposite is true when the branching point of the perfect system

is stable, as will now be 'shown. Let us attach a Second- spring to the

joint of the system shown in Fig.- 12, .but in the opposite direction.

The horizontal force S' provided by the second spring will then be

S' J o + 200 2 +105 (73)

To maintain unchanged the classical critical load, the dimensions

of the springs will be reduced until each provides only one-half the

force it did before. The combination of the two springs will now, be

characterized by

s"= (1/)(S+s") - 00 3 + l05q (74)

and in Eqs.(48) the only change to bo made is to write

f( )= a3+ , (75)

The total potential energy expression of Eq. (56) and the expressions

for the derivatives given in Eqs.(57), (60) and (64)-remain unchanged.

Again, the bifurcation of the equilibrium states occurs at P = 525 lb

and the fundamental state is stable below, and unstable above this value.

But the second derivative of f(,) is different:

f Q)= 6t (76)

In the fundamental state this obviously vanishes. Hence in the branching

point
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33 (77)1

The stability of the system in the branching point. ow dePends on the

sign of the fourth derivative of the total ptential -energy. .From

q..(64) one obtains

d~~~ - 2hKj"() 3(l42(-)7/]78

At the critical point this becomes

(dU/a4) =0 = 2hKf" (o) - 3] (79)
X,=I

But from Eqs.Q(48) and (75),

I"" ( ) = 6a = ,600(100/105) (80)

It can be concluded therefore that in the branching point the fourth

derivative -of the total :potential energy is. positive,. and- thus the

equilibrium of the branching point is stable.

The equilibrium states were also investigated in the presence of

small initial eccentricities and the curves representing the behavior

of the system are shown in Fig. 15. It can be seen from the figure

that imperfections have no significant effect upon the load the system

can, carry.

Figure 15 is representative of the behavior of a flat rectangular

plate compressed in its< plane with its edges simply supported. After

buckling the load can be increased further and small deviations from

flatness have little effect on the load-carrying capacity of the plate.
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Figure 14 is- &h1caracter istic of the behavior of an axiall compressed

thin-waled dircdlar cy-lindrical shell. The maximum load, it can. carry

isgreat ly affected by small deviations from the exact -cylindrical shape

and the load- drops- suddenly when th critical value of the imperfect

systemis reached, in the testing, machine.

'The connection -between postbackling behavior and the stability Of

the system was explored in detail for such complex systems as shells,

and criteria for determining the stability of the branching'point were

established rigorously in a doctoral dissertation written by, Koiter in

1945. Unfortunately the dissertation was p ublished in the Dutch

language and for a long time it did not receive the attention it merited.

Aconcise presentation of the principles involved was made by Koiter at

the Symposium on Non-Linear Problems in Madison, Wisconisin, in 1963 and

the printing ox the paper in the Proceedings of the ,symrposium has con,

tributed greatly to. the recognition of 'the importance, of the theory in

the analysis ,of structural stability. A thirdpublication by the same

author (Koiter 19631) contains a rigorous solution for the imperfect

circular cylindrical shell.

It follows from"Koiter's general theory that the ratio p of the

maximum stress of the imperfect shell to the classical critical stress

of the perfect shell is given by the equation

if the imperfections are axially synketric and * is the ratio of the

amplitude of the sinusoidal initial deviations from the exact circular
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cylipOdrical shape and the wall thickness.- Introduction- of' the- new

a- a0  -a1/2,

-When d/14 «, 1 ' this is9 equivalent to,

1 c/2 - l2c- (/)32+...(8y

In an earlier paper (Madsen et al. 1965a). it was proposed that in

a-first 6pproximation the inital deViatio-n- amplitude should be assumed

to be proportion&l to the radius of the, shiell. Since 4,Is this-

-ancj;Iitude, divi-ded by the -wall thickness,. 1h, one can. write

4,=K*(a/h) (5

The formulas- given lead to reasonable agreement with experirbental data,

as was indicated by the author in his lecture at the Seventh International

Aeronautics Congress, in>,Paris (Hoff 1965b), if tlie value of K* is

chosen as 10- *if one wants- to obtain a formula valid- for less care-

fully manufactured specimens he may choose

K= 4Ix-lo'-4 (,86)

Substitutions yield

C = 10 3 (a/h) (87)
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a-xd,(8)'the -vailues, of p becomei -about 0;6k, . 7, 0. 38

21and 0.21 when the ahratio- is 200, 60(t, 1000-anhd 3O00

"the Koiter theory hds recently. been- taken, up by investigators :at.4University 4o11ege Jn. London and-,at Harvard University inBoston ~and

a~ number bf interestig, results were obtained in he o~r~ eb

J. ,M;, T. Thomhpson. (Thomson, 1961, L963, 94-),: and, -in the latter -by

J. -Hutchinson -(Hutchinson 1I65)

Pato4hmsnswrk4scridota Safr nvriy
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VEADOIMNtA VERiFICTtiON

The development of the theory h&s always gone hand :in hand with

increaslnly Careful experimentation. No details will- be ,given here of

-experiments conducted to determine the buckling stresses: of circular

cylindrical shells. It may be menti6ned,, however, that. the, derivation

of the classical buckling stress formula was preceded by Lilly's exPeri--

ments in, 1908, and- that the revival of interest in buckling theories in,

the thirties was paralleled by the experimental work of Robertson (1928,

1929);, Fligge (1932), Wilson and Newmark (1933)', Lundquist (1933),

Donnell (1934) and,Kanemitsu and Nojima (1939).

In the more recent past large-scale experiments were carried out

with specimens of large a/h ratios by Harris, Suer, Skene and Benjamin

in 1957 and by Weingart6en., Morgan and Seide in, 1965. Thielemann (1960,

1962)' also nmde a large number of tests at the,,time when he worked out

his theory of the buckling of orthotropic circular cylindrical shells.

The fact that tests in very rigid and in very elastic testing

machincs lead to the same buckling stress, and that consequently the

Tsien criterion must be ccnsidered invalid&, has been confirmed for

circular cylindrical shells by Horton, Johnson and Hoff in 1961 and by

Almroth, Holmes and Brush in 1964. The same proof-'.'a brough recentl,

for complete spherical shells by Carlson, Sendelbeck and Hoff (1965),.

The sensitivity of axially compressed circular cylindrical shells

to small initial deviations from the exact shape was demonstrated by

Babcock and Sechler '(1962, 1963) when they tested a series of very
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accurately fabricated s hell specimenis with built-in anid- ca2refu'l: mfeasured

deviations. The manuifacturing procedure used in these inve stigations had

or4ijnall~r b~n -introduced by -Thompson in, 190 who had produced thin

pher:ies. by -the- electroplatinig mpthod . With th& bes speimens of' this

k-ind, Babc oc k and, 'S6chler reached 76 jprcent of 'the clas~siCal critical

-stress when the -a/hi ratio was 89,0 The-values Of P a

4btiained- by Almroth, Holmes and: Brush ranged, f rofn 0-.4,3 to -0,,7-3, Even

higher values, up, to6 0.9g, were reported: by Tennyson, (963, i964), when

the a/hI ratio of specimienis made of -a photoelastic material was between

100- and: 170.,
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of semi;infinite shell with free edge;, P ='O.,5

Ohira 1961 Digital computer solutionof general buckling
of semi-infinite shells with simply supported
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Ohira 1963,1964 Digital computer solution of general buckling
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'Hoff 1964.,1965 Closed-form solution of generalbuckling of
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Hoff & Soong 1964,1965 -Digital computer soluLtions of general buckling
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Ohira 1964,1966(?')' Digital computer solution of general buckling
of finite shell withsimply supported edges

Ohira 1965,1966(?) Digital computer solution of general buckling
of finite shell with dissimilar edge conditions

Almroth 1965,1966(?) Digital computer solution of general buckling
of finite shells with elastic edge constraint
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FIG. 3. Chessboard Type of' Buckling.
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FIG. 4, Photograph of Thin-Walled Shell after Buckling.

(courtesy of' W. H. Horton)
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