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ABSTRACT 

The flow between compartments in physical and biological systems is 

treated as a special case of a more general theory of transitions between 

any two distinct sets A,A.  Interest is focused on the flow rate from 

each set, i.e., the rate at which elements from that set appear in the 

other; and on the entry rate from each, i.e., the rate at which elements 

from the set leave to enter the region not part of either set.  In 

particular, the two flow rates are completely determined by means of 

explicit expressions for their rates (Theorem I) and difference 

(Theorem II) in terms of the two entry rates. An application to bio- 

logical transport problems extends a result of Dantzig and Pace [2] by 

demonstrating that for a system of channels each narrow enough to effect 

a "lining-up" of particles, counter-gradient flows may result, i.e., 

flows for which the flow rate is greatest from the compartment with the 

smallest entry rate. 



ON STEADY-STATE INTERCOMPARTMENTAL FLOWS 

In this paper, we study the flow between compartments in physical and 

biological systems as a special case of a more general theory of transitions 

between any two distinct sets A, A. We define a mesh between A, A to be any 

sequence of disjoint sets 

A " V S1 V Sn+I ' A 

with the property that an element of any S.  may transition to other sets only 

by a sequence of forward and backward movements between consecutive sets. 

Elements of  S0 may enter the interior of the mesh by transitioning to S., 

and the rate at which this occurs is denoted E and called the forward entry 

rate.  Similarly, elements of S . may enter the interior of the mesh by 

transitioning to S , and this backward entry rate is denoted E.  Elements which 

enter the  interior from S0 are called a'elements until they leave the 

interior of the mesh either by dropping back from S.  to S0, which occurs with 

rate R, called the return rate, or by transitioning from S  to S . which 

occurs with rate F, called the forward flow rate.  Between entering the interior 

of the mesh and leaving it, either by dropping back into A or flowing into A, 

an element may transition by a sequence of forward steps, from S.  to S. ., and 

backward steps, from S.  to S. ,.  Similarly, a'elements may enter the interior 

of the mesh from S .. and leave either by dropping back from S  to S ^1 , n+l i rr       * n        n + j 

with  rate     R,  or by transitioning  from    S.     to    S-,  with  rate    F. 

A set   Is said to have steady  content   if   its content of a-elements and of 
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•'elements  is  independent of time. 

\ A mesh  is said  to have steedv content   If 

(1) E-F + R.E-F + R 

always;   i.e.,   If the  union of the sets    S.,...,S      has steady content. 

A mesh  is called Markov I an  if for any    k"l,... ,n,  the probabi I ity of di rect ion 

of movement of an element of S. ,  from    S.     to an adjacent  set, depends only on the 

direction from which   it entered, and not on any other aspect of   its past history. 

For such meshes,  for elements which entered    S.     on a forward step,   let    or      be 

the probability that  the direction of  its next movement will  continue to be forward, 

and  let    O'GO    be the probability that   it will   be backward.     For elements which 

entered    S      on a backward step,   let    0.     be the probability that  the direction of 

its next movement will   continue to be backward,  and  let   O'ßiJ     be the probability 

that   it will  be forward. 

A Markovian mesh   is said to be  in steadv-state  if ell    ^   »   ^    •re  independent 

of time;  and   if for every    k ■  l,...,n,  the  set    S.     has steady  content. 

We can now prove: 

THEOREM I:    For Markovian meshes  in st« state,  the ratio of  flow retes between 

compartments    A    and    A     i en bv the eouat ion 

F      E      or,... a 

F      E       ^...ß 
1       "n 



For example, If A and A  represent physical compartments connected by a channel 

such that the movement of elements through the channel is unaffected by the 

presence of other elements in the channel, then for any mesh that might be defined 

by subdividing the channel it follows that a\c 
m  ^L u  ^     ^or a"  k'> an^ hence the 

flow rptes are proportional to the entry rates.  This corresponds to Pick's law 

for free diffusion.  On the other hand, as in [2] and [3], the channel might 

instead be so narrow that elements line up in a single file of n elements, and 

in this case the direction of next movement of any element in the channel will 

be the same as the next entry into the channel as a whole. Thus the ratios 

ak E      '"^k  E ak  E ,   ■ —  and ""7— ■ _ , whence "S" ■ — . Hence in the case of narrow channels, 
^k  E       ek   E ßk  E 

F  / E\n It follows from the theorem that   ■1*1  »so tnat the larger n  is, the more 
F      \E/ 

unidirectional   the  flow becomes, always favoring the direction of the   larger entry 

rate. 

The proof of the theorem  is by  induction, and  is clear for    n ■  I.    We assume 

the theorem true for    n ■ k-l, and apply  it  to the mesh    Si  ,  Sj   ,...,$'   , defined 

by 

<;•   ■   A     O   ■   «i ^l ■   S S1        ■   S US S'   ■   A 

where    S.,  U S.     denotes  the union of the two sets    S.   ,    and    S. .     This mesh 

is also Markov Ian and   in steady-state.    We obtain by the  inductive assumption that 

r       c       Qf.... Of       Qf« 

(2) Z-1 ' J    l       ] 

F      E      0r"ek-2ßk-l 

where    a' is the probability that an element which transitions from 



S. 2 to S, .  will, if it leaves S!.  ■ S.. U S., next transition to S. . ; 

and ß' .  is the probability that an object which transitions from S. .  to S. 

will, if it leaves S. , U S. , next transition to S, ..  it is easily verified 

that a'   Is given by the infinite sum 

Viak + Vi(,-ak)(,-ßk-i)ak +---+Vi(,-ak)P(,-ßk-i)P\ + ••" 
whence 

(3) a! ^-^  

t k~]    Hi-*k)0-ek-i> 

Similarly, we obtain that 

(i.) B. ^A 
'"'   '-c-VC-^-i' 

and the theorem is immediate upon substitution of (3), (*0 into (2). 

In physical steady content situations, we are often interested in meshes 

that have the transfer property; i.e., that the rate E at which a-elements 

enter S.  from Sn  is equal to the total rate F+R at which a- and a-elements 

leave S  to go into S Jl; and the rate E at which a-elements enter S  from 
n    '       n+1 n 

S .  is equal to the total rate F+R at which a- and a-elements leave S.  to 

go into S0.  The analytical definition of this property, 

E-F + R  ,  E-F + R 

taken with (l), provides an immediate characterization of these meshes: 

THEOREM II:  Any mesh with steady content hps the transfer property if and only if 

(5) F - F - E - E 

is satisfied. 



Since any mesh   in steady-state has steady content, we obtain trivially for this 

important case the 

COROLLARY:     In steadv-state. a mesh satisfies  the transfer property   if and only 

if the difference  in flow rates between    A    and    A    is  equal   to the 

difference   in entry rates. 

Applicat ions: 

Some investigators, in modeling transport in biological systems, in 

particular [2] the active transport of sodium and potassium ions and [3] the 

exchange of potassium end its labelled isotope across the membranes of living 

rHls, have postulated as part of their models systems of channels, each channel 

ow enough to effect a "lining up" of particles. Such channels, when the system 

is physically in steady-state, are either at rest, in which case they contain a 

fixed number of particles ordered in some way; or, they are in a transient state 

caused by the entry of a particle into one end or the other of the channel from 

one of the two compartments A, A between which transport is taking place. When 

an entry does occur, it sets off a chain reaction which is idealized as just one 

particle moving at any time. As it approaches the particle which at rest was in 

the k^1 position, it either, with probability tk, passes it and proceeds on to 

the next particle; or it strikes and replaces the k— particle, which itself then 

moves on to the next.  The transfer property thus holds for such channels, so that 

the difference of their flow rates is equal to the difference of their entry r^tes 

(Corollary to Theorem II). 
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Fig.   1 

Let us now consider the ratio of the flow rstes. We define a mesh [See 

Fig. I,] between A,A by conceptually dividing each channel into n consecutive 

sections such that each section contains exactly one particle at rest.  For sim- 

plicity, n  is «fäumed the same for each channel, and the channels are essumed 

mutually exclusive.  The set S.  is defined as the union of first sections of the 

channels, i.e., those adjacent to Sn; the set  S.  is defined as the union of 

second sections, i.e. those adjacent to the first sections; ^nd so forth.  The 

mesh is Markovian; and in fact it is easy to see that 



ak ■ ^ + (,"tk) "^ • ek ■ ^ + (1"tk) "^ 

because  a particle striking and replacing the    k      particle has probability 

  , when   it   is next struck, of moving towards the    (k+l)        particle;  and 

E+E        T st 
probability —^ of moving towards the (k-l)   particle.  Hence we obtain from 

E+E 
Theorem I that 

(6) ! - i • TT •-= 
E + t.E 

k 

F  E  k-l  E + t.E 
k 

For channels so narrow that the particles line up in single file and it is not 

possible for one particle to pass another, it follows that ti, " 0 for •'1  k- 

In this case, (6) was essentially given by Hodgkin and Keynes [3] and (S) by 

Oantzig and Pace [2],using methods quite different from ours. Bigelow [l] has 

obtained a generalization of their methods and results when t.  is the s?me 

non-zero constant for all  k.  The case t,"l  corresponds to free diffusion, 

as noted earlier. The principal motive for such an approach in [2] and [l] is to 

demonstrate that flows against electrochemical gradients are possible within the 

rather simple framework of these models, and it suffices for the purpose of this 

paper to now qualitatively demonstrate this point in the most generrl case. 

Counter Gradient Flows 

When dealing with chemica-1 solutions, it is necessary to consider from the 

same compartment entries of particles of different types, in particular different 



chemical species.  For each species  i we then have nent(        E.  from A 
_ 

.     and E.  from A, with the total entry rates being given by 

E - Z E., E - L E.  . 
i    ; i 

i 

Further, we may also define "flow rates" F., F.  for each species, such that 

F ■ I F. , F - I F. . 
i      .  i 

i i 

If we assume that within the mesh the behavior of an element is independent of its 

species, then the flow of a particular species F  is in the same ratio to total 

flow as E  is to total entries.  Thus 

F E F           E -s-.^i. ; 
IF. * IE. 

i i EF. 
i 

and this, taken with (6), yields at once the ratio of flow rates 

(7) 
F   E  -rf- E + t.E 

7   I  ^ ? + t,E  ' 
s   s k 

As noted,   in this development     t. ,   the probability of passing  the particle   in 

k        position,   is assumed   independent  of  species.     A more  general   model   is  under 

development where     t,     depends on  species. 

We say a counter-gradient   flow exists  for a species     i     if  the sign of 

(F.-F.)     is opposite  to that  of   (E.-E,).      In other words,   if     E.   > E.,  a  counter- 
i     i i      i ii 

gradient  flow will   be  said to exist   if    F.  < F.;  and analogously  for the case 

E.  <!,. 
i i 

Let  us consider a particular  species     i"s    for which    E    > E      and   investigate 

8 



the conditions for a counter-gradient flow to exist for this species.  We first 

note thet if the total flow E > E, then 

E + tj ^ E . tkE F 

follows for 0 s t.^ I ; and thus it follows from (7) that -* > I, so that there 
K F 

s 

is no counter-gradient flow for the species s. To paraphrase, we have shown that 

for the case E > E  , a counter-gradient flow can possibly exist only when the 

total entries by all species E > E. 

We thus address ourselves to the question, how must we adjust the ratio of 

total entry rates  r ■ * to induce a counter-gradient flow for the species s, 
E 

where E > E ? By definition, a counter-gradient flow exists for s  if and 

only if  | < 1; or noting (7) if and only if 

F 

(8) 1 >7i > X-.-.X , 
t    i   n 
s 

where we have set 

.   E + t. E  r + t. 
K  ■  L -  hL • 

E * t,E  ' + r\ k 

We assume that the probability t. , O^t s|, of bypassing a prrticle in the 

passage is independent of the flow rates E,E.  It is easy to verify that "'  is 

continuous and monotonicalIy non-decreasing in r ■ - , and ranges between its 
E 

extreme values  I  and t,  as r ranges between  I and 0,  Thus it follows at 

once that the product  X,...X  is continuous and monotonically non-decreasing r       I   n 

in mr; and rrnges between its extremes  1  and t....t  as  r  ranges between  1 

and 0, whence 



THEOREM III:  A necessary and sufficient copdition that the ratio r ■ _ can be 

adjusted so that a counter-gradient flow exists for the soecies s. 

E 

where T5" "^ ' » is that 
s 

E 

(9) , > E5" > V'^n* 
s 

E 
(Nbte that the case 7* > I  is easily handled with this theorem by an elementary 

s 
notational exchange of barred and unbarred quantities).  The necessity of the con- 

dition follows from (8) and the relation just obtained, that is X....^    ^ t.^.t . 
I    n   1    n 

To show sufficiency, suppose (9) holds.  Because \....\      ranges continuously 

from I  to t....t,, there always exist by the intermediate value theorem, 

\1lf...,X  such that (8) holds. 
(      n 

For the extreme case of narrow channels, for example,  t «O for all  k, so 

that (9) always holds.  in that case, it is easy to _see that counter-gradient 

E n  E3 
flows will exist if  r ■—  ic chosen so that  r < 7*.  At the other extreme, 

E s 
for  "open" channels   (i.e.   free diffusion)  where all     t     ■   I,   condition   (8)   never 

K 

holds and hence counter-gradient flows can never occur. 

10 
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