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ABSTRACT

The flow between compartments in physical and biological systems is
treated as a special case of a more general theory of transitions between
any two distinct sets A,K. Interest is focused on the flow rate from
each set, i.e., the rate at which elements from that set appear in the
other; and on the entry rate from each, i.e., the rate at which elements
from the set leave to enter the region not part of either set. |In
particular, the two flow rates are completely determined by means of
explicit expressions for their rates (Theorem 1) and difference

(Theorem I1) in terms of the two entry rates. An application to bio-
logical transport problems extends a result of Dantzig and Pace (2] by
demonstrating that for a system of channels each narrow enough to effect
a "lining=up'' of particles, counter-qradient flows may result, i.e.,
flows for which the flow rate is greatest from the compartment with the

smallest entry rate.



ON STEADY-STATE INTERCOMPARTMENTAL FLOWS

In this paper, we study the flow between compartments in physical and
biological systems as a special case of a more general theory of transitions
between any two distinct sets A, A. We define a mesh between A, A to be any

sequence of disjoint sets

with the property that an element of any Sk may transition to other sets only

by @ sequence of forward and backward movements between consecutive sets.

Elements of S0 may enter the interior of the mesh by transitioning to SI’
and the rate at which this occurs is denoted E and called the r ntr

rate. Similarly, elements of Sn+l may enter the interior of the mesh by
transitioning to Sn’ and this backward entry rate is denoted E. Elements which
enter the interior fron S0 are called a-elements until they lepve the
interior of the mesh either by dropping back from S' to So, which occurs with
rate R, called the return rate, or by transitioning from Sn to Sn+|’ which
occurs with rate F, called the forward flow rate. Between entering the interior
of the mesh and leaving it, either by dropping back into A or flowing into A,
an element may transition by 8 sequence of forward steps, from Sk to Sk+l' and

baciward steps, from S  to S _,. Similarly, a-elements may enter the intevior

of the mesh from Sn+| and leave either by dropping back from Sn to S

with rate 'E, or by transitioning from S‘ to So, with rate F,

n+l’

A set is said to have steady content if its content of a-elements and of



&

:-e!ements is independent of time.

A mesh is said to have steady content if

(1) E=F+R,E=F+R

always; i.e., if the union of the sets SI....,Sn has steady content.

A mesh is called Mgrkovign if for any k=I,...,n, the probability of direction
of movement of an element of Sk' from Sk to an adjacent set,depends only on the
direction from which it entered, and not on any other aspect of its past history.
For such meshes, for elements which entered Sk on a8 forward step, let ak be
the probability that the direction of its next movement will continue to be forward,
and let (l-ak) be the probability that it will be backward. For elements which

entered S, on 8 backward step, let Bk be the probability that the direction of

k
its next movement will continrue to be backward, and let (I-Bk) be the probability
that it will be forward.

A Markovian mesh is said to be in steady-state if all @ Sk are independent

of time; end if for every k=1,...,n, the set Sk has steady content.

We can now prove:

THEOREM I: For Mgrkovian meshes in ste state, the ratio of flow retes between

compartments A gnd A4 i en by the equation
E 0a,...0
oL Ry e



For example, if A and A represent physical compartments connected by a channel
such that the movement of elements through the channel is unaffected by the
presence of other elements in the channel, then for any mesh that might be defined
by subdividing the channel it follows that ak = Bk = | for all k; and hence the
flow retes are proportional to the entry rates. This corresponds to Fick's law
for free diffusion. On the other hand, as in [2] and [3], the channe! might
instead be so nerrow that elements line up in @ singie file of n elements, and
in this case the direction of next movement of any element in the channel will

be the same as the next entry into the channel as @ whole. Thus the ratios

o 1-8 a

ke -E and -E » whence X o E . Hence in the case of narrow channels,
1= Pe E P T

n

it follows from the theorem that 'E- (E) , SO that the larger n s, the more
F E

unidirectional the flow becomes, always favorirg the direction of the larger entry

rate.

The proof of the theorem is by induction, and is clear for n = |. We assume
the theorem true for n = k=1, and apply it to the mesh 56 g S; ,...,S& , defined
by

= | = ! - J = ' - A
S5 = A, SIS S, ® S s Sk =S VS, S =A

where S, _, U S, denotes the union of the two sets S _, and S . This mesh

is also Markovian and in steady-state. We obtain by the inductive assumption that

(2) E_E .<glf"qk:ZQL'l
F B B BreaPua

where ai_l is the probability that an element which transitions from
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S to S will, if it leaves S, _, Siep U S, » next transition to S, .

k=2 k=1
and B&-I is the probability that an object which transitions from Seep tO Sy
will, if it leaves S=y U Sy » next transition to Sk-2' It is easily verified
that Yo is given by the infinite sum
= - -a P(1- P

Ue1% * O (=) =B oy woevwa (=0 )70-B )Ty + .o,
whence

k=1%
I-(I-ak)(l-Bk_l) .

! =
(3) @,
Similarly, we obtain that

Bee1 B
1-(1-0,) (1-8, )

(8) B, =

and the theorem is immediate upon substitution of (3), (4) into (2).

In physical steady content situations, we are often interested in meshes
that have the transfer property; i.e., that the rate E at which a-elements
enter SI from S0 is equal to the total rate F+R at which a= and a-elements
leave Sn to go into Sn+l; and the rate E at which a-elements enter Sn from

S is equal to the total rate F+R at which a- and a-elements leave S‘ to

n+l
go into SO' The analytical definition of this property,

E=F+R , E=F+R ,

taken with (1), provides an immediate -haracterization of these meshes:

THEOREM I1: Any mesh with steady content hes the transfer property if and only if
(5) F-FmE-E
is satisfied.



Since any mesh in steady-state has steady content, we obtain trivially for this

important case the

COROLLARY: In ste -state h isfies the transfer property if and only

if the difference in flow rates between A and A_is equal to the

difference in entry rates.

Applications:

Some investigators, in modeling transport in biological systems, in
particular [2] the active transport of sodium and potassium ions and (3] the
exchange of potassium ¢nd its labelled isotope across the membranes of living
c~11s, have postulaced as part of their models systems of channels, each channel

-ow enough to effect a ''lining up'' of particles. Such channels, when the system
is physically in steady-state, are either at rest, in which case they contain a
fixed number of particles ordered in some way; or, they are in a8 transient state
caused by the entry of a particle into one end or the other of the channel from
one of the two compartments A, A between which transport is taking place. When
an entry does occur, it sets off a chain reaction which is idealized as just one
particle moving at any time, As it approaches the particle which at rest was in
the l<'§"ﬂ pcsition, it either, with probability t,» passes it and proceeds on to
the next particle; or it strikes and replaces the k-t-h particle, which itself then
moves on to the next. The transfer property thus holds for such channels, so that

the difference of their flow rates is equal to the difference of their entry retes

(Corollary to Theorem 11).
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Fig. 1.

Let us now consider the ratio of the flow rates. We define a mesh [See
Fig. 1.] between A,K by conceptually dividing each channel into n consecutive
sections such that each section contains exactly one particle at rest. For sim=
plicity, n is assumed the same for each channel, and the channels are essumed
mutually exclusive. The set Sl is defined as the union of first sections of the
channels, i.e., those adjacent to SO; the set 52 is defined as the union of
second sections, i.e. those adjacent to the first sections; «nd so forth. The

mesh is Markovian; and in fact it is easy to see that



)L-’Bk.tk+('-tk E_
E+E E+E

a = + (1=t ) —

k= k

because a particle striking and replacing the kth particle has probability

-Ez , when it is next struck, of moving towards the (k+l)St particle; and

E+E

probability -E;; of moving towards the (k-l)St particle. Hence we obtain from
E+E

Theorem | that

E

=] E + tkE

(6)

m|im

For channels so narrow that the particles line up in single file and it is not
possible for one particle to pass another, it follows that tk =0 for all k.
In this case, (6) was essentially given by Hodgkin and Keynes [3] and (5) by
Dantzig and Pace [2],using methods quite different from ours. Bigelow [1] has
obtained a generalization of their methods and results when ty is the seme
non~-zero constant for all k. The case tk-l corresponds to free diffusion,

as noted earlier. The principal motive for such an approach in [2] and [1] is to
demonstrate that flows against electrochemical gradients are possible within the

rather simple framework of these models, and it suffices for the purpose of this

paper to now qualitatively demonstrate this point in the most genersl case.

Counter Gradient Flows

When dealing with chemical solutions, it is necessary to consider from the

same compartment entries of particles of different types, in particular different

 —



b~

. —

chemical species. For each species i we then have ''ent Ei from A

and Ei from Z, with the total entry rates being given by

E=ZE, E= in
i )

Further, we may also define ''"flow rates'' Fi' Fi for each species, such that
F=ZF ,FeLlF .
i ! i
If we assume that within the mesh the behavior of an element is independent of its

species, then the flow of a particular species Fs is in the same ratio to total

flow as Es is to total entries., Thus

F E. =F +t.E
(7) s.s 11 2k
- - k=] = ’
F E E+ ¢t E
s s k

As noted, in this development t the probability of passing the particle in

h g . . . .
K position, is assumed independent of species. A more general model is under

development where tk depends on species.

We say @ counter-gradient flow exists for a species i if the sign of

(Fi-Fi) is opposite to that of (Ei-Ei)' In other words, if E. > Ei’ a counter-

gradient flow will be said to exist if Fi < Fi; and analogously for the case

E. <E..
i i

Let us consider a particular species i=s for which ES > ES and investigate



the conditions for a counter-gradient flow to exist for this species. We first

note thet if the total flow E > E, then

E + tkE 2 E + tkE

F
S 1 i and thus it follows from (7) that == > 1, so that there
F
s

follows for 0 s t

is no counter-gradient flow for the species s. To paraphrase, we have shown that
for the case ES > Es , & counter-gradient flow can possibly exist only when the

total entries by all species E > E.
We thus address ourselves to the question, how must we adjust the ratio of

total entry rates r = E to induce a counter-gradient flow for the species s,
- E
where Es > Es ? By definition, @ counter-gradient flow exists for s if and

only if 's<1; or noting (7) if and only if

F
S

E
(8) 1 > Ei > Aeaod,
S

where we have set
)\-E+tkE-r+tLo

E+eE Y

We assume that the probability tk’ OStkSl. of bypassing a perticle in the
passage is independent of the flow rates E,E. It is easy to verify that xk is

. . . . E .
cont inuous and monotonically non-decressing in r s = , and ranges between its
E

extreme values | and tk as r ranges between | and 0. Thus it follows at

once that the product xl...xn is continuous and monotonically non-decreasing

in mr; and r~nges between its extremes | and tl...tn as r ranges between |

and 0O, whence



F
THEOREM 111: nec ry and sufficient condition that the rati r== can be
£
adjusted so that & counter-qradient flow exists for the species s,
E
where Eﬁ <1, i hat
s
E_&
(9) 1> >t .
s
=
(Note that the case E§ >1 is easily handled with this theorem by an elementary
s

notational exchange of barred and unbarred quantities). The necessity of the con-

dition follows from (8) and the relation just obtained, that is X‘...R 2 tl...t .

To show sufficiency, suppose (9) holds. Because Xl...kn ranges continuously

from 1 to tl...tk, there always exist by the intermediate value theorem,

A, .,ln such that (8) holds.

9o e
(

For the extreme case of narrow channels, for example, t =0 for all k, so

k
that (9) always holds. In that case, it is easy to see that counter-gradient
E
flows will exist if r == is chosen so that "< E*. At the other extreme,
E S
for "‘open'' channels (i.e. free diffusion) where all t, = . condition (8) never

holds and hence counter-gradient flows can never occur,
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