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TIME BEHAVIOR OF MULTIPLE SCATTERING

SECTION 1

INTRODUCTION

Ruffine and de \Volf1 have calculated the steady-statc, incoherent, cross-polar-
ized scattering of electromagnetic waves by a turbulent, tcnuous plasma using
the second Born approximation. The principal result of this calculation, under
the conditions that these authors assume, is that the main contribution to the
cross section for this process comes from terms corresponding to the first and
second scatterings occurring in different correlation cells. Thus the cffect of
statistical averaging is solely that of determining the magnitude of the scattercd

amplitude from cach cell.

The usefulness of cross-polarized data in the analysis of radar returns from
turbulent media is limited unless it can be shown that most of the second scat-
terings take placec within some maximum distance of the first scatterings. If
they do not, then the returned signal will be very much strctched out in time.
The signal will have "'sampled" a large portion of the plasma and one could not

then assign a localized cross section for cross-polarized scattering.

In this report wc consider an idealized form for the wake, namely, a circular

cylinder of diametcr, d. As is readily seen, even directly scattercd signals, sup-
posedly given accurately by the first Born approximation, will be stretched out by
a "time stretch" of the order 2 d/sin 6, where 6 is the angle between the direction

of propagation of the incident wave and the axis of the cylinder. We ncglect of

1) R.S. Ruffine and D. A. de Wolf, Cross Polarized LElectromagnetic Backscat-
ter --- hereinaftcr referred to as (1)



course the very small sphericality of the incident wave at the position of the

plasma.

In this report we also use the second Born approximation but consider an input
of the form of a square-wave-modulated r-f signal. The carrier frequency is
taken to be higher than the plasma frequency of the scattering medium. The
time dependence of the scattercd power is investigated for times which correcs-
pond to pulse stretching many times longer than the unavoidable stretch men-
tioned in the previous paragraph. A comparison is made between the power re-
turned at such times and that returned at earlier times. The principal result is
that the "cross section" decreases as the inverse square of the stretch time, for
long enough times. Also thc cross section bccomes increasingly aspect sensi-

tive as time increases.

In Section II we derive the relevant field amplitude and discuss some gencral

aspects of the problem. In Section III we formally introduce the statistical aver-
aging. The so-called isochronal surfaces are discussed in Scction IV. In Sce-

tion V we compute thc incohercnt cross section for large stretch times and com-
pare the results with thosc of (1). Finally, in Section VI we estimate the proportion
of the scattering which arises from the resolution cells to the scattering from one

resolution cell when the electron density is not constant.

In Figure 1 there is shown a schematic of the scattering geometry and the rela-

tive sizes of the various distances involved in the problem.

|8\
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Figurc 1. Schematic of the Scattering



SECTION 2

THE WAVE EQUATION AND ITS SOLUTION

We use the microscopic form of Maxwell's equations in Gaussian units

Pk B =
C
(1)
— 4 —
VXH:-ﬂj +._1...a_E
c c ot

For a tenuous plasma we use the constituitive equation

g o

3 ] 23 :
5t at O E )
2
where wp2 = 47 n e /m is the plasma frequency (n is the electron number den-
sity.) Following the usual procedure of eliminating the magnetic field one gets:
2
1 3% a -~ Y
— — E+VYXVXE=-—E (3)
c2 at? c?

We wish to solve this equation for the electric field by converting it into an in-
tegral equation and by then using the first few terms of the corresponding
Neumann- Liouville series (successive Born approximations.) In order to do this
it is necessary to invert the vector operators on the left-hand side. We shall do
this symbolically. For didactic reasons we shall first treat the steady-state

equation considered in (1). This equation can be written

.

—VxVx§+k2E=? )

If E were purely transverse, then the solution would be



f‘ fG(r r' i@ (V +k G(_Ij,El)

a7/

_ (v SR Y6 (e £ = 6()(F-r)

As both E and f possess longitudinal parts we first decompose equation (4) into

such parts and get
f
L
= £ B oo (6)
T L
V2 + k2 K2

This follows since x ¥ x E is purely transverse and also since
. Em) = 0.
. v (Vv T
Now

=~ 1 = = 1 ’ =, 32y
_ . = 7 L) d
fL—' V;Z- v f V]<ﬁ4” r—r) v f(r ) : (7)

Combining the results of equations (6) and (7) one gets

f
- I N L 1 = 1 1 !
E=__ _fp+— =__.___|:f-v_ V’.?]+— v_zv’

v2+k2 K2 V2+k2 v2 k2 A

sl (8)

This last equation can be written

1 = 1 o 1
E\— f: v2vl v'.f:—zv

1
e 2 2
V2+k2 k2 (k2 +V2) A2 K 5 A

The last term stands for

—lv‘/‘G(I‘,I‘l)ﬁ\,'?(I‘l)dBI‘,:-—l—-Vﬁ "G)deI‘,
k2 K

- _Llyv. f (10)
k2 V®+k



The first equality follows upon integration by parts and the parenthesis indieates
that the differentiation is to be performed only on the Green's funetion G. In-

serting the results of (10) into (9) yields (1 - (5)).

Returning to the ease at hand, we have an equation of the form:

—VXVXL D2 f

2
1 8
D2 = =
w2 (11)
- p .
£ =— 8
2
Proeeeding as before we have
ET = -——2 5 fT, EL =R —2- : fL (12)
v“-D D

2
These equations are quite similar to those in (6); the operator D™ has replaeed

2 . . .
-kz. Sinee D eommutes with V™, we ean immediately write

T«:‘:(l-vg)- L (13)
D v2 - p?

or equivalently

= - _ \v/ , ’ R
E(r,t)—(l ___2_) fG(x,x)f(x)dx

D
where
i 4 32 . :
X = (r,et), d°x = d redt and G is given by
/ i Y ’ ’
= —————§6|ir -’ - - >
Gx,x) er_r,lé[r B e(t t)],t t (14)
=0 , =i,
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The operator D2 is an integral operator inverse to D2.

VA
Denoting the operator 1 - Y by P we write down the first three terms of the

familiar Born approximation:

" 15)
B0 = Bo 00+ 4110 P - fGix-yn ) Egt) dty (

+ @dnry)? P x) -fG(x -y)n ) P ) -fGO(y - z) n(z) dizddy;

A & o —2
mc

The third term in the above expression gives the lowest order eontribution to the

eross-polarized field at far distanees from the seatterer.

The eross-polarized amplitude, in the seeond Born approximation, at the posi-
tion of the reeeiver is then
A A
a 5 (€e "V (€g - V)
g B = £ E(4=1Tr0)./.G(x-y)n(y) D2 Gy-2z)n(z) Eo(z)d4z (l4y
(16)

A
3

where

A =
Eog=¢€o * Ep
AA . SN . o .
and e, ee are the unit polarization veetors for the direet- and eross-polarized
direetions, respeetively. We have assumed that the seatterer is far from the

reeeiver and have, thus, retained only the transverse part of the seattered field.

In what follows, we shall eonsider that the transmitter and reeeiver are loeated
at the same point and we shall take this position to lie at the origin of the
(spherieal) eo-ordinate system. The simplest next step that suggests itself is
to eonsider an ineident field of the form

A L
e

E = oEo=eo'ﬁ5 (t-r/e) (17)



and then to find the resultant scattercd field as a function of time. However, such
an input, if we use the Born formalism, would result in the plasma particles
seeming to gain a constant speed and undergoing an unbounded displacement in-
creasing linearly with time. Now an actual plasma subjected to such an electric
field would undergo (damped) plasma oscillations. These oscillations are the
resonances of the system; it is well known that resonance behavior cannot be
described by any finite number of Born terms. Instead, we must consider in-
puts that are higher in frequency than the plasma oscillations. Tor this reason

we take an input of the form

A
- €of T T 1 (18)
Eo(r,t) ;T sm(o(t—E) |:H <t+ T_E>_H (t—;)

AT T 1 u=>20
eoﬁl <t—E;T>; H(u)=0 g

i.c., a square-wave-modulated pulse of r-f at the angular frequency, w. At the

position of the radar set, r = 0, the pulse begins att=- T and ends at t = 0.

We choose T such that w T is a multiplc of 217 .

The amplitude at the receiver can now bhc written more explicitly after integrat-

ing by parts as

2
£ roff13 lté[ t t)Jn(")
SR a r_ac Ty = 'C = Tr
2 2%t T e o 2 o -
5 _ _
e e . VJ <R12 C(tZ tl))n 1_\ —l—I t —il— (131* cdt
B " Vg€, Yy Res (1)D2 17 e Je T efhy

and R is the (almost constant) distance from the receiver

Here, R12 S |i:1 = ?2

to a point on the cylinder. Carrying out the time integrations, we get
2

N

Yo (3 A A fn(rﬂ 1 ( ry Ty R12> 3
—~— ; . = -— - —- —J]dr 20
¢ sz o r2n(r2) ec VZeo V2 Ryo DZI c e c ‘ 11 (20)




It is to be noted that the differential operators act only on the function R 12"

Beeause of the nature of the function I, L I will be zero for

D
ry Ty Ry
Pk fle— o= =— < B
e e e
a function of time for
r1+r2+R12 r1+r2+R12
o T+ = <t< : : (21)

and a constant for t > (r; + ry + Ryg)/c. Reeall that
g 2

2l 2T,

ot at2

2
wp Eg =

1
(P, - eleetrie polarization) so that l§l’measures the polarization of the medium.

In the Born formalism, then, there exists a remanent polarization of the medium
due to the initial pulse. From our previous diseussion we infer that the aetual
polarization will osecillate at the appropriate plasma frequeney. In either ease
the eleetrie fields for t > (r1 + r2 = Rlz)/o are not at the proper frequeney to be

deteeted and we shall negleet the spurious terms.

It is eonvenient to consider that the incident beam intereepts only a finite seg-
ment of the eylinder. If 6 denotes the angle between the axis of the eylinder and
the direetion of propagation of‘the ineident wave, then the length of the eylindrieal
segment interecepted will be taken to be £ /sin 8 where £ is the width of the beam.
The direetly polarized wave, granted that it is given by the first Born approxi-
mation, will then be stretehed out for a time of the order of (2 £ eot 8)/e. Thus
£ must be ehosen small enough that the streteh time of —26—2 eot B is mueh smaller

than 2D/ (e sin 6).

Returning now to the integral in equation (20), and utilizing all results of the last
paragraph but one, then for a fixed time, t, we have that the integrand differs

from zero (in an essential way) in the range of R12 as given by



(ry +ro) Ri2 (rq+1y)

T+t- > i (22
c c c

Again denoting by d the diameter of the cylinder, we find for

2d

>
t 2R+Sine

(23)

that R;9 > 0 and the lower bound of this important function increases lincarly
with the time. In thc above expression, R is the distancc from the receiver to

the closest point at which the incident beam intercepts the cylinder.

Consider now that we hold the point of first scattering, r;, as well as t fixed.
The points where the second scatterings take place lie with volumes bounded by
the surface of cylinder and the surfaces

Rqo (r1 +Tr9) Ryo (ri+rg

— = P ; =fe === (24)
C C C C

These last two surfaces will be referred to as the earlier and later isochronal

surfaces, respectively. The later isochronal surface is actually defined only
2

fort > D

sin 6

low are intended.

+ 2R and it is only for such time that the considerations which fol-

As stated in the introduction, there is a stretching of the pulse even if the first
Born term alone is considered because of the finite diameter of the cylinder. The

directly polarized returns will persist until

2R 2D
= 25
t c ' csin® (22)
" : ’ 2R 2D
This leads us to introduce the time T =1 - = dh In summary, for

T >0, Ryg > 0.

10



We will be interested in the dependence of the cross-polarized field as a func-
. 2D/sin

tion of T/T g where Tg =# . We have that for T/Tg >> 1, R12 ~c T.
Also T/Tg > 2, Ryg > ¢ Tg. Let us now carry out the indicated differentia-

tions in equation (18). Note that VI( - R;5 - ] - r9) = (- VRy9) DI. Thus:

b L, VEpVEp

AVAVAury 1 |
2 = — T - e =
D R12 R I ZV(B )VRlZDI
12 12 (26)
1 1 1 1
= == (VR )=+ (VV—>——I
R12 12° D R12 D2
Inserting these results into equation (20) we get
2 == o
50 3a N [ SN (Cc ' R12) (o R12) 3 1 3
gﬁf*z dr2n(r2) drln(rl) 3 I+ﬁ—'ﬁl+_—1
R Ryp2 - Rf, D?
(27)

As T increases, the first term in the bracket will dominate the other terms
since the lower bound on R;, increases linearly with 7. This first term gives
the radiation field resulting from the first scattering; the other terms represent

the induction and quasi-static ficlds.

For the timeinterval -c T+ +r + <ct<r_ +
i inter e (r1 r2 R12) (& rl r2+R12,

e}
I = sin w <t - %2) (282)

1 w
el |1
DI c 0 (28D)
P . ( p12>
t- —— sinw - —

1 2 @

=T = i@ 5 = 5 (Z‘QC)
D? < w

11



where

pl2 =Ty +Ty +R12

2

The terms c/w0 in (28b) and -C:o— \} = plz/c] in (28c) will be ignored as being
0

due to spurious d-c effects that are undetectable by the receiver.

Inasmuch as the scattered power rather than the field amplitude itself is of in-
terest we shall eventually average over one cycle of the r-f excitation. Before

we do this we shall perform, formally, the relevant statistical averaging.

L2



SECTION 3

STATISTICAL CONSIDERATIONS

First let us consider the coherent cross section. We shall write n = n  + An,
where n, is the average particle density and An is the fluctuation. Statistical
averages will be denoted by the brackets < > . Averages over a cycle will be in-
dicated with a bar over the quantity. The statistically averaged field amplitude

is given by
yie =

<€ > = 2 Fadp d3r2 [n (ry) ny (ro) + & (r7) A (r2) N\

R4 il Y 0 < £

N 2 A >

(¢c * Ryg) (&5 * Ryp) . 3 i . 5%
+ —— HL R

3 5 R12 D 2 2 (29)

Rig

If the diameter of the cylinder is large compared with the correlation length, L,

then < A(ry) A(ro) > is negligible when T/Te >>1 for any reasonable correcla-

tion function.

Squaring and averaging over one cycle of the r-f excitation, one has, for 7/T

2
2 s 4 3 3 3 3
<£> =§ro ﬂﬂdrldrzd rg d°ry ng (ry) ...

o (r4> <80 ' R12)(€c ' R34> (60' Rig ><30'ﬁ39
x B(p, R) (30)

3 3
R12R34

large

13



where B (p, R) =

1lh- __302 fi= _—302 + 30_2 b L s e =Pk )
2 2_2 2_2 2 R R 12 734
(31)

I RN -l SN U WAl S

2 127734 | W \Ryp Ry, w2 22

12 34

Each of the terms in the integral above can be broken up into terms of the form

- —
ff d3r1 d3r2 \:(’e\c- R12> <@o' R12> x function of Ryo x trig function

(32)
of (wplz)] X [similar expression in Rgy, p34:l

For ‘r'/T6 sufficiently large, R, (and Rgy) are bounded from below. Holding the
point of first scattering rq(r3) fixed and integratingover rg (ry) will yield a very
small result because of the oscillations of the trigonometric functions. This is
true provided that n  does not have a pronounced dependence upon position. In
fact, we shall consider only the case where n varies slowly over several wave-
lengths of the r-f wave. However the fluctuations may vary considerably with

position.

We turn now to the calculation of the incoherent scattering and compute the
form of

<€2> = < £>2 = £2inc (33)

when ‘r/Te >>1. In this case, R12 and R34 > D and if D/LC is sufficiently
large, then there is no effective correlation between the density fluctuations at
points ry and ro and at rg and r4. Similarly, with the restriction of the initial

beam to a segment of the cylinder, and again for 'r/Te large, corrclations

14



between fluctuations at r{ and ry and at rg and ry effeetively vanish. One has,

under these eircumstances,

2 2 4 5 e 3. 8. (BrR) ... (6 Ray
3

R12RS4

(34)
[n (1) n (3) <A2n>C (2,4) + n(2)n (4) <A2n>C (1,3)

+ ({ A%y ¢ (1,3 C<2,4)] B (R, p)

where C (1, 3) is the two-point eorrelation funetion (we take exp - R213/L20).
In deriving this result we took the asymptotie form of the four point eorrela-
tion funetion to be a product of two-point funetions. For obvious reasons, any

of the three-point correlation funetions vanish here.

Thus, for T/Te
only terms of the Type I and Type IIle (in the notation of Ruffine and de \Volf(])).

and D/ Le suffieiently large the incoherent cross seetion contains

The terms of Type I, proportional to, say, ngo(1) n (3) C(2,4), are small for
reasons given in the discussion of the eoherent seattering, namely, eancella-
tions due to the trigonometric functions in B (p,R). The same argument is

given in (1). Thus we are led to eonsider only terms of type Ille.

Before earrying out the integrations in equation (34) we turn to a eonsideration

of the iso-surfaces mentioned in the previous seetion.



SECTION 4

THE ISOCHRONAL SURFACES

At the position of the scatterer the incident wave shall be considered as ap-
proximately planar ovcr the entire length of the plasma cylinder; we shall use
this approximation for the rest of the paper. As has been mentioned pre-
viously, the incident beam, for calculational purposes, is considered to be
spatially restricted so as to intercept the cylinder across a length £ /sin 6
parallel to the cylindrical axis. Figure 2 shows a cross section of the cylinder
in a plane containing the axis of the cylinder and the propagation vector of the
incident wave. The nearest point of interception of the beam and cylinder we
take for the origin of a cartesian coordinate system £,  with n along the direc-
tion of propagation. Let the point (§;, 77) represent a point of first scattcring
and (£5, 79) the point of a possible second scattering. For the later isochronal

surface, wc have

2 2
Nyt +‘/g2 +(My-Tg) * 2R = ct

or

2
ng +(T’2 '771)2 == (772 +771) + C (T + Te) (35)

(recalling that T, = 2 D/C sin 9).

Introducing the dimensionless quantities

/3=2n1;0<=—1;u=——€2;1/ =772 (36)
CTg Tg Ty CTgy

16



n

DIRECTION OF
INCIDENT WAVE

L r
$272
CYLINDER
o= R
] s
o1t
DISTANCE R
TO RADAR SET
R>>D
£
Tigurc 2. Geometry for Isochronal Surfaces
we get
1+ u2 g=s1
v = i ] 37
2 2{a +1- 8] @ =0 el
The isosurface is a parabolic sheet whose curvature is given by - 1/(@+1 - 8)

B0

and whose point of interception with the 7 axis is C TG’ since, at the
point of first scattering 0 < £ < 4, the isochronal surface is actually a volume.
The distance £ is taken small enough that we can ignore this complication in

what follows.

The upper and lower edges of the cylindrical cross section are given by

17



1

VU =—2-+ uctn g
(38)
= tn
Vg = WE 6
The intersections between the parabola (37) and the lines (38) are at
0 = @+1-8) |-cng i) ctn® O —>
U oa+t1-8
(39)
+ 2 o +1
iy = e d=g) ’°m“\/°“‘ g ey
Fora>>1-8
ui~ o bl = -ctn 8 £csc 8 1-8 4
v = ( B) F 5 SO
8 (40)
+ ~ - - —_— i
u (¢ +1-8) Cm6i0809i2(a+1) sin 6
L
From this one finds
+ + sin 6
LR (e (41)

The distance between two members of a set of intercepts, measured along the

1
axis of the cylinder is approximately 9 (1 - cos B8). 1If the two intercepts are
connected by a chord, this chord makes an angle ¢ with the axis of the cylinder,

where ¢ is given by

_l-cos® ., 8. 6

since in units of CT6 the diameter is 1/2 sin 8.

18



The earlier isochronal surfaces are easily obtained by replacing 7 by 7+ T in
the appropriate equations. T, it will be recalled, is the time duration of the
initial r-f pulse. Certainly, when the above approximations hold for later
isochronal surfaces they hold for the earlier one. In Figures 3, 4, and 5 we
show the later isochronal surfaces for values of 8= 0, 1/2, and 1 respectively

and for various values of ¢.

CYLINDER -

Figure 3. Isochronal Surfaces (8 = 0)

19



CYLINDER

Figure 4. Isochronal Surfaces (8 = 1/2)

7

CYLINDER

Figure 5. Isochronal Surfaces (8 = 1) 20



SECTION 5

THE INCOHERENT CROSS SECTION FOR T/T6>>1

In this case, thc dominant contribution will be

2
?_ mfz_lﬁfm [<A2>j| Si{154) €i(2s4) (i)cosﬁ
inc 4 5 c
R

Rig Rgy

(43)
AA A A

(p12 = p34) (ec - RlZ) ... (eg" R3g)
where ?{1 2 and QS 4 are unit vectors. If the turbulence of the plasma is uniform
throughout the cylinder, then the essential time dependence is contained in the
product Rq9 Rgy occurring in the denominator of the integrand. This is so be-
cause the lower bound on this product increases quadratically with the time;
thus the integral varies as the inverse square of the time for sufficiently long
times. An inspection of Figures 3-5 also shows that the scattered, incoherent,
cross polarized cross section becomes increasingly aspect sensitive as time in-
creases since 312 and 1/1\34 are asymptotically parallel to the cylindrical axis.

This contrasts with the results in (1); in the case treated in that paper therc is,

however, always an input.

These results are what is to be expected — at the times considered the radia-
tion field from the first scattering gives the largest contribution and the power
in the radial field drops off as the distance squared. Also, the polarization of

. Y —
the first scattered wave is perpendicular to Ry x R. The amplitude in the Ry,



direetion is proportional to , é\o X ﬁ12 , and the projection of the polarization of

the wave along R onto é\c is I é?a X ﬁ\12 I . When é‘o, é\e and ﬁ12 lie in one plane
A AN A Fay A A A Y
|(eO x R12)| & x R12)| = |@& xRyp) + @, x Rya) | S I(ee - Ryo)
A
(eo R12) I

Before proeeeding we shall ehange our notation to more nearly matech that of

(1). First, at the position of the scatterer the ineident wave is nearly plane.
Secondly a unit amplitude incident field is assumed in (1). We thus make the

replacements

w =\
3 " 1L 5 Pg ” BRr(r 1) + KRy

R 34 s | 4 34

-
where k is the direetion of propagation. We multiply equation (34) by 4 7 R2

to
form a seattering eross seetion. Finally it is neeessary to replace 47 An by

the A of (1).

This gives us a value for the ineoherent cross section when 7/1 . is not large

6
and the ratio of S =< §2 (FEEm ) >/< 52 > for T/Te >>1 and the values of
< gzinc >just diseussed provides a dimensionless measure of the extent of

pulse stretching.

We have seen that the ineoherent power return should vary as (e‘)’)'2 when
T/Te >>1. Now if the pulse length, eT, is many times larger than the
diameter, there will bc a time when the seattering eross section should be
given very ncarly by the steady state result of (1) Equation 50. This will be
true at times when the later isosurfaee has not yet devcloped but the earlier
isosurface is at a large enough distanee from the initial point of seattering that

the results of Ruffine and de Wolf(1) apply. (Rceall that these authors assume



that the length of the cylinder is large compared with the radius.) The "active
region" of the cylinder we are discussing is given by the distance between the
two earlier isosurfaces along the axis. The only change we must make in equa-
tion 50(1) is to replace the volume in that formula by the volume 7 a2 1/sin 6

where a is the radius of the cylinder.

Making the indicated changes and forming the ratio S we find
2 2
3(2)7 R L sin g

(4n)3 17233& LGC {3+sin¢+....}

" A [(é\c'R12) (go'ﬁlz) @c'ﬁ\34) (é\o'ﬁ34)]
xf[ff d3r1---d3r4

Rig Rgy

B (R, p) C(1,3)C(2,4)

A A
bxk

%

Figure 6. Geometry of Scattering from a Cylinder

The relevant angles are shown in Figure 6.

For the integration over ?3 (’1\‘4), we first shift the origin to T1 (t2) and use the
nature of the correlation function to justify the extension of the resulting

integrals to all of space. Furthermore, we can replace R34 by R12 except in



the function B (R, p). The R34 occurring in B (R, p) can be approximated by

7\ - EN = —_
Rggy = Ryp *+ Ry [r4 By =iEg - rﬂ]

@
Only the terms in B (R, p) proportional to cos o (P19 Pgy) will contribute
(the one proportional to the sin function gives zero in this approximation), and

of these we consider only terms independent of Ryp and Rgy:

d3r d3
g = 3 (2) sin 617 ( ) ff (é\c'ﬁlz)z (go'ﬁ12)2
(41r) R12

1
{3 + sinzw +}

D
The integral over ?1 is essentially the r; volume (r a2 1/ sin 8) times the value

of the integral over ?2 when ?1 is on the axis of cylinder. Thus,

d3

‘rra{3+ ;

Assuming that a/Ry, <<1, (é\c -ﬁlg)z (/e\o - R12)2 (P

A A2
c—2) (cp"2) or
cos? 8, cos? B, in the notation of (1). For the purposes of integration, we re-
place the isochronal surfaces by planes perpendicular to the axis passing

through the points of intersection of these surfaces with the axis.

Then
- -
) . zL zE

. 6a [cos 60 cos ec] / dz . / d_z

= {3 PSS } . 22 2
E 1 P |

" Left-hand Right-hand (44)
Iso-volume Iso-volume

(Equation continued on ncxt page)

24



(44) (cont.)

2 2 |
) 3a cos 90 cos B¢ AR ZE . zE - ZL
a LR } Z. % zZ., Z
{ B %L/ Rignt
hand hand
2 2
3a cos 60 cos” B¢ 2¢T

{3+n.} GT+ D >&T+CT+ D )
sin 6 sin 6

Thus the pulse stretching falls off as the inverse square of the stretch time.

VI. NON-UNIFORM ELECTRON DENSITY

In order to obtain Equation (44) a number of simplifying assumptions were made
including:

1) That the correlation function is of the form exp (—Rz/{,zc)

2) That the fluctuation strength < A2 > is a constant.

Since neither of these conditions are obscrved in actual range observations, it
is interesting to see what results when they arc dropped. We shall also ask a
somewhat different question, namely, given that at some time, t, wec observe

a direct and a cross polarized return, what is the error in assuming that the

two scatterings which caused the cross-polarized return both occurred in the

volume that caused the dircet return? We assume that the incident pulsc is

much longer than the diameter of the cylinder and is infinitely wide. The
direct scattering takes place in the illuiminated volume of the cylinder defined
as the volume lying between planes located at distances ¢ (t + T)/2 and ct/2.

When the radar linc of sight is along the cylinder areas, at lcast one of the



collisions must occur in this volume. Since we need only be concerned with
the case of small angle-6, we take this to be true in what follows. Proceeding

as before, Equation (43) can be put into the form

2
5 B dr. dt
e L2 —1 2 2 -
e =2 ﬁTéabQ @) F(+k)
R12

R
(45)

rE-k) x &R &7,

k = kR, F(k) =fc (R) cos (k - R) d R.

The limits on ry and ry can be derived from (21). When ry and ry lie in the
illuminated volume, (45) is equivalent to the result obtained in (1). (The

factor of 1/2 arises from the fact that we have always taken r; and rg to be in
the same correlation cell.) We now proceed to estimate the contribution to (45)

when ry lies outside of the correlation volume.

For sufficiently large separation between scatterers, k lies along the cylinder

axis. Defining this axis by a unit vector, b, we have

2

_— T dr_ dg
2 1 o =1 =2
$ine =5—J—<A2>2 P (ko +k) F (K, - k)
R R2
17
46
2 (46)
1 o 4y 5 2 G
+ 5 5 F(ke+kb) F(k, -kb)(e.,-b)" (g,'b)

=



dr. d
/ 22 Gt o)’

2
W vV, R, (cont. )

where V; is the volume of the cylinder below the plane at ct/2 and Vs is the il-
luminated volume. To estimate the value of the second integral in (46), choose
the origin of the coordinate system at the center of the illuminated volume and

replace R12 by T The integral becomes

9z, O, 2
ﬂ 22 Lot e
R 12
et

f " 4cos 8 )
~ v, {a@%> na 3
= 1
Yo
where Lo is the distance from the start of the cylinder to the center of the il-
luminated volume. Thus, we may define a new quantity S' to be the ratio be-

tween the return in which one scattering is outside the illuminated volume to

the return in which both scatterings are outside the illuminated volumec.

31r2 a <A2>dx

St = —
16 <A(2)2> xz

F(k, +kb) F & - kb €, D€, H?

AT N2
/df?F b 110 T -ty BB B

sin 8

ANOA
wherecos 6=k Db




For the special case of a Gaussian correlation function, S' reduces to

2 2
coS 60 cos ec i

S' =6
2 2
3+cos2 60+cos2 6, +9 cos 6, cosz 6, < A2) >
_cT .
4 cos B
2
<A(x) >dx
2
%
_'f’o

(Please see Reference 1 for more detail.)

Finally, we assume that both unit polarization vectors have the same projection
on the plane containing k = and b and we estimate the contribution from the adjoin-

ing resolution cell. Assuming

cos 1k D ~ 20°
cos 90 = cos 92 =092
L = ¢ T
0 2cos B

then

2 D
cT <A(2)2>

2 cos 6

S' ~ 2 X (.0025)

Taking a/lLO ~0.1 (surely an overestimate)

e <aqad > '
{6

we have S' =~ 5x10



The ratio of < A (1)2 >/< A(2)2 > can be estimated from the ratio of direct
polarized wake scattering in adjacent resolution cells. Thus, if S' < 1072 for
example, the cross-polarized scattering can be assumed to arise from the
same resolution cell as the directly-polarized scattering. This will occur

when

2
1
AW D (g xe?
Ca@?)
or when the direct polarized scattering decreases by less than approximately

23 db per resolution cell.
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