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TIME BEHAVIOR OF MULTIPLE SCATTERING 

SECTION  1 

INTRODUCTION 

Ruffine and de Wolf   have calculated the steady-state, incoherent, cross-polar- 

ized scattering of electromagnetic waves by a turbulent, tenuous plasma using 

the second Born approximation.    The principal result of this calculation, under 

the conditions that these authors assume, is that the main contribution to the 

cross section for this process comes from terms corresponding to the first and 

second scatterings occurring in different correlation cells.    Thus the effect of 

statistical averaging is solely that of determining the magnitude of the scattered 

amplitude from each cell. 

The usefulness of cross-polarized data in the analysis of radar returns from 

turbulent media is limited unless it can be shown that most of the second scat- 

terings take place within some maximum distance of the first scatterings.    If 

they do not, then the returned signal will be very much stretched out in time. 

The signal will have "sampled" a large portion of the plasma and one could not 

then assign a localized cross section for cross-polarized scattering. 

In this report we consider an idealized form for the wake, namely, a circular 

cylinder of diameter, d„    As is readily seen, even directly scattered signals, sup- 

posedly given accurately by the first Born approximation, will be stretched out by 

a "time stretch" of the order 2 d/sin 6, where 6 is the angle between the direction 

of propagation of the incident wave and the axis of the cylinder.    We neglect of 

1) R.S. Ruffine and D. A. de Wolf, Cross Polarized Electromagnetic Backscat- 
ter — hereinafter referred to as (1) 



course the very small sphericality of the incident wave at the position of the 

plasma. 

In this report we also use the second Born approximation but consider an input 

of the form of a square-wave-modulated r-f signal.    The carrier frequency is 

taken to be higher than the plasma frequency of the scattering medium.    The 

time dependence of the scattered power is investigated for times which corres- 

pond to pulse stretching many times longer than the unavoidable stretch men- 

tioned in the previous paragraph.   A comparison is made between the power re- 

turned at such times and that returned at earlier times.    The principal result is 

that the "cross section" decreases as the inverse square of the stretch time, for 

long enough times.    Also the cross section becomes increasingly aspect sensi- 

tive as time increases. 

In Section II we derive the relevant field amplitude and discuss some general 

aspects of the problem.    In Section III we formally introduce the statistical aver- 

aging.    The so-called isochronal surfaces are discussed in Section IV.    In Sec- 

tion V we compute the incoherent cross section for large stretch times and com- 

pare the results with those of (1).    Finally, in Section VI we estimate the proportion 

of the scattering which arises from the resolution cells to the scattering from one 

resolution cell when the electron density is not constant. 

In Figure 1 there is shown a schematic of the scattering geometry and the rela- 

tive sizes of the various distances involved in the problem. 



AXIS 

Figure 1.    Schematic of the Scattering 



SECTION 2 

THE WAVE EQUATION AND ITS SOLUTION 

We use the microscopic form of Maxwell's equations in Gaussian units 

V x T = - —-"H 
c 

(1) 
_    TT     4TT-^     1   3E 

c c   at 

For a tenuous plasma we use the constitutive equation 

oT     dT 2 ^ 
ct       dt      WP E <2) 

2 2 where cop  = 4n n e /m is the plasma frequency (n is the electron number den- 

sity. )   Following the usual procedure of eliminating the magnetic field one gets: 

1    a2   ^                        -         "p 
—   —  E+VxVxE = -   E (3) 
c2 St2 c2 

We wish to solve this equation for the electric field by converting it into an in- 

tegral equation and by then using the first few terms of the corresponding 

Neumann-Liouville series (successive Born approximations.)   In order to do this 

it is necessary to invert the vector operators on the left-hand side.    We shall do 

this symbolically.    For didactic reasons we shall first treat the steady-state 

equation considered in (1).    This equation can be written 

-VxVxE + k2E=f (4) 

If E were purely transverse, then the solution would be 



E =--  f =  j G(r, r   f(r )d  r    (V  +k )G(r, r ) 
V2 + k^ 

(5) 

=  (V   +k2)G(r, r')   =  6{3)(r-V) 

As both E and f possess longitudinal parts we first decompose equation (4) into 

such parts and get 

f 
1 L ET =   — ^fT;    EL = — (G) 

Vz + kz kz 

This follows since      x  ' x Eis purely transverse and also since 

V (V •  ET) = 0. 

Now 

Combining the results of equations (6) and (7) one gets 

1       ,      fL 

+ k2L        V2 J    k
2       A2 

E
 = 5fT+"T   = -|f"V-0 V.f |+-   V— V.f      (8) 

V2+k2 k"1       V 

This last equation can be written 

E--J-   f=  I V2t>    I    v'.f^   v-^L_   v'.f (9) 
v

2+k2     k2(k2+v2) A k k+A 

The last term stands for 

i v/*G(r,r') V' • f(r') d3 r' = - i-   V   f(   ' -G)fd3r' 
k2   J \c      J 

— V V    • 
,2 TT2     ,2 k V   + k 

f (10) 



The first equality follows upon integration by parts and the parenthesis indicates 

that the differentiation is to be performed only on the Green's function G.   In- 

serting the results of (10) into (9) yields (1 - (5)). 

Returning to the case at hand, we have an equation of the form: 

-VxVxE-D2E = f, 

1) 2 i   a 2 

c2 St2 

2 
-       wp    -» 
f   =   E 

c2 

Proceeding as before we have 

(ID 

ET=           fT;       EL = - — •   fL (12) 
V^ - D^ D 

2 
These equations are quite similar to those in (6); the operator D   has replaced 

2 2 
-k .    Since D commutes with V ,   we can immediately write 

I1"   J/    V2-D 
t (.3) 

or equivalently 

-T)-/' 
E(r,t) = f G (x, x') f (x7) d4x' 

where 

-» 4 3-» 
x = (r,ct), d x = d  rcdt and G is given by 

- o , t<t'. 

(14) 



The operator D 2 is an integral operator inverse to D2. 

VV 
Denoting the operator 1 -  —=-?> by P we write down the first three terms of the 

familiar Born approximation: 

E (x) = E0 (x) + 477 rG P (x)  • J G (x - y) n (y) E0 (y) d4 y 

+   (4Trr0)2 P (x)   j G (x - y) n (y) P (y)   J G0 (y - z) n (z) d4z d4y; 

The third term in the above expression gives the lowest order contribution to the 

cross-polarized field at far distances from the scatterer. 

The cross-polarized amplitude, in the second Born approximation, at the posi- 

tion of the receiver is then 

A       -                           of                    r(£c-V)(e0-V)/. ] 
e„ •  E  =   4   = (4 77r0)2/G(x-y)n(y)     -5 J G(y-z)n(z) E0(z)d4z   d4y 

(16) 

where 

E    =e    •   1 ^o     co      ^o 

and e0, ec   are the unit polarization vectors for the direct- and cross-polarized 

directions, respectively.   We have assumed that the scatterer is far from the 

receiver and have, thus, retained only the transverse part of the scattered field. 

In what follows, we shall consider that the transmitter and receiver are located 

at the same point and we shall take this position to lie at the origin of the 

(spherical) co-ordinate system.    The simplest next step that suggests itself is 

to consider an incident field of the form 

E = e0E0 =e0|-6 (t - r/c) (17) 



and then to find the resultant scattered field as a function of time.    However, such 

an input, if we use the Born formalism, would result in the plasma particles 

seeming to gain a constant speed and undergoing an unbounded displacement in- 

creasing linearly with time.    Now an actual plasma subjected to such an electric 

field would undergo (damped) plasma oscillations.    These oscillations are the 

resonances of the system; it is well known that resonance behavior cannot be 

described by any finite number of Born terms.    Instead, we must consider in- 

puts that are higher in frequency than the plasma oscillations.    For this reason 

we take an input of the form 

e„f 
S0(r,t)=^-.ln«(t-£)[H(t+T-|)-H(t-f) 

A    f     /      r     \ 1 
SeORIit-c;T/'   !    H(U)=0 

(18) 

u > 0 
u < 0 

i. e. , a square-wave-modulated pulse of r-f at the angular frequency, CO.    At the 

position of the radar set, r = 0, the pulse begins at t = - T and ends at t = 0. 

We choose T such that CO T is a multiple of 2 77. 

The amplitude at the receiver can now be written more explicitly after integrat- 

ing by parts as 

-2fjdr2dct26 /dVct26[r2-°V 

J T? 

n (r ) V  2 (19) 

A A 
et •   V2 % 12 

,tl>)     -      1    /      rA  3 
— ^^ifr—jdr'cdti 

Here, R12 =  |ri " r2    ancl R is ^e (a-lmost constant) distance from the receiver 

ut the time integrations, we get 

J    Rio ^2   \      c c        c /        1 

to a point on the cylinder.   Carrying out the time integrations, we get 
2 •- -   ± 

xo    C 3 A A 
£  °*R2yd  r2n(r0) e^     V0 e 

2'    c       2   o 



It is to be noted that the differential operators act only on the function R,9- 

Because of the nature of the function I, — I will be zero for 

rl      r2       R12 
T + t-— -—    <  0, 

c       c c 

a function of time for 

r1 + r2 + Ri2 rx + r2 + R12 

- T +  < t <   , (21) 
c c 

and a constant for t > (r-^ + r2 + Ri2)/c.   Recall that 

S U       3 2 P 2 Jo o 

^P E°  = "o7  =   Tt2" 
(PQ - electric polarization) so that ~"^T measures the polarization of the medium. 

In the Born formalism, then, there exists a remanent polarization of the medium 

due to the initial pulse.    From our previous discussion we infer mat the actual 

polarization will oscillate at the appropriate plasma frequency.    In either case 

the electric fields for t > (r   + r   = R    )/c are not at the proper frequency to be 

detected and we shall neglect the spurious terms. 

It is convenient to consider that the incident beam intercepts only a  finite seg- 

ment of the cylinder.    If 9 denotes the angle between the axis of the cylinder and 

the direction of propagation of the incident wave, then the length of the cylindrical 

segment intercepted will be taken to be I /sin 0 where I is the width of the beam. 

The directly polarized wave, granted that it is given by the first Born approxi- 

mation, will then be stretched out for a time of the order of (2 I cot 9)/c.    Thus 
2 I 

I must be chosen small enough that the stretch time of — cot 9 is much smaller 

than 2D/(c sin 9). 

Returning now to the integral in equation (20), and utilizing all results of the last 

paragraph but one, then for a fixed time, t, we have that the integrand differs 

from zero (in an essential way) in the range of Rj2 as given by 



(r1 + r2)        R12 (ri + r2) 
T + t -     >  > t -   (22) 

c c c 

Again denoting by d the diameter of the cylinder, we find for 

t > 2 R + -^T, (23) 
sin 8 

that Rl2 > 0 and the lower bound of this important function increases linearly 

with the time.    In the above expression, R is the distance from the receiver to 

the closest point at which the incident beam intercepts the cylinder. 

Consider now that we hold the point of first scattering, r^, as well as t fixed. 

The points where the second scatterings take place lie with volumes bounded by 

the surface of cylinder and the surfaces 

R12 (r1 + r2)    R12 (rx + r2) 
    = T + t- ;     =t-   (24) 

c c c c 

These last two surfaces will be referred to as the earlier and later isochronal 

surfaces, respectively.    The later isochronal surface is actually defined only 
2D 

for t > -;—r + 2 R and it is only for such time that the considerations which fol- 
sm 6 

low are intended. 

As stated in the introduction, there is a stretching of the pulse even if the first 

Born term alone is considered because of the finite diameter of the cylinder.    The 

directly polarized returns will persist until 

t=^- +     4^ (25) 
c c sin 6 

2R 2D 
This leads us to introduce the time T = t     —:—rr.   In summary, for 

c        c sin 0 
T > 0, Rl2 > 0. 

in 



We will be interested in the dependence of the cross-polarized field as a func- 

tion of T /T Q where T g = - .   We have that for T/T 9 » 1, R12 " c T. 

Also T/Tg > 2, R12 
> c TQ-    Let us now carry out the indicated differentia- 

tions in equation (18).   Note that VI (t - Ri2 " rl " r2> = (" ^Ri2) DL    Thus: 

D       12 R 12 

»i,v,R^4K)^ 
(26) 

Inserting these results into equation (20) we get 

2 

i- f—2jd r2n(r2)Jdrin(ri) 
(% • Ri2)(e0 • R12) 

R 12 
R12D        R22D2 

(27) 

As T increases, the first term in the bracket will dominate the other terms 

since the lower bound on R12 increases linearly with T.    This first term gives 

the radiation field resulting from the first scattering; the other terms represent 

the induction and quasi-static fields. 

For the time interval -cT+ (r  + r  +R    ) <ct < r  +r  +R    , 
X *_ X _- x. _ I — 

I = sin co 

*-• 

1 
—I 

D2 

1 - cos 

(-5-) 
00,. 

12 
sm co 

*-*) 
ur 

(28a) 

(28b) 

(28c) 
co: 

11 



where 

P12   =   rl + r2 + R12 

in (28c) will be ignored as being The terms c/w   in (28b) and  — 
o        v        ' 60 

o 
due to spurious d-c effects that are undetectable by the receiver 

1 " <>12/C 

Inasmuch as the scattered power rather than the field amplitude itself is of in- 

terest we shall eventually average over one cycle of the r-f excitation. Before 

we do this we shall perform, formally, the relevant statistical averaging. 

L2 



SECTION 3 

STATISTICAL CONSIDERATIONS 

First let us consider the coherent cross section.   We shall write n   =  n   + An, 

where nQ is the average particle density and An is the fluctuation.   Statistical 

averages will be denoted by the brackets \ /.   Averages over a cycle will be in- 

dicated with a bar over the quantity.    The statistically averaged field amplitude 

is given by 

fro      ( 
<€ > "  -J- J d3rl d3r2 [no (rl) no <r2)   +<(± (*l) A (r2)) 

R 12 
R12   D R 2      2 

12     D 

(29) 

If the diameter of the cylinder is large compared with the correlation length, Lc 

then < A(r-L) A (r2) > is negligible when T/TQ »1 for any reasonable correla- 
te 

tion function. 

Squaring and averaging over one cycle of the r-f excitation, one has, for T/T 

large 

(O2    =   "4  ^   JJJJ *\ d3r2 d3r3 d3r4 no <rl> 
K 

no(r4)l^c-%2)(^-R34 )(V^34)(V%2)(VR34) 

3       3 
R12R34 

x   B(p, R) (30) 

L3 



where B (p, R) 

1 
2 

3c 3c2     1 
2    2 

CO    R 34 
2     R19    RSA CO 12      34 

cos co (p12 - p34) 

+ - sin co (p12 - p34) 
3c 

CO 

(1 1   \      3^ / 1 1 

(31) 

Each of the terms in the integral above can be broken up into terms of the form 

d r, d r„   re" •R^l  (eo"-R12J x  ^unction °f Ri2 x triS function 

of (copio)     x     similar expression in R34, p34 

(32) 

For T/Tfl sufficiently large, R12 (and R34) are bounded from below.    Holding the 

point of first scattering r1(r3) fixed and integrating over r2 (r4) will yield a very 

small result because of the oscillations of the trigonometric functions.    This is 

true provided that nQ does not have a pronounced dependence upon position.    In 

fact, we shall consider only the case where n   varies slowly over several wave- 

lengths of the r-f wave.    However the fluctuations may vary considerably with 

position. 

We turn now to the calculation of the incoherent scattering and compute the 

form of 

'.2 4 4 t\ mc 
(33) 

when T/Tfl >> 1.    hi this case, R,^ and R04 > D and if D/Lc is sufficiently 

large, then there is no effective correlation between the density fluctuations at 

points r^ and r2 and at r3 and r^.    Similarly, with the restriction of the initial 

beam to a segment of the cylinder,  and again for T/TQ   large,  correlations 

11 



between fluctuations at r^ and r4 and at 1-3 and r2 effectively vanish.   One has, 

under these circumstances, 

c
2  =J!   rfffff d3ri d3r„ d3r„ d3r„   (^.R12)...(^0.R34) 

(34) 

R -,JJJ 3        3 
R 12 R 34 

n (1) n (3) <A2n>C (2,4)   + n (2) n (4) <AV> C (1,3) 

+   (<A2n>)2  C (1,3) C(2,4)      B(R,p) 

2 2 where C (1,3) is the two-point correlation function (we take exp - R ,„/L   ). 

In deriving this result we took the asymptotic form of the four point correla- 

tion function to be a product of two-point functions.    For obvious reasons, any 

of the three-point correlation functions vanish here. 

Thus, for T/T0 and D/L   sufficiently large the incoherent cross section contains u c 
only terms of the Type I and Type Iflc (in the notation of Ruffine and de Wolr '). 

The terms of Type I, proportional to, say, n0(l) nQ(3) C (2,4), are small for 

reasons given in the discussion of the coherent scattering, namely, cancella- 

tions due to the trigonometric functions in B (p,R).    The same argument is 

given in (1).    Thus we are led to consider only terms of type IIIc. 

Before carrying out the integrations in equation (34) we turn to a consideration 

of the iso-surfaces mentioned in the previous section. 

L5 



SECTION 4 

THE  ISOCHRONAL SURFACES 

At the position of the scatterer the incident wave shall be considered as ap- 

proximately planar over the entire length of the plasma cylinder; we shall use 

this approximation for the rest of the paper.   As has been mentioned pre- 

viously, the incident beam, for calculational purposes, is considered to be 

spatially restricted so as to intercept the cylinder across a length -t/sin 6 

parallel to the cylindrical axis.    Figure 2 shows a cross section of the cylinder 

in a plane containing the axis of the cylinder and the propagation vector of the 

incident wave.    The nearest point of interception of the beam and cylinder we 

take for the origin of a cartesian coordinate system £ , r\ with r\ along the direc- 

tion of propagation.    Let the point (£]_, T^) represent a point of first scattering 

an(^ (£?' ^2) ^ne Pom* °^ a possible second scattering.    For the later isochronal 

surface, we have 

*! + V2   + V^22 + (T?1 " T?2)2   +  2 R   =  ct 

or 

i £22 + (V2 -V±)2   =   ~   (T?2 +V±)   +   C (T + TQ) (35) 

(recalling that T„   =   2D/CsinQ). 
0 

Introducing the dimensionless quantities 

2T71 T 42 V2 
B = —= ; a  = — ; u   =  ; v   =  (36) 

CT8 T9 cxe CT6 

11; 



DIRECTION OF 
INCIDENT WAVE 

CYLINDER 

Figure 2.    Geometry for Isochronal Surfaces 

we get 

1/ = l+a u 
2 [a + l - 0] 

0*1 
a ^0 

(37) 

The isosurface is a parabolic sheet whose curvature is given by - l/(a+ 1-/3) 
0- + a) and whose point of interception with the X) axis is 

2 
cT_,  since, at the 

point of first scattering 0 < £ < I, the isochronal surface is actually a volume. 

The distance I is taken small enough that we can ignore this complication in 

what follows. 

The upper and lower edges of the cylindrical cross section are given by 

IT 



Vy  = — + u ctn 6 

V     = u ctn 8 
Li 

(38) 

The intersections between the parabola (37) and the lines (38) are at 

u/ =  (a+ 1-/3)    -ctn9+J ctn2 8 + (X+
C[_p~ 

UL    = 

For a>> 1-/3 

± 
UU     " 

(a +1-/8)   - ctn e ± •*/ ctn 29+     a+] 

a + 1-/3 

(a + 1 - /3) 

ii 
± «   (a +1-/8) 

1-/3 
- ctn 8 ± esc 8 T  -r-1-   sm 8 

ctn 8 ± esc 8 ± 

2a 

/3 
2 (a+l) 

sin 8 

From this one finds 

lU 
sin 8 

(39) 

(40) 

(41) 

The distance between two members of a set of intercepts, measured along the 

axis of the cylinder is approximately      (1 - cos 6).    If the two intercepts are 

connected by a chord, this chord makes an angle 0 with the axis of the cylinder, 

where 0 is given by 

1 - cos 8 8      .        8 
tan 0   =  r—-— =  tan —;   0 ~ •5- 

^ sin 8 2 2 
(42) 

since in units of cTfl the diameter is 1/2 sin 8. 

is 



The earlier isochronal surfaces are easily obtained by replacing j by T + T in 

the appropriate equations.    T, it will be recalled, is the time duration of the 

initial r-f pulse.   Certainly, when the above approximations hold for later 

isochronal surfaces they hold for the earlier one.    In Figures 3,4, and 5 we 

show the later isochronal surfaces for values of f} = 0, 1/2, and 1 respectively 

and for various values of a.. 

Figure 3.     Isochronal Surfaces (£ = 0) 

19 



Figure 4.   Isochronal Surfaces (3 = 1/2) 

CYLINDER 

Figure 5.   Isochronal Surfaces (/? = 1) 20 



SECTION 5 

THE  INCOHERENT CROSS SECTION FOR  T/JQ»1 

In this case, the dominant contribution will be 

rnc 
f   *_lfff(   [<A2>]2   0(1.3)0 (2.4) /^\ cos  « 

R        " "12 "34 

(P12-P34) 
A    A A     A 

(ec • R12) . . . (eQ • R34) 
(43) 

A A 
where R     and R„4 are unit vectors.   If the turbulence of the plasma is uniform 

throughout the cylinder, then the essential time dependence is contained in the 

product R^2 ^34 occurring in the denominator of the integrand.    This is so be- 

cause the lower bound on this product increases quadratically with the time; 

thus the integral varies as the inverse square of the time for sufficiently long 

times.    An inspection of Figures 3-5 also shows that the scattered, incoherent, 

cross polarized cross section becomes increasingly aspect sensitive as time in- 
A A 

creases since R^ and Rg4 are asymptotically parallel to the cylindrical axis. 

This contrasts with the results in (1); in the case treated in that paper there is, 

however, always an input. 

These results are what is to be expected — at the times considered the radia- 

tion field from the first scattering gives the largest contribution and the power 

in the radial field drops off as the distance squared.   Also, the polarization of 

the first scattered wave is perpendicular to R^ x R-    The amplitude in the R-^ 

21 



direction is proportional to | e^ x R12 

A A A 
the wave along R onto ec is | ec x R-j^ 

,A A 
(eo x R 2) 

*o ' ft12> 

A        A 

(ec x R12) 

and the projection of the polarization of 

.   When e  , e^ and R-^ lie in one plane 

(«o x **12> " <^c x ^12) &12> 

Before proceeding we shall change our notation to more nearly match that of 

(1).    First, at the position of the scatterer the incident wave is nearly plane. 

Secondly a unit amplitude incident field is assumed in (1).   We thus make the 

replacements 

~2   -   !•   "7 P12   ^   R'  (rl + r2>   + ^R12 
R ?,4 34 

where k is the direction of propagation.   We multiply equation (34) by 4 n R   to 

form a scattering cross section.    Finally it is necessary to replace 4 77 An by 

the A of (1). 

This gives us a value for the incoherent cross section when T/T0 is not large 
o 

and the ratio of S = < £2 (T » TQ) >/< £2 > for r/TQ » 1 and the values of 
2 < £  inc >Just discussed provides a dimensionless measure of the extent of 

pulse stretching. 

We have seen that the incoherent power return should vary as (cT)-2 when 

T/Tfl >> 1.   Now if the pulse length, cT, is many times larger than the 

diameter, there will be a time when the scattering cross section should be 

given very nearly by the steady state result of (1) Equation 50.    This will be 

true at times when the later isosurface has not yet developed but the earlier 

isosurface is at a large enough distance from the initial point of scattering that 

the results of Ruffine and de Wolf^ ' apply.   (Recall that these authors assume 

TJ. 



that the length of the cylinder is large compared with the radius.)   The "active 

region" of the cylinder we are discussing is given by the distance between the 

two earlier isosurfaces along the axis.    The only change we must make in equa- 

tion 5(r ' is to replace the volume in that formula by the volume n a   -t/sin 6 

where a is the radius of the cylinder. 

Making the indicated changes and forming the ratio S we find 

S  = 
7    R2T2 

3(2)   eK u   sin 6 

(4n)3 IT
2
 a3 i L6

c {3 + sin 0 +• • • • 1 

x   CCCCAt      .jte    [(VR12>   (V*12>   <V*34>   <VV| d3?r.-d3?4 
R12 R34 

B(R1p)   C(l,3) C(2,4) 

A 
bx 

A 

—0 

A 

^& 
A A 

V A 

A         A^A 
b x(b x k0 ) 

r\ 
S!So 

Figure 6.    Geometry of Scattering from a Cylinder 

The relevant angles are shown in Figure 6. 

For the integration over r3 (r4), we first shift the origin to ri (r*2) and use the 

nature of the correlation function to justify the extension of the resulting 

integrals to all of space.    Furthermore, we can replace R34 by R12 except in 
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the function B (R, p).    The R     occurring in B (R, p ) can be approximated by 

R34   =   R12   +  R12 r4"r2 <*S '•'] 
CO 

Only the terms in B (R,p) proportional to cos   —   (p..    - p„.) will contribute 

(the one proportional to the sin function gives zero in this approximation), and 

of these we consider only terms independent of R^ and Rg^: 

i3„   ^3, 
3 (2)' sin 9 

3      3 
(477)   la. Hiiii-: 

d°r. /s 
2 

12 
(VRi2)   <VRi2) 

, 3   +   sin   0 + 

The integral over r1 is essentially the r., volume (77 a2 l/sind) times the value 

of the integral over r2 when r-^ is on the axis of cylinder.    Thus, 

7rai3 +---1 
/ 

d3r 
2      <S .<*    x2   ,^   *    -2 

R 
<VR12>     (VR12) 

12 

Assuming that a/R, 2 << 1, (ec-R12)   (eo"R12)   ~   (^c-^)   (eo* z)   or 

cos2 90 cos2 9C in the notation of (1).    For the purposes of integration, we re- 

place the isochronal surfaces by planes perpendicular to the axis passing 

through the points of intersection of these surfaces with the axis. 

Then 

6a 
s = 

[cos2 0   cos    9cJ 

{3 + -    } 

L * 

/ V / d£ 
2 

Left-hand 
Iso-volume 

Right-hand 
Iso-volume 

(44) 

(Equation continued on next page) 
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(44) (cont.) 

2 2 
3a cos   0   cos   0c 

ZEZL 
Left 
hand 

zezL 
Right 
hand 

2 2 3a cos   0   cos   0c 2 cT 

c T + — 
D 

,CT +cT+- 
sin 0 IV s —\ in e) 

Thus the pulse stretching falls off as the inverse square of the stretch time. 

VI.     NON-UNIFORM ELECTRON DENSITY 

In order to obtain Equation (44) a number of simplifying assumptions were made 

including: 

9     2 1) That the correlation function is of the form exp (-R /£ c) 
2 

2) That the fluctuation strength < A   > is a constant. 

Since neither of these conditions are observed in actual range observations, it 

is interesting to see what results when they are dropped.   We shall also ask a 

somewhat different question, namely, given that at some time, t, we observe 

a direct and a cross polarized return, what is the error in assuming that the 

two scatterings which caused the cross-polarized return both occurred in the 

volume that caused the direct return?   We assume that the incident pulse is 

much longer than the diameter of the cylinder and is infinitely wide.    The 

direct scattering takes place in the illuminated volume of the cylinder defined 

as the volume lying between planes located at distances c (t + T)/2 and ct/2. 

When the radar line of sight is along the cylinder areas, at least one of the 

2:, 



collisions must occur in this volume.   Since we need only be concerned with 

the case of small angle-9, we take this to be true in what follows.    Proceeding 

as before, Equation (43) can be put into the form 

<\2 
(45) 

FGs-kJ    x    (f^£)     (g,-k)    , 

•/• 
kR12,   F (k) R. 

The limits on r1 and r? can be derived from (21).   When r^ and r2 lie in the 

illuminated volume, (45) is equivalent to the result obtained in (1).   (The 

factor of 1/2 arises from the fact that we have always taken r^ and rg to be in 

the same correlation cell.)   We now proceed to estimate the contribution to (45) 

when r1 lies outside of the correlation volume. 

For sufficiently large separation between scatterers, k lies along the cylinder 

axis.   Defining this axis by a unit vector, b, we have 

—— r     f dr1 d£ 

f,».-T7Pr<4>'fc,-k|^-s 
•R    J       R12 

.A   <\2    ./s   f\2 (ec-k)     (e0-k) 

2 r 
+  g   4-  F(kc+kb) F^-kb^V^-b)2 

R 

(46) 
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/ 

dr1 dr2 

V!V2     R12 

<^(1)2^  <A(2))> (45) 
(cont.) 

where V-^ is the volume of the cylinder below the plane at ct/2 and V2 is the il- 

luminated volume.    To estimate the value of the second integral in (46), choose 

the origin of the coordinate system at the center of the illuminated volume and 

replace R     by r .    The integral becomes 

// 

% % 

K 
12 

<A(l)2><A(2)2> 

V2  <^A(2)2>   77 a2 

/ 

cT 
4 cos 9 

<AOV> dxi 

where 1   is the distance from the start of the cylinder to the center of the il- 

luminated volume.    Thus, we may define a new quantity S' to be the ratio be- 

tween the return in which one scattering is outside the illuminated volume to 

the return in which both scatterings are outside the illuminated volume. 

S'   = 
16 

A(2)2> '- 

A2 >dx 

x-2 

F(kQ+kb) F^-kb) (e0-bY (e^-b) 

/• 

dkF^+k) F^-k) 
sin 6 

where cos 9 = k • b . 
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For the special case of a Gaussian correlation function, S' reduces to 

a 
6 

2 „ 2 . 
cos   9   cos    8 
 0 c_ 

3 + cos2 e0 + cos2 ec + 9 cos e0 cos ec 

cT 

< A(2f > 

4 cos 9 

< A (x)   > dx 

A. 
(Please see Reference 1 for more detail.) 

Finally, we assume that both unit polarization vectors have the same projection 

on the plane containing k   and b and we estimate the contribution from the adjoin- 

ing resolution cell.   Assuming 

cos     JSQ • b 20c 

cos 9Q   =  cos 92   =   -22 

cT 
lo    :   2 cos 6 

then 

2 x (.0025) 
cT 

2 cos 9 

<t A(l) 
2> 

w> 
Taking a/1   «0.1 (surely an overestimate) 

we have  S' 5 x 10 -4    <A(12) > 

<A(2)2 > 

^s 



2 2 The ratio of < A(l)   >/< A(2)   > can be estimated from the ratio of direct 

polarized wake scattering in adjacent resolution cells.    Thus, if S' < 10~2 for 

example, the cross-polarized scattering can be assumed to arise from the 

same resolution cell as the directly-polarized scattering.    This will occur 

when 

<^!><5X102 

<A(2)2> 

or when the direct polarized scattering decreases by less than approximately 

23 db per resolution cell. 
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