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FINITR APLITUDE WAVEE IN LIQUIDS AND SOLID8#
M.A. Breaseale

of Fhysics, The University of Tennessee, and
80114 Btate Division, Oak Ridge Natiomal Ladoratory

The ion of an initially sinusoidal ultrasonic wave recently observed in
8014 be described in a Wy analogous to that previously used for liquids,
exoept for certain camplications associated vith crystalline properties. The non-
linearity paremsters can be introduced in a relatively simple way if the terms in
the non-linear differential equation are grouped properly. This results ina
formalimm vhich allows one to discuss non-linear effects in liquids and solids
analogously snd to point out paremeters vhich differ significantly and thus
charecterize the two media. Ve have made msasurements by different techniques,
using results found in one medium to suggest lines of investigation in the other.

Reflection of Distorted Waves in Liquids.

It 1s possidle to gain information about the dehavior of a distorted ultresonic
wave on reflection from & boundary through the use of the diffractionm of light. A
S mc ultruscaic wave is generated in water and allowed to propagate a distance
oqual approximately to the discontinuity distance. At this point a reflector is
placed in the water such that the distorted ultrasonic wave is reflected at an
angle of approximately 15°. A beam of light from a point source passing through
the water in the region of interaction of the incident and reflected waves is
diffrected by both waves. The diffrection patterns resulting vhen one uses two
extremely different reflectors are shown in Mg. 1.
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7ig. 1. Light diffraction resulting from interaction of distorted waves. -

These diffraction patterns can be understood by obeerving the position of the tero

order and realising that the distorted ultresonic wave behaves in wuch the same

way as & blase grating. The distortion in the ultrasonic waveform leads to an t
asymsstrical diffrection pattern. The diffraction pattern resulting from a single ul

P

#Research sponsored by the U.8. Atomic Energy Cosmission under contract with the
t:ané;n Carbide Corporation and by the Office of Naval Research under Contract No.
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: FINTIR AMPLITUDE WAVES IN LIQUIDS AND SOLIDS

distorted ultyesonic vave progressing to the right is shown in Fig. 1(a).
Diffruction patterns produced in the interference region before boundaries having
extrme values of acoustic impedance are shown in Fig. 1(b). These patterns can
be visualized as the diffrection pattern resulting vhen each of the orders produced
by the incident wave is diffracted by the rellected vave. The difference in the
asymmetry of the pattern caused by the reflected vave produces a markedly different
sppearance of the overall pattern. These patterns can be explained by assuming
that the distortions of the reflected waves in the two cases are as indicated in
the diagrem. (Fig. 1(c).) '"Mhe wave reflected from a resilient boundary is distort-
ed in a direction opposite to that reflected from a rigid boundary, and actually is
nov in an unstadble condition because the non-linear effects nov cause the higher
barmonics to decreass.

These obeerwations are consistent vith vhat one expression

P 1 2 )
€ o 2 tan —pg-w 8in 01- ? (1)
shift on reflection from an interface and assuming that the phase
harmonic is the sems as that of au eQuivalent sinusoidal wave, It
pointed out in passing that :1s equation predicts the unstable waveform
flected vave for a rigid boundary as well as the resilient boundary vhen
storted mave 1is at grazing incidence.
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consider norwal incidence. If the wave is normally incident the asymmetry
diffrection pattern indicates that standing waves are symmetrical for the

and asymmetrical for the resilient boundary. This fact is very
izportant in the study of solids, for the stress-free boundary condition obtaining
vaen an ultresonic wmve impinges internally on the end of a solid is analogous to
the resilient boundary discussed bere. B8olution of this problem of a standing
finite amplituds wmave in a s0lid could present & nev means of evaluating the third
order elastic constants. BSuch a solution is in progress. An altermative method
is to oconsider the distortion of progressive finite amplitude waves.

§»°o

Progressive Finite Amplitude Waves in Bolids.

In the study of the propagation of a finite amplitude ultresonic vave in a solid
or & 1iquid it 4s usual to consider solutions to the non-linear differential
equation satisfying the boundary condition that at x = O, the displacement

Ue A Bin &t.

One can formulate the probleam such that the propagation of a longitudinal ultra-
sonic wmave in either type of medium can be descrided by the equation

Polt = KolUpy + Iplpy) + Kylplpy ()

vhere is the second time deriwative of the displacement, and the coefficients
Ko and are introduced to make notation simple in descridbing & non-linear solid.
For a ic crystal the coefficients K, and 13 are combinations of the ordinary
elastic constants and the third oxrder elastic constants, respectively. These
ocombinations depend on the direction of propagation of the ultrasonic wave with
respect to the crystal axes and are given for three crystal directions in Twble I.
m.umaﬁncdmtion-(SKQOK)/lsumheodbyl/A¢2, vhere A and B

@ are coefficients of the Taylor oxpmizn of the pressure in terms of the conden-
sation. Por & gas this would be 7 + 1.

In deciding hov much an initially sinusoidal wave vill distort in propagating
through a given medium, it is useful to consider the discontinuity distance L, the
propagation distance required for an initially sinusoidal wave to develop a dis-
continuity in ths particle welocity. This is given dy

E/°

. (%ﬁ-) (2r272) v,

vhere Up is the particle displecemsnt amplitude at tlLe source. As an example of

L= (3)

< __ 1
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FINTTE AMPLITUDE WAVES IN LIQUIDS AND SOLIDS

the behavior of solids compared vwith fluids, values of L are ocalculated for s

30 megacycle mave in water and for warious directions in ge um. These values
are given {n Table II. For an assumed source amplitude U, = 1 X, a typical value
of the discontinuity distance in water would de 15 om; for germanium it would be

between 120 and 500 cm depending on the direction of propagation in the crystal.

Direction !2 K

3
[100) ¢y 111
[120] €35 + €0 + iy, C111 + X2 + 12066
2 3
(] ¢y, + 2, + by, cm’&m'mlu’mlﬁ’mlg}; 26C,c6

3 9

Table I. Xy and K3 for {100], [110], and [111) Directions.

Direction X, K v, ;n in

oR.
(110]  1.268 x 10’2 dynes/ce?  -2.20 x 1073 aynes/m® &f’:_o-i o

1.18 x 1076
e, OA.

(120]  1.053 x 2012 -3.93 x 1013 x
o
-6
[111] 0.97h8 x 1012 -3.3% x 1013 LL",L_ o

Table II. Discoctisuity Distance in Germanium.

For propagation distances small compared vith the disoontinuity distance, a perturd-
ation solution of the non-linsar differential equation is accurate encugh to allow
omtoouc\nlmthcmnunﬂtyw-hrlhfornuuormm:‘om
elastic oonstants of solids. with the discontinuity distances calculated
above it {s clear that the ultrusoniec path in solid samples of ordinary sises
would be quite mmall so that & perturbation solution of By. 1 should be quite
sgourete. Therefore, vhen the distortion of the finite amplitude wmwe is large
enough to msasure, this should be an socurete msans of determining the thisd order
elastic constants of solids provided the sttemmtion can bde comtrolled sufficiently.

A perturbation solutiocn of By. 2‘, terms of the discontimuity distence L is
U = U, Bin(kx - wt) +.?;—co. 2(kx - wt) ¢ ... v

This solution predicts that the second harmonic in a disvorted ultresonic wmve is
proportional to the distance from a sinusoidal driver and proportiomal tc the
square of the fundesental amplitude. These functional relationships serve as a
check on experimsct and as & msans of determining whether abeorption is negligidle
a8 has been assumed.

Msasuremeasts have been made on [111] samples of copper simgle erystals using &
pulse technique. Mesults of msasurements of the first trensmitted pulse in an




annealed 9.1 ca sample of eopper are given in Pig. 2, which is a log-log plot of
the amplitudes of the second harmonic and the fundsmental, relative to an

as a function of source amplitude. It is seen
that there is & consideradle range of source amplitudes for which the seeond

ch 18 expected if there is a square relation-

2000 [
using samples of various lengths. 500 SECOND MARMONTC

successive reflections in the same 200
ence, since on each return trip the 100

phase opposite to that produced by 50
reflection, with the result that

the wave "undistorts”. The behvlor.:
before and after_g neutron - 20
ment of 3.6 x 1017 neutrons/cm® is

t tude 7
shown. One sees that the ampli 10 FUNDAMENTAL

increases the second harmonic evid- 2
ently is approaeching a maximm
value; however it appears that at 1

shorter distances the curve is
reasonable lineer, in agreement
with theoretical predictions. The
rapid initial increase in the pre-
bombardment second harmonirc can be
attributed to the non-linear inter-

action of dislocations; which evid-
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Fig. 2. Behavior of Fundamental
and second harmonic in annealed
{111] copper sample as function
of source amplitude.

ently reduces the effective dis-
continuity distance. Neutron bomb-

ardment appears to reduce this dis- ”-:mmm QUAR‘IZ
location interaction in copper to
the point that the effects of the
non-linearity of the crystal
lattice become dcminant.

Pig. 3. Behavior of the second harmonic
in [111] copper samples as function of
distance, showing the effest of neutron
bombardment .
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Distorted Wave Interaction at Boundaries*

A. L. Van Buren
and
M. A. Breazeale
Department of Physics, The University of Tennessee
Knoxville, Tennessee
When & distorted ultrasonic wave is reflected from a boundary,

interesting phenomena can erise. For example, if the harmonics are
shifted in phese relative to each other by the right amount, then the
reflected wave can actually be distorted backward. On further prop-
agatior the same phenomenon which caused the wave to become distorted
in the first plsce now "undistortsm the wave &nd the waveform again
approaches & sinusoid. In a nondispersive medium these modified phase
relations between the harmonics will be maintained until this undistor-
tion is completed. The chenge of phase of each of the harmonics upon
reflzscticn from the surface is the cause of this phenomenon. In the
case of & sinusoidal wave, when the angle of incidence is greater than
a critical angle, a phase shift occurs that is dependent on the charac-

ter of the boundary and on the angle of incidence. One can now study

the non-sinusoidal case and make some assumptions about the relation

*presented at the 70th meeting of the Acoustical Society of
of America. (J. Acoust. Soc. Am. 33, 931 (A) (1965.)
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Page 2
between the sinusoidal and nonsinusoidal cases.

Since the non-sinusoidel caese is & non-linear phenomenon,
strictly speaking, superposition is not completely valid, so that the
results of such & study will be a test of both the linear theory and
the approximations to the non-linear theory.

In our theoretical consideration we assumed that the Fourier
components of the distorted weve were reflected in the same way &s a
sinusoidal wave of the same frequency. We can test this assumption by
comparison of phase shifts measured in distorted waves with those cal-
culated from theory.

1f a reflected ultrasonic pulse is monitored by a iransducer
tuned to the second harmcnic, and if the amplitude is not too great,
then the received signal can be enalyzed in terms of only a fundamentel
and a second harmonic term. In this case the phese angle between the
two harmonics as seen by the second harmonic is equal to the phase
shift upon reflection pius a constant phase difference for all angles
of incidence.

Expressions for the complex retio of the amplitude of the reflec-
ted wave to that of the incident wave heve been developed from linear
theory consideraticn. Lord Reyleigh considered the linear wave inter-
action at a liquid-liquid interface and obteined an expression for the

phase shift of the reflected wave reletive to the incident wave. Here



Page 3
on’y lengitudinal waves need be considered. Therefore, the expression
is relatively simple.

‘n the case cf the liquid-solid interface, however, sheer waves
in the solid must be considered, and the resulting expressions become
more compliceted. This problem was considered by Knott. Use of his
equations lead to the reflectance as given by Ergin in 1952, One can
rewrite this expression for two major regions, one region between the
criticel angle for the longitudinel wave end the critical angle for the
sheer ueve; the other region from the sheer criticel engle to grazing
ircidence. This results in a complex ratio with the phase shift given
in the usuel manrer. For the theoreticel curves then, we heve consid-
ered only linear theory while the distortion itself is a nonlinear
phenomenon,

The exrerimental apperatus involved a pulsed two transducer
system, each transducsr being mounted on an erm free to rotate about
2 cantrai axis. A reflector wes immersed in the liquid. TIts face was
placed along the axis of the system so that once alignment was obtained
for one angle, the arms could be rotated to another angle, and align-
ment would be maintained. The angle was measurable to within one tenth
of a degree by use of a cslibrated scale mounted on the central rod.
Alignment was achi:ved for normel incidence by use of the seme trans-

ducer as a transmitter and s receiver. The received waveform was
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monitored by a treansducer tuned to the second harmonic. This accen-
tuated the second harmonic and thus allowed the use of more moderate
amplitudes. At eech s£ngle of incidence the amplitude wes decreasad
until the monitored waveform was sinusoidel. Then the arm containing
the receiver wes rotated until the meximum signal was received. Now the

received weveform represented the reflected wave for the measured angle

of incidence. it larger amplitudes then the received waveform for ver-
ious &ngles of incidence was monitored and photographed.

The weveforms were then synthesized by using two audio signal
generators, The phese difference was then obtained from the resulting
Lissajous pattern when the synthesized waveform was identical to the
reflected weveform. The correction to the phese shift was obtained from
the cese where no phese shift occurs upon reflection. Amplitudes were
also obtained but involved the frequency response of the receiving trans-
ducer.

Of the perameters involved in the theoretical expressions, the
only one involving difficulty in measuring is the velocity of the shear
wave in the solid. This was obtained with the same apparatus by meas-
uring the received emplitude when the output voltage was very low so
that the received waveform was distorted. As the critical angle was

epproached the reflectance incressed sharply reaching unity exectly at

the critical engle. This method leads to measurements of the critical

P ™ . P TT
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angle to within three tenths of a degree.

Figure 1 gives the phase shift for a water-bress interface. The
solid curve is the theoreticel curve while the triangles represent the
experimental points. Note the two criticel angles. After the first
criticel angle we begin to obtain non-zero phase shifts. The location
of what we call the transition region here is largely determined by the
locetion of the shecer criticasl angle. It is interesting that almost
all of the experimentsl points lie outside the theoretical curve.

Figure 2 gives the results for a water-sluminum interface.

The importent festure is that the guaslitative relation of the experi-
mental points to the theoreticel curve is the same as for the water-

bress interfsce. Again the transition region occurs eerlier for the

experimental data.

However, this discrepancy is real and probebly not the result of
the experimental method. As an example of this, consider the transition
region. To bring the transition region of the theoretical curve into
conjunction with that of the experimental points would require over s
107 change in the sheer velocity. Thus the discrepancy probably lies in
the expressiuns for the phase shifts. Of course, the discrepancy
between theory and experiment is not so great if we consider the assump-
tions that were made, particulerly those of linearity and independent

reflection of each harmonic.
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Page 6

Let us now look at the effect of amplitude on the phase shifts.
Figure 3 shows the reflected wavelorm for various reletive pressures for
an angle of incidence of 30.3° in the case of water-aluminum. This
angle corresponds to the trensition region as measured experimentally.
This waveform was chosen because of its symmetry. If the phase relstion
between the fundametal end the second harmonic remsins constant as the
pressure is increesed then the symmetry should be maintained. Note thet
except for the last case where a very large acoustic pressure was present
the waveforms are sll symmetrical indiceting no relative ohase shift of
the harmonics with amplitude. Tiie pressures used in the experiments
were far below thet represented by the last waveform which corresponds
to a pressure of > 7 atmospheres. If one neglects losses, this pres-
sure is celculated et 24 stmospheres. Thus it appears that the effects
are not a function of amplitude.

Figure 4 shows the results for a weter-glycerin interfece.
Experimentally this was effected by use of a thin sheet of a polymer
between the water and the glycerin. The unit conteining the glycerin
was also placed at the central exis. The discrepancy between theory and
experiment is very marked. lowever, problems exist in slignment, partic-
ularly due to the fact that the polymer was never truly planar because
of the effects of glycerin on it as well as its tendency to stretch.

Use of mica or another fairly rigid materiel as a separator will solve
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Page 7
this problem in the future.

Yet the scatter of the experimental points is rather small and
indicates that the linesr theoreticsl expression is inadequate. There 1is
an entirely different curvature for the first half of the curve. This
agrees qualitatively with the curvature of the phase shift measurements
made by Gessert and Hiedemann for glycerin to carbon-tetrachloride by
stroboscopic techniques.

The rest of the curve is drasticelly different however, since the
phase shift rises above 137° ard then spproaches 130° as the angle of
incidence approsches 900 whereas the theoretical phase shift is never
greater than 130° and is monotonicelly incressing with angle of inci-
dence. We know that Rayleigh waves and other surface waves may occur in
the polymer for specific eng’es of incidence. The region in the vicin-
ity of these two points may correspond to the region where these waves
are produced.

I: corclusion then, it appears that this method of measuring
phase shifts gives precise results, but that a gap exists between the
experimental results and theoretical expressions based or the obwvious

extensions of linear theory.
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A STUDY OF DEVICES FOR THE CONCENTRATION OF ULTRASONIC WAVES

Charles Ross Endsley III, M. S.

Department of Physics
Ultrasonics Laboratory
The University of Tennessee
Knoxville, Tennessee

August, 1965
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A STUDY OF DEVICES FOR THE CONCENTRATION
OF ULTRASONiC WAVES®
Char_ss Ross Endslsy I17
Department of Physics

The University of Tennessee
Knoxv..le, Tennessee

I. INTRODUCTION

One of the aims of the U.trascnics Group is the study of the
physical effects of finite amplitude ultrasonic waves. It is known
that the nonlinear term in the differential equation describing the
density of the medium is large enough to produce certain types of dis-
tortion of the waveform when the amplitude is very large; however, it
has been pointed cut by Naugolnykh (i964) that even for very small
amplitudes, if the wave front is spherical, the nonlinearity of the
medium will become very important at the csnter of curvature where the
waves come to a focus. 1t was thsrefore dacided to study the focus-
sing properties of certain well-known devices with the idea tkat later
detailed investigations of the nonlinear behavior at the focus could
be made. Two devices were studied: an exponential horn and a zone
plate. It turned out that special adaptations of both of these devices

had to be made in order to use the schlieren optical technique to

%This report is an excerpt from a thesis presented to the Grad-
uate Council of The University of Tennessee in partial fulfillment of
the requirements for the Degree of Master of Science. The work described
was done under contract 4289 (01) w_.th the Office of Navel Research.
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study their focussing propertiss. This report is a description of
experiments made in the study.

The exponential horn is probably used most often as a device to
match the impedance of a driver in a loudspesker system to the imped-
ance of the surrounding air. This type of horn can be turned arcund,
however, and used to concentrate sound energy. Mason and Wick (1951
used a solid exponential horn to increase the amplitude of wvibraticn
by a factor of ten. Krassilnikov (1963) describes this seme idem in
less detail, and Makarov (1964) discusses the finer details of the
design of such a horn. These horns were designed for low frequencies
and were only a few half-wavelengths long. For example, Mason's horn
was half a wavelength (at 18 k.c.) long and the medium transmitting the
energy in the horn was brass. The horn to be discussed here, however,
is 134 vavelengths (at 2 mc.) long and uses water as the transmitting
medium. This results in a presentation somewhat different from that
for the solid horn.

The pattern of sound waves emerging from the small end of the
horn was found to be similar to the pattern for plane waves going
through a single sl:t. Photographs of single slit diffraction can be
found in Bergmann (1954) and Hiedemenn (1939). These same references
contain photographs of Fresnel zones of single slits which may be com-
pared with the Fresnel zone of the central slit of the zone plate;
hovever, a photogruph of ultrasonic waves focussed by a zone plate was

not published.
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An ultrasonic zone plate behaves in the same way as an optical
one. The principles of operation of an optical zone plate can be found
in almost any general optics text such as Jenkins and White (1957).
The focus of the zone plate can be compared with the focus of a lens;
however, it is impossible to photograph the optical wave field near the
focus. On the other hand, photographs of the wave field near the focus
of an ultrasonic zone plate can be readily made using the schlieren

technique.
II. AN ULTRASONIC EXPONENTIAL HORN

o81gn

The first horn was built of brass and was of circular cross-
section. The patterns coming from the throat were observed by the
schlieren technique. However, the gain in intensity predicted by the
simplified horn theory was not observed. Therefore, the horn was
redesigned so that the sound field inside the horn could be investi-
gated. It was redesigned as in Fig. 1 with a rectangular cross-section
leaving both sides open so that the sound field could be observed by
the schlieren technique. It wes also designed so that the separation
of the top and the bottom halves could be varied. These adjustments
made possible a departure from a true exponential horn but did not
affect the focussing properties markedly, although they did affect the

way the ultresonic waves emerged from the horn, as will be shown.
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The cross-sectional erea of the horn was of the form

S = §,e7IX | (1)
where S is the cross-sectional area at a distance x from the mouth,
and S, is the cross-sectional area of the mouth. For the case when
the width is constant, equation (1) can be written as

y=ype™, (2)
where y is the half-separation. The horn was designed with a flare
constent m = .391 and with a half width at the throat y, = 1.5 em.

Simplified Horn Theory

Horns for audible sound waves in air are normally used to

increase the effective radiating area of a smell piston. Here the
piston, producing spproximate plane waves, is placed at the throat.
The waves then emerge at a lower intensity at the mouth of the horn.
However, the waves are no longer plene waves but have wave fronts
whose shape depend on the configuration of the horn.

Since the horn under consideration was mede to accept plane
vaves at its mouth rather than its throat, the situation was quite
different from the audible case discussed above. The most obvious dif-
ference is that the surfaces of equal phase at the mouth are now
planer. Kinsler and Frey (1950) give a simplified horn theory which
can be adapted to this newv situation. This theory is dependent on the
following assumptions: (1) the medium is completely linear for the
amplitude of vibrations under consideration; (2) the sound vaves begin

as plane vaves and remain plane throughout the horn; and (3) the horn
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valls are perfectly rigid. These considerations lead to the wave

equation for horns:

Yuw _‘_3 T
S+ T ¢ {—5— 37(5"“)] (3)

where w is the particle displacement, and Sy is the cross-section at

X.

In order to make equation (3) applicable to an exponential horn,
equation (1) is substituted for S, giving:

du [9 -m&t]
¢t “l3x

dx* D x
: (4)
Assuming a solution of the form:
}"(wt + ¥x )
us= AEe
5 (5)
it is found upon substitution that the allowed values of ¥ are:
: AR 1,
¥ =1 7 -|4 - /s ; (6)

Letting oc = qg_ and /3 =|/k2 - _i‘_z_ s the general solution of equation

(4) can be written as:

o X wt-ax) (w2 +4%)
w = € [Ae? /4 + 5@2 /3 _-(

. (M
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The schlieren technique used to view these waves responds to
change in density relative to the density of the undisturbed medium.
This means the effect depends on the condensation or; in like manner,

on the acoustic pressure which is:

P o g
Pe -5y = j6Cage [Ae

o
The factor € in this expression represents the increvase in

+ (wit-Ax) (w4
T g ot /’J(s)

pressure produced by the corresponding decrease in cross-sactional
area. The expression in brackets represents a standing wave produced
by the interference of the two oppositely travelling waves. The
schlieren pattern for the standing wave should consist of lines per-
pendicular to the direction of propagation and spaced a half wave-
length apart. Thus,the simplified horn theory predicts a standing
vave pattern superimposed on a field of exponentially increasing
intensity as the distance from the mouth increases.

According to Morse (1948) good transmission depends on mini-
mum reflection from the walls of the horn. Reflections tend to cause
energy to be trapped and dissipated in the horn. Thus, the particle
velocities near the walls should always be parallel to the walls. A
horn with plane waves incident at the mouth will cause reflections.
At the very mouth of the horn the angle of incidence on the walls of
the horn is 59.6°% whereas for good transmission through the horn, it
should be nearer 90°. It should, therefore, be expected that energy

will be trapped in the horn under consideration. The schlieren
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photographs verify this and show the positions at which this occurs.

The Rediation Past the Throat

The radiation pattern past the throat is very similar to the
radiation pattern which would be obtained by passing plane waves
through a slit even though the waves emerging from the throat are not
plane. The single slit case will be treated here; and then differences
between the two situations will be discussed.

Assume plane waves passing through a slit of length f and
vidth a as shown in Fig. 2. The element of pressure contributed by
the strip of width dz and length £ along the y axis can be found by
integrating the contributions to the pressure from each area element

dydz. (For the case y2(< r2) this results in the following equation:

Z'P,c,éu, a.(wt-»/er) 4 Sin
Adp= w7 € 70"[3“* : (9)

vhere k is the wave constant, U, is the velocity amplitude of the sur-

face element, and £ = _2.%‘1.5_5_ . The term J-%EA- is the familiar
expression for the variation of light amplitude with angle for a sin-
gle slit diffraction pattern (Jenkins and White, 1957). Since in the
linear approximation the relation between pressure and condensation is
P= (’,Ct.S, the condensation amplitude at P varies with angle just as
the pressure does.

Bquation (9) gives only the contribution of the strip element

lying along the y-axis; however, it should be adequate to explain the

patterns obte .ned. Justification of this assumption is found in the
qualitative agreement between the theory and the experimentally

BB o gl - g e T T - r—
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pho tographs verify this and show the positions at which this occurs.

The Rediation Past the Throat

The radietion pattern past the throat is very similar to the
radiation pattern which would be obtained by passing plane waves
through a slit even though the waves emerging from the throat are not
plane. The single slit case will be treated here, and then differences
between the two situations will be discussed.

Assume plane waves passing through a slit of length f and
width a as shown in Fig. 2. The element of pressure contributed by
the strip of width dz and length £ along the y axis can be found by
integrating the contributions to the pressure from sach area element

dydz. (For the case y2 { { r?) this results in the following equation:

; [ /4(/0 ‘(wt-»ﬁr) p
P = ?—-P-igr—;— e& a_};_nf a{é

’ (9)
where k is the vave constant, U, is the velocity amplitude of the sur-
face element, andd = — <2 . The term -2 ';n is the familier
expression for the variation of light amplitude with angle for a sin-
gle slit diffraction pattern (Jenkins and White, 1957). Since in the
linear approximation the relation between pressure and condensation is
P= (’,C"S » the condensation amplitude at P varies with angle just as

the pressure does.
Pquation (9) gives only the contribution of the strip element

lying along the y-axis; however, it should be adequate to explain the

patterns obtained. Justification of this assumption is found in the
qualitative egreement between the theory and the experimentally
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FPigure 2. 5Slit for Calculating the Radiation Pattern from the Throat.

observed radistion patterns described later in the paper. Consider the

dependence on O as given by the term _ML + In order to more conven-

iently represent this graphically, the expression logjg _ij?L is

plotted versus 8 in Fig. 3 for the case _’\_ = ,329,
a

For these conditions of _)‘_. , we refer to the horn as a medium
a
horn. Values of A_ = 1.16 and 0.230 refer to the small horn and large

a
horn respectively. Plots of logjg _Ei%é_ for the other horns are sim-

ilar to Fig. 3 although there is only one lobe in the case of the small

horn.
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Experimental Procedure

The horn and crystal transducer were centered in the test area of
a schlieren system and aligned so that the sound beam passed through the
light beam at normal incidence. This arrangement is shown in Fig. 4. The
sound besm was adjusted perallel to the axis of the horn, by obtaining a
symmetrical pattern inside the horn.

The intensity of the source was adjusted so that the pattern
inside the horn could be seen with maximum contrast and detail. Start-
ing just outside the mouth of the horn, frames were taken of sections
of the horn such that each frame would overlap the preceeding frame.
Upon reaching the throat, a frame was taken of the pattern radiated
from the throat.

The first run was made with the horn adjusted for 0.16b2 cm.
separation. The horn with this adjustment is referred to as the "medium
horn". Succeeding runs were made with separations of 0.064 cm. (small
horn) and 0.324 cm. (large horn).

Discussion of Results

Pigure 5 is the small horn with :&_ = 1.162, Pirst, it is
a

obvious that reflections are present and there is an interfererce pat-
tern inside the horn. The threads on the post at the mouth of the horn
were always toward the upper wall of the hurn. The small hemispheres

along the top are bubbles caused by cavitation at a higher intensity

than that used for this photograph. This cavitation was recognized as
one of the problems in achieving good transmission with the first horn
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Figure 5.

RO s

Schlieren Photograph of the Sound Field in the Small Horn.
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of circular cross-section. Cavitation was evidently produced at the
regions of high intensity, and the bubbles caused reflections within the
horn. The interference pattern in the horn does not start along the
axis of the horn until some place behind the front post. This is as it
should be because the waves first reflected at the very front of the
horn are reflected at an angle of 30.4° from the surface of the walls,
which are inclined at an angle of 30.4° from the horizontal at this
point. By geometry it is found that s reflection from this point will
reach the axis of the horn at 0.84 cm. from the mouth, just behind the
post in all photographs of the horn. The interference pattern itself
is quite symmetrical in all the pictures. 1t can also be seen that
there are many positions within the horn at which energy is concen-
trated and dissipated. The pattern at the end of the horn in Fig. 5
has only one lobe as predicted by theory.

FPigure 6 is a photograph of the medium horn. It was taken using
a higher sound intensity than in any of the other photographs. The
interference pattern within the horn shows even more clearly in the
medium horn then in the small horn. The spots of high intensity in the
pattern near the mouth are arranged in smooth curves from top to bot-
tom. These curves are similar to the surfaces of equal phase in the
coordinate system given by Morse (1948). The surfaces of equal phase
in that coordinate system can only be produced when no reflections
occur and no interference pattern is present. However, the interfer-

ence pattern can give insight into the relative phases at different
points. Hiedemann and Breazeale (1959) give a schlieren photograph of
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Schlieren Photograph of the Sound Field in the Medium Horn.
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a similar interference pattern. They show a stroboscopic photograph
of the same field, which shows that the surfaces of equal phase are
alternately corrugated and discontinuous in such a field.

Figure 3 is the predicted pattern at the throat of the medium
horn. This shows that the side lobe on either side should be expected
at an angle of 28.1° from the central lobe and another at 54°. The
average of the angles of the side lobes in Fig. 6 is 29.5°, The second
set of lobes at 54° in Fig. 3 is very faint in the photogrsph.

Figure 7 is a photograph of the large horn. This photograph
shows minute detail of the pattern within the horn and the pattern out-
side the throat. The irregulerity of t.e pattern near the throat is
caused by heat schlieren.

The pattern past the throat sliuws lobes at approximately 19.5°
(an average of the two angles). The theory predicts that the first
side lobes will be at 19.30°, which indicates close agreement with
experimental results. The other two pairs of side lobes predicted by
theory were too weak to be detected with this setting of the schlieren
slit. The agreemsnt between calculated and measured lobe angles points
out that the shape of thr 'rave front emerging from the throat actually

has 1ittle effect on this characteristic of the single slit diffraction

pattern.



Figure 7.
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Schlieren Photograph of the Sound Field in the Large Horn.
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II. AN ULTRASONIC ZONE PLATE

Design

An ultrasonic zone plate was designed so as to focus ultrasound
in the same way that an optical zone plate focusses light. This zone
plate is shown in Fig. 8. As can be seen, it was designed such that
the focus would be along a line parallel to the slits in the plate
rather than at a point. The actual slit widths and separations were
determined from the following considerations of the Fresnel pattern

behind the zone plate.

The Fresnel Field
Consider the zone plate shown in Fig. 8 with the distance from

the center given by x. Let plane waves be incident from the left. If
a focus is desired at a point on the axis a distance "a" from the zone
plate, the contributions from all the slits in the zone plate must be
in phase at that point. Thus, the path lengths to the slits must dif-
fer by an integrel number of wavelengths. The width of the slits is
determined by requiring that the distances to the focus from the oppo-
site sides of the slit differ by a half wavelength. Thus, the
distance of all the edges can bé combined into the expression a + _12‘&
(n is an integer). If a >> n)\, the expression can be solved to give
x =y anX (11)
This is the equation governing the widths and locations of the slits

in the plate.
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Consider the Fresnel zone of the central slit. This is nor-
mally defined as the region in which the contributions of horizontal
elements in the slit produce an interference pattern. The l1imit of the
pattern elong the axis is the point at which contributions from the
opposite sides of the slit are in phase because of a path difference of
one wavelength. At greater distances the difference in path length
will always be less than a wavelength, and the contributions will never
be in phase again. If the width of the central slit is c, it is easy
to show that the distance b to the end of the Fresnel zone of a single

slit is given by:

b= -4)2 (12)

8A

Experimental Procedure

The experimental setup was similar to that given for the expo-
nential horn in Fig. 4. The only difference is that the focus of the
zone plate was in the test area in place of the horn. 1In fact, the
first frame was taken with the zone plate in the test area. The crys-
tal and zone plate were moved 1.5 cm. away from the test area between
succeeding fremes. This gave photographs of the sound field past the

zone plate which overlapped each other.

Discussion of Results

The photograph obtained by piecing together those jhotographs
from the eleven frames taken is shown in Fig. 4. The zone plate is the
vertical black strip to the left. Markers show up approximately 1.6 cm.
apart along the bottom of the photograph. The narrow black lines to



-21-

the left of the zone plate are stsnding vaves caused by the reflection
from the surfece of ths zone plats,

™ sone plate was designed vith equation (11) using @ = 10 ca.
wd A= 0.149 cm. for 1 a.c. This means; of course; that if the sssump-
tion of plane vaves is good; the focus shculd bs found 10 cm. from the
sone plate. The focuas shown in Pig. 9 is located at spproximately
8.6 cm. Bvidently, the assumption of plane waves is not exact. This
is to be expected sincs the cryatal is not a point source and was not
located far enough avay to approximstie an infinite distance. The exact
position of the focus is not easy to detarmine. The focus was taken
to be directly stove the ninth mariesr.

Using equation {12) to calculats the end of the Fresnel zone of
the central slit; it iz found that it should te 4.92 cm. from the zone
plate. In Figurs G the reguiarity of ths puttern seems to give out
just ebove the fourtin mwarksr (2.85 cm.). Howaver, reflections make it
ispossible to tell whezther the zone axtsnds teyond this. The deter-
minetion of the Frasnel zone would be made easier if the central slit
were all within the photograph. The =lit is 2.44 cm. wide, while the
photogreph cover= oniy 1.73 cm. in a vertical direction. Not only will
reflections in the tank destroy the regular pattern in the Fresnel zone
of the central slit, but also interfersnce with waves from nearby slits
may contribute to its destruction; particularly at grester distences
near the end of the zone. The photograph does make it clear, however,

by the regular petitsrn near the plats; that such a zone does exist.




Figure 9. Schlieren Photograph of the Focus of the Ultrasonic Zone Plate.
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III. SUMMARY AND CONCLUSIONS

Photographs of the ultrasonic wave field inside =n exponential
horn indicates that the simplest configuration of a plane vave source
rediating into the large end of the horn produces an interferance pat-
tern throughout the horn. A% ths maxima of th's pattsrn are to te
found the large intensities sxpe:ted. However, the photographs show
that the largest intemsity is %o be found inside the horn. 1I¢ the
interior of the horn is accessible for study of finite amplitude
offecte; then this would not be a disadvantage. A more desirable pro-
cedure, hovever; would be to use a concave iransducer which would
produce spherical (or cylindrical) wave frcnts at the mouth. This
wvould eliminate the interferencs maxima inside the horn azd producs
the highest intensities at the throat. Such transducers can be made
from a barium titanate ceramis which can be molded into the desired
shape.

The photograph of the focus of the ultrasonic sone plate
indicates that hign intensities could be produced at the focus. It
would te desirable to uss the present zcre plate with a larger trans-
ducer having the same area as the zcne tlate. Alternatively, a
Smaller z0me plate could be consiructed to be used with the present
tranequcers. Either alternstive would make the assumption of plane
waves more nearly correzi. If a focuz to a point is desired rather
than a focus to a line; a zone plate could be constructsd with sir-

cular zones liks tns familiar optical zone plates.
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Wave Interactions at Plane Boundaries
A. L. Van Buren

Department of Physics
The University of Tennessee

Correction to p.p. 83-86 of Thurston's "Wave Propagation in Fluids and
Normal Solids" in Physical Acoustics, Vol. I, Part A, Edited by Mason.
This memo is intended to give a correct set of equations

describing wave interaction at plane boundaries. The general case is
considered of a wave incident on the boundary between two media, each
of which can support both shear and longitudinal waves. The first case
considered is a ghear wave incident on the boundery. The treatment of
Thurston is correct through equation 369, pasge 33; at this point he
makes a wrong definition of the normel stress. The correct normal

stress to consider is Tyy. We begin immedistely after Eq. 369:

From Ey. (327) with Tyy = oijand $ = S,y the shear end normel

stresses on the interfece ere

sl du v
yx 3T X
(370)
Tow = A' Ou v v
v 3t Ot gy

Continuity of u, v, Tyx’ and Tyy at the interface leeds to & set of four
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linear elge¥reic eqretiors fron whick the emplitude retios cen be

determined. Denoting the complex emplitude Ratlos by

tgst, rads Tamlt, ral (37)
0 o re Lol
I I 5 T

end introducirg also the ebhrevistions

2= P2, f= V2, v

—T' cos ]l 2 = H]' cos 20
S\ V2 “t » *1 1 ]
we mey put the set of equetisne for the emplitude retios irn the follou-

irg metrix form:

Z sin 29y -sin 29 -2f, -f 3 sin 29
Z cos 23, cos 20 27 sindcosdy, -2 sinBcosdy, ||T .:jcos 29
-cos 9 cos 9 -sin &4 -sin 8y, o 5 -cos 9
sir 9, sin O -cos &4 cos &, R sin

(373)

For a given incident wave, the directions of the reflected and
refrected waves can be obizined from Ea, (366), end their amplitudes can
be obteined from Eq. (373). The edditionel discussion will be limited
to the most important specisl cese - thet of e trection-free boundery,
1. e., the case when there is no second medium,

In this case i* 1s eecily shown thet r end I cen be sbteined
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from Eq. (373) by setting Z = 0. We then have the pair of equations

-r 8in 20 - flR = sgin 20
(374)

rcos 20 - 2R sin @ coselr = cos 20

There are two angles of incidence for which R = O: normel incidence
(6 =0, r =1), and incidence at 45° (8 = 45°, r = -1).

For incidence at exactly the critical angles [sin 6= (Vl/vpl)] ’
we have f] = [cos 29/sin O], cos 0y, = v, and Eq. (374) implies

r =1 and R = =28in O 8in 26. This indicates a langitudinal wave
cos 20

traveling perallel to the free surface, its amplitude being somewhat
less than twice that of the incident shear wave.
Beyond the criticel angle, the solution applies formally with

sin &  still given by Eq. (366), but since sin 8. >1, 8, itself is

complex with, in accordance with Eq. (313), a purely imaginary cosine

given by

Cos olr = -jl \[sinzolr -1

thus,

J¥Byy = JY(~
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This meens that the dilatational part of the disturbance in Eq. (368)

dies away exponentially with increasing distance below the surface.

3. LONGITUDINAL WAVES

Just as in the preceding case, an incident longitudinal wave
gives rise to reflected and refrected waves of both types. We repre-

sent the incident wave by

'ﬁ’;»)

?I =RILIexp Jo(t - _%__
P

where N 1is again given by Eq. (300). Transmitted and reflected shear
and longitudinal waves can be represented by Eqs. (362) and (363). Then
Eq. (365) holds except that the first equation is replaced by

—U)l = (?sin ) +?cos 0)LT exp|ja(t - Y.co8 © + X 8in @

\'f
pl

In plece of Eq. (366), we find

sin © E sin Ot i} sin Qr _ sin glt =sin gj_._r_

Hence, 8y, =01 sines greater than unity can be handled as before.
However, this is possible only of the transmitted waves, since V1<Vp1.
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Figure 15 illustrestes the angles in Eq. (375). 1In this case it is con-

verient to defire

Vo=__'pl . 376
=il (376)

then the (X,t) dependence is alweys given by thke factor

KON t=X/V.).

The displacement components in medium 2 are still given by Eq. (3€9).
' transmitted

s
c.Lzar

transmitted

Medium 2 longitudinel

irterfaca

Medinm 1
reflected
longitudinel

reflected
incident l sheer
lorgitudiral

Fig: 15. Reflectlon and refraction of sn incident longitudinal
wave st the interface betwsen two solids.
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To express the displecement componerts in medium 1, we redefine

w cos Or

o= 1 (377)

and nse the other abbreviations in Eq. (367), recalling © =9 198

i

u exp[,jw(t-x—)] [sin © (LIe"JYBly - Lre‘ﬂBlb') 5l sre'jYaly cos 9]

Vx

<
i

378
exp(Ja(t- )v(;)] [cos @ (LIe"jYBly + Lre'jYBly) * sreJYBIy sin gg - )

continuity of u, v, Tyx’ and Tyy at the interface again leads to 2 set
of four lineer algebraic equetions for the amplitude ratios with the

sbbreviations

- 5 L v
t=22%, ¢ = £, "‘._—E, F_Er.., 2_9_22’ fz_!&%[coszgt]’
b it 2 L P1V1 V2
(379)

The equetions taske the following form:

cos Qt -cos Or sin glt sin@ ||t | sin O
sin Ot sin Qr -coSs glt cos O || r -cos 9
-2 sin 291, sin 29r 2 f2 ‘1 T fl
2 cos 291; cos 2Gr _VE Zsin 2911;-.1]_- sin 20|| R _v_l sin ZG{
vp2 vpl Vpl
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The specisl case of a frss surface (2 = 0) has been discussed in

dstail by Arenberg (16). Some of the most important results were sum-
marized by Mason (9, pages 23-26).




