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CALCULATIONS FOR AIR FLOWS IN 
DISSOCIATION EQUILIBRIUM 

ABSTRACT 

Results of calculations carried out for a model of air in dissociation 

equilibrium are presented in graphical form. The quantities computed are 

i) flow variables (including species concentrations) behind normal and 

oblique shock waves, ii) flow variables in axisymmetric conical flow 

fields, iii) stagnation point values of flow variables on the •stagnation• 

streamline behind two-dimensional and axisymmetric detached shock waves, 

and iv) flow variable gradients at the shock wave on stagnation streamlines. 

Computations are given for free stream temperatures of 273.16~ and 300~, 

free stream pressures of 1.0, .l, .01, .001, and .0001 atmospheres, and a 

range of initial Mach numbers and cone angles to provide flow field 

temperatures in the range 3000°K - l0,000°K. Brief derivations of the 

equations employed are given. 

The present calculations are oriented toward application in experi­

ments in hypersonic flow with ground facilities such as shock tubes and 

ballistic ranges. In addition, they furnish important supplementary in­

formation to theoretical studies of nonequilibrium flows, 
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SYMBOLS 

AkJ, FW1ctions occurin~ in Eqs (2.:;) and (2.9) 

ci Concentration of ith species [k mol/kg of mixture] 

cp Specific heat of air at constant pressure 

cp 
i 

Cv 

h 

hi 

kf.' ~. J J 

K. 
J 

K w 

11., 
n 

p 

q 

R 

R w 

r 

s 

T 

u 
v 
wi 
w 

00 

8 

y 

[Dyn mjkg deg K] (1 Dyn 1 Newton = 105 dynes) 
·==~==============~== 

= dhi/dt (see Table II) [Dyn m/k mol deg K] 

Specific heat of air at constant volume 

[Dyn mjkg deg K] 

Specific enthalpy [Dyn mjkg] = ~ ci hi 

Molar specific enthalpy of ith species (see Table II) 
Reaction rate constants for jth reaction, forward and backward, 

respectively (see Table I) 

(=kf./ ~.). Equilibrium constant for jth reaction {see Table I) 
J J 

Shock wave curvature 

Free stream Mach number 

Arc length along curve normal to streamlines [m, mm] 

Pressure [oynjm
2J 

Flow velocity [m/sec] 

Universal gas constant = 8312.4 [Dyn m/k mol deg K] 

Shock wave radius of curvature ( = 1/Kw) 

Radial polar coordinate ( = (x2 + y2J1f2) 
[m, mm] Arc length along streamline 

Temperature [deg K] 

Velocity component in r direction ( = q cos [A - m]) 

direction ( = q sin [9 - m]) 

species [kgjk mol] 

Velocity component in~ 

Molecular weight of ith 

Molecular weight of air ( = 28.8587 gm/mol) 

Angle between shock wave and x-axis [radians, deg] 

Ratio of specific heats of air (cp/Cy) 
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e 
p 

b 

i 

j 

t 

w 

= 0 for two-dimensional flow; = 1 for axisymmetric flow 

Angle between streamline and x-axis [radians, deg] 

Density [ kgjm3J 
Arc length along shock wave 

Angular polar coordinate (~ = arctan y/x) 

Body surface 

ith species 
.th 
J reaction 

Stagnation point 

Shock wave 

Free stream 

Subscripts 



l. INTRODUCTION 

Current experimental research in hypersonic flow over two-dimensional 

and axisymmetric bodies makes it desirable to have available calculations 

for air in chemical (dissociation) equilibrium. Primarily these are values 

of the flow variables (including concentrations of chemical species) behind 

shocl\ waves and in conical flow fields, Furthermore, it is desired to have 

these data for ranges of free stream conditions applicable to experiments 

with ground facilities, such as shock tubes and ballistic ranges. To this 

end extensive calculations of shock wave quantities and conical flows have 

been carried out on the BRL high-speed computers for a model of air (see 

Section 2) in chemical equilibrium, and results are presented graphically 

here in Figs. I.l through II.9.* Brief derivations of the equations are 

given in Sections 3 and 4. Although computations of the above have already 

been carried out by other authors (e.g., Refs. l through 4 and the refer­

ences contained in them), the present paper furnishes information hitherto 

not available, to the authors' knowledge, in a form convenient for work in 

hypersonic ground facilities. 

The present calculations also supply important supplementary informa­

tion for the determination of nonequilibrium dissociating airflow over wedges 

and cones.5**certain features of these nonequilibrium flows (e.g., entropy 

layers, oblique shock equilibrium regions) require knowledge of equilibrium 

values. 

Studies being conducted at BRL on the subsonic region in front of a 

supersonic blunt body by analysis of interferometric data suggest that theo­

retically determined information on the stagnation streamline would be use­

ful. Therefore, extensive calculations were performed to obtain stagnation 

values of the flow variables, and, in addition, gradients of the flow 

variables along the stagnation streamline at the shock wave. These results 

are presented graphically in Figs. III.l through IV.8; derivations are given 

in Sections 5 and 6. 

*The computer program is available for cases not explicitly graphed in 
this report should exact values be required. 

** Superscript numbers denote references which may be found on page 56. 
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2. AIR MODEL 

The air is considered to be a mixture of neutral species consistinG of 

0 and N atoms, and N2, o2 , and NO molecules. This mixture of particles is 

assumed to be in translational, rotational, and vibrational equilibrium at 

all times. Effects of electronic excitation and vibration-dissociation 

coupling are neglected. The chemical reactions are listed in Table I. 

Let ci denote the concentration of the ith species M1 (moles of Mi per 

unit mass of air) and Kj the equilibrium constant of the jth reaction. Kj 

can be determined quite accurately from quantum statistical calculations, 

and the results are often fitted to an equation of the form 

n. 
Kj = AjT J exp(-Ej/T) , 

where T is temperature, and Aj' nj, and Ej are constants. The values listed 

for equilibrium constants in Table I are based on data given in Refs. 6 and 7. 

The law of mass action for equilibrium flow leads to the relations 

2 2 
pco peN p~co 

(2.1) co eN = ' cNO = 
Kl K2 K5 2 2 

(where o is the density of the air) plus the following restrictions: 

11 (T) 
K6K.r 

1, L2(T) 
- K2K7 

1, L
3

(T) ~ = 1 -
KlO 

= 
= KlK6 

= -
Kl 

. 

Calculation shows that 11 , 1 2 , and 1
3 

= 1 ± .10 for a limited temperature 
range, the results being valid only within this range (~ 4000° -- 8000°K). 

The flows studied here are produced by objects moving at constant 

supersonic speed in stationary air, taken to be a mixture of two ideal 

gases 02 and N2 having concentrations 

= 

00 

.21153 
woo 

mole 
gm air 

10 

= 
00 

.78847 
w 

00 

mole 
gm air 



where the subscript m denotes free stream conditions, and w~ is the molecular 

weight of air (= 28.85870). 

The conservation of chemical elements leads to the following relations: 

(2 .2) 

eN = eN + (l/2) eN + (l/2) ~O . 
2 2 

m 

Substitution of Eq. (2.1) into Eq. (2.2) gives 

2 
pco 

+ (l/2) co + (l/2) 
pcNcO 

co =--
2 Kl K5 

lXI (2.3) 

2 
peN 

+ (l/2) eN + (l/2) pcNcO . 
eN =--

2 K2 K5 m 

Considering each component as an ideal gas, the equation of state for 

the ith species is (p, p, and T being pressure, density, and temperature, 

respectively) 

and for the mixture (where P =I Pi' P = L pi) 

i 

p = RpT L c1 

i 

i 

(2.4) 

th 
R is the universal gas constant, Wi the molecular weight of the i species, 

ci the concentration. By Eq. (2.2) 

ll 



~" ci = (l/H0) + (l/2)(c0 + ~) • 

i 

(2.5) 

The differentiated versions of Eqs. (2.4) and (2.3) give the following 

useful set of linear equations for dp, dc0 , deN' and dT: 

(2.6a) 

0 ( 2. 6b) 

(2.6c) 

Expressions for the coefficients Akt are presented in the Appendix. 

A fourth relation, valid along streamline~, ir obtained from the 
energy equation 

dh = (1/p )dp (2.7) 

where h is enthalpy per unit mass. The total enthalpy is the sum of the 
enthalpies of the components: 

(2.8) 

Expressions for hi (enthalpy per mole) and dhi/dT (= c ) are given in 
pi 

Table II for all the species. Eq. (2.7) becomes 

the coefficients appearing in the Appendix. 

Eqs. (2.1) are differentiated to give 
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(2.10) 

dK.5 J dT dT • 

3. SHOCK WAVE CAlCULATIONS 

The conditions immediately behind a shock (denoted by the subscript w) 

are given by the following relations obtained from the conservation laws* 

(referring to Fig. 3.1): 

p tan (8 
w 

9 ) = Pro tan S 
w 

a cos (8 - e ) = q cos s 
VI W en 

Pw = P~ + P~~ 2 
(l - P

00
/Pw)sin

2
S 

+ (l/2)~ [l - (p~pw)2 ]sin2S h = h w 00 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

where A is the angle of inclination of the shock wave, q the flow speed, 

and e the angle of inclination of the flow. In the free stream 

h = (7/2)RT jw , 
00 00 00 

p = Rp T tw 
en co oof co (3.5) 

where M is the Mach number andy is the ratio of specific heats, having 
en co 

the value 1.4. 

The flow variables behind the shock wave are determined by solving 

Eqs. (3.1), •.• , (3.4), together with the equation of state Eq. (2.4), plus 

Eqs. (2.1) and (2.3). These form a set of ten functional equations for the 

ten variables p , 9 , q , T , p , (c0 ) , (c... ) , (c0 ) , (eN) , and (cNO) , w w VI w w 2 w 1~2 w w W w 

when the parameters M , T , p , (or p ) and S are given. The system of co ~ m ~ . 

*The basic jump conditions for a steady oblique shock wave requiring con­
servation of mass, momentum, and energy can be found in many places; e.g., 
p. 8 of Ref. 8. 
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equations is solved on the BRL high speed computers by successive application 
of the method of "regula falsi, II or "false position." Frequently e is 

w 
given, and 8 is the unknown quantity; an additional iterative procedure (e.g., 
regula falsi) can then find the 8 corresponding to a given 9 • 

w 

Figs. I.l through I.ll contain curves of flow variables behind normal 
and oblique shock waves. Pressure, temperature, density, and species 
concentrations are conveniently expressible as functions of the parameter 
M sin 8 for given free stream temperature and pressure. For the flow de-eo 

flection 9, another parameter, M , is required. 
co 

4. CONICAL FIDW 

In axisymmetric conical flow a straight cone of half angle ~ gives rise 
to a straight attached shock wave inclined at angle S. It is convenient here 
to introduce polar coordinates r, ~ (as in Fig. 3.l.b) and to employ U and V, 
the components of velocity in the r and~ directions, respectively. The 
values of~ at the shock and body are, respectively 

~ = 8 ' w 

With the condition that the flow variables be independent of radius 
(a/or = o), the mass and momentum conservation relations reduce to 

dUj<Xp = V 

dV/~ = - (V/p )dpjdf{J - [2U + V cot ~] 

dpj<Xp = v2 dfJ/<Xp + pV[U + V cot~] 

(4.1) 

(4.2.a) 

(4.2.b) 

(4.2.c) 

On substituting dpj<Xp from Eq. (4.2.c) into the right hand sides of 
Eqs. (2.6) and (2.9) one obtains four linear algebraic equations for dpj<Xp, 
dcof<Xp, d~/~, and dT/~, which are solved to give differential equations 

dfJ/~ = F1 , dc0j~ = F2, deN/~= F3, dT/~ = F4 (4.3) 

where F1 , F2, F
3

, and F4 are functions of~' u, V, p, p, T, c0 , and ~· 

Eqs. (4.2), (4.3), and (2.10) form a set of ten first order differential 
equations for U, V, p, p, T, c0 , eN , c0 , eN' and ~O' which can be 

2 2 
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integrated numerically by the Runge-Kutta method9 on the high speed 

computers. 

The initial conditions are taken at the shock wave; for a given atmos­

phere, speed, and shock inclination, all quantities are known here. The 

terminal condition is Vb = 0. This condition makes it convenient to use V 

as the independent variable instead of ~. 

Figs. II.l through II.9 contain data for conical flow, for which 

many properties of interest can be accurately represented as functions of 

the parameter Mm sin 9b' given the free stream conditions, Pressure, 

temperature, density, and species concentrations on the body surface are 

plotted against Mm sin ~' the shock wave angle is also presented in this 

form. 

5. STAGNATION VALUES BEHIND NORMAL SHOCKS 

Calculations are made of the flow variables when the fluid is brought to 

rest behind a normal shock wave, as for instance, at the intersection of the 

axial streamline with the surface of a symmetric blunt body (point 0 i~ 

Fig. 3.l.a). The independent variable in eqs. (2.6), (2.9), and (2.10) is 

taken to be the velocity q. These equations plus the momentum relation 

dpjdq = - pq 

form a set of differential equations which are integrated numerically from 

q = ~ to q = O, the terminal values of the variables giving the stagnation 

conditions. 

Figs. III.l through III.9 present the thermodynamic variables and 

species concentrations for stagnation flow behind normal shock waves as 

functions of M 
m This information is useful in studying the subsonic 

region between the surface of a two-dimensional or axisymmetric blunt body 

and the detached shock wave ahead of it. 

6. GRADIENTS AT SHOCK ON STAGNATION STREAMLINE 

The flow variable gradients along the central streamline behind a 

curved shock (point P in Fig. 3.l.a) can be calculated if the curvature of 

the shock Kw is known. If a is arc length along the shock wave, it is seen 

15 



from the relation 

d d 0 ) ~ -- = K -- = [cos(B - e)]--+ [sin(A - 9 ] -­dcr w dR cs ?In 

(where s and n are arc lengths along streamlines and their orthogonal 

trajectory, respectively) that 

The momentum conservation equation* 

(6.1) 

(6.2) 

shows that (dp/dS)B = 900 = 0. Then, by Eq. (2.6) and Eq. (3.4) differen­

tiated with respect to B, dp /dB = dT/ dS = dcJ dS = de~/ dS = 0 at the x-ax:is. 

By the differentiated Eq. (3.1) and Eq. (6.1) 

(6.3) 

Expanding [(sin e)/y] near the x-axis, noting that dy = drr sin B , w 

(sin e)/yw = [d9/dy)Y. = 0 yw + ···J/Y. = (de/drr)Y. = 0 + •••• 
w w w 

Therefore 

Substituting Eqs. (6.3) and (6.4) into the flow equation 

l .2£. - ....l.... QE + ~e + € sin e :::: 0 
p OS 2 OS on y pq 

(6.5) 

where e = 0 and 1 for two-dimensional and axisymmetric flow, respectively, 

one obtains 

dp/ds = q2 dpjds - (1 + e )K pq2 [(p/p - 1)] • (6.6) w co 

On substituting dp/ds from Eq. (6.6) into Eq. (2.6) the gradients of the 

flow variables are determined. It is seen that the gradients are all 

proportional to K , and that for a given M the axisymmetric gradients are w ~ 

*Eqs. (6.2) and (6.5) expressing conservation of mass and momentum are 
found, e.g., in Section 3 of Ref. 5. 
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twice those for two-dimensional flow. 

Gradients along the stagnation streamline at the shock wave are shown 

in Figs. IV.l through IV.8 for the thermodynamic variables and the species 

concentrations. Arc length is given in terms of the radius of curvature of 

the shock wave, R , at the x-axis. 
w 

r. COMPUTATIONAL RESULTS 

Computational results are presented in the diagrams which follow. 

Graphs of desired quantities are plotted for free stream temperatures of 

273.16°K and 300°K, and free stream pressures of 1.0, .1, .01, .001, and 

.0001 atmospheres; the choice of Mach numbers, cone angles and shock wave 

angles makes possible a temperature range coverage of 3,000°K to lO,OOOOK, 

A complete survey for air in dissociation equilibrium is not feasible be­

cause of the multitude of combinations of parameters. It is felt, never­

theless, that the following set of diagrams can be used to obtain approxi­

mate information adequate for planning experiments, predicting and checking 

experimental results over a wide range of conditions attainable in the 

laboratory. 

Comparisons were made of the present results with previously published 

results in which more accurate models of high temperature air were assumed. 

For example, conical flow parameters (Fig. II.l - - II.4) practically coincide 

with those of Romig (Ref. 4). A comparison of shock and stagnation pressure 

calculations with those of Feldman (Ref. l) is shown in Fig. 7.1; the largest 

discrepancy of all the parameters is found in the stagnation pressure. 
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FIG. 3. 1. CROSS-SECTION DIAGRAM OF FLOW FIELD 
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FIG. 1.1. VARIATION OF PRESSURE ACROSS SHOCK WAVES 
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FIG. 1.2. VARIATION OF DENSITY ACROSS SHOCK WAVES 
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FIG. I.3. VARIATION OF TEMPERATURE ACROSS SHOCK WAVES 
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FIG. I. 10. VARIATION OF N CONCENTRATION ACROSS SHOCK WAVES 
(W 00 = 28.86 GM/MOLE) 

28 



L 

FIG. I. 11. VARIATION OF NO CONCENTRATION ACROSS SHOCK WAVES 
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FIG. Il.2. CONICAL FLOW - DENSITY ON CONE SURFACE 
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FIG. 11.3. CONICAL FLOW- TEMPERATURE ON CONE SURFACE 
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FIG. IV.6. GRADIENT OF 0 CONCENTRATION ALONG STREAMLINE NORMAL TO 
CURVED SHOCK WAVE (Weo 28.86 GM/MOLE) 
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FIG. IV.8. GRADIENT OF NO CONCENTRATION ALONG STREAMLINE NORMAL TO CURVED 
SHOCK WAVE (W 00 = 28.86 GM/MOLE) 
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APPENDIX 

COEFFICIENTS OF EQUATIONS (2.6) AND (2.9) 

All = 2/p 

Al2 Al3 = 2/[co + eN + (2/W ) ] Al4 = 2/T = 
<D 

A2l = reo eN l 
co_Kl + 2IS 

2pco l peN 
A23 

pco 
= 

~2 = --+-+- 2K5 K1 2 2K
5 

A24 co diS_ eN dK5l 
= - pco IS_2 -+--

dT 2K 2 dT 
5 

rcN cO l A32 
peN 

= 
A3l = eN _K

2 
+ 2K

5
_ 2K

5 

A33 
2pcN l pco 

= --+-+-
K2 2 2K5 

c dK2 co dK5J 
A34 = - pc [.lL -+--

N K 2 dT 2K 2 dT 
2 5 



TABLE 

REACTION RATE COEFFICIENTS AND EQUILIBRIUM CONSTANTS 

No. ( j) Reaction Rate Coeff.,Equlllb.Const. 
1::::::::_- . 

I 02+~:20+~ (kf)l= 1.2 X 10
18 T- 312exp(-59,380/T) 

K = 
I I .2 X 106 T-

112exp(-59,380/T) 
-· ----

II N2+~~2N+~ (kf) 2
: 9.9 X 10

17 
T-

312exp(-113,260/T) 

K2=18.0 X 
3 

10 exp(-113,260/T) 

Ill 02+02:: 20+02 (kf)3= 3.6 X 10 18 T- 312exp(-59,380/T) 

K = 3 ----same as for I 

IV N2+N2: 2N+N2 (kf)11= 3.0 X 10
18 

T-
312exp(-113,260/T) 

K11= ----same as for II 
-- --·· 

v NO+M~N+O+M (kf)5= 5,2 X 10 18 T-312exp(-75,1190/T) - -
K5= 11.0 X 

3 
10 exp(-75,1190/T) 

-- .. ----· 

VI 

r----
VII 

f---
VIII 

IX 

X 

O+N2.: NO+N <kt>e= 5.0 x 
10 10 exp(-38,000/T) 

K6= 11.5 exp(-37,750/T) 
-

N+02.:NO+O (kf)7= 1.0 X 109 T 1/2 
exp(-3, 120/T) 

K = 
7 11.166667 exp(+16, 120/T) 

02+0:30 <kt>8= 2.1 X 10 15 T- 112exp(-59,380/T) 

K = 
8 ----same as for I 
- ---------------- ------ -

N2+N ::3N (kf)9= I. 5 X 10 19 T-312exp(-113,260/T 

K = 
9 ----same as for II 

1021 _F./2 
N2+02~2NO <kt>, 0= 9.1 X T v exr(-65,0CC/T) 

K1o=l9.o exp(-21,6110/T) 

Dimensions: {kf)j -- m3/(kmo1 sec) ; 

Kj for 3 body reactions -- kmo1/m3 

58 

Catalyst( ~ ) 

N2,N,NO 

--
02,0,NO 

- -
----

----

02,0,N2,N,NO 

-

----

------

----

--
----

-- ---
----

----



T~BLE II 

SPECIFIC ENTHALPIES AND SPECIFIC HEATS 

ho2= 7RT/2 + (Re0 >J [exp(e
02

/T)-I] + h 
2 02 

h = 7RT/2 + ( ReN ) I [exp(eN /T)-1] + h 
N2 2 2 N2 

-
h = 
0 

5RT/2 • ho 

-
h = N 

5RT/2 + hN 

- 2 - - 2 
(CP)

02
= 7R/2 + R(e

02
/T) exp(e

02
/T)/[exp(e

02
/T)-I] 

- 2 - - 2 
(CP)N

2
= 7R/2 + R(9N

2
/T) exp(9N

2
/T)/[exp(8N

2
/T)-I] 

No. ( i ) Species e i ( o K> hi(Dyn m/k mole) 

2 

3 

ij 

5 

02 2256 

N2 337ij 

0 

N 

NO 2719 

I Dyn. = 105 dynes 
59 

0 

0 

2.ij67 65 X \08 

ij,710 63 X 108 

0.898 655 X 108 
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