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ABSTRACT

Based on a theoretical analysis of the cable and payload dynamics during
lowering or raising heavy loads in the deep ocean given in Project Trident Technical
Report No. 1370863, further calculations of the maximum dynamic stresses expected
in the lowering cable are presented covering a wide range of cable and payload
parameters. The theoretical analysis is adapted to a proposed design procedure, and
two typical design examples are given, the results of vhich are discussed in terms of
the safety of the lowering or raising operations.

In order to make the design procedure applicabie with a greater degree of
confidence, it is considered necessary to make measurements of cable tensions and
load and ship motions during a fuil-scale operation to fill in deficiencies of data
and provide o basis for verification of theory and calculations. In particular, data
are needed on the coefficients of drag ond mass, which at this stage must of necessity
be estimates.

Distribution of this document i1 unhimited.

The Laboratery invites comment on this report, particylarly on the
resuits obtaned by those who hove opptied the information.
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INTRODUCTION

The work described herein was carried out as part of BuDocks Task No.

Y -F015-01-01-001, "Structures in Deep Ocean, "' which originated from the require-
ment of the Bureau to attain a deep ocean engineering capability in keeping with the
increased emphasis on the deep ocean as an operating environment for naval forces.
This report is the result of work performed under Task Nc. Y-F015-01-01-001(b),
"Mechanics of Raising and Lowering Heavy Loads in the Deep Ocean. "

The objectives of this work were to analyze and report on the results of
predictions of the forces in lines and the acceleration and displacements of loads of
various shapes curing raising and lowering operations in the deep ocean. The study
is based on, and an extension of, a theoretical analysis by Arthur D, Little, Inc.,
given in Project Trident Technical Report No. 1370863 of the Bureau of Ships,
entitled "Stress Analysis of Ship-Suspended Heavily Loaded Cables for Deep Under-
water Emplacements. "

THEORY

The problem considered in this report is that of a load suspended from a ship or
moored platform by means of a single cable, as shown in Figure 1.* The maxi.ium depth
for such a lowering or raising operation is assumed to be on the order of 20, 000 feei.

The requirements are (1) to analyze this problem so as to predict the cable and
the load dynamics, in particular the maximum dynamic stress induced in the cable as
a result of the motions of the suspension point, and (2) to provide o design procedure
for evaluating such stresses for a given load under specified conditions of sea~surface
oscillations.

Solution of this problem is recognized to be difficult in view of the nonlinearities
introduced in the damping due to dreg forces of vertical oscillations of the load. A
simplified solution has been obtained by Arthur D. Little, Inc., os given in the Project
Trident report. A brief resumé of the analysis presented in that report is given here,
details of which may be found in Appendix A.

The equation ot morion of an element of the cable initially located at a distance

x from the support point is given by

azu dv - Bzu
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* Figures | through 35 are presented immediately after the main body of text,




The boundary condit'an at the load is given in the form

a2u du

; tH5e t B 2
(3')

ot

du

3t
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A secondory boundary condition is that the displacement of the suspension point is
known for all time.

In the above equations, u(x,t) is the displacement at time t of a point on the
cable originally located at a distance x from the suspension point. Hence the second
boundary condition is that

ulo, t) is known for t > 0. (3)
The following nomenclature applies:

KL

ﬁc = p_cS (4a)
Pe SL
b= p (4b)
a
c2 = —p% (4c)
X! = t = te (4d, e)
L L !
CDpA
ond B = M (4f)
a
where* P = density of the cable
S = material cross-sectional area of the cable
E = modulus of elasticity of the cable
K = constant of friction on the cable due to the surrounding water

* Notations are defined where they first appear and are summarized for convenience
on a foldout page at the back of the report.




velocity of sound in the cable
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= virtual mass of the load
Cp = drag coefficient appropriate to the load
A

projected area of the load in the direction of motion
L = length of cable

P = density of sea water

The difficulty in obtaining an exact solution to Equation 1 subject to the
boundary conditions, Equations 2 and 3, arises from the nonlinear term |3u/at' |[(cu/5t')
in Equation 2. This difficulty is avoided in the A. D. Little report! by an approxi-
mation which is described in Appendix A.

Defining a r}ormohzed displacement amplitude U' equal to U divided by |Uo|
and noting that Uy is the value of U’ at the load, a solution for U' as a function of
x' is given by

u' = U]' cosw'y' + Csinw'y" (5)

where C is o complex constant and

=1 - X (6a)

—

w

w' = — (6b)

Hence the inaximum value of the dynamic stress in the cable is given by

()Z:mm)2 = (w')2 (U]')z[l + tan (tan¥ +sec V)] (7)
1/2
v 2 4 . 2 1 e 2
. co + w 20
! where (U]')2 = : (; ‘02) + 52s|n4 o -1 (8)
3 ' 2ﬁ2 sin ©sin W' cos (w'+¢)
Q= orctan% , 0505% 9)
¥ = arc tan 1 BZ(U')2 tany - cot 2(0] ' LaysT (10)
2 1 2 2
3




i~

(1)

and v |- (12)

in the A. D. Little report, Equation 7 together with Equations 8, 9, and 10
was solved by use of a digital computer to give the maximum dynamic stress as a
function of the nondimensional frequency w' for various values of Band 4. A
similar procedure was adopted ir this report for two reasons, firstly to investigate
the variation of stress over a wide range of w', 8, and 4, and secondly as a means
of providing the basis of a design procedure for cables used for lowering or raising
heavy loads to or from the deep ocean floor.

The cable and load system considered herein is o part of the overall lowering
system consisting of the vessel from which the operation is performed, its response
to the wave action present during the lowering or raising process, and the resulting
oscillations of the cable and load. Within existing theoretical limitations of knowl-
edge about waves and ship motions, and under the restrictions of a linear theory, the
problem of the response of a ship or platform to a particular sea state has been solved
in terms of certain probabilistic models by Kaplan and Putz. 2 Pierson and Helmes3
in a note on the engineering applications of the Kaplan and Putz report outlined a
procedure for the determination of the response of a drilling barge to sea states 3, 4,
and 5. The results are obtained in terms of the probability of occurrence of various
amplitudes of motion in heave, surge, sway, yaw, pitch, and roll. The Cuss-I
ocean-bottom drilling barge was used as an example, but the calculations as carried
out by Kaplan and Putz may be applied to other ships or moored platforms, given the
use of a digital computer.

Details of the program, which was written for an IBM 1620 computer, are
given in Appendix C. For the purposes of this analysis, the calculations were
divided into sections based on the relative values of w' required for prototype
computotions.

Equation 6b relates the required range of ' to the length of and velocity of
sound in the cable. It is assumed that w, the frequency of oscillation of the cable-
suspension point, has @ maximum value on the order of 2. 00 radians per second and
that the maximum length of the cable is 20, 000 feet. Then the required range of w'
is determined by the velocity of sound, ¢, in the cable. For steel and polypropylene
cables, c is approximately 12,000 and 2, 000 feet per second respectively, resulting
in maximum nondimensional frequencies of 3.33 and 20, 00.

e L5 S e sl Wi ¢




o i

.

Initially the range of B was chosen as 0. 10 to 7. 00, and values of i equal to
0.10, 0.50, 1,00, 2.00, 5.00, and 10.00 were used. Preliminary computations
for a typical design problem indicated that lower values of u would also be required,
ond corresponding additional computations were carried out as shown in the results
which follow.

Pierson and Holmes indicate the methods whereby the root-mean=square (R.4S)
values of motion in each mode for each sea state may be determined. For the purposes
of this report, the oscillation of most concern is that in heave, and knowing the RMS
value of heave motions in sea state 4, for example, estimates can be made of the
extreme value of heave to be expected in a given time. This procedure thus provides
a basis for specifying the range of | U, | to be used in determining .='ues for use in
the design computations. The correlation between sec, ship, and cable stresses is
discussed further later on in the text in the application of the results obtained herein
to two hypothetical prototype cases.

RESULTS

As illustrated above in the theoretical analysis, the parameters influencing
the dynamic stresses can be tabulated as follows:

Cable Parameters

maximum length of cable
max

S

I

material cross—sectional area of cable
w = weight of cable per unit length
E = modulus of elasticity of cable

L, = allowable maximum dynamic stress in the cable

Load Pcrameters
M = mass of the load
A = cross~sectional area of the load
C_ = coefficient of mass
CD = coefficient of drog

p = density of sea water

Ship or floating Platform Motions in Hecve
IUO’ = amplitude of heave
w = frequency of heave (rad/sec)




These specific variables ore combined as follows:

4CDpA

8= Facm %l (i

- wl

a

Voo owl
W= (6b)

and |z' (12)

max

Values of the nomalized amplitude of the maximum dynamic stress, l Dax |
were calculated for four ranges of nondimensional frequency, w'. The ranges were

as follows:
/5 < &' < 7.07 in increments of 7/5
1/10 s &' < 1.47 in increments of 1/10
0 s &' s /2 in increments of n/10

0 < &' <0.10 in increments of 0.01

The specific values of u used in the computations were 0. 005, 0.01, 0.03,
0.05, 0.10, 0.50, 1.00, 2.00, and 5.00. For low ranges of w', additional values
of 4 were used as shown on the oppropriate graphs. At each value of 4, calculations
were performed for 8 = 0.10, 0.30, 0.50, 0.70, 1.00, 3.00, 5.00, and 7.00 over °
the two higher ranges of w', and values of 8 = 0.25, 0.50, 1.00, 3.00, 5.00, and
7.00 over the two lower ranges of w'. The results of these computations are presented
in Figures 2 through 7 for the lowest range of w' and in Figures 8 through 13 {or the
second lowest runge. For the ronge 7/10 < W' < 1.4m, it was found that the stress
colculated ot values of w' near  were zero. Figure 14 illustrotes this discontinuity.
In order to investigate this behavior, Equations 7, 8, 9, and 10 were combined and
evaluated os w' approoched nf, wheren = 1, 2, 3,... Details of this evaluation
are given in Appendix B, the result being given in the form

P e
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where B is the parameter defined previously, Equation 11, and K = nn/u. The solid
dot in Figure 14 is the stress calculated from Equation 13 at that particular value of
Band . The values of |>:;n xl as determined from Equation 13 were used in plotting
Figures 15 through 22 as and when necessary. The apparent discrepancies in the
computer calculations are considered to be due to rounding=-off errors inherent in

the computational procedures.

Figure 23 is included to indicate the variation of lz:rwaxl with 8 for a particular
value of 4. Figure 24 shows the variation of maximum dynamic stress for the highest
frequency range /5 s w' s 7.0n for particular volues of 8 and u. As can be seen,
the maximum dynamic stress is highly dependenr upon the nondimensional frequency.
Since in any application of these curves the peak values of lx;noxl must be consid-
ered, the results for this ronge of frequencies are presented in a simplified form in
Figures 25 through 32, where each curve is drawn through the maximura values cf
ll:"pxl in the saome manner as the dashed line in Figure 24. Each groph is drawn for
various values of u at a given 8. In certain instances, it was again found necessary
to determine li,'mxl at frequencies near 7 and its multiples by use of Equation 13,

DISCUSSION OF RESULTS

The results obtained from the computer program as outlinad above are generally
in agreement with those quoted in the A, D. Little report’ except for values of the
normalized moximum dynamic stress, t . l, corresponding to nondimensional
frequencies, w', neor or equal to 3. 142, The computation of il;ﬂ(‘:l atw = W
according to Equation 13 gave results which compare favorably with those obtoined
from the computer progrom. A comparison of three typical results is given in Table I,

it should be noted that the value of il,'.naxl computed from Equation 13 is not
necessarily the peak value, since resononce will occur ot nondimensional frequencies
other than 7 depending upon the values of 8 and u. When u approaches zero, the
resonant frequencies approach 7, 21, 31, etc, and the vclue of iZ"mx] as determined
from Equation 13 may then be interpreted as the maximum value. This can be seen to
be true by imspection of Figures 15 through 22.
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Yable I. Comperison of Typical Values of ,):r'ncxl as Computed by Digital
Compurer Program and as Calculated From Eauation 13

! T T T T
l Ei;nqxl ) lZ:_mx! | Percantage
B g | Computed by Digital Culculaied frum .
| - . Difference
Compi.ter Progrum Eqiation 13

0.50 c.10 112 i | 1i0. 1 1.80

1.00 J. 10 142,32 139.3 2.0} *

5.00 0.10 514.07 503.5 2.10

The parameters § and 4 are representative of the domping and the iatio of the
weight of the cable to the virtual mass of the load respectively. As was noted in the
A. D, Little report, the variations of Izr.noxi with «', B, and u are in ogreement
with known results for simpler systems. Ay the mass of the load is decreased, i.s.,
g~ @, the sysrem reduces to that of a free-ended spring, with the resonant frequencies
approaching 7/2 and 3m/2, etc. As the mass is increased, p ~ 0, th2 resonant fre-
quercies apprcach 7, 27, etc., which ogrees with the case of o fixed-ended spring.

The uamping parameter, B, has a slight effect on the resonant frequencies but
a far m. 2 important effect on the amplitude of i):;ncx! at resonance. A conciusion
in the A, D, Littie report indicated that the maximum dynemic stress amplitude at
res: 1ance increases when the damping is increased keyond o zertain velue., From
the above calculations it can be seen that the amplitude at resonance increases
gene-ally with increaced damping; i.e., there is no minimum amplitude as impiied
by the above conclusion. This result is compatible with the concept that as the
damping increases, the system becomes equivalent to o fixed-ended spring giving
resonances at 7, 27, etc., and amplitudes tending to infinity, restricted only by
internal and external damping of the cable. This argument considers the damping
effects, a function of 8, to ke divorced from the inertial effects, which are
dependent v,'on u.

In view of the deperdence of the maximum dvnomic stress ampliitude on 8,
and since 8 depends on the parameters of the load — i.e., the cross-sectional
area, the mass, and the density of sea water, which are fixed — and on the coef-
ficient of drag, the value of Cp assumed for a given load configurction is of
parricular importan~e. This can be seen from the results given above where a
change of £ from 1. 00 to 3.00 results in a change in |)—1'ncx| at resonances from
142 to 370. f Izr'naxi is interpreted as an allowable stress which when exceeded
results in an unsafe condition foi the operation, as implied in the design procedure
which foilows, then the value of Cpy used in the calculation of B becomes critical.
For poot hydrodynamic shapes such as blunt bodies or open frameworks, it is not
possible within the present state of development of theoretical fluid dynamics to
calculate Cpy from the basic equations of fluid flow. The oiternative, therefore, is

o Eﬁ"l,ﬁ. .

SN




to resort to an experimentol determination of the coefficients of drag for the particulor
load configuration in question, for both steady ond oscillstory motions. There exists
little exper:mento! data on the appropriate coefficients of drag applicable te typical
{nad shopes being lowered to the deep oceon floor. A series of experiments directed
toward obtaining such data thus appears justified.

Similar arguments also apply to the values cssumed for the coefficient of added
mass, Cm. Summaries of information pertinent to the determination of the drog and
added mats coefficients are presented in Appendixes D and E respectively.

The shape of each curve detemine. from Equations 7, 8, 9, ond 10 differs
from thcse obtained for linear systems in that u second peak in the nomalizad mox-
imum dynamic stress occurs at nondimensionai frequencies on the order of 0. 10 to 0. 40.
The significance of such ¢ secondary peak, which is termed herein a subharmonic
response, is more easily discussed in relation to o specific design example. Two such
examples are given below foliowing a proposed design procedure.

PROPOSED DESIGN PRGCEDURE

The parameters required in the design procedure are those applicable to the
load and the cable. The: may be tabulated as follows:
Load Parameters
M = mass of the load
A = cross—sectional area of the load in the direction of motion (ﬂ'z)
C, = coefficient of drag applicable to the load

C_ = coeificient of added mass appiicable to the load

Caoble Parometers

-
1}

maximum length of cable ()
w = weight of cable per unit length (Ib/ft)
E = modulus of elasticity for the cable (Ib/in.?)
I . = ultimate tensile strength of the cable (Ib/ in.z)
F = sofety factor for maximum operating stress in the cable

p = density of sea water (lb/ffa)




From the above parameters, the following may be determined:

L

_ ult
(1) Xd T F zsfatic

where L, .:. equals the static stress in the cable, including that due to the cable
itselfat L, and I equals the operational maximum dynamic stress allowable with
a cable of ultimate tensile stress, L |, and a safety factor of F,

@ - \F—
[+ pc

the velocity of sound in the cable in feet per second; and

4CDpA

3 k = 700
@ InC. M
a constant. Since the cable length varies from zero to Ly, and because the design
must be valid for all lengths, several values of L should be chosen (L = 1., where
n=1, 2, 3,...) between zero and L, .. Hence, values of u, = wL"/C;,n M may
be calculated.

Values of |U,|, the amplitude of the cable support-point oscillation, may be
selectad as IUOI =1.0, 2.0, 5.0, 10.0 feet. A table may then be set up, as
illustrated by Table 1, for each u | corresponding to the selected L .

Table Il.  Outline of Table for Computctior. of Relctionship Between
Frequency and Amplitude of Osciilations, Given y, L, c,

and k
(For p = by L= L], c/L= c/L‘)
Column 1 Column 2 Column 3 Column 4 Column 5
I L Zd W' e
|U0| (ft) A= konl |zmax ) IUO! E « w= L
1.0
2.0
5.0
10.0
15.0
10

- o— - -— . SN - - —
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The use of the table is as follows. Column 1 consists of the amplitudes of the
cable support-point oscillations os selected above, and from this, Column 2 may be
calculated by multiplying by k derived previously. Column 3 is computed for the
given L, 1, |U°|, and E values appertaining to the cable. For polypropylene or
nylon cables, it may not be possible to determine Iy and E directly. Manufacturers'
tables generally allow the computation of S Ij and SE, where S is the material cross
section of the cabie. Hence, the constant ratio Iy/E may be determined and used in
Column 3.

Column 4 is obtained from the curves of Figures 2 to 7, 8 to 13, 15 to 22, and
25 to 32 for the particular values of u and 8 given in the table. Column 5 is eval-
vated from Column 4 for the particular ratio of ¢/L,. Thus, from Columns 1 and 5 a
curve relating the allowable amplitude of oscillation to the frequency of that oscilla-
tion may be drawn for the particular cable length used. The process may then be
repeated for other cable lengths. A judicious choice of cable length can serve to
reduce the numerical calculation to @ minimum.

It may be assumed that operating conditions lying on or below the curve are
safe, with the safety factor, F, os defined, and that operating conditions lying above,
to the right of, the curve are unsafe.

In line with comments raised in the Discussion of Results, the unknown parameters
are Cp and C,. With existing deficiencies in data giving Cp and Cp, for various load
configurations, they must of necessity be estimated. See Appendixes D and E.

If it should occur in a design problem that the ranges of w', 8, or u are not
covered in the graphs developed in this study, then the appropriate curves may be
calculated for specific values, or ranges of values, of those parameters by use of
the digital computer program used in obtaining the results quoted herein. Details
of this program are given in Appendix C.

Two examples of the application of the above design procedure are given below.

APPLICATION OF PROPOSED DESIGN PROCEDURE TO TWO PROTOTYPE
EXAMPLES

The application of the proposed design procedure to two hypothetical prototype
examples is demonstrated below for polypropylene and steel cable respectively. The
parameters used in these examples are such as to enable the design procedure to be
carried out using the curves presented previously in the results.

Design Example Using Polypropylene Cable

The parameters of the load are given as
M = 5.0tons = 10,000 Ib
A = 12t x 12 ft = 144 12

fl

11




CD = 2.0
C, =15
The cable parameters chosen are
Lmox = 20,000 ft
w = 0.90 Ib/ft
SE = 240,000 Ib
SI; = 10,000 Ib
1/2 1/2
. = (?fc_) - (EV.V_E. = 2,930 ft/sec
4CprA
k = m = 0.50

and, therefore, 8 =10.50 IUOI.

The cable dato used herein was obtained from the August 1964 "Braided Rope
and Cordage Catalog" of the Samson Cordage Works, Boston, Mass. It is now
convenient to select cable lengths such that values of 4, where u = wL/M_,
coincide with those used in deriving the curves presented previously in the results.
These values are given in Table 111,

Table 11l. Cable Lengths Used in Design Example for
Polypropylene Cable

L () H e/t
16, 660 1.00 0.1758
8,330 0.50 0.3516
1,660 0.10 1.7580
833 0.05 3.5160
166 0.01 17.5800

It is now possible to set up Table 1V corresponding to Table Il given in the
proposed design procedure by specifying that input amplitudes of oscillation, |U,],
of 1.0, 2.0, 6.0, 10.0, ond 14.0 feet will be considered. Knowing that 8=k |U,|,
Column 2 of Table IV may be calculated. The values of |I | | = LI,/ |Uj|E con
be derived for appropriate values of L and |U,| as shown in Column 3 of the table.

12
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From inspection of the table, it can be seen that in view of the relationship hetween
the various cable lengths chosen, values of !;‘mx| at these different lengths are quite
simply related — thus facilitating the design calculations.

Values of the nondimensional frequency, «', are then entered in Column 4
by the use of Figures 2 to 13, 15 to 22, and 25 to 32. That is, for a particular u
and 8, the valve of w' corresponding to Izn:naxl may be found. Hence, the circular
frequency, w, can be calculated and entered in Cclumn 5. From the completed
table, the relationship as a function of cable lencth, can be drawn hetween input
amplitude of oscillation, |U |, and the ullowable circular frequency, w, of that
amplitude — i.e., the circular frequency at which the oscilletion can occur such
the + the maximum dynamic stress in the cable is less than or equal to the dzsign
dynamic stress. Figure 33 shows this relationship for the computation given in
Table 1V. The significance of these results is discussed below together with that of
the following design example.

Design Example Using Steel Cable

The relevant load parameters are given as follows:

M = 20 tons = 40,000 Ib

A = 600 fr2
CD = 2.0
C, =15

The oppropriate cable parameters were chosen to be

Lmax = 20,000 ft
Pe = 550 Ib/f3
w = 7.64 lb/ft
E = 15x 10% psi
I, = 40,000 psi
¢ = 11,200 ft/sec
k = Cor? | 0.50
T 3nCyM .

ond, therefore, 8= 0.50 EUOI.

13
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As in the first example, cable lengths are chosen to give values of y coincident
with those used in the calculation of Figures 2 to 13, 15 to 22, and 25 to 32. These
lengths and the corresponding values of 4 and c/L are given in Table V.

Table V. Cable Lengths Used in Design Example
for Steel Cable

L (f¢ Y c/L
15,700.0 2,000 0.713
7,850.0 1.000 1.426
3,925.0 0.500 2.850
1,963.0 0.250 5.600

785.0 0.100 14. 260
393.0 0.050 28.500
236.0 0.030 47.500
78.5 0.010 142. 600
39.3 0.005 285.000

A similar table to that derived in the previous design example may now be
set up and the numerical computations performed as above. These calculations are
summarized in Table 1V, and the relationship between the input amplitude of
oscillation, IUol, and the aliowable circular frequency, w, of that amplitude is
illustrated in Figure 34,

DISCUSSION OF RESULTS OF THE APPLICATION OF THE PROPOSED
DESIGN PROCEDURE

Figures 33 and 34 show the results obtained in the application of the proposed
design procedure to the two hypothetical cases described above.

In any load~lowering operation, the cable used will have a certain known
ultimate load at which the cable could be expected to break. With repeated use
of a particular cable, this ultimate load will decrease. Hence, for any iowering
operation a safety factor must be chosen defining a load, or corresponding stress,
which should not be exceeded. This allowable working stress is assumed Yo inciude
static stress due to both the load and cable — the latter being negative in the case
of a buoyant cable such as polypropylene — and the dynamic stress.

This discussion and the design procedure proposed earlier in the report are
based on the assumption that a particular maximum dynomic stress is given which
should not be exceeded during the lowering or raising operation.

o
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Figures 33 and 34 indicate the allowable frequency of an input oscillation ot
various amplitudes of this oscillation as a function of the cable length, such that the
stipulated maximum dynamic stress is not exceeded. Alternatively, they indicate
the maximum amplitude of an input oscillation at a particular frequency such that a
maximum dynamic stress is not exceeded.

One of the most important problems in the interpretation of these graphs is the
selection of appropriate input conditions, |U,| ond w, corresponding to the response
of the vessel used for the lowering or raising operation of the sea state in which the
operation is carried out.

It is apparent that the frequency range given in Figures 33 and 34 is far greater
than that which would be expected under operational conditions. Data is available
in the literature (Kaplan and Putz, 2 pierson and Ho'mes3) on the response of the
Cuss-| drilling barge to various sea states. In sea state 5, the range of frequencies
of oscillation in heave is 0.40 to 1. 40 radians per second with root-mean-square
values of heave of 1.8 and 1.3 feet at headings of 90 degrees and O degrees to the
wind respectively. These values imply expected maximum emplitudes of oscillation
of 7.2 and 5. 2 feet during a 4-hour period on station (Pierson and Holmes). It should
be noted, however, that combinations of heave and roll oscillations could easily pro-
duce oscillations greater than this if the load-lowering operation is carried out using
the boom over the side of the vessel. The above values are used here to illustrate
the interpretation of Figures 33 and 24,

Referring to Figure 33 for the design example using a polypropylene cable,
it con be seen that for a heave amplitude of 7. 2 feet at frequencies of 1. 40 and
0.40 radians per second — to cover ths entire frequency range — the design dynamic
stress will be exceeded ot a cable length of less than 200 feet for w: = 1.40. For
frequencies less than 1. 40 radians per second down to 0. 40 radian per second, it is
estimated from the curves that the design dynamic stress will be exceeded ot cable
lengths which gradually decrease from 200 feet. Thus the operation will be unsafe
relative to the prescribed maximum dynamic stress for a cable length of iess than
200 feet. This condition hos been fully recognized in the design of various lowering
operations conducted by this loboratory. The dynamic stress will then be less than
the design stress until the length of the cable reaches o value of approximately
5,000 feet. According to the results obtained cbove the operation will than become
unsafe, if the frequency is 1. 40 radions per second and the omplitude is 7.2 feet. *
For o frequancy of 1.00 rodion per second the operation becomes unsafe at a depth
of 7,000 feet. The reasons for this result ore difficult to visuclize, but may be
explained from both the mathematical and physical points of view, In terms of the
numerical computations carried out as shown in Table V1, the regression of the curves
given in Figures 33 and 34 is due to the foct that when the maximum dynamic stress,

* These comments are based on an cpproximate interpolation beiween the curve
labeled 6 feet ond 10 feet in Figure 33 for | Uol = 7.2 feet,
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l):,'n x|+ increases, say doubles, due to an increase in the cable length of L to twice
L, the appropriate nondimensional frequency, «', at the corresponding value of u
is not twice the w' at the shorise iength. This results in a lower circular frequency,
w, at the longer cable length. This applies to the larger values of IZ,',,OX | correspond-
ing to these lengths. A similar argument applies at cable lengths lower than 200 feet.
For intermediate cable lengths a relatively small variation in| Lnax| results in a
significant increase in W', resulting in an increase in the circular frequency, w.
This applies to a range of w' from 0.47 to 0.87 — i.e., to values of lxv‘noxl larger
than thore corresponding to the first peak in Figures 2 to 13 and 15 to 22, but less
than those associated with the peak responses occurring at w' approximately equal
to 3.142, As w' values tend toward ihis value, significant changes in | Z:noxl result
in larger variations in circular frequency for different cable lengths due to the infly-
ence of the c/L ratio in computing the latter. Hence the variation of cable stress
:vnt::lcable length depends upon the shapes of the computed curves relating |Z"mxl
ow'.

The physical behavior of the cable assembly may be described by reviewing
the significant results obtained by Little! and by Whicker.4 Tks latter is o rather
simplified (i.e., no damping) theoretical analysis of the effect of ship motion on
mooring cables in deep water. On Figure 33, values of w' corresponding to /2 and
7 are indicated, as well as the roots of the equations tanw' = u/u' ond tanw' = -p/u.
The case of the fixed-ended spring for zero domping (3 = 0.0) is shown by Whicker
and by Little to have resonant frequencies of ' = m, 21,...n 7 when the relative
mass, W, of the cable and payload is decreased infinitely (i.e., the payload mass
increases indefinitely). The case of the free-ended spring for zero damping (8 = 0.0)
is represented by:

1. Values of w' equal to /2, 3n/2...n1/2 when the relative mass is increased
indefinitaly. When the damping B = 0.0, it is shown by Little that volues of
w' equal to /2, 31/2...n1/2 result in infinite dynamic stress for infinitely
large values of u.

2. Values of w' corresponding to the roots of the equation tan w' = =4 /',
Whicker shows that for finite values of 4, the least root of the above equa-
tion results in infinite totol stress.

In oddition, Little shows that for finite values of 4, and for zero damping,
infinite total stress will result when the roots of the equation tan w' = W/w' ore
satisfied. This is in contrast to the results given by Whicker, yet both formulations
appear to be correct. Thus, it would appear that the Little and Whicker results are
compatible for long cable lengths, but that the Whicker results are not applicable
for shoit lengths, since all of recorded data supports Little's conclusions. In any
event, the least of the roots of the above equation lies between 0 and 7/2. As u is
increased indefinitely, the rocts of the above equation approach 1/2, 3n/2...nn/2,
There is no comparabie analogy with the well-known results of simpler systems.
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Beginning with large lengths, the cable assembly behaves as o fixed-ended
spring, and the role of damping, which is dependent on the input amplitudes, is to
provide an odditional margin of safety. Thus higher frequencies for the same length
at constant input amplitudes can be tolerated without danger of breaking the cable.

As the length decreases, a transition occurs and the cable assembly takes on
the characteristics of a free-ended spring. Again the role of damping is to provide
an additional margin of safety against failure.

Finally at very short cable lengths, the cable appears to behave like a rigid
connection between source and load rather than as a "spring.” In this case, the
role of damping (drag) is reversed in that, for constant input amplitudes, smaller
frequencies car be tolerated than for the case when 8= 0.0,

All of the above trends are confirmed by the calculations for both the damped

and undamped cases as the length L approaches zero, as indicoied by Figure 33.
For comparative purposes, a few results obtained by applying the method developed
by Whicker for a free-ended cable are included. The mathematical formulation by
Whicker does not include the damping term. Thus a direct comparison of the effect
of damping is available.

It is recognized that the analysis used for this investigation — that given in
the report by A, D. Little, Inc. — does not accurately describe the prototype situ-
ation by virtue of the linearization reauired in the drag term | ~u/ct'| (3u/~t'), which
is necessary in order to sulve the basic equation of motion. In the present state of
the art conceming nonlinearly damped oscillations there appear:. to be no alternative
to the linearization. Further theoretical analysis is considered necessary and justified
in order to resolve the question of safety of lowering systems as ihe length of the
cable increases. Such an analysis would consider the use of analogue computations
to allow retention of the nonlinear | zu/ t'| (zu/ *t') term,

Similar interpretations regarding the safety of o load-lowering operation may
well apply at greater depths for lower frequencies if the curves presented in Figure 33
were extended. From the general shape of the curve shown and for a given input
omplitude oscillation there is o limiting input frequency below which the operation
is safe (the maximum dynamic stress is not exceeded) down to o certain depth. For
a particular lowering operation it may be possible to use a working vessel which has
little or no response to excitations above this limiting frequency. Alternatively, the
operation may be corried out in a lower sea, but this does not necessarily imply o
maximum frequency of input oscillation, althoLgh it does imply a diminished ompli-
tude of oscillation which would render the operation safe.

A similar discussion may also be applied to Figure 34 for the case of o steel
cable, although an unsafe condition is not likely to occur until depths of 20, 000 feet
even with input omplitudes of 14 feet. In this case, however, an additional factor
must be cons:dered, nomely the very significant increase in static stress due to the
weight of the cable. As far os the dynamic stress is concerned, it may be concluded
that the operation may be safe for coble lengths greater than 100 feet when input
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omplitudes cre iess than 6 feet at a maximum frequency of 1,40 radians per second.
As the cable length diminishes o zero it would appear that the design dynamic stress
will be exceeded by an increasingly large amount. From Figures 33 and 34 it is seen
that for both examples at shorter lengths of cable, a greater amplitude of oscillation
is relatively less safe than a smali omplitude, as expected. Further calcuiations are
required to determine the form of the curves as the cable length approaches zero.
On 13 April 1965, a Submersible Test Unit {STU) loaded with racks of
specimens was lowered to a depth cf 2,500 feet by the Deep Ocean Engineering
Division of NCEL. The record of coble tensions during the lowering operation s

shown on Figure 35. The weight of the load in water wes approximately 5, 500 pounds,

the structure being in the form of an cper truss, itc base consisting of two flat plates
with a total cross-sectional area of upproximctely 150 square feet. The road was
lowered on a 1. 3-inch-diameter polypropylene cable. From a depth of 450 feet the
descent was carried out at a stecdy rate of 132 feet per minute. At depths shallower
than 450 feet the lowering operation was intermittent. The wave excitaiion was
estimated to be in the form of ¢ 6~ to 10-foot swell with pericds of 10 te 12 seconds.
A brief discussion of various properties of the record in the light of the calculations
given above is pertinent. The pararneters of the cable and load were approximately
those used for the first design examgle, although valuss of the coefficients of drag
and virtval mass do not necessarily agree.

The record shows an expected decrease of dynamic stress with increasing depth.
The immediate reduction in the mean load at point B of approximately 2, 000 pounds
corresponds to a drag force on the structure with a coefficient of drag equal to 2.76
at a vertical velocity of 132 feet per minute. Since the load consisted of racks of
specimens orientated paailel to the flow, this drag coefficient is not necessarily that
corresponding to form drag alone; however, the centribution of tangential drag on
the cable can be shown to be negligible. The steady reduction of mean load from
450 to 2,500 feet is due to the gradual removal of the weight of a 2, 500-foot-long
steel cable suspended from the base of the STU to the ocean floor.

From the design «»xampie given previously the expected maximum dynamic
stressas in the lowering cable were calculated ot cable lengths of 83, 830, and
1,660 feet assuming that IUO | equals 6.0 feet. Table VII summarizes these compu-
tations which were carried out for each cable length by determining the period of
the cyclic stress from the record. Values of |I} | were then found from the curves
given in the resuits, for ihe appropriate 8 and i values. Hence, the maximum
dynamic stresses were determined as shown in Table Vil and superposed on the stress
record as given in Figure 35.

In view of the uncertainty with respect to values of Cp, C,,, and |U°| for the
operation represented by Figure 35, the comparison of the calculated dynamic stresses
with those determined experimentally is considered to be fair. |t is noted that at
830 ond 1, 860 feet the stresses recorded exceed those calculated by a factor of 2.

As the load is lowered, only one variable chunges, that being the cable length.
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However, the frequency and amplitude of the cyclic stress change with cable length.
This may well result in a significant change in the coefficient of drag and mass since
the amplitude and velocities of vertical oscillation will vary. This is possibly one
cause of the discrepancies noted.

Table VII. Summary ot Colculations for STU Lowering Operation
to 2,500 Fee?

Cable Length, L 83.0 ft 830. 0 ft 1,660.0 ft
Parameter, u 0.005 0.05 0.10
Parameter, 8 3.00 3.00 3.00
c/L 0. 1283 0.283 0.566
Period of Oscillation, T 5.45 sec 8. 0C sec 9.23 sec
Frequency of Oscillation, w 1. 153 rads/sec ;| 0.786 rad/sec | 0.681 rad/sec
w' = E"C—L 0.0326 0.222 0.385
lz:nqxl From Curves 0.660 1.165 1.225
$Zy - Dynamic Load +3,752.0 Ib +707.4 1b +371.9 Ib
Static Load 5,500 Ib 3,400 b 3,100 lb
Static + Mex Dynamic Load 9,252 |b 4,107 b 3,472 |b
Static = Max Dynamic Load 1,748 |b 2,693 lb 2,728 b

From the record given in Figure 35 there also appears to be a somewhat
irregular, long-pericd reinforcement of the dynamic stress eamplitude. During the
lowering operation it was not possible to record the actual motions of the load, and
thus any departure from purely vertical motions are unknown. At a lowering velocity
of 132 feet per minute it is quite possible that the load motion will become unstable
ond that sidewise oscillations will occur, giving rise to complex lift forces on the
structure with resulting variations in the cable tensions. There is no evidence in
Figure 35 to support the result shown in Figure 34 that dynamic stresses may increase
at greater depths, because of the limited depth of 2,500 feet to which the STU was
lowered. There is a pressing need for a ioad-lowerirg operation to be carried out in
which both the cable tensions and the load motions are recorded, thus allowing a
more definite analysis of the results. Preferably this full-scale experiment would be
carried out with a formalized body shape so that coeificients of drag and mass could
be more accurately estimated.
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FINDINGS

As a result of the investigation described above, it was found that:

1. The theoretical analysis presented by Arthur D. Llﬂle, Inc., in Project Trident
Technical Report No. 1370863 of the Bureau of Ships! was readily adaptable to a
design procedure for heavily loaded cables for deep ccean emplacement cr recovery
operations.

2. This design procedure is relatively straightforward, but the results of its applica-
tion require confirmation by prototype measurements.

3. The most important unknowns in the input parameters for the de<.gn procedure are
the coefficients of drag and virtual mass, which at this stage must of necessity be
estimates, again requiring confirmation by prototype measurements.

4, For the two prototype examples given, the operations are unsafe with respect to
the specified maximum allowable dynamic stresses when the load is between zero and
approximately 200 feet below the ocean surface.

5. Using polypropylene cable, there exists a possibility that under certain conditions
of motion of the working vessel the operation will again become unsafe at depths on
the order of 5, 000 feet and greater. The reason is not difficult to visualize. As the
length increases the natural period also increases, eventually corresponding to periods
of the exciting waves. If the damping is small, very large stresses may be induced by
relatively small input amplitudes.

CONCLUSIONS

It is concluded that the proposed design procedure is applicable to heovily
loaded cables in deep ocean emplacement or recovery operations. However, the
results of its application may not be considered rigorous in view of the estimates of
values of coefficients of drag and mass required for the calculations. In order to
make the design procedure applicable to a prototype situation with a greater degree
of confidence, it is considered necessary to make measurements of cable tensions
and load and ship motions during a full=scale operation to provide a basis for com-
parison between theory and prototype.
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Figure 13. Voariation of nomalized maximum dynamic siress, ]I,'“ox', with
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Appendix A

ANALYSIS OF CABLE AND PAYLOAD DYNAMICS FOR
RAISING AND LOWERING LOADS IN THE DEEP OCEAN

el o

The analysis presented here is essentially that given in BuShips Technical
Report No. 1370863, "Stress Analysis of Ship-Suspended Heavily Loaded Cables for
Deep Underwater Emplacements," by Arthur D. Little, Inc. !

The cable and load are considered to be in a vertical position as shown in
Figure 1; i.e., the deflection of the cable due to currents is small. Any displace-
ment of the cable support point will cause the dynamic displacement u(x, t) at time
t of an eiement of cable originally located at x; see Figure 1. Displacement
u(x, t) is of a form which satisfies the equation for the propagation of waves in the
cable:

52 52 0
p.S —— = SE— - K—r (A-1)
Efz bxz
where p_ = density of the cable
S = material cross section of the cable
E = modulus of elasticity of the cable
K = constant of friction on the cable due to the surrounding water

In an actual lowering or raising operation, the length of the cable, L, varies
with time. However, it is assumed that L may be considered constant over short
periods of time; i.e., the net vertical motion of the load and cable does not influ-
ence the dynamic displacements due to the cable support-point oscillations.

The following nondimensional variables and parameters may then be defined:

tc

e (4d, e)

- X | -
x L—-L-—’ '- =

¢ =, B - (4c, o)

and Equation A-1 becomes

N
N
e TR

Sy e Q)
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The boundary conditions at the upper end of the cable is the specification that
v at x' =0. The boundory condition at the load, when x = L, is given by

2
d v du 1 du| du _
MO a'_z + ESa—x + -i-CDpA -é—t- a—;' =0 (A-2)
where M, = dynamic mass of the array
CD = drag coefficient of the array
A = horizontal cross section of the load
By defining the parameters
pcc L CDPA
b= B = (4b, f)
M, ' 2M,
Equation A-2 may be reduced to
2y +“Q_‘.{+B_a.!_a_‘i=o (2)
1 f ]
(a',)2 3 x ot'| at

at x' = 1,0,

The difficulty of applying this boundary condition, Equation A-2, arises from
the nonlinear term B |3u/3at' | (3u/3t'), which represents the drag on the load. To
avoid the complexities arising from this xonlinear term, an approximation was made
in the reference report by replacing the | 3u/at'| term by (8/3mMw U], where Uy is
the amplitude of the load displacement, which is assumed to be sinusoidal. This
selection results in the same energy dissipation when u is sinusoidal in the third term
of Equation 2, It is demonstrated in the report that this approximation leads to
errors on the order of 20% in the drag term.

Defining a normalized displacement amplitude U' equal to U divided by l Uol
ond noting that U is the value of U' at the load, a solution for U' as a function of
x' is given by

U' = Ujcosw'y' + Csinw'y' (5)
where y' = 1 - x' and
¢ = _‘E.I; .
w " (6b)
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This solution satisfies the governing equation, Equation 1, provided the
friction of watcr on the cable may be neglected. In Appendix A of the reference
report it is shown that this assumption is valid for the frequency range of interest.

Substituting Equation 5 into Equation 2 and incorporating the boundary
conditions, the unknown complex constant C is determined as

C = = Uj(-1 +iBUY) (A-3)
and hence, Equation 5 reduces to
U = U} seco cos (Wy' +o¢) + iB(U'])2 tang sinw'y' (A-4)
where
tano L 05«352 (A-5)

in requiring that |U'| at y' = 1 be equal to 1, Uj is determined to be
Y 1

{
1/2

2.
20 -1 (8)

(U'I)z _ cos? (' +0) - 152 s.in2 w' sin
2ﬁ2 sinzqosin2 w!' cc:s4 (w'+9)

If the amplitude of the dynamic stress is denoted by I and a normalized stress
amplitude, ', is defined 2qual to L Z/|U°| E, the distribution of ' is given by

' = U'l secosin (w'y' + ) - i(.t:/B(U'])2 tang cosw' y' (A-6)
Hence the nomalized amplitude of the maximum dynamic stress | Z:noxl is of the form
\
ZI 2 — |2 ! 2 \p 1 ‘
(max) = (w') (U‘) (1 + tano (tan¥ + sec V)] \7)
where
1/2
2 _ e:os2 (W + @) 32sin2w' sin220
Uy = 2 2 1+ -1 (8)
252 sin“@sin® w' cos? (' +¢)
=arcton s, 0spsT 9)
0 arc tan w ! %] 5




ztonw - ccf2¢J, —127—5‘1’5121— (10)

B 1 2, .
¥ = arc ton[—z—ﬁ \U])
Equation 7 together with Equations 8, 9, and 10 was evaluated by use of a

computer pregram as given in Appendix C, in which Iz:-noxl was determined as o
function of «' for various ranges of B and u.
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Appendix B

EVALUATION OF THE NORMALIZED AMPLITUDE OF THE
MAXIMUM DYNAMIC STRESS AS w' “ nm

As noted in the main text in the Discussion of results, the nomalized amplitude
of the maximum dynamic stress, | Ipgx |, is particularly sensitive to variations of ' w".
For particular values of w', given specific values of 8 andu, it is desirable to eval-
uate the peak in | I, | more precisely than by an interpolation of the computer
output. This essentially requires the derivation of dI. ~/dw' from Equation 7,
equating this to zero, and soiving for w' as a function of B and . Inspection of
Equation 7 indicates the complexity of this derivation, which is unilluminating in
terms of a proposed design procedure. As an altemative, Equation 7 was evaluated
ir the limit as w' approaches nm, wheren =1, 2, 3,... In certain cases, this
corresponds to the peak in the maximum dynamic stress |In. . |. The analysis was
carried out in order to determine the inaccuracies involved in interpolating the
computer output, and is repeated here for completenass.

Given Equations 7, 8, 9, and 10 balow, it is required to determine the value
of ! I';rmxl as «' approaches n?, wheren=1, 2, 3,...

(Ir'nox)z = (w‘)2 (U")zfl + tano (ton V¥ + sec V) | (7)

-+

) 1/2
Wy’ - o’ v )| Lt ﬁnsz -1y ®)

232 sinzo sin2 W' L cos? (w'+¢)
- o' .
%) arc tan 5 Oscs 3 (%)
¥ = arc ton Fl ﬂz(U' )2 tanQ - CO?ZL').‘ Lavsl (10)
2P ™ e 72 2

From Equation 9, when ' ~ n7,

w! nt
' D e 2 ee— -
ano© " (8-1)
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From Equations 10, B-1, and B-Z,

As &' n, sin2w' =0

2 . N
cos (w' + )~ cos © el

4 ] — f‘" q [
cos (W' + Q)= cos © i13-5.

., 4
By dafinng C: (ﬂzsin22<.:),’cos >, Equation 8 becomes

" 12
12 cos ¢ L L2, S
wpt e Csinle) - S
23 sin‘esind Wt - ”
In Equation B-6,
i ]4‘,12‘2 -z . r} [P | ,;x‘ﬁ: i
(- Csinfut) - 7 C2sinslconu |
iim — el LR Him - S e
Vo 2 _ e 2 17& :_\?sm..c COos
e o : SN W ’J = s .-‘] . C s;n u.") 2 :
- 1
2 € 1
fim - o i = C
..«."‘ n,., oA £

Therefore, from Equation B-5,

" .
lim (U" )‘ *“ C T T
W *nm 2 1\-\232 sin .- ,':




1 /B2 sin22<pcoszco\

2 Kcos“'zp 2&2 sin2<p

1 sin22w -
4 coschsinch

That is, lim U2 = 1
w=n"

Thus, from Equation B-3,

tan¥ =

| —~

b

But sec¥ =+ V1 + tcnz‘l’, ond since -m/2 sV s1/2,
_ 2
sec¥ = +\1 + tan" ¥

From Equations 7, B-1, B-7, and B-9,

1/2
lim(f.'m.x)2 = (w2 + Ef[fon‘l’ﬂl“anz‘l’) /]
w

' nrm
or =(n1t)2 ]+n_:’ -;-32%'-
1 - (27
s+ {Lg2nm (“
2 I 2(M
B K
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ond letting K = n7/u,

o 0

(G d” © o2 1+ kS B K - e -
w'=n7 (

Ve (3 B o - j} 28

Values of 'E' |, evaluated from Equation 13, are given in the Results
section of the main reporf for various runges of 8 and k.
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Appendix C

COMPUTER PROGRAM FOR THE EVALUATION OF THE NORMALIZED
AMPLITUDE OF THE MAXIMUM DYNAMIC STRESS, | I, . |

The program evaluates the normalized amplitude of the maximum dynamic
stress, li;n?x!, according to Equations 7, 8, 9, ond 10 given in Appendix A and
is written tor use on an IBM 162C digital computer. A flow chart for the program
is given in Figure C~1, followed by the FORTRAN source program.

input parameters are read as follows in format (2F10.2, 2F10.8, 2F5.2, F10.8):

4CDwA

CAY = parameter equal to W = k

UM = parameter equal fo LA m

Mq

SFR = increment on nondimensional frequency scale, AW
FMAX = maximum nondimensional frequency, Wi,
STU = increment on input displacement amplitude | Uol » AU,
UMAX = maximum input displacement amplitude, IU
FZER

°|max

® _e,0 . 4 ¢
initial nondimensional frequency, wy

The computed cutpu! is presented on punched cards in the following form. The
values of k, i, B, undl Uol are given fo!lowed by the input parameters as defined
above. The computed values of | I ax! ave then tabulated at each value of the
nondimensional frequency, according to format (E15.8, 3X, F8,4) for a particulor
| Uoi . The process is then repeated for each value ofl Uol up to[ Uo|max+ at which
point a new set of input data is required.

The initial frequency is used as an input parameter in order that specific ranges
on the nondimensional frequency axis may be investigated; e.g., relatively small
increments in frequency may be used over a range of frequency corresponding to peak
values in l[r'nax" There is a limit to the smallest allowable increment in frequency
resulting from the rounding-off ervors inherent to the program, which results in [;naxl
equaling 0 at w' near to T, These errors are discussec’ in rne main text under
Discussion of Results.
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s NaXalal

100
101
102
109
110
111

FORTRAN SOURCE PROGRAM

STRESS IN CABLE LOWERING LOADS TO DEEP OCEAN,
CAY=CONSTANT 4Ky UM=PARAMETERy SFR=STEP IN FREQUENCY,
FMAX=zMAXIMUM FREQUENCY, STU=STEP IN U=ZERO,
UMAX=MAXIMUM U~ZERO, FZER=INITIAL FREQUENCY,

READ 100+CAYUMsSFRIFMAXySTUJUMAXsFZ2ER F
U0=1.0 g
BETA=CAY*UQ

PUNCH 101

PUNCH 102sCAY UMsBETA,LUD

FREQ=FZ2ER

PUNCH 111+CAYsUMySFRsFMAX +STUIUMAXFZER

PUNCH 109

PHI=sATAN(FREQ/UM)

ALPH=2 #PH]

DELT=FREQ+PHI
UONS=(COS(DELT) )% #2/ (2, #BETARR2#SIN(PH]I IRR2%8SIN(FREQ)®#2)
TERM=(le+{( (BETAR#R2#SIN(FREQ)®*#2%SIN(ALPH)##2) /COS(DELT)*%4))
TERM=TERM##0,5

TERM=TERM-1,

UON=UONS#TERM

UzUON##0,45

TPSIZ((Qe5#BETARR2 ,#UON)#SIN(PHI)Y/COS(PHI))=(COS(ALPH)/SIN(ALPH))
PSI=ATAN(TPSI])

STRS=(1e+SIN(PHI) /COS(PHII®#(SIN(PSI)I/COS(PSI)+1./7COS(PSI)))
STRS=STRSH#UCN* (FREQ#%#2,)

STRaSTRS##0,5

PUNCH 110sSTRsFREQ

IF(FREQ=FMAX)3s4+4

FREQ=FREQ+SFR

GO TO 5

IF(UO~UMAX) 6911

Uo=U0+STU

GO 70 8

FORMAT (2F106292F10e832F5429F10.8)

FORMAT (BX99H CONSTANT 4X93H UMa10Xe5H BETAs8X7TH U=-2EROD)
FORMAT(3X9F1l0e203X0F10e293XsF10e293X9F10,2)

FORMAT(TH STRESSs10Xs10H FREQUENCY)

FORMAT(E150893XsFBe4)

FORMAT(2F106242F10e592F5:2+F1045)

END

.




Appendix D

F SUMMARY OF DRAG COEFFICIENTS

INTRODUCTION

In an analysis of the motions of a body through water, whether the body is
falling freely or being lowered by cable, one of the most important effects which
must be considered is the resistance, or drag, experienced by the body.

The purpose of this appendix is to summarize existing information on drag
forces and indicate areas of work which must be covered in order that such forces
may be included in calculating the motions of a load being lowered to the deep
ocean,

DRAG IN UNIFORM FLOW

On the front of every solid body moving through water, there is at least one
point where there is no relative motion between the water particles and the body;
i.e., there is a stagnation point. The pressure at this point, termed the dynamic
pressure, is given as

=1
Psh:xg -2 PV (O-1)

where p is the density of water and V is the relative velocity of the body to the
water. |t is convenient to express the total drag due to pressure forces relative to
this stagnation pressure by defining

D - ¢, (-;—pVZ)S (0-2)

where D is the drag force due to pressure, Cp is the coefficient of drag, and S
is a representative area of the body — either its frontal or cross-sectional area.
Equation D=2 is essentially a definition of Cp.

The total drag on any body consists of the "pressure drag, " defined above,
plus drag forces due to skin friction. However, for angular bodies such as those
envisaged as loads to be lowered to the deep ocean floor, the skin friction drog
i moy be assumed small compared to the pressure drag.

S W S R




Accord:* ¢ 1o "wynolds' Similarity Law, the flow pattern around the drag
coefficients on two similar bodies (identical in shape but dissimilar in size) moving
through a body of water are similar if their Reynolds numbers, Ry, are identical:

= = (D-3)

where V is the velocity of the body relative to the water, p is the density of the
water, U is its absolute viscosity, V is its kinematic viscosity (B/p), and d is a
characterizing dimension of the body.

Hence it is possible to determine the appropriate Cpy for a body moving through
water from the results of experiments performed on an identically shaped body of a
different scale and possibly in a different fluid, provided the Reynolds numbers are
equal.

The kinematic viscosity of sea water at normal temperatures and pressures is
on the order of 1.5 x 10-5 square feet per second. If a load to be lowered to the
deep ocean has a typical dimension of 15 feet, and moves at a velocity on the crder
of 1 foot per second, the Reynolds number, R,, equais 106, It appears that relatively
little information is available from the literature on the variation of coefficients of
drag at Reynolds numbers greater than 108 to 107, Figure D=1 with inserts show the
variation of Cpy with R, for spheres and cylinders respectively, and summarizes some,
though by no means all, existing data on the coefficients of drag applicable to bodies
of different shapes.

Although objects to be dropped or lowered to the deep ocean floor may not be
spherical or cylindrical, a brief investigation of the dynamics of a sphere is illu-
minating. Consider a body held sitationary in water and which is then allowed to
fall freely. During the initial motions, the velocity is small and the body will
accelerate under its own weight minus a buoyancy force due to the weight of water
displaced, the drag force being negligible at this stage. This net vertical force acts
on the mass of the body plus a certain frection of its mass which is included to
account for the water contained in the body, if any, and an effective mass of water
to which accelerations are imparted due to the motion of the body. The latter terms
are usually called the "apparent added mass"; the total mass (body mass and apparent
added mass) being termed the "virtual mass." Values of the apparent added mass vary
from 40% to 150% of the mass of the body.

As the velocity increases from zero, the drag force opposing the motion becomes
significant, and at a particular time t =ty this force is given by

Fo = Cp (-,}pvlz)s (D-4)
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where V is the velocity at t = t,, and Cp is the appropriate coefficient of drag.
After a given time the velocity of the falling body attains a terminal velocity, Vg,

in which condition the drag force balances the body weight minus the buoyancy force;
i.e.,

_ 1 v 2 -
(Wg - Fg) = Fp = (CD)T(2 pV;*)s (0-5)

where (CD)T is the coefficient of drag at the Reynolds number ciniesponding to a

velocity of V1. Equation D-5 may be rewritten as

VTL

g~ Fe) = Fp © f(T (—;—vaz)s (D-6)

The function f(VT L/u) is not known and cannot be defined analytically, and
Equation D-6 cannot be solved explicitly for the terminal velocity, Vi, without
the prior assumption of a particular Cpy.

However, starting from zero initial velocity, it is possible to determine the
motion of a particular body by considering the acceleration and velocities attained
over small increments of time. A simple computer program was written to accomplish
this. At t =0 the velocity is zero, there is no drag force, and the body will accel-
erate under the force (Wp~Fp). At t =t} the velocity is finite and the approp-iate
Reynolds number may be calculated together with the corresponding Cp. Forthe
purpose of these calculations, Cp was specified at increments of Ry, and o simple
interpolation was made to detemmine the specific C corresponding to Rg at t =t .
Hence the drag and out-of-balance force may be calculated at t = t; together with
the instantaneous acceleration at this point. The process can be repeated to deter-
mine the velocity of the body at time increments from t = 0 to t = T, where T is the
time taken to attain a terminal velocity.

For an up-to-date complete treatment of hydrodynamic drag, the excellent
treatise prepared and published by Dr. Sighard F. Hoerner? should be consulted.
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Appendix E

SUMMARY OF ADDED MASS COEFFICIENTS

The concept of added mass is well known in fluid mechanics. The physical
explanation of this phenomenon is that when a body is subjected to an unbalanced
force, not only must the mass of the body be accelerated, but also that of the
added fluid mass surrounding the body. The ratio of this added fluid mass to the
body mass is il.. _?:? mass coefficient, C_

The added mass depends on the dimensions and shape of the body and the
density and viscosity of the fluid. In general, measurements of the apparent added
mass have been obtained under two fundamentally different flow situations. In one
the motion is oscillatory in that an immersed body is vibrated. In the other the
motion is unidirectional in that an immersed body is cccelerated rectilinearly. The
exact analytical description of fluid resistance to the acceleration of an arbitrarily
shaped submerged solid is not known, hence the exact added mass coefficient for
various shapes of objects is not known. The following reports are the results of
! different experiments under different conditions, but they are quite consistent:

1 T. E. Stelson and F. T. Mavis,  E. Silberman, 7 T. Sarpkaya, 8 N. L. Ackermann
: and A. Arbhabhirama, 9 O. C. Zienkiowicz and B. Nath. {0 A summary of most of
the importont results obtained from these references is presented in Figure E-1,

The coefficients, C,, have been arranged in terms of a common dimension,
| namely the ratio of the added mass to the mass of fluid disploced. The results obtained
from oscillatory motion are as follows:

1. Spheres: Cp, = 0.51. This compares with a value of 0.50 obtained from
ideal fluid theory for rectilinear motion.

2. Cubes: C, = 0,67 ("broodside-on" or "edge-on").

3. Cirruler Cylinders: See Figure E-1. The abscissa is the ratio of length to
diameter. The motion is in the direction perpendicular to the circulor
cross section,

ot B

4. Rectangular Plates: See Figure E-1. The abscissa is the rotio of length to
width. The motion is in the broodside~on direction. The rotio of thickness
to width is limited to volues less than 0. 04.

5. Sauare Prisms: See Figure E-1. The abscissa is the ratio of length to width
of the square sides. The motion is in the direction perpendiculor to the
square cross section.




il

6. Symmetrical Lenses: See Figure E-1. These lenses are two intersecting or
separated spheres:

Y Y Y T T T Y T *%‘ﬂ.‘ ]
T S T
SAROR oLl ! L)

A 4 A

-
-
-
-

The abscissa is the ratio of B/R. The motion is in the direction shown.

7. Two Parallel Rectangular and Square Plates: See Figure E-1. The abscissa
is the ratio of spacing between two plates to width, where the spacing is
measured from center to center of the plates. The ratio of length to width
of the plates ar2 over 17 to 1. The motion is in a direction parallel to the
thickness of the plates.

For all of the oscillatory motion cases the experiments were conducted at low
velocities and high accelerations. Thus the total resistonce force to the moving
object is largely due to the added mass which is dependent on the acceleration. At
higher velocities, the total resistance force is due to a velocity-dependent drag term
as well as to the added mass term. That part of the resistance to motion due to viscous
and form drag and that part due to added mass are difficult to <eparote. Sielson and
Mavis® and Silbermon/ realized the difficulties. From experiments on a sphere the
measurad added mass increased by approximately 1% above the values cbtained from
ideal fluid theory. Thus it was concluded that viscosity did not seriously affect the
experimental values for the added mass.

A recant method (Zienkiewicz and Nath10) of measuring the added moss is
worth mentioning here. Using an electric anology method, the virtual mass as well
as the pressure distribution around a rigid body accalerating in an incompressibie
fluid con be determined. In the following table, the results are compared with the
known odded mass coefficients obtained from other sources. Agreement is excellent.
5 Added Maoss Coefficient ]

Object Obtained by

Zienkiewicz 10 From Indicoted Source

Infinitely long vertical plate 1.03 1.04 (Riabouchinsky 10)
Infinitely long cylinder 0.98 1.00 (H. Lomb!l)

Thin circulor disc 0.61 0.636 (H. Lombll)
Cube 0.62 0.67 (Stelsond)
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These values are measured for an infinitely large submergence depth. At small
depths the measured added mass decreasea. This agrees with the physical explanation
of the added mass phenomenon. The experiments were conducted for smuall-amplitude
motions and no separation occurred, hence the boundary effect is not considered.
This method can be used for rotary acceleration of o body. This experimental method
has important implications since it can be set up in o deep ocean simulating tank to
measure the added mass as well as the pressure distribution of any arbitrarily shaped
object under translational or rotary motion.

For the unidirectional motion, the viscous and boundery effects must be
considered. Experiments for this type of motion have been conducted for a numher
of bodies, but only that for spheres will be cited. Arbhabhirama? found that when
the rotio of the diometer of a sphere to the diameter of a fluid filling a concentric
spherical shell is 0.259, which is similar to a sphere oscillating in an infinite fluid,
the added mass is found to be 1,03 times the added mass obtained from potential flow,

In summary, although some data is available on added mass cozfficients in
oscillatory flow, most of the experiments have been conducted at small scaie and
within the low Reynolds number regime. As an example, the following estimate of
the added mass of a complicated frame structure such as the STU described below, is
cited. Theoretically the oscillatory motion of a load being lowered to the ocean
floor and suspended by a cable is a damped simple harmonic motion. If the cable is
considered to be elastic, the equation of motion is

Mak+Cx+kx=0

where M_ is the virtual mass of the load, x is the elongation of the cable, k is the
ratic of the restraining force to the elongation of the cable, and C is the coefficient
of domping. The solution of this equation is quite complicated, but the period of
oscillation is the some as for simple undomped harmonic motion:

Mqi + kx = 0

Hence, the period T = 21 (M /k).

On 13 April 1965, o Submersible Test Unit (STU) was lowered by this Laborotory
to the ocean floor to o depth of 2,500 feet using a 1.3~inch-diometer polypropyle:.e
cable. The cable tensions were recorded os a function of time from the stort of
lowering operation. The curve of the graph (Figure 35) shows the osciliatory motion
of the STU, consequently the average period of 9.8 seconds was obtained while the
averoge tension of the cable in this interval (between 10 and 12 minutes as marked on
the figure) wos 3,400 pounds. The breaking strength of the cabls is 45,000 pounds
(*Broided Rope and Cordage Catalog, " Somson Cordoge Works, Boston, Mass.). From
the percent lood of breaking strength versus the percent elongation curve of polypro-
pylene cables, the corresponding percent elongation of 4.0 is obtained. Since the
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average cable length in this interval is 586 feet, the elongation of the cable is

0.04 x 586 = 23.4 feet. The restoring-force constant was determined to be 145 pounds
par foot (i..., 3,400/23.4). The virtual mass of the cct!2 assembly ‘was fourd to be
11,330 pounds; i.e., My = (T2/42)g = [(9.8)2 (145)/42132.2. Of this 11,350 pounds,
950 pounds is rue to the static weight of the suspended cable. The net weighi of the
STU in woter is 5,500 pounds. Thus the added mass coefficient, C,, is determined

to be slighily less than 2.0 (i.e., 10,700/5,500).
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MATHEMATICAL NOTATIONS

Cross-sectional area of the load in the direction of motion

CDpA
2M,
Velocity of sound in the cable = W/BE‘

Cc

Coefficient of drog applicable to the load
Coefficient of mass applicable to the load

Modulus of elasticity for the cable

Safery factor for maximum operating stress in the cable

4C_pA
A constant = D
3nan

Constant of friction on the cable due to the surrounding water

Length of the cable
Mass of the load

Virtual mass of the lood

Moaterial cross-sectional area of the cable
u(x, t) = displacement of element from support point

Displacement amplitude

U

Normalized displacement amplitude = ITJ—l
o

Normalized displacement amplitude at the array

A

TN e
1

| U

ol

w

b

max

Zsmﬁc

ult

Input displacement

Weight per unit ler

Damping parameter

KL
pccS

Ratio of cable weig

Density of seawate:

Density of cable mc

Amplitude of dynan

Normalized dynam:

Allowable dynamic

Maximum normaliz

Static stress in the

Ultimate tensile st
Constant defined b
Cons:ant defined t

Frequency of oscil

Normalized freque
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MATHEMATICAL NOTATIONS

:ction of motion

, in the cable

- the surrounding water

le

- spport point

Yy
o

he array
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B
!
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i
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i
Input displacement amplitude }
Weight per unit !»ngth of cable !
- ) 4 CDpA Us
omping parameter = 37 MQ
KL 3
Ratio of cuble weight to virtual mass of load ~ ——— = —
Mg My -
Density of seawater
‘
Density of cable material
|
Amplitude of dynamic stress
Normalized dynamic stress e,
‘?3‘»
)3 4
Allowable dynamic stress in the cable - —%— - Laotic
1i
LI
Maximum normalized dynamic stress in the cable NTNT
i

o . .
S et o

Static stress in the cable

Ultimate tensile strength of the cable
Constant defined by Equation 9

Constont defined by Equation 10

]

Vioas c
Frequency of oscillation :L——-

Normalized frequency :él-'»
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