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ABSTRACT

Based on a theoretical analysis of the cable and payload dynamics during
lowering or raising heavy loads in the deep ocean given in Project Trident Technical
Report No. 1370863, further calculations of the maximum dynamic stresses expected
in the lowering cable are presented covering a wide range of cable and payload
parameters. The theoretical analysis is adapted to a proposed design procedure, and
two typical design examples are given, the results of which are discussed in terms of
the safety of the lowering or raising operations.

In order to make the design procedure applicable with a greater degree of
confidence, it is considered necessary to make measurements of cable tensions and
load and ship motions during a full-scale operation to fill in deficiencies of data
and provide a basis for verification of theory and calculations. In particular, data
are needed on the coefficients of drag and mass, which at this stage must of necessity
be estimates.
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INTRODUCTION

The work described herein was carried out Gs part of BuDocks Task No.
Y-F015-01-01-001, "Structures in Deep Ocean, " which originated from the require-
ment of the Bureau to attain a deep ocean engineering capability in keeping with the
increased emphasis on the deep ocean as an operating environment for naval forces.
This report is the result of work performed under Task N.. Y-F015-01-01-001(b),
"Mechanics of Raising and Lowering Heavy Loads in the Deep Ocean. "

The objectives of this work were to analyze and report on the results of
predictions of the forces in lines and the acceleration and displacements of loads of
various shapes euring raising and lowering operations in the deep ocean. The study
is based on, and an extension of, a theoretical analysis by Arthur D. Little, Inc.,
given in Project Trident Technical Report No. 1370863 of the Bureau of Ships,
entitled "Stress Analysis of Ship-Suspended Heavily Loaded Cables for Deep Under-
water Emplacements. "1

THEORY

The problem considered in this report is that of a load suspended from a ship or
moored platform by means of a single cable, as shown in Figure 1.* The maxi..Ium depth
for such a lowering or raising operation is assumed to be on t+e order of 20, 000 feet.

The requirements are (1) to analyze this problem so as to predict the cable and
the load dynamics, in particular the maximum dynamic stress induced in the cable as
a result of the motions of the suspension point, and (2) to provide a design procedure
for evaluating such stresses for a given load under specified conditions of sea-surface
oscillations.

Solution of this problem is recognized to be difficult in view of the nonlinearities
introduced in the damping due to drag forces of vertical oscillations of the load. A
simplified solution has been obtained by Arthur D. Little, Inc., as given in the Project
Trident report. A brief resume of the analysis presented in that report is given here,
details of which may be found in Appendix A.

The equation ot motion of an element of the cable initially located at a distance
x from the support point is given by

2 2Su + c u 6u=+ ~ u- (:'1)
ige1toh a2 pixo)2

I * Figure I through 35 are presented immediately after the main body of text.



The boundary conditirt eit the toad is given in the form

u + 6 + B ! u 0 (2)

(6 t,)2 6 X, t' at,

A secondary boundary condition is that the displacement of the suspension point is
known for all time.

In the above equations, u(x, t) is the displacement at time t of a point on the
cable originally located at a distance x from the suspension point. Hence the second
boundary condition is that

u(o, t) is known for t > 0. (3)

The following nomenclature applies:

K L (4a)

Pc S L
-M (4b)

a

2 E
c - (4 c)

Pc

x1 x t tc (4d,e)
L L

and B - (4f)2M a

where* pc = density of the cable

S = material cross-sectional area of the cable

E = modulus of elasticity of the cable

K = constant of friction on the cable due to the surrounding water

* Notations are defined where they first appear and are summarized for convenience

on a foldout page at the back of the report.

2

Ti



c = velocity of sound in the cable

Ma = virtual mass of the load

CD = drag coefficient appropriate to the load

A = projected area of the load in the direction of motion

L = length of cable

p = density of sea water

The difficulty in obtaining an exact solution to Equation 1 subject to the
boundary conditions, Equations 2 and 3, arises from the nonlinear term I u/at' j(du/6t')
in Equation 2. This difficulty is avoided in the A. D. Little report1 by an approxi-
mation which is described in Appendix A.

Defining a normalized displacement amplitude U' equal to U divided by I Uo
and noting that Uj is the value of U' at the load, a solution for U' as a function of
x' is given by

U' =U1 cosWOY' + C sinw'y' (5)

where C is a complex constant and

y' = 1 - x, (6a)

S= - (6b)
c

Hence the maximum value of the dynamic stress in the cable is given by

2 = 1)2 )2r
(1a)2 (U ) L- + tanp (tan 'k + sac k) 1 (7)

max1

2 cos2 W'o + p) 02 sin 2 w' sin 2 2o /2)

where (U)21+ 4 -1 (8)
2 2 sin ( sin Cos (W' +P)

i= arc tan 0S (9)

-arc tan [ a J tan •. o

= rcan±9U)tan( - cot 2,] - (10)
L01 2 2
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4 C DPAU (11)

3 T Ma

and I:- L d (12)maxl UoIUE

In the A. D. Little report, Equation 7 together with Equations 8, 9, and 10
was solved by use of a digital computer to give the maximum dynamic stress as a
function of the nondimensional frequency w' for various values of 0 and $4. A
similar procedure was adopted ir this report for two reasons, firstly to investigate
the variation of stress over a wide range of w', 0, and p, and secondly as a means
of providing the basis of a design procedure for cables used for lowering or raising
heavy loads to or from the deep ocean floor.

The cable and load system considered herein is a part of the overall lowering
system consisting of the vessel from which the operation is performed, its response
to the wave action present during the lowering or raising process, and the resulting
oscillations of the cable and load. Within existing theoretical limitations of knowl-
edge about waves and ship motions, and under the restrictions of a linear theory, the
problem of the response of a ship or platform to a particular sea state has been solved
in terms of certain probabilistic models by Kaplan and Putz. 2 Pierson and Hc.lmes 3

in a note on the engineering applications of the Kaplan and Putz report outlined a
procedure for the determination of the response of a drilling barge to sea states 3, 4,
and 5. The results are obtained in terms of the probability of occurrence of various
amplitudes of motion in heave, surge, sway, yaw, pitch, and roll. The Cuss-I
ocean-bottom drilling barge was used as an example, but the calculations as carried
out by Kaplan and Putz may be applied to other ships or moored platforms, given the
use of a digital computer.

Details of the program, which was written for an IBM 1620 computer, are
given in Appendix C. For the purposes of this analysis, the calculations were
divided ', 1to sections based on the relative values of W' required for prototype
computations.

Equation 6b relates the required range of w' to the length of and velocity of
sound in the cable. It is assumed that w, the frequency of oscillation of the cable-
suspension point, has a maximum value on the order of 2.00 radians per second and
that the maximum length of the cable is 20,000 feet. Then the required range of w'
is determined by the velocity of sound, c, in the cable. For steel and polypropylene
cables, c is approximately 12, 000 and 2, 000 feet per second respectively, resulting
in maximum nondimensional frequencies of 3. 33 and 20. 00.
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¶ Initially the range of 0 was chosen as 0. 10 to 7.00, and values of o equal to
0.10, 0.50, 1.00, 2.00, 5.00, and 10.00 were used. Preliminary computations
for a typical design problem indicated that lower values of A would also be required,
and corresponding additional computations were carried out as shown in the results
which follow.

Pierson and Holmes indicate the methods whereby the root-mean-square (R.AS)
values of motion in each mode for each sea state may be determined. For the purposes
of this report, the oscillation of most concern is that in heave, and knowing the RMS
value of heave motions in sea state 4, for example, estimates can be made of the
extreme value of heave to be expected in a given time. This procedure thus provides
a basis for specifying the range ofI U01 to be used in determining .:.s for )se in
the design computations. The correlation between sec, ship, and cable stresses is
discussed further later on in the text in the application of the results obtained herein
to two hypothetical prototype cases.

RESULTS

As illustrated above in the theoretical analysis, the parameters influencing

the dynamic stresses can be tabulated as follows:

Cable Parameters

L = maximum length of cablemax

S = material cross-sectional area of cable

w = weight of cable per unit length

E modulus of elasticity of cable

Id = allowable maximum dynamic stress in the cable

Load Parameters

M mass of the load

A = cross-sectional area of the load

Cm coefficient of mass

CD coefficient of drag

p density of sea water

Ship or floating Platform Motions in Heave

IU0o = amplitude of heave

w = frequency of heave (rod/sec)

5



These specific variables are combined as follows:

4CDpA

3 ifCmM iui1

w L (4b)
S Maa

W - (6b)C

and E Id (12)

Values of the normalized amplitude of the maximum dynamic stress, I E.ax I,
were calculated for four ranges of nondimensional frequency, w'. The ranges were
as follows:

".1/5 s u,,' <- 7.Or in increments of IT/5

"iT/10 S w' s 1.41T in increments of Tr,/10

0 T w' ! ff/2 in increments of ir/10

0 • w' s 0. 10 in increments of 0.01

The specific values of ; used in the computations were 0. 005, 0.01, 0. 03,
0.05, 0. 10, 0.50, 1.00, 2.00, and 5.00. For low ranges of w', additional values
of I were used as shown on the appropriate graphs. At each value of I, calculations
were performed for 0 = 0. 10, 0.30, 0.50, 0.70, 1.00, 3.00, 5.00, and 7. 00 over
the two higher ranges of wa', and values of 0 = 0.25, 0.50, 1.00, 3.00, 5.00, and
7. 00 over the two lower ranges of ud'. The results of these computations are presented
in Figures 2 through 7 for the lowest range of uw' and in Figures 8 through 13 for the
second lowest range. For the range w/10 % w' •I. 1.4f, it was found that the stress
calculated at values of w' near w were zero. Figure 14 illustrates this discontinuity.
In order to investigate this behavior, Equations 7, 8, 9, and 10 were combined and 4
evaluated as w' approached n f, where n = 1, 2, 3,... Details of this evaluation J

are given in Appendix B, the result being given in the form
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4
)2 tr2 1 K

Ilim( (V (n ) + K{ +K -. Kmax 2 K 2 -

! 2 1 2]1K+ 1+ + + ! I2 (13j

where is the parameter defined previously, Equation 11, and K n w/1. The solid
dot in Figure 14 is the stress calculated from Equation 13 at that particular value of

Sand j. The values of I11m x1 as determined from Equation 13 were used ;n plotting
Figures 15 through 22 as anc when necessary. The apparent discrepancies in the
computer calculations are considered to be due to rounding-off errors inherent in
the computational procedures.

Figure 23 is included to indicate the variation of Rýnaxj with 0 for a particular
value of ). Figure 24 shows the variation of maximum dynamic stress for the highest
frequency range fr/5 S 2 % 7. Of for particular values of 0 and p. As can be seen,
the maximum dynamic stress is highly dependent upon the nondimensional frequency.
Since in any application of these curves the peak values of 11ýaxl must be consid-
ered, the results for this range of frequencies are presented in a simplified form in
Figures 25 through 32, where each curve is drawn through the maximum values of
V I-xl in the same manner as the dashed line in Figure 24. Each graph is drawn for

various values of u at a given 0. In certain instances, it was again found necessary
to determine I-naxl at frequencies near 17 and its multiples by use of Equation 13.

DISCUSSION OF RESULTS

The results obtained from the computer program as outlined above are generally
in agreement with those quoted in the A. D. Little report] except for values of the
normalized maximum dynamic stress, i corresponding to nondimensional
frequencies, u:', near or equal to 3. 142. The computation of jT.x at ' 1C

according to Equation 13 gave results which compare favorably with those obtained
"J •from the computer program. A comparison of three typical results is given in Table I.

! It should be noted that the value of Inoxi computed from Equation 13 is not
necessarily the peak value, since resonance will occur at nondimensional frequencies
other than ff depending upon the values of 0 and ;. Wien ;A approaches zero, the
resonant frequencies approach 17, 211, 3!, etc, and the vclue of T.MxI as determined
from Equation 13 may then be interpreted as the maximum value. This con be seen to
be true by inspection of Figures 15 through 22.
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1able 1. Comparison of Typical Values of 11-axl as Computed by 'gQt9taL
Compui-er Program and as Calculated From Equatio., 1t3

SLo. Dx maxi Percentage-C rntei yDiitl Cuicvlaiej a
j rp~a ~iac.~e .m Difference I

Compo~er Progrorn i Eqkation 13- Difrec
1.80

0.50 C.10 112 i 1i0.1 1.80
1.00 0.10 142.32 139. 55 2.01
5.00 0. 10 514.09 503.5 2.10

The parameters 0 and 14 are representative of the damping and the eatio of thz I
weight of the cable to the virtual mass of the load respectively. As was noted in the
A. D. Little report, the variations of I xwith w', 0, and a are in agreement
with known results for simpler systems. As the mass of the load is decreased, i. e.,
p I co, the system reduces to that of a free-ended spring, -with the resonant frequencies
approaching r/2 and 37r/2, etc. As thL ,•,ass is increased, p - 0, the resonant fre-
quencies approach v, 2;, etc., which agrees with the case of a fixed-ended spring.

The .,amping parameter, /, has a slight effect on the resonant frequencies but
a far m 3 important effect on the amplitude of I 1 at resonance. A conci.sioncax)
in t•,e A. D. Little report indicated that the maximum dynamic stress amplitude a~t
res. iance increases when the damping is increased beyond a zertain vclue. From
the above calculations it can be seen that the amplitude at resonance increases
gene-ally with increased damping; i.e., there is no minimum amplitude as impiieJ
by the above conclusion. This result is compatible with the concept that as the
damping increases, the system becomes equivalent to a fixed-ended spring giving
resonances at IT, 27r, etc., and amplitudes tending to infinity, restricted only by
internal and external damping of the cable. This argument considers the damping
effects, a function of 0, to be divorced from the inertial effects, which are
dependent u,-on IA.

In view of the dependence of the maximum dynamic stress ampltude on A,
and since A depends on the parameters of the load - ;.e., the cross-sectional
area, the mass, and the density of sea water, which are fixed - and on the coef-
ficient of drag, th value of C: assumed for a given load C.onfiguration is of
panrcular importane. This can be seen from the results given above where a
cl'ange of 0 from 1.00 to 3.00 results in a change in 1ýnax at resonance! from
142 to 370. if If axj is interpreted as an allowable stress which when exceeded
results in an unsafe condition for the operation, as implied in the design procedure
which follows, then the value of CD used in the calculation of A becomes critical.
For poor hydrodynamic shapes such as blunt bodies or open frameworks, it is not
possible within the present state of development of theoretical fluid dynamics to
calculate CD from the basic equations of fluid flow. The alternative, therefore, is

8
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to resort to an experimental determination of the coefficients of drag for the particular
load conFiguration ;n question, for both steady and oscillatory motions. There exists
little expef-nentol data on the oppropriate coefficients of drag applicable to typical

mad sihapes being lowered to the deep ocean floor. A seriez of experiments directed
toward obtaining such data thus appears justified.

Sir, ilar arguments also apply to the values assumed for the coefficient of added
mess, Cm. Summaries of information pertinent to the determination of the drag and
added mats coefficients are presernted in Appendixes D and E respectively.

The shape of each curve determine . from Equations 7, 8, 9, ond 10 differs
from thcse obtained for linear systems in that a second peak in the normalized max-
ituum dynam.ic stress occurs at nondimenslonaI frequencies on the order of 0. 10 to 0.40.
"The significance of such c secondary peak, which is termed herein a subharmonic
response, is more ea.-dy dicussed in relation to a specific design example. Two such
examples are given below following a proposed design procedure.

PROPOSED DESIGN PROICEDURE

The parameters required in the design procedure are those applicable to the
load and the cable. The,' may be tabulated as follows:

Load Parameters

M = mass of the load

A = cross-sectional area of the load in the direction of motion (ft 2 )

CD = coefficient of drag applicable to the load

C = coefficient of added mass applicable to the load
m

Cable Parameters

L = maximum length of cable (ft)max

w = weight of cable per unit length (lb/ft)

E = modulus of elasticity for the cable (lb/in. 2 )

Iuft = ultimate tensile strength of the cable (lb/in. 2 )

F = safety factor for maximum operating stress in the cable

p = density of sea water (lb/ft3 )

9



From the above parameters, the following may be determined:

I ult

d F static

where ýstatic equals the static stress in the cable, including that due to the cable
itself at L and Id equals the operational maximum dynamic stress allowable with
a cable of ultimate tensile stress, lult, and a safety factor of F.

(2) c Ii

the velocity of sound in the cable in feet per second; and

4 CDpA

(3) 
k 4 C Dpm

31Y Cm M

a constant. Since the cable length varies from zero to Lmax and because the design
must be valid for all lengths, several values of L should be chosen (L = I, where
n = 1, 2, 3,...) between zero and Lmax* Hence, values of 14n = wLn/C;n M may
be calculated.

Values of 1U01, the amplitude of the cable support-point oscillation, may be
selected as IU01 = 1.0, 2.0, 5.0, 10.0 feet. A table may then be set up, as
illustrated by Table II, for each gn corresponding to the selected Ln-

Table I. Outline of Table for Computctior. of Relationship Between
Frequency and Amplitude of Oscillations, Given A, L, c,
and k

(For IA =1' L = L1, c/L = c/L 1 )

Column 1 Column 2 Column 3 Column 4 Column 5

L Id
Uo , (ft) :kIUoj -W W

max IU01IE L
1.0
2.0

5.0
10.0
15.0

10
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The use of the table is as follows. Column 1 consists of the amplitudes of the
cable support-point oscillations as selected above, and from this, Column 2 may be
calculated by multiplying by k derived previously. Column 3 is computed for the
given L, Ed, 1U01, and E values appertaining to the cable. For polypropylene or
nylon cables, it may not be possible to determine Ed and E directly. Manufacturers'
tables generally allow the computation of S Ed and S E, where S is the material cross
section of the cable. Hence, the constant ratio Id/E may be determined and used in
Column 3.

Column 4 is obtained from the curves of Figures 2 to 7, 8 to 13, 15 to 22, and
25 to 32 for the particular values of p and A given in the table. Column 5 is eval-
uated from Column 4 for the particular ratio of c/Ln. Thus, from Columns 1 and 5 a
curve relating the allowable amplitude of oscillation to the frequency of that oscilla-
tion may be drawn for the particular cable length used. The process may then be
repeated for other cable lengths. A judicious choice of cable length can serve to
reduce the numerical calculation to a minimum.

It may be assumed that operating conditions lying on or below the curve are
safe, with the safety factor, F, as defined, and that operating conditions lying above,
to the right of, the curve are unsafe.

In line with comments raised in the Discussion of Results, the unknown parameters
are CD and Cm. With existing deficiencies ;n data giving CD and Cm for various load
configurations, they must of necessity be estimated. See Appendixes D and E.

If it should occur in a design problem that the ranges of w', 0, or g are not
covered in the graphs developed in this study, then the appropriate curves may be
calculated for specific values, or ranges of values, of those parameters by use of
the digital computer program used in obtaining the results quoted herein. Details
of this program are given in Appendix C.

Two examples of the application of the above design procedure are given below.

APPLICATION OF PROPOSED DESIGN PROCEDURE TO TWO PROTOTYPE
EXAMPLES

The application of the proposed design procedure to two hypothetical prototype
examples is demonstrated below for polypropylene and steel cable respectively. The
parameters used in these examples are ,uch as to enable the design procedure to be
carried out using the curves presented previously in the results.

Design Example Using Polypropylene Cable

F The parameters of the load are given as

M : 5.0tons = 10,0001b

A : 12ft x 12 ft 144ft2

IL. I



CD = 2.0

Cm = 1.5

The cable parameters chosen are

L -= 20, 000 ftmax

w = 0.90 lb/ft

S E = 240, 000 l b

SId = 10,000 lb

c = = = 2, 930 ft/sec
c

4 CDPA
k=- - 0.50

31tCmM

and, therefore, = 0.50 1Uo1.
The cable daiu used herein was obtained from the August 1964 "Braided Rope

and Cordage Catalog" of the Samson Cordage Works, Boston, Mass. It is now
convenient to select cable lengths such that values of p, where g = wL/Ma,
coincide with those used in deriving the curves presented previously in the results.
These values are given in Table Ill.

Table Ill. Cable Lengths Used in Design Example for

Polypropylene Cable

L (ft) __ c/L

16,660 1.00 0. 1758
8,330 0.50 0.3516
1,660 0.10 1.7580

833 0.05 3.5160
166 0.01 17.5800

It is now possible to set up Table IV corresponding to Table II given in the
proposed des~gn procedure by specifying that input amplitudes of oscillation, lUo 0J
of 1.0, 2.0, 6.0, 10.0, and 14.0 feet will be considered. Knowing that 0- k JUo1,
Column 2 of Table IV may be calculated. The values of ll xl = L ' 1Uo01 E can
be derived for appropriate values of L and lUol as shown in Column 3 of the table.

12
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From inspection of the table, it can be seen that in view of the relationship between
the various cable lengths chosen, values of lITaxI at these different lengths are quite
simply related - thus facilitating the design calculations.

Values of the nondimensional frequency, u', are then entered in Column 4
by the use of Figures 2 to 13, 15 to 22, and 25 to 32. That is, for a particular ks
and 0, the value of Le corresponding to R4iaxI may be found. Hence, the circular
frequency, w, can be calculated and entered in Column 5. Fron; the completed
table, the relationship as a function of cable lenEth, can be drawn between input
amplitude or oscillation, l ul, and the allowable cirrular frequency, w, of that
amplitude - i.e., the circular frequency at which the oscillction can occur such
the' the maximum dynamic stress in the cable is less than or equal o the design
dynamic stress. Figure 33 shows this relationship for the computation given in
Table IV. The significance of these results is discussed below together with that of
the following design example.

Design Example Using Steel Cable

The relevant load parameters are given as follows:

M = 20 tons = 40,000 1b

A = 600 ft 2

CD = 2.0

Cm = 1.5

The appropriate cable parameters were chosen to be

Lmax = 20,000 ft

PC = 550 Ib/ft3

w =- 7.64 lb/ft

E = 15xl06 psi

Ird = 40, 000 psi

c 11,200 ft/sec
4 CDPA

k 3TCmM 0.50

and, therefore, 0 0. 50 'Uj

13
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As in the first example, cable lengths are chosen to give values of p coincident
with those used in the calculation of Figures 2 to 13, 15 to 22, and 25 to 32. These
lengths and the corresponding values of 14 and c/L are given in Table V.

Table V. Cable Lengths Used in Design Example
for Steel Cable

L (ft) A c/L

15, 700.0 2.000 0.713
7,850.0 1.000 1.426
3,925.0 0.500 2.850
1,963.0 0.250 5.600

785.0 0.100 14.260
393.0 0.050 28.500
236.0 0.030 47.500

78.5 0.010 142.600
39.3 0.005 285.000

A similar table to that derived in the previous design example may now be
set up and the numerical computations performed as above. These calculations are
summarized in Table IV, and the relationship between the input amplitude of
oscillation, JU01, and the aliowable circular frequency, w, of that amplitude is
illustrated in Figure 34.

DISCUSSION OF RESULTS OF THE APPLICATION OF THE PROPOSED
DESIGN PROCEDURE

Figures 33 and 34 show the results obtained in the application of the proposed
design procedure to the two hypothetical cases described above.

In any load-lowering operation, the cable used will have a certain known
ultimate load at which the cable could be expected to break. With repeated use
of a particular cable, this ultimate load will decrease. Hence, for any lowering
operation a safety factor must be chosen defining a load, or corresponding stress,
which should not be exceeded. This allowable working stress is assumed Mo include
static stress due to both the load and cable - the latter being negative in the case
of a buoyant cable such as polypropylene - arid the dynamic stress.

This discussion and the design procedure proposed earlier in the report are
based on the assumption that a particular maximum dynamic stress is given which
should not be exceeded during the lowering or raising operation.

15



Figures 33 and 34 indicate the allowable frequency of an input oscillation at
various amplitudes of this oscillation as a function of the cable length, such that the
stipulated maximum dynam*c stress is not exceeded. Alternatively, they indicate
the maximum amplitude of an input oscillation at a particular frequency such that a
maximum dynamic stress is not exceeded.

One of the most important problems in the interpretation of these graphs is the
selection of appropriate input conditions, I Uo I and w, corresponding to the response
of the vessel used for the lowering or raising operation of the sea state in which the
operation is carried out.

It is apparent that the frequency range given in Figures 33 and 34 is far greater
than that which would be expected under operational conditions. Data is available
in the literature (Kaplan and Putz, 2 Pierson and Holmes3 ) on the response of the
Cuss-I drilling barge to various sea states. In sea state 5, the range of frequencies
of oscillation in heave is 0.40 to 1.40 radians per second with root-mean-square
values of heave of 1.8 and 1. 3 feet at headings of 90 degrees and 0 degrees to the
wind respectively. These values imply expected maximum amplitudes of oscillation
of 7.2 and 5. 2 feet during a 4-hour period on station (Pierson and Holmes). It should
be noted, however, that combinations of heave and roll oscillations could easily pro-
duce oscillations greater than this if the load-lowering operation is carried out using
the boom over the s~de of the vessel. The above values are used here to llustrate
the interpretntion of Figures 33 and 34.

Referring to Figure 33 for the design example using a polypropylene cable,
it can be seen that for a heave amplitude of 7. 2 feet at frequencies of 1.40 and
0.40 radians per second - to cover the entire frequency range - the design dynamic
stress will be exceeded at a cable length of less than 200 feet for L = 1.40. For
frequencies less than 1.40 radians per second down to 0.40 radian per second, it is
estimated from the curves that the design dynamic stress will be exceeded at cable
lengths which gradually decrease from 200 feet. Thus the operation will be unsafe
relative to the prescribed maximrm dynamic stress for a cable length of ;ess than
200 feet. This condition has been fully recognized in the design of various lowering
operations conducted by this laboratory. The dynamic stress will then be less than
the design stress until the length of the cable reaches a value of approximately
5, 000 feet. According to the results obtained above the operation will tken become
unsafe, if the frequency is 1.40 radians per second and the amplitude is 7.2 feet. *
For a frequency of 1. 00 radian per second the operation becomes unsafe at a depth
of 7,000 feet. The reasons for this result ore difficult to visuclize, but may be
explained from both the mathematical and physical points of view. In tenrns of the
numerical computations carried out as shown in Table VI, the regoression of the curves
given in Figures 33 and 34 is due to the fact that when the maximum dynamic stress,

* These comments ore based on an approximate interpolation beween tl-e curve
labeled 6 feet and 10 feet in Figure 33 for IU j- 7.2 feet.
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I .naincreases, say doubles, due to an increase in the cable length of L to twice
L, the appropriate nondimensional frequency, w', at the corresponding value of A.
is not twice the w,' at the shorter ;ength. This results in a lower circular frequency,
W, at the longer cable length. This applies to the larger values of I ox I correspond-
ing to these lengths. A similar argument applies at cable lengths lower thaoo 200 feet.
For intermediate cable lengths a relatively small variation in .axi results in a
significant increase in wi', resulting in an increase in the circular frequency, W.
This applies to a range of w' from 0. 4ff to 0.8ff - i.e., to values of Ij axj larger
than thor• corresponding to the first peak in Figures 2 to 13 and 15 to 22, but less
than those associated with the peak responses occurring at w' approximately equal
to 3. 142. As w' values tend toward ihis value, significant changes in I .naxI result
in larger variations in circular frequency for different cable lengths due to the influ-
ence of the c/L ratio in computing the latter. Hence the variation of cable stress
with cable length depends upon the shapes of the computed curves relating Irmaxl
to W1.

The physical behavior of the cable assembly may be described by reviewing
the significant results obtained by Little 1 and by Whicker. 4 The latter is a rather
simplified (i.e., no damping) theoretical analysis of the effect of ship motion on
mooring cables in deep water. On Figure 33, values of w' corresponding to ir/2 and
IT are indicated, as well as the roots of the equations tan w' = p/u' and ton w' = -Ww'.
The case of the fixed-ended spring for -ero damping (,3 = 0.0) is shown by Whicker
and by Little to have resonant frequencies of ,.' = ff, 2ff,,... n ir when the relative
mass, 0•, of the cable and payload is decreased infinitely (iC e., the payload mass
increases indefinitely). The case of the free-ended spring for zero damping (8 = 0. 0)
is represented by:

I. Values of w' equal to w/2, 31r/2... .nf/2 when the relative moss is increased
indefinitely. When the damping P = 0.0, it is shown by Little that values of
W' equal to fT/2, 3ff/2... nfT/2 result in infinite dynamic stress for infinitely
large values of M.

2. Values of u:' corresponding to the roots of the equation ton w' -- -.j/12.
Whicker shows that for finite values of p, the least root of the above equa-
tion results in infinite total stress.

In addition, Little shows that for finite values of #A, and for zero damping,
infinite total stress will result when the roots of the equation tan w' = Ww' ore
satisfied. This is in contrast to the results given by Whicker, yet both formulationsIi appear to be correct. Thus, it would appear that the Little and Whicker results are
compatible for long cable lengths, but that the Whicker results are not applicable
for shaovt lengths, since all of recorded data supports Little's conclusions. In any
event, the least of the roots of the above equation lies between 0 and ir/2. As p is

P increased indefinitely, the roots of the above equation approach 'f/2, 3-N/2... n ?f/2.
There is no comparable analogy with the well-known results of simpler systems.
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Beginning with large lengths, the cable assembly behaves as a fixed-ended
spring, and the role of damping, which is dependent on the input amplitudes, is to
provide an additional margin of safety. Thus higher frequencies for the same length
at constant input amplitudes can be tolerated without danger of breaking the cable.

As the length decreases, a transition occurs and the cable assembly takes on
the characteristics of a free-ended spring. Again the role of damping is to provide
an additional margin of safety against failure.

Finally at very short cable lengths, the cable appears to behave like a rigid
connection between source and load rather than as a "spring." In this case, the
role of damping (drag) is reverseJ in that, for constant input amplitudes, smaller
frequencies car be tolerated than for the case when g = 0. 0.

All of the above trends are confirmed by the calculations for both the damped
and undamped cases as the length L approaches zero, as indicaled by Figure 33.
For comparative purposes, a few results obtained by applying the method developed
by Whicker for a free-ended cable are included. The mathematical formulation by
Whicker does not include the damping term. Thus a direct comparison of the effect
of damping is available.

It is recognized that the analysis used for this investigation - that given in
the report by A. D. Little, Inc. - does not accurately describe the prototype situ-
ation by virtue of the linearization renuired in the drag term I u/at'l ('u/'t'), which
is necessary in order to solve the basic equation of motion. In the present state of
the art concerning nonlinearly damped oscillations there appear,. to be no alternative
to the linearization. Further theoretical analysis is considered necessary and justified
in order to resolve the question of safety of lowering systems as ihe length of the
cable increases. Such an analysis would consider the use of analogue computations
to allow retention of the nonlinear I ý u/'t'l (1 u/, t0) term.

Similar interpretations regarding the safety of a load-lowering operation may
well apply at greater depths for lower frequencies if the curves presented in Figure 33
were extended. From the general shape of the curve shown and for a given input
amplitude oscillation there is a limiting input frequency below which the operation
is safe (the maximum dynamic stress is not exceeded) down to a certain depth. For
a particular lowering operation it may be possible to use a working vessel which has
little or no response to excitations above this limiting frequency. Alternatively, the
operation may be carried out in a lower sea, but this does not necessarily imply a
maximum frequency of input oscillation, althoLgh it does imply a diminished ampli-
tude of oscillation which would render the operation safe.

A similar discussion may also be applied to Figure 34 for the case of a steel
cable, although on unsafe condition is not likely to occur until depths of 20, 000 feet
even with input amplitudes of 14 feet. In this case, however, an additional factor
must be considered, namely the very significant increase in static stress due to the
weight of the cable. As for as the dynamic stress is concerned, it may be concluded
that the operation may be safe for cable lengths greater than 100 feet when inpxjt
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amplitudes are 'ess than 6 feet at a maximum frequency of 1.40 radians per second.
As the cable length diminishes to zero it would appear that the design dynamic stress
will be exceeded by an increasingly large amount. From Figures 33 and 34 it is seen
that for both examples at shorter lengths of cable, a greater amplitude of oscillation
is relatively less safe than a smali amplitude, as expected. Further calcuiations are
required to determine the furm of the curves as the cable length approaches zero.

On 13 April 1965, a Submersible Test Unit (STU) loaded with racks of
specimens was lowered to a depth cf 2,500 feet by the Deep Ocean Engineering
Divsiion of NCEL. The record of cable tensions diring the lowering operation ':
shown on Figure 35. The weight of the load in water wos approximotely 5.,500 pounds,
the structure being in the form of an open truss, its base consisting of two flat plates
with a total cross-sectional area of approximately 150 square feet. The :oad vjs
lowered on a 1.3-inch-•diameter polypropylene cable. From a depth of 450 feet the
descent was carried out at a steady• rate of 132 feet per minute. At depths shallower
than 450 feet the lowering operation was intermittent. The wave excitation was
estimated to be in the form of a 6- to 10-foot swell with periods of M1 to 12 seconds.
A brief discussion of various properties of the record in the light of the calculations
given above is pertinent. The pararieters of the cable and load were approximately
those used for the first design examFle, although values of the coefficients of drag
and virtual mass do not necessarily agree.

The record shows an expected decrease of dynamic stress with increasing depth.
The immediate reduction in the mean load at point B of approximately 2,000 pounds
corresponds to a drag force on the structure with a coefficient of drag equal to 2. 76
at a vertical velocity of 132 feet per minute. Since the load consisted of racks of
specimens orientated pa'alei to the flow, thiW drag coefficient is not necessarily that
corresponding to form drag alone; however, the ccntribution of tangential drag on
the cable can be shown to be negligible. The steady reduction of mean load from
450 to 2,500 ;eet is due to the gradual removal of the weight of a 2,500-foot-long
steel cable suspended from the base of the STU to the ocean floor.

From the design cxampie given previously the expected maximum dynamic
stresses in the lowering cable were calculated at cable lengths of 83, 830, and
1,660 feet assuming that JUoIequals 6.0 feet. Table VII summarizes these compu-
tations which were carried out for each cable length by determining the period of
the cyclic stress from the record. Values of •-Qnoxj were then found from the curves
given In the results, for ihe appropriate 3 and ;A values. Hence, the maximum
dynamic stresses were determined a- shown in Table Vii and superposed on the stress
record as given in Figure 35.

In view of the uncertainty with respect to values of CD, Cm, and 1UoI for the
operation represented by Figure 35, the comparison of the calculated dynamic stresses
with those determined experimentally ;s ..onsidered to be fair. It is noted that at
830 and 1, 660 feet the stresses recorded exceed those calculated by a factor of 2.
As the load is lowered, only one variable chunges, that being the cable length.
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However, the frequency and amplitude of the cyclic stress change with cable length.
This may well result in a significant change in the coefficient of drag and mass since
the amplitude and velocities of vertical oscillation will vary. This is possibly one
cause of the discrepancies noted.

Table VII. Summary at Calculations for STU Lowering Operation
to 2,500 Feet

Cable Length, L 83.0 ft 830.0 ft 1,660.0 ft

Parameter, A 0.005 0.05 0.10

Parameter, • 3.00 3.00 3.00

c/L 0. )283 0.283 0.566

Period of Oscillation, T 5.45 sec 8.00 sec 9.23 sec

Frequency of Oscillation, w, 1. 153 rads/sec 0.786 rad/sec 0.681 rad/sec

WL 0.0326 0.222 0.385
c

11'ax I From Curves 0.660 1. 165 1.225

SId - Dynamic Load ±3,752.0 lb ±707.4 lb ±371.9 lb

Static Load 5,500 lb 3, 400 lb 3, 100 lb

Static + Max Dynamic Load 9,252 lb 4, 107 lb 3,472 lb

Static - Max Dynamic Load 1,748 lb 2,693 lb 2, 728 lb

From the record given in Figure 35 there also appears to be a somewhat
irregular, long-pericd reinforcement of the dynamic stress amplitude. During the
lowering operation it was not possible to record the actual motions of the load, and
thus any departure from purely vertical motions are unknown. At a lowering velocity
of 132 feet per minute it is quite possible that the load motion will become unstable
and that sidewise oscillations will occur, giving rise to complex lift forces on the
structure with resulting variations in the cable tensions. There is no evidence in

j ~ Figure 35 to support the result shown in Figure 34 that dynamic stresses may increase
at greater depths, because of the limited depth of 2,500 feet to which the STU was
lowered. There is a pressing need for a load-lowering operation to be carried out in
which both the cable tensions and the load motions are recorded, thus allowing a
more definite analysis of the results. Preferably this full-scale experiment would be
carried out with a formalized body shape so that coefficients of drag and mass could
be more accurately estimated.
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FINDINGS

As a result of the investigation described above, it was found that:

1. The theoretical analysis presented by Arthur D. Little, Inc., in Project Trident
Technical Report No. 1370863 of the Bureau of Ships1 was readily adaptable to a
design procedure for heavily loaded cables for deep ocean emplacement or recovery
operations.

2. This design procedure is relatively straightforward, but the results of its applica-
tion require confirmation by prototype measurements.

3. The rrcost important unknowns in the input parameters for the det.4n procedure are
the coefficients of drag and virtual mass, which at this stage must of necessity be
estimates, again requiring confirmation by prototype measurements.

4. For the two prototype examples given, the operations are unsafe with respect to
the specified maximum allowable dynamic stresses when the load is between zero and
approximately 200 feet below the ocean surface.

5. Using polypropylene cable, there exists a possibility that under certain conditons
of motion of the working vessel the operation will again become unsafe at depths on
the order of 5,000 feet and greater. The reason is not difficult to visualize. As the
length increases the natural period also increases, eventually corresponding to periods
of the exciting waves. If the damping is small, very large stresses may be induced by
relatively small input amplitudes.

CONCLUSIONS

It is concluded that the proposed design procedure is applicable to heavily
loaded cables in deep ocean emplacement or recovery operations. However, the
results of its application may not be considered rigorous in view of the estimates of
values of coefficients of drag and mass required for thie calculations. In order to
make the design procedure applicable to a prototype situation with a greater degree
of confidence, it is considered necessary to make measurements of cable tensions
and load and ship motions during a full-scale operation to provide a basis for com-
parison between theory and prototype.
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Appendix A

ANALYSIS OF CABLE AND PAYLOAD DYNAMICS FOR
RAISING AND LOWERING LOADS IN THE DEEP OCEAN

The analysis presented here is essentially that given in BuShips Technical
Report No. 1370863, "Stress Analysis of Ship-Suspended Heavily Loaded Cables for
Deep Underwater Emplacements," by Arthur D. Little, Inc. 1

The cable and load are considered to be in a vertical position as shown in
Figure 1; i.e., the deflection of the cable due to currents is small. Any displace-
ment of the cable support point will cause the dynamic displacement u(x, t) at time
t of an eiement of cable originally located at x; see Figure 1. Displacement
u(x, t) is of a form which satisfies the equation for the propagation of waves in the
cable:

12 •2c U u C)u
p S - SE Ku (A-I)

c 2 - 2 at
ct ciX

where pc = density of the cable

S = material cross section of the cable

E = modulus of elasticity of the cable

K = constant of friction on the cable due to the surrounding water

In an actual lowering or raising operation, the length of the cable, L, varies
with time. However, it is assumed that L may be considered constant over short

periods of time; i.e., the net vertfcal motion of the load and cable does not influ-
ence the dynamic displacements due to the cable support-point oscillations.

The following nondimensional variables and parameters may then be defined:

x5 X tc (4d, e)L t L

2 E KL
c PP

P c PCS (4 c, a)

c

and Equation A-1 becomes

2 2
+ ¾u __t'_ (1)

(L t') 2  (6x')2
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The boundary conditions at the upper end of the cable is the specification that
u at x' = 0. The boundary condition at the load, when x = L, is given by*

•2
M u+ ES +u -1 p ul au _0 (A -2)

a ýt2 - x 2 DPA t at

where Ma = dynamic mass of the array

CD = drag coefficient of the array

A = horizontal cross section of the load

By defining the parameters

PC 4Z L CDPA

Ma B - 2Ma (4b, f)

Equation A-2 may be reduced to

32 u ýu au Iul 0+ (2)

0 t')2 
X

at x' = 1.0.
The difficulty of applying this boundary condition, Equation A-2, arises from

the nonlinear term B 16u/ t' I (au/6t'), which represents the drag on the load. To
avoid the complexities arising from this .nonlinear term, an approximation was made
in the reference report by replacing the I bu/lt'I term by (8/31r)w U1, where U1 is
the amplitude of the load displacement, which is assumed to be sinusoidal. This
selection results in the same energy dissipation when u is sinusoidal in the third term
of Equation 2. It is demonstrated in the report that this approximation leads to
errors on the order of 20% ;n the drag term.

Defining a normalized displacement amplitude U' equal to U divided by I U01
and noting that U' is the value of U' at the load, a solution for U' as a function of
x' is given byA

n U' = U1cos w'y' + Csin w'y' (5)
whet. e Y' I x' and

w,' L (6 b )
C
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This solution satisfies the governing equation, Equation 1, provided the
friction of wctc: on the cable may be neglected. In Appendix A of the reference
report it is shown that this assumption is valid for the frequency range of interest.

Substituting Equation 5 into Equation 2 and incorporating the boundary
conditions, the unknown complex constant C is determined as

C-- U1 (-I + i U1) (A-3)

and hence, Equation 5 reduces to

U' = U 1 seccQCos(U."y' + () + ii(U)2 tanqPsin 'y' (A-4)

where

tan : , 0 :rh (A-5)

In requiring that IU'J at y' = 1 be equal to 1, Ul is determined to be

01)2 = co2 ( sin 2wesin + ... s . - 1 (8)

2/32 si n2 sin2 , Cosi4(' 1+/) 2
If the amplitude of the dynamic stress is denoted by I and a normalized stress

amplitude, V', is defined equal to L I/IuoU E, the distribution of V" is given by

S' w'U1 secQ sin(e'y' +o) - iwA(U,) 2 tanPcosw'y' (A-6)

Hence the normalized amplitude of the maximum dynamic stress 1,no., is of the form

S(W') 2 (U)2 [1 + tan o (ton ýV +sec 4 )2 '7)

where

Cos (2, + Q) ., 2.,i 2 11/2
(Ul) 2 = 2 sinL20 snn2 s4 +) - (8)

S= arc ton-, 0 (9)
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F12 U12 1f
4' arc tan -Y U k tano - cct2d , 2 4, (10)

Equation 7 together with Equations 8, 9, and 10 was evaluated by use of a
computer program as given in Appendix C, in which I-noax was determined as a
function of w' for various ranges of • and u.
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Appendix B

EVALUATION OF THE NORMALIZED AMPLITUDE OF THE
MAXIMUM DYNAMIC STRESS AS w'- n IT

As noted in the main text in the Discussion of results, the normalized amplitude
of the maximum dynamic stress, I I ax1, is particularly sensitive to variations of *•'
For particular values of w', given specific values of A andli, it is desirable to eval-
uate the peak in I ]axl more precisely than by an interpolation of the computer
output. This essentially requires the derivation of dInax/d ' from Equation 7,
equating this to zero, and solving for w' as a function of 0 and s. Inspection of
Equation 7 indicates the complexity of this derivation, which is unilluminating in
terms of a proposed design procedure. As an alternative, Equation 7 was evaluated
ir the limit as w' approaches nfT, where n = 1, 2, 3,... In certain cases, this
corresponds to the peak in the maximum dynamic stress I ax*. The analysis was
carried out in order to determine the inaccuraries involved in interpolating the
computer output, and is repeated here for comp!etenass.

Given Equations 7, 8, 9, and 10 below, it is required to determine the value
of! xlas W' approaches nit, where n = 1, 2, 3,...

2 = 2 2 7,(.nax) = (we), (U01)1 + tan o (ton 4\ + sec'k) (7)

2/ ,2 1-1(8

(U) sin2 Qsin2 W,' cos4 (w' +0) ]-
arc tan-, 0:1-- (9)S2

" arc ton g2I2 (U,1)2 tan (• co20

to o cot 2o]s- (10)

From Equation 9, when w' n ir,
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2()
cot 2 to

2 tan 2K)

From Equations 10, B-1, and B-2,

(q n~ 1 ("~

1 2 .2 n~ IT (n
tant' - -2 (U1 ) - . . .

L 2(2i-

As ' n I sin 2 ' -" 0

2 2
cos (.' + 0) cos -

4 4
cos (w' + )-cos -

Bv ~fn n C (,2s2 2¢"o4
3,' de:fin ng C 2 sin 22 `cos 4', Equation 8 becomes

12 Cos C.2
2 2

) 24 in2 sin

In Equation B-6,

2 1.,,2 "/-2 . C 2 sin.' C O ;A;
(I "C sin2 } - 1:I

I.i.'- ' si2,.; 2. Sn in 4?•2 ~ co s
sin n C sin,,21

iC
lim .. - C
-"nr[ 2

Therefore, from Equotion B-6,

S, / 2

2 2-n 26d2 sin3
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sin2 2o

•, 4k2 cs4€l) 2= 1-n4 ( CO2psn ) _
= cos2•s•2

That is, lim(Ul) 2 = 1 (B-7)

W-0 n i

Thus, from Equation B-3,

tan 1 2 n - A (B-8)

But sec 4 = V1 + tan24, and since -7T/2 ff 4 . iT/2,

sec 4 = + ý1 + tan2 4 (B-9)

From Equations 7, B-1, B-7, and B-9,

I'mr(ý-ax)2 =(nIT) 21 + [ ang' + (I+tan 1/) (B-10)

w n ifft

or (nff)2  1+ n 1V 1 -)-

t t ~L A--•I

2 1/2

1 ^2 n i li

2 i2
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and letting K = n Tr/p,
lim(" ax2 (nT)2 1+K WK

2] 1/2

+!I + 2 K + K 13

. 2 2K 2

Values of I 1'.xI, evalunted from Equation 13, are given in the Results
section of the main report for various ranges of 0 and s.
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Appendix C

COMPUTER PROGRAM FOR THE EVALUATION OF THE NORMALIZED
AMPLITUDE OF THE MAXIMUM DYNAMIC STRESS,

The program evaluates the normalized amplitude of the maximum dynamic
stress,, I Tx, according to Equations 7, 8, 9, and 10 given in Appendix A and
is written or use on an IBM 1620 digital computer. A flow chart for the program
is given in Figure C-1, followed by the FORTRAN source program.

Input parameters are read as follows in format (2F 10.2, 2F:10.8, 2F5.2, F 10.8):

CAY = parameter equal to 4CD3 A - k
3ff M0wi

UM = parameter equal to -L

SFR = increment on nondimensional freqlency scale, Aw'

FMAX = maximum nondimensional frequency, 4nax

STU = increment on input displacement amplitude I UoJ, 1 uo

UMAX = maximum input displacement ampli'.ude, I U0omax

FZER = initial nondira6nsional freciuency, wo

The cornputod cJtput is presented on punched cords in the following form. The
values of k IA, P, andI UoI are given fo1lowed by the input parameters as defined
above. The computed values of I .,,I are thenr tabulated at each value of the
nondimensional frequency, according to formnt (E15. 8, 3X, F8. 4) for a particular
I nUIj. The process is then repeated for each value ofI U0 up toI UoImax, at which
point a new set of input data is required.

The initial frequency is used as an input parameter "n order that specific ranges
on the nondimensional frequency axis may be investigated; e.g., relatively small
increments in frequency may be used over a range of frequency corresponding to peak
values in I EaxI. There is a limit to the smallest allowable increment in frequency
resulting from the rouJnding-off er,'ors inherent to the program, which results in .oxj
equaling 0 at w' near to IT. These errors are discubsec' in the main text under
Discussion of Results.
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F'ORTRAN SOURCE PROGRAM

C STRESS IN CABLE LOWERING LOADS TO DEEP OCEAN.
C CAY=CONSTANTK, UM=PARAMETER9 SFRZSTEP IN FREQUENCY.
C FMAX=MAXIMUM FREQUENCY, STUmSTEP IN U-ZERO,
C UMAX=MAX!MUM U-ZERO, FZER=INITIAL FREQUENCY.

1 READ 100,CAYUMSFRFMAXSTUUMAXFZER
UO:1.0

8 BETA=CAY*UO
PUNCH 101
PUNCH 102,CAYUMBETAUO
FREQ-FZER
PUNCH 111,CAYUMSFRFMAXSTUUMAXFZER
PUNCH 109

5 PHIxATAN(FREQ/UM)
ALPH=2 .*PHI
DELT=FREQ+PHI
UONSZ(COS(DELT))**2/(2.**3ETA**2*SIN(PHI)**2*SIN(FREQ)**2)
TERM=(1.+((BETA**2*SIN(FREQ)**2*SIN(ALPH)**2)/COS(DELT,**4))
TERMU TERM**095
TERM= TERM-io
UONsUONS*TERM
U=UON**0. 5
TPSIz((Oe5*BETA**2o*UON)*SIN(PHJ)/COS(PHI))-ICOS(ALPH)/SIN(ALPH))
PSI =ATAN( TPSU)
STRS=d1.+SIN(PHIU/COS(PHU*(SIN(PSI/COS(PSI)+leCOS(PSIr)
STRS=STRS*UON*(FREQ** 2.)
STR-STRS**0.5
PUNCH 11OSTRtFREO
IF(FREQ-FMAX)39494

3 FREQ=FREQ+SFR
GO TO 5

4. IF(UO-UMAX)69191
6 UOzUO+STU

GO TO 8
100 FORMAT(2F10.2,2F10.8,2F5.2,FlO.8)
101 FORMAT(SX,9H CONSTANTv4X93H UM,1OX95H BETA,8Xv,7H U-ZERO)
102 FORMAT(3XF1O.2,3XF1U.2,3XF1O.2,3XF1O.2)
109 FORMAT(7H STRESS*1OX91UH FREQUENCY)
110 FORMAT(E15e893X9F8*4)
Ill FORMAT( ZF1O.2,2F10.5,2F5.2,F1O.5)

END
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Appendix D

SUMMARY OF DRAG COEFFICIENTS

INTRODUCTION

In an analysis of the motions of a body through water, whether the body is
falling freely or being lowered by cable, one of the most important effects which
must be considered is the resistance, or drag, experienced by the body.

The purpose of this appendix is to summarize existing information on drag
forces and indicate areas of work which must be covered in order that such forces
may be included in calculating the motions of a load being lowered to the deep
ocean.

DRAG IN UNIFORM FLOW

On the front of every solid body moving through water, there is at least one
point where there is no relative motion between the water particles and the body;
i.e., there is a stagnation point. The pressure at this point, termed the dynamic
pressure, is given as

P 1 2 (D-1)
stag 2p(

where p is the density of water and V is the relative velocity of the body to the
water. It is convenient to express the total drag due to pressure forces relative to
this stagnation pressure by defining

D =CD(I PV2)S (D -2)

where D is the drag force due to pressure, CD is the coefficient of drag, and S
is a representative area of the body - either its frontal or cross-sectional area.
Equation D-2 is essentially a definition of CD.

The total drag on any body consists of the "pressure drag," defined above,
plus drag forces due to skin friction. However, for angular bodies such as those
envisaged as loads to be lowered to the deep ocean floor, the skin friction dragmao1 be assumed small compared to the pressure drag.
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Accord:-. , •,;ynolds' Similarity Law, the flow pattern around the drag
coefficients on two similar bodies (identical in shape but dissimilar in size) moving
through a body of water are similar if their Reynolds numbers, Re, are identical:

R Vdp Vd (D-3)
e A V

where V is the velocity of the body relative to the water, p is the density of the
water, 14 is its absolute viscosity, V is its kinematic viscosity (p/p), and d is a
characterizing dimension of the body.

Hence it is possible to determine the appropriate CD for a body moving through
water from the results of experiments performed on an identically shaped body of a
different scale and possibly in a different fluid, provided the Reynolds numbers are
equal.

The kinematic viscosity of sea water at normal temperatures and pressures is
on the order of 1.5 x 10-5 square feet per sec,)nd. If a load to be lowered to the
deep ocean has a typical dimension of 15 feet, and moves at a velocity on the order
of 1 foot per second, the Reynolds number, Re, equals 106. It appears that relatively
little information is available from the literature on the variation of coefficients of
drag at Reynolds numbers greater than 106 to 107 . Figure D-1 with inserts show the
variation of CD with Re for spheres and cylinders respectively, and summarizes some,
though by no means all, existing data on the coefficients of drag applicable to bodies
of different shapes.

Although objects to be dropped or lowered to the deep ocean floor may not be
spherical or cylindrical, a brief investigation of the dynamics of a sphere is illu-
minating. Consider a body held stationary in water and which is then allowed to
fall freely. During the initial motions, the velocity is small and the body will
accelerate under its own weight minus a buoyancy force due to the weight of water
displaced, the drag force being negligible at this stage. This net vertical force acts
on the mass of the body plus a certain frcction of its mass which is included to
account for the water contained in the body, if any, and an effective mass of water
to which accelerations are imparted due to the motion of the body. The latter terms
are usually called the "apparent added mass"; the total mass (body mass and apparent
added mass) being termed the "virtual mass." Values of the apparent added mass vary
from 40% to 150% of the mass of the body.

As the velocity increases from zero, the drag force opposing the motion becomes
significant, and at a particular time t = tj this force is given by

FD CD (PVI2)S (D-4)
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where Va is the velocity at t = t 1 , and CD is the approprinte coefficient of drag.
After a given time the velocity of the falling body attains a terminal velocity, VT,
in which condition the drag force balances the body weight minus the buoyancy force;
i.e. ,

(WB - FB) FD (C PV 2 S (D-5)

where (CD)T is the coefficient of drag at the Reynolds number :,is.,eponding to a

velocity of VT. Equation D-5 may be rewritten as

VT L 2
(WB ~FB FD f( P )± V ) (D -6)

The function f (VT L/g) is not known and cannot be defined analytically, and
Equation D-6 cannot be solved explicitly for the terminal velocity, VT, without
the prior assumption of a particular CD.

However, starting from zero initial velocity, it is possible to determine the
motion of a particular body by considering the acceleration and velocities attained
over small increments of time. A simple computer program was written to accomplish
this. At t = 0 the velocity is zero, there is no drag force, and the body will accel-
erate under the force (WB-FB). At t = t 1 the velocity is finite and the appropriate
Reynolds number may be calculated together with the corresponding CD. For the
purpose of these calculations, CD was specified at increments of Re, and a simple
interpolation was made to determine the specific CD corresponding to Re at t = t1
Hence the drag and out-of-balance force may be calculated at t = t1 together with
the instantaneous acceleration at this point. The process can be repeated to deter-
mine the velocity of the body at time increments from t = 0 to t = T, where T is the
time taken to attain a terminal velocity.

For an up-to-date complete treatment of hydrodynamic drag, the excellent
treatise prepared and published by Dr. Sighard F. Hoerner 5 should be consulted.
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Appendix E

SUMMARY OF ADDED MASS COEFFICIENTS

The concept of added mass is well known in fluid mechanics. The physical
explanation of this phenomenon is that when a body is subjected to an unbalanced
force, not only must the mass of the body be accelerated, but also that of the
added fluid mass surrounding the body. The ratio of this added fluid mass to the
body mass is :'..c.-') mass coefficient, Cm.

The added nass depends on the dimensions and shape of the body and the
density and viscosity of the fluid. In general, measurements of the apparent added
mass have been obtained under two fundamentally different flow situations. In one
the motion is oscillatory in that an immersed body is vibrated. In the other the
motion is unidirectional in that an immersed body is cccelerated rectilinearly. The
exact analytical description of fluid resistance to the acceleration of an arbitrarily
shaped submerged solid is not known, hence the exact added mass coefficient for
various shapes of objects is not known. The following reports are the results of
different experiments under different conditions, but they are quite consistent:
T. E. Steison and F. T. Mavis, 6 E. Silberman, 7 T. Sarpkaya 8 N. L. Ackemann
and A. Arbhabhirama, 9 0. C. Zienkiowicz and B. Noth. 10 A summary of most of
the important results obtained from these references is presented in Figure E-1.

The coefficients, Cm, have been arranged in terms of a common dimension,
namely the ratio of the added mass to the mass of fluid displaced. The results obtained
from oscillatory motion are as follows:

1. Spheres: Cm =- 0.51. This compares with a value of 0.50 obtained from
ideal fluid theory for rectilinear mot;on.

2. Cubes: Cm = 0.67 ("broadside-on" or "edge-on").

3. Cirulor Cylinders: See Figure E-1. The abscissa is the ratio of length to
diameter. The motion is in the direction perpendicular to the circular
cross section.

4. Rectangular Plates: See Figure E-1. The abscissa is the ratio of length to
"width. The motion is in the broadside-on direction. The ratio of thickness
to width is limited to values less than 0. 04.

5. Square Prisms: See Figure E-1. The abscissa is the ratio of length to width
of the square sides. The motion is in the direction perpendicular to the
square cross section.
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6. Symmetrical Lenses: See Figure E-1. These lenses are two intersecting or
separated spheres:

SI , I I t t I ' , = ..I• I "

The abscissa is the ratio of B/R. The motion is ;n the direction shown.
7. Two Parallel Rectangular and Square Plates: See Figure E-1. The abscissa

is the rato of spacing between two plates to width, where the spacing is
measured from center to center of the plates. The ratio of length to width
of the plates ari over 17 to 1. The motion is in a direction parallel to the

thickness of the plates.

For till of the oscillatory motion cases the experiments were conducted at low
velocities and high accelerations. Thus the total resistance force to the moving
object is largely due to the added mass which is dependent on the acceleration. At
higher velocities, the total resistance force is due to a velocity-dependent drag term
as well as to the added mass term. That part of the resistance to motion due to viscous
and form drag and that part due to added mass are difficult to separate. S ilson and
Mavis6 and Silberr.an 7 realized the difficulties. From experiments on a sphere the
measured added mass increased by approximately 1% above the values obtained from
ideal fluid theory. Thus it was concluded that viscosity did not seriously affect the
experimental values for the added mass.

A recent method (Zienkiewicz and NathlO) of measuring the added mass is
worth mentioning here. Using an electric analogy method, the virtual mass as well
as the pressure distribution around a rigid body accelerating in on incompressibie
fluid can be determined. In the following table, the results are compared with the
known added man coefficients obtained from other sources. Agreement is excellent.

Added Moss Coefficient

Object Obtained by From Indicated Souce I

Zienkiewicz 10

Infinitely long vertical plate 1. 03 1.04 (Riabouchinsky 10 )

Infinitely long cylinder 0.98 1. 00(H. Lamb ))
Thin circular disc 0.61 0.636 (H. Lambil)
Cube 0.62 0. 67 (Stetson6 )
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These values are measured for an infinitely large submergence depth. At small
depths the measured added mass decreasea. This agrees with the physical explanation
of the added mass phenomenon. The experiments were conducted for small-amplitude
motions and no separation occurred, hence the boundary effect is not considered.
This method can be used for rotary acceleration of a body. This enperr•rntal method
has important implications since it can be set up in a deep ocean simulating tank to
measure the added mass as well as the pressure distribution of any orbitrari!ly shaped
object under translational or rotary motion.

For the unidirectional motion, the viscous and boundary effects must be
considered. Experiments for this type of motion have been conducted for a number
of bodies, but only that for spheres will be cited. Arbhabhirama 9 found that when
the ratio of the diameter of a sphere to the diameter of a fluid filling a concentric
spherical shell is 0. 259, which is similar to a sphere oscillating in an infinite fluid,
the added mass is found to be 1.03 times the added mass obtained from potential flow.

In summary, although some data is available on added mass coefficients in
oscillatory flow, most of the experiments have been conducted at small scale and
within the low Reynolds number regime. As an example, the following estimate of
the added mass of a complicated frame structure such as the STU described below, is
cited. Theoretically the oscillatory motion of a load being lowered to the ocean
floor and suspended by a cable is a damped simple harmonic motion. If the cable is
considered to be elastic, the equation of motion is

M x + C> + kx = 0

a

where M is the virtual mass of the load, x is the elongation of t0e cable, k is the
ratio of t~e restraining force to the elongation of the cable, and C is the coefficient
of damping. The solution of this equation is quite complicated, but the period of
oscillation is the same as for simple undamped harmonic motion:

M x + kx -- 0

Hence, the period T = 2 1? (M/A).
On 13 April 1965, a Submersible Test Unit (STU) was lowered by this Laboratory

to the ocean floor to a depth of 2,500 feet using a 1.3-inch-diameter polypropylerie
cable. The cable tensions were recorded as a function of time from the start of
lowering operation. The curve of the graph (Figure 35) shows the oscillatory motion
of the STU, consequently the average period of 9.8 seconds was obtained while the
average tension of the cable in this interval (between 10 and 12 minutes as marked on
the figure) was 3,400 pounds. The breaking strength of the cable is 45,000 pounds
("Braided Rope and Cordage Catalog, " Samson Cordage Works, Boston, Moss.). From
the percent load of breaking strength versus the percent elongation curve of polypro-
pylene cables, the corresponding percent elongation of 4.0 is obtained. Since the
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average cable length in this interval is 586 feet, the elongation of the cable is
0.04 x 586 = 23.4 feet. The restoring-force constant was determined to be 145 pounds
per foot (i. ,, 3,400/23.4). The virtual mass of the caL!1 assembly was fourd to be
11,360 pounds; i. e., IM = (T2/4 2)g = [(9.8)2 (145)/423 32.2. Of this 11,350 pounds,
950 poo.nds is tlue to the static weight of the suspended cable. The net weight of the
STU in woer is 5,500 pounds. Thus the added mass coefficient, Cm, is detenrmned
to be slighily less than 2.0 (i.e., 10,700/5,500).
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(See text listing in Appendix E for abscissa units)

Figure E-1. Added mass coefficient as a function of circular frequency
for constant geometric ratios.
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MATHEMATICAL NOTATIONS

A Cross-sectional area of the load in the direction of motion Uo Input displacement

CDPA w Weight per unit ler

2 Mu

c Velocity of sound in the cable E Damping parameter

C KKL

CD Coefficient of drag applicable to the load PcCS

C Coefficient of mass applicable to the load W. Ratio of cable weic
m

E Modulus of elasticity for the cable P Density of seawate,

F Safety factor for maximum operating stress in the cable P Density of cable mc

4 CD pA I" Amplitude of dynan
k A constant 3= C

31TC M
m V" Normalized dynam'

K Constant of friction on the cable due to the surrounding water
"Ld Allowable dynamic r h

L Length of the cable

M Mass of the load i mraxi Maximum normaliz

M Virtual mass of the loada

1 tatic Static stress in the
S Material cross-sectional area of the cable

u u(x, t) - displacement of element from support point Iult Ultimate tensile st l

U Displacement amplitude o Constant defined b

U' Normalized displacement amplitude U 'k Cons:ant defined I-

UUOI %A; Frequency of oscil

U1  Normalized displacement amplitude at the array W' Normalized freque

A
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MATHEMATICAL NOTATIONS

!ction of motion U0 1 Input displacement amplitude

w Weight per unit 1,ngth of cable

4CDPA Uo

SDamping parameter -- 4C D P 0

S KL•c Pc c CS

p SL

ps Ratio of cable weight to virtual mass of load - c _ w L
Ma Ma

p Density of seawater

in the cable p Density of cable material

I Amplitude of dynamic stress

V' Normalized dynamic stress

the surrounding water ut

hw Allowable dynamic stress in the cable -211- -E

d Fd stti

JL

1ýaxj I Maximum normalized dynamic stress in the cable -E

i Uoi

lstatic Static stress in the cable
le

ipport point Iult Ultimate tensile strength of the cable

c Constant defined by Equation 9

U ' Constant defined by Equation 10

Jo' Frequency of oscillation 'c
L

he array A' Normalized frequency L
c
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