ESD-TDR 66-163 KD RECORD COPRPY ESD ACCESS]%N}&'IST

. RETURN TO ESTI Call No.
SCUERTIFIC & TECHMICAL INEORMATION DIVISION Copy Mo I Y
(ESTI), BUILDING 1211 e

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LINCOLN LABORATORY

: . 1 5@ - o032

THE DESIGN OF BAND SEPARATION FILTERS

Alfred I. Grayzel

L January 1961

L4

The work reported in this document was performed at Lincoln Laboratory,
a center for research operated by Massachusetts Institute of Technology
with the joint support of the U.S. Army, Navy and Air Force under Air
Force Contract AF 19(604)-7400.

LEXINGTON MASSACHUSETTS




=

THE DESIGN OF BAND SEPARATION FILTERS

by
ALFRED IRA GRAYZEL

Submitted to the Department of Electrical Engineering
on January 16, 1961 in partial fulfillment of the require-
ments for the degree of Master of Axts. BV

ABSTRACT

A band separation filter is a network with one input and m outputs, each
corresponding to a different portion of the frequency spectrum. When a voltage
is applied to the input terminal, it will appear at one of the output terminals
only slightly attenuated. The filter considered here is a lossless network with
each output terminal terminated in a one ohm resistance. The further condition

that the input impedance of this network equals 1 + jO for all frequencies is
imposed.

In this thesis a sufficient condition for realizability on the m transfer
impedances is derived. It i1s shown that Butterworth characteristics for each
of the m transfer impedances can be achieved with networks synthesizable in
ladder form. It is also shown that L filter characteristics are also realizable
but that the synthesis procedure is more complicated and necessitates coupled
coils. Normalized curves of the attenuation characteristics for each type are
presented.

The extension of this method to transmission line networks is discussed,
and it is shown that the Butterworth characteristic can be achieved with this
type of element.
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L INTRODUCTION

Methods for designing filters which reject unwanted signals while pass-
ing the desired ones are quite well known and many different design procedures
are available. In many applications one wants to separate signals of various
frequencies and deliver them to different loads. The desired network then has
one input and m output terminals, each output terminal corresponding to a dif-
ferent portion of the frequency spectrum. A signal at the input would then ap-
pear at one of these output terminals corresponding to its frequency with little
attenuation and at all other output terminals greatly attenuated. This can be
achieved by designing m filters, the first with passband from zero to w,, the
second with passband w, tow, and the mth with passband wm_to ., These filters
can then have their inputs connected in series or in parallel to form a single
input. If we are to make efficient use of the available power, we must require
that the input impedance match the source impedance at all frequencies. We
shall, therefore, require that the input impedance equal 1+ ;0 for all frequencies
where the impedance has been normalized for convenience. To minimize un-
wanted loss, we shall further restrict each filter to be a lossless network
terminated in a one ohm resistance. The network will then take the form shown
in Figure (la) and (1b).

The problem then is to synthesize m networks having the correct pass-

band characteristics which will have the property that either
m
Z(s) = zzi(s) =1 (la)
i=1

or

Y(s) = ) Y(s)=1 (1b)
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where Zi(s) and Yi(s) are the input impedance and admittance of the
ith network. The first part of the problem is to determine which approximations
to the ideal lowpass and highpass characteristic will satisfy Eq. (la) or (1b)
for realizable networks. These solutions must then be compared to see which
yields the best characteristic for this specific application and which can be
most easily or practicably synthesized.

II. GENERAL PROCEDURE

Let us consider a lossless network terminated in a one ohm resistance
as shown in Figure 2 with input impedance Z(s) and input admittance Y(s).

Let us define the transfer impedance and transfer admittance by

Zp(s) = Eo(s)/Il(s) (2a)

¥(s) = I(s)/E(s) (2b)

The average power delivered to the network is given by

d
I

in 1 /2 111|2 Re [Z(s)]S=jm (3a)

l 2z

d
n

e 1/zl£:1 Re[Y(s)]S=jm (3b)

Since the network is lossless, all the power is delivered to the load.

Hence,

2 2
P =02 |Iol =1/2 |E_] (4)
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Substituting Eq. (4) into Eq. (3a) and (3b):

2 = 2
IIII Re [Z(S)]s:jw i lE()l
2 B 2
|E, 1% Re [Y(s)] o = |1,
and
Re [Z(s)],_., = |E/1,1° = |z ()|
S=jw o' 1 B
Re [Y(s)] _. = |1I/E 1% = | ¥ )] ?
s=jw o 71 i
The condition of Eq. (la) and (lb) can be written as:

m

Z Re [Zi(s)]szjw =1

i=1

o

Z Im [Zi(s)]s=_jw =110

i=1

m

Z Re [Yl(s)]s=jw =i )

i=1

m

z Im [Yi(s)]s___jw =0

i=1

Using Eq. (6a) and (6b), the condition of Eq. (7a) and (7c) can be
rewritten:

. 2
|z )| = 1

18

i=1

(5b)

(6a)

(6b)

(7b)

(7d)



m
z IYTicJ'm)l2 =1 (8b)
i=1

We shall now show that condition (7b) must be satisfied if (7a) is satis-
fied and each Zi(s) is a minimum reactive network and similarly that (7d) fol-
lows from Eq. (7c) for minimum susceptive networks.

Let us write:

Re [Z(s)] = 1/2 [Z(s)+ Z(-5)] (9)

If Z(s) is minimum reactive, its poles and zeros lie in the LHP and
those of Z(-s) in the RHP. Hence, one can construct Z(s) from the Re [ Z(s)]
by choosing the poles and zeros of Re [ Z(s)] in the LHP. However, for the
case at hand Re [ Z(s)] is a constant (Eq. (la) and (1b)) and, therefore, has
no poles or zeros. Therefore, Z(s) is a real constant and has no imaginary
part.

The problem has now been simplified since we need only consider solu-
tions to Eq. (8a) or (8b). If Eq. (8a) is satisfied and a voltage generator with
voltage 2E and an internal impedance of 1 ohm is connected across terminals
AB of Figure la, then the input current I to each network equals E. The
available input power to the network P, is, therefore, equal to |I] 2. The
output voltage of the ith network Eoi is equal to I(S)ZTi(S) and the output power

of the ith network is:

P, = |1]2]2 ()| (10)

Therefore,

P_/P_ = |z (| =|E_/E| (11)



Y
Similarly, if one connects the voltage source across terminals AB of

Figure 1b, the available input power is |E|2 The output power of the ith net-

IZ

work is II .|2=|E . Thus,
ol oi

: 7
Po/Pin = Y| =[E /E] (12)

Since IEoi/EIZ is the quantity we wish to control as a function of fre-
quency, we need merely choose the ZTi(S) or YTi(S) to have desirable passband
characteristics and to correspond to realizable networks while satisfying Eq.
(8a) or (8b).

III. THE APPROXIMATION PROBLEM

An ideal lowpass filter has the IZT(jm)I2 or IYT(jm)[2 shown in Figure 3.

This characteristic is approximated by the function:

|2 (i) | * = 1/1+F2(w) or [¥ 1 (jw) |= 1/1+F2(m) (13)

where Fz(w) is a polynomial in wz with real coefficients which is small for

w< o, = ] and large for w >wc = 1. (We have normalized the cutoff frequency
for convenience.) It can be shown that a realizable minimum reactive network
can always be synthesized with a IZT(jw)I2 of this form. The approximation

. problem is then to choose Fz(w) to approximate the characteristic shown in
Figure 3 using some criterion of goodness.

If Fz(w) is chosen such that Eq. (13) represents a lowpass filter, then:

|2 45w |2
=il a 1/1+F2(w) = Fz(w/l+F2(w) (14)
¥ 45 |2
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represents a highpass filter. This follows from the fact that [Z,i,(jm)[2 and
IZT(jw)I2 sum to 1 and, hence, one passes those frequencies which the other
does not. We might note that these two networks are complementary and,
hence, for the case m = 2, the problem is solved.

Let us now solve the more general case. Let us choose ZTm(s), the

transfer impedance of our m’Ch network, which is a highpass filter such that:

|25 G0 % = Fz(w/wm/l +F% (afa_) (15)
where Fz(l) =7

We have set Fz(l) equal to one so that in Eq. (15) the half power point
occurs when w = w - Since we are dealing with band separation filters, it is
logical to define the passband of each network as the frequency range over
which more than half the power is delivered to its load.

Using Eqs. (8a) and (15):

=1 1+ E (w/wm)

1/1+F2(w/wm) (16)

Let us choose ZTm-l(S) such that

/HFZ(w/wm)—IZTm_l(Jw)l2 (17)

= 1/1 +F2(w/wm_l)



il

then:
. 2 1 1
2. . Gef]" = - (18)
-1 2, w 2, w
I+4F 7 (—) 1+4F “f——)
) W
m m-1
Using Eq. (16),
2
F (w/w_)
. 2 m 1
|2 Go)|“=1 - - (19)
Lanist 1+F2(w/wm-1) 1+F2(w/wm_l)

ZTm-Z’ therefore, passes all that is not passed by a highpass filter

with cutoff w and a lowpass filter with cutoff e, 3 ZTm_l(jw) clearly is a

bandpass filter with cutoffs w and w
m-1 m

Eq. (16) can now be rewritten with the aid of Eq. (17):

m-2
L 2 1 . 2 1
) 1z te|? = = |2 TP = (20)
2 Tm-1 2
i
= k x 1+F (w/wm) 1+F (m/wm_l)
This, however, is the same form as Eq. (16). If we let:
. 2 1 i
Z ool ” = 2 (21)

1+}3‘2 (w/wm_l) 1+F2(w/wm_2)
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then substitution into Eq. (20) yields:

m-3

Z |21, )| % = 1/1+F2(w/wm_2) (22)

122l

It is clear that we can continue this process and, in general,

lzTi(Jw)lz = 1/1+F2(w/wi+1) - 1/1+F2(m/mi) (23)
and

m

) lzgtml?=n (24)

i=1

We have thus found a procedure for generating m complementary
impedances; the first a lowpass filter, the mth a highpass filter and the rest
bandpass filters, all with arbitrary cutoffs. We must now determine for what
class of functions Fz(w) the Zi(s) are realizable.

The procedure carried out on the admittance basis yields the result:

¥ o) = 1/1+F2(w/wi+1) . 1/1+F2(w/<».1> (25)

IV. REALIZABILITY CRITERION

We shall restrict out discussion to IZT(jm)[2 from here on though it
applies equally well to an admittance formulation. A given [Z,I,(jt.o)[2 cor-
responds to a realizable network if (a) its poles and zeros are symmetrical
about the jw axis and occur in complex conjugate pairs; (b) IZT(jm)I2 20

for all w.
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Condition (a) is guaranteed by restricting Fz(m) to the sum of even

powers of w with real coefficients. Condition (b) and Eq. (23) require that:

l/l+F%w/wi+l) - l/l+F2(w/wi) (26)
or
Fz(w/wi_H) = Fz(w/wi) (27)

Since by definition W, > W, this condition is satisfied for any FZ(w),

41
which is a monotonic increasing function of w. This condition is not a necessary
one since the condition given in Eq. (27) need not be satisfied everywhere but
only at m+ 1 points. If the solution, however, is to be applicable to any arbi-
trary set of cutoff frequencies, this condition is necessary.

We have thus found a procedure for choosing the m networks whose in-
put impedances sum to one and whose transfer impedances have the desired
bandpass characteristics. We have shown that if Fz(w) is a monotone, increas-
ing function of w, the networks are realizable. We must now evaluate the per-
formance for the various Fz(w) which when used in Eq. (16) approximate the

ideal lowpass characteristic and which satisfy this condition.

N THE BUTTERWORTH CHARACTERISTIC

The Butterworth lowpass characteristic of nth order is given by:

|2 ()| % = 1/140%° (28)

Hence, by our previous notation,

B ) = (29)
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wZn is clearly an increasing function of w and hence from Egs. (23) or (25):

|2 g, ()] 2 ) |

| 2 = 1/1+(w/wi+l) ? l/1+(u)/wi) & (30)

Y . (jw)
Ti

Let us calculate the minimum insertion loss in the passband using

Eq. (30). The minimum insertion loss occurs when:

d 1 1

i = =0 (31)
dw 2n an
1+(w/wi+1) 1+(w/wi)
differentiating
2,201 ) 51y 201 -
2n 2n] 2 2n 2n7 2
& [l+(w/wi+1) @] l:1+(m/wi) J

or

n 2n, n 2 n 2n, n |2
l}i+1+w /“’i+1] - l}’i*“’ /‘“i]

Solving for w yields:

2

w =

(33)

w941

This value of w corresponds to the minimum insertion loss or maximum

value of lZTi(jm)I2 given by:

IZTi(jw)|fnax i 1/1+(wi/wi+1)rl - 1/1+(wi+1/w.1)n (34)



and
: T R
lim i |zTi(Jw)|max- 1
(23/w;,,)" =0
At the cutoff frequencies w = w, and w = w,
i i+1
; A 1
IZTi(Jwi)l - 1-{-((_0/ )er o 1/2
i/ “141
1

. B
|Z sl " = 1/2 - 1+ (., fa )"
S TS

Subtracting Eq. (37) from Eq. (36) yields:
IZTi(j“"i)IZ & IZTi(jwi+1)|2 =0
Hence:
|2 g1 * = 12 g0y, 1
and it follows from Eqs. (36) and (37) that:

. = lZTi(j“)|2= lim ) IZTi(jw.1+1)|2=1/2
(wi/wi-l-l) B (wi/wi-l-l) =0

-14-

(35)

(36)

(37)

(38)

(39)

(40)
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We, therefore, see that in the limit a minimum insertion loss of zero db
and a 3 db insertion loss at the cutoffs can be achieved. In Figure 4 Eqs. (34)
and (36) are plotted. From these plots:

|Zpsto) 2, and |20 Gep] ® = |2, Gay, )1

max

can be determined. This gives some idea of the performance that can be
achieved for values of (wi+l/wi)n. If we require a minimum insertion loss of

less than 2 db, then:

|z > 0.632 (41)

; 2
Ti(‘]w)lmax
From Figure 4

(K)* = (wi+1/wi)n 5 dF (42)

In Table I is shown values of n required for various values of K to

satisfy Eqs. (41) and (42).

K 1 Fom! 1.3 L5 2.0
n 16 6 4 3
Table I

Values of n and K for Minimum Insertion Loss
of less than 2 db for Butterworth-Type Band
Separation Filter.
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In Figures 5, 6, 7 and 8, Eq. (30) is plotted for n = 4, 8 and 16 and
K=1.1, 1.3, 1.5 and 2.0 respectively. lZTi(jm)l2 is plotted in these curves
vs. w, + RW where R takes on values between -1 and +2 and W equal to W9y
is the nominal bandwidth. A second frequency scale is given in terms of
fractions of w,.

As can be seen from Figure 5 for K = 1.1, n = 16 yields the only
usable characteristic as predicted in Table I. It should be noted that the
actual cutoffs; i.e., 3 db points, occur at 1. 006(»3i and 1. 098(»i and K = 1. 09.
The deviation is thus small, but can be compensated for if desired by choos-

ing Wy and Wy slightly different from the desired cutoff.

+1

Figures 6, 7 and 8 indicate that for K= 1.3, n= 8 and 16 yield usable
characteristics while for K> 1.5, n = 4 is also usable. It is clear that the
larger the value of K", the better the characteristic.

The asymptotic behavior of IZTi(jw)I 2 can be seen from Eq. (30)

as w =+

2 2 2] %,
. N T N B v e U
lim | Zig (|~ = —m— = =g Zn =5
w=>0 w w w
Expressing this as a loss in db,
n n
Idb = 20 log Cw = 20 (logC +logw ) (44)
where
i
C= L

let
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P

&= gt K =201log C

I,, =K+ 20log"" * K+ 20 punlog 2 = K+ 6np (45)

db
Hence this function has a slope of 6n db per active and an intercept of K
atp = 0.

Vil THE PAPOULIS CHARACTERISTIC

The Butterworth filter has the property of being maximally flat at the
center of its passband; however, its rate of cutoff is relatively slow. To re-
duce the number of elements required for a given value of K, it is desirable
(1)

to find that Fz(w) which is monotonic and cuts off fastest. Papoulis has

derived a class of filters called L filters which have the following property:

F*() = L_(u”) (46)
where

(a) £, §0) = 0
(b) L (1)= 1 (47)

it o5

n
S T
W=

where M is the largest value obtainable for any polynomaial in even powers of

w of order 2n satisfying (a) and (b).

Table II lists Ln(wz) o w1 6 2 5, B 6, 7 amd B
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n n(w )

2 w4

3 3w6 - 3w4 + uz

4 6w8 = 8w6 e 3w4

5 200.)10 - 40(.08 + 28(.06 = 8(.04 + wz

6 50012 - 120010 + 10508 - 40w + 6wt

7 17501% © 525012 + 615010 - 35508 & 1050° - 150t + w2

8 490010 - 1680w1% + 231002 - 1624wl + 61508 - 1200 + 1002
Table II

L (’)forn=2, 3, 4, 5, 6, 7 and 8.2

Eq. (23) can be rewritten:

’ 2 1 1
|2 )| © = —— - : (48)
B TR . I Lop s ey
n w. n .
i+l 1

The passband characteristic given in Eq. (48) can be evaluated by first
evaluating Ln(wz). For a given value of K, one must evaluate Ln (c«)/Kc«)i)2 and
Ln (c‘o/mi)2 for different values of w. These values are then substituted into
Eq. (48) to determine IZTi(jw)IZ. Figure 9 is a plot of IZTi(j“)IZ forn=4
and K = 1.3, 1.5 and 2.0, while in Figure 10, n=8and K=1.1, 1.3, 1.5

and 2.0.
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From Figure 10 we note that for K = 1.1 n = 8 the characteristic is
usable by the same criterion by which n = 16 was necessary for the Butter-
worth. Further comparison is shown in Figure 11 for K = 1. 3. Here we note
that the fourth order L filter is comparable (though not quite as good) to the
eighth order Butterworth and the sixteenth order L is comparable to the
eighth order Butterworth. We note that this statement is true in the passband
and upper stopband. In the lower stopband, the characteristic deteriorates
somewhat and for very low frequencies it is not as good as the Butterworth.
The reason for this is clear upon examining Eq. (48). At high frequencies,
both terms on the right approach zero at the maximum rate; hence, their
difference approaches zero at least as fast as each term. As we approach
zero frequency, each term approaches l and only their difference approaches
zero. How fast it cuts off near zero is determined by how fast each term ap-
proaches 1. The Butterworth, we recall, is maximally flat and, hence, ap-
proaches one quickly. The L filters, on the other hand, are concerned with
the slope at cutoff and, hence, approach one at zero frequency slowly. We
thus see that for uniform selectivity for both high and low frequencies, the
Butterworth is desirable. If one is interested in economizing on the number
of elements and wants a sharp cutoff to 10 or 12 db points, the L filters should
be used. As seen from Figures 9, 10 and 11, the L filters give faster cut-
offs and lower passband insertion loss than Butterworth but do not have as high

an attenuation at the low frequencies.

VII. SYNTHESIS PROCEDURE FOR BUTTERWORTH NETWORKS

Eq. (30) can be rewritten:

2n
M Aw
|2, Ge) | © = (49)

[P
i+1 i
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where
i 1
A= 2n_ m2n
e i+l

It is well known that a transfer impedance of this form can be synthesized
as a ladder network§3) Darlington has shown for a lossless network terminated

in a one ohm resistance whose input impedance Z(s) is given by:
Z(s) =(m1+n1)/(m2+n2) (50)

where m, and m, are even polynomials and n, and n, are odd that the open

circuit impedances of the lossless network are given by:

Case A Case B
217 = my/n, 21y = ny)/m,
255 = ™,/n, 252 = /M, haL)

Bijg SIS SO Boy Ty N vnlnz""‘l"“z/"“z

where the correct case is determined by the condition that z 5, must be the

1

quotient of an even polynomial over an odd or odd over even. If lem;—nlnz

is even, case A 1s used; if odd, case B is used. If ,\/ml—mz--n_ln2 is not a
perfect square, it must be augmented by multiplying numerator and denominator
of Z(s) by a suitable polynomial. 54 By evaluating the residues in Eq. (51), it
is easily verified that the residue condition is satisfied with the equal sign.

For case A:

Be el N T o (52)
6 225 7 12 )
e = .

S=s S=8 S=8
a a a
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where s, is a zero of n, and the prime indicates differentiation with respect
(4)

to s.

Hence:

2
by 1 Fap = Byp =@ (53

To synthesize the minimum reactive network corresponding to

IZTi(jw)IZ, determine m, + n, and hence, Zso- If a lossless network with

this Z,o has the transmission zeros of '\/mlmz -n,n, and satisfies the residue

172
condition with the equal sign, it must be the desired network within an impedance
scaling factor. The impedance scaling factor arises from the fact that if
Z(s) is multiplied by a constant KZ, Z,, = mz/n2 or n2/m2 is not affected,
but Z,, is multiplied by K. Hence, this constant must be determined and the
impedance levelled to get the correct constant A in Eq. (49).

Since half the transmission zeros of Eq. (49) are at w = 0 and half at
w =, z,, must be developed in a ladder network with half its transmission
zeros at w = 0 and half at w = «. If this is done by complete removal of each
pole, the residue condition is satisfied with the equal sign, and upon appropriate

scaling, the desired network is achieved.

m, + n, can be found as follows:

i g et e
IZTi(Jw)| Sha [Z(s)]s=j.w - (m,+n,)(m,-n,) (34)

s=jw

Since the poles of Z(s) are all in the left half plane, the product of the
LHP poles of the Re [ Z(s)] must be equal to m,+n,. Hence, by factoring the

denominator of Eq. (49) and taking the left half plane zeros, m,+n, is

25 1

determined.
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The determination of m,¥n, for IZTi(jw) I . of the form given in Eq. (49)
can be simplified as follows:
i i i : : 2n
Let §)» Spr--s S be the zeros of the polynomial [l+(-_]s/wi) ]
S il ¥l i1 :
lying in the LHP and S] 18y 1ecr S be the zeros of the polynomial

[1+(-js/wi+l)2n] lying in the LHP. Then,

n . n . . : . .
+1 +1, i+l
m,+n, =|:Kn_l(s-s;<ﬂ I:n_l(s-s:a )] = (my+ny)(m, +ny ) (55)

where

n
m,+n,= II (s-s,) (56a)
2 2 K=1 K
; ; n :
i+1 +n1+l -1 (s-s1+l) (56b)
2 2 {
£=1
Let the zeros of [1 + (-js)zn] be S?, Sg, a8 o, EhER
o o = o
mz(s) + nz(s) =i, (I (s-sK) (57)
K=1
and
mlz(s) + nlz(s) = mcz) (s/wi) + ng (s/wi) (58a)
i+l .
m3> " (s) + n5(s) = mJ (s/w. ) + n3 (/v ) (58b)

The polynomials mcz) + ng are just the denominator of the frequency
normalized Butterworth function and are well known. The polynomials for

n=1, 2,..., 8 are given in Table III. (3) From this table m +n2 is easily

2
determined using Eqs. (58) and (55).



o

n
] 148
2
3 14+ 1.4145 + S
3 | & 2528 4152
4 1 +2.6135 + 3.4145% + 2. 6135° +5¢
5 1+ 3.2365 + 5.2365° + 5.2365° + 3.2365% 4+5°
6 1 +3.8645 + 7.4645% + 9.1415° + 7.4645% + 3.8645° + §°
3 3 4 5
7 1 + 4.4945 + 10.1035° + 14. 606S° + 14. 6065~ + 10.1035° +
4.4945% 4+ 87
2 3 4 5
8 145.1265 + 13.1385% + 21.8485°> + 25.6915% + 21.8485° +
13.1385°% + 5. 1265 + 8
Table III
Denominator Polynomial Butterworth Network(s)
Example I:

Let us consider as an example a three-way crossover network for a
high fiedlity system. The first filter will pass zero to 4000 cycles; the second,
4000 to 8000 cycles and the third, all frequencies greater than 8000. The
desired impedance level is 8 ohms. Let us normalize to 1l ohm and let 8000

cycles correspond tow = 1. Using fourth order Butterworth functions:




AP

l-?‘Tl(jw)l2 = 1/1 + (20)® (59a)
|2 )| % = 1/1+<.o8 : /1+(2<.o)8 (59b)
|2 500 % = 0®/140° (59¢)

Let us synthesize the highpass network first. From Table III, n=4

m) +ny=1+2. 613s+3.414s° +2.613s + s° (60)
- "
ince mlmz-nlnz = 8 18 even
2. 4
. 1+ 3.414s" + s (61)

22 5 6135 + 2. 6138°

must be developed in a ladder network with all transmission zeros at
w= 0.

.383/s

2.613s+2.613s3|1+3.414s2+s4

1 g’ 1.082/s

2. 4145+ (2. 6138+2. 6138°
2.613s+1.082s> 1.57/s
1. 53ls3| 2. 41452-i-s4
2.414s°  1.531/s

s4| 1. 53ls3r

The resulting lossless network is shown in Figure 12.
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To evaluate the constant multiplier to determine if impedance scaling

is necessary, z,.(s) is evaluated at s = ©. Since by Eq. (51),
12 y &=q

m, m.,-n.n 4
1772 7172 s
z ,(s) = E (62)
e n, 2 BT lpne)
z), (=) = ’Z.—Z‘B‘: 0.384s (63)

At infinite frequency, the circuit of Figure 12 reduces to that of
Figure 13.

It is clear from Figure 13b that zlz(oo) = 0.384 and, hence, no imped-
ance levelling is necessary.

Let us next synthesize the lowpass network. From Table III, using

Eq' (58)’

m; +n) = 1+ (2.613)(2s) + 1. atayee)® « iz, 613)@2E)" 3 (2s)"

(64)
2 3 4
= 14 (5.226)s + (13.656)s° + (20.90)s> + 16s
Since »/ mlmz—nlnz = 1 is even,
2 4
1+ 13.656s” + 168
& 3 (65)

5.226s + 20.904s

z.,., must be developed in a ladder network with all of its transmission zeros

22

at infinity.
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=

) 0.766s
2 7 5
20, 9048245, 2265 | 168+ 13. 65651
168t + ‘4. 0308° 1.063s

19. 6265%+1 | 20. 9045°45. 226

20.904s°+1.063s  4.72s
4.163s [19. 6265+ 1
19. 6268 4.163s

1] 4.163s

The resulting lossless network is shown in Figure 14.
To evaluate the constant multiplier of le(S) to determine if impedance
scaling is required zlz(s) is evaluated at s = 0.

Since
z,(8) = 1/5.266s + 20.904s" (66)
z1,(0) = 1/5.266s (67)
At zero frequency the network of Figure 14 reduces to that shown in
Figure 15,
It is clear from Figure 15b that z ,(0) = 1/5.226s and, hence, no
scaling is necessary.

Now let us synthesize the bandpass network. From Eq. (58)

2 2 1 1 3 3
m, + n, = (m2 + nz)(m2 + nz) (68)
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Using Eqs. (60) and (64)

m§+n§=l+7.85+30.752+ T D Bl P 150 P 198 e e e Te e 1Ga>
Since
2 8 8 e T
|Z 0y ()| 7 = 1/14” - 1/14(2w)" = 3 5 (69)
[1+0” ][ 14(2w)"]
A/mlm2 -nn, =f\/28 -1 54 is even (70)
and
{ 50, 78 + 131,08 4 123, 08° % 16,08
z (71)

20 = 3 5

7.85 4+ 77.0s” 4+ 154,15 4 62.757

z, ., must be developed in a ladder network with four transmission zeros at

2

infinity and four at zero frequency.



1/7.8s =R
8

2RI Oa L4, Lo D562, T |1#80. 75 %000, 9x "+ 12008416, 08

1+ 9.9SZ+ 19.8s4+ 8.ls6
20.8sz+112.]s4+114.956+16.05

8

) 1/2.67s
v16s® |7. 85877, 086154, 167%62. 7"
7.8s+42. s>+ 43.08°+ 6.0s
34, 95 #1101 1”556, 78 '

Z

20.85%¢112. 1s%¢114. 95°

1/1. 68s

34,983¢111. 157456, 757 [20. 852112 1s%+114. 9% 1658

20.8s%+ 66.3s 33,85°

45.85%+ 81.1s% 168

171,318
45.854+81.156+1658|34.953+111.155%56.757
84, 957+ 6B, 08 201R 2"
49.155+44.557

.« 2098 A
4, 58 %49, 15> fu6a ea1. 1545 85"
e, 2 . 718s
63, 4 P44B. 8e*| 44, 55 949, 18°
44.557+32.935

16.255

3.91s

16.255 63.456+45.8s4

63.4s6 .355s

45, 85| 16.258°
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The resulting lossless network is shown in Figure 16.
To evaluate the constant multiplier of le(s) to determine if impedance

scaling is necessary, zlz(s) is evaluated at s = 0. Using Eqgs. (68) and (70)

ym;m, -nn, ’\/Z—ls
n

z.,(s) = (72)
=z 2 hy
and
1/ 8 . 4
z,(0) = _27.‘8% = 208" (73)

At zero frequency, Figure 16 reduces to that shown in Figure 17.

212(0) can now be determined as follows: Assume an output voltage Ecd of 1 volt,

then,
(a) Ebd =0l
(b) I 4= 1/2.67s
() E_ = 1/2.67s x 1/1.68s = E 4 (74)
(d) Iadz1/2.67s><1/1.6ssx1/1.3ls= 1/5.86s
(e) le(o)zEbd/Iadz 5.86s
The impedance level is thus seen to be too large and must be scaled
by K where

K = 2.05/5..86 = D.38 (75)

The desired network is shown in Figure 18.
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Each network must now be impedance levelled to 8 ohms which in-

volves multiplying each inductance by a factor of eight and each capacitance
by 1/8. The frequency must also be scaled such thatw = 1 corresponds to
8000 cycles. This involves multiplying each inductance and capacitance
by 1/8000. Hence, combining these operations, each inductance is multiplied
by 10—3 and each capacitance by 1/64 x 10_3. The final network is shown in
Figure 19.

VIII. SYNTHESIS PROCEDURE FOR L FILTERS

Eq. (48) can be rewritten in the form

IZ .(jw)|2= 1 1+ (76)
= [1+L (2% ][ 14L_ (-2 )]
i+1 i

Since Ln(w/wi) is monotonic and satisfies Eq. (27), it is clear that
the transmission zeros occur at zero, infinity and at complex frequencies
corresponding to the roots of the numerator of Eq. (76). These complex
zeros complicate the problem considerably and prevent a simple ladder
synthesis of the corresponding network.

To synthesize the network corresponding to |ZTi(jw)[2, Z(s) must
first be determined. The impedance Z(s) can be found as follows:

Let
1
1+ L (
n

Re [Z, ()] _y, = |20 * = — (77)

)

“it1
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A

and
Re[2"(s)] _. = |21, (ju)|® = — (78)
1 s=jw Ti ¥ >
T, )
n w.
1
Subtracting
. 2 . 2
Re[ 2/ (s)] -Re[ 2! (s)] = |21, (jw)|” - 21! ()]
1 1
- — - . (79)
LS o 141 (—)
B %5l ey
Using Eq. (48)
Re[ 2{(s) - 2s)] = |21, (jw)|? (80)
but
Re[Z,(s)] = |2 (jw)]° (81)

Therefore, if

Z.l(s), Zi (s) and Zi' (s) are all minimum reactive, then

Zi(s) = Zi(s) - Zi' (s). (82)



<08

Let us define

S L S (83)
1+ Ln(—s)
Then by Eqs. (77) and (78),

Zllele 222§ (84a)
1 Wi
1t _— o S

Z/'(s) = 2 (“’i ) (84b)

In Table IV, z‘i’ is tabulated for n = 2, 3,..., 6. From this table

using Eqs. (82) and (84), Zi(s) is easily determined.

Having determined Zi(s), the Darlington synthesis procedure is now
employed. It should be pointed out that since m,;m,-nn, will not be a
perfect square, augmentation is necessary. This increases the number of
elements required, hence, a (Zn)th order Butterworth may have the same
number of elements as an nth order L filter. Hence, for the same number
of elements, the Butterworth may yield a better characteristic. It should
also be noted that it will, in general, be necessary to use coupled coils in
the synthesis of the L filters, which is usually undesirable. These considera-
tions lead the author to feel that the use of the Butterworth characteristic is

more desirable.



Z(s)

0.672s

2

¥ 0.8228 4 0. 577

3

6° 3 i, 3105~ % L 35684 0. 577

0.620s> + 0.969s% + 0.939s + 0. 408

4

§ ik 1.56353 ik 1.866? +1.241s + 0.408

0, 618s " 4 0, 9508 & 1. 13562 & 0, 7058 + 0. 254

5

4 3 2

s 4+ 1.551ls” + 2.203s” +1.693s” + 0.898s + 0.224

0.612s

5

Ll 056s4 + 1.43853 + 1. 13ZS2 4+ 0.493s + 0. 141

6

s + 1. 72655 + 2. 69084 + 2.433s

3 & e 633s2 + 0.680s + 0.141

Table IV

Input Impedance of L-Type Filter

-49.
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IX. APPLICATION TO TRANSMISSION LINE NETWORKS

. : ] : R
Let us consider an input impedance Z(s) and corresponding IZT(Jw)[
which can be synthesized as a lossless ladder network terminated in a
resistive load consisting of series and shunt lumped inductances and capacitances.

(6)

It has been shown that the input impedance Z(\) and corresponding ZT(jSl)
can be synthesized in a ladder network using transmission line components

where

\ = tanh —‘fsf— =T +jQ (85)
(o]

The elements used consist of series and shunt shorted and open stubs,
all a quarter wavelength long at frequency fo and sections of transmission
line of this same length called unit elements. The realization of the series
stub in coaxial transmission line is discussed in Reference (7) while the
realization in strip line is discussed in Reference (8).

Since the Butterworth characteristic yields band separation filters
composed of ladder networks with series and shunt inductances and capacitances,
it can be synthesized using transmission line components. Since \ 1s a trans-
formation of the complex frequency scale and , a transformation of the w
axis, it follows from Eqgs. (86) and (87)

Z..30) =1 (86)

Ti(

)8

-
]
y—

m

Zzi(” -1 (87)

i=1

and, hence, the transmission line networks are complementary.



bl

The frequency fo is chosen as the largest frequency of interest, since
the frequency fo corresponds to A equal to infinity. The filter characteristics
that can be achieved can be determined from Figures 5, 6, 7 and 8 by substituting
 for w. To determine the characteristic as a function of frequency, the

relation

= tan q(})—o (88)

is then used.
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