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ABSTRACT 

A band separation filter is a network with one input and m outputs,   each 
corresponding to a different portion of the frequency spectrum.    When a voltage 
is applied to the input terminal,   it will appear at one of the output terminals 
only slightly attenuated.    The filter considered here is a lossless network with 
each output terminal terminated in a one ohm resistance.     The further condition 
that the input impedance of this network equals .1 + jO for all frequencies is 
imposed. 

In this thesis a sufficient condition for realizability on the m transfer 
impedances is derived.    It is shown that Butterworth characteristics for each 
of the m transfer impedances can be achieved with networks synthesizable in 
ladder form.    It is also shown that L filter characteristics are also realizable 
but that the synthesis procedure is more complicated and necessitates coupled 
coils.    Normalized curves of the attenuation characteristics for each type are 
presented. 

The extension of this method to transmission line networks is discussed, 
and it is shown that the Butterworth characteristic can be achieved with this 
type of element. 
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I. INTRODUCTION 

Methods for designing filters which reject unwanted signals while pass- 

ing the desired ones are quite well known and many different design procedures 

are available.    In many applications one wants to separate signals of various 

frequencies and deliver them to different loads.     The desired network then has 

one input and m output terminals,   each output terminal corresponding to a dif- 

ferent portion of the frequency spectrum.    A signal at the input would then ap- 

pear at one of these output terminals corresponding to its frequency with little 

attenuation and at all other output terminals greatly attenuated.     This can be 

achieved by designing m filters,   the first with passband from zero to w, ,   the 

second with passband co.  tow, and the m      with passband w     to  ».     These filters 
i <£ m-1 

can then have their inputs connected in series or in parallel to form a single 

input.     If we are to make efficient use of the available power,   we must require 

that the input impedance match the source impedance at all frequencies.    We 

shall,   therefore,   require that the input impedance equal 1 + jO for all frequencies 

where the impedance has been normalized for convenience.     To minimize un- 

wanted loss,   we shall further restrict each filter to be a lossless network 

terminated in a one ohm resistance.     The network will then take the form shown 

in Figure (la) and (lb). 

The problem then is to synthesize m networks having the correct pass- 

band characteristics which will have the property that either 

m 

or 

Z(s) =   2.Zi<s) =  l <la) 
i=l 

m 

Y(s) =y Y.(s) =  1 (lb) 
i=l 
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Where Z.(s) and Y.(s) are the input impedance and admittance of the 

i      network.     The first part of the problem is to determine which approximations 

to the ideal lowpass and highpass characteristic will satisfy Eq.   (la) or (lb) 

for realizable networks.     These solutions must then be compared to see which 

yields the best characteristic for this specific application and which can be 

most easily or practicably synthesized. 

II. GENERAL PROCEDURE 

Let us consider a lossless network terminated in a one ohm resistance 

as shown in Figure 2 with input impedance Z(s) and input admittance Y(s). 

Let us define the transfer impedance and transfer admittance by 

ZT(s) = Eo(s)/l1(s) (2a) 

YT(8) = ysj/EjU) (2b) 

The average power delivered to the network is given by 

P.    = 1/2  |l. |2 Re [Z(s)j (3a) 
in        '       '   1 • L Js=jw 

P.     =  1/2  |E. I2 Re [Y(s)] (3b) in ' •        1  ' L        \     7J g-j^ V I 

Since the network is lossless,   all the power is delivered to the load. 

Hence, 

P.     =  1/2  ll   I2 =  1/2   |E   I2 (4) 
in       '     ' o' '      '   o ' 
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Substituting Eq.   (4) into Eq.   (3a) and (3b): 

and 

UJ2 Re [Z(s)]B=jw=  |Eo|
2 (5a) 

lEj^Re [Y(s)]8=jw:=   U0|
2 (5b) 

Re [Z(s)]s=jw=   [Eo/l1|
2=   |ZT(jc4)|2 (6a) 

Re [Y(s)] =   |I0/E112=   [YT(jW)|2 (6b) 

The condition of Eq.   (la) and (lb) can be written as: 

m 

Re [Z.(s)l =  1 (7a) 

i=l 

m 

)   Im [Z.(a)l      .     = 0 

i=l 

m 

m 

>   Im [Y.(s)] = 0 

(7b) 

Re [Y.(s)]      .     =  1 (7c) 

i=l 

(7d) 

i=l 

Using Eq.   (6a) and (6b),   the condition of Eq.   (7a) and (7c) can be 

rewritten: m 

£  |ZT.(jW)|2 =  1 (8a) 
i=l 
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m 

£  |YT.tJW)|2=  1 (8b) 

i=l 

We shall now show that condition (7b) must be satisfied if (7a) is satis- 

fied and each Z.(s) is a minimum reactive network and similarly that (7d) fol- 

lows from Eq.   (7c) for minimum susceptive networks. 

Let us write: 

Re [Z(s)]  = 1/2 [Z(s) + Z(-s)] (9) 

If Z(s) is minimum reactive,   its poles and zeros lie in the LHP and 

those of Z(-s) in the RHP.    Hence,   one can construct Z(s) from the Re [Z(s)] 

by choosing the poles and zeros of Re [Z(s)]  in the LHP.    However,   for the 

case at hand Re [Z(s)]  is a constant (Eq.   (la) and (lb)) and,   therefore,   has 

no poles or zeros.     Therefore,   Z(s) is a real constant and has no imaginary 

part. 

The problem has now been simplified since we need only consider solu- 

tions to Eq.   (8a) or (8b).    If Eq.   (8a) is satisfied and a voltage generator with 

voltage 2E and an internal impedance of 1 ohm is connected across terminals 

AB of Figure  la,   then the input current I to each network equals E.     The 

available input power to the network P.     is,   therefore,   equal to  |l[    .     The 

output voltage of the i     network E   . is equal to I(s)ZT.(s) and the output power 

of the i     network is: 

Po.=   |l|2|ZT.(jW)|2 (10) 

Therefore, 

or     in       '     Ti ' '   oi P^/**„-  |ZT,(jW)|2=|E   VE|2 (11) 
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Similarly,   if one connects the voltage source across terminals AB of 

Figure  lb,   the available input power is   |E|   .     The output power of the i     net- 

work is   11   . |2= |E   .I2.     Thus, 1   01• '     Ol' 

P   ./P.     =   lY^.Uw)!2 =|E   ./E|2 (12) oi'     in      '    Ti J   "        '   ox'     ' 

Since [E ./E ['" is the quantity we wish to control as a function of fre- 

quency,   we need merely choose the Z_,.(s) or YT,(s) to have desirable passband 

characteristics and to correspond to realizable networks while satisfying Eq. 

(8a) or (8b). 

III. THE APPROXIMATION PROBLEM 

An ideal lowpass filter has the   | Z    (jt*>) |     or   | Y   (joa) | " shown in Figure 3. 

This characteristic is approximated by the function: 

|ZT(jw)|2=  l/l + F2(u) or|YT(jc4)|=  l/l+F2(W) (13) 

2 2 where F   (w) is a polynomial in w    with real coefficients which is small for 

w< w    =  1 and large for w >w    = 1.     (We have normalized the cutoff frequency 

for convenience. )   It can be shown that a realizable minimum reactive network 
2 

can always be synthesized with a  |ZT(jw)|'- of this form.     The approximation 
2 

problem is then to choose F   (GO) to approximate the characteristic shown in 

Figure 3 using some criterion of goodness. 
2 

If F   (CJ) is chosen such that Eq.   (13) represents a lowpass filter,   then: 

Zl(j")|2 

Y'(jw)|2 

\  = 1 -  l/l + F2(w) = F2(u)/l+F2M (14) 
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represents a highpass filter.     This follows from the fact that  [Z ' (jw) [     arid 

|ZT(jw)|     sum to 1 and,   hence,   one passes those frequencies which the other 

does not.     We might note that these two networks are complementary and, 

hence,   for the case m = 2,   the problem is solved. 

Let us now solve the more general case.     Let us choose Z_    (s),   the 

transfer impedance of our m      network,   which is a highpass filter such that: 

|ZTm(jW)|2 = F2(«/u>mv/l + F2(ta/wm) (15) 

where F2(l) = 1 

2 
We have set F   (1) equal to one so that in Eq.   (15) the half power point 

occurs when w = w     .    Since we are dealing with band separation filters,   it is m or 

logical to define the passband of each network as the frequency range over 

which more than half the power is delivered to its load. 

Using Eqs.   (8a) and (15): 

m-1 „2 
m y iz (jc)i2 = i. - 

i=l       Tl l*FW«m> 

F   (w/w     ) 

T 

- i/i + F2K 
m' 

Let us choose Z_,       . (s) such that 1 m- 1 

l/l + F2(W/u;m)-|ZTm_1(jW)|2 (17) 

=  l/l+F2(w/w       .) / '    m-1 
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then 

7,Tm-l o>)|2= 1 1  (18) 
1+F2(-^-) 1+F2f^_) 

m m-1 

Using Eq.   (16), 

F
2

(CJ/W    ) 

1+F^(W/W ) l + F^(W/oo ) 

ZT       2'   therefore,   passes all that is not passed by a highpass filter 

with cutoff u>     and a lowpass filter with cutoff w       , .    Z-,       , (jw) clearly is a m c m-1 Tm-rJ   ' ' 

bandpass filter with cutoffs w       ,  and OJ r m-1 m 

Eq.   (16) can now be rewritten with the aid of Eq.   (17): 

m-2 

J lz^(J^I2 = z—; lzTm-i<Jw)l2 = M      Ti l+F%/u    ) im   X 
i=l '    m' x  '    m-1' 

This,   however,   is the same form as Eq.   (16).    If we let: 

ZTm   2(JW)12=    ^—, T  <21> 
l+F^(W/Wml) l+F^(W/o)m_2) 
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then substitution into Eq.   (ZO) yields: 

m-3 

£  lZT.(jco)|2 =  l/l + F2(W/Wm_2) (22) 

i=l 

It is clear that we can continue this process and,   in general, 

\ZT.I^)\Z = l/l + F2(wA>i+1) " yi+F2(ca/<a.) (23) 

and m 

^   |zTi0")|2=i (24) 

i=l 

We have thus found a procedure for generating m complementary 

impedances; the first a lowpass filter,   the m      a highpass filter and the rest 

bandpass filters,   all with arbitrary cutoffs.     We must now determine for what 
2 

class of functions F   (OJ) the   Z.(s) are realizable. 

The procedure carried out on the admittance basis yields the result: 

|YT.(ju)|2 = l/l + F2(W/co. + 1) -  l/l+F2(W/w.) (25) 

IV. REALIZABILITY CRITERION 

r»T-i    +r\    17, We shall restrict out discussion to   |ZT,(jc4)|     from here on though it 

2 applies equally well to an admittance formulation.    A given  [ZT(JOJ)[" cor- 

responds to a realizable network if (a) its poles and zeros are symmetrical 

about the JCJ axis and occur in complex conjugate pairs; (b)  |ZT(jw)|     ^ 0 

for all w. 



-12- 
2 

Condition (a) is guaranteed by restricting F   (w) to the sum of even 

powers of u with real coefficients.    Condition (b) and Eq.   (23) require that: 

1/1+F^/W. + 1) > l/l + F2(W/w.) (26) 

or 

F2(w/w.+1) SF2(«/w.) (27) 

2 
Since by definition w.   . > w.,   this condition is satisfied for any F   (w), 

which is a monotonic increasing function of w.     This condition is not a necessary 

one since the condition given in Eq.   (27) need not be satisfied everywhere but 

only at m+ 1 points.    If the solution,   however,   is to be applicable to any arbi- 

trary set of cutoff frequencies,   this condition is necessary. 

We have thus found a procedure for choosing the m networks whose in- 

put impedances sum to one and whose transfer impedances have the desired 
2 

bandpass characteristics.     We have shown that if F   (<*>) is a monotone,   increas- 

ing function of w,   the networks are realizable.    We must now evaluate the per- 
2 

formance for the various F   (w) which when used in Eq.   (16) approximate the 

ideal lowpass characteristic and which satisfy this condition. 

V. THE BUTTERWORTH CHARACTERISTIC 

The Butterworth lowpass characteristic of n      order is given by: 

|ZT(jca)|2= 1/1+W
2n (28) 

Hence,  by our previous notation, 

F2(w) = co2n (29) 
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u>      is clearly an increasing function of w and hence from Eqs.   (23) or (25): 

|zTi(»| 

|YTi(»| 

=  l/l+(«/«i+1)2n -  l/l + (VW.)2n (30) 

Let us calculate the minimum insertion loss in the passband using 

Eq.   (30).     The minimum insertion loss occurs -when: 

_d_ 
dw 

_l + (<Vco.+ 1)
2n       1 + (w/u.)*1 

=  0 (31) 

differentiating 

2nw 2n-l 
2nw 

2n-l 

2nl 2 ~£i frw^ry-^[i+w^2*] 
(32) 

or 

[n       ,     2n/n 2 n,     2n /  n    ; Wi+1 +"     /"i+lj      =   [_Wi + W     /WiJ 

Solving for u> yields: 

oo    = u.oo., , 
li+l (33) 

This value of OJ corresponds to the minimum insertion loss or maximum 

2 
value of |ZT.(jw)|" given by: 

IZ^.fjoj)!2        =  l/l + foj./w.^.)11 -  l/l + toj.^./w.)11 

i    <piXJ   "max       /        v   r    i+l' /        v  i+l'    r (34) 
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and 

lim |ZTi(jW)|^ax=l (35) 

«Vwi+i>n-*° 

At the cutoff frequencies u = w. and w = w+. 

ZTi<J"i>l2= 77—7 IS?"1/2 <36> 

Subtracting Eq.   (37) from Eq.   (36) yields: 

|ZT.(jco.)|2 -   |ZT.(jui+1)|
2= 0 (38) 

Hence: 

|ZT.(jW.)|2=  |ZT.(jW.+ 1)|
2 (39) 

and it follows from Eqs.   (36) and (37) that: 

lim |ZT.(jco)|2=       lim |ZT.(jW. + 1)|
2 = 1/2        (40) 

(-/-+1)n^o «Vwi+i^° 
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We,   therefore,   see that in the limit a minimum insertion loss of zero db 

and a 3 db insertion loss at the cutoffs can be achieved.    In Figure 4 Eqs.   (34) 

and (36) are plotted.    From these plots: 

lZTi«w>lLx"dlZTi«Mi,|2alZTi<**i+l>|2 

can be determined.     This gives some idea of the performance that can be 

achieved for values of (oo.    ./CJ.)   .    If we require a minimum insertion loss of 

less than 2 db,   then: 

Z„,.(jw)| >   0.632 TVJ   "max (41) 

From Figure 4 

(K)n= (tti+1/w.)n   >    4.4 (42) 

In Table I is shown values of n required for various values of K to 

satisfy Eqs.   (41) and (42). 

K 1. 1 1. 3 1.5 2. 0 

n 16 6 4 3 

Table I 

Values of n and K for Minimum Insertion Loss 
of less than 2 db for Butterworth-Type Band 
Separation Filter. 
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In Figures 5,   6,   7 and 8,   Eq.   (30) is plotted for n = 4,   8 and 16 and 

K=l.l,   1.3,   1. 5 and Z. 0 respectively.     |ZT.(jw)|     is plotted in these curves 

vs.  cj. + RW where R takes on values between -1 and + 2 and W equal tou.,.-w. l ^ l+l       I 

is the nominal bandwidth.    A second frequency scale is given in terms of 

fractions of OJ. . 
l 

As can be seen from Figure 5 for K=  1.1,   n=  16 yields the only 

usable characteristic as predicted in Table I.    It should be noted that the 

actual cutoffs; i.e.,   3 db points,   occur at 1. 006 w. and 1. 098 w. and K = 1. 09- 

The deviation is thus small,   but can be compensated for if desired by choos- 

ing w. and w- + 1  slightly different from the desired cutoff. 

Figures 6,   7 and 8 indicate that for K =  1. 3,   n = 8 and 16 yield usable 

characteristics while for K > 1. 5,   n = 4 is also usable.    It is clear that the 

larger the value of K   ,   the better the characteristic. 

The asymptotic behavior of |ZT.(jw)|     can be seen from Eq.   (30) 

as u -» « 

.          ,2n        .     .2n         ,          .2n    ,     .2n 

lim|Z     (JU)|     =—^ 25-=  ^        (43) 
CJ-»oo W W CJ 

Expressing this as a loss in db, 

where 

Idb = 20 log Cwn= 20 (logC + logw11) (44) 

-HI/2 

C = 1 
/ \2n,,2n 

let 
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w = 2^ K = 20 log C 

Idb = K + 20 log^11 * K + 20 u-n log 2 * K+ 6 no- (45) 

Hence this function has a slope of 6n db per active and an intercept of K 

at |i. = 0. 

VI. THE PAPOULIS CHARACTERISTIC 

The Butterworth filter has the property of being maximally flat at the 

center of its passband; however, its rate of cutoff is relatively slow. To re- 

duce the number of elements required for a given value of K,   it is desirable 

2 (1) to find that F   (u) which is monotonic and cuts off fastest.     Papoulis        has 

derived a class of filters called L, filters which have the following property: 

F2(u>) = Ln(u2) (46) 

where 

(a) Ln(0) = 0 

(b) Ln(l)=   1 (47) 

(c) 

dL  (co2) 
n 
3w 

= M 
u= 1 

where M is the largest value obtainable for any polynomial in even powers of 

CJ of order 2n satisfying (a) and (b). 

Table II lists L   (w2) for n = 2,   3,   4,   5,   6,   7 and 8. n 
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n n(w   ) 

, 4 
2 OJ 

3 3w     -  3co    + w 

4 6to    - 8OJ    + 3w 

5 20w10 - 40w8 + 28w6 - 8u4 + w2 

6 50w12 -  120«10 + 105CJ
8
 - 40w6 + 6w4 

7 175w14 -  525co12 + 6l5u10 -  355oj8 + 105w6 -  1 5w4 + w2 

8 490w16 -  I680w14 + 2310w12 - l624aj10 + 6l5u8 -  120u6 + 10w4 

Table II 

L  (w2) for n = 2,   3,   4,   5,   6,   7 and 8. (1, 2) 

Eq.   (23) can be rewritten: 

Z     (jW)|2=  -        (48) 

1 + L  (J-_) 1 + L   (-^-)2 

The passband characteristic given in Eq.   (48) can be evaluated by first 

2 2 
evaluating L  (OJ   ).    For a given value of K,   one must evaluate L   (u/Kw.)    and 

L,   (w/oj.)    for different values of w.     These values are then substituted into n     '    I 

Eq.   (48) to determine   |Z    .(jw)|    .    Figure 9 is a plot of  |Z_.(jw)|     for n = 4 

and K = 1. 3,   1.5 and 2. 0,   while in Figure 10,  n = 8 and K = 1. 1,   1.3,   1.5 

and 2. 0. 
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T 
|ZTi(jw)|2 vs. Ui+RW 

n • 4 

K • 1.3, 1.5, 2.0 

Plotted from Eq.   (48) 

K = 2 

KH.5 

K = l.3 

Cdj-W COj -5W 0J\ CUJ-K5W GUj+W        OJJ+1.5W GUJ+2W 

FIG.   9 NOMALIZED   TRANSFER   IMPEDANCE   L TYPE   BAND 

SEPARATION   FILTER   n = 4. 3-/27??-?? 
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K = 2.0 

^ K=1.3 

K = 1.1 

CUj-W CUj-.5W CUj CUj+.5W CUj + W 0Jj+1.5W        CUj+2W 

FIG. 10   NORMALIZED  TRANSFER   IMPEDANCE   L-TYPE   BAND 
SEPARATION   FILTER    n = 8 B-nvw-it 
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From Figure 10 we note that for K =  1. 1 n = 8 the characteristic is 

usable by the same criterion by which n = 16 was necessary for the Butter- 

worth.    Further comparison is shown in Figure 11 for K = 1.3.    Here we note 

that the fourth order L filter is comparable (though not quite as good) to the 

eighth order Butterworth and the sixteenth order L is comparable to the 

eighth order Butterworth.    We note that this statement is true in the passband 

and upper stopband.    In the lower stopband,   the characteristic deteriorates 

somewhat and for very low frequencies it is not as good as the Butterworth. 

The reason for this is clear upon examining Eq.   (48).    At high frequencies, 

both terms on the right approach zero at the maximum rate; hence,   their 

difference approaches zero at least as fast as each term.    As we approach 

zero frequency,   each term approaches 1 and only their difference approaches 

zero.    How fast it cuts off near zero is determined by how fast each term ap- 

proaches  1.     The Butterworth,   we recall,   is maximally flat and,   hence,   ap- 

proaches one quickly.    The L filters,   on the other hand,  are concerned with 

the slope at cutoff and,  hence,  approach one at zero frequency slowly.    We 

thus see that for uniform selectivity for both high and low frequencies,   the 

Butterworth is desirable.    If one is interested in economizing on the number 

of elements and wants a sharp cutoff to 10 or 12 db points,  the L filters should 

be used.    As seen from Figures 9.   10 and 11,  the L filters give faster cut- 

offs and lower passband insertion loss than Butterworth but do not have as high 

an attenuation at the low frequencies. 

VII.        SYNTHESIS PROCEDURE FOR BUTTERWORTH NETWORKS 

Eq.   (30) can be rewritten: 

|Z     (jo,)]2 =   -_ ^L — (49) 

[•^['•^l 
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GUj-W CUj -5W OJj Olj +.5W GUj+W        OJj+1.5W CUj+2W 

FIG.   H     COMPARISON   OF  BUTTERWORTH   AND L  TYPE  BAND SEPARATION 
FILTER   FOR   K=1,3 
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where 

A = 
w. 

"ZrT 
u. 

2n 
i+1 

It is well known that a transfer impedance of this form can be synthesized 

(3) as a ladder network.        Darlington has shown for a lossless network terminated 

in a one ohm resistance whose input impedance Z(s) is given by: 

Z(s) =(m1+n1)/(m2+n2) (50) 

where m.  and m? are even polynomials and n,  and n2 are odd that the open 

circuit impedances of the lossless network are given by: 

Case A 

zll = rVn2 

z22 = m2/n2 

z12 =Vm1m2-n1n2/n. 

Case B 

Zll =nl/m2 

z22 = n2/m2 

z12 =Vn1n2-m1m2/m2 2>/r 

(51) 

where the correct case is determined by the condition that z.~ must be the 

quotient of an even polynomial over an odd or odd over even.    If ym.m.-n.n^ 

is even,   case A is used; if odd,   case B is used.    If Vmi m? -n. n?   is not a 

perfect square,   it must be augmented by multiplying numerator and denominator 

(3) 
of Z(s) by a suitable   polynomial. By evaluating the residues in Eq.   (51),   it 

is easily verified that the residue condition is satisfied with the equal sign. 

For case A: 

m 

11 
n 

^22 

m. 

n 
s = s 

12 
"/mlm2 

n 
s = s 

(52) 

s = s 
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where s    is a zero of n_ and the prime indicates differentiation with respect 

tos.W 

Hence: 

kllk22-klZ2 = 0 <53> 

To synthesize the minimum reactive network corresponding to 

|ZT.(JCJ)|   ,   determine m_ + n? and hence,   z??.    If a lossless network with 

this z?? has the transmission zeros of ^m.,vn.7 - n^n., and satisfies the residue 

condition with the equal sign,   it must be the desired network within an impedance 

scaling factor.     The impedance scaling factor arises from the fact that if 

Z(s) is multiplied by a constant K   ,   z„ = mVn^ or n?/m_ is not affected, 

but z. ? is multiplied by K.    Hence,   this constant must be determined and the 

impedance levelled to get the correct constant A in Eq.   (49). 

Since half the transmission zeros of Eq.   (49) are atu = 0 and half at 

w = °°,   z-? must be developed in a ladder network with half its transmission 

zeros at to = 0 and half at w = <*>.     If this is done by complete removal of each 

pole,   the residue condition is satisfied with the equal sign,   and upon appropriate 

scaling,   the desired network is achieved. 

m? + n~ can be found as follows: 

m, m0-n, n. -} 111   .   Ill ^        11   ,   1 1   -> 

|Z„.(jw)r = Re [Z(s)l =   ,    ' ./   C 1    TiXJ   " L    v       s = iw       (m,+nJ(mr-n (54) 

s=jw 

Since the poles of Z(s) are all in the left half plane,   the product of the 

LHP poles of the Re [Z(s)]  must be equal to m2+n2<    Hence,   by factoring the 

denominator of Eq.   (49) and taking the left half plane zeros,   m-+n? is 

determined. 



-30- 
o 

The determination of m2+n2 for   |Z     (ju)|    of the form given in Eq.   (49) 

can be simplified as follows: 

Let s, ,   Byi . • . i s     be the zeros of the polynomial [ 1 + (-js/w.) 

lying in the LHP and s,     .  s 7     , . . • , s be the zeros of the polynomial 

[ 1 + (-js/w.+1)2n]  lying in the LHP.     Then, 

m2+n2 n   (s-sj^)       n    (sV+1)     = (m2+n2)(m i+1 ,    i+1.      ,,-c-, 
2     +n2    }      (55) 

where 

n 
n 

K=I 
m^+n^    n   (s-S^) (56a) 

i+1   ,     i+1        „     ,       i+1 , /t/i-u\ m?      + n,      =   n    (s-s       ) (56b) 
C C 1=1 l 

Let the zeros of [l + (-js)     ] be s       s...,s    ,   then 

m°(s) + n°(s) =    II (s-8°) (57) 

and 

m2(s) + n2(s) = m° (s/w.) + n° (s/w.) (58a) 

m2    ^ + n2^ = m2^8/wi+l^ + n2 ^S/"i+l) (58b) 

The polynomials m2 + n? are just the denominator of the frequency 

normalized Butterworth function and are well known.     The polynomials for 

(5) 
n =  1,   2, . . . ,   8 are given in Table III. From this table m_+n? is easily 

determined using Eqs.   (58) and (55). 
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n 

1 1 + S 

2 1 + 1.414S + S2 

3 1 + 25 + 2S2 + S3 

4 1 + 2. 613S + 3.414S2 + 2. 613S3 +S4 

5 1 + 3. 236S + 5. 236S2 + 5.236S3 + 3. 236S4 + S 5 

6 1 + 3. 864S + 7. 464S2 + 9. 141S3 + 7. 464S4 + 3. 864S5 + S6 

7 1 + 4. 494S + 10. 103S3 + 14. 606S3 + 14. 606S4 + 10. 103S5 + 

4.494S6 + S7 

8 1 + 5. 126S + 13. 138S2 + 21.848S3 + 25. 691S4 + 21. 848S5 + 

13. 138S6 + 5. 126S7 + S8 

Table III 

(5) 
Denominator Polynomial Butterworth Network 

Example I: 

Let us consider as an example a three-way crossover network for a 

high fiedlity system.     The first filter will pass zero to 4000 cycles; the second, 

4000 to 8000 cycles and the third,   all frequencies greater than 8000.     The 

desired impedance level is 8 ohms.     Let us normalize to 1 ohm and let 8000 

cycles correspond tou =  1.    Using fourth order Butterworth functions: 
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|ZT1(ju)|2 = 1/1 + (2w)8 (59a) 

|ZT2(jW)|2 = l/l+w8 - l/l + (2w)8 (59b) 

ZT3(jW)|2 = W
8/l+w

8 (59c) 

Let us synthesize the highpass network first.    From Table III,  n = 4 

m3 + n3 = 1 + 2. 613s + 3.414s2 + 2. 613s3 + s4 (60) 

4 
Since     m.m_-n1n;, = s    is even 

1 + 3.414s    + s ,,., 
z  7 =    «• (61) 

c 2. 613s + 2.613s 

z__ must be developed in a ladder network with all transmission zeros at 

co = 0. 

•383/s 

2.6l3s+2.613s3    l+3.414s2+s4 

s 1.082/s  
 1—4T 3" 
2.414s +s   |2. 6l3s+2. 613s 

3 s 2. 6l3s+l. 082s      1,_57/. 

1.531s3| 2.414s2+s4 

2.414s2    1.531/s 
 41 ;    -,,3 s      1.531s 

The resulting lossless network is shown in Figure  12. 
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To evaluate the constant multiplier to determine if impedance scaling 

is necessary,   z._(s) is evaluated at s = °°.    Since by Eq.   (51), 

m..m._-n,n_ 4 
/   \ 12     12 s ,,„, 

Z12(S)=    n  =   F~ (62> 16 n2 2.6l3(s+s-5) 

2i2(°°^ ^rr=0-384s (63) 

At infinite frequency,   the circuit of Figure  12 reduces to that of 

Figure  13. 

It is clear from Figure  13b that z.-(°°) = 0. 384 and,   hence,   no imped- 

ance levelling is necessary. 

Let us next synthesize the lowpass network.    From Table III,   using 

Eq.   (58), 

m* + n* =  1 + (2. 6l3)(2s) + (3.414)(2s)2 + (2. 6l3)(2s)3 + (2s)4 

(64) 

1 + (5. 226)s + (13. 656)s2 + (20. 90)s3 + 16s4 

Since V rn.m_-n.n_ =  1 is even, 

1 + 13.656s2 + 16s4 ,,,. z _ = — (65) 
5. 226s + 20.904s 

z__ must be developed in a ladder network with all of its transmission zeros 

at infinity. 
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 0.766s 

20.904s2+5. 226s I 16s4 + 13.65652+l 

16s4 + 4. 030s2      1.063s 

19.62652+l I20.904s3+5. 226s 

20. 904s3-fl. 063s    4.72s 

4. 163s | 19. 626s2+ 1 

19.626s2     4.163s 

1 |4. 163s 

The resulting lossless network is shown in Figure 14. 

To evaluate the constant multiplier of z   _(s) to determine if impedance 

scaling is required z._(s) is evaluated at s = 0. 

Since 

z12(s) = 1/5. 266s -I- 20. 904s3 (66) 

z12(0) =  1/5. 266s (67) 

At zero frequency the network of Figure 14 reduces to that shown in 

Figure  15. 

It is clear from Figure 15b that z.-(0) = l/5. 226s and,  hence,   no 

scaling is necessary. 

Now let us synthesize the bandpass network.    From Eq.   (58) 

2        2 113 3 
m_ + n~ = (m? + n_)(m? + n?) (68) 
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Using Eqs. (60) and (64) 

m^ + n^ 1 + 7. 8s+ 30. 7s2+77. 0s3+ 131. 9s4 + 154. Is5 + 123. Is6 + 62. 7s7 + 16s8 

Since 

and 

8 8 
|ZT2(jW)|2 = 1/1+J* - 1/1+(2W)8 =  i2   ~l)ui   , (69) 

T2 [l-Ko8][l + (2W)8] 

Jm.m^-n.n^ =i/Z    -1      s    is even (70) 

1 + 30. 7s + 131.9s4 + 123. 0s6 + 16. Os8 

22 7.8s + 77. Os3 + 154. Is5 + 62. 7s? 
(71) 

z?? must be developed in a ladder network with four transmission zeros at 

infinity and four at zero frequency. 



7.85+77.0s3+154.ls5+62. 7s7 
l/7.8l •40- 

1+30. 7s2+iiL. 9s4+l23. 0s6-rt6. Os8 

1+ 9-9B2+ I9.8s4+  8. Is 

20.8s2+112. Js4+I14.9s6+I6.Os8 

1/2.67s 

20.8s2+112.Is4+li4.9s6+16s8 \7.8s+-77.0s3+154.ls5+62.77 

7.8s+42.ls3+  43.0s5+   6.0s7 

34.9s3f ill. ls5+56. 7s7 

1/1.68s 

34.9s3+lll.ls5+56.7s? |20.8s2+112.ls4+114.9s6+16s8 

20.8s2+ 66. 3s4+ 33.8s6 

45. 8BV81. LS6+16S8 

45. 8s4+81. is6+i6s8 
1/1.31s 

44. 5s?+49.Is5 

34.953+lll.ls5+56. 757 

34.953+ 62.0s5+12.2s7 

49. 1? t-44. 5s 

359s 

16s8+81. ls6-l-45.8s4 

16s8+17. 7s6 718s 

63.4s6+45.8s4| 44~5s7-l-49. Is5 

44.5s7+32.9s5 

16.2s 

3.91s  

16.2s5  |63.4s6+45.8s4 

63.4s    ,355s 

45. 8s4|  16. 25s5 
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The resulting lossless network is shown in Figure  16. 

To evaluate the constant multiplier of z.?(s) to determine if impedance 

scaling is necessary,   z   _(s) is evaluated at s = 0.    Using Eqs.   (68) and (70) 

/mlm2-nln2   _ V28-l    s4 
2
12<S> =   -^    "   '       n, • 

and 

zi2<°)=    *:L0 -z-°5^ (73) 
4 

S -,       nr- 3 

At zero frequency,   Figure  16 reduces to that shown in Figure  17. 

z._(0) can now be determined as follows:   Assume an output voltage E   , of 1 volt, 

then, 

<a>       Ebd =  l 

(b) Ibd = 1/2. 67s 

(c) Eab=  1/2.678 x 1/1. 68s *Ead (74) 

(d) I      * 1/2. 67s x 1/1. 68s x l/l. 31s =  1/5. 86s 

<e>       z12(°)JsEbd/Iad=5-86s 

The impedance level is thus seen to be too large and must be scaled 

by K where 

K = 2.05/5.86 = 0. 35 (75) 

The desired network is shown in Figure 18. 
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Each network must now be impedance levelled to 8 ohms which in- 

volves multiplying each inductance by a factor of eight and each capacitance 

by l/8.     The frequency must also be scaled such that OJ =  1 corresponds to 

8000 cycles.     This involves multiplying each inductance and capacitance 

by 1/8000.    Hence,   combining these operations,   each inductance is multiplied 

- 3 - 3 by 10      and each capacitance by l/64 x 10     .     The final network is shown in 

Figure 19- 

VIII.       SYNTHESIS PROCEDURE FOR L FILTERS 

Eq.   (48) can be rewritten in the form 

L (J^)2-L   (J^)2 

n   co. n OJ.    . 
2 1 l+l |zTi<j-)l   =  jf—z ^V-z      (76) 

Tl
 [1+L  (_^_)2][1 + L   (—)2] 1 n w. ,     '    J L n v w.       J 

l+l 1 

Since L  (OJ/OJ.) is monotonic and satisfies Eq.   (27),   it is clear that 

the transmission zeros occur at zero,   infinity and at complex frequencies 

corresponding to the roots of the numerator of Eq.   (76).    These complex 

zeros complicate the problem considerably and prevent a simple ladder 

synthesis of the corresponding network. 

To synthesize the network corresponding to  |Z     (jw)|    ,   Z(s) must 

first be determined.     The impedance Z(s) can be found as follows: 

Let 

Re[z'(s)]      .    =   |z'   (jw)|2=    l- T— (77) 1    1     'JS=JOJ       '     Ti J     '           ,  , -    ,      w    .2 v     ' J 1+L  
n   Wi+1 
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and 

ReTZ!' (s)l 

1 + Ln<^2 n w 
1 

Subtracting 

Re[Z.'(s)]-Re[Z!'(s)]   =   | Z^.(jw) | 2  - Z^'. (jw) | 2 

1 1 
2 ,,    2 

1 + L  (-^—) 1 + L  (-^-) 
nWi+l n   wi 

Using Eq.   (48) 

but 

Therefore,   if 
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Re[ ZJ (s)] s        =  | ZJJ,. (jw) | 2 =  1  (78) 

(79) 

Re[Z|(s) - Z!'(s)]  =  |ZT.(jW)|2 (80) 

Re[Z.(s)]  =   |ZT.(jW)|2 (81) 

Z.(s),   Z! (s) and Z!' (s) are all minimum reactive,   then 

Z.(s) = Z!(s) - Z!'(s). (82) 
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Let us define 

Z°(s) =     - y (83) 
l + Ln(-sr 

Then by Eqs.   (77) and (78), 

Z!(s) = Z°(—2—) (84a) 
Wi+1 

Z««(8) = Z0^) (84b) 
i 

In Table IV,   Z.   is tabulated for n - 2,   3, . . . ,   6.    From this table 

using Eqs.   (82) and (84),   Z.(s) is easily determined. 

Having determined Z (s),   the Darlington synthesis procedure is now 

employed.    It should be pointed out that since m.m?-n.n_ will not be a 

perfect square,   augmentation is necessary.     This increases the number of 

elements required,   hence,   a (2n)      order Butterworth may have the same 

number of elements as an n      order L, filter.    Hence,   for the same number 

of elements,   the Butterworth may yield a better characteristic.    It should 

also be noted that it will,   in general,   be necessary to use coupled coils in 

the synthesis of the L filters,   which is usually undesirable.     These considera- 

tions lead the author to feel that the use of the Butterworth characteristic is 

more desirable. 
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n     Z(s) 

0. 672s2 + 0.822s + 0. 577 

s3 + 1. 310s2 + 1. 356s + 0. 577 

0. 620s +0. 969s + 0. 939s + 0. 408 
~~4" 3 2  
s + 1. 563s + 1.866s + 1. 241s + 0. 408 

0. 613s4 + 0. 950s3 + 1. 135s2 + 0. 705s + 0. 224 
~~5" 4" 3" 2  s    + 1.551s    + 2. 203s    + 1. 693s    + 0.898s + 0. 224 

0.612s5 + 1   056s4 + 1   438s3 + 1   132s2 + 0  493s + 0. 141 

s6 + 1. 726s5 + 2. 690s4 + 2.433s3 + 1. 633s2 + 0. 680s + 0. 141 

Table IV 

Input Impedance of L-Type Filter 
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IX. APPLICATION TO TRANSMISSION LINE NETWORKS 

Let us consider an input impedance Z(s) and corresponding  [z„,(jc»>)[' 

which can be synthesized as a lossless ladder network terminated in a 

resistive load consisting of series and shunt lumped inductances and capacitances. 

It has been shown       that the input impedance Z(\) and corresponding ZT(j£2) 

can be synthesized in a ladder network using transmission line components 

where 

\ = tanh   -£—   = T + jfi (85) 
o 

The elements used consist of series and shunt shorted and open stubs, 

all a quarter wavelength long at frequency f    and sections of transmission 

line of this same length called unit elements.     The realization of the series 

stub in coaxial transmission line is discussed in Reference (7) while the 

realization in strip line is di scussed in Reference (8). 

Since the Butterworth characteristic yields band separation filters 

composed of ladder networks with series and shunt inductances and capacitances, 

it can be synthesized using transmission line components.    Since X is a trans- 

formation of the complex frequency scale and J2,   a transformation of the w 

axis,   it follows from Eqs.   (86) and (87) 

m 

yZT.(jO)=l (86) 

i=l 

m 

i=j 

and,  hence,  the transmission line networks are complementary. 
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The frequency f    is chosen as the largest frequency of interest,   since 

the frequency f    corresponds to X equal to infinity.     The filter characteristics 

that can be achieved can be determined from Figures  5,   6,   7 and 8 by substituting 

S2 for w.     To determine the characteristic as a function of frequency,  the 

relation 

J2 = tan   -£— (88) 

is then used. 
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