M.I.T. Ffuid Dynamics Research Laboratory Report No. 66-1

47 631 007

FORMULA FOR THERMAL ACCOMMODATION (OEFFICIENT

Frank O. Goodman Harold Y. Wachman

MASSACHUSETTS INSTITUTE OF TECHNOLOGY FLUID DYNAMICS RESEARCH LABORATORY

February 1966

Best Available Copy

OFFICE OF SCIENTIFIC RESEARCH, UNITED STATES AIR FORCE Contract Number: AF49(238)-160

, and

OFFICE OF NAVAL RESEARCH, LEPAR MENT OF THE NAVY Contract Number: Nonr 3963(03)

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Grant Number: NC-R-22 209-121

and

AFOSR 66-0295

M.I.T. Fluid Dynamics Research Laboratory Report No. 66-1

> FORMULA FOR THERMAL ACCOMMODATION COEFFICIENT

> > Frank O. Goodman Harold Y. Wachman

MASSACHUSETTS INSTITUTE OF TECHNOLOGY FLUID DYNAMICS RESELRCH LABORATORY

February 1966

OFFICE OF SCIENTIFIC RESEARCH, UNITED STATES AIR FORCE Contract Number: AF 49(638)-1601

and

OFFICE OF NAVAL RESEARCH, DEPARTMENT OF THE NAVY Contract Number: Nonr-3963(03)

and

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Grant Number: NGR-22-009-121

ABSTRACT

ÿ

A simple formula in closed form is proposed for the thermal accommodation coefficient from which the accommodation coefficient of a monatomic gas-solid system may be calculated from certain basic parameters of the system. The formula is obtained from consideration of certain aspects of Goodman's lattice theory of accommodation and from conclusions regarding certain properties of available experimental data. Adequate agreement is obtained of the formula with both the lattice theory and the experimental data; in the authors' opinion all the reliable data available are included. Certain corrections are applied to the lattice theory, and the gassurface potential interaction parameters relevant to the lattice theory are revised.

j.i

ACKNOWLEDGEMENT

The calculations for this work were done in part at the Royal Aircraft Establishment, Farnborough, Hants., England; and in part at the Computation Center of the Massachusetts Institute of Technology, Cambridge, Massachusetts, as problem number M4443.

The authors are indebted to Professor L.B. Thomas and to Dr. N. Tho-Nhan for making available some unpublished ac data. The work was jointly supported by the U.S. Air Force Office of Scientific Research under grant number AF 49(638)-1601; National Aeronautics and Space Administration, under grant number NGR-22-009-121; and the Office of Naval Research, under contract number Nonr-3963(03).

INTRODUCTION

The thermal accommodation coefficient (hereafter abbreviated to ac or α) is a measure of the average efficiency of the energy exphange per encounter of a gas molecule with the solid at the gas-solid interface. Experimental methods applied in the measurements of α have been adequately discussed elsewhere (see, for example, the Survey Article by one of us¹). Here we restrict discussion to a three dimensional (hereafter, "n-dimensional" is abbreviated to "nD") monatomic Maxwellian gas at temperative T which shares an interface with a solid maintained at temperature T_s . If T' is defined by

$$T' = E'/2k \tag{1}$$

where E' is the average energy per reflected gas atom, the thermal accommodation coefficient is defined by

1

$$\alpha = \frac{T-T'}{T-T_c} \qquad (2)$$

The purpose of this paper is to propose a simple formula in closed form for α from which, it is hoped, the ac of any monatomic gas-solid system may be calculated from certain basic parameters of the system. This formula is partly empirical in origin because, although some of its properties are obtained from existing theory, its final form rests on consideration of certain properties of experimental data. The first, and perhaps best known, closed-form formula for α was proposed by Baule², who considered the interaction in terms of collisions of hard spheres. The accommodation coefficient for the impact of two hard spheres, one representing an incident gas atom of mass M and the other an initially stationary solid atom of mass m, is

I an and the second in which we have a second and the second of the seco

<u>،</u>

$$\alpha = \frac{4\mu}{(1+\mu)^2} \cos^2 \eta \qquad (3)$$

where n is the angle between the velocity vector of the incident gas atom and the line joining the centers of the spheres at impact and u is the mass ratio defined by

$$\mu = M/m \qquad (4)$$

The Baule formula is obtained by averaging (3) over all n, putting $\overline{\cos^2 n} = \frac{1}{2}$:

(Baule)
$$\alpha = \frac{2\mu}{(1+\mu)^2}$$
 (5)

Landau³ treated the interaction in terms of classical continuum theory, using an interaction potential V(u) of repulsion only between the gas atom and the surface,

$$V(u) = \varepsilon \exp(-2\kappa u)$$
 (6)

where u is the separation of the gas atom from the surface and ε is an energy of arbitrary magnitude. When corrected^{4,5}, the theory results in the formula

2

.= 4

$$\alpha = \frac{3}{mM^{1/2}} \left(\frac{2\pi\hbar^2 \kappa^2 T}{k \Theta^2} \right)^{3/2}$$
(7)

where Θ is the Debye temperature of the solid.

Gilbey⁵ used a naive continuum model and obtained

$$\alpha = 1 - \exp(-4\xi \cot \xi) \tag{8}$$

where, very approximately

$$\tan^2 \zeta * \mu \vdash 1, \tag{9}$$

(the approximation (9) is not used by Gilbey).

None of the above formulae yields extensive agreement with experimental data, although each may be valid under particular sets of conditions. There are many formulae in the literature which are not in closed form; the best known is, perhaps, the formula of Devonshire^{4.5}. However, these also fail to yield extensive agreement with experiment.

A sensible test of any useful formula for acs requires reliable data on the temperature variation of acs of at least two known gases on the same known surface. In our opinion, the most reliable data available are those of Thomas⁶ and Silvernail⁷ on the temperature dependence of the acs of the inert gases on W, and we have placed considerable reliance on these in this work.

BASIS OF THE FORMULA

Our formula rosts heavily on results from the classical lattice theory of acs^{B-11} (hereafter referred to as L.T.) and a 3D theory of surface scattering,¹² both developed by one of us, and on conclusions regarding certain properties of available experimental data.

In L.T., the incident gas is monatomic and is represented by a 1D Maxwellian (thermal) gas which impinges normally onto the solid surface, all collisions being head-on with surface atoms; the solid surface is assumed to be clean and is represented by the surface of a simple 3D lattice model, initially at 0°K. It is assumed that α is independent of surface temperature, consistent with data of Thomas and Schofield¹³ in the surface temperature range 100 - 300°K and of Watt and Moreton¹⁴ in the range 800 - 1500°K. Interaction potentials of the Morse type are used between the gas atoms and the surface atomp.

The results of L.T. are presented in terms of a parameter $\gamma(t)$ called¹⁰,¹¹ the "effective ac of a single gas atom" and defined by analogy with (2) as follows. Initial and final effective temperatures, t and t_f respectively, of a gas atom interacting with the surface are defined by

$$z = MU_{a}^{2}/2k \qquad (10a)$$

and

$$t_{f} = MU_{f}^{2}/2k \qquad (10b)$$

where U_0 and U_f are the initial and final speeds respectively of the gas atom. Accordingly, $\gamma(t)$ for a solid initially at 0°K is defined by

$$\gamma(t) = 1 - t_f/t$$
 (11)

For a 1D Maxwellian gas at temperature T, the normalized distribution of t is

$$g_{1D}(t) = \frac{1}{T} \exp\left(-\frac{t}{T}\right)$$
 (12)

and it follows that the ac is given by

(1D gas)
$$\alpha(T) = \frac{1}{T^2} \int_{0}^{\infty} t \gamma(t) \exp\left(-\frac{t}{T}\right) dt \qquad (13)$$

This is the formula for $\alpha(T)$ used in L.T.

A typical $\gamma(t)$ curve is shown in Fig. 1; it is determined essentially by four parameters: (i) the critical initial effective temperature, t_c , for trapping, (ii) the effective temperature, t_{min} , at which $\gamma(t)$ has a minimum, (iii) the value of $\gamma(t_{min})$ and (iv) the high temperature limit, $\gamma(\infty)$, of $\gamma(t)$. $\gamma(t) = 1$ for $t \leq t_c$; $\gamma(t) = t_c/t$ for values of t just greater than t_c ; for larger t, $\gamma(t)$ has a minimum and then approaches the "hard spheres limit", $\gamma(\infty) = \alpha(\infty)$, as $t \neq \infty$. An important result of L.T. is that it suggests that the shape of the $\gamma(t)$ curve is independent of the gas-solid system. However, the values of the four parameters of the $\gamma(t)$ curve, t_c , t_{min} , $\gamma(t_{min})$ and $\gamma(\infty)$, depend on the four parameters of the gas-solid system which enter

into the calculation of $\gamma(t)$, viz., M, m, 0/a and D, where a and D are parameters of the Morse potential.

1 4

mian of

L.T. considers only normal, head-on, impact of a gas atom with a surface atom, and if it is generalized to include any type of impact, a more general γ is defined. Accordingly, taking $T_s = 0$, we define $\gamma(t, \theta, \phi, x, y)$, where θ is the angle made by the velocity vector of the incident gas atom with the inward normal to the surface, x and γ are the coordinates of the initial "aiming point" on the lattice surface (we may take x = y = 0 at the center of one of the surface atoms) and ϕ is the incident azimuthal angle (we take $\phi = 0$ as the x-direction). For a 3D Maxwellian gas at temperature T, the normalized distribution of t, θ, ϕ, x and γ is

$$g_{3D}(t,\theta,\phi,x,y) = \frac{1}{2\pi AT^2} \sin(2\theta) t \exp\left(-\frac{t}{T}\right) \quad (14)$$

where A is the area of the solid surface. It follows that the ac for a 3D Maxwellian gas is

(3D gas)
$$\alpha(T) = \frac{1}{4\pi AT^3} \iiint t^2 \Gamma(t, \theta, \phi, x, y) \sin(2\theta) \exp(-\frac{t}{T}) dt d\theta d\phi dx dy.$$

(15)

We assume that the shape of the $\Gamma(t)$ curve for a 3D gas is also universal and that in addition $\Gamma(t)$ is a sum of two simple and separate parts, a part $\Gamma_1(t)$ significant only at low t and a part $\Gamma_2(t)$ significant only at high t. Accordingly, from (15), $\alpha(T)$ is also a sum of two parts,

6

$$\alpha(T) = \alpha_1(T) + \alpha_2(T)$$
, (16)

each defined by analogy with (15).

Representation of $\alpha_1(T)$.

-. : 1600 .

For convenience we define a Step Function, H(x), of x as follows:

$$x < 0;$$
 $H(x) = 0$ (17a)

and x > 0; H(x) = 1. (17b)

We assume that the mathematical form of $\Gamma_1(t)$ for all t is the same as that of the 1D $\gamma(t)$ at low t; that is,

$$\Gamma_{1}(t,\theta,\phi,x,y) = t_{c}/t - (t_{c}/t-1) H(t_{c}/t-1)$$
(18)

where $t_c = t_c(\theta, \phi, x, y)$ in general for a particular gas-solid system. Thus Γ_i is significant only at low t, as required. We consider three Assumptions as to the form of Γ_1 . <u>Assumption 1</u>: t_c is independent of θ, ϕ, x and y and may be written

$$t_{c} = T_{0} .$$
 (19)

This assumption combined with (18) and (15) gives

$$\Gamma_1(t) = t_0/t - (T_0/t - 1) H(T_0/t-1)$$
 (20)

and

$$\alpha_{1}(T) = 1 - \exp\left(-\frac{T_{0}}{T}\right) - \frac{T_{0}}{2T} \exp\left(-\frac{T}{T}\right)$$
 (21)

<u>Assumption 2:</u> t_c depends only on θ , and this dependence is such that F_1 depends only on the "normal component", kt $\cos^2\theta$, of the incident energy:

$$t_{c} = T_{o} \sec^{2}\theta$$
 (22)

$$\Gamma_{1}(t) = (T_{0}/t) \sec^{2}\theta - [(T_{0}/t) \sec^{2}\theta - 1]H[(T_{0}/t) \sec^{2}\theta - 1]$$
(23)

and

47

EN: -

 λ_i

$$\alpha_{1}(T) = 1 - \exp\left(-\frac{T_{0}}{T}\right) + \frac{T_{0}}{2T} \operatorname{ei}\left(\frac{T_{0}}{T}\right)$$
(24)

where ei(x) is an exponential integral¹⁵ of x:

8

$$ei(x) = \int exp(-\xi) d\xi/\xi . \qquad (25)$$

Assumption 3: Each "compohent" of the incident energy, the "normal component", $ktcos^2\theta$, and the "tangential component", $ktsin^2\theta$, is accommodated according to a formula of type (18), and each "component" is associated with the same critical initial effective temperature, t_c , expressed as in (19). This assumption, which is the same as that inherent in the lattice theory, implies that

$$\Gamma_{1}(t) = 2T_{0}/t - (T_{0}/t - \cos^{2}\theta)H(T_{0}/t - \cos^{2}\theta) - (T_{0}/t - \sin^{2}\theta)H(T_{0}/t - \sin^{2}\theta)$$
(26)

and leads simply to

$$\alpha_{1}(T) = 1 - \exp\left(-\frac{T_{0}}{T}\right)$$
 (27a)

We note that the relation (27) follows also by combining (18) with (13), putting $\alpha = \alpha_1$, $\gamma = \Gamma_1$ and $t_c = T_0$. For low T, L.T. gives a similar result:

(low T)
$$\alpha(T) = 1 - \exp{-\frac{t_c}{T}}$$
. (27b)

ชิ

None of these three Assumptions gives results very different from either of the others in the ranges of interest (T_0 appears as a dispensible parameter). We choose (27), that is Assumption 3, to represent α_1 (T) on the basis of the simplicity of the result and the fact that it may be considered a first approximation to either of the other results, and in fact, has a value which lies between them.

Representation of $\alpha_2(T)$

1

We let ω_0 be a "characteristic frequency" associated with the solid surface, and τ_i an "interaction time" of the gassolid interaction⁹⁻¹¹. We assume that the hard spheres limit is approached asymptotically as $\omega_0 \tau_i \neq 0$, and a first guess at the form of this approach may be

(large t)
$$\frac{\Gamma_2(t,\theta,\phi,x,y)}{\Gamma_2(\infty,\theta,\phi,x,y)} = 1 - \exp\left(-\frac{1}{\omega_0^{\tau}i}\right) \quad (28a)$$

However, we find that the experimental data are, in general, approximated better by the form

(large t)
$$\frac{\Gamma_2(t,\theta,\phi,x,y)}{\Gamma_2(\infty,\theta,\phi,x,y)} = \tanh\left(\frac{1}{\omega_0\tau_1}\right)$$
(28b)

and we use the form (28b) throughout this paper.

We assume that, at least for small values of μ , τ_i is related approximately to the normal component, $U_0 \cos\theta$, of the incident velocity of the gas atom normal to the solid surface and to the Morse parameter <u>a</u> of the gas atom-solid atom potential by

$$a\tau_{i}U_{0}\cos\theta \approx constant$$
 (29)

Also, U is related to t via (10a) to obtain

(large t)
$$\frac{\Gamma_2(t,\theta,\phi,x,y)}{\Gamma_2(\infty,\theta,\phi,x,y)} = \tanh[c' \frac{a}{\omega_0} \left(\frac{kt}{M}\right)^{t/2} \cos\theta] \quad (30)$$

where c' is a constant of order unity.

1

1

L.T. is concerned with evaluation of $\Gamma(t,0,\phi,0,0)$ and for $\mu < v$ 0.84 the hard spheres limit of this function is^{10,11}

$$\Gamma(\infty,0,\phi,0,0) = 4\mu/(1+\mu)^2 .$$
 (31)

The form of $\Gamma_2(\infty, \theta, \phi, x, y)$ is obtained through consideration of results from a 3D theory of surface scattering¹² cited above, an approximate result of which is

$$\frac{1}{A} \int \int \Gamma(\infty,\theta,\phi,x,y) dx dy = \frac{3.6\mu}{(1+\mu)^2} \cos\theta .$$
 (32)

Oman¹⁶ proposed a similar formula in which the 3.6 on the R.H.S. is replaced by 4. However, we consider (32) more nearly correct. Combining (32) with (30) gives

$$(\text{large t}) \frac{1}{A} \iint \Gamma(t,\theta,\phi,x,y) \, dx \, dy \approx \frac{3.6\mu}{(1+\mu)^2} \cos\theta \, \tanh[c' \frac{a}{\omega_0} (\frac{kt}{M})^{t/2} \cos\theta]$$
(33)

where we have used the fact that $\Gamma_2(\infty,\theta,\phi,x,y) = \Gamma(\infty,\theta,\phi,x,y)$.

We assume further than an approximate form of α_2 (T) for large T may be obtained from (15) and (33) by replacing $\cos\theta$ and t in the integral by their respective mean values via (14).

$$\overline{\cos\theta} = 2/3 \tag{34a}$$
$$\overline{t} = 2T$$

to give

and

$$\alpha_{2}(T) = \frac{2.4\mu}{(1+\mu)^{2}} \tanh \left[c \frac{a}{\omega_{0}} \left(\frac{kT}{M} \right)^{k} \right]$$
(35)

where c is a constant of order unity. In order that $\alpha_1(T) + \alpha_2(T)$ should not exceed unity at smaller T we multiply α_2 by $\exp(-T_0/T)$ to obtain

$$\alpha_{2}(T) \approx \alpha(\infty) \tanh\left[\frac{\mathrm{am}}{\lambda^{T}}\left(\frac{T}{M}\right)^{\prime 2}\right]\exp\left(-\frac{T_{0}}{T}\right)$$
 (36)

where

$$\alpha(\infty) = 2.4\mu/(1+\mu)^2$$
 (37)

and λ ' is a parameter whose value depends only on the solid surface.

The arguments above may have to be modified for larger values of μ because of the possibility of several collisions at each encounter between gas atom and solid surface. In principle, the nature of these modifications is not clear. In practice, we find better overall agreement with experimental data, especially those relevant to systems with larger values of μ , when the argument of the tanh function is multiplied by $(1+\mu)^2$, and λ' is replaced by a new λ whose value again depends only on the solid surface. Our representation of α_2 (T) is

The astrony of

tab. susaidina a

$$\alpha_2(T) = \alpha(\infty) \tanh \left[\frac{(MT)^{1/2}}{\alpha(\infty)} \frac{a}{\lambda} \right] \exp\left(-\frac{T_0}{T}\right)$$
 (38)

where the hard spheres limit $\alpha(\infty)$, given by (37), is assumed valid for all values of μ ; this assumption is supported by qualitative evidence from the lattice theory⁸⁻¹¹.

Our formula is obtained by combining (16) with (27) and (38):

$$\alpha(T) = 1 - \exp\left(-\frac{T_{O}}{T}\right) + \alpha(\infty) \tanh\left[\frac{(MT)^{1/2}}{\alpha(\infty)} - \frac{a}{\lambda}\right] \exp\left(-\frac{T_{O}}{T}\right). \quad (39)$$

The constant c of (35) may be related to the λ of (39) by equating the arguments of the two tanh functions. We assume that the characteristic frequency of the surface, $\omega_{_{O}}$, is the Debye frequency of the solid; that is

$$\omega_{0} = k\Theta/\hbar \tag{40}$$

and we obtain, for small μ ,

$$c \approx \frac{m\Theta}{17\lambda} \mod^{\frac{1}{2}} gm.^{-\frac{1}{2}} \deg.^{-\frac{1}{2}} A.^{-1}$$
 (41)

12

î <u>t</u>

PROCEDURES AND COMPARISON WITH EXPERIMENTAL DATA

We use two different types of experimental data, one giving the dependence of α on T for several gas-solid systems, the other consisting of α values for several gas-solid systems, each determined at a single T value. We select only data from experiments in which we think considerable care has been taken to control the state of the surface, and to our knowledge we include all available data of this nature. Discussion of available ac data and the consequences of failing to excercise reproducible control in the course of experiment is given elsewhere¹. We use one of two procedures, depending on the nature of the data, to check our formula against experiment; these two procedures (A and B) are described below together with a third (C) which is useful in special cases.

Procedures

×1.77

<u>Procedure A</u> is used when temperature-dependent data are available for at least one gas. If data are available for more than one gas on the same solid, it is convenient to begin with the gas which a_ any given temperature is suspected to adsorb least on the given surface, that is, the gas associated with the lowest value of T_0 (He in all cases we considered here). We then find the "best fit" values of T_0 and λ , i.e., the values for which our Formula (39) fits the T-dependent data as well as possible. The resultant value of T_0 is appropriate to the gas-solid system and

that of λ to the particular surface under consideration. This value of λ is used with the T-dependent data for other gases on the same surface to obtain the best-fit value of T_c appropriate to each of the other gas-solid systems.

<u>Procedure B</u> is used when ac data on a given surface are available at only one temperature. It may be properly applied only when the ac on a given surface is known for at least one gas for which T_0 is small; otherwise the calculated value of λ is liable to considerable error. For any particular frace we use the He ac whenever available to find the value of λ for the surface (setting $T_0 = 0$ for He), and then use this value of λ to find the value of T_0 for each of the other gases on this surface.

<u>Procedure C</u> provides a quick method for finding a value (approximate in general) of λ . It is applicable when data are available in a temperature range where α_1 (T) as defined by (27) is negligible compared to α (T), and where the difference between the tanh function in (39) and its argument is negligible. For an accuracy of 5%, the first conditions implies that

$$T > \frac{20T_{O}}{\alpha(T)}$$
 (42)

and the second that

Anima Constant State of a state and the state of the stat

$$\alpha(T) < 0.4 \alpha(\infty)$$
 (43)

When both of these conditions prevail (39) may be approximated by

$$\alpha(T) = (MT)^{1/2} a/\lambda . \qquad (44)$$

Thus one <u>exact</u> value of α in this temperature range is sufficient to obtain a good approximation to the value of λ . In practice, measured ac values may be plotted against $T^{\frac{1}{2}}$ to yield a straight line through the origin whose gradient determines λ . This value of λ may be used with experimental data at lower values of T, where α_1 (T) is <u>not</u> negligible compared to α (T), to find T_0 ; this value of T_0 may then be used to correct the previously estimated value of λ , and a new value of T_0 determined.

Comparison with experimental data

Most of the data on the temperature dependence of the acs of the inert gases on tungsten are due to ${\tt Thomas}^{\, 6}$ and Silvernail⁷; the others (at higher temperatures for the He-W system) are due to Goldstein and Tho-Nhan¹⁷ and to Wachman¹⁸. The data of Refs. 6 and 7 were obtained with both simple-filament and potential-lead tubes. The data from simple filament tubes (represented by open circles in Figs. 2-4) have been corrected for end-losses^{1,19} while other data (represented by diamonds) are uncorrected from potential lead tubes. The data of Ref. 17 (squares in Fig. 2) are from a potential-lead tube while those of Ref. 18 (Triangles in Fig. 2) are from simple-filament tubes; neither set is corrected for end losses. Failure to apply endloss corrections to data from simple filament tubes results in ac values which are slightly too large (about 8% for the data of Ref. 1b). All the experimental tubes except those of Ref. 18 contained an evaporated mischmetal getter on the tube walls to aid in maintaining clean filament surfaces.

Values of gas pressures used in calculating acs from experimental measurements may require correction for thermal transpiration if pressures are determined when the McLeod gauge and the experimental tube are at different temperatures; such corrections have been applied to the data of Refs. 6, 7 and 18. In our opinion, the only temperature dependent ac data available on clean surfaces are on tungsten and the most reliable are those of references 6 and 7 in the temperature range 77 - 303°K. Procedures used by Raines²⁰ to obtain the ac of He on Ni (see Fig. 5) suggest to us that the resulting surface is not characteristic of the clean metal, although it may be of ne ly constant composition over the experimental temperature range.

State and many second and an and the second second and the second second

The experimental ac values on Na and K from 77° to 298°K obtained by Petersen²¹ were determined on surfaces of the bulk metals (rather than on monolayers of these metals atop a foreign metal) which were presumed to be free of adsorbed gases. Blickensderfer²² working in the same laboratory after Petersen found that alkali metals interact with glass to form hydrogen and concluded that this gas was very likely present during the ac measurements cited in Ref. 21. Petersen²¹ assumed that hydrogen does not chemisorb on bulk potassium at room temperature, and cited the work of Trapnell²⁴ in partial support of this assumption. However, the reaction vessel used by Trapnell²⁴ was of Pyrex, and the work of Blickensderfer suggests that hydrogen was very likely present during these measurements also. Indeed, Trapnell²³ noted the presence of a foreign gas, which he

identified as hydrogen, in the process of studying adsorption of C_2H_2 on potassium; however, he attributed its origin to a reaction of K with C_2H_2 . Accordingly, the potassium surface used by Trapnell might have been hydrogen saturated before being deliberately exposed to the adsorbate gas. Because of these considerations, it is our opinion that the states of the surfaces in Petersen's experiments are uncertain. Neither the formula nor the lattice theory can be made to agree satisfactorily with the temperature dependence exhibited by these data; for these reasons we have used only room temperature data from Ref. 21 and Procedure B on the assumption that at room temperature each surface is of constant composition in its interaction with He, Ne and A.

We use twenty-one ac values of inert gases, each at one temperature (see Table I), on eight metal surfaces, all determined in Thomas' laboratory except the value for the ac of Ne on Fe due to Eggleton and Tompkins³⁰. Another set of ac value cite below, due to Wachman³¹ consists of data on the ac of He and Ne near room temperature on initially clean W deliberately covered with known adsorbates.

The theoretical curves obtained on applying Procedure A to the temperature dependent data for He, Ne, A, Kr and Xe on W [Refs. 6, 7, 17 and 18] and for He - Ni [Ref. 20] are shown as continuous curves in Figs. 2-5. The dash-dot curve in Fig. 3 which agrees better with the Ne-W data than does the continuous curve is obtained when α_2 (T) is represented by (36) rather than by the modified form (38). Agreement with the He-W data is

i

is advertised wardeness and in the liter

the same regardless of which of the two forms for α_2 (T) is chosen because Procedure A begins with the He-W data. Hence, for W, the λ' of (36) is related to that from (38) by

$$\lambda' \approx 2.30 \lambda$$
 (45)

Our reason for selecting, in general, the form in (38) over that in (36) are stated above. For the case of Ne-W, we display $\alpha_1(T)$, $\alpha_2(T)$ and $\alpha(T)$ separately in Fig. 6, using the form (38) for $\alpha_2(T)$.

Dashed curves in Figs. 2-5 represent the best fit curves obtained from L.T. as it stands in Refs. 10 and 11, where the fitting procedure is described. Forms of the response function of the lattice model used in L.T. calculations for A, Kr and Xe on W are approximate^{10,11} while those used for He on W and Ni and Ne on W are more exact³², in all cases the lattice model is that described in Refs. 10 and 11 (all the spring constants associated with a given metal have the same value).

Tables I and II contain lists of the systems treated by Procedures A and B respectively. Appropriate values of α and T are included in Table II. The sources of data are given in the Tables, together with the computed values of λ and c for each surface and the values of μ , $\alpha(\infty)$ and T_0 for each gassurface system. The values of λ ' and T_0 ' for He-W and Ne-W in Table I are those values appropriate when $\alpha_2(T)$ is represented by (36). Estimates of T_c for a given gas by Procedure B are obtained where α values on the same surface are known for that gas and for another gas having $T_0 \approx 0$ (i.e., He in all cases

we have treated). In estimating T_0 we arbitrarily set $\alpha_1 \approx 0$, implying $T_0 \approx 0$, if α_2 is found to be within 10% of the experimental value of α . We have no data for the system He-Fe, and we assume that $T_0 = 0$ for Ne-Fe.

200

Control De

1 . W. . . .

L.T. is applied only to these systems for which ac data are available at several temperatures. Accordingly the values of the dispensible parameters of the theory, 0/a and D, and the resulting value of t_c derived from comparison of these data with L.T. are included in Table I. The values of 0/a and D in Table I for He-W, He-Ni and Ne-W are not the same as those cited in Refs. 8-11. The differences in the values associated with He-Ni arise because this system was previously treated by a perturbation theory⁹ which is not used here; the differences in the values associated with He-W and Ne-W arise because certain errors in values of experimental data used in Refs. 9-11 have been eliminated in the present case. Also included in the Tables are relevant values of Θ and <u>a</u>. The values of a in Table II and those in Column 4 of Table I are calculated from literature values of the a's appropriate to the gas atom-gas atom and solid atom-solid atom interaction by means of a combination rule⁹. Values of 0 from the sources cited are used to calculate c from (41) and to derive the values of a appropriate to L.T. (column II, Table I) from L.T. values of 0/a.

The value $0 = 380^{\circ}$ K is chosen for W rather than the value $0 = 330^{\circ}$ K used in Refs. 9-11 because the former gives better overall agreement between <u>a</u> values derived from L.T. and the calculated values. The value $0 = 220^{\circ}$ K is chosen for Ni from Ref. 28 rather than the value $6 = 375^{\circ}$ K from Ref. 29 because the former gives the same value of <u>a</u> for He-Ni as that for He-W.

°. «

وسحي الاستعاد

大部一 ・・・・

a i bishqirda adaga

Å

.

20

. . .

DISCUSSION

The formula (38), represented by the continuous curves in Figs. 2-5, agrees well with the ac data used, which cover wide ranges in α and T. The best agreement is with the He data on W and on Ni; we include the Ni data notwithstanding our reservations regarding its quality, on the assumption that surface conditions are constant throughout the temperature range.

As stated above the representation of α_2 (T) for Ne-W by (36) (dash-dot curve in Fig. 3) instead of (38) results in better agreement with the experimental data. It is evident from Figs. 2-5 that agreement between the Formula and L.T. (dashed curves in Figs. 2-5) is very good, the best agreement being for Ne-W when α_2 (T) is represented by (36). In all cases except those of He the curves from L.T. fit the data slightly better than those from the Formula. An important difference between the Formula and L.T. is in $\alpha(\infty)$ which has the value $2.4\mu/(1+\mu)^2$ in the formula and $4\mu/(1+\mu)^2$ (for small μ) in L.T. As a consequence of this difference, L.m. in its present form must, at large values of T, result in larger values of α than does the Formula. The divergence between them begins to become evident not far above room temperature for He on W and Ni (Figs. 2 and 4). Differences between values of t_c from L.T. and the corresponding values of T from the Formula arise in part from the difference in the $\alpha(\infty)$ values. Although in no case is t_{α} very different from T_o (Table I) it is found that $t_c < T_o$ for

data to the left of the minimum in $\alpha(T)$ (A, Kr and Xe on W) and $t_c > T_o$ for other data (He on W and Ni, and Ne on W). When for the system Ne-W $\alpha_2(T)$ is represented by (36) the resulting value of T_o' is very close to the corresponding t_c (Table I).

Ļį,

CARDE AND

Y

From the values of T_0 of Table II, we note that in no case does the value of α_2 calculated from the Formula for Ne differ from the experimental value of α by more than 10%. This result lends considerable support to the Formula especially in view of the large ranges of the relevant parameters (e.g., mass ratio μ) through which such agreement is obtained. From Tables I and II we note that the general trends in T_0 values for A, Kr on Xe are reasonable; i.e., T_0 increases with increasing gas molecular weight on a particular surface. However, the values of T_0 for Li seem very low and $T_0 = 900$ °K seems unreasonably large for Xe-Mo. This last T_0 value, however, may be too large because of the very large effect which a relatively small experimental error in the α value may have on it; e.g., a 15% reduction in the cited experimental value of the ac of Xe-Mo would reduce T_0 to 460°K.

Values of <u>a</u> for He in Table I calculated from L.T. are too low in comparison with those of the other gases, and we consider this entire set of <u>a</u> values unsatisfactory (see the discussion in Ref. 9). The values of <u>a</u> are likely to be in error because L.T. gives too high a value of $\alpha(\infty)$, and as a consequence too large a slope of the $\alpha(T)$ curve just to the right of α_{\min} . The effect is most pronounced for those systems for which data are available in this range, viz., He-W and He-Ni. Since, in general, large <u>a</u> values lead to large slopes, agreement of L.T. with the He data is forced by selecting an unrealistically small value of <u>a</u>. Realization of these facts suggests a method to be presented in a later publication for improving L.T.

Values of the parameter λ and the parameter c calculated for each surface from λ using (41) appear in the Tables. We have no idea about what are realistic values for λ . However, it is remarkable that in nearly every case the value of c is very close to unity, the notable exceptions being c = 0.2 for Li and c = 2.4 for Pt. If the proper value of c for each surface is indeed unity, then we must suppose that the value $\alpha = 0.038$ for He on Pt³⁴ is too high. However, if we were to postulate on the same bases that the value of c for Li should be closer to unitywe could have to make the assumption that the experimental value of the ac of He-Li is too low, which is difficult to justify.

i

i

 \mathbf{l}

11 - 25

-42.57.25

Several authors (cited in Ref. 35) have noted that the ratio of the ac of Ne to that of He on the same surface is approximately equal to the square root of the mass ratio of Ne/He, i.e.,

$$\frac{\alpha_{\rm Ne}}{\alpha_{\rm He}} \approx 2.2 \tag{46}$$

We believe that this result is fortuitous in the sense that

room temperature, where most of the relevant data were taken, is in the range where (44) applies approximately to both He and Ne on many surfaces. Accordingly, using (44) and the approximation $\underline{a}_{He} = \underline{a}_{Ne}$ gives

$$\frac{\alpha_{Ne}(T)}{\alpha_{He}(T)} \approx \left(\frac{M_{Ne}}{M_{He}}\right)^{1/2}$$
(47)

Fig. (7) contains a plot of $\alpha_{Ne}(T)/\alpha_{He}(T)$ for a tungsten surface, using the Formula, for $0 < T < 2500^{\circ}$ K. It is clear from the plot that (46) may be said to hold over the entire range of experimentally accessible temperatures above about 250°K. It is interesting that (46) holds not only on clean surfaces but also on gas covered surfaces. For example, according to Ref. 31 the experimentally determined ratio α_{Ne}/α_{He} at room temperature is 2.73 on hydrogen covered tungsten, 2.53 on deuteruim covered tungsten and 2.47 on oxygen on tungsten. We are not yet able to deal with systems in which the surface is gas covered because we do not know how to estimate $\alpha(\infty)$ for such cases. However, on the basis of available data it is reasonable to expact that a plot similar to that in Fig. 7 would apply to these systems also.

Perhaps the most reliable prediction that can be made with the formula at this time is about the behavior of α (T) for He³ on tungsten. The value of c for a tungsten surface is known and the value T_o and hence α_1 (T) for He³-W is likely to be small, therefore α (T) can be estimated with some confidence.

Since Thomas⁶ has expressed his intention to study this system experimentally, it appeared worthwhile to include a comparison (Fig. 8) of the α (T) curve for He³-W with that for He⁴-W, using the same value of T_o = C.2°K for both. The α (T) for He³-W is not evaluated below 50°K where a large error in T_o would affect the results significantly.

REFERENCES

.

5

1.	Wachman, H.Y., A.R.S. Journal, <u>32</u> , 2 (1962).
2.	Baule, B., Ann. der Physik, <u>44</u> , 145 (1914).
3.	Landau, L., Phys. 2. Sowietunion, <u>8</u> , 489 (1935).
4.	Pevonshire, A.F., Proc. Roy. Soc., A158, 269 (1937).
5.	Gilbey, D.M., J. Phys. Chem. Solids, 23, 1453 (1962).
6.	Thomas, L.B., Private communications (1961-1966).
7.	Silvernail, W.L., PhD Thesis, University of Missouri,
	Columbia, Missouri (1954).
8.	Goodman, F.O., J. Phys. Chem. Solids, <u>23</u> , 1269 (1962).
9.	Goodman, F.O., J. Phys. Chem. Solids, <u>24</u> , 1451 (1963).
10.	Goodman, F.O., K.A.E. (Farnborough) Tech. Note CPM 45 (1963).
11.	Goodman, F.O., Proceedings of the Fourth International
	Symposium on Rarefied Gas Dynamics, Toronto (1964). To be
	published in Rarefied Gas Dynamics, 2, 366 (1965).
12.	Goodman, F.O., Unpublished material.
13.	Thomas, L.B. and Schofield, E.B., J. Chem. Phys., 23, 861
	(1955).
14.	Watt, W. and Moreton, R., R.A.E. (Farnborough) Tech. Note
	CPM 80 (1964).
15.	Sneddon, I.N., Special Function of Mathematical Physics and
	Chemistry; Oliver and Boyd (1951).
16.	Oman, R.A., Grumman Research Department Report RE-222 (1965).
17.	Goldstein, R.J. and Tho-Nhan, N., Private Communications (1965).
18.	Wachman, H.Y., Unpublished material.
19.	Thomas. L.B. and Olmer, F., J. Amer. Chem. Soc., 65, 1036

١

•

(1943).

43

- 20. Raines, B., Phys. Rev., 56, 691 (1939).
- Petersen, H.L., PhD Thesis, University of Missouri, Columbia, Mo. (1958).
- 22. Blickensderfer, P.W., PhD Thesis, University of Missouri, Columbia, Mo. (1963).
- 23. Trapnell, B.M.W., Proc. Poy. Soc., A218, 566 (1953).
- 24. Rideal, E.K., and Trapnell, B.M.W., Proc. Roy. Soc., <u>A205</u>, 411 (1951).
- 25. Meggers, W.F., <u>Key to Periodic Chart of the Atoms</u>, W.M. Welch Scientific Company, Chicago, U.S.A. (1956).
- 26. Girifalco, L.A. and Weizer, V.G., Phys. Ref., <u>114</u>, 687 (1959).
- 27. Konowalow, D.D., and Hirschfelder, J.O., Phys. Fluids, <u>4</u>, 629 (1961).
- 28. Wilson, A.H., The Theory of Metals, C.U.P., p. 143 (1953).
- 29. Mott, N.F., and Jones, H., The Theory of the Properties of Metals and Alloys, Dover, New York, p. 14 (1958).
- 30. Eggleton, A.E.J., and Tompkins, F.C., Trans. Faraday Soc., 48, 738 (1952).
- 31. Wachman, H.Y., PhD Thesis, Univ. of Missouri, Columbia, Mc. (1357).
- 32. Goodman, F.O., Surface Science, 3, 386 (1965).

· · · ·

- 33. Faust, J.W., PhD Thesis, Univ. of Missouri, Columbia, Mo. (1954).
- 34. Brown, R.E., PhD Thesis, Univ. of Missouri, Columbia, Mo. (1957).
- 35. Wachman, H.Y., In <u>Dynamics of Planetary Entry</u>, Scala, Harrison and Rogers, Ed., pp. 778-789, John Wiley and Sons, New York (1963).

TABLE I

Results of Analysis of T-Dependent Data

G		1							
To • (1)	deg.		ł	0.2	2.6	!	1 1	ľ	
(τ) ι Υ	ga A deg K Bole ? A		1	7400	7400		-		
$a^{(h)} t_{c}^{(g)} \lambda^{i(h)}$	deg.		1.1	0.30	2.5	62	i4 0	350	
a ^(h)	A - 1		1.3 1.1	1.3	1.7	1.5	1.5 140	1.5 350	
D ⁽⁶⁾	kcal mole		0.18	0.21	0.50	2.4	4.0	6.4	
$\lambda^{(e)} T_0^{(e)} c^{(f)} \theta/a^{(g)} D^{(g)}$	deg.A		240	290	220	250	250	250	
C (£)			1.5	1.3	1.3	I.3	Ι.3	1.3	
T_0 ^(e)	deg.		0.7	0.2	1.8	70	155	380	
$\lambda^{(e)}$	gm ⁵ ceg ⁵ deg.		740	3200	3200	3200	3200	3200	
Ð	deg.		320 ²⁸	380 ²⁹	380 ²⁹	380 ²⁹	380 ^{2 9}	380 ²⁹	
ъ	A-1		1.64 ^(c)	1.64°	1.60 ^(d)	1.44 ^(d)	1.34 ^(d)	1.33 ^(d)	
a (ص) ^(b)			0.0682 0.143	0.0500	0.214	0.352	0.516	0.583	
(ع) _{لل}			0.0682	0.0218	0.110	0.217	0.456	0.714	
Source	Ref.		20	9	9	7	7	٢	
System			He-Ni	He-W	Ne-W	A-W	Kr-W	Xe-W	

1

- (a) From values of M and m in Ref. 25.
- (b) From equation (37) of this paper
- Evaluated from the combination rule and the value of a for He-He in Ref. 9 and the values of a for Ni-Ni and W-W in Ref. 26. Q
- From the combination rule in Ref. 9 and the data on a for the gas-gas and solid-solid systems in Refs. 26 and 27. (q)
- (e) From application of Procedure A.
- (f) From (41) of this paper
- (g) From the lattice theory calculation
- Calculated by combining Columns 5 and 9 of this table. £
- From application of procedure A where α_2 (T) is represented by (36). (ï)

• (,

• (

of
Independent
Data
of
Analysis
of
Results
II
Table

ы

He-A133 0.073 305 0.148 0.270 $1.46^{(4)}$ 300 670 $0^{(4)}$ 0.92 He-Be34 0.145 305 0.444 0.511 $1.64^{(4)}$ 1000 380 $0^{(6)}$ 1.4 He-He34 0.145 305 0.444 0.571 0.577 $0.79^{(4)}$ 100 380 $0^{(6)}$ 1.4 He-Ho6 0.0261 298 0.0417 0.927 $1.70^{(4)}$ 360 750 $0^{(6)}$ 0.26 He-Ho5 0.0261 298 0.0417 0.927 $1.70^{(4)}$ 380 2200 $0^{(6)}$ 1.0 He-Ho5 0.0261 298 0.0417 0.927 $1.70^{(4)}$ 380 200 $0^{(6)}$ 1.0 He-Ho31 0.159 2026 0.0417 0.0263 $1.64^{(7)}$ 330 2200 $0^{(6)}$ 1.0 He-Ho31 0.153 0.0117 0.1261 $1.64^{(7)}$ 330 2200 $0^{(6)}$ 1.4 He-Ho31 0.153 0.748 0.537 $1.64^{(7)}$ 330 0.911 $0^{(6)}$ 0.69 He-Ho31 0.153 0.748 0.537 $1.64^{(7)}$ 0.90 $0^{(9)}$ 0.61 He-Ho31 0.019 0.67 0.106 0.74 0.74 0.74 He-Ho31 0.019 0.67 0.748 0.587 0.769 0.74 He-Ho21 0.198 <th>System</th> <th>Source Ref.</th> <th>d exp</th> <th>T deg.</th> <th>(q)^{ff}</th> <th>a (=)^(c)</th> <th>a A-1</th> <th>θ⁽²⁹⁾ deg.</th> <th>λ^(b) gu⁵ dag⁵ mole ^x λ</th> <th>ч deg.</th> <th>c^(j)</th>	System	Source Ref.	d exp	T deg.	(q) ^{ff}	a (=) ^(c)	a A-1	θ ⁽²⁹⁾ deg.	λ ^(b) gu ⁵ dag ⁵ mole ^x λ	ч deg.	c ^(j)
34 0.145 305 0.444 0.511 $1.64^{(6)}$ 1000380 $0^{(6)}$ 21 0.083 298 0.102 0.577 0.557 $1.70^{(4)}$ 360 750 $0^{(6)}$ 6 0.0261 2.98 0.0177 0.0227 $1.70^{(4)}$ 380 2200 $0^{(6)}$ 21 0.090 295 0.174 0.0327 $1.70^{(4)}$ 380 2200 $0^{(6)}$ 31 0.038 305 0.0174 0.303 $1.70^{(4)}$ 380 2200 $0^{(6)}$ 33 0.159 305 0.0773 $1.64^{(7)}$ 230 1100 $0^{(6)}$ 34 0.315 305 0.748 0.5877 $1.42^{(9)}$ 390 670 $0^{(6)}$ 33 0.159 305 2.244 0.512 $1.64^{(7)}$ 230 1100 $0^{(6)}$ 34 0.315 305 2.244 0.512 $1.66^{(7)}$ 390 670 $0^{(6)}$ 30 0.053 $500^{(10)}$ 0.5677 $1.46^{(7)}$ 230 1000 $0^{(6)}$ 21 0.199 298 0.516 0.539 $0.78^{(9)}$ 100 $0^{(1)}$ 21 0.194 2.98 0.516 0.539 $0.78^{(9)}$ 100 $0^{(1)}$ 21 0.194 2.98 0.577 0.5577 $1.6^{(2)}$ 340 $0^{(1)}$ 21 0.194 2.98 $0.78^{(1)}$ 1.00 310 $0^{(2)}$ 21 0.194 0.194 <	He-A1	33	0.073	305	0.148	0.270	1.45 ^{fd)}	390	670	0(e)	0.92
210.0832980.1020.2020.79(4)100310063.024800.5770.5571(*)360750060.02617930.04170.0927 $1.70^{(4)}$ 380220000210.0902950.1740.3030.91(4) 156 34000340.0383050.0261793 $0.016^{(4)}$ 230 $1.64^{(7)}$ 230 1100 0340.0313050.748 0.587 $1.42^{(9)}$ 390 670 $0^{(6)}$ 340.0315305 0.748 0.587 $1.42^{(9)}$ 390 670 $0^{(9)}$ 340.0315 $206^{(4)}$ 0.361 0.5677 $1.42^{(9)}$ 390 670 $0^{(1)}$ 360.053 $200^{(4)}$ 0.361 0.5677 $1.42^{(9)}$ 380 $0.6^{(1)}$ 31 0.199 298 0.516 0.539 $0.78^{(9)}$ 100 380 $0^{(1)}$ 21 0.199 298 0.577 0.5577 $1.66^{(9)}$ 380 $0^{(1)}$ 21 0.198 0.577 0.598 $0.996^{(1)}$ 150 $0^{(1)}$ 21 0.198 $0.919^{(1)}$ 1.66^{0} 1.69^{0} 380 $0^{(1)}$ 21 $0.198^{(2)}$ 1.202 $0.996^{(1)}$ $1.50^{(2)}$ 380 2200 $0^{(1)}$ 21 $0.198^{(2)}$ 1.216^{0} $0.996^{$	He-Be	34	0.145	305	0.444	0.511	1.6 ⁴ (e)	1000	380	(e)	1.4
6 3.024 80 0.577 0.557 1 $^{(e)}$ 360 750 $0^{(e)}$ 21 0.0261 293 0.0417 0.0927 $1.70^{(d)}$ 380 2200 $0^{(e)}$ 21 0.090 294 0.174 0.303 $0.91^{(d)}$ 150 340 $0^{(e)}$ 33 0.159 305 0.0748 0.587 $1.42^{(f)}$ 230 1100 $0^{(e)}$ 34 0.0315 305 0.748 0.512 $1.66^{(e)}$ 1000 380 v $0^{(1)}$ 34 0.1159 305 2.244 0.5121 $1.42^{(g)}$ 390 670 v $0^{(1)}$ 31 0.1199 208 0.748 0.5121 $1.42^{(g)}$ 390 670 v $0^{(1)}$ 31 0.199 2398 0.746 0.5121 $1.66^{(g)}$ 1000 380 v $0^{(1)}$ 21 0.199 2398 0.516 0.516 0.5391 $1.66^{(g)}$ 390 $0^{(1)}$ $0^{(1)}$ 21 0.199 298 0.516 0.5361 $1.66^{(g)}$ 390 2200 v $0^{(1)}$ 21 0.199 $0.816^{(g)}$ 0.516 $0.516^{(g)}$ $0.786^{(g)}$ 100 310 $0^{(1)}$ 21 0.199 $0.516^{(g)}$ $0.516^{(g)}$ $0.786^{(g)}$ 100 310 $0^{(1)}$ 21 0.144 298 0.2100 $0.516^{(g)}$ $0.769^{(g)}$ $100^{(1)}$ 0	He-K	21	0.083	298	0.102	0.202	0.79 ^(d)	100	310	0 ^(e)	0.74
6 0.0261 293 0.0417 0.0927 $1.70^{(4)}$ 380 2200 $0^{(6)}$ 21 0.090 295 0.174 0.303 $0.91^{(4)}$ 150 340 $0^{(6)}$ 34 0.038 305 0.0205 0.0473 $1.64^{(5)}$ 230 1100 $0^{(6)}$ 33 0.159 305 0.748 0.537 $1.42^{(9)}$ 390 670 v $0^{(1)}$ 34 0.315 305 0.748 0.512 $1.60^{(6)}$ 1000 380 v $0^{(1)}$ 34 0.315 305 2.244 0.512 $1.46^{(7)}$ 390 670 v $0^{(1)}$ 30 0.053 $500^{(4)}$ 0.3611 0.468 $1.42^{(9)}$ 390 670 v $0^{(1)}$ 21 0.199 298 0.5161 0.5392 $0.78^{(9)}$ 1000 380 v $0^{(1)}$ 21 0.199 298 0.5161 0.5577 $1.66^{(9)}$ 390 750 v $0^{(1)}$ 21 0.198 0.879 0.5167 $0.89^{(9)}$ $1166^{(9)}$ 380 v $0^{(1)}$ 21 0.198 0.576 0.5392 0.600 $0.759^{(2)}$ 100 $290^{(1)}$ 21 $0.198^{(1)}$ $1.66^{(2)}$ 380 2200 v $0^{(1)}$ 21 $0.198^{(2)}$ $1.56^{(2)}$ 1000 310 $0.61^{(1)}$ 21 0.1444 298 1.774 $0.597^{$	Ke-Li	9	0.024	80	0.577	0.557	1 (e)	360	750	0 (e)	0.20
21 0.090 293 0.174 0.303 $0.91^{(4)}$ 150 340 $0^{(6)}$ 34 0.038 305 0.0205 0.0473 $1.64^{(1)}$ 230 1100 $0^{(6)}$ 33 0.159 305 0.748 0.587 $1.42^{(9)}$ 390 670 v $0^{(1)}$ 34 0.315 305 0.748 0.512 $1.42^{(9)}$ 390 670 v $0^{(1)}$ 34 0.315 305 2.244 0.512 $1.46^{(6)}$ 1000 380 v $0^{(1)}$ 30 0.053 $500^{(a)}$ 0.746 0.512 $1.66^{(9)}$ 1000 380 v $0^{(1)}$ 21 0.199 298 0.516 0.539 $0.778^{(9)}$ 100 310 $0^{(1)}$ 21 0.019 298 0.577 0.5577 $1.66^{(9)}$ 380 $7^{(1)}$ $0^{(1)}$ 21 0.198 298 0.210 0.345 $1.66^{(9)}$ 380 v $0^{(1)}$ 21 0.198 298 0.210 $0.536^{(2)}$ $1.66^{(2)}$ 380 v $0^{(1)}$ 21 0.144 298 1.92 0.599 $0.789^{(2)}$ $1.66^{(2)}$ 340 v $0^{(1)}$ 6 0.044 298 1.92 0.769 $0.769^{(2)}$ $1.66^{(2)}$ 340 v $0^{(1)}$ 21 0.144 298 1.92 $0.789^{(2)}$ $1.66^{(2)}$ $380^{(2)}$ <td>He-Mo</td> <td>Q</td> <td>0.0261</td> <td>298</td> <td>0.0417</td> <td>0.0927</td> <td>1.70^(d)</td> <td>380</td> <td>2200</td> <td>0^(e)</td> <td>1.0</td>	He-Mo	Q	0.0261	298	0.0417	0.0927	1.70 ^(d)	380	2200	0 ^(e)	1.0
34 0.038 305 0.0205 0.0473 $1.64^{(f)}$ 230 1100 $0^{(h)}$ 33 0.159 305 0.748 0.587 $1.42^{(h)}$ 390 670 v $0^{(h)}$ 34 0.315 305 0.748 0.5312 $1.60^{(h)}$ 1000 380 v $0^{(1)}$ 36 0.053 $500^{(a)}$ 0.3611 0.468 $1.58^{(g)}$ 420 2300 v $0^{(1)}$ 21 0.199 298 0.516 0.539 $0.786^{(g)}$ 100 310 v $0^{(1)}$ 21 0.199 298 0.516 0.5577 $1.66^{(g)}$ 380 2200 v $0^{(1)}$ 21 0.198 298 0.210 0.5577 $1.66^{(g)}$ 380 2200 v $0^{(1)}$ 21 0.198 298 0.210 0.577 0.5577 $1.66^{(g)}$ 380 2200 v $0^{(1)}$ 21 0.198 298 0.210 0.345 1.00 310 $0^{(1)}$ $0^{(1)}$ 21 0.198 298 0.416 0.303 1 $e^{(1)}$ 360 750 $20^{(1)}$ 21 0.444 298 1.74 0.5577 $0.46^{(1)}$ 100 310 $0^{(1)}$ 21 0.444 298 1.022 $0.498^{(1)}$ $1.50^{(2)}$ $20^{(1)}$ $0^{(1)}$ 21 0.445 0.310 0.597 $1.69^{(2)}$ 380 2200 $0^{(1)}$ </td <td>He-Na</td> <td>21</td> <td>0.090</td> <td>298</td> <td>0.174</td> <td>0.303</td> <td>0.91^(d)</td> <td>150</td> <td>340</td> <td>0^(e)</td> <td>0.60</td>	He-Na	21	0.090	298	0.174	0.303	0.91 ^(d)	150	340	0 ^(e)	0.60
33 0.159 305 0.748 0.587 $1.42^{(9)}$ 390 670 v $0^{(1)}$ 34 0.315 305 2.24 0.512 $1.60^{(e)}$ 1000 380 v $0^{(1)}$ 30 0.053 $500^{(a)}$ 0.361 0.468 $1.58^{(9)}$ 420 2300 v $0^{(1)}$ 21 0.199 298 0.516 0.539 $0.78^{(9)}$ 100 310 v $0^{(1)}$ 6 0.049 80 0.577 0.5577 1 (e) 360 750 v $0^{(1)}$ 21 0.198 298 0.210 0.5345 $1.66^{(9)}$ 380 2200 v $0^{(1)}$ 21 0.198 298 0.210 0.577 0.598 $0.78^{(9)}$ 150 340 v $0^{(1)}$ 21 0.198 298 0.878 0.598 $0.89^{(9)}$ 150 340 v $0^{(1)}$ 21 0.1444 298 1.022 $0.89^{(9)}$ 150 340 v $0^{(1)}$ 6 0.23155 298 0.7416 $0.390^{(1)}$ $100^{(2)}$ $20^{(1)}$ v $0^{(1)}$ 6 0.3155 298 1.744 0.557 $0.84^{(9)}$ 150 $20^{(1)}$ v $0^{(1)}$ 6 0.459 298 1.746 0.597 $1.87^{(9)}$ $100^{(2)}$ $20^{(1)}$ $100^{(1)}$ 6 0.510 298 0.597 $1.39^{(2)}$ $20^{(2$	He-Pt	34	0.038	305	0.0205	0.0473	1.64 ^(f)	230	1100	0 (e)	2.4
34 0.315 305 2.24 0.512 $1.60^{(6)}$ 1000 380 $\sim 0^{(1)}$ 30 0.053 $500^{(a)}$ 0.361 0.468 $1.58^{(9)}$ 420 2300 $\sim 0^{(1)}$ 21 0.199 298 0.516 0.539 $0.78^{(9)}$ 100 310 $\sim 0^{(1)}$ 6 0.049 80 0.577 0.537 $1.66^{(9)}$ 360 750 $\sim 0^{(1)}$ 6 0.049 80 0.577 0.537 $1.66^{(9)}$ 380 2200 $\sim 0^{(1)}$ 21 0.198 298 0.210 0.345 $1.66^{(9)}$ 380 2200 $\sim 0^{(1)}$ 21 0.198 298 0.210 0.345 $1.66^{(9)}$ 380 2200 $\sim 0^{(1)}$ 21 0.198 298 0.878 0.593 $1.66^{(9)}$ 380 2200 $\sim 0^{(1)}$ 21 0.444 298 1.022 $0.690^{(9)}$ 150 340 $\sim 0^{(1)}$ 6 0.2300 80 5.76 0.303 1 (e) 360 750 $20^{(1)}$ 6 0.2416 0.303 1 (e) 360 750 $20^{(1)}$ $20^{(1)}$ 21 0.4498 $1.50^{(1)}$ 100 310 200 $20^{(1)}$ $20^{(1)}$ 6 0.4406 0.310 0.310 100 200 $20^{(1)}$ $20^{(1)}$ 6 0.4400 80 1.74 0.597 $1.96^{(1)$	Ne-AJ	33	0.159	305	0.748	0.587	1.42 ⁽⁹⁾	390	670		0.92
30 0.053 $500^{(a)}$ 0.361 0.468 $1.58^{(g)}$ 420 2300 v $0^{(1)}$ 21 0.199 298 0.516 0.539 $0.78^{(g)}$ 100 310 $0^{(e)}$ 6 0.049 80 0.577 0.557 1 (e) 360 750 v $0^{(1)}$ 6 0.049 80 0.516 0.539 $0.78^{(g)}$ 100 310 $0^{(1)}$ 71 0.049 80 0.210 0.345 $1.66^{(q)}$ 380 2200 v $0^{(1)}$ 21 0.198 298 0.878 0.598 $0.89^{(g)}$ 150 340 v $0^{(1)}$ 21 0.198 298 0.878 0.598 $0.89^{(g)}$ 150 340 v $0^{(1)}$ 21 0.198 298 1.022 0.6400 $0.75^{(g)}$ 100 310 $90^{(1)}$ 6 0.23155 298 0.416 0.498 $1.50^{(g)}$ 380 2200 v $0^{(1)}$ 21 0.459 0.3155 298 0.7496 $0.84^{(g)}$ 150 340 $100^{(1)}$ 6 0.516 0.873 0.557 $0.84^{(g)}$ 150 340 $100^{(1)}$ 6 0.510 208 0.873 0.597 $1.30^{(1)}$ 380 2200 $90^{(1)}$ 6 0.510 298 0.873 0.585 $1.37^{(g)}$ 380 2200 $90^{(1)}$ 6 0.55	Ne-Be	34	0.315	305	2.24	0.512	1.60 ^(e)	1000	380	r 0 ⁽ⁱ⁾	1.4
21 0.199 298 0.516 0.539 $0.78(9)$ 100 310 $0^{(6)}$ 6 0.049 80 0.577 0.557 1 $^{(e)}$ 360 750 v $6^{(1)}$ 6 0.055 298 0.210 0.345 $1.66^{(9)}$ 380 2200 v $0^{(1)}$ 21 0.198 298 0.878 0.598 $0.89^{(g)}$ 150 340 v $0^{(1)}$ 21 0.144 298 1.022 0.600 $0.75^{(9)}$ 100 310 $90^{(1)}$ 21 0.444 298 1.022 0.600 $0.75^{(9)}$ 100 310 $90^{(1)}$ 21 0.444 298 1.022 0.600 $0.75^{(9)}$ 100 310 $90^{(1)}$ 21 0.444 298 1.722 0.600 $0.75^{(9)}$ 380 2200 $90^{(1)}$ 21 0.444 298 1.74 0.557 $0.84^{(9)}$ 150 340 $100^{(1)}$ 21 0.459 298 1.74 0.557 $0.84^{(9)}$ 150 $30^{(1)}$ 21 0.450 208 $1.30^{(9)}$ 380 2200 $90^{(1)}$ 6 0.510 208 $1.30^{(9)}$ 380 2200 $90^{(1)}$ 6 0.510 208 $1.30^{(9)}$ $1.30^{(9)}$ 380 2200 $90^{(1)}$ 6 0.510 298 $1.37^{(9)}$ 380 2200 $90^{(1)}$ 6 0.556	Ne-Fe	30	0.053	300 ^{(a).}	0.361	0.468	1.58 ⁽⁹⁾	420	2300	v 0 ⁽ⁱ⁾	0.60
6 0.049 80 0.577 0.557 1 $^{(e)}$ 360 750 v $0^{(i)}$ 6 0.055 298 0.210 0.345 $1.66^{(q)}$ 390 2200 v $0^{(i)}$ 21 0.198 298 0.878 0.598 $0.89^{(q)}$ 150 340 v $0^{(i)}$ 21 0.198 298 0.878 0.598 $0.89^{(q)}$ 150 340 v $0^{(i)}$ 21 0.444 298 1.022 0.600 $0.75^{(q)}$ 100 310 $90^{(i)}$ 6 0.2300 80 5.76 0.303 1 (e) 360 750 $20^{(i)}$ 21 0.446 0.4498 $1.50^{(q)}$ 380 2200 $90^{(i)}$ 21 0.459 298 1.744 0.557 $0.84^{(q)}$ 150 340 $100^{(1)}$ 21 0.459 298 1.744 0.557 $0.84^{(q)}$ 150 $30^{(1)}$ 6 0.510 298 1.774 0.557 $1.37^{(q)}$ 380 2200 $90^{(1)}$ 6 0.510 298 0.873 0.597 $1.36^{(q)}$ 380 2200 $180^{(1)}$ 6 0.5512 298 $1.37^{(q)}$ 380 2200 $90^{(1)}$ 6 0.556 298 $1.37^{(q)}$ 380 2200 $90^{(1)}$ 6 0.556 298 $1.37^{(q)}$ 380 2200 $90^{(1)}$	Ne-K	21	0.199	298	0.516	0.539	(5)86.0	100	310	0 (e)	0.74
6 0.055 298 0.210 0.345 $1.66^{(9)}$ 380 2200 $\bullet 0^{(1)}$ 21 0.198 298 0.878 0.598 $0.89^{(9)}$ 150 340 $\bullet 0^{(1)}$ 21 0.444 298 1.022 0.600 $0.75^{(9)}$ 100 310 $90^{(1)}$ 6 0.290 80 5.76 0.503 $1 \ ^{(e)}$ 360 750 $20^{(1)}$ 6 0.3155 298 0.416 0.498 $1.50^{(9)}$ 380 2200 $90^{(1)}$ 21 0.459 298 1.744 0.557 $0.84^{(9)}$ 150 340 $100^{(1)}$ 21 0.450 298 1.774 0.557 $0.84^{(9)}$ 150 340 $100^{(1)}$ 6 0.450 80 12.11 0.170 $1 \ ^{(e)}$ 360 750 $30^{(1)}$ 6 0.510 298 0.873 0.597 $1.39^{(9)}$ 380 2200 $180^{(1)}$ 6 0.556 298 $1.37^{(9)}$ 380 2200 $100^{(1)}$ 6 0.956 298 $1.37^{(9)}$ 380 2200 $180^{(1)}$ 6 0.956 298 $1.37^{(9)}$ 380 2200 $900^{(1)}$	Ne-Li	Q	0.049	80	0.577	0.557	1 (e)	360	750	v (j ⁽¹⁾	0.20
210.1982980.8780.5980.89(e1)150340 $\sim 0^{(1)}$ 210.4442981.020.6000.75(91)10031090(11)60.290805.760.3031(e1)36075020(11)60.31552980.4160.4981.50(91)380220090(11)210.4592981.740.5570.84(91)150340 100 (11)6 0.4100 8012.10.1701(e1)360750 90 (11)6 0.510 2980.5770.84(91)150340 100 (11)6 0.510 2980.8730.5971.39(91 3802200 100 (11)60.5102981.370.5851.37(91 3802200 100 (11)60.5562981.370.5851.37(91 3802200 90 (11)	Ne-Mo	Q	0.055	298	0.210	0.345	1.66 ^(g)	380	2200	v 0 ⁽ⁱ⁾	1.0
21 0.444 298 1.02 0.600 $0.75^{(q)}$ 100 310 $90^{(i)}$ 6 0.290 80 5.76 0.303 1 (e) 360 750 $20^{(i)}$ 6 0.3155 293 0.416 0.498 $1.50^{(q)}$ 380 2200 $90^{(i)}$ 21 0.459 298 1.74 0.557 $0.84^{(g)}$ 150 340 $100^{(i)}$ 6 0.400 80 12.1 0.170 1 (e) 360 750 $30^{(i)}$ 6 0.510 298 0.873 0.597 $1.39^{(g)}$ 380 2200 $180^{(i)}$ 6 0.510 298 0.873 0.597 $1.39^{(g)}$ 380 2200 $180^{(i)}$ 6 0.556 298 $1.37^{(g)}$ 380 2200 $180^{(i)}$ 6 0.9566 298 $1.37^{(g)}$ 380 2200 $900^{(i)}$	Ne-Na	21	0.198	298	0.878	0.598	0 * 8 8 (ق)	150	340	v 0 ⁽ⁱ⁾	0.50
6 0.290 80 5.76 0.303 1 (e) 360 750 $20^{(1)}$ 6 0.3155 293 0.416 0.498 $1.50^{(q)}$ 380 2200 $90^{(1)}$ 21 0.459 298 1.74 0.557 $0.84^{(q)}$ 150 340 $100^{(1)}$ 6 0.400 80 12.1 0.170 1 (e) 360 750 $30^{(1)}$ 6 0.510 298 0.873 0.597 $1.39^{(q)}$ 380 2200 $180^{(1)}$ 6 0.556 298 1.37 0.585 $1.37^{(q)}$ 380 2200 $180^{(1)}$ 6 0.956 298 1.37 0.585 $1.37^{(q)}$ 380 2200 $900^{(1)}$	A-K	21	0.444	298	1.02	0.600	0,75 ^(g)	100	310	90 ⁽ⁱ⁾	0.74
6 0.3155 293 0.416 0.498 $1.50^{(q)}$ 380 2200 $90^{(i)}$ 21 0.459 298 1.74 0.557 $0.84^{(q)}$ 150 340 $100^{(i)}$ 6 0.400 80 12.1 0.170 1 (e) 360 750 $30^{(i)}$ 6 0.510 298 0.873 0.597 $1.39^{(q)}$ 380 2200 $180^{(i)}$ 6 0.956 298 1.37 0.585 $1.37^{(q)}$ 380 2200 $900^{(i)}$	A-Li	Q	0.290	80	5.76	0.303	1 (e)	360	750	20 ⁽¹⁾	0.20
21 0.459 298 1.74 0.557 $0.84^{(9)}$ 150 340 $\underline{100^{(1)}}$ 6 0.400 80 12.1 0.170 1 (e) 360 750 $30^{(1)}$ 6 0.510 298 0.873 0.597 $1.39^{(9)}$ 380 2200 $180^{(1)}$ 6 0.956 298 1.37 0.585 $1.37^{(9)}$ 380 2200 $900^{(1)}$	A-Mo	ę	0.3155	293	0.416	0.498	1.50 ^(g)	380	2200	9 0 ⁽ⁱ⁾	1.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A-Na	21	0.459	298	1.74	0.557	0.84 ^(g)	150	340	100(i)	0.60
6 0.510 298 0.873 0.597 1.39 ^(g) 380 2200 180⁽¹⁾ 6 0.956 298 1.37 0.585 1.37^(g) 380 2200 900⁽¹⁾	Kr-Li	Q	0.400	80	12.1	0.170	1 (e)	360	750	30 ⁽ⁱ⁾	0.20
6 0.956 298 1.37 0.585 1.37 ⁽⁹⁾ 380 2200 900 ⁽¹⁾	Kr-Mo	9	0.510	298	0.873	0.597	1.39 ^(g)	380	2200	180 ⁽ⁱ⁾	1.0
	Xe-Mo	Q	0.956	298	1.37	0.585	1.37 ^(g)	380	2200	900 ⁽ⁱ⁾	1.0

大学を考えて大学が正法

TABLE II

- (a) Not stated in Ref. 30.
- (b) From values of M and m in Ref. 25.

٠.,

- (c) From equation (37) cf this paper
- (d) Evaluated from the combination rule and the value of
 <u>a</u> for He-He in Ref. 9 and the values of <u>a</u> for Ni-Ni and
 W-W in Ref. 26.
- (e) Guessed.
- (f) Guessed as in Ref. 9.
- (g) From the combination rule in Ref. 9 and the data for the gas-gas and the solid-solid systems in Refs. 26 and 27.
- (h) From application of Probedure B.
- (i) Estimated by Procedure B.
- (j) From (41) of this paper.

Kange Let

×

they want the second se

`ux ;

ł

۰ċ

Comparison of the theories with experimental data on $\alpha\left(T\right)$ for A, Kr and Xe-W. Fig. 4

÷.

And Brogenautine capity interest and in a

,

Comparison of the theories with experimental data on α (T) for He-Ni. Fig. 5

: ;

!

١

Ę

-4

٤

**

• .

Massachusetts Institute of Technology III Iuid Dynamics Research Laboratory 2P G ambriage, Massachusetts REPORT TITLE FORMULA FOR THERMAL ACCOMENDATION CONFFICIENT DESCRIPTIVE NOTES (Type of report and inclusive dules. Contract Proceedings [] OUTHOR (S) (Last name, Inst where, initial) Goodsen Frank O Scientific Report [] Final Report [] Journal Article [] Proceedings [] AUTHOR (S) (Last name, Inst where, initial) Goodsen Frank O Watching Leon Prof (PI)) Report of Prof (PI)) Report of Scientific Report No. (S) Prof (Sis) 1501 B PROJECT NO. Scientific Report No. (S) OTHER REPORT NO. (S) Marchine Report No. (S) Marchine Report No. (S) Distribution of this document is usiminted Dist	na sina manana manan
ORIGINATING ACTIVITY (Convoir author) 24. P. Assachusetts Institute of Technology 27. P. Juid Dynamics Research Laboratory 27. P. ambridge, Maxsachusetts 27. P. REPORT TILE FORMULA FOR THERMAL ACCOMESDATION CONFFICIENT DESCRIPTIVE NOTES (Type of report and inclusive dute. Proceedings [AUTHOR'S) (Last name, list ware, initial) Journal Article [] Proceedings [] Goodman Frank O Wachman Harold Y (Trilling Leves Prof (PI)) 74. TOTAL NC. OF PAGES REPORT DATE AS PRINTED 74. TOTAL NC. OF PAGES PROJECT NO. SA. ORIGINATOR'S REPORT AF 49(638)1501 SA. ORIGINATOR'S REPORT NO. (S) MATAGE PROJECT NO. SA. ORIGINATOR'S REPORT NO. (S) MATAGE PROJECT NO. SA. ORIGINATOR'S REPORT NO. (S) MASSIENT MATAGE PROJECT NO. O AVAILABILITY/LIMITATION NOTICES Distribution of this document is uslimited Coefficient from which the accommodation coefficient of system may be calculated from consideration of certain aspect theory of accommodation and from consideration of certain aspect theory of accommodation and from consideration of certain aspect theory of accommodation and from consideration of certain aspect theory of accommodation and from consideration of certain aspect theory and the gas-warface j	
Hassachusetts Institute of Technology Image: Construction of the second of the sec	EPORT SECURITY CLASSIFICATION
Luid Dynamics Research Laboratory 28 °G mbriuge, Mansachusetts 28 °G REPORT TITLE FORMULA FOR THERMAL ACGCMASDATION CDEFFICIENT DESCRIPTIVE NOTES (Type of report and incluine date. Description of the second incluine date. RESCIPTIVE NOTES (Type of report and incluine date. Description of the second incluine date. RESCIPTIVE NOTES (Type of report and incluine date. Description of the second incluine date. RESCIPTIVE NOTES (Contract, initial) Journal Article Proceedings [Goodman Harold Y (Trilling Leon Prof (PI)) REPORT DATE AS PRINTED 74. TOTAL NO. OF PAGES Pebruary 1966 41 SCONTRACT OR GRAPH NO SA ORIGINATOR'S REPORT NO. (S) MAF 49(638)1501 SA ORIGINATOR'S REPORT NO. (S) BESCRIPTION OF Chis document is wellatted AF 50SR (ADD) APAILABULITY/LIMITATION NOTICES Distribution of this document is wellatted SUPPLEMENTARY NOTES (Contract for a consideration coefficient for the coefficient from which the accommodation coefficient of system may be calculated from consideration of certain aspect theory of accompodation and from consideration of certain aspect theory of accompodation and from consideration of certain aspect theory of accompodation and from consideration of certain aspect theory of accompodation and from consideration of certain aspect theory of accompodation and from consideration of certain aspect theo	Unclassified Other — Specify
Imbringe, Maxsachusetts REPORT TITLE FORMULA FOR THERMAL ACCOMESDATION CONTINUES DESCRIPTIVE NOTES (Type of report and inclusive dates. REScientific Report	ROUP
FORMULA FOR THERMAL ACCCMANDATION CONFFICTENT DESCRIPTIVE NOTES (Type of report and inclusing dutes. Scientific Report Final Report Journal Ardicle Proceedings F AUTHOR(S) (Last hance, list hance, initial) Goodsan Frank 0 Wachman Harold Y (Trilling Leon Prof (PI)) REPORT DATE AS PRINTED 7A. TOTAL NC. OF PAGES February 1966 41 CONTRACT OR GRANT NO 9A. ORIGINATOR'S REPORT AF 49(638)1501 9A. ORIGINATOR'S REPORT NO.(S) PROJECT NO. 9781-01 61445014 UP OTHER REPORT NO.(S) Mar PROFI AFOSR (AD AVAILABILITY/LIMITATION NOTICES Distribution of this document is uslimited SUPPLEMENTARY NOTES (Citation) 12. SPON AF 0 ABSTFACT A sizple formale in closed form is proposed for the coefficient from which the accosmodation coefficient of system may be calculated from consideration of certain aspect thoory of accosmodation and from cosclusions regarding available experimental dots. Adequate agreement is obtained the lattice theory and the gas-surface j	
DESCRIPTIVE NOTES (Type of report and inclusive dutes. Scientific Papert [] Final Report [] Journal Article [] Proceedings [AUTHOR(S) (Last name, Inst name, initial) Goodman Harold Y (Trilling Leon Prof (PI)) REPORT DATE AS PRINTED February 1966 41 CONTRACT OR GRANT NO AF 49(638)1501 PROJECT NO. 9781-01 61445014 JAC OR GRANT NO AVAILABILITY/LIMITATION NOTICES Distribution of this document is utalimited SUPPLEMENTARY NOTES (Culture) ABSIFACT A simple formale in closed form is proposed for the coefficient from which the accommodation sometificient of system may be calculated from certain basic parameters of formula is obtsigned from considerations of certain aspect theory of accommodation and from constiderations of certain aspect with both the lattice theory, and the gas-surface j	
AUTHOR (S) (Last name, inst name, inst name, instal Journal Anicle Proceedings (AUTHOR (S) (Last name, inst name, instal Gocdman Frank 0 Wachman Harold Y (Trilling Leon Prof (PI)) REPORT DATE AS PRINTED 74. TOTAL NC. OF PAGES Pebruary 1966 41 CONTRACT OR GRANT NO 94. ORIGINATOR'S REPORT AF 49(638)1501 9781-01 SPROJECT NO. 9781-01 Glassification of this document is utalimited AFOR SUPPLEMENTARY NOTES (Clauma) 12. SPON AF 0 Office VALLABILITY/LIMITATION NOTICES 12. SPON AF 0 Office VARIABILITY/LIMITATION NOTICES 12. SPON AF 0 Office VARIABILITY/LIMITATION NOTICES 12. SPON ABSTFACT A simple formale in closed form is proposed for the coefficient from which the accommodation coefficient of system may be calculated from consideration of certain aspect theory of accommodation and from consultations regarding available experimental data. Adequate agreement is obta with both the lattice theory and the experimental data; opinion all the reliable data available are included.	
Scientific Report Final Report Journal Anicle Proceedings C AUTHOR(S) (Last name, first name, initial) Goodman Frank 0 Wachman Harold Y (Trilling Leon Prof (PI)) 74. TOTAL NC. OF PAGES 41 REPORT DATE AS PRINTED 74. TOTAL NC. OF PAGES Project DATE AS PRINTED 74. TOTAL NC. OF PAGES Project OR GRANT NO 94. ORIGINATOR'S REPORT AF 49(638)1501 94. ORIGINATOR'S REPORT NO. (S) PROJECT NO. 9781-01 61445014 Distribution of this document is uvalimited SUPPLEMENTARY NOTES (Cuaum) 12. SPON AF 0 Office ValLABILITY/LIMITATION NOTICES 12. SPON AF 0 Office ValLABILITY/LIMITATION NOTICES 12. SPON AF 0 Office Wash ABSTFACT A simple formale in closed form is proposed for the coefficient from which the accommodation coefficient of system may be calculated from consideration of certain aspect theory of accommodation and from consideration of certain aspect theory of accommodation and from consideration of certain aspect theory of accommodation and from consideration afficient is obta with both the lattice theory and the experimental data; opinion all the reliable data available are included. (are applied to the lattice theory, and the gas-surfac	ng gang ber ment general dan antigen Verse met general general met in sonet i han ment and i age on Manage bert
AUTHOR (S) (Last name, just nume, initial) Goodman Frank 0 Wachman Harold Y (Trilling Leon Prof (PI)) REPORT DATE AS PRINTED February 1966 CONTRACT OR GRANT NO AF 49(638)1501 PROJECT NO. 9781-01 61445014 AF 49(638)1501 PROJECT NO. 9781-01 CONTRACT OR CHAINER REPORT NO.(S) This report AFOSR (AD AVAILABILITY/LIMITATION NOTICES Distribution of this document is utilimited SUPPLEMENTARY NOTES (Claum) AESTFACT A simple formula in closed form is proposed for the coefficient from which the accommodation coefficient of system may be calculated from consideration of certain aspect theory of accommodation and from consideration of certain spect theory of accommodation and from consideration of certain spect with both the lattice theory and the experimental data; opinion all the reliable data available are included. are applied to the lattice theory, and the gas-surface j	T>1
Wachman Harold Y (Trilling Leon Prof (PI)) REPORT DATE AS PRINTED Pebruary 1966 CONTRACT OR GRANT NO AF 49(638)1501 PROJECT NO. 9781-01 61445014 VALLABILITY/LIMITATION NOTICES Distribution of this document is walimited SUPPLEMENTARY NOTES (Culation) AF 0 Office Washing and the accommodation coefficient of the coefficient from consideration of certain aspect theory of accommodation and from conclusions regarding available experimental data. Adequate agreement is obts with both the lattice theory and the gas-surface is opinion all the reliable data available are included. Gate applied to the lattice theory, and the gas-surface is optimication.	Book
Wachman Harold Y (Trilling Leon Prof (PI)) REPORT DATE AS PRINTED Pebruary 1966 A CONTRACT ON GRANT NO AF 49(638)1501 PROJECT NO. 9781-01 61445014 Distribution of this document is walimited SUPPLEMENTARY NOTES (Cuation) AF 000000000000000000000000000000000000	
February 1956 41 CONTRACT OR GRANT NO 94. ORIGUNATOR'S REPORT AF 49(638)1501 94. ORIGUNATOR'S REPORT PROJECT NO. 9781-01 61445014 UP OTHER REPORT NO.(S) PAD AFOSR (AD) AVAILABILITY/LIMITATION NOTICES AFOSR (AD) Distribution of this document is uslimited AFO (ORIGUNATOR'S REPORT NO.(S)) AVAILABILITY/LIMITATION NOTICES AD) Distribution of this document is uslimited AFO (ORIGUNATOR'S REPORT NO.(S)) ABSTFACT A simple formale in closed form is proposed for the coefficient from which the accomposed for the coefficient from which the accomposed for the system may be calculated from consideration coefficient of system may be calculated from consideration of certain aspect theory of accomposed for consideration of certain aspect theory of accomposed for and from consideration of system tis obtained from consideration of system tis obtained from consideration of certain aspect theory of accomposed for the coefficient of system may be calculated from consideration of certain aspect theory of accomposed for the coefficient of system may be calculated from consideration of the experimental data. Adequate agreement is obtained from consideration of set is obtained for an applied to the lattice theory, and the gas-surface pointion all the reliable data available are included. Gare applied to the lattice theory, and the gas-surface pointion all the set is pointis theory and the gas-surface pointion all theo	
February 1956 41 CONTRACT OR GRANT NO 94. ORIGUNATOR'S REPORT AF 49(638)1501 94. ORIGUNATOR'S REPORT PROJECT NO. 9781-01 61445014 UP OTHER REPORT NO.(S) PAD AFOSR (AD) AVAILABILITY/LIMITATION NOTICES AFOSR (AD) Distribution of this document is uslimited AFO (ORIGUNATOR'S REPORT NO.(S)) AVAILABILITY/LIMITATION NOTICES AD) Distribution of this document is uslimited AFO (ORIGUNATOR'S REPORT NO.(S)) ABSTFACT A simple formale in closed form is proposed for the coefficient from which the accomposed for the coefficient from which the accomposed for the system may be calculated from consideration coefficient of system may be calculated from consideration of certain aspect theory of accomposed for consideration of certain aspect theory of accomposed for and from consideration of system tis obtained from consideration of system tis obtained from consideration of certain aspect theory of accomposed for the coefficient of system may be calculated from consideration of certain aspect theory of accomposed for the coefficient of system may be calculated from consideration of the experimental data. Adequate agreement is obtained from consideration of set is obtained for an applied to the lattice theory, and the gas-surface pointion all the reliable data available are included. Gare applied to the lattice theory, and the gas-surface pointion all the set is pointis theory and the gas-surface pointion all theo	78. NO OF REFS
AF 49(638)1501 PROJECT NO. 9781-01 61445014 AFOSR (AD AVAILABILITY/LIMITATION NOLICES Distribution of this document is walimited SUPPLEMENTARY NOTES (Chains) AFOS ABSIFACT A simple formule in closed form is proposed for the coefficient from which the accompodation coefficient of system may be calculated from consideration of certain aspect theory of accompodation and from consideration of certain aspect theory of accompodation and from consideration of certain aspect theory of accompodation and from consideration of certain aspect with both the lattice theory and the experimental data; opinion all the reliable data available are included. (are applied to the lattice theory, and the gas-surface	
9781-01 61445014 Im OTHER REPORT NO. (S) AFOSR (AD) AFOSR (AD) AFOSR (AD) AAD AVAILABILITY/LIMITATION NOTICES Distribution of this document is utilimited SUPPLEMENTARY NOTES (Cilation) AF O Office Wash ABSTFACT A simple formule in closed form is proposed for the coefficient from which the accompodation coefficient of system may be calculated from consideration of certain aspect theory of accommodation and from consideration for the available experimental data. Adequate agreement is obtained from all the reliable data available are included. (are applied to the lattice theory, and the gas-surface properties)	NUMBER(S) (If given)
9781-01 61445014 Im OTHER REPORT NO. (S) AFOSR (AD) AFOSR (AD) AFOSR (AD) AFOSR (AD) AVAILABILITY/LIMITATION NOTICES Distribution of this document is walimited SUPPLEMENTARY NOTES (Cilation) AF O ABSTFACT A simple formule in closed form is proposed for the coefficient from which the incommodation coefficient of system may be calculated from consideration of certain aspect theory of accommodation and from conclusions regarding available experimental data. Adequate agreement is obtained in the lattice theory and the experimental data; opinion all the reliable data available are included. (are applied to the lattice theory, and the gas-surface properties of the supplied to the lattice theory.	
Contract of the second state of the	
AFOSR (AD AVAILABILITY/LIMITATION NOLICES Distribution of this document is utilimited SUPPLEMENTARY NOTES (Chaines) ABSTFACT A simple formule in closed form is proposed for the coefficient from which the accommodation coefficient of system may be calculated from certain basic parameters of formula is obtained from consideration of certain aspect theory of accommodation and from conclusions regarding a available experimental data. Adequate agreement is obtained with both the lattice theory and the experimental data; opinion all the reliable data available are included. (a are applied to the lattice theory, and the gas-surface parameters of the provide the lattice theory and the gas-surface parameters of the provide to the lattice theory, and the gas-surface parameters of the provide to the lattice theory and the gas-surface parameters of the provide to the lattice theory and the gas-surface parameters of the paramete	Any other numbers that may be assi
Distribution of this document is utiliaited Distribution of this document is utiliaited SUPPLEMENTARY NOTES (Cilation) AF O Office Wash ABSTFACT A simple formule in closed form is proposed for the coefficient from which the accomposition coefficient of system may be calculated from consideration coefficient of system may be calculated from consideration of certain aspect theory of accomposation and from conclusions regarding of available experimental dota. Adequate agreement is obtained with both the lattice theory and the experimental data; opinion all the reliable data available are included. G are applied to the lattice theory, and the gas-surface p	-
Distribution of this document is unlimited SUPPLEMENTARY NOTES (Culture) AF O Office Wash ABSIFACT A simple formule in closed form is proposed for the coefficient from which the accomposition coefficient of system may be calculated from certain basic parameters of formula is obtained from consideration of certain aspect theory of accomposation and from conclusions regarding of available experimental data. Adequate agreement is obtained with both the lattice theory and the experimental data; opinion all the reliable data available are included. On are applied to the lattice theory, and the gas-surface parameters of a subject to the lattice theory and the gas-surface parameters of a subject to the lattice theory, and the gas-surface parameters of a subject to the lattice theory and the gas-surface parameters of a subject to the lattice theory and the gas-surface parameters of a subject to the lattice theory and the gas-surface parameters of a subject to the lattice theory and the gas-surface parameters of the subject to the lattice theory of the gas subject to the lattice theory and the gas subject to the lattice theory subject to the lattice the	
SUPPLEMENTARY NOTES (Culation) 12. SPON AF O Office ABSTRACT A simple formule in closed form is proposed for the coefficient from which the accompodation coefficient of system may be calculated from certain basic parameters of formula is obtained from consideration of certain aspect theory of accompodation and from conclusions regarding of available experimental data. Adequate agreement is obtained formula the institute theory and the experimental data; opinion all the reliable data available are included. Gate applied to the lattice theory, and the gas-surface included.	Available from DDC
SUPPLEMENTARY NOTES (Culation) 12. SPON AF O Office ABSTRACT A simple formule in closed form is proposed for the coefficient from which the accompodation coefficient of system may be calculated from certain basic parameters of formula is obtained from consideration of certain aspect theory of accompodation and from conclusions regarding of available experimental data. Adequate agreement is obtained formula the institute theory and the experimental data; opinion all the reliable data available are included. Gate applied to the lattice theory, and the gas-surface included.	Available from Source
AF O Office Wash ABSIFACT A simple formule in closed form is proposed for the coefficient from which the accomposation coefficient of system may be calculated from consideration coefficient of formula is obtained from consideration of certain aspect theory of accomposation and from conclusions regarding of available experimental data. Adequate agreement is obtained with both the lattice theory and the experimental data; opinion all the reliable data available are included. G are applied to the lattice theory, and the gas-surface p	Available Commercially
ABSTRACT A simple formula in closed form is proposed for the coefficient from which the accompodation scelficient of system may be calculated from certain basic parameters of formula is obtained from consideration of certain aspect theory of accompodation and from conclusions regarding of available experimental data. Adequate agreement is obtained with both the lattice theory and the experimental data; opinion all the reliable data available are included. On are applied to the lattice theory, and the gas-surface parameters of a second state theory and the gas-surface parameters of a second state theory and the gas-surface parameters of the second state theory and the gas-surface parameters of a second state theory and the gas-surface parameters of a second state theory and the gas-surface parameters of a second state theory and the gas-surface parameters of the second state parameters of the second sta	ISORING MILITARY ACTIVITY
ABSIFACT A simple formula in closed form is proposed for the coefficient from which the accompodation scentificient of system may be calculated from certain basic parameters of formula is obtained from consideration of certain aspect theory of accompodation and from conclusions regarding of available experimental data. Adequate agreement is obtained with both the lattice theory and the experimental data; opinion all the reliable data available are included. Or are applied to the lattice theory, and the gas-surface parameters	ffice of Scientific Research (SPI of Aenasyace Research
ABSIFACT A simple formule in closed form is proposed for the coefficient from which the accomposation coefficient of system may be calculated from certain basic parameters of formula is obtained from consideration of certain aspect theory of accomposation and from conclusions regarding of available experimental data. Adequate agreement is obtained with both the lattice theory and the experimental data; opinion all the reliable data available are included. Of are applied to the lattice theory, and the gas-surface parameters	inction, D. C. 20333
coefficient from which the accomposation somificient of system may be calculated from certain basic parameters of formula is obtained from consideration of certain aspect theory of accomposation and from conclusions regarding of available experimental data. Adequate agreement is obtained the with both the lattice theory and the experimental data; opinion all the reliable data available are included. Or are applied to the lattice theory, and the gas-surface particular	
	of the system. The ts of Good na's lattice certain properties of aimed of the formula in the authors? Certain corrections
·	

١

	14 KEY WORDS		LIN	IKA	' 11	NK B	LIN	NK C
			RÔLE	• • ī	RULE	•• T	ROLE	wi
	Accessionation Coefficient Gas-Surface Interaction Barafied Gas Flow Thermal Accosmodation Coefficient					,		
		-		ı		-		
		ICTIONS						
AN ANALYMAN AND AN AND AN	1 ORIGINATING ACTIVITY. Enter the name and address of the contractor, subcontractor, grantee, Department of Defense a tivity or other organization (corporate author) issuing the report. 2a REPORT SECURITY CLASSIFICATION Enter the overall security classification of the report indicate whether "Re- stricted Data" is included. Marking is to be in accordance with appropriate security regulations. 24 GROUP Automatic downgrading is specified in Dob Directive 5206 10 and Armed Forces in astrial Manual. Enter the group number. Also when applicable, show that	(1) " port f (2) " port t (3) " repor	posed by s such as Oualified from DDC Foreign a by DDC is U S Gov t unectly request th	requeste " naouncer not auth ernment a from E	ers may o nent and orized ?? agencies :	obtain co dissemin may obta	opies of ation of in ccoies	this re- this re of this
	 optional markings have been used for Group 3 and Group 4 as suthorized. 3 REPORT TITLE. Enter the complete report title in all capital letters. Titles all cases should be unclassified. It a meaningful title control be selected without classification, show title classification in all capitals in parenthesis immediately following the title. 4 DESCRIPTIVE NOTES, if appropriate, enter the type of report. Ag., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is 	(5) (ifted	'U, S, mi ' directly sst through 'All distri- DDC user e report his ces Depage	from D button o s shall r as been	DC Other	er qualif port is c ough to the C	untrolled	s shall
	AUTHON(S): Enter themame(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and hranch of service. The name of the principal author is an absolute minimum requirement	indicate to 11. SUPF tory notes 12. SPON	his fact an PLEMENT	nd enter f ARY NO	the price, TES Use	i ^f known e for add	litional e	xplana-
	b REPORT DATE: Enter the date of the report as day, month, year, or month, year. If more tran one date appears on the report, use date of publication. Ta TOTAL NUMBER OF PAGES. The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.	ng (or) 13. ABST summary it may als port. If shall be a	the rese RACT. E of the doc so appear additional	arch and nter an a ument int sisewher	d develop abstract g dicative c re in the	pment. I iving a t of the rep body of f	nclude a prief.and port, even the techn	ddress factual though ical re-
	7b NUMBER OF REFERENCES Enter the total number of references cited in the report. 8a CONTRACT OR GRANT NUMBER If appropriate, enter to applicable number of the contract or grant under which the report was written.	nt is ports be end with of the inf (C), or (U	an undication : ormation :)	ed Each tion of th in the pa	h paragra he militar iragraµh,	ph of the y securit represent	e abstrec ty classi ed as (7	et shall fication 'S), (S).
	 8b, 8c, & 8d PROJECT NUMBER Enter the appropriate mili- tary department identification, such as project number, sub- project number, system numbers, task number, etc. 9a ORIGINATOR'S REPORT NUMBER(S). Enter the official report number by which the document will be identified and 	However, 14 KEY or short p index ent	WORDS. H hrases the ries for c	ested ie ley words it charac atelogin	ength is s are tech terize a re g the rep	from 150 inically r eport and cort Key	to 225 neaningfu may be words n	words. 11 terms 1 as 1 as 1 as
	controlled by the originating activity This number must be unique to this report. 9b OTHER REPORT NUMBER(S) If the report has been as- signed any other report numbers (either by the originator or by the sponsor), also enter this number(#).	selected s fiers. su military p as key we cal conte	ch as eo royect cod ords but w	uipment e name, ill be fo	model d geograph llowed by	esignatic ic locatio an indic	on, trade on, may l cation of	name, be u ed techii-
	signed any other report numbers (either by the originator or by							

.

1

Â

N.Y.