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FOREWORD

This final technical report on the development of the Frangible
ARCAS rocket vehicle system summarizes the efforts of Phase IIl of a three-
phase program to develop and demonstrate the feasibility of a {rangible mete-
orological rocket vehicle through systems flight test evaluation. This report
is submitted pursuant to the requirements of Contract No. AF 19(628)-4033,
dated 15 April 1964, under which the program was conducted for the Air
Force Cambridge Research Laboratories, Office of Aerospace Research.

Phases I and II, developme..t of the glass filament wound motor ]
case and other major systems components, were conducted under the Bureau
of Naval Weapons Contract NOw 62-1106-c between September 1962 and
March 1963. These phases were documented in Progress Reports 1 through
5 entitled "Qualification, Documentation, Development and Delivery of EX 6
A™CAS Systems." Phase HI, conducted between April 1964 and December
-z 4, is documented in monthly Progress Reports 1 through 16 entitled
"Frangible ARCAS Meteoroiogical Rocket Feasibility Program.”

The author acknowledges the sincere cooperation of those individ-
uals who contributed to the successful completion of the Frangible ARCAS
program including Messrs. Robert Leviton, John Wright, George McLean and
USAF Captain Thomas Smith of AFCRL, Dr. Thomas C. Poulter of Stanford
Research Institute and personnel of the Pacific Missile Range, as well as
numerous members of the Atlantic Research Corporation organization.
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ABSTRACT

Development of the Frangible ARCAS vehicle and its explosive
fragmentation system were successfully completed and demonstrated during
this program. Of the seven static firings conducted with the flight design
rocket motor during Phase III, all were successful. Two of these static tests
included successful fragmentation of the spent rocket motor assembly to par-
ticle sizes yielding impact kinetic energy leveis well below the 10 ft-1b limit
specified for the program. Impact kinetic energy levels less than 3.0 ft-1b
were achieved using an unshaped explosive charge in the forward section of
the vehicle and 0.042-inch-thick sheet explosive overwrap. Further analysis
of the system showed that fragmentation to levels of 1.5 ft-1b or less could
be achieved using the same explosive configuration with only minor modifica-
tion of the nozzle section.

The program included four flight tests. Two Frangible ARCAS
vehicles, less the fragmentation system, were successfully flight tested at
the Pacific Missile Range with a felemetry payload designed to monitfor
motor case skin temperatures during flight, These two diagnostic flight tests
established the motor case skin temperature profile required to finalize the
explosive fragmentation system design, demonstrated successful aerodynamic
performance of the basic vehicle and allowed determination of a character-
istic drag curve for the vehicle configuration using actual flight test data.

The first systems flight test vehicle was laonched May 1965 and
considered a "No Test" because of a malfunction of the PMR modified launch-
er. After considerable postponement because of adverse weathe. conditions
at the launch site, the program was concluded with the successful f:ight test
of the second and final systems vehicle in December 1965. The major objec-
tive of the program was achieved with this successful flight test. All systems
functioned as programmed and fragmentation was experienced subsequent to
payload deplovment at apogee, thereby demonstrating the feasibility of a
frangible meteorological rocket system.
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INTRODUCTION

Today's understanding of the structure and state of the earth's
atmosphere is the result of major developments in synoptic metcorology.
All major advances in this science have resulted from technological break-
throughs and discoveries attending observation. The continuing growth of
the meteorological network has introduced the foreseeable requirement for
a new development in meteorological rocket technology; namely, the ability
to carry instrumented payloads to altitudes of approximately 60 kilometers
over semi-populated gecgraphical areas without inducing undue hazards to
human life and property by the spent rocket vehicle or related falling objects.

-

Atlantic Research Corporation begas investigation of the feasibility
of a frangible vehicle concept to satisfy these requirements in September 1962
under Bureau of Naval Weapons Contract NOw 62-1106-c. This approach to
the problem consists of fragmenting the spent rocket vehicle assembly, sub-
sequent to payload ejection, to sufficiently small particle sizes to provide
very low impact kinetic energy. The required fragmentation is achieved by
means of an explosives system contained as an integral part of the vehicle.
Development of the vehicle, designated Frangible ARCAS, continued through
March 1963 and encompassed the development of most of the rocket motor
hardware and vehicle subsystems. Program funding was expended, however,
without the opportunity to evaluate the proposed fragmentation concepts.

Additional funding was made available in April 1964 by the Air
Force Cambridge Research Laboratories, Office of Aerospace Research,
under Contract No. AF 19(628)-4033 to continue the Frangible ARCAS devel-
opment work which began in September 1962. The primary objective of ihe
Frangible ARCAS program was to demonstrate the feasibility of a frangibl=
meteorological rocket system comparable in performance to the standard
ARCAS vehicle, but capable of self-induced fragmentation during flight sub-
sequent to payload ejection. The degree of frangibility to be demonstrated
by this program was specified as an impact kinetic energy of 10 ft-1b or less
for the fragmented pieces at their terminal velocity. It should be noted,

vi




however, that the magnitude of 10 ft-1b of kinetic energy at impact was arbi-
trarily selected for the purposes of this program and is not to be interpreted
as a lethal impact energy limit,

The design approach originally selected during this program to
achieve the required fragmentation capability was that of a single modular
charge to be located in the forward section of the rocket vehicle. This ap-
proach was selected because of the advantages afforded by iis simplicity, but
program activities were designed to allow modification of this fragmentation
approach in the event that test results indicated the need for relocation or
addition of explosive material to achieve fragmentation within the specified
limits. Subsequent testing and evaluation of the single modular charge
showed the inability to fragment the center section of the motor case. Addi-
Honal tests incorporating external placement of linear shaped charge and
sheet explosive material showed improved fragmentation of the rocket assem-
bly, with sheet explosive providing fragmentation well below the 10 ft-1b
impact kinetic energy level. Program efforts, beginning in August 1964,
were directed primarily toward the testing and evaluation of externally placed
sheet explosive material in combination with a primary explosive charge in
the forward section of the rocket motor. The same concept utilizing iinear
shaped charge in lieu of sheet explosive was evaluated as a backup, but the
sheet explosive material was found t{o provide better fragmentation.

This final report presents a characterization of the Frangible
ARCAS vehicle and a comprehensive summary of the development of the
rocket vehicle, its performance, stability and flight test results. The report
emphasizes the development of the fragmentation system, a major objective
and requirement of the program,
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FINAL REPORT

DEVELOPMENT OF THE EX 6 MOD 3 FRANGIBLE
ARCAS METEOROLOGICAL ROCKET VEHICLE

1. VEHICLE SYSTEMS DESIGN AND DEVELOPMENT

The Frangible ARCAS vehicle design was based largely on the de-
sign of the standara ARCAS vehicle since iis performance was to be compa-
rable. The vehicle, therefore, essentially constituted a redesign of the stan-
dard ARCAS unit ‘o provide lightweight components to maximize vehicle
periormance and provide structures susceptible to explosive fragmentation,
The development of most of these components and subsystems was completed
during Phases I and II of the program. The efforts expended during Phase III
of the program were directed primarily toward completion of component de-

velopment, develcpment of the fragmentation system and flight test evaluation
of the vehicle.

A. VEHICLE DESCRIPTION

The Frangible ARCAS rocket vehicle, shown on Figure 1, incor-
porates a glass filament wound motor case, an integral canister magnesium
fin assembly and the standard ARCAS propellant grain, igniter and nose cone.
The solid propellant grain configuration provides thrust over a relatively
long period of time and thus minimizes acceleration loads. The end-burning
technique provides a greater degree of conversion of rocket thrust into vehi-
cle velocity because a greater portion of the thrust is generated in a less-
dense region of the atmosphere and results in lower drag losses. Because of
the higher loading density, this technique also provides the smailest vehicle
for a given periormance requirement and permits the use of a slender rocket
which provides relativcly low aercdynamic drag.

The unit contains an explosive charge between the rocket motor
headplate which is initiated by a mechanical timer unit at a time predeter-
mined and set prior to launch. Initiation of the primary expiosive charge




subsequent to payload ejection results in fragmentation of the forward section
of the spent rocket motor assembly and induces sympathetic Getonation of the
0.042-inch-tuick sheet explosive material attached fo the exterior of the mo-
tor case, Detonation propagation of the sheet explosive provides fragmenta-
tion of the motor case and fin assembly. Full-scale static firing/fragmenta-
tion tests conducted during the program provided fragmentation of the rocket
motor assembly to impact kinetic energy levels of less then 10 ft-ib,

A photographic description of the Frangible ARCAS vehicle is pre-
sented on Figure 2. A comparison of the Frangible ARCAS vehicie with the
standard ARCAS is presented by the phoiograph on Figure 3 and comparative
dimensional and weight data are presented on Table I. A detailed weight
breakdown of the Frangible ARCAS systems vehicle, less payload, is shown
in Table H.

B. SEQUENCE OF EVENTS

The sequence of events from launch through iragmentation are out-
lined as follows in the order in which they occur. Upon launch, the rocket
motor provides a sustained thrust for a period of approximately 30 seconds.
As the propellant is consumed, a dimple mctor incorporated in the headplate
is exposed to the hot propellant gases in the rocket chamber during about the
last ore-half second of burning. Upon experiencing a~ elevated temperature,
a pyrotechnic material contained in the core of the dimple motor tube pro-
vides sufficient pressure to form a convex dimple at the forward end of the
tube. This movement imparted by the dimple motor is transmitted by a push
rod te the mechanical imer unit which is preset to eject the payload at apogee
by means of a gas generating cartridge activated by the timer unit, Ata
fixed time interval of 20 seconds after payload ejection, the primary firing
mechanism, incorporated in the mechanical timer unit, initiates fragmenta-
tion of the spent rocket vehicle. In the event that a fzilure is experienced
with the primary fragmentation initiation system, a secondary, independent
initiator armed and activated by changes in atmospheric pressure will initiate
fragmentation.
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The vehicle flight events sequence is presented by the illustration
on Figure 4, '

C. VEHICLE DESIGN AND DEVELOPMENT

Of primary importance during develcpment of the various rocket
components was the mointenance of lightweight structures to maximize vehi-
cle performance and provide componen’s susceptible to explosive fragmenta-
tion. Presented below is a comprehensive summary of the development of
the major vehicle components.

Rocket Motor Development

The Frangible ARCAS rocket motor incorporates a glass filament
wound metor case containing a tapered Tayloron 5031* insulator, the standard
ARCAS graphite throat insert with Tayloron PA-6* backup insulation, a lami-
nated fiberglass headplate and the standard ARCAS propellant grain and igni-
ter. An illusiration of the rocket motor assembly is presented on Figure 5.
Development of the lightweight fiberglass motor case was completed during
Phase II of the program, during which time static firings of the motor at-59
and +130° F were successfully completed.

Since the standard ARCAS propellant grain and throat insert are
incorporated in the rocket motor design, the internal ballistic performance
is not changed. The design parameters and nominal performance ratings of
the rocket motor at an operating temperature of 70°F are summarized below.

Nozzle Throat Area, in2 0.197
Nozzle Exit Area, in° 2.550
Expansion Ratio 13
Average Chamber Pressure, psia 975
Average Thrust, Ib 325
Maximum Chamber Pressure, psia 1080
Maximum Thrust, 1b 360
Total Impulse, lb-sec 9400
Burning Time, sec 30

* Taylor Corporation.




i
{
|
;:
J:

|

B
|

|

|
l

I

A nominal thrust-time curve is presented on Figure 6.

Development of an igniter for the rocket motor was precluded by
using the standard ARCAS igniter. This pyrotechnic igniter incorporates
5.0 grams of ignition composition which is initiated by a 1.0 amp - no-fire.
3.5 amp - all-fire 105A squib. The standard igniter resistance is 1.0 to 1.3
ohms,

Although the motor case was developed during Phase II of the pro-
gram, additional stati~ firings of the rocket motor were conducted during
Phase III to evaluate surface temperatures resulting from heat transfer
through the motor case wall., The requirement for these data were foreseen
in the event that external placement of explosive material was needed to effect
adequate fragmentation of the rccket assembly. Seven static firings of the
flight design filament wound motor case were successfully completed during
Phase IIT of the program in as many attempts, A static firing summary is
presented on Table III.

Motor case skin temperatures were monitored during two of the
static firings for 150 seconds after motor ignition, which was the predicted
flight time prior to fragmentation. The thermocouple locations and temper-
ature data for the two tests, AFST-11 and AFST-12, are presented on Fig-
ures 7 and 8, respectively. As observed from these data, the greatest effect
of internal motor temperatures on the motor case skin, due to heat transfer
through the wall, was experienced subsequent to motor burning. The change
in skin temperature along the length of the motor case at various times from
rocket motor burnout to the approximate time of fragmentation is shown on
Figure 9. These temperature data proved beneficial during development of
the fragmentation system. A comparison of motor case skin temperatures
during flight with the static firing temperature data also allowed a determi-
nation of the aerodynamic heating contribution to the vehicle temperature
profile in flight,

The rocket motor headplate was redesigned during Phase III of
the program, providing for a significant reduction in inert weight. This

-4-
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weight reduction was accomplished by decreasing the flange thickness for-
ward of the O-ring groove and "'dishing' the headplate as illustrated in Figure
10, The ineri weight was reduced from 1.25 pounds to 0.75 pound, represent-
ing a weight reduction of 40 per cent,

Since the headplate was designed to house a dimple motor which is
activated by rocket motor flame temperature neaxr motor burncut in order to
start the mechanical timer, laboratory pressure tests were conducted to
determine maximum headplate deflection as well as the structural integrity
of the component. Although the maximum chamber pressure that is experi-
enced under normal operating conductions with a 110°F firing temperature
is 1350 psia, the headplate was pressurized to 2000 psig to determine struc-
tural integrity. A plot of maximum headplate deflection as a function of test
pressure is presented on Figure 11, Although the weight reduction achieved
by the Phase I design resulted in about twice the deflection as the original
design, the magnitude of deflection (0.017 inch at 1350 psig) was acceptable
for design purposes.

The headplate was also designed to provide a mechanical interlock
with the propellant grain assembly by means of an overwrap of the propellant
inhibitor as illustrated on Figure 12. This method of propellant retention
proved highly successful in the Sparrow-HV ARCAS vehicle and provides po-
tential growth {or the system. Laboratory tests show this configuration to be
capable of withstanding about 89g longitudinal acceleration at 70°F before
yielding. This propellant retention system has also been succezsfully em-
ployed in the standard ARCAS vehicle.

Fin Assembly

The Frangible ARCAS fin assembly is an integral canister design
manufactured of magnesium alloy. This single unit, hcllow fin assembly is
attached tc the rocket motor case by six socket head cap screws as shown in
Figure 13. The fin design consists of four conventional double-wedge blades
with a 55° swept leading edge providing a total fin area of 119 inz, The as-
sembly is manufactured by forming the blades in four quarter section panels

-5-
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which are subsequently welded together along each leading edge, tip and trail-
ing edge to form a single, fixed cant fin assembly. The primary advantage of
this type of fin construction is that the blades are pre-set for a particular
roll rate which precludes the necessity of fin alignment during rocket motor
assembly,

The Frangible ARCAS {in assembly was adapted to a standard
ARCAS vehicle and successfully flight tested at Eglin Air Force Base in
April 1963. This fin assembly was later successfully flight tested on the
Frangible ARCAS diagnostic and systems vehicles at the Pacific Missile
Range during Phase IlI of the program.

Dimple Motor

Development of the heat-activated dimple motor was accomplished
at Atlantic Research Corporation's Flare-Northern Division. This device
was designed to initiate the mechanical timer unit by means of an expanding
dimple chamber upon sensing burnout of the rocket motor,

A total of sixteen dimple motors of the final design configuration
have been tested under conditions that permitted post-test evaluation. Of
these units tested, only one failed to initiate. This failure resulted from an
insulating coating of epoxy on the pin., All other units performed successfully.
The dimple motor configuration is shown on Figure 14, A post-test photo-
graph showing five dimple motors in the expanded position is shown on
Figure 15.

Payload Section

The payload section consists of a parachute container, which houses
the parachute and serves as the forward portion of the vehicle air frame, and
the standard ARCAS secant ogive nose cone. This assembly is essentially the
same as that of the standard ARCAS vehicle except that the parachute assem-
bly was modified to incorporate a nylon lanyard, a leather aft closure and re-
location of the lanyard attachment point. These design changes were effected
to substitute components in the parachute assembly that would perform the
same function, but be more likely to provide low kinetic energy levels upon
impact.

-6-
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The parachute is prepacked in a split fabric bag contained within
an outer aluminum barrel., The outer container is attached to the forward
section of the primary module/retaining sleeve assembly. The nose cone,
with an interlocked instrument base plate, is connectied to the forward para-
chute closure which is secured in the barrel by three aluminum shear pins,
Separation is accomplished by expelling the inner parachute assembly irom
the barrel by piston action created by a gas generating cartridge. This de-
sign, illustrated on Figure 16, was successfully tested in conjunction with
the separation device.

Payload Separation Gas Generator

The Frangible ARCAS payload separaticn device is a pyrotechnic
gas generating cartridge which is activated by a mechanical timer unit which
initiates a percussion primer. A sectioned view of the gas generator is shown
on Figure 17, The cartridge contains a charge of boron potassium nitrate
pellets and has successfully ejected full-scale parachute assemblies with a
simulated payload weight attached. The pressure-time trace produced by
this gas generator in the free volume behind the payload is presented on Fig-
ure 18 in comparison with that of the standard ARCAS vehicle pyrogen gener-
ator system. As evidenced by this comparison, the maximum expulsicn pres-
sure experienced with the Frangible ARCAS cartridge is ¢ -msiderably lower
than that of the standard ARCAS generator. This difference is attributed to
the greater initial free volume in the Frangible ARCAS configuration. Al-
though the magnitude of acceleration experienced during payload ejection has
not been monitored with the Frangible ARCAS system, the resulting pressure-
time history indicates that the shock loads experienced are less than those
experienced with the standard ARCAS vehicle. It should be noted, however,
that the reduced pressure peak also resulis in a decrear ed payload ejection
velocity. The Frangible ARCAS system imparts a relative velocity of about
35 to 40 ft/sec to the payload as compared to about 55 ft/sec for the standard
ARCAS system. The parachute ejection tests cornducted during the program
and previous ARCAS hisiory, however, show thart this velocity increment is
sufficient for successful parachute deployment,




A pyrogen gas generator incorporating the standard ARCAS propel-
lant grain, Figure 19, was successfully tested during this program. Although
the unit performed well, the relatively heavy wall required for this generator
was not susceptible to fragmentation and it was dropped from further
consideration.

Mechanicai Timer

The Frangibie ARCAS mechanical timer unit, shown on Figure 20,
was developed hy Raymond Engineering Laboratory, Inc., Middletown, Connect-~
icut. The purpose of the mechanical timer is to provide two important func-
tions during the flight of the vehicle: (1) to activate the pyrotechnic gas gerer-
ating cartridge at ¢ preselected time for the purpose of ejecting the paylead,
and (2) to initiate the fragmentation explosive system 20 seconds after pay-
load ejection.

Selection of a time subsequent {o payload eiection for initiation of
the fragmentation system was based on two factors: (1) allowance of enough
time to permit the payload and svent rocket vznicle to become sufficiently
separated so that fragmentztion could be effected without incurring damage
" to the payload, and (2) design consideration:: for a redundant initiating mech-
anism to provide high systems reliability. An analysis was performed to
determine a timer setting after payload ejection that would provide sufficient
distance between the payload and vehicle at the time of fragmentation to pre-
vent payload damage. Radar data from standard ARCAS flight incorporating
Arcasonde payloads were used to establish a payload descent trajectory. By
superimposing this trajectory profile on the predicted descent trajectory of
the spent vehicle at various launch angies, it was possible to predict the dis-
tance hetween the two bodies at any time after payload ejection {apogee). A
comparison of these data showed that a time interval of 20 seconds after pay-
load ejection provided a separation distance of about 0.75 mile at the higher
launch elevation angles as shown on Figure 21, The distance between the
objects was found to increase to about 1.8 miles at a launch angle of 84° as
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shown on Figure 22, This separation distance was considered adequate and
thus constituted the selection of the 20-second time interval between payload
ejection and fragmentation. The predicted distance between the payload and
spent rocket at 20 seconds after payicad ejection for various effective iaunch
angles is shown by the granh on Figure 23. This inverse relationship between
separation distance and elapsad time aiter payload separation was observed
to be nearly linear beginning at about 86° QE and the distance between the
bodies at the time of fragmentation is increased about 0.5 mile/degree de-
crease in laanch angle below that point.

Because of the nature of the system and the functions required of

the mechanical timer, several safety features were included in the unit as
described below:

1. A manual safing pin was incorporated in the unit to prevent
either function from sccuring until its removal. Removal of this pin, which
must be accomplished prior to installation of the payload, provides a commit-
t0o-arm condition for the primary firing system which will initiate the frag-
mentation explosive charges.

2. A visual Safe/Arm indicator is provided to show the position
of the primary firing train in the timer unit upon removal of the manual
safing pin. This indicator is visible until the payload is installed.

3. A time-integrating Safe/Arm mechanism is incorporated in the
firing system of the timer unit. This device consists of an acceleration sensing
‘element designed to require 15g to 20g longitudinal acceleration for a period of
0.100 to 0.140 second in order for the rotor arm housing the initiating detonator
tc move to the in-line position. These conditions of longitudinal acceleration

will permit the primary iragmentation system firing unit to become armed as
the vehicle is ejected from the launcher.

The units incorporated in the final flight tests were subjected to
shock and vibration tests to verify that the units would not become armed or
actuated by these conditions. The results of these are presented on Table IV-




Redundant Initiator

Because of the reliability required with the fragmentation system,
a secondary fragmentation initiation device was developed by the Space/Arm
Division of Wallace O. Leonard Corporation,-Pasadena, California. This unit
was designed {o become armed and initiate fragmentation by sensing changes
in atmospheric pressure and is independent of all other systems aboard the
vehicle.

Details of the redundant, pressure sensing initiator unit are shown
by the illustration in Figure 24. The unit was designed to become armed at
an ambient pressure equivalent to an altitude of 70,000 to 100,000 feet during
vehicle ascent and initiate fraginentation at a pressure equivalent to an alti-
tude of 50,000 to 70,000 feet during vehicle descent by means of an expanding
bellows, This system allows fragmentation initiation by the pressure sensing
unit only in the event of a failure of the mechanical imer mechanism. The
minimum fragmentation altitude of 50,000 feet was selected in order {o stay
above ‘he altitude levels currently used by commercial and most military
aircraft.

The redundant initiator unit was designed to incorporate the follow-~
ing safety features:

1. A manual safing pin must be removed in order to allow the
unit to initiate fragmentation. The pin was designed such that it could not be
removed if the firing pin had been prematurely released.

2. The unit must experience the required pressure cycling to
function.

The units were subjected to environmental testing to determine the
effect of shock, vibration, etc., on the function of the unit. All units functioned
within the prescribed pressure limits after all phases of the environmental
test program. Test results are presented on Tables V and VI,

-10-
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An analysis was perforined by the manufacturer of the redundant
initiator unit to determine the effect of high longitudinal acceleration loads ca
the unit. This znalysis, presented in Appendix I, showed that a steady state
acceleration of 245¢ is required to disp:ace the arming system from the safe
position and that a steady state acceleration of 330g would be required to arm
the mecnanism. Since the maximum longitudinal acceleraticn normally expe-
rienced during the operation of the Frangible ARCAS vehicle is only about
125¢ {during ejection from the closed breech launcher), the unit cannot be
inadvertently armed by the acceleration loads imposed during its launch or
flight.

An analysis of the dynamic pressure effects on the redundant initi-
ator pressure sensing mechanism during vehicle descent was performed be-
cause of the vehicle attitudes that are encountered subsequent fo payload ejec-
tion. The gyroscopic stabilizing effect induced by the vehicle burnout roll
rate {(Figure 25) in combination with the instability induced by loss of the
fcrward vehicle weight upon ejection of the pavload results in a tumbling
motion of the spent venicle during its descent. Since the sensing of dynamic
pressure cannot be distinguished from ambient pressare by the redundant
sensing element, it was important to determine the resulfing effect of dynamic
pressure upon the system. The resulis of this analysis, presented in Appendix
1, showed that the effects of dynamic pressure would increase the altitude at
which fragmentation by the redundant initiator is experienced from a nominal
altitude of 60,000 feet to about 90,000 feet. The analysis also showed that the
maximum possible altitude at which fragmentation could be effected by the
redundant unit during vehicle descent {under pure dynamic pressure conditions)
was 112,000 feet,

Although this analysis showed that the altitude at which fragmenta-
tion was likely to occur was increased by the effects of dynamic pressure, the
limits c¢£ 112,000 feet maximum to 50,000 feet minimum did not interfere with
the operation of the primary fragmentation system and provided a minimum
altitude sufficiently high to avoid safety hazards te aircraft, etc. Since there
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was no apparent reason for reducing the fragmentation altitude limits, the
design was considered adequate regardless of the dynamic pressure effects.

. FRAGMENTATION SYSTEM DEVELOPMENT

The major effort of the program was the development of an explo-
sive fragmeniation system capable of reducing the spent rocket vehicle o
particle sizes yielding impact kinetic energies of 10 {t-1b or less. The ne-
cessilty of maintaining lightweight components and minimizing vehicle drag
while requiring fragmentation of the entire assembly imposed stringent re-
quirements upon the design of ithe system. Because of the effect of externally
placed components on the vehicle drag and the possible effect of aerodynamic
heating on the component, the most desirable approach to the problem of
fragmentation was that of a system wholly contained within the vehicle. In
view of the possible difficulties foreseeable with such a system, however, the
ultimate use of external components was considered as a back-up method of
fragmentation.

A comprehensive summary of the development of the Frangible
ARCAS explosive fragmentation system is presented below.

A, INITIAL FRAGMENTATION TESTS

The design approach originally selected during this pregram to
achieve the required fragmentation was that of a single modular shaped
charge located in the forward section of the rocket vehicle. This approach
was selected bzcause of the many advantages afforded by its simplicity, but
program activities were designed to allow modification of this fragmentation
approach in the event that test results indicated the need for relocation or
addition of expiosive material to achieve fragmentation within the specified
liimits. The preliminary design of the singie modular shaped charge concept
envisioned a system similar to that shown on Figure 26.
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The initial fragmentation tests incorporating the shaped charges
illustrated on Figure 27 were completed on June 18 under simulated altitude
conditions representing a pressure environment of 100,000 feet. The moter
cases used for these tests were the cases which were successfully static
fired in tests AFST-9 and AFST-10 on May 13. A photograph showing the
inert rocket motor assembly with grid markings for post-test identification
and the bifocal shaped charge module is shown on Figure 28. A photograph
of the pre-test set-up with the rocket motor assembly suspended from the
ceiling of the simulated altitude chamber is presented on Figure 29,

High speed phofographic coverage of the fragmentation sequence
was obtained with a Fastex camera. The camera was motited outside the
test cell in a photographic port and was started just prior to detonation of the
explosive module., The fragmentation sequence was cbtaired, but the flame
r=sulting from the deionation engulfed the inert motor assembly before com-
plete fragmentation was experienced {see Figure 30). Resulls of these two
initial fragmentation tests are shown on Figures 31 and 32, As observed
from these photographs, the shaped charges tested were effective in fragmen-
ting the forward and aft section of the rocket assembly, but the center section
of the motor case was left intact. Fragmentation of the nozzle section was
accomplished by the focusing effect of the shaped charge and wave propaga-
tion through the empty motor case which served as a shock tube as illustrated
on Figure 33.

Post-test analysis of the unit containing the bifocal shaped charge
showed that the annular shaped wave was directed outboard more than antic-
ipated because of vector effects resulting from central initialion as illustrated
on Figure 34. Consequertly, wave intersection with the motor case wall
occurred farther forward than anticipated, as shown on Figure 35.

Fragments recovered from these inilial tests were utilized in tests
to determine characteristic drag coefficients for the determination of terminal
velocity and impact kinetic energy. The determination of these aerodynamic
coefficients for various shapes was necessary for evaluation of the particles
produced during subsequent fragmentation tests,
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B, DETERMINATION OF PARTICLE FREE-FALL DRAG
COEFFICIENTS

The allowable particie sizes produced during fragmentation of the
spent vehicle were defined in terms of impact kinetic energy,
E=Yy?
2g

(1)

The maximum allowable limit was specified as an impact energy of 10 {t-1b
for the resulling fragments at théir terminal velocify. It should be noted,
however, that the magnitude of 10 {i-1b of kinetic energy at impact was ar-
bitrarily selected for the purposes of this program and is not to be inter-
preted as a lethal impact energy limit,

Because impact kinelic energy is in:iirectly dependent upon the
coefficient of drag, as a resuilt of its influence on velocity, tests were con-
ducted to detcrmine actual free-fall drag coefficients of the iragments
obtained from the initial fragmentation tests, Although most of the fragments
used for these tests were larger than the particle sizes anticipated as the
system was developed further, they were adequate to determine character-
istic drag coefficients of the various shapes for subsequenti use in the program.
The actual free-fall drag coefficients were determined experimentally by
water tank tests. By recording the time required for each piece to free-fall
through 8.75 feet of water and using these data to determine the average
velocity for the narticle in water, it was possible o utilize the equation for
aerodynamic drag in determining the drag coefficient for each piece.

Using the drag equation for the conditions of terminal velocity
{drag = weight), the relationship may be expressed as:

[ v2
B=W=CBtp-—~S @)
2
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The drag coefficient then becomes

2W
Cp = _— (3)
2
rVy S
where:
Ww = sample weight in water, 1b
p = density of water, lb-secz/ft4
Va = average free-fall velocity, ft/sec

drag reference area, ft2

(/2]
Il

Ten drop tests of each sample were used to determine the average free-fall
velocity for each fragment. The resulis of these tests are tabulated on
Table VII. These data were used to calculate characteristic free-fall drag
coefficients for the fragments as shown on Table VIII. Based on the maxi-~
mum and minimum velocities recorded for ~ach piece during the water tank
tests, limit drag coefficients were determined, for reference, as shown on
Table IX, Photographs of the rocket motor fragments used :n the experi-

mental determination of characteristic drag coefficients are shown in Figures
36, 37, and 38.

C. DETERMINATION OF IMPACT KINETIC ENERGY

Having determined a drag coefficient characteristic of each of the
test fragments, it was possible to calculate their terminal velociiy and re-
sulting impact kinetic energy. Using Equation (2) for the conditions of ter-
minal velocity, Vr, (drag = weight),

T
Vo = 4
T \/ CphpS @
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or

at 10,000 feet altitude*

Voo [__2W
T '\/CD(0.001756)S

Vi =\/h‘-"OW -33.8 |- (4")
CpS \/ €8

The terminal velocity and resulting impact kinetic energy for e
test pieces were calculated as shown on Table X, These calculations show
that, with the exception of the remaining motor case, all fragments tested
provided an impact kinetic energy of less than 10 ft-1b.

then

Since the fragments from each subsequent fragmentation test con-
ducted during the program were to be evaluated, a more convenient method
of determining impact kinetic energy was derived by combining the above
equations in such a manner as to express kinetic energy at impact directly
in terms of fragment weight, coefficient of drag and drag reference area.
The general expression was obtained by substituting Equation (4) into
Equation (1), which allowed impact kinetic energy to be expressed as

W2 _W/2W
2g 2g CDpS

or

2 2
E=_-W___xW

- - 5
eCppS  CpS ®)

* An altitude of 10,000 feet was used to determine terminal veloe’ty and

impact energy, rather than sea level, to provide a factor of safety in
the calculations.
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where
k=1
gp
For an altitude of 10,000 feet, p = 0.001756 lb-secz/ft4, tnerefore,
K = 1 = 17.7 13 /1
32.17 {0.001756)
and
2
E=17.7 W_ 6)
CDS
where
W = fragment weight, Ib
CD = free-fall coefficient of the fragment

S

drag reference area of the fragment, ftz

The use of the impact kinetic energy equation in this form pre-
cluded the necessity of determining the magnitude of terminal velocity
separately. This equation was used to determine the impact kinetic of
particles produced in subsequent fragmentation tests during development of
the system and was found to be considerably more convenient.

D. FRAGMENTING MODULE CONCEPT

Although full-scale tests of the various shaped charges showed
their inability to fragment the entire rocket motor assembly, the potential
advantages offered by a single modular charge were sufficient to justify addli-
tional investigation before tlie concept was dropped from consideration. A
review of the test results obtained with the shaped charges, however, pro-
vided conclusive evidence that the effects of shaping the module were concen-
irating the detonation wave in a manner such that only localized areas of the
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unit were effected by the charge. Additional tests also showed that low im-
pingement angles did not provide adequate penetration. In summary, it was
concluded that if fragmentation of the full length of the motor case was to be
accomplished with a single modular charge, dispersion of the energy pro-
duced by the charge was necessary,

Since the effect of the shaped charge is to concentrate rather than
disperse the resulting detonation products, the concept was reversed. The
new concept was to provide dispersion of high velocity metal particles for
penetration along the length of the motor case wall, Dispersion of the par-
ticles was accomplished by reversing the conical end of the shaped module
and fabricating the end from cast metal to provide a large number of
fragments,

Two inverted cone module designs, illustrated on Figures 39 and
40, were fabricated for test purposes. Target tests, as shown in Figure 41,
were conducted to determine particle sizes and trajectories subsequent to
penetration of the rocket motor headplate. The test set-up of the module
assembly is illustrated on Figure 42,

Results of these tests showed that the Type I module provided
particle dispersion sufficient to cover the entire motor case length, while
the Type H module concentrated nearly all particles in a 4-inch diameter
circle on the target 5 feet away Typical particle sizes obtained are shown
by the photograph in Figure 43.

A full-scale test of the Type I fragmenting module was conducted
with a simulated motor case. Results of this test showed that the particles
produced during detonation of the module failed to peneirate the glass fila-
ment wound tube of 0.110-inch wall thickness. Post-firing analysis of the
remaining tube showed evidence of particle impact on the inside wall, but
the low impingement angle resulted in deflection of the metal fragments
rather than penetration of the fiberglass wall. Failure of both the shaped
and fragmentating charges to effect fragmentation of the motor case resulted
in the single charge concept being dropped from further consideration as a
method of vehicle fragmentation,
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E. SHOCK TUBE TECHNIQUE

Although the single modular charges tested during the program
failed to provide complete fragmentation of the rocket motor assembly, test
results showed reproducible frazmentation of the nozzle section and fin
assembly to impact kinetic energy levels below 10 ft-1b. Since the test re-
sults also showed that the shape of the modular charge had no appreciable
effect on the results attained, it was concluded that the most significart con-
tribution {o the effective aft end fragmentation experiencad was that of the
empty motor case, which acted as a shock tube for the modular charge and
directed the resulting detonation wave to the nozzle section. These test
results disclosed the fact that complete fragmentation of the rocket assem-
bly could be effected if an external explosive material could be sympatheti-
cally initiated by the shock experienced during fragmentation of the aft sec-
Hon by the primary detonation wave. By allowing the motor case to remain
intact to act as a carrier for the primary detonation wave from the internal
explosive charge, fragmentation of the nozzle section would be completed
prior to sympathetic detonation of the external explosive which would frag-

ment the remaining motor case. This shock tube fragmentation concept is
illustrated on Figure 44.

The first full-scale static firing/fragmentation test, conducted on
September 22, incorporated this concept. A photograph of the test set-up is
shown on Figure 45. The primary explosive charge consisted of 1.0 pound
of Comp. "B" which was contained and initiated as illustrated on Figure 46.
The external charge consisted of 0.030-inch-thick sheet explosive material.
Test results showed that the external sheet explosive material was not sym-
pathetically initiated during fragmentation of the nozzle section. Consequently,
the test results were nearly identical to those attained with the single conical
shaped charge (Figure 31).

A similar test was conducted to determine the ability of the pri-
mary shock to sympathetically initiate 100 grain/ft linear shaped charge
from ‘*he aft end during fragmentation of the nozzle area. Figures 47 and 48

-19-




show the motor case with linear shaped charge incorporated in such a man-
ner as to simulate being covered by the fin assembly. Test results of this
combination also showed failure of the aft end fragmentation to impart sym-
pathetic detonaticn of the external explosive.

F. MODULAR CHARGE/EXTERNAL EXPLOSIVE TECHNIQUE

The test results described above showed the inability to induce sym-
pathetic detonation during fragmentation of the nozzle section, but the concept
of motor case fragmentation by means of externally placed explosive material
offered the greatest potential cf any technique attempted. The ability to attain
sympathetic detonation of the external explosive material was extremely de-
sirable in order to avoid the necessity of a secondary ignition sysiem for the
external charge. The most positive means of inducing sympathetic initiation
was fo extend the external explosive material farther forward on the motor
case to bring it into close proximity to the primary charge ag illustrated in
Figure 49, The disadvantage of initiating the external charge at the forward
end was that fragmentation of the aft end of the motor would not benefit from
the shock tube effect produced by the primary charge. The detonation rate of
the external charge, about 7000 meters/second, is considerably greater than
the wave velocity produced through the motor tube by the primary charge,
which is more on the order of 3000 meters/second. This velocity difference
was sufficient to allow advanced fragmentation or collapse of the motor case,
thereby preventing the primary charge wave from reaching the nozzle section.
By precluding the use of the motor case as a shock tube, fragmentation of the
nczzle/fin section is dependent upon the external explosive material.

A full-scale fragmentation test was conducted on Octcher 26 to
evaluate the concept described above and the parﬁcie sizes resulting from
this technique of fragmentation using 0.030-inch-thick sheet explosive. A
photograph of the pre-test set-up is shown on Figure 50, Sympathetic deto-
nation of the sheet explosive was successfully achieved and all sections of
the rocket motor assembly were fragmented to sizes providing impact kinetic
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energy levels less than 10 fi-1b except the throat insert back-up insulation
section, as anticipated. It should be noied, however, that the motor case
used for this initial test had not heen staiic fired. Tonsequently, the insula-
tion material in the motor case was uncharred anc considerably stronger
than the insulation in a fired motor case. A photograph of the fragments
from this test is presented on Figure 51.

A similar test was conducted usirg eight strips of 100 grain/foot
linear shaped charge in lieu of sheet explosive material {see Figure 52).
Sympathetic detonation of the linear shaped charge was also achieved, but
fragmentation of the unit was less effected than with the sheet explosive as
evidenced by the test results shown on Figure 53. Post-test evaluation of
the fragments produced showed the best fragmentation that could be expected
with wnis technique incorporating linear shaped charges to be unacceptabie
with respect to impact kinetic energy unless substantially more shaped
charge strips or larger strips were employed. An increase in number or
size of these charges was undesirable with respect to vehicle weight and
aercdynamic drag considerations. Consequently, the use of linear shaped
chargesasa method of motor case fragmentation was dropped from further
consideration and all efforts were direcied toward improving the modular
charge/sheet explosive technique which appeared most promising,

G. FINAL CONFIGURATION

In order to provide more complete fragmentation of the nozzle sec-
tion, the thickness of the sheet explosive material was increased from 9.030
inch to 0.042 inch, which is the minimum standard thickness commercially
available at this time. This increase in thickness and weight of explosive
material was believed to be adequate to provide fragmentation of the entire
rocket assembly within the specified limit of 10 ft-1b of kinetic energy for
the fragments upon impact.

A major milestone was achieved on October 26 with the successful
static firing and subsequent fragmentation of a Frangible ARCAS rocket motor
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assembly. A pre-firing photograph is presented in Figure 54 showing the
rocket motor assembly mounted in a vertical firing position. No thrust or
chamber pressure data were recorded because of the nature of the test, The
primary objectives of the test were:

1. To evaluate the performance of the sheet explosive after sub-
jection to full-time heat {ransfer temperature environment,

2. To evaluate the fragmentation capabilities of the 0.042-inch-
thick sheet explosive when sympathetically initiated from the forward end by
the primary charge.

The test was conducted in accordance with the sequence shown on Figure 55.

Approximately 120 seconds after rocket metor burnout, the primary
explosive charge was initiated, effecting sympathetic detonation of the sheet
explosive and fragmentation of the entire rocket motor assembiy. The results
of the fragmentation achieved with the single modular charge and 0,942-inch-
thick sheet explosive is shown by the photograph in Figure 56. The temper-
ature environment to which the sheet explosive was subjected as a result of
heat transfer through the motor case wall had no deteriorating effect on its
performance,

Subsequent analysis of the fragmeuted pieces with regard to impact
kinetic energy showed the largest motor case fragment to provide an impact
kinetic energy of less than 3 ft-1b as tabulated below:

\i'4
Weight Weight Drag Ref. —— Energg
Fragment {gm) {ib D Area ({ft°) D {ft-1b
Largest Motor Case
Piece 35.0 0.077 150 0.082 0.94 1.28
Largest Fin Piece 27.3 0.110 124 0.165 0.54 0.49
Largest Insulation
Piece 17.9 0.080 107 0.933 2.26 1.717
Largest Retaining
Sleeve Piece 13.5 0.030 1.07 C.010 2.80 1.50
Fin Retaining Screw 6.0 0.013 1.00 0.001 13.00 2.98
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It should be noted from the tabulation on page 2%, that the maximum
energy level experienced resulted from the fin retaining screws. Substitution
of nylon or aluminum screws for the steel socket head cap screws currently
used would reduce this impact energy to about 0.54 ft-1b. Minor modification
of the nozzle section would also reduce the impact energy level of the insula-
tion pieces. Hence, a maximum impact energy of about 1.5 ft-1b could be
achieved with only minor modification of the nozzie section.

The test results obtained with the 0.042-inch-thick sheet explosive
mezterial demonstrated the success of the modular charge/sheet explosive
technique and constituted its incorporation in the final design of the fragmen-
tation system, illustrated on Figure 57. Two static firing/fragmentation tests
were successfully conducted during the program incorporation 0.042-inch-
thick sheet explosive materiai. Aijl three tests showed similar resuits, with

impact kinetic energy levels of the resulting fragments well below the limit
of 10 ft-1b,

The sheet explosive material incorporated in the iragmentation
system is DuPont's "Detasheet” C material. The manufacturer's specifica-
tions for this material are presented on Table XI,

External Expiosive Retention

Calculations were performed to determine the maximum vehicle
boundary layer shear stress at various times during flight. These calcula-
tions, tabulated on Table XII, indicated a maximum shear stress of only about
2 1b/it® during flight. This relatively low magnitude of shear stress indicated
that the external sheet explosive material could be retained with a temper-
ature resistant, pressure sensitive tape, which was ultimately incorporated.
A pressure sensitive base wrap was used to retain the sheet explosive {o the
motor case. An aluminized {iberglass tape was used as an overwrap.

H. FIRING TRAIN DEVELOPMENT

The successiul results obtained with the modular charge/sheet
explosive technique defined the basic {ragmentation system. Test results
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showed acceptable fragmentation of the motor case by sympathetic detonation
of the sheet explesive, The task remained, however, to develop an explosive
initiating train that could be incorporated in the modular charge and initiated
by both the mechanical timer unit and the pressure sensing redundant initiator,
Since the design and function of both these units had been completed, it was
necessary {o select a suitable initiator to provide reliable detonation of the
primary explosive charge.

Laboratory tests of the mechanical timer fragmentation system
firing mechanism showed repeatable high order detonation of the primary
charge booster with a MK 125 stab primer. The initial test of a full-scale
timer assembly, however, showed the inability of the MK 125 primer {o in-
duce high order detonation across the existing 0.092-inch gap under actuai
conditions. An M55 stab detonator was substtuted for the MK 125 primer
to increase the shock velocity from the output end. Although the M55 stab
detonator is scmewhat smaller in size, the ouiput end contains RDX rather
than lead azide which results in 2 shock velocity of about 8400 meters/sec-
ond as compared to 4000-5000 meters/second for lead azide. An illustration
of the mechanical timer firing {rain is presented on Figure 58.

Additional laboratory tests, incorporating lead sample plates,
were conducted to compare the relative energy ocutput of these initiators.
The test results, shown on Figure 59, showed the M55 stab detonator to
have about 2 {o 3 times the penetrating effect.

A full-scale mechanical imer system fragmentation test incorpo-
rating the M55 stab detonator was successfully conducted at a simulated
altitude of 100,000 feet. The test set-up is illustrated on Figure 60. Post-
test analysis of the timer unit showed adequate fragmentation of all compo-
nents. Successful completion of this test constituted the selection of the
M55 stab detonator for use in both the mechanical fimer and redundant
initiator systems.
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I. STATIC FIRING/FRAGMENTATION SYSTEMS TEST

The Frangible ARCAS rocket motor AFST-15 was incorporated in
2 full-scale systems test utilizing the final explosive fragméntatmn configu-
ration described above. The test also incorporated the mechanical timer
firing system. The unit was tested in the vertical firing position. No thrust
or chamber pressure data were recorded because of the nature of the test.

The static firing portion of the test was completed with no apparent
abnormalities, This static test marked the seventh and final successful static
firing of the flight design motor case during Phase Il of the program in as
many attemnpts. The rocket motor was subjected o heat transier temperatures
for 120 seconds after rocket motor burnout. This time increment represented
the approximate time, after rocket motor burnout, for the vehicle to coast 20
seconds past apogee. At this preselected time the stab detonator, which was
to have induced fragmentation of the rocket assembly, was nct initiated.

After a time lapse of six minutes, the primary explosive charge was initiated
by a back-up system {an electrically initiated blasting cap and RDX booster),
effecting sympathetic detonation of the sheet explosive and fragmentation of
the entire rocket motor assembly. Resulis of the fragmentation achieved
with the 0.0042-inch-thick sheet explosive were similar to that of the unit
AFST-14, shown on Figure 56. Subsequent analysis of the fragmented pieces
with regard to impact kinetic energy showed the largest rocket motor frag-
ments to provide an impact energy of less than 10 fi-lb as tabulated below.

Weight o Drag Ref.  pper,

Fragment {ib} D Area {ft“) (it-1b)
Largest Insulation Piece 0.080 1.07 D.033 3.22
Largest Fin Piece 0.110 1.24 0.165 1.05

The cause of the fragmentation iniiation system failure was not
readily apparent. However, in view of the fact that all system components
were checked independently prior to the test and found to function satisfac-
torily, it was concluded that the failure was attributed to a disergagement of
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the stab detonator resulting from shock and/or vibration during the test. It
should be noted that the timer assembly was inverted since the rocket motor
was static fired in the vertical position, ST

Abbreviated Systems Test

An abbreviated systems test was successfully completed at Atlantic
Research's Pine Ridge test facility on December 21. This test incorporated
a four-second burning time, heavywall rocket motor containing: (1) five
Frangible ARCAS dimple motors in the headplate, and (2) the final design
mechanical timer assembly incorporating an M55 stab detonator. The pur-
pose of this test was to check the functioning of the system from rocket mo-
tor burnout through initiation of the M55 stab detonator by the mechanical
timer firing pin and check a number of dimple motors for reliability. The
test was designed to allow activation of the dimple motor by actual rocket
motor temperature environment which wouid, in turn, start the timer unit,

The test was successfully concluded by initiation of the stab detc-
nator by the mechanical timer unit firing pin. Post-firing examination of the
assembly showed that all systems performed satisfactorily. All five of the
dimple motors were activated during rocket motor burnout. Successful per-
formance of this test motor and the fragmentation initiation systems substan-
tiated the conclusion that the malfunction experienced during the full-scale
systems test resulied from the disengagement of the stab detonator from the
rotor arm housing during the static firing portion of the test,

1. VEHICLE FINAL ASSEMBLY AND LAUNCH

The Frangible ARCAS vehicle was designed to be launched from
the standard LAU-41/A closed breech launcher. Final assembly and launch
operations for the vehicle follow nearly the same procedures applicable to
the standard ARCAS.

Subseguent to applying the external sheet explosive material, the
propellant grain retaining sleeve used for shipping purposes is removed and
replaced by the explosive module assembly, shown on Figure 61. After
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removing the mechanical timer manual safing pin and attaching the payload,
the vehicle is in< iiled into the launcher as shown on Figure 62 using the
standard ARCAS Styrofoam spacers. The launch piston, shown on Figure 63,
is ficted to the aft end of the vehicle and the spring straps are positioned to
engage the fin shroud to lock the piston assembly to the vehicle, The spring
action of the strevs provides release of the assembly upor ejection of the
vehicle from the launch tube, The method of retention provided by the launch-
er piston assembly is illustrated in Figure 64.

Upon final installation of the vehicle into the launcher and elevation
of the launcher in preparation for vehicle flight, final commit-to-arm of the
fragmentation initiation system is accomplished by removing the manual

saiing pin from the redundant initiator through a small access door in .he
launch tube.

Although this final proceduare in the sequence of launch operations
was nol mandatory and required a minor modification to the existing launch
tube, as illustrated on Figure 65, it was recommended to provide maximum
safety, This procedure precludes the reguirement of handliag the vzhicle, .
whether loading or unloading from the launcher, with the redundant initiator
manual safing pin removed.

IV. VEHICLE STATIC AND =~ YNAMIC STABILITY

Aerodynamic evaluation of the Frangible ARCAS vehicle configura-
tion showed excellent static stability characteristics. The results of this
analysis, presented on Figure 66, show the vehicle to be reiatively insensitive
to payload weight and center of gravity location throughout the range of rea-
sonable payload weights and launchangles. As observed from this piot, at
least one caliber of stability is maintained with a payload weight of 8.0 pounds
regardless of the payload center of gravity location. Variation of the vehicle
center of gravity during flight is presented on Figure 67.

The dynamic stability is presented by a comparison of vehicle
pitch frequency and roll rate as a function of flight time on Figure 68.
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As obse. -ed from the comparison of these parameters, the vehicle is de-
signed to provide 'crossover' early in flight, Although the fin assembly was
originally designed to provide a nominal roll rate of 20 rps at rocket motor
burnout, the final vehicle configuration was several pounds heavier than antic-
ipated, resuiting in a slight decrease in vehicle burnout velocity and a corres-
ponding decrease in maximum roll rate to about 16,3 rps with the existing fin
assemblies, Although this reduction in roll rate had no detrimental effect on
vehicle performance, the roll rate of future vehicles may be increased by
increasing the cant of the fin blades, thereby allowing a potential growth oi
the system by permitting the use of heavier payloads. The vehicle pitching
frequency for various payload weights and center of gravity locations is
shown as a function of time on Figure 69.

V. WIND WEIGHTING AND DISPERSION

Because of the similarity between the Frangible ARCAS and the
standard ARCAS vehicles and the limited number of flight tests involved, the
standard ARCAS wind weighting and dispersion data were used for the flights
during the program. Wind sensitivity and weighting factors for the standard
ARCAS vehicle are presented on Figure 70 and Table XIII, respectively.

Current dispersion statistics for the standard ARCAS vehicle show
that 95 per cent of 21l impacts will be within a radius of 6.5 nautical miles of
the predicted impact point. The tabulation below shows the impact error ex-
perienced with the Frangible ARCAS flight vehicles.

Predicted Actual
QE Impact Range Impact Range Impact Error
Flight Test  (degree) (NM) (NM) (NM
AFFT-1 84.5 23.4 23.5% 0.1%
AFFT-2 77.0 41.0 35.6 5.4
AFFT-3 b b b
AFFT-4 c c c c

a. No radar track, Impact range determined by extrapolating early portion of
trajectory and telemetry data.

b. No test. Launcher malfunction induced severe reduction of vehicle performance.
c. Fragmented in flight as programmed. No impact range,
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These data show the impact location to be within the area predicted.

VI. DIAGNOSTIC FLIGHT TESTS

The Frangible ARCAS program included the flight testing of two
diagnostic vehicles. These units, shown in Figure 71, were of the same con-
figuration as the systems vehicle except for the omission of the fragmenta-
tion system. The purpose of the diagnostic flight tests was threefold:

a. To evaluate the general aerodynamic characteristics and flight
performance of the vehicles,

b. To determine a drag curve by flight data analysis which would
accurately characterize the vehicle confggu:aﬁon so that the
systems vehicle performance could be accurately predicted.

¢. Monitor motor case skin temperatures during flight to deter-
mi_ne the temperature environment to which the external ex-
plosive material would be subjected.

A. DIAGNOSTIC PAYLOAD

A paylcad to monitor motor case and payload section temperature
during flight was designed and built by the Electro-Mechanics Division of
Atlantic Research Corporation. The locations of interest wete selected as
shown on Figure 72, based on temperature data obtained from static firings.
Thermistors were desired for this application because their use would pre-
clude the need for payload signal preamplification. A study was conducted,
however, which determined that available thermistors would not provide
satisfactory readout resolution over the range of vehicle temperatures that
were expected (see Figures 73 and 74). Laboratory tests indicate~ no per-
manent alteration of the thermistors tested to temperatures of 1060°F, but
resolution obtained at temperatures above about 400° F was insufficient to
achieve temperature data to even 20 per cent accuracy. For this reason,
motor case temperatures were monitored with thermocouples. Thermistors
were used as a temperature reference and to monitor temperatures in the
payload section.

-29-~
— e e e g g A - T =
Qase s = T s N M s e S T




i

-

The diagnostic payload, shown on Figures 75 and 76, was designed
to sample thermocouple data by means of a motor driven communicator for
0.75 second sequentially, The thermistors were commutated at the same
rate and in such a manner as to make frame identification possible. The
selected thermocouples were connected tc a magnetic amplifier for signal
preamplification. Four hundred cycle power was supplied by an ERA Transpac
solid-state inverter. A block diagram of the telemetry system is shown on
Figure 77.

B. FLIGHT TEST RESULTS

Performance of the diagnostic vehicles was predicted based on the
standard ARCAS drag data. The units were launched without the auxiliary gas
generator boost to minimize the shock loads imparted t. the telemetry pay-
load. A comparison of the predicted and actual performance attained is pre-
sented on Figure 78. This comparison shows that the predicted performance
was somewhat optimistic as compared to the flight performance attained.
Since the parameters such as vehicle weight, propellant weight, and total
impulse were known to be accurate, it was concluded that the optimistic pre-
diction was primarily attributed to the vehicle drag data. The apogee perform-
ance of the vehicles, particularly that of the initial flight, showed the actual
performance to be reasonably close to that predicted. This observation in-
dicated that the drag data assumed would require only minor modification to
improve the accuracy of the predicted performance and was substantiated by
a comparison of predicted and actual vehicle roll rate during flight, shown
on Figure 79. Since the vehicle roll rate is directly proportional to its
velocity, the agreement of these data indicated that the velocity of the vehicle
AFFT-1 was close to that predicted.

The &r&g data characterizing the basic vehicle configuration was
established by utilizing the data obtained from these initial flight tests, The
resulting characteristic drag curve is presented on Figure 80, A detailed
analysis of the flight performance data ard the modification required to the
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assumed drag curve {o provide agreement between the actual and predicted
data are presented ir Appendix IIl. The revised drag data resulting from
this analysis provided predicted performance that agreed well with the flight
data obtained, as evidenced by the trajectcry profiles on Figure 81, A com-
parison of actual and predicted times to impact, tabulated below, also showed
relatively good agreement between the revised predicted performance and

]

B T

that achieved.
Time From Launch to Impact (seconds)
T Flight Test Predicted*® Radar Data Telemetry Data
a AFFT-1 247 No Data 248
- AFFT-2 210 202 205

It

* Based on revised performance data.

S,

C. TEMPERATURE DATA

During the initial fiight, the moto: case thermocouples failed to
respond immediately after launch and only a 420 cps frequency was recorded
with no deviation. This failure was sprarently induced by "lock-in" of the

e
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i voltage control oscillator with the power inverter. The thermistors in the

, payload section, however, were not affected and provided temperature data

§ througiiout the flight. The maximum temperatures recorded were about 180°F

i

as shown on Figure 82.

)

- " It should be noted that although the motor case skin temperatures

- were not recorded during flight. the frequency output of the payload indicated

’ that the motor temperatures did not exceed 575°F. This determination was
made by observing the output frequency of the voltage control oscillator.
Calibration of the payload during its manufacture showed that temperature
differences of approximately 500° F between the motor case thermocouples

and the reference thermistor produced an increase in the output frequency of
the voltage control oscillator. Analysis of the telemetry data showed that no
frequency change was experienced. Since fhe maximum reference temperature

i

L3
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was about 75°F, it was concluded that the motor case skin temperatures did
not exceed 575°F during the flight, This conclusion was substantiated by the
results of the second flight test.

The second flight test vehicle, AFFT-2, was instrumented with
four thermistors in the payload section and eight thermocouples in the skin
of the glass filament would motor case. The thermistors in the payload sec-
tion failed to respond shortly after launch, resulting in the absence of the
positive signal on the commutated data trace. The motor case skin thermo-
couples were not affected and motor temperature data were recorded through-
out the flight, but lcss of the positive signal precluded identification of eight
thermocouples with respect to their position on the motor case. Analysis of
the temperature data, however, showed the inability to identify the individual
locations of the thermocouples to be inconsequential since the difference in
the temperatures was only about 50°F, The motor case skin temperatures
during flight are presented on Figure 83 in comparison with the maximum
skin temperatures recorded during several static firings of the motor earlier
in the program. As observed from this plot, the maximum skin temperatures
recorded were about 500°F, A comparison of the rate of temperature in-
crease experienced during static and flight tes!s showed the aerodynamic
heating contribution to the temperature environment experienced during flight
to be prevalent. Since the sheet explosive incorporated in the fragmentation
system had performed successfully after exposure to motor case temperatures
of about 500°F for six minutes (static firing/fragmentation test AFST-15,
November 25, 1964), the flight data showed that the system would not be ad-
versely affected by the temperature environment experienced during flight.

-

The lower temperatures experienced during {light beginning at
about apogee, as compared to those experienced during static firing, were
attributed to the lower ambient temperatures experienced at the higher alti-
tudes and to transfer of the residuai beat sovrce from the rocket motor cham-
ber. This transfer is incuced by the differential pressures experienced be-
tween the rocket motor chamber residual gases subsequent to burnout and the
local atmosphere.
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VII, SYSTEMS FLIGHT TESTS

The Frangible ARCAS program included two flight tests of the com-
plete systems vehicle, These units, one of which is shown being loaded into
the closed breach launcher on Figure 84, incorporated 0.042-inch-thick sheet
explosive material from the forward edge of the fiberglass motor case to the
leading edge of the fin assembly. The explosive material was not extended
under the fin assembly to effect iragmentation of the nozzle/fin section be-
cause it was not considerec necessary to fragment the aft section in order to
demonstrate the feasibility of the system in flight, Based on the results of
the fragmentation tests conducted earlier in the program, the degree of frag-
mentation anticipated with the two systems vehicles was as shown on Figure
85. The purpose of the systems flight tests was as follows:

a. To demonstrate the feasibility of a frangible meteorological
rocket system in flight,

b. To evaluate the general aerodynamic characteristics and
flight performance of the systems vehicle.

c¢. To determine the difference, if any, in the drag characteristics
of the systems vehicle as compared {o the basic vehicle con-
figuration (less fragmentation system).

The systems flight tests were conducted on San Nicolas Island.
The Launch Hazard Area and Maximum Impact Area which were prescribed
by PMR Range Safety are shown on Figures 86 and 87, respectively.

A, PAYLOAD

The systems flight test vehicles carried the standard Arcasonde 1A
telemetry payload and the standard ARCAS silk parachute, 15-feet in diameter.
The parachutes used in these flights, however, did not incorporate the normal
silverized surface to aid in radar tracking. The reflective surface was cmit-
ted to aid in radar tracking of the rocket motor in lieu of the payload, which
was to be tracked by GMD-1 ground equipment.
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B, FLIGHT TEST RESULTS

The first of two systems vehicles was laimched on May 20, 1965.
This vehicle was intended primarily for evaluation of the redundant fragmen-
tation initiation system. During ejection of the vehicle from the government
modified launcher, the cover plate to the access port was ejected, resulting
in loss of the required launch pressure. Analysis of the {light data showed
the ejection velocity of the vehicle from the launcher to be only about 60 it/
sec instead of the usual 230 ft/sec. Consequently, the vehicie reached an
.abnormally low apogee altitude of only 69,000 feet which was less than the
minimum altitude of 70,000 feet required to arm the redundant fragmentation
mechanism. The first systems flight test was therefore considered a "No
Tesi.”

During analysis of the flight data, it was observed that the altitude-~
velocity and velocity-time relctionship were somewhat below the predicted,
although the reduced ejection velocity was censidered. A comparison of the
predicted and actual data indicatea an increase in either the characteristic
vehicle drag or the drag reference area. Since the drag curve was estab-
lished for the basic vehicle configuration during the initial diagnostic flight
tests, a series of trajectories were computed with increased drag reference
area. Further analysis showgd good agreement tetween the actual and pre-
dicted performance data when the drag reference area was increased from
0.126 ftz to 0.151 ftz. This effective increase in drag reference area was
most likely atiributed to turbulent flow conditions and skin friction efiects
related tc the sheet explosive overwrap. A more detailed presentation of
the flight data analysis, and determination of launch velocity experienced
and effective drag reierence area increase is provided in Appendix IV,

The second and final systems vehicle was successfully flight tested
on December 21, 1965 without a Iaunch tube access port. The delay experi-
enced between the two final flights was attributed to a combination of range
scheduling of the single flight test and adverse weather conditions at the
launch site.
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Radar data showed normal flight performance wirough an apogee
aititude oi 130,000 feet at which time payload ejaction was observed. The
payload telemetry signal was lost during vehicle ascent, consequently no
GMD-1 data were obiained during payload descent, However, successful pay-
load ejection was determined by both radar cbservation and physical recovery
of the payload. Successful radar coverage of the descending rocket motor
assembly was maintained subsequert to payvlo2a ejection. Fragmentatior was
induced by the primary system (mechanical timer unit)} at about T + 121 sec-
onds and an altitude of 123,000 feet, or payload ejection plus 20 seconds, as
programmed. The fragmentation event was observed by both island and main-
land radars. One piece, undoubtedly the noz:zle/fin section of the motor as-
sembly, was tracked to impact at the normal descent velocity. With the ex-
ception of this piece, which was not exnected to fragment, radar observation
showed a "cloud" of particles with varying rates of descent. Radar track of
various particles was maintained at intervals and the “cloud™ was sbserved
to disperse as it descended. Except for the exireme aft end of the vehicle,
which was not prepared for fragmentation on this final unit, all indications
were that the degree of fragmentation attained was the same as that achieved
during tests conducted earlier in the program, see Figure T6.

A Flight Test Summary for the Frangible ARCAS Program is shown
on Table XIV. The actual sequence of events for flight AFFT-4 is illustrated
on Figure 88. A more detailed presentation of the flight data is presented in
Appendix IV.

VIII, VEHICLE NOMINAL FLIGHT PERFORMANCE

The basic Frangible ARCAS rocket vehicle is comprrable in per-
formance to the standard ARCAS. However, addition of the 5,7-pound frag-
mentation sysiem and the increase in vehicle drag resulting from the slightly
larger body diameter {see Tabie I), reduced the apogee altitude of the sys-
tems vehicle by about 65,600 feet.* Trajectory proiiles for the vehicie with

* For 10.5-pound payload, sea level launch, QE = 84°,
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and without the fragmentation system are presented on Figure 89 in compari-
son with the standard ARCAS. Trajectory profiles for the systems vehicle at
variocus effective launch angles are shown on Figure 90. Nominsl trajectory
data for the basic and systems vehicle are presented in Tables XV and XVI,
respectively. Other pertinent systems vehicle performance data are pre-
sented as follows:

a. Apogee Altitude and Ranges versus Effective Launch Angle,
. Figure G1,

b. Apogee Alfitude versus Apogee Range, Figure 92,

c¢. Apogee Altitude versus Payload Weight, Figure 93.

d. Vehicle Velccity versus Flicht Time, Figure 94.

e. Burnout Mach Number versus Burnout Weight, Figure 95.

A comparafive performance summary of the standard ARCAS and
Frangible ARCAS vehicles is presented on Table XVII. As observed from the
above data, the Frangibie ARCAS vehicle performance was considerably re-
duced by the required systems weight and configuration. Although the apogee
altitudes attainable with the Phase Il configuration were somewhat less than
desired, the vehicle performance was sufficient {0 demonstrate the feasibility

of the frangible rocket system. Various modifications which will provide
apogee altitudes of approximateiy 200,000 feet are presented below.

IX, PROPQGSED MODIFICATIONS FOR IMPROVED PERFORMANCE

Preliminary studies have been completied to determine the increase
in apogee altitude that could be achieved by increasing the length of the exist-
ing vehicle to provide additional fotal impulse and burning time., These data
show that the corresponding increase in vehicle weight and the effects of grav-
ity turn on longer burning time for the same magnitude of thrust socn over-
come the contribution of increased total impulse. The data, however, show
that substitution of a2 more energetic propellant and an increase in motor
length of approximnately 9.0 inches would provide the desired performance.
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The following sections present a brief discussion of the performance that
could be achieved with various configurations.

A. PROPELLANT SUBSTITUTION

In order to significantly increase vehicle performance without
necessitating a major redesign of the motor, the substitution of a higher
energy propellant was considered. The propellant used for this comparative
analysis was Arcadene, an aluminized carboxy terminated polybutadiene
{CTPB) formulation which is manufactured by Atlantic Research Corporation.
In addition tc its high performance and good physical properties, this propel-
1ant has excelient bonding characteristics and is ideally suited {60 a motor
such as the Frangible ARCAS. Polybutadiene type propellant systems have
been in routine use for a number of years and are currently emploved in
missile systems such as Minuteman, Pershing and Sparrow.

Preliminary analysis of vehicle performance with Arcadene pro-
pellant and various motor total impulses show that an increase in motor
length is required to provide the desired increase in performance. Figure
896 shows apogee altitude performance as a function of total impulse and
motor length. As cbserved from this data, an increase in motor length of
8.5 inches will provide an apogee altitude of 200,000 feet.! The moior length
required {o achieve this performance corresponds to a burning time of 33
seconds, which is the maximum ambient burning time desirable with the
current motor case insulation thickness. The tabulation presented below
compares vehicle performance.

Parameter Phase Il Vehicle Extended Vehicle
Motor Length, in 85,5 786
Liftoff Weight, 1b% 68.4 75.9
Burnout Weight, ibz £5.4 26.9
Total Impuise, lb-sec 8400 11,200
Burning Time, sec 30 33
Apogee Altitude, ft! 118,000 200,000

1. For 10.5-pound payload, sea level launch, QE = 84°,
2. Excluding pavload weight.
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A comparative illustration of the Phase IIf and extended vehicle is
presented on Figure 97. Apogee performance of the modified vehicle is shown
on Figure 98 for various payload weights and launch angles.

It should be noted that while the desired altiiude is achieved with
the extended motor described above, the performance might be further in-
creased by a greater total impulse for the same burning tir e, This could
be accomplished by increasing the motor operating pressure which would,
in turn, increase the propellant burning rate and maintain the 33 second
burning time.

X. CONCLUSIONS

The successful performance of the final systems flight test vehicle
satisfactorily demonstrated the feasibility of 2 frangible meteorological
rocket system. Furthermore, the degree of fragmentation demonstrated
with a complete vehicle during this program and the successful operation
of this system in {light constitute a significant technological advance in the
state-of-the-art of meteorological rocket systems and rocketry in general,

Although the performance of the Phase III Frangible ARCAS ve-
hicle was somewhat less than desired, its performance could be significantly
improved by substituting an existing higher energy propellant such as Arca-
dene or incorporating a short boost phase. Substitutions of a higher energy
propellant could be accomplished utilizing the basic motor design and would
provide an apocee altitude of 200,000 feet,l thereby providing acceptable
altitudes for an operational {rangible meteorological rocket system.

Although fragmentation of the vehicle to particle sizes yielding a
maximum of about 3.0 {t-1b of impact kinetic erergy was demonstrated, frag-
mentation to 1.5 {t-1b or less could be achieved with the same explosive con-
fizuration with only minor modification of the nozzle section.

i. 10.5pound payload, sea isvel launch, QE = 84°,
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Sheet explosive 0.042-inch-thick provides fragmentation of the
vehicle to particle sizes yielding less than 3.0 ft-1b of impact kinetic energy
when incorporated along the entire length of the motor case in combination

with a modular explosive charge n the forward section of the vehicle, The -’

shape of the modular charge has no appreciable effect on the degree of frag-
mentation achizved when used in this configuration., Furthermore, it may .-
be concluded that complete fragmentation to the requ ~ed particle sizes can-

not be achieved with a single modular charge of conventional explosive mate-
rial, regardless of the shape of the module,

Results of the fragmentation tests conducted during this program
show the need for a better definition of allowable particle sizes if this or
similar concepts are to be employed with regard to "lethal limit.”" Definiticn
of acceptable particle sizes in terms of impact kinetic energy ap, ears to be
inadequate with respect to "lethal limit' since kinetic energy alone does not
account for all factors which contribute to this limit,
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LIST OF SYMBNOLS

Ae = nozzle exit area, in2 0
At = nozzle throat area, in
Cp = coefficient of drag
D = drag, ib
E = kinetic energy, ft-1b
F = thrust, ib
Fmax = maximum thrust, 1b
h = altitude, {t
k = kinetic energy constant, 1/gp, ft3/1b
g = gravitational acceleration, ft/sec:2
i NM = nautical miles ‘ ' '
. P = ambient pressure, psia
Pmax = maximum pressure, psia
Pc = maximum chamber pressure, psia
max

Pt = total pressure, Pa + g, psia

¢ = dynamic pressure, p V2/2, psi
QE = offective launch angle, deg

R = Reynold's number

S = drag reference area, ftz
t = time, sec
t, = action time, Sec
“Ty, = burning time, sec
Tmax = maximum temperature, °F

V = velocity, ft/sec
V, = average velocity, it/sec

a
Vinax = maximum velocity, ft/sec
Vinin = Mminimum velocity, ft/sec )

Vi = terminal velocity, ft/sec
W = weight, 1b

V¥ _ = weight in water, 1b
X = characteristic length, ft IR
p = density, ib-secz,-"'ft4

e

7., = boundary layer shear stress, 1b £f”
40
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Vehicle Roil Rate Versus Flight Time (Flight AFFT-1)

Vehicle Drag Coefficient Versus Mach Number

Trajectory Profiles for Diagnostic Flight Vehicles (Critique No. 1)
Payload Section Temperatures Versus Flight Time

Motor Case Skin Temperature Versus Flight Time

Loading of Systems Vehicle into Launcher

Anticipated Fragmentation of Phase III Systems Vehicles

Launch Hazard Area for Systems Flight Tests

Allowable Impact Area for Systems Flight Tests

Actual Sequence of Events (Systems Flight Test AFFT-4)
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Table II

Detailed “ieight Breakdown of the Frangible ARCAS Vehicle (Less Payload)

Component
Motor Case Assembly

Fin Assembly

Fin Screws

Propellant Assembly®
Retaining Sleeve

Explosive Modula Fud. Plsate
Explngive Module Af: Plate

_ Push Rod
" Mechanical Timer Assembly

Redundant Initiator
Primary Explosive Charge
Sheet Explosive Charge & Overwrap

Nominal Weight Nominal Weight
at Life-Off (1vs) at Burnout (lbs}
16.50 15.20
1.69 1.69
0.03 0.03
42.70 1.00
1.49 1.4%

0.32 0.32
0.29 0.29
0.02 0.02
0.70 0.70
0.30 0.30
2.06 2.06
2.30 _2.30

68.40 1bs. 25.40 1bs.

* Includes propellant, headplate, O-ring, dimple motor and inhibitor




I o g Y g

*

il

1

L

PPI0dOE YON e
1993 vopua e /Hureyy o1ng.

msmanang |, O R g4+ oS1-L8dy | oiqendavov | . oout S-mI-L | ¥9-52-1) L
npweadang | o, oo | we | an oL+ JI-LBLY | Aqndedsy 0oL az-m-L | $9-52-01 0
wwasang | eee } oo | we | we boe LS1-184V | drqmdassy 0oLt vi-m-L | ve-ze-e g
mpweacong | 005 | sec sz [ esor SL+ e1-184v | sandasoy 0041 vonwneuy dnyong | TYOPISOM | ppe1t-p y
mmwseoong | gzy | oeg |18z | osot oLt T1-L8dY | 91qndeddy 0041 9-Vd GIIA Ubnwiguy | TSRPIRR | pg-gi-g ¢
inweadng | wiwq ol [ 158 | 9'ez | 1u01 oL+ 01-184V. | Ngmdeoay 0oLl O oro % | 1empwow | so-g1-g ?
INpRR3ING oo |95 |s'8z | 001 oL+ 8-184V | gawmdecoy 00L1 1mpIRaY | pp-gl-g 1
RO L%.v nac.w_.v Auﬂav %ﬂﬁs A&arzzﬁcnﬂ-& Jaquny | spamwon (19d) uonsindiuoy vonsulindg | paarg mec | 2equuny
1 F ) 4 TOTIIPNOD) wor 2ne8dg J00ag imn asuanbeg
ey ey, MLy oning . DNEEY N0, BINENIIT JOOLd win( J010W

Arewrumg Surard oWess [T aseyd SYOUV arqraueay

L1 a1qe,

\
i\
..:,—_..:...:.,..ir.».ﬂ% v



8
woul
N ‘Younery Supang
sIUN 8Yy Jo duripuey rewaoN Surang pajoadxwy aq pmom
UBY) dI9A88 210 PaJapIsuo) sem UoIpuoy) doxq s1y)
U3 POJON aq PINOYS )] ‘pallly Jwodag 10U pIp gyun
YL CAUTILIY 0} DATONPUOYD SO UOLIISOd B Ul PajualI()
B[HUM puEg jjog oI jedy ¢'g paddoaq axem syhun ayg :sise doaq
paroads sem sw Op1 03 001 10) 8.8 0z 0161 JO U ITNDIY
eIl 9
801 g
£cl 1
"WIATOBAO dI0M SINTEWIOUY
ON ‘SOINUIN GY XOJ JUTOJ IUBUOSIY oY} ! 601 €
SaULTd OMJ, Ut pajuaqra sem wun sdo gog e 201 ‘oz
utod jueuosoy s, g 1 sdo 00g 03 g ~ dodmg :8)S9 uonRIgIA 101 I
‘paway dupwoneg ’ rr—
MOYHM SW 9 JO UOIIRIN © IO} SIXY BSIDASURL], (Su1) swy, °ON 359,
ay} duoty Hooys &8 0g pue syXy reurpnyjSuon ¥UOTIRIDI9DDY [euypnijduor]
8y} Buoty yoous $,3 0g paouayaadxy un sy 183189,1, Ho0US 8,4 0z 1@ awyL Suyway

8SLT [9POW Jrun Jow], [eojueyoel
U3 JO sIMBIY 183, UOHIBIATA PUe UOIIRIDIADDY ‘Yooyg ‘doaq

Al 91que.L

!ﬂ. ; {ii ; ; géi. _..__....__.w.__..» —_unp_n_r._._.. a._"_____,_a_“.. ?._,3.3._ ?_,,__z__:s. ?E_______.__._. ?._..._______._._. ._g.._______.__....ﬁ a______________.,_“_ g._sra ﬁ..sa_ssu fi gi

i A ““_,ﬁ.__i.:__ 3 L B B L L e 1 R AR T AT ,?,__,;_ et T T N Y I

KT

il ol (IR

o]
.._.........._:,r_....".“.nm__w ”,



"Juadsap Buranp 398 000'0L PUB 000‘0S :%%3 oaTd
"Juadse Furanp 1993 000°00 T PUB 000°0L USOMIDQ WY uoryedlfIvadg Jeuonoung ajoN

0°'bg 001-0L £'pe 001-0L I'pe* 001-0L 6°6S 001-0L 900
9°'2% 001-04 L°28 00104 £'28 001-0L 0°cs 001~01, 00
£°'68 001-04 2°9g 00T-0L 0°9¢ 001-0L 0'9¢ 001-0L »00
L'LS 001-02 £°L8 001-0L 1°LS 001-0L 0'L8 00104 £00
2'L8 001-0L 0°LS 001-0L4 0°LS 001-0L 0°LS 001-0L 200
0°'L8 00T-0L 0°L8 001~0L 1'9g 001-0L 0°L8 001-0L 100
potTy paway poaITg powLIy paxrx paway postyg powry JHQUINN
(3933 Jo spuesnouy) | (3907 Jo spussnowy) | (199 Jo spuesnous) | (1005 Jo spuvsnony) | TS
apMNNY OpPIINY apPMINTY oMY
b ‘ON 3591 g *ON 3I89,L Z 'ON 358, 1 'ON 189.L

SIOFRTITUY JUBPUNPAY o1 1O S)INEAY 31§91, [RUOIIUNY &, JINORINURIN A O[qB]




R TR
.

ki

NN RSl ~o s
I
|
_“
i

"Pajdwale §3533 [BUOYIPPE ON 1903 paryy Surxnp paSeurep jun v
"JUBDSIp Buranp jsey co@.om. PUE 00006 usamjaq aary
"Jusdse Suranp 3997 000°091 pue G00‘0L weamlaq way -uonieoToady TRUOTIOURY  SIION
0°9¢g 08-0. 0°9¢g 08-04 0°9¢ 08-0L 900
0°9¢6 08-0% L°9¢ 08-0L 0°9¢ 08-0L coe
G LS 08-0L G'8¢ 08-04. L°98 08-90L pon
0°09 001-06 G'6¢ 001-06 G’'64 6O1-G6 £00
G'6S 06-08 6’89 001-06 6°LS 08-0D2 00
' 14 0°LS 08-0L 0°8¢ 08~04 100
paarg pauray paxg voﬁuw parrg patuIy DTN
(199 JO spuESNOYY) (3997 30 spuesnoyy) (1995 jo spusnoyy) ﬂwmem
apnyYy PNy opMNTY |
£ 'ON 189, ¢ "ON Is9L T *ON 189, )
SIOJEINIU JULPUNPIY DY) JO SINSOY 189, Teuonpung s,uoyrerodro) ysreesey eV
IA 91qeL,
TS e BGRN Gl e we pase L e N B L A
iy, é“u_“_a%_ﬁ__5_E_E_E___“_ﬁ__a.“_____m_,ﬂ ﬁ_gz____“_n,__“____w_m_.ﬁ__
\ " ﬂ_ﬂ, A i) _, ; i o i _.‘,,;:::., ity L.,;:Q. Attt ot g by kb s




s st abe 'y 8

I 1 l \J ) 4 E ] L, " 1 N 4 ! !
el é_m ' N R T T T e e R R e L R U T TR TR T HRATE Mo e s e e b ol e de S S DGO aul b gy o )

™
w Vo f e . ‘

. . U B
uw.m_..u HIEA puw =0, Ry o °A
L'8 GL'8 GL'8

*§389) 0T Burmp J93EM J0 We¥ 618 JO Yidap € ySnoay) (1E]-9a3] 0) d(tiwes J0F paambay swp aSexoay = u._.,
"81593 0T Buranp xa3em J0 3935 G1'8 JO Wdap © ySnoay) [1Es-0a: 03 AldwIEs S0f POINbAL S WRWMKEI = * Ty

*§3593 (0T Buranp xajem Jo 199y ¢2°g Jo Yidap v ySnoxyy 1rey-e04y 03 aydures J07 pAIMbRAX oMWY WNTUTUTAL = 58..”

- 92 Y (&4 £¢ L2 22 Le 6°¢ L2 9°'c 8°Z 8t L'e 4alng Jupupnay Uil

2T  L¥I 00T 9°6T 92T LPT ST 00T  SIT  9%Y 0'01 S'IT 96T Z 1aqmnN 200td 19)81Ue] enyoered
T, 01T 6'S 69 6¢ €L §9 99 O0Ir 89 2T9 0L 69 1 TequInN 8091 JaIRfue) aynoeard
0'TT .0°2T 6'8 2IT SIT €7TT 02T 20T 9'IT €8 96 S'IT 61T _ TopR(NEU] JTems
I'9 %9 €% 96 09 ¥9 €9 €9 ¥9 0y 2T 0% §'Q uonernsuy adxey
2T L'6T  2IT 22l T'?0 61T .21 9IT LB WYL OZ2IT S'IT 82l § J9qWNN NOYOIS 9SBD I0GN
6'8C 8°62 T82 S8BT 86T T'6Z 062 TET T6Z 28 €82 262 862 b JOQUINK GOR0AS 382y J0j0H
96 80Y I6 96 26 26 ¥F¥6 66 16 I'6 96 00r 801 £ 20NN UGIIDSE 2SED JOIOW
| 8'IT  €¢T €01 2T 211 8TT el @2l 22T €01 §07 A 4 S 4 g JagWInN UDIIDAR 38TD 010
| 8L 9% ¥L P¥L LL 08 08 &L 8L L .8k 9L 98 1 JIGWNN UOHOIE USED) I0J0
| 0T 601 L9 66 96 L9 9% 9IT 9L 96 LIT 6'Er 2 : GTH upd
g L'91T @81  6°ST  L'9T 6°6T 91T 9'9T ¥'9T O°LT 0T 99T 087 147 R EL NI MERE] & &t 4
| 86T T'22¢ 6'¢T 2g'Ig 971 P91 90% L2 S'IZ 902 902 8/El 1w i b xoquInN #oatrd ur:
§'6T 618 LLT  A'8T 008 L°AT  S'8T  $°6Z  6°L1 002 002 v02 S'I2 g JaqunN Ad31g Brd
T'IT  0°6T 2% 0°6T 0°0T SO 2'IT %8 €21 88 06T 28 8711 Z T9qumN wda1d uIy
9%T T'I1Z 9L T2 2LT 9L I'8  0°6T 90T 69T 49T 00T S'67 ¥ raqump soard urd
83T 2€T 2'°T 2T 62T TeT 16T 62T 2T 62T 8%l 8T 2'el ddwery urd

(d9s) | (00s) | (02s) | o1 6 8 L 9 g ¥ ¢ 2 1 @033 1S3

.mu xmc.._u Sﬁu Jaqump 1S3l .

I3JeM JO 3F GL°8 YSnoIYl [[ed 991 03 3091d 1591, 10¥ (Spuooss ur) paambay awr], JO uonengel,
IIA o1qRY,

TR



o0
o
[ e
[y}
& e [z'ze Juaoiya0o Juap oieroay = 9o |
S oA Sz Al ® A ¥ ® ,
Sz _ "% “lp'egl  Sg A o _ Qo IDJEM UT AJIO0T0A 9FRIRAY = A
M $20°1 M Mz M Mz paddoxp sem adard youva Yopum ydnoayy rajem jo yidag = m
JOJEM JO 129] 6L°'8 Ydnoay; [yey o3 swry) s8vrdAY = )
¢ tmmm Uy = m = g uopenbs Seap ayy Suisn xejem uy avayd Jo WIPMm = M
4 .
,..n,a i
o 00°1 PITO0  0GE'IT  PITO'0 CY00'0 OuLE'E  8uL'8 92 170°0 Marog Bujuneiay urg
21 L100°0  06%°0 1200°0 S€00'0C 0040 S4B &€'2Y  200°0 ¢ JI8QuINN 809%d JIISTUED AhyouIg
; oL’ 1670°0 018°T PI10°0 00T0'0 0£2'T SL'8 T°L 110°0 T X8(UWINN 8309%d I2ISRITY NYILVAT]
| 6S°1 10’0 189°0 8220°0 2¥20°0 GBL'O SL°8 O°IT  Z20'0 uonensuy [iniug
L0°1 62%0°0  090°2 6Gh0'0 90%0°0  GEV'T. SL'8 19 50’0 uonensuy adaery
66'0  0S29°0  €28°0  C0T¥Y°0 0S61'YT  €TL'0  SL'G Vel 009°0 g I2quUINN UONDDE KL J0JON
_ 1L°2 8€00°0  260°0 £010°0 STPOY  £08°0  GL'8 682  010°0 p JOQUINN UOI)I8g 5L J0J0W
061 1923°0  vE80 9060'0 " 03800 £I6'0 GL'8 9°6 6%0°0 £ J9qUNN UO0T}03G ASTD) JOJON
, £g'1 G601°0  06S8°C GLOT'0 06610 IPL'O SL'8 8'TT 210 ¢ JaquINN UO0T0ag 9SED J0JON
o 19°1 0881°0 092'1T  0L62°0 O0L¥YT°0 121'T GL'8 8% L82°0 T qaqunp uopnag ase) 030N
o 98°0 0210°0 0S40 £€010°0 0910°0 998°0 S48 10T O10°0 qry ury
, £9°1 9L00’'0  ¥PLZ’0 $210°0 8L20°0 KRS0 SL'8 LT 210°0 G I8quInN 8d9ld urd
o't 8800°0 1S61°C SHP10°0 28¥0°0  IPP'O  GL'8 861  PI0°0 b aaquinN 2091d UrJ
Lyl 11200 102°0 OIE0°0 0S0TI'0 6¥p’0 SL'8 G°61 080°0 £ aquny 809ld Uty
el 2811°0 0290 OLPT'O OIST'0 88L°0 S48 T'IT  2¥I°0 ¢ JIqUINN 909fd Uty
$2°T  00PI°0  092°0  OBLI'0 06880 009°0 GL'8 O'PT 8910 T Jaquiny «2001d ugy
60°1 9L20°0  L9%'0  0080°0 16500  ¥BI0 GL'8 8'TT  620°0 aduely uyg
a, . % ey | M peorp!l (9 | P28/ OB ?Ma (ar) a0a1d 183,
4 (4 L a [
s . ] M
a :
e[ [ejuaurtradxy Supn sjuatdgyeo) dexqg
[red~991 g adelaay auuIIala(g 0} SUCeInOIR) JO UonEINge],
IIIA 21qe],
-_______;m____ i l . ﬁ_______‘__: _ﬂ__:.‘.__.,ﬁ ;i.:__:,:: ’ﬁﬁzzﬁ gﬁﬂszﬁﬁ A .ﬁﬁﬁﬁﬁ_ﬁu  —

S




upw uyw
s g wag
M vE0°Y MT
i LY i 7L W,
n : n
M ¥E0'T .}
‘g ..u.wmm.ac = M = Q uopwnba Jrap ay Rupen
L0 521 16000 BS10°0 $110°0  0100°0 0016  OTE'SY 020t 086°'¢ sL'8 6'C ee #9308 BJuureray urd
240 SL°1 2100°0 L200°0 T200°0  S£00°0  $SE°0  9HL°0  S3SC GLBD SL'B LYY O'UY T qumuN 0Ig a9eue) Nnyoesed
25°0 8L'1 $900°0 0220°0 $110°0  0010°0 G€0°0 00%'T 96L°0 E8¥'T SGuL'8 O'I1  6'G I JAQUINN 2091d INBTUED) NndeIed
86°0 Lt 8210°0 $#£20°0 82200  2p20°0 0£S0  L96'0  6ZL'0  PEE6'O0 GL'8 0% 6’8 ' wopEnsul [eg
18°0 02t 8€00°0 12¢n°0 SS%0°0 9020°0 08°1  0£58'C 68€'T 06%'T GL'8 ¥9 $'s uonwnsuy afaucy
§8°0 L 0L8y0 062L°0 0029°0 0S61°T  80¥°0 0180 8£0°0 1840 64’8 L'E1 o'I% $ 1XUMN UoyNIG 25 I0ON
L8'e 98z B£00°0 0¥)0°0 £010°0 SIF0°0  L80'0  960°0  ¥82'0 OIS0 GL'8  8'6L 2'82 ¥ JOqUInN UORRAS AFEDH JOJOIN
L13n ¢ e 0120°0 9620°0 90500  0Te0°0 9590  S26°0 O8O  THL'0 GL'8 801 16 £ J0qUINN UOROAS 5D JOION
L et 1980°0 EEVI'O GL91°0  0661°0  EE¥P'0 OCTL'0 8590 6PB°0 S0 E'El  £0T g Jo4mmN uoRdag asTD J010MN
L0 g8 0281°'0 0802°0  0LEZT'0  OLPI'Q  SE0'T  QOF'T  BI0'T  281'T GL'8 98 bl [ Jaqumy uonvag aved JOION
BE0 91 £300°0 2L20°0 £010°0 0910°0 8620  20L'1 6290 LOE'YL GL'8  6'¢l L9 Qi uid
9%0 881 .0 $800°0 ¥210°0 8L20°0  9g2°C  TOE'0  98V°0 0S80 4L'8  0'81  8'61 § JoquIny #0901 urg
1970 P2 i..'0 6L10°0 s¥10°0 26P0°0  LST0 GGE'0  96E°0 629°D  uL'8 1'%e 6'€t ¥ JoqQuIaN #291d uid
1571 BL*1 IR 9620°0  0T€0°0  0SOU'0 9910  ¥PC°0 LOVO  WEPO  GL'8 §TIT LM £ JaqunN addd vl
880 932 158070 0.12°0 0Lp1°0 0D161°0  O¥E'0  BEI'T €880 BOO'T SL'8 0O'G1 '8 ¢ JIqumuny 2091d uld
ret 092 3:10°0 091%°0  O¥L1°'0 06820  2LI'0  62E°7 SIP0  1ST'T  GL'8 11T 8L [ Joqiump a033d Wid
830 S1°T 2300 BPOEO'0  00£0°0 1650°0  O%¥°0 kIS0 £99°0 LIL'O GL'8 2BV 2°0Y ol ury
ST I PP LY f% wa | vy Aﬁw\mv Am“w:\ws ) ﬁﬁ A%_..“mw 2291 w0

eye( rejuswrradxy

Buisn suaTOTIIe0) SeaQ 1B -09J4 WNWUIA PUe WNIIXEA SUFWIa)a( 03 SUOTjRInITe) JO uUoyeIngel,

XI a1qe.L




<49

i

m;

aved 20U BUurewas ay FUMnINT .

gi

00'0¥8°1 085's1 ) § o¥¥'s | 0za'11 009610 | 0548 ome) 30N Suumewoy
Le 082'z RLE PIE°Y | 0002 08000°0 | ¥00'0 2001 308Ul Jvoayl, Mpydean 1nadsey
0L'L 0LR‘Y 5°69 0802 | 052'% 091000 | 2010 DI VORBINIU] ABED J0JOW Iwadaer]
622 08p’t '8¢ ovr'r | coe't §6100°0 | 0010 « PO0KL O anwD) Jadann
bL0 0¢8' 0’ qL2'1 | 9291 0¥000'0 | 920'0 200N Joupnod mnydeIeg 1508y
16°2 088wl 0'221 009°¢ | 000'¢Y 020000 | €10°0 moadg Hupurmey vty
65°0 089°1 0T 2121 | 69v°1 $c000'0 | 2zo'0 ary urg
890 09L 942 L18°0 | L99°0 080000 | 850°0 22014 Ul eBeiany
¢6'G Z16 ra 168°0 | vAL'0 019000 | £88'0 2001d uid Wl
k:.:__,&,N_: a9 vee » dn sdof s95 Q\uw“?é ﬁ:. 1t JO0W
A wd M . M n "
mmo> we w592 N\, 1
N BRI T T T At
uayy
0) a4 a
apmnTe 3097 o007 e SLEEL100°0 wla a0 AN L L,
(Watem = Bwap) L31201AA [TUIWIAY JO RUOTIPUOD 10 8 ..MM.QU 2 M ou(
) ¢ uopenbo Beap ayy Ruyupn
§JUs107Je0) dea( paunusajaq Arreuewiradxy Suysn
£10019A TRUTWIID, Yo £Ra20g opjeury joeduwi Jo suoyyerndIe)
X a1qe),




Table XI, "Detasheet" Specifications

Property

"Detasheet” C

Explosive Content & Material

Detonation Velocity (meters/sec)

Density (gms/cc)
Flexibility Range, (° F)
Storage Life at Ambient Temperatures

Thermal stability (° F)
24 Hours
1 Hour

Hot Bar Ignition Temperature (° F)
Instantaneous (extrapolated)
5 Seconds
15 Seconds
30 Seconds

Impact Sensitivity (5 Kg drop test)
Static Sensitivity (joules)

Minimum Tensile Strength (psi)
ASTM D-1566-60T

Range of Per Cent Elongation
ASTM D-412-61T

Minimum Propagation Thickness (in)
Sheet (steel back-up plate)
Sheet (unconfined)

Cord

63% PETN—8% NC
7000
1.48
-65 to 1580
Indefinite (%)

250
275

965
456
380
353
56+ in

>0.9(®)

30(¢)

15 to 150

0.025
0.060(9)

Notes: a, "Detasheet" C has been stored at ambient temperatures for over
four years to date with no change in performance or flexibility.

b, Failed to detonate at 30 Kv discharged through a capacitance

of 2600 pi.

c. "Detasheet” flexible explosive will creep to rupture
tinuous stress as low as 12 psi. The reperted tensile data was

developed at 20 in/min crosshead travel.
d, This cord diameier corresponds to approximzately 15 grains

per foot exylosive,

under con-
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Table XIII, Frangible ARCAS Systems Flight Test Vehicles,
Wind Weighting Factors

Altitude Stratums (ft) Wind Weighting Factors
2050 0.095
50-100 0.093

100-200 0.109
200-300 0.077
300-400 0.059
400-600 0.093
600-800 0.069
800-1,000 0,047
1,000-1,206 0.037
1,200-1,400 0.028
1,400-1,600 0.020
1,600-1,800 0.013
1,800-2,000 0.024
2,000-3,000 0.057
3,000-4,000 0.040
4,000-5,000 0.022
5,000-10,000 0.051
10,000-20,000 0.034
20,600-30,000 0.015
30,000-50,000 0.017

Unit Wind Effect: 1,57 NM/knot
Tower Tilt Effect: 3.2 NM/degree
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99.1

Frangible ARCAS Vehicle Configuration

P_ayioad Section
(140 ind)

Parachute Assembiy

Modular Charge Assembly*

Redundant Initiator
Pressure Sensing
Orifice

Rocket Motor

69.5

Fin Assembly

*Houses primary explosive
charge, mechanical timer unit

and redundant initiator mechanism.
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Nominal Frangible ARCAS Flight Events Sequence
Phase IiI Vehicie Coniiguration

Payload Ejection and Deployment
at Apogee, 98 Sec., 120,000 Ft.

Primary Fragmentation
118 Sec., 110,000 Fi.
{20 Sec. Fixed Time
Interval After

Payload Ejection)

Redundant Fragmentation
Systems Armed
(70,000 - 100,000 Ft.)

Rocket Burnout
{Mechanical Timer Starts}
30 Sec., 47,000 Ft.

Redundant Fragmentation
~ 60,000 Ft. Nominal
Lifioff, T, Primary 50,000 Ft. Minimum

/ Fragmentation System Armed

/’///a’/-!*f/"/?’/f///’?f/i//ff/ff//?ff;’?‘*f

10.5 Lb. Payload
Sea Level Launch
Gas Generator Boost
Vv e=239 ft/sec)

Figere 4
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Frangible ARCAS Headplate Coniigurations 32650

iy
AN

N

Phase II Headplate, 1.25 Lbs.

AN

Phase II1 Headplate, 0.75 Lbs.

Figure 10
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Frangible ARCAS Propellant Grain Retention Method

AR4729
Headplate— Inhibitor
N4

/" 4 Propellant
Bonded ‘ - %’/"*"‘@} Grain
R
Dimple Motor—" -A \ \‘} 3 &"?",&
R
R

N

~ AR
\‘\x,f} KR

\-Bondeﬂ

Figure 12
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Aft View of the Frangible ARCAS Vehicle
Showing the Method of Fin Attachment
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Figure 13
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Phase III Frangible ARCAS Pyrotechnic Gas Generator Assembly

A2112

- 1.91 In. — i

-Alusinue Casing

Foil Seal ™\ M42 Percussion

Prizer

N

MR EE A
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Figure 17




PAYLOAD EJECTION PRESSURE (psig)

Payload Ejection Pressur= Yersus Time
R33N0
160
\\£f~~5{andard.ARCAS
80
ﬁﬁ =_
ﬂ _
’,k\ | Frangible
T~ ARCAS
> £
I “ ~ -
; -
3 7 "~
7 h
Y 4 L)
7 \ \ B ‘.\\
9 ) i |
10 y.{ K 40 3%

TIME (=sec)

Figure 18
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The Frangible ARCAS Mechanical Timer Assembly

Percussion ]
Haramer ;

Pyrotechnic Gas .-
Generator Assembly. i

Figure 20
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Nominal Payload and Rocket Body Trajectories
for First 20 Seconds After Apogee
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Illustration of Frangible ARCAS Redundant Initiator Assembly
for Explosive Fragmentation System )
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Ilizetration of Vehicle Attitude Along a
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Photographic Sequence of First Frangible ARCAS
Simulaied Altitude Fragmentaiion Test

R4713

Simulated Altitude: 100,000 Feet
Film Speed: 3,000 Frames/Sec
Explosive Charge: Single Modular

Conical Shaped

Charge {Figure 27)

Figure 30
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i Frangible ARCAS AFST-13 Static Firing/Fragmentation Test Setup
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Photograph of the Frangible ARCAS Diagnostic Flight Test Vehicles
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APPENDIX 1

LONGITUDINAL ACCELERATION EFFECTS
ON THE REDUNDANT INITIATOR




ANALYSIS OF EFFECT OF MIGHN LONGITUDINAL ACZELERATION LOADS
tMPOSET UPON THE $F2MING MECHMANISM OF IxE ¥CDEL 1044A Ayroumart:ic
DestRucT NI TIATOR,

1.0 PIRPOSE:

Tia18S REPOKT ANALYZES THE OPESATICON OF THE ARM:iNG AND Fimi N8
CECHARISY OF THE SOCDEL 104€4 AytQuatic DESTRUCT INITIATON
CWUEN SHBJECYED TO #“iGH LCHOITUDINAL ACCELER:27iON LOADS,
W:TH TuE PUKPOSE OF DETERMIMNING 1F ANY CONGITiON EXISTS

Wo, L3 MICHT RESULTY N PHEBSATUPE OR ITHADVERTANY 1 NiTIAT:-ONK
O7f THE KGCJKEY MOTOR DESTRUZST CHARGE.

Tl Q0o TIVL LONGE THRINSL ASCELCRAT. G

A POB:T:vE (ACTING INM & DIRECTION THAT CAVSES VELOC: TY NF
THE FOCKET TS BE INCPEASED iN THE FCRWARD D1SESTiQ@N)
LONGITUD: NAL ACCELERATION APEL:IED TO THE 1%17.010R CAUSES
AN INEFT: AL REACTICH FORCE Y0 RE I1LvPARTED TU Tuf ARMING
sias spxins {10)%, Aominc SLEEVE (13), BELLCEZ FRONT PLATE
(13, riainc cup {17}, aAND zziirows (2%). Thg iMERT: AL
forcg {¥1) CXEQTED BY THESE COMPONENTS I8 ing PRODLUCT OF
THE wass (o) &7 TWE COWPORENTS ANL THE MAGN: TUDE CF THE

ACCELER2T: 08 rOPCE (A), TuE :NEaTiay r0acE (F1) 18
<ES:STED Py TuE FCRCE (F8) CF TwE anutinG niag spning {(13)
AND THE rORCE {TA) DUE TO ATUOSPHEPIC PRESSURE ACTiNG O
THE FELLCW? T21), LESS THE STORED RETURN FORCE OF THE
cerrons {(Fal,

Teg NET §O2CE fTN) ACTING ON THE ARLING SYSTEM WHICH SOULD
TEND TO CAUSE THE INITIATCR TO RECOME ARMED DUE TO INEKTIAL
FORUES 1S

Tn = %4 - (fs + Fa - Fg) (2.1)

EQuarion 2,1 NESLEZTS THE EFFECT OF ANY DECCSEASE 1 ¥
DYJYAMIC PRESSURE RESULTING FEOM INCPEASING ALTITUDE,.

*  NumptEns 15 PargNTHES:IS { ) REFER TO 17EM NUMBERS OF
Seace/Aru Drasminz No, 104£A-07,
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THE EFFECTIVE SPRUNG WEIGHT OF THE AKMING $YSTEM 18
C.(~" . POUNDS DISTR{BUTED 28 FOLLGWSS

L

11eM Ro, lrem Wgiout

i 13 ArmiNG Bias Seniwng 4.0006
; 15 Apming SuEEVE 0.00486

%‘ 16 Bevrows Frant PLATE é.oc4:
- 17 ) Fiatne Cup 0,047
& 21 BELLows 0.0018
%:g TCTAL €.025)

)

[

. i ‘ai ¢ N ”~ .
Singz L = = wHZRE ¥ = WEIGH ™ IN PUUNDS AND ¢ = 32,2 ¢*/s:c
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L
by

THMEN EQUSTION 7,1 MAY RE WRITTEN?

¥ A
Fa = EA - (Fs + 54 -~ fFg) (2.2}

IF §f £7 ARSUMED THAT THE 'NITIATOR 1§ IN TRE B4FE POS:YION
AND THAT & POSIT:VE LONGITUDINAL ACacLEsaTION OF 100 ¢ 15
APPLIED TO THF MEGHANISY TWE NET FORCE (FN) THAT woueD

TEND TO AnM THE MECHKANISBL (82
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SiNCE THE RESULY 18 A NEGATIVE QUANTITY T 13 OBYIOUS THAT
2 Y00 G ACCELEXATION WLl KOV EVER DISPLACE THE ARMIKG
SYSTEM FROM THE S3Fg PO TION,
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P
3 THE STEADY STATE ACCELERATION RIQUIRED TO I SPLACE THE
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APPENDIX I

ANALYSIS OF THE DYNAMIC PRESSURE EFFECTS
OF THE REDUNDANT INITIATOR PRESSURE SENSING
MECHANISM DURING VEHiIiCLE DESCENT
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ATLANTIC RESEARCH CORPORATION
ALEXANDRIA VIPLINIA

ARPFEXDIX 1

ANALYSIS OF THE DYRAMIC PRESSURE EFFECTS
ON THE REDUNDANT INITIATOR PRESSURE SENSING MECHANISM DURING VERICLE DESCENT

G. K. Ozs
Digcusgion

The back-up or reduadant fragmentation charge initiation mechanism

VL3

i3 to be sctivated by 2 pressure sensing clement. This inltiator will become

arned éurihg‘vehicle ascent at a predetermined atmospheric pressure and functicn,
I

in the event of a Tsilure of the primary iuitiater, by releasing a firing pin

uron sen3ing & predstermined ambient pressure during vehicle descent.

3ecanse 0f the gyroscepic stabilizing effect induced by the vehicle
burncut roll rate of approximately 20 rps, the vehicle will tend to msintain
its zscent attitvde throvzh apogee 2nd deacend in - sort of tail-first attitude
until the asrodynsmic forces beccme gufficient to restore the Yggéﬁig_to the
croper flight position gs {ilustrated in Figure X-1. Previous static stahility
snalyses of the TX 6 MOD 3 Arcas indicate thzt the vehicle wili become aero~
dynsmicaliy ucstable after payload ejection. This condition is experienced
tecause of the Tesrward shift ef the vehicle centsr of gravity i{nduced by loss
of the minimss payload weight of about 8.4 pounds ragquired to caintain s static
stability cf at least one bnady diameter ai burmout. Conseyuzntly, the rocket
body.wil?? begin to tumble upont c%coﬁnteriug aerodviamic restoring forzes.
It shouldé be aoted that whiie the vehicle descence st snae angle of stisck
relative to the airflow, the preasure sensiang orifice wiil da subjected to
soms aagritide of dynamic pressure iu gddilion t0 ambient prescure due to
the normal coapunent of velocit? on the vehicle. Tas purpose of this snalysis

wae to derermiue wha? maxiens error in destruct altitude may be axparienced

as a result of this dynamic¢ oressure iufluence dpon the pressurs sensing
elexcont of tie redundant initiatdr.

The noainal destruvzt sltitude for the redundant icitistor was
nriginally get¢ at 15,000 feet. Considering the limifations cthat would be
imposed upon the vehicle with rugerd to founching locations because Y FAA
regulations, the deatruct aititude was considerably iucressed. This anelysis
wis basad cu & dazign destruct altituég of 50,000 to 70,900 feet. A reinimum
destruct altituda of 5C,000 feet was ;éiected in ordey to stay abeve the




ATLANTIC RESEARCH CORPORATION
ALEXRANDRIA VIROGINIA

sltitude levels currentiy used by cemmercial snd most silitary afrcraft.

. R,
%

For the purposes of this analysis, the rocket bodyv was assumed
to be either aerodynsmically stable or experience reasonibly low rates of
tumble. The analysis, then, may be considered accurats except for very high
rates of tunble, Which are not likely to be encountered with the Frangible

Arcas vehicle.

Stindard Arcas vehicle veiocities were used to determine dynamic
pressures since the performence of the Fraagibie Arcas will be nearly the

same.

Analysis

As the rocket body descends with.some angle of-attack, as shown
in FigureX-1l, the redundant injtiation mechanism will setise pressure ranging
between something slightly less than acblent pressure, P., sad total preasurze,
P‘ + ﬁ‘if anbient pressucre + dynamic pressure). as the pressure orifice is
subjected to some ccmpOment of free atream velocity during vehicle spinning
ged/or tumbling. The maximum condition would be represented by a constant
vehicle descent atciitude normal te the relative aivZfiow such that the redun
dant initiator monitored total pressure at 211 puints along the descent
trajectory a2 illustrated in Figuve ¥-Z. Bance, a seuasing of total pressure
represents the maximun condition and was used to detervine the maximux alti-
tuce thet the redundent initiastor could function. Tais altitule would, of
course, te greater than the preselected deztruct aliitude tased on ambisat
pressure, since the apparent ambient presscre {smbient Fressure + dynawic
pressurs) iy greater, which is reprosentative of s lower actusl altitude.
A cosparicon of smbient and total pressures for the rocket body during descent

- 13 presented on Figure X-3. As shoum by this grapk, the intended destruct

sltitude limits of 50,000 to 70,000 feet could be increased to 94,000 to
112,000 feet under the maximum or total pressure sensing conditions. The
upper limit of 112,000 feet, therefore, repressunts the altiZ.de above which
the radundant initistor couid not be activated.

Since the rocket body will spin and/or tumble during descsut, the
total presrure sensing conditions described shove will exist orly as peak
conditions as the pressure gnenalng orifice becomas orientad {a & position
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to be effescted by dynamic pressure. Hence, the pressure-time relatioaship
that will actuslly be experienced will be similer to the one i'lustrated on
Figure ¥-4. Because the pressure sensing system will have some finite response
time, it is unlikely that the mechanism could be activated by the peak condi-
tione. The systam will most likely respond at an apparent ambient pressure
represented by the aversge of the pressure limits experienced. As shown by
the trace on Figure X-3, the difference between ambient and total pressuras
during vehicle descent is generally much greater than the difference between
zers pressure gnd ambient. Consequently, the apparent zmbient pressure may be
approximated by tho average of the true ambient pressure and total pressure
at gny time during vehicle descent. A comparison Of true ambient pressure
and apparent ambient presaure is presented on Figure X~5. Thia comparison
ivdicutes that the intended destruct limits may be incrcased about 30,000

feet above the design altitude because of the effect of dynamic pressure

on thle pressure sensing system, assuming the response of the system will

be such ~t:hsz%t:.‘tl'us e¢effective ambient pressure will be the average of the

true anbien't pressure and totsl pressure during vehicle desceat. A tabula-
tion of dsta used to.plot the grapns ou Figures I-3 and X-5 is presentad

on Table HI~A,

Corclusjcus

Although ihe redindant initiation device wili be designed to functionm
at a predetermined smbient pressure during vehicle descent, the system may
be activated at a higher sltitude beczuse the effect of dynamic pressure
msy regult in 'an imposed total pressure greater than ambiert. The effective
éestﬁxct aititude is difficulr to predict, but the analysis presented above
establishes the limits of destruct altitude, included in the tabulation below.

- =

-

Min{aum Destruct-Altitude . . . . . . . . 50,000 feet
Nominal Destruct Altitude . . . . . . . . 60,000 feet
Desizn Destzuct Altitude Limits . . . . . 5C,000 to 70,000 feet
Probable Destruct Altitude Limits . . . . 81,000 to 100,000 feet
¥aximum Destruct Alteitude . . . . . . . . 112,000 feet
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Although the design limits of destruct altitude msay be considerably
increased by the effects of dynamic pressure, the range of 50,000 feet minimum
to 112,000 feet maximum is acceptable for fragmentation of the vehicle.

There is no apparent reason at this time for reducing the destruct altitude
limits, providing the minimum limit is sufficiently high to avoid safety

hazards to aircraft, etc.

The effect of vehicle attitude during descent and response ¢f the
redundant initiation system to dynamic pressure can best be evaluated during

flight tests, which are planned later in the program.
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TABLE J-A AR33264

Ambient Pressuies

Altitude Absclute Pressure
(it) (psia)

50,009 1.6%0

60,000 1.048

70,000 0.650

Dynamic and Total Pressures

q _ev? _
B v P 5 P, Pp=P +aq
(ft) (ft/sec) (Ib-sec®/ft*) (psi) (psia) (psia)
160,000 2349  2.43 x 1076 0.047  0.015 0.062
138,000 2630  5.83 x 10°° 0.140  9.033 0.173
113,000 2000 1.74 x 107° 0.508  0.091 0.599
77,000 3143  1.00 x 10°% 3.440  0.466 3.906
49,000 2995 382 x10% 11900 1.770 13.670
PT + Pa
Average Apparent Pressures, —
h Pp Py T2
(ft) (psia) (psia) {psia)
160,000 0.062 0.015 0.039
138,000 0.173 0.033 0.103
113,000 0.599 0.091 0.345
77,000 3.906 --0.466 2.186
49,000 13.670 1.770 7.720
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Ambient and Total Pressures for the Frangible
Arcas Vehicle During Descent
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Ambient and A ent Ambient Pressures for
the Frangible Arcas Vehicle During Descent

-§ + i : i H . : ) !
; . -g ) i : 2 H . § ; H :
1 3 H - H H M 1 : ;
B e | ; :
- —— =t el e A T ) - - -3 T e T
H - ; ;: »é -
s EERat 3 ?;s-". - H - i : -;5 i
} 2
: : ’ . } IR L A R
TR T S ST SOUUUIUS S S S
: H : ; 3 . H . : . R
- i Apparent P, Considering Norsal °
5§ - ' Vehicle Spin Rate ;
e e
. i T RIS S Tl
: P 3(Pa + 3 ) + P,
A U 2
4 i - e —4—-: i by - =

»
H

— - H H . — e ceae = - - P p—
-z 4 =

R

RO
P -
i

H
i H
H
-i ‘
- ‘-
1

[
U RN T | B e e 0
e

' . '
A 1 . e
R
o

PRESSURE (psia)

Ambient

(Pressure, Py .

. [Probable Destruct Altitude LiEmits

02

Ve e

—_—

ol . . ' ~ :
#4 5 0 80 90 100 110 120 130 140 150 160

anded Destruct _§ ALTITUDE (thousands of feet)
zitude Limits

PR S
Nominal

8 2 X X Y

Figure E-5




ATLANTIE F .SEARCH CorpoaaTiONn
ALEXANURIA VRGINA

St 1!

e

8l
»

(S« ¢

I

FRANGIBLE ARCAS FLIGHT PERFORMANCE ANALYSIS

(DIAGNOSTIC VEHICLES)

W,

TRt 5

T3
% RCH ﬂ

3
bt
S
Yk,

mmwnag

W

Vit

ﬂ'm

Project HManager
Sounding Rocket Systems

SN
T

A

]

5: 19 Pebruary 1965

YR IR (ki s 0
gmn.u ] “,

agpe,

o

N




ATLANTIC RESEARCH CORPORATION

ALEXANORIA . VIAGINIA

INTRODUCTION

Additional funding was made available in April 1964 to continue
the Prangible Arcas development werk which began in September 1962 under
Bureau of Naval Weapons contract NOw 62-1106-c. The primary objective of
the Frangible Arcas program is to demonstrate the feasibility of a frangible
meteorological rocket system comparable in performance with the standard
Arcas vehicle, but capable cf self-induced fragmentation subsequent to
payload ejection.

The design aporoach selected to achieve the required fragmentation
capabiliity utilizes materials and a configuration not here¢tofore evaluated
on the systems level. Because of the necessity to evaluate various
components of the wehicle systems with a minimum number of varjables, a
two-phase flight test program is being emplcyed. Phase I consists of
two flight tests of the final vehicle configuration, less thz fragmeantation
system, to evaluate vehicle performance and monitor motor case temperstures
in flight. Successful completion of these flight tests will provide the
information to procede with Phase 11 which will consist of two flight
tests of the system vehicle for the purpose of evaluating payload ejection
and vehicle fragmentation in flight.

Phase 1 ox tl:e flight test program was completed during
January at PMR. Flight data obtained from the two units, listed below,
were used to estabiish drag data whi-:h will more accurately characterize

the Frangible Arcas systems vehicle configuration.

Flight Unit Op. No. Date Flown From Payicad Payload Wg. £{1bs)
AFFT-1 417156 12-16-64 SNI Diagnoatic 10.1
AFFT-2 517613 1-20-65 Pt. Mugu Diagnestic 1G6.1

The attached report presents a comparison of the flight dats
with that predicted and discusses significant portions of these dat:i. The
drag curve ueveloped by this analysis is presented herein and will be used

to predict performance of the systems fllight vehicles.
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FRANGIZi.E ARCAS FLIGHT PERFORMANCE ANALYSIS

SUMMARY

An analysis of the flight performanc: data obtained from che
first twe Frangible Arcas flight tests was performed to develop a nore
accurate drag curve to be used in predirting performance of the systems
vehicle. Insufficient radar data were obtained from the first flight to
construct & trajectory for the vehicle, but sufficient telemetry data
were obtained tc show that the flight was fully succéssful. The comhination
of this information with the date obtained from the second £1ight showed
reasonably good agreement with the predicted vehicle performance, as
tabulated below.

Predicted Actual

Pavlozd Effective Apogee Apogee
Fiight Unit Weight (1lbs.) QE Altitude (ft) Altitude (fty Z Error
AFFT-1 10.1 84.5° 260,000 190,900+* 5.9%
AFFT-2 10.1 77.0° 149,900 114,373 18.3%

* Aprarent apogee bag=d on TM daza

Although the vehicle performance data obtained from these fiights
were somewhat limited because of. the failure to obtair sufficient radar
coverage of the first fiigut, the analysis and critique of these flights
eatablished a new drag curve which provided pradicted trajectory profiles
that agree wall with the actusl trajectory <ata.

DIAGNOSTIC FLIGBT TESTS

Two diagnostic flight test vehicler, .esigned to monitor motdé
case skin temperatures in flight, were cosypeced and shipped to PMR
19 Hovember 1964. A photograph of these £light test units is-shéwm on
Figure 1. & tabulation of actual vehicle weights is presented on Table I.

A discussion of the flight performance of each vehicle is presented below.

AFFi-1 Fiight Performence
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The fizst diagnostic flight vehicle was launched at an elevation

hony  CR ENM

setting computed to provide a launch elesvation of 85.6 degrees. The vehicle
was tracked by radar from about T + 7 to about T + 27 seconds at which time
radar track was lost. A plot of radar data obtained is presented in

Iv!..n m ulil

comparison wicth the predicted trejectory profiles on Figure 2. An expanded
erale plot for the early portion of the flight is presented on Figure 3.
As obgerved from this compariscn, the effective launch angle attained was

about 85 degrees, which is in good agreement with the predicted angle.

v “ “ W*

It may be noted, however, that the flight times at which the vehicle was to

8 |

- have reached various altitudes do not correlate well. It is highly unlikely
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that the velocity of the vehicle could truly have been such as to have behaved

Wi

&s the data indicate. A comparison of these data suggests an error in :

the time scale and/or magnitude of the radar trajectory data since various
telemetry data inﬁica;e that the vehicle velocity and apogee performance
e attained were reasonably close to that predicted.

Short interval fade of the telemetry signal was experienced

Co¥ . - i

5 as the vehicle rolléd’éuting flignt. This intermittent signal “drop-ocut"

was proiuced by the éhang%ng orientation of the paylcad antenna as the
vehicle rotated during flight. “his inherent condition proved beneficial,

iy

howevar, since the roll rate of the vehicle was determined by observing the
frequency of the signal fade. Since roll rate of the vehicle iz directly

iazatn

proportional to its velocity, the velocity of the vehicle may be evaluated
by monitoring the roll rate as a function of time. A cowmparison of the
;; actuxl roll rste data with that predicted is presented on Figure 4. The
agresment of these data shows that the velocity of the vehicle was close
to that predicted.

Impact time ior the vehicle was obtained from the telemetry
data by observing the time of abrupt and complete loss of the telemetry

[T

signal. An impact iime of 248 seconds after launch was recorded as compared.

to a predicted time of 254 seconds. The actual time to impact agrees with

that predicted within less than 3% and i: indicative of reasonably good agreement
in apogee performance.

Two CMD-! stations tracked the vehicle to provide bhsack-up information 1
for the radar data. A trajectory prcfile for the flight was constructed
by the PMR Data Reduction staff utilizing these data in a comput:r program.
The resulting trajectory is presented on Figure 5 in comparison wich
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predicted trajectory profiles at various launch angles. Although the

accuracy of these data may have been impaired because the GMD-1 stations
were located only about four miles apart, the resulting trajectory shows
reasonably good performance as compared with that predicted and confirms the

data presented above.

-

AFFT-2 Flight Performance

The second diagnostic flight vehicle was launched at an elevation

setting computed to provide a launch elevation of 79 degrees. The
vehicle was successfully tracked by FPS-16 radar throughout the flight.

The actual trajectory achieved is presented on Figure 6 in comparison

Vdliggsm

"

with the predicted trs ectory profiles. As observed from this plot,

an effective launch angle of about 77 degrees was achieved as compared

Mlmﬂa’-:l‘
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to the predicted angle of 79 degrees. Trajectory performance of the vehicle
appeared to be in relatively good agreemant with the predicted data until
after rocket motor burnout, at which time the vehicle diverged from the
predicted path and achieved zr apogee about 25,000 feet less than was

gy

L

predicted for a 77° QE.
The velocity achieved by the vehicle was less than that

predicted with respect to both altitude and time as illustrated by the
graphs on Figures 7 and 8 respectively. The latter plot revealed a point
of significance in that the maximum velocity occurred about four seconds

later than predicted. This phencmenon is characteristic of a motor burning

time longer than that predicted, resulting in a lower than nominal thrust

E o
level for an extended period of time. %_
fg
FLIGHT PERFORMANCE SUMMARY §~
r

Since the two subject flight vehicles carried the same gross

e adta
v

payload weight, their trzjectory profiles may be conveniently compared in
a single graph as shown on Figure 9. As described above and observed from

L

the comparative plot, the apogee performance of the diagnostic flight
vehicles was somewhat less than that predicted. Insufficient radar coverage

of the first flight was obtained to allow an adequate critique to be
performed. Radar data obtained from the second flight, however, provided
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good flight performance data. The second flight, therefore, provide! the

mm

basis for the critique and development of a drag curve characteristic of
the vehicle configuration. The apparent trajectory achieved by the
firat flight, based on vehicle velocity and impact time as observad from the

i' ..!..,,.u.,.
[ n [ d

telemetry data, was used as a method of checking the accuracy of the
revised performance. ¢

" ——

CRITIGUE d

Failure of the vehicles to fully achieve the predicted peak a

s

altitude for their respective effective launcn angles was most likely

attributed to optimistic drag data aesumed for the initial prediction t

of vehicle performince, since the vehicie weights and total {mpulse are P

accurately known. This conclusion is supported by comparison of the

EETEFA |

actual and predicted altiti ‘e vs. veiocity curves on Figure 7. This
comparigson shows the actual velocity to be consistently less than the

predicted value at all altitudes, which is characteriszic of greater-~

kg W

thaen-predicted vehicle drag. The agreement of rate of decrease uf vehicle

velocity (deceleration) after rocket motor burnout as shown by Figure 8,

[N

however, indicates accurate drag data at the higher Mach numbers. Although
: the flight data show that the second vehicle experienced a burning time

about four seconds longer than predicted, the reduced thrust level and

1

resulting increase in gravity turn did not appear to be the most significant
factor in decreased apogeec performance experienced, zince the ballistic

trajectory did not deviate appreciably from the predicted curve until v
well after motor burnout.

Since the data presented above indicate that the wost significant 0
contributor to the optimistic pradictior of vehicle performance was drag
deta, except at the higher Mach numbers, the drag curve which was uscd t
te characterize tne vehicle configuraticn wa. modified as shown on Pigure 10. s
This modification was predicated upon successful results obtained with the v

BV Arcas vehicle configuration which is characterized by this drag curve.

Point-mass trajectories were computed utilizing the modified drag dats. d
The resulting traiectories are presented on Figure 11 in comparison with e
the actual flight data obtained from the two diagnostic flight tests. As

observed from this comparison, the new drag curve provided predicted trajectories

D e g e
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that more accurately describe the trajectories achieved. Comparison of
the predicted and actual velocity dsta with respect tc both altiftude and time,
Figures 12 and 13 respectively, show an improvement. The lower-than-nominal
thrust lzvel indicated by the increased burning time shown on Figure 13 may
account for the deviation of the actual and predicted data on these last
curves. The interplay of increased burning time, gravity turn and drag
characteristics are extremely difficult to evaluats adequately with flight
data from only one vehicle. Vehicle performance with respect to apogee
altitude, however, shows good agreement between the prediction (critique)
and actual flight data.

A comparison of actual and predicted times to impact,
tabulated below, also shows relatively good agreement betwesr the new predicted

performance and that achieved.

| Impact Time (sec) A¥FT-1 AFFT-2 |
Predicted * 247 210
Radar Data No Data 202
Telemetry Data 248 205

* Based on revised performance data

CONCLUSIONS

Although the flight data available for the Frangible Arcas
venicle are limited, the performance data obtained from the two diagnostic
flights indicated that the original assusptions of rirag data were slightly
optimistic.

Modification of the original drag dats provided trajectories
that agree well with the actual flight data. The use of the new drag curve
should provide more accurate prediction of the Frangible Arcas systems

| vehicle performance.
Although the new drag data presented herein represents the best

| data availablie at this time, its degree of accuracy camnot be fully
. evaluated without additional flight tests of the vehicle.
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Table I

Tabulation of Actual Weights of Frangible Arcas
Diagnostic Flight Vehicles

AR2238
Component Weights (1b) AFFT-1  AFFT-2

Motor Case Assembly 16.50 i6.10
Fin Assembly 1.69 1.69
Fin Retaining Screws 0.03 0.05
Propellant Gr:in Assembly 42.69 42.13
Retaining Sleeve 1.93 1.33
Timer Assembly (Without Gas Generator) 0.60 0.60

63.44 62.48 ‘
Diagnostic Payload 10.10 16.10

73.54 72.58

A e
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Frangible Arcas Trzjectory Profiles for 10.1 Pound Payload Sea Level Launch
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APPENDIX IV

FRANGIBLE ARCAS FLIGHT TEST RESULTS
(SYSTEMS VEHICLES)
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INTRODUCTION

The primary objective of the Frangibie ARCAS program was to
demonstrate the feasibility of a frangible rocket system through flight test
evaluation. In order to accomplish this cbjective a series of four flight tests
were conducted. The first two flights consisted of the basic vehicle (no
fragmentation system) which carried a payload designed to monitor motor
case skin temperatures during flight. Both diagnostic flights were success-
ful, thereby demonstrating airworthiness of the basic vehicle configuraticn,
establishing skin temperatures during flight and providing the flight data re-
quired to establish a characteristic drag curve for the vehicle configuration.

The program was concluded with two flight tests of the systems
vehicle. The purpose of these units was to demonstrate feasibility of the
desired vehicle system by flight test evaluation and to provide flight test
data for determination of the systems vehicle performance.

This report presents a detailed evaluation of the systems flight
test data and compares predicted and actual flight performance.




SUMMARY

Phase III of the Frangible ARCAS program included the flight
testing of two systems vehicles. The {first flight was considered a ""No Test"
because of a maliunction experienced with the PMR modified launcher.
Results of this ilight, however, did indicate an increase in vehicle drag
characteristics which was used to repredici the performance of the final
flight unit,

The second and {final flight test of the systems vehicle was suc-
cessfully completed in December 1965, All systems functioned 2s program-
med. Fragmentation was achieved twenty seccnds aiter payload deployment
at apogee. Radars tracked numerous pisces at various descent raies., The
fragmented unit was tracked as a "cloud” which was observed to disperse
as it descended.

GMD-1 telemetry data were lost stortly after liftoff, but success-
ful payload deployment was observed by radar track and by physical recovery
of the payload. The reason for telemetry signal loss is not readily apparent.
The recovered Arcasonde payload was tested and found to function normally.
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FRANGIBLE ARCAS FLIGHT TEST RESULTS
(SYSTEMS VEHICLES)

I. FABRICATION OF SYSTEMS VEHICLES

Final assembly of the Frangible ARCAS systems veaicles for
flights AFFT-3 and AFFT-4 was completed at PMR on 19 and 20 May,
respectively. Final assembly consisted of incorporating the explosive {rag-
mentation system into the rocket vehicle. The external sheet explosive was
attached to the motor case by incorporating a silicone adhesive pressure
sensitive fiberglass tape as a base material onto which the sheet explosive
was fitted. The sheet explosive was then overwrapped with a layer of alumi-
num coated, silicone adhesive pressure sensitive tape. Upon installation of
the explosive module and initiation units, the configuration was as illustrated
on Figure 1. Application of the external explosive material and overwrap in-
c¢—~ -ed the original vehicle dianieter by 0.10 inch. A tabulation of actual
we.2:. . data for the two systems vehicies is presented below.

AFFT-3 AFFT-4

(ib) (1b)
Motor Case Assembly 16.80 16.10
Fin Assembly 1.70 1.70
Fin Retaining Screws 0.03 0.03
Propellant Grain Assembly 43.44 42.63
Retaining Sleeve and Module Housing 2.12 2.12
Mechanical Timer Assembly 0.70 0.70
Redundant Initiator Unit 0.31 0.31
Primary Modular Charge 2.08 2.09
Sheet Explosive and Overwrap _2.29 _2.32
Total Vehicle Weight (Less Payload) 69.47 68.00




The systems vehicle AFFT-3 was fitted with an inert parachute
section and an Arcasonde 1A telemetry payload, The payload was of the same
weight and center of gravity location as the actual Arcasonde system, but an
inert parachute section was utilized since payload ejection was not plahned
during the first fragmentation systems flight test. The payload was retained
intentionally te provide a back-up method of detecting fragmentation in the
event radar track of the vehicle was lost.

Ii. FLIGHT TEST AFFT-3

Since payload ejection was net planned with the first of two frag-
mentation systems vehicles and because some difficulty was experienced with
one of the mechanical timers, the vehicle AFFT-3 was selected to evaluate
the redundant initiator system. The primory objectives of the flight, there-
fore, were:

a. To demonstrate vehicle fragmentation using the redundant
initiator system.

b. To evaluate the aerodynamic performance of the systems
vehicle,
A. RESULTS

The {light test AFFT-3 was completed 19 May from the meteoro-
logical rocket launch complex at PMR's San Nicolas Island test site. Launcher
settings and the effective azimuth and elevation angles for the flight are tabu-

lated below:
Actual Effective
(degree) (degree)
Launcher Elevation Setting 86 80.5
Launcher Azimuth Setting 263 290

Aerodynamic performance of the vehicle was satisfactory and

radar track was maintained throughout the flight beginning at T + 18 seconds,
Radar data, however, showed an abnormally low apogee altitude of about
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69,000 feet as compared to the expected apogee of 135,000 feet and no evi-
dence of fragmentation was indicated.

A post-test inspection of the launcher showed the access port
cover plate (see Figure 2) to have been ejected during launch. It should be
noted that the launcher imparts an initial velocity to the vehicle by a piston
action created by pressure generated by the exhaust gases of the rocket
motor. The normal ejection velocity attained by this technique is 150 ft/sec.
When an auxiliary gas generator cartridge is incorporated to increase the
internal launcher pressure, the initial velocity of the vehicle is increased to
about 230 ft/sec. An access port was incorporated in the launch tcbe for
use with the Frangible ARCAS systems vehicles. Although the use of this
port was not mandatory, it was incorporated as an additional safety feature
to allow final commit-to-arm of the explosive fragmentation system while
the vehicle s in the launch position, thereby precluding the necessity for
additional handling of the vehicle. Exposure of this port during lauach,
however, resulted in loss of the internal pressure and a corresponding de-
crease in the initial velocity immparted to the vehicle. The decrease in initial
launch velocity resulied in an appreéiable decrease in apogee altitude for the
vehicle. Examination of the access port cover strap showed the connector
to have failed from the loads experienced during launch.

Failure to achieve fragmentation of the vehicle was directly at-
tributable to the altitude profile attained. The redundant initiator required
exposure to atmospheric pressures equivalent to an altitude of between
70,000 and 100,000 feet to become armei. Since the maximum aititude at-
tained was only 69,000 feet, the systen: did not become armed.

An analysis of the flight data shows the performance attained to
be the result of an abnormally low initial launch velocity induced by failure
of the access port cover strap on the Government modified launch tube dur-
ing liftoff.




B. FLIGHT DATA ANALYSIS

An analysis of the flight dala was performed to determine the
actual launch velocity experienced and confirm that its effect on vehicle
performance was in agreement with the flight data obtained with the vehicle
AFFT-3. Failure of the access port cover plate, however, introduced two
unknown parameters into the analysis; namely (1) the actua! launch velocity
attained, and (2) the effective launch angle attained. In order to approximaite
the magnitude of initial iaunch velocity, V o 3 series of trajectories at varicus
effective iaunch angles were compared with the actual ballistic traj:-ctory
achieved,

Figures 3 through 6 present a comparison of the actcal flight
trajectory to predicted trajectories at various eifective launch angles for
initial launch velocities of 150, 100, 63, and 40 ft/sec, respectively. An
analysis of Figure 3 shows the predicted line of apogee to approach the actual
apogee attained with a decrease in effective launch angle, but the QE required
to provide apogee agreement does not coincide with the QE attained. It was
concluded, therefore, that an initial Jaunch velocity less than 150 ft/sec was
experienced since no value of QE provides agreement. An analysis of
Figure 4 provides the same conclusion for an initial launch velocity of
100 it/ sec. Figures 5 and 6 show reasonable agreement for launch velocities
of 60 and 40 ft/sec although the predicted apogee altitudes were not fully
attained.

The actual trajectory is presented in Figures 7 through 9 in
comparison with predicted trajectories of various launch velocity and fixed
QE. An analysis of these plots shows that any one of the foilowing combina-~
tions of V ° and QE approximately agree with the ilight data.

Initial Launch Velocity Effective Launch Angie
{ft/sec) (degree)
a0 at 78
60 at 20
20 at 82
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It was noted, however, that the actaal apogee altitude achieved was
consistently less than predicted for these conditions by about 10 to 15 per cent.
It was further observed that the vehicle velocity-time relationship {Figure 10)
and altitude-velocily relationship (Figure 11) were consistently below that
predicied. Although these relationships are characteristic of an error in the
drag data, the drag curve established {or the vehicle configuration dusing the
diagnostic flights were believed to be accurate. Any error experienced as a
result of drag, therefore, could be evaluated with respect to drag reference
area. Although the normal characteristic reference area is that of the body
cross section, it was considered likely that the eifective drag reference area
characterizing the Fraagible ARCAS vehicle may be iacreased because of

cmay e
Tyt 3 i e
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g% turbuient flow conditions, skin friction or other factors influencing vehicle

= drag as rejated to the sheet explosive overwrap.

;;":' C. AFFT-3 CRITIQUE

. A series of trajectories were computed with the drag reference

f area increased from 0,126 ft to 0,151 ft2, Figures 12 through 15 show the

= effect of initial lauach velocity cn apogee altitude and impact range at various

- effective launch angles. Although reascnable agreements are obtained in al’

& cases presented, the degree of error experienced increases with iaunch

- velocities above 60 {t/sec. An analvsis of these trajectories shows the con-

§§_ ditions which most satisfactorily agree with the flight data is an initial launch
velocity of 60 ft/sec at a QE of §0.5 degrees. A plot of vehicle velocity

: versus flight time {Figure 16) and altitude versus velecity {Figure 17), also

- show reasonably good agreement. A further adjustment in drag reference

i area during the powered phase of Ilight would provide a more accurate agree-

= ment between predicted and actual data. However, the accuracy atiained on

- the basis of this ore flight was considered sufficient to show that the decrease

i in vehicle performance wzs attribated to loss of the access port cover plate
during launch. The data generated by this analysis also provide sufficient
agreement with the flight data, as tabulated pelow, to indicate that tne initial

launch velocity experienced with the vehicle AFFT-3 was about 560 ft/sec.
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Per Cent

Predicted Actual Error
Apogee Altitude, it 70,000 68,602 -2.00
Apogee Range, {t 66,000 64,156 -2.80
Impact Range, {t 110,000 105,300 -4.30
Time to Apogee, sec 71.0 70.6 -0.60
Burnout Velocity, ft/sec 2660 2540 -4.50
Time to Impact, sec 157 159 +1.28

D. CONCLUSIONS

1. Although the AFFT-3 flight data anaiysis and critique showed
the vehicle to have an apparent effective drag reference area somewhat
greater than originally predicted, it provided conclusive evidence that the
acteal initial launch velocity experienced was only about 60 ft/sec as com-
pared to the expected velocity of 230 ft/sec. Furthermore, the critique data
showed the actual vehicle performance with a 60 ft/sec launch velocity to be
as anticipated.

2. The launch parameters predicted and attained were:

Effective Effective
Actual Predicted Attained

Launcher Elevation Setting, deg 86 80.5 80.5
Launcher Azimuth Setting, deg 263 290 280
Launcher Velocity, ft/sec 230 60

noi. FLIGHT TEST AFFT-4

This unit was the second and final systems vehicle to be flight
tested in the program. It incorporated both the primary and the redundant
fragmentation initiation systems. The payload consisted of a standard
Arcasonde 1A telemetry package and a 15-foot diameter silk parachute with
a norreflective surfuce finish. A nonreflective parachute was used to aid in
radar tracking of the spent rocket motor assembly after payload ejection
since radar data was to be used for determining the fragmentation event.

Iv-8
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Determination of successful payload ejection was to be determined primarily
by GMD-1 tracking of the payload tclemnetry signal during descent.

The primary objective of this finai flight test was to demonstrate
the feasibility of a frangible meteorological rocket system, which was also
the prima:y objective of the program. Secondary objectives of this flight
were to evaluate general flight performance and aerodynamic characteristics
of the systems vehicle.

A. RESULTS

The final flight test AFFT-4 was completed 21 December, 1965
at the meteorological rocket launch complex at PMR's San Nicolas Island
test site. Radar data showed normal flight performance through an apogee
altitude of 130,000 feet at which time payload ejection was observed. The
payload telemetry signal was lost during vehicle ascent, consequently no
GMD-1 data were obtained during payload descent. However, successful
payload ejection was determined by both radar observation and physical
recovery of the payload. Failure of the GMD-1 to maintain track is not
readily apparent. It should be noted that the recovered payload was tested
and found to function properly. Successful radar tracking of the descending
rocket motor assembly was maintained after payload ejection.

Fragmentation was induced by the primary system (mechanical
timer unit) at about T + 121 seconds at an altitude of 123,000 feet, or payload
ejection plus 20 seconds, as programmed. One piece, undoubtedly the nozzle/
fin section of the motor assembly, was tracked to impact at approximately
the normal descent velocity., With the exception of this piece which was not
expected to fragment, radar cbservation showed a “'cloud™ of particles with
varying desceat rates. Radar track of various pieces was maintained and
the "cloud" was observed to disperse as it descended. Except for the ex-
treme aft end of the vehicie, which was not prepared for fragmentation on
this final unit, all indications were that the degree of fragmentation attained
was the same as that achieved during tests conducted earlier in the program;
i.e., less than 3.0 ft-1b of impact kinetic energy.

Iv-9
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B. FLIGHT DATA ANALYSIS

An analysis of the flight data was conducted to compare the actual
flight performance with that predicted. A plot of the actual trajectory pro-
file is shown on Figure 18 in comparison with the predicied curves at various
effective launch angles. This comparison shows good agreement between the
actual and predicted data, which was based on an increased drag reference
area as determined from the previous flight, AFFT-3. As observed from
this comparison, the effective launch angle was 84.9 degrees and the fiight
data shows that the apogee altitude achieved was only about 1.8 per ceat
greater than that predicted. A comparison of actual and predicted vehicle
velocity on Figure 19 shows the flight unit to lag the velocity profile pre-
dicted for a nominal burning time of 30 seconds. It shouid be noted, however,
that the flight data show an actual burning time of about 33 seconds and a
maximum velocity close to that predicted.

An increased motor burning time, which is characteristic of a
conditioning temperature less than the 70°F nominal, produces a corres-
ponding decrease in thrust, This condition is further characterized by the

lag experienced in the vehicle velocity-aititude comparison shown on
Figure 20.

The longer-than-nominal burning time was confirmed by compar-
ing the actual vehicle velocity profile to that predicted for a 33-second burn-
ing time, Figure 19. Good agreement in all aspects of flight performance
was achieved when the 33-second burning time was considered. It should be
noted that this burning time corresponds to a conditioning temperature of
about 40°F, A tabulation of predicted and actual flight parameters is pre-
sented below:

v-190
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Burning time = 33 sec

Paraeter Predicted Actual®
Burnout Velocity, ft/sec 2867 2750
Burnout Altitude, ft 48,470 49,000
Apogee Altitude, ft 129,800 129,700
Apogee Range, it 47,580 45,000
Time to Apogee, sec 102 - 101

a. AFFT-4 Radar Data.

A tabulation of vehicle performance data for & buraning time of
33 seconds is presented on Table I. The actual trajectory profile for flight
AFFT-4 showing the sequence of events and track cf several fragmented
particles is presented on Figure 21.

C. CONCLUSIONS

Ejection of the access port door from the launch tube during flight
AFFT-3 provided an ejection velocity of unly aboui §0 ft/sec and resuited in
a significant reduction of vehicle performance. Although the flight was con-
sidered a '""No Test," the increase in vehicie drag characteristics derived

from the flight data provided accurate predicted performance for the second
systems vehicle,

Flight performance of the second and final systems vehicie
(Flight AFFT-4) was close to that predicted considering the 33-second
burning time experienced. The 33-second burning time was attributed tc a
motor conditioning temperature of about 40°F.

The successful performance of the systems flight test vehicle
AFFT-4 demonstrated the feasibility of a frangible meteorological rocket
vehicle. Radar data indicated fragmeitation as programmed.
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Ilustration of Modification to the Standard ARCAS
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