A DESIGN PROCEDURE FOR DETERMINING
THE CONTRIBUTION OF DECKHOUSES TO THE
LONGITUDINAL STRENGTH OF SHIPS
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ABSTRACT

A design procedure developed by the author for determining £
the stresses in deckhouses i3 presented. The method includes a
tabular procedure for calculating an effective moment of inertia
which reflects the effectiveness of the deckhouse in contributing
to longitudinal strength., The procedure is based on the theoreti-
cal approach by A.J. Johnson of the British Shipbuilding Research
Association. The theoretical approach utilizes semi-empirical
results of full scale experiments to evaluate the effect of
differential deflections between deckhouses and their parent hull
girders. This data has been incorporated into an analytical
treatment of the problem based on the plane stress theory.

The nature of the problem is discussed and highlights from
previously published work on the subject are given. In the con-
clusions, it is shown that all deckhouses contribute somewhat to
the strength of ships and that this fact {s useful to the naval
architect in his quest for a structurally efficient ship,



INTRODUCTION

Since about 1830, naval architects have calculated what
i1s known as the longitudinal strength of ships by placing the
ship on a static '"standard wave" which has a length equal to
that of the ship and a height from crest to trough of about 1/20
the ship's length. The combination of buoyancy forces and weight
forces results in & load diagram from which shear and bending
momcnt curves are calculated, Assuming that the structural be-
havior of a ship's main hull girder will be similar to a free-
free beam, the Maval Architect calculates the stresses by the
well known flexure formula, G=M#/L , where ¢ is the longi-
tudinal stress, M is the bending moment, Z ig the distance
from the neutral axis, and I is the area moment of inertia
of the section under consideration., In the inertia calculation,
the naval architect has been reluctant ¢o include the deckhouse
as a contributing longitudinal strength member.

The reason for this is quite logical. For some time, it
has been recognized that the conventional beam theory does not
generally apply to the combined deckhouse and hull, 1In fact,
it has been shown that it is possible to have almost any stress
distribution in the deckhouse depending on its effectivencss in
contributing to the strength of the hull. Vasta [1], in 1949,
was the first to demonstrate this with the tests on the S. §.
President Wilson.

Realizing that the deckhouse structure may contribute
to longitudinal strength, the naval architect, nevertheless,
has no way of evaluvating its effect., Always conservative in
his design, he quite logically omits the deckhouse in his
longitudinal strength calculation. In connection with this
procedure, there often exists a popular misconception which
hypothesizes a dichotomy between '"stressed'" and "unstressed"
deckhouses. If the deckhouse is not considered in the inertia
calculation, then it is considered 'unstressed." But, in
actuality, this would be possible only if the deckhouse were
floating on the main deck and completely unattached to the
main hull girder. Otherwise, 1f it is attached in any manner
whatsoever, it is experiencing some longitudinal stress, end
contributing to the total strength of the ship. This misconr-
ception has usually had no ill effects because other considera-
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tions (local loads, etc.) have provided adequate structure in
the deckhouse to carry the longitudinal stresses. However, it
would be beneficial tc obtain a clearer picture of the stresses
in the deckhouse so that advantage may be taken of its contribu-
tion to longitudinal strength. The design procedure presented
in the paper is intended to accomplish this objective.

To determine why the flexure formula cannot be applied
to the combined deckhouse and hull, one must e¢xamine the &ssump-
tions upon which the theory is predicated. The beam theory
might be referred to as the approach from the strength of materi-
als point of view. One basic tenet of this approach is that
the longitudinal strains in both deckhouse and hull vary linearly
and are proportional to the distance from the neutral axis. In
the main hull of a ship thie is approximately true, as numerous
experiments have verified. In addition, the beam theory requires
that the deckhouse must be constrained to the hull such that the
curvature of the two parts are identical during bending. HNow-
ever, the nature of the interaction between deckhouse and hull
is complex and the curvature of the two parts may differ radi-
cally when subjected to load. As a rxesult, the strains may not
remain linear in the deckhouse and therefore, beam theory will
not apply. Full scale tests have verified the nonlinearity of
strains in the deckhouse.

That the curvature of the deckhouse may differ from that
of the main hull may be seen in Figure 1. The system of shear
forces which act at the base of the deckhouse, where it is
connected to the hull, are eccentric with respect to the neutral
axis of the deckhousc and therefore, there is a tendency for
the deckhouse to deflcct into a curvature of opposite sign to
that of the main hull girder. (Curvature ol the main hull girder
is measured at the top of the side shell whereas curvature of
the deckhouse is measured at the base of the deckhouse,) There
is another system of vertical forces which tend to cause the
deckhouse to follow the curvature of the hull. Depending on
the combination of these systems of forces, the deckhouse may
have & curvature differing from that of its main hull girder.
The effectiveness of the deckhousc and thus its coatribution
to the longitudinal strength of the ship will depend to a large
extent on how closely or how differently the curvature of the
deckhouse resembles that of the hull,

Another phenomenon which occurs in deckhouses which must
be accounted for in any complete analysis is known as the 'shear
lag" effect. It usually occurs in thin plating and concerns
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the uneven distribution of flexural stress in flange members
such as the deckhouse decks. The shear flow, shearing stress,
and shearing strain in the flange plate are higher near the
web (or deckhouse side) than remote from the web. The unequal
shcaring deformation causcs the section remotc from the web to
"lag' as the beam is bent, The result is that plane sections
do not remain plane which dunics a basic tenet of beam theory.

Ristorical Beview

Concern over the deckhouse problem dates back to 1899
when Bruhn (2], studying discontinuities in ship structures,
concluded that deckhouse stresses would not approach the simple
beam theory values unless the deckhouse were eight times as
long as high.

In 1913, Foster King [3] presented a paper in which he
used beam theory to determine the stresses in large deckhouses.
Bis dcsign philosophy was that these stresses should not exceed
thos¢ in the main hull givder if the deckhouse were omitted.
Montgomerie {4], in 1915 extended King's treatment and through
an analytical approach attempted to derive rational design
formulas, which were later adopted by some of “he Classification
Socictics. Expansion jolnts were introduced as a solution to
the problem of an extremely flexible deckhouse which was unable
to take part in the straining action to which a ship is subjected.

Movgaard [5], considering a vertical plate of limited
length attached to a horizontal plate of greater length, was
one of the first to recognize the effects of curvature of deck
house and hull., HMe considered shear in the boundary layer and
concluded from his analysis that expansion joints might aggravate
the stresses rather than relieve them.

The analysis up to and including Hovgaard's work in 1934
appeared to be of a supcrficial nature. MNot until the full scale
experiments of Vasta in 1947, on the §.S. Philip Schuyler [6],
and in 1949, on the $.S. Presidunt Wilson [1], did the problem
stimulate comprchensive theoretical attempts. Vasta clarified
the existence of the problem, emphasizing the manner in which
the stresses vary between the main deck and the deckhouse top.
H¢ introduced the concept of deckhouse effectiveness later to
be used by Caldwell. At the same time model experiments by Holt
[7] and Muckle {8] drew additional attention to the problem.
However, there still remained the need of a theory to explain
the observed phenomenon,
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Although Vasta reported definite shear lag effects in
his full scale tests, these were not to be considered in per-
haps the first comprehensive theoretical treatment of the
problem by Crawford {9] in 1950. Crawford examined the equili-
brium of vertical forces between deckhouse and hull and the
shear forces at the base. M. recognized the possibility of
differential curvature between the two parts. #His analysis con-
cern.d single-level dickhouses extunding 35 per cent or more
of the lungth of the ship and h¢ assumed the deckhouse was of
such dimensions and scantlings that it would bchave as a beam.
His solution was cumbersome in that it required the solution
of 1y involved simultaneous cquations.

Bleich [10], in 1953, following Crawford's work and
attempting to explain the results found on the S.S5. Presidcent
Wilson, was ablv to express the stresses in a very simple form,
He again used the assumption that Kavier's hypothesis (beam
theory) applied to deckhouse and hull separately, He used the
theorem of stationary potential energy (which states that the
deformation of any structure is such that the total potential
energy of the system is a minimum) to obtain the general Euler
differential equations for the deflections of the deckhouse and
hull respectively, He wrote these equations using an average
deck flexibility constant k . Bleich did not take into account
the shear lag effect.

Following Bleich, Terasawa aad Yagi [11] used the minimum
strain energy principle but developed a mcthod to superpose shear
lag effects by using Ruissner's {12] least work solution of shcar
lag problems. The Japancse have studied the deckhouse problem
quite comprchensively as one may note from thelr 60th Anniversary

Serics [13] published by the Society of Naval Architects of Japan.

It would be of interest to see a design procegdure based on their
studies.

In 1957, three papers appeared simultaneously in England
on the deckhouse problcm. Thcy were by Chapman [14], Caldwell
[15], and Johnson [16]. Chapman's approach was to assume the
deckhouse and hull acted separately, «ach as beams. HNe con-
sidired the deckhouse to be a beam on an elastic foundation and

solved the applicable differential equations by relaxation theory.

Caldwell and Johnson took a different approach from any of their
predecessors and used the plane stress theory. Allowing for
shear lag effects and nonlinear strains in the deckhouse, they
reasontd that nonlinearity of strains was due to the fact that
the plating was very thin in comparison with its overall dimen-

I ————— e Mg
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sions and that the elastic behavior could only be explained by
recourse to the fundamental equations of elasticity. Caldwell's
approach was felt to be more complete than Johnson's in that

he considered rivet slip at the base of the deckhouse where it
was attached to the hull., Mowever, his analysis considered

only single level deckhouses, In addition, Caldwell represented
the external moment by a Fourer Series expansiocn, a good repre-
sentation, but cumbersome to evaluate in the design office.
Johngon's approach was considered to be the best with respect

to developing & design method. Following his original attempt,
he published two other papers {17), [18] with A. W. Ayling,
which gave additional impetus to the degigner wishing to develop
a simplifi.d, quick, design office procedure. Johnson's pro-
cedure was followed by the author in decveloping a design mcthod.
Details about his method is contaired in the following section
of the peper.

Most recently, M.A, Shade [19], of the University of
California published a deckhouse theory which is an extension
of Bleich's theory differing in that shear lag is included,
different structural materials in deckhouse and hull are con-
sidered, and different bcundary cond' 'ns for the deckhouse
ends are used. Although design curv. .ire presented and it
app.ars that the procedure could be developed for use in the
design office, it is limited to single level deckhouses and
depends upon the evaluation of a deck flexibility factor k.

JORNSON'S ARALYSIS

To account for any departure from linearity in the long-
itudinal strains in the deckhouse, Johnson [16] used the theory
of elasticity. Nis method of analysis is based on the plane
stress theory which utilizes the general equations of equili-
brium and compatibility of the theory of elasticity. No
assuaption is made regarding the longitudinal strains. Instead
it 1s required that all forces acting on an elemental particle
of the body be in equilibrium and that the displacements be
competibie with this requirement.

The approach is to use the Airy Stress function to re-
present the stress in a rectangular plate, which 18 attached
to the hull and i{g analogous to the deckhouse side. (Figure 2)
The vertical and longitudinal displacements of the plate at the
connection to the hull are made compatible with those produced

-
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by the flexure of the hull girder. The longitudinal stress
distribution at the midlength of the platé iz then obtained.

Consideration is then given to the effect on the stress
csugsed by sttaching & plate tc the deckhouse side., (Figure 3.)
The attached plate represents a deck, The effect of many decks
is then considered thus producing an analysis for a multi-level
deckhouse., The stress distributions in the decks themselves
are considered in the light of effective breadths, taking into
account shear lag effects. Finally, empirical dats is intro-
duced in order to account for the difference in curvature
between deckhouse and hull., The stresz components resulting
from the above considerations are combined in one equation
which gives the stress distribution at the center of the deck-
house,

The basic assumption used throughout Johnson'’s analysis
is that the ghearing stress distribution in the deckhouse at
the connection to any deck varies linearly along the length
of the deckhouse. (Figure 4), In his paper [i6], Johnson gives
a comprehengive discussion of the rationale of this assumption.
Experimentally, the assumption may be supported by the tests
on the §.S. Philip Schuyler [5]. In addition to this assumption,
Johnson's analysis is based on idealized deckhouse structure
but these idealizations are accounted for in the development
of the author's design procedure. The idealized deckhouse
structure on which Johnson based his analysis was assumed to
be (1) symmetrically disposed about amidships, (2) possess decks
of equal lengths and widths, and (3) have sides and decks of
constant thickness.

The Governing Equations

Throughout his analysis Johnson makes use of the follow-
ing governing equations of the plane stress theory. A more
detailed analysis is presented in Appendix I, The treatment
given in the appendix is intended for those who wish to know
more about the general approach. Anyone desiring greater
detail is, of course, referred to Johnson's paper [16].

The state of stress in a thin plate can be represented
by Lagrange's equation as :

2% & Mé P
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where & iz the Airy Stress function which defines the stresses
as followus:

2
- S
oy = o4
(2) ox*
Ty =2

Oxdy

where 03 1is the longitudinal stress, Gy 1is the transverse
stress, and T., 1is the longitudinal and transverse shearing
stress. A golution to Equation (1] may be written as follows:

n
(3) 4; = Z [Ahmﬂawj + B sinunny + Cntj CosHatny + Dn\jcmu c(wj]cgsw

an= =12,3..-)

Ay, By, C,» Dy, are the arbitrary constants obtained by apply-
ing the boundary conditions. The stress functiom ¢ is, of
course, different for the side of the deckhouse and the decks,
but the governing equations upon which the analysis is based
are the same,

As previously stated, one of the most important considera-
tions in any deckhouse study is the differential deflection
between deckhouse and hull. If the curvature of the deckhouse
differs radically from that of the hull, the deckhouse will be
less effective as a longitudinal strength wember. HKowever,
as the sixe of a deckhouse is increased in length and beam the
deckhouse more closely represents an extension of the hull,

Ag a result, the deckhouse will be counstrained to follow the
curvature of the hull more closely and will be more effective
as a longitudinal strength member,

Many of the theoretical studies on the deckhouse problem
have attempted to solve this problem by including a stiffness
modulus of the deck on which the deckhouse rests. However, the
definition and evaluation of such a parameter has been a draw-
beck with regard to realistic ship structure, In an attempt
to find a practical solution to this problem, Johnson adopted
s simpiified approach which uvilizes empirical data from iull
scale tests. Assuming the deflected forms of the hull girder
and deckhouse are mathematically similarxr, a deflection coeffi-
cient, C, {2 defined as the ratio of deckhouse deflection to
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hull deflection over the length of the deckhouse. To evaluate
C analytically is practically impossible, but one may make some
logical statements about the cholce of C and the factors influ-
encing it. The principal factors influencing C are:

(1) wWidth of deckhouse compared to beam of ship.

(2) Length of deckhouse compared to length of ship.

(3) Lateral stiffnesc of deck beams and assoclated plating.

(4) Disposition of bulkheads and stanchions under and adjacent
to the deckhouse,

Several of these factors are inter-related. For example, there
is some relationship between the number and spacing of tulkheads
to the ratio of length of deckhouse to the length of ship.

Since main transverse bulkheads can be considered points of no
relative deflection between deckhouse and hull, it seems reason-
able that C would approach 1.0 wher the length of the deckhouse
approaches the length of the ship. Another important parameter
is the relation between width of deckhouse (b) and beam (B) of
ship. The elastic restraint provided by the transverse frames
and deck plating becomes large when t/8 approaches 1.0 and
therefore C also approaches 1,0.

With these considerations, experimental data showed that
the length ratio and beam ratio of deckhouse to hull were the
most influencing factors. Also, since these ratios usually
increase or decrease proportionately C might safely be related
to just one of these ratiocs. For the purpose of constructing
the design curves, the deflection coefficients were taken from
the full scale experimental results reported in references [17]
and [18] and are:

/L 0.10 [ o 2o o040 | o e0 o 8o _J
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Once the value of C is selected, it 1is applied direct.y
to the bending component stresses discussed above. The final
equation for the stress distribution in the deckhouse is ex-
pressed in terms of bending and shearing components in the non-
dimengionalized form:

(%) 9ok, S

T %o go

- ™



where 6x/¢. is the total stress divided by the shearing stress
¢o at base and ends of the deckhouse (Figure 4), G« /q. is
the non-dimensionalized shearing stress component, and 6. /%0
the non-dimensionalized bending stress component. All are
functions of y, the distance from the strength deck to any
point in the deckhouse. The final expression for Equation (4),
deduced from simple algebraic consideratiovns is:

) Ggé ) [{@ayo ' il’ZC Cf}{%}rl %( .mr“’

ceg o (gelg.

where C 1s the distance from the strength deck to the neutral
axis of the deckhouse, d is the depth of deckhouse, (Figure 9)
and Gx, /¢ 15 % /¢, plus the shearing stress effects due to the
various decks. The above expression reduces to the following
form for any height at the deckhouse midlength:

6 x < g G & Ve G4 ¥
( ) go g‘ Bo

where £, ¢, and ', are constants and 6% /¢. and Gx./g.
vary with y, the distance above the strength deck.

THE DESIGN PROCEDURE

Development

Soon after Johnson presented his original analysis [16],
he published (with A.W, Ayling) a graphical presentation [18)
fn which he constructed graphs for seven 'basic ships" relating
such factors as the ratio of inertia of hull to effective inertia
of deckhouse and hull, percentage reduction of stress at strength
deck and keel, percentage length of deckhouse and the ratio of
stress at the top of the deckhouse to that at the strength deck.

10
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In the development of the deaign procedure presented
herein, it was felt that this approach could be extended and
generalized. The generalization appeared, at firsz, tc be an
almost insurmountable task. There were just toc many variables
to be considered. These included length of deckhouse, length
of hull, beam of deckhouse and variation {n beam of deckhouse,
beam of hull, thicknesses of all plates in the deckhouse, the
height between decks and the variation in heights between decks
in the deckhouse, the neutral axis of the deckhouse, the neutral
axis of the hull, the number of decks in the deckhouse, the
inertia of the hull and deckhouse, and finally the deflection
coefficients.

A computer study was made of the various parameters in-
volved. The computerization of Johnson's method and the study
of the effect of variation of any one parameter, holding the
others constant, made it possible to reach conclusions concern-
ing the construction of design curves.

It was found that some variables had greater effects
than others, that some could be neglected for the purpose of
constructing design charts and that scme could be held constant
due to the peculiarities of naval ship design., For example,
the height between decks was held constant at eight feet since
this is applicable to most U.S. Navy ships, except in the way
of helicopter hangars and other special arrangements., Two other
parameters, the ratio of deck to side thickness and the distance
tc the neutral axis of the deckhouse, were found to be rela-
tively unimportant with respect to affecting design scantlings.
The ratioc of deckhouse side thickness to deckhouse deck thick-
ness was taken as 1.0 for the purpose of constructing the design
graphs. The other parameter, the distance from the strength
deck to the neutral axis of the deckhouse, was taken as 6.6
feet for one level deckhouses and 10.8 feet for two level deck-
houses.

Proceeding with the study of parameters, it was found
possible to isolate the most important ones and construct the
stress ratio curves shown in Figures 5 to 8, The parameters
used in these figures are length of ship, length and beam of
deckhouse, and distance from the strength deck to the hull
neutral axis. Figures 5 and 8 give the ratio of stress at top
of the deckhouse to the stress at the strength deck (63/6 ).
This ratio is used in the calculations to determine the
effective neutral axis, the effective moment of inertia, and
the stresses in deckhouse and hull., These curves were constructed

11



for a value of the distance from the strength deck £o hull
neutral axis of fifteen feet (CH 15.0). In order to vary this
parameter, use ia made of Figures 6§ and 8, modifying the value
of &%/6 by K3 or K, for the correct value of Cn‘

Figures 5 and ] were based on Johnson's rather involved
analysis based on the plane stress theory. Because his analysis
had certain limitationa with regard to symmetry, it was necessary
to obtain design procedures which would not be restricted by
the limitations of tne theory. Also, it was found necessary
to make other assumptions to obtain a quick design office pro-
cedure, The assumption regarding the variation in stress from
the strength deck to the top of the deckhouse is an example,.

In this regard, it was decided important at the outset
to choose an analysis based ou the plane stress theory in order
tc accommodate the possibility of nonlinearity of strains in-
cluding shear lag effects. Now that the curves had been con-
structed using this analysis, {t was found expeditious at this
point to rationalize a linear distribution of stress between
the possibly nonlinear values of stress at the strength deck
and top of deckhouse. The design philosophy {n this case pur-
ports that if the analysis has a realistic approach, and a
solution is obtained based on this approach, then one may make
simplifying assumptions based on this solution which give good
design results., The approximation of linear stress in the
deckhouse based on Johnson's solution for 6% /0 was tested
in several cases and found to give satisfactory results.

Derivation of Formulae

(a) Bquivalent Area

After using the curves to obtain a strese ratio
one can readily derive the expressions for Equivalent Area,
Effective neutral axis, and Effective Moment of Inertia from
the elementary principles of mechanics.

The Equivalent Area of the deckhouse, Age, i8 defined
ag that area which, {f multiplied by the stress intensity at
the strength deck, would yield the total longitudinal force in
the deckhouse.

From the diagram in Figure 9 and the definition given
above, the Equivalent Area of the deckhouse may be written as:

12
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where § is the stress at any height in the deckhouse and Gu

is the stress at the strength deck. It may also be verified
from Figure 3 that the stress in the deckhouse may be expressed
as:

(8) ¢=<ro[1+ 4 ?.1)1

J

where 4 1s measured from the strength deck, positive upward

and negative downward and d is the height of the deckhouse,

Substituting (8) into (7) and performing the integration over
the deckhouse area ylelds:

. + /€@
(9 Ace AC,XI f(é_x)}

where Ap is the actual area of the deckhouse adjusted by the
shear lag factor in Figure 10 and the Modulus of Elasticity

ratio if appropriate, and the stress ratio 9% /¢p may be ob-
tained from the curves in Figures 5 and 7. Notice in the above
formulas that Ape may take on values greater than or less than
Ao depending on whether (% /6p 1is greater to or less than one.
For this reascn we designate A g as an ''equivalent area" rather
than "effective area' because effective usgually implies a value
less than the real value,

(b) Effective Neutral Axis

From the diagram in Figure 9, the stress in the hull, ¢/,
can be written as follows:

/ o)
(10) 6‘=G‘D(1+?&)

where C. is the distance from the strength deck to the effect-
ive neutral axis of hull area and equivalent deckhouse area,

13
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For equilibrium of longitudinal forces in the deckhouse and hull,
one may write:

(1L) SGC{A(; + g{T/AAg = 0
Ao An

Where A.is area of the hull. Substitution of (10) into (11)
and dividing by 47 glves:

(12) KS A+ g(uf’-)ém =0
Gt ‘e
Ay Aw

Performing the integration as indicated and noticing that:

AD
(13) fa = A
A
Cn
Lfada - T AL
ANH

the expressivén for the distance from the strength deck to the
Effective Neutral Axis is obtained:

_AurChu

(14) Ce A ¥ Am

(c) Bffective Moment of Ipertia

For equilibrium, the moments of the streeses in hull and
deckhouse about the effective neutral axis must be equal to the
external moment,

(15) M = gc(‘j‘.’ce)C{Ap + SG/(‘j+(e)C1AH
Ap

The effective moment of inertia may be expressed as:

MCE
Op

(16) I, -
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Substitution for ™M frem (15) into (16), leads to:

IE * CES-E%(*] 1€ JAD + CeS(‘]“'—'c)((ﬁ‘%é)dAﬂ

Ap H
Performing the integration as indicated and noticing that:

4
(17) g‘jszH = IH + Cy
we obtain: :
(18) IE = Ce ggijcl[‘o + Cg A% &+ IH + A“ (CH-C‘)l
Ap
If we let:
(19) mo = g%;u,dAp + S Ape
then (18) becomes:
(20) Ie = IH + A“ (Cu-ce‘)z + Mee C¢

The first two terms of this formula reprz2sent the moment of
inertia of the main hull about the effective neutral axis,
The last term represents the inertia contribution of Ape ,
the equivalent deckhouse area. wmyq is the statical moment
of the equivalent area of the deckhouse about the effective
neutral axis. Carrying out further the integration indicated
in (19), we obtain:

(21) Mpe = Cp Ao + :T[I" 4ADC§][$

-1] + ce Do
b

Stress Distribution

The stresses at the strength deck and keel are calcu-

15
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lated by the flexure formula utilizing the Effective Moment of
Tnertia and the distance to the Effective Neutral Axis:

(23) G-p = MI—C-“ ” 6; = —-——-—JM (D-C.;
E IE

where D is the depth of the hull. The stress at the top of
the deckhouse is calculated by the fol swing relation:

(26) Gy = (g:i) % Gp

where § /T 4s obtained from Figures 5 or 7. The stresses
0t and [, are the va'ues of stress amidship since Johnson's
analysis is predicated upon the deckhouse veing symmetrical
about amidship.

For the longitudinal distribution of stresses in the
deckhouse, it would be ccaservative for design of the hull
structure to assume that the stress varies linearly from the
maximum calculated at amidships to zero at the ends of the
deckhouse. The reduction in stress at the strength deck,
realized by considering the contribution of the deckhouse,
would then be agsumed to vary linearly frem a maximum at
amidships to zero at the ends of the deckhouse.

Tabular Method

The Bquivalent Area, the Effective Neutral Axis, and
the Effective Moment of Inertia may be calculated by a tabu-
lar procedure as shown in the example, Appendix II. The
procedure is very similar to the ordinary tabular procedure
used for calculating moments and thus lends itself readily
to design office practice.

The procedure {8 tc use a tabular form with the follow-
ing headings:

16
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The areas cf the deckhouse components are multiplied by

factors which are degeribed as follows:

(a) Stress Factor. The stress factor depends on loca-

tion of the component with respect to the stress
diagram, For the house top, the factor is the
stress ratle, v3/6p , obtained from Figures 5
or 7. For a two level deckhouse, the factor for
the lower level deck is adjusted to suit the
straight line variation in stress (see example).
For the sides, the factor is the average value
of the stress ratio between top and bottom of the
deckhouse, 0.5 (67/0p, + to )},

(b) Modulus of Elasticity Factor. For an aluminum
alloy deckhouse on a steel hull, the area of the
aluminum deckhouse is reduced by the ratio of the
modului, 10%10“/29.6 x10® = 0.34

{(c) Shear Lag Factor. Pigure 10 gives the reduction

factor for various ratios of breadth to length
(b/L), applicable to the decks of the deckhouse,
including the stiffeners attached to these decks.

Each deckhouse component is multiplied by the appropriate
factors to obtain the equivalent area for each component and
placed in column @) . The statical moment of the equivalent
area, My, 1is then obtained by multiplying the equivalent
areas of the deckhouse components by levers which depend upon
the centroid of the stress distribution over the component,

For example,

the side plating lever woulc be located at the
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centroid of the trapezoidal stress diagram:

(5)
(22) Levea - d|tor 2zl

(si0¢ €) 3 %:I + 10
2]

For the top of the deckhouse, the lever would be the distance
from the strength deck to the deckhouse top.

The sum of column(d) yields the Equivalent Area, Ape
Once Ave has been determined, C¢ may be obtained from Equation
(14). The value of Ape 18 then multiplied by <e and included
in column (8 . The sum of column(@) yields m,. . The general
use of the tabular procedure is straightforward and its use
is best demonstrated by the example shown in Appendix 1I,

Design Simplifications

Ag stated previously, Johnson's analysis had certain
limitations with respect to symmetry. HNis analysis was based
on deckhouses symmetrically disposed about amidships. It was
necegsary to obtain design procedures which would not be restrict-
ed by the limitations of the theory.

The basic question to be answered was: If a deckhouse was
unsymmetrically disposed about amidships, how should it be treated?
In other words, how critical was the midship position? If one
examines Johnson's analysis, he finds that the midship section
is critical to some extent. The assumption of linear shearing
stress with a value of zero at the center of the deckhouse im-.
plies symmetrical loading and, as Johnson shows in his second
solution, is equivalent to maximum moment occurring at amid-
ships. Since maximum moment nearly always occurs near amid-
ship the assumption is justified. MNowever, if a deckhouse is
mostly on one side of amidships then it is considered that
the analysis is not applicable.

The solution to this problem was the establishment of
an "effective length" of deckhouse to be determined by design
procedures which are intended as suggestions, In each case,
the design procedures are considered conservative for the main
hull structure. The following procedures are suggested to obtain
an effective length, 4,
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1) 1f the deckhouse extends at least o.26l. both for-
wvard and aft of amidships, use the actual length of
the deckhouse,

2) 1If the deckhouse extends no more than o1sL  efither
forward or aft of amidships, take the effective
length (% ) of the deckhouse to be twice that of
the shorter part.

3) 1f the minimum longitudinal extent either forward
or aft of the midship section is between o0.25<%
and ©./5{ take the effective length ( £z ) of the
deckhouse to be one half of its actual length plus
the shorter part.

A8 can be seen in the curves, Figures 5 to 8, the design
procedure is intended to include one and two level deckhouses.
Johnson's analysis was based on deckhouse decks of equal lengths,
heights, and widths, so that again it is necessary to propose
design procedures to bypass the limitations of the theory. The
question arises: ¥hen should a second level be considered in
the analysis? Or rephrasing, to a more meaningful question :
When can a second level be considered as contributing to longi-
tudinal strength? Again, the method must be conservative with
a respect to the main hull girder. Figure 11 shows a summary
of a study which was made to give guidance for determining a
rational design procedure., This study was typical of many such
studies made to ald in deciding what design procedures should
be used.

From the summary, it may be seen that the consideration
of two levels at any particular value of £/L will provide
lower allowable design stresses in both hull and deckhouse.
Therefore, since the analysis is based on equal length deck-
houses, it is conservative to disregard an upper !<=vel thus
providing higher design allowable stresses in hull and deck-
house. Because the exact effect of including a second level
which is shorter than the first level is not known, it 1is
desirable to be conservative, Thus, the following design pro-
cedure is formulated with this objective in mind.

1) If the effective length of a second level, con-
sidered separately, is at least 807 of the effect-
ive length of the first level, then the second
level may be included in the effective moment of
inertia calculation in which cise the mean of the
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two effective lengtha would be considered the new
effective length of deckhouse for use in Figure 7.

It should be recognized that although we may disregard an upper
level in the analysis, this is not to say that the level may

be assumed to be '"unstressed." If an upper level is digre-
garded in the analysis, it is suggested that the scantlings be
designed to the stress at the top of the lower level.

There are numerous little details for which a design
procedure must apply. For example, the breadth of the deck-
house may vary over the deckhouse length, In this procedure,
it is suggested that the mean breadth be used in Figures 5 and
7. Rowever, in the calculation of Apg or Mpe the actual
breadths at amidship should be used. A similar procedure is
suggested for plate thicknesses. Use typical thicknesses of
sldes and decks, not thicknesses in way of local openings or
other special structure., Openings are not considered in this
analysis; however a deckhouse with many closely spaced large
openings may require some modification to the analysis.

Expansion Joints

Although the use of expansion joints has been popular
in U.S. Navy ships, the present belief is that they shcould be
avoided whenever possible. It is true that expansion joints,
in effect, change the shearing stress distribution in the deck-
house such each span between joints can be regarded as a
separate deckhouse, As a result, the effective length is con-
siderably shortened and, as can be verified from Figures 5 and
7 a short deckhouse is able to contribute less to longitudinal
strength than a long deckhouse. HNowever, expansion joints cause
stress concentrations at the strength deck which may lead to
cracking. Also, considerable maintenance problems for these
joints have been reported.

Nevertheless, it is conceivable that expansion joints
may be warranted in some cases. Consider the example of a
long, continuous deckhouse which contributes substantially to
longitudinal strength. Perhaps the proportions are such that
the stress in this deckhouse approach the beam theory stresses
for the combined deckhouse and hull, 1In order to provide for
these stresses, the designer finds he must increase hig scant-
lings in the deckhouse to such an extent that the added topside
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weight may become critical, It may then be necessary to add
expansion joints to reduce the stresses and thus reduce the
scantlings to avoid the added topside weight,

However, if the expansion joints are placed judiciously
so as to break the deckhouse intc an odd number of equal
lengths, then one section will be symmetrical about amidship,
come within the scope of this analysis, and possibly still con-
tribute substantially to the longitudinal strength of the ship.
If this is the case, it is suggested that the other equal
length sections be designed with similar scantlings as the mid-
ship deckhouse section.

Therefore, to determine if expansion joints are needed
in the deckhouse, 1t is necessary to calculate the deckhouse
stresses without expansion joints. If these stresses exceed
the desired level, expansion joints may be inserted and the
stresses recalculated.

EXAMPLE

In Appendix II, an example of an analysis of a two level
aluminum deckhouse is given. The effective length of the Ol- )
level is first calculated, Since the ratio of the shorter part
of the first level to the length of ship is 50 /350 = o.143
the effective length, £, is twice that of the shorter part
( #g = 2x50 w00 Fé6r), Since the effective length of the 02-
level 1s 80 per cent of the effective length of the Ol-level,
the 02-level 1s considered in the analysis. The new effective
length of both levels is then A£& = (80or/00)/2 - 90#~r | The
stress ratio is obtained from Figure 7 for &r/L = o 26,
and {8 modified by &3 from Figure 8, The shear lag factor
obtained from Figure 10 is o.93 . 1In the factor(s) column
of the tabular procedure are seen the stress distribution factor,
the ghear lag factor, and the ratio of moduli of elasticity
factor. The latter factor transforms the aluminum alloy to an
equivalent steel area. Consequently, the calculated deckhouse
stresses must be multiplied by this ratio to transfer the stresses
back to aluminum alloy stresses. The stress diagram is shown
following the calculations and is compared to the stresses with
deckhouse omitted. The reduction in stress at the strength
deck is not too significant but the example shows that a deck
house which has an effective length of only one-quarter the
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ship's length and is constructed of light material still con-
tributes somewhat to the strength of the hull. In another
calculation, a single level steel deckhouse extending forty-
five per cent of the ships length was shown to reduce the
strength deck stress from 7 t.s.i. to 4.5 t.s.1. reflecting a
substantial contribution to the strength of the hull,

CONCLUS LIONS

In order that a deckhouse contribute nothing to the
longitudinal strength of a ship, then the equivalent area,
Avpe , must be zero, This may be seen clearly from Equation
(l14), If Ave=0, in this expression, then <e will equal
Cu . If Ave=0, equation [9] becomes

13 -

or

+ 1

(25) 6‘3 = - "J"
S <

For nominal values of a single level deckhouse, d= 8.0 feet
and Cp = 6.6 feet, GC7/Cu becomes

G _ -8° 1 = —o.2i

0 66
Since this value of ¢*/4g 1is out of range in Figure 5, it
may be concluded for practical purposes that all single level
deckhouses contribute somewhat to longitudinal strength. For

nominal values of a two level deckhouse, d=i6. feet and Cp+108
feet, or/f, becomes:

NES gl + 1

- o 48

75 108

Since this value of <% /sg  is out of range in Figure 7, it
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may be concluded that all two level deckhouses contribute to
longitudinal strength.

RECAPITULATION

The nature of the problem was discussed dismissing the
popular misconception of the dichotomy between 'stressed' and
"unstressed' deckhouses. A brief review of the literature was
given, Johnson's theoretical analysis was chosen because of
its approach utilizing the plane stress theory, for its simpli-
fied use of empirical data regarding differential deflections
between deckhouse and hull, and its adaptability to design
office practice. A design method was developed for determining
the stresses at the midlength of the deckhouse using Johnson's
procedure to construct design curves. Design simplifications
were made in order to bypass the limitations of the theory.

A first appendix gives the general approach of Johnson's
analysis while the second appendix gives a detailed design
example of a two level aluminum deckhouse., In the conclusions,
it is shown through the derived formulae that all deckhouses
contribute somewhat to the longitudinal strengt.. of a ship,

and in some cases this contribution may be substantial,

RECOMMENDAT IONS

The theoretical approacl used to develop the design
procedure has been tested in full scale trials reported by
Johnson [17, 18]. Agreement between theory and experiment
was shown to exist in these tests. However, the design pro-
cedure introduced by the author has not been verified by
experimental results., It is recommended, therefore, that full
scale tests be conducted not only to substantiate the desfign
procedure but to obtain additional data on deflection coeffi-
cients, Such tests on a variety of U.5. Naval ships may lead
to a better selection of deflection coefficients based on a
wide range of geometr!c parameters. In addition, neither the
theoretical approach nor the design procedure give adequate
consideration to the design of structure near the ends of the
deckhouse. The shear forces are largest in this area and the
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use of "wobble plates'’” to avold the cracking of plates is popu-
lar, but greater attention should be given to this problem.

A recent paper by Shade [19) shows that deckhouse analysis
using the Mavier hypothesis on the deckhouse and hull separately
is still receiving attention., There are those, however, who
claim that one must resort to the more basic tenets of the theory
of elasticity, namely the plane stress thecry. If one approach
were tested against the other in 2 large number of cases, it
may be found that the results of both approaches are in agree-
ment for 2 majority of cases. However, if the contrary is true,
the Navier hypothesis approach would appear to be more suspect.

The final resolution, of course, lies with the experiment-

alist who will hopefully find agreement not only in the theore-
tical approach but in the design simplifications proposed herein.
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APPENDIX X

JOUNSON'S ANALYSIS

It is the intention of this appendix to give the reader
a clear picture of Johnson's approach to the deckhouse problem,
It is not intended that the mathematical details be worked out
step by step. Those who are inclined to know more about these
details are referred to Johnson's paper [16]. It is intended
that an overview of the theoretical approach be made availadble
to those who wish to know more about the procedure without
plodding through the mathematical details. The governing
equations given in the paper are reiterated and the analysis
is extended using these equations as a base.

Stress Function

Consider first the rectangular plate attached to the
main girder as shown in FPigure 1. The state of stress in a
thin plate can be represented by Lagrange's Equation as follows:

3*4 M4 PAX S
(1) oy + ZATJyz 4+ ()‘14 = 0O

where $ 18 the Airy Stress function which defines the stresses
as follows:

N

& - 5

_ P4

0-9 T oo x*

(2) S
rxy’ becf

vhere (x is the longitudinal stress, 0y is the transverse stress,
and Txy, is the longitudinal and trsnsverse shearing stress,
A solution to 2quation (1) is:

n
(3) # z Z [A,.cmua,q 48“9:4“0{.\«‘ + CncICosﬂa(.q 6Dn'1 SN x.«,]cosoc..x
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where

& = z‘_lr ("’-‘ L2, 3
s}
£
Ay, B, C,, D, are the arbitrary constants obtained by applying

the boundary conditions. Before stating the boundary condi-
ticns, however, it is necessary to write the expressions for
longitudinal and transverse displacements of the base of the
deckhouse.

Displacements

The displacements are obtained by integrating the ex-
pressions for strain which are obtained from the well known
relationships given by the theory of elasticity.

> ot o
o 3+ 2oy {2 )

I TR A y 2%
Y"?’ oy METER ,‘*t")': TR oxdy

(4)

where €x is the longitudinal strain, ¥, is the shearing
strain, v is Poisson's ratio, and

. B
/* 2{+V)
i1s the shear modulus of rigidity.

Integration of €x leads to the following expression
for W :

n
4
(5) W= 3= Z (An + 2 Da) 510 otwx (Vs V/s3)

]

In this part of the analysis, the deflections at the base
of the deckhouse are assumed equal to those of the main hull
girder, Later the effect of differential deflections of deck-
house and hull will be brought into the analysis. From the appli-
cation of the gsimple beam theory to the hull (Figure 12), we
have at the strength deck (where deckhouse meets hull):

M b
A xt R
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where R (s the radius of curvature. From (4) we have

du
é,aax
and from Figure 12
7
= R Tia
g0 that
- dtv
{6) %L;c%ﬂ"cl{s;i

Substitution of [5] into [6]) and performing the indicated in-
tegration leads to:

(4]
. . 4 3 PaYecosanx
(1 Vs 3Ecn Z(Ah+2 0(n> 0> n

Before the boundary conditions can be-stated, it is nec-
essary to write the expression for shearing stress, which as
stated previously is assumed to be linear. As can be seen in
Figure 4 , the shearing stress distribution is arn odd function
(i.e. $¢o = - £ ) and thus may be represented mathemati-
cally by a half-range Fourler expansion:

n
(8) T;Y 1@' :?/SS(nClnx

where

p= z(t;'_‘.‘>

In this expression; n is odd and the terms in the expansion
are alternately positive and negative,

=} J oo

Boundary Conditions

The boundary conditions needed to obtain the arbitrary
constants A, Bn’ Cn, and D, are as follows:
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Since (4) may be satisfied simply by making n odd, an additional
boundary condition is needed. This ig obtained from the ex-
pressions relating strains, By differentiating €x fn (4) with
respect to y, and ¥xy in (4) with respect to x, we are able

to combine the two expressionsto obtainm an additional boundary
condition, which is:

[ ) :<é’¢ ¥¢ ) iv
(e) “,7(33,’) E\sy TVSey) oS

since (7) gives the needed expression for v, it is possible to
apply the four boundary conditions and solve for the arbitrary
constants A,, B, C,, and D .

n* “n?

Expression for Stress

Solving for the longitudinal stress at the midlength of
the deckhouse (x+0), the following expression is obtained.

(10) Q= iol"[ {An A + C,,O(.," +2D,'}605Hc("c1 i {B,,«n +2C, 4D,,o(“y}smuu.,ﬂ

The above expression conveniently splits into two parts, one
for shearing stress components, Gx, , and the other for bending
stress components, Gx, , which may be expressed non-dimension-
ally as follows:

= iﬁ[ {A(n). + -;-dn‘j 4 290\).3 CoSHayY + {g "DO\). “n‘]} SINH o(“j]

(@

(11)

sl

S i,(” E Vo Y [ {Am' + é- d“y + ZOW} CoSua{,‘&j + {;‘ +D(,,S' ""‘1} SINH o(n‘j]

where the subscripts indicate a simplified expression for the
coefficient, e.g. Ay, 18 a function of A, involving the
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hyperbolic sine. In his analysis, Johnson expresses the above
expression for S /g  and %/ in the form of curves for
a range of values of ¢,/ and y/d ., The resultant longitudi-
nal stress at the midlength of the deckhouse for any combina-
tion of ¢u/£ and y/d may be expressed as:

12 =, Sx +Q.\x,
(12) % 7 7.

Restrictive Effect of Deck

Having determined the stress distribution at the mid-
length of a rectangular plate attached to the hull and ana-
logous to the deckhouse side, Johnson considers the restrictive
effect of a deck attached to the side as shown in Figure 2.
Assuming linear shearing stress at the connection to the verti-
cal plate, an assumption used previously, Johnson is able to
write his solution for stress in the side plate by the use of
two different stress functions, one for the side plate above
the attachment of the deck and one for the side plate below
the attachment,

Boundary Conditions

The arbitrary constants A , B, Cn’ and Dn previously
used correspond to Gn, H,, J., and for the upper section
and L, M., Nn' and O, for tge lower section. The arbitrary
constants are found by applying the following boundary con-
ditions:

(o) Y=o : t“‘/ .«
{b) y=o - Y
(c) Y= md I memMGITUDINAL  DisALAcsmENY W, WL
(d) Y=md ! VERTICAL  DISPLACEMEMT Vo * V
(e) Y=md - Oy = 65
(‘,) u"d : T;(y - O
(W x=tdy . Gk =o
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where the subscripts U and L refer tc the upper and lower sec-
tion respectively and m is the ratio of deck height to deck-
house height., The condition of a longitudinal stress of zero
at the free ends is satisfied by making n odd. Therefore a
final boundary condition must be obtained from the equilibrium
of longitudinal forces as follows:

md d 2 "
(12) t‘ SG."" A\j + g@xu d'\j + 't“ CLN S ZﬂS\ndn)ﬂ uw O
o md x

where t, is the thickness of the side plate and ty is the thick-
ness of the deck.

Expressions for Stress

Applying the boundary conditions, the following expression
for longitudinal stress at the midlength of the deckhouse in the
upper section is obtained:

(13) %Nz Z%F[{Gn 4 ‘Io(a.)h +72 Kh}COSHa{nT +{H" {ch("Kn fzJ"ié‘Nﬂd"Y

where ry is the ratio tu/ts. And, for the lower section:

) 8. §5p{ Lo commany + (g suthany + Zeosion) O |

Johnson reduces the above expressions to stress functions
which are plotted as curves depending upon y/cd , b/€ | and m

Effective Breadth

Taking account of the shear lag effect in the decks,
Johnson expresses the width of the deck as an equivalent width
in which the distribution of longitudinal stress can be taken
as uniform and equal to that at the deckhouse side. The equiva-
lent width is denoted as K,b where K3 is the shear lag factor.
The uniform effective stress ( Gxe ) in the deck is equated to
the summation of the actual stress over the deck to obtain an
expression for KKy ,
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The final result is:
ié :
1

b xn

K, =
CaS Lo ()

(15)

SINH bdn + bdn

The above expression has been evaluated for various values
of b/f and plotted in Figure 10.

Superposition of Stresses

Next, by the principle of superposition, Johnson con-
siders the combined restrictive effect of several decks. By
equilibrium of longitudinal forces at a deck Johnson obtains
the following expression for the resultant stress at any deck:

(16) Ge, = - %“—f;
3

From Equations (13) and (l4) and their corresponding cuxves,
the general expression for the longitudinal stress at mid-
length due to 9 can be written:

] (TX - -
(17) " 4 = Py

Then applying the principle of superposition, letting
f%., be the longitudinal stress due to ¢. when no decks are
included and (%, be the resultant longitudinal stress in the
deckhouse at deck A when all decks are included, we obtain:

(18) Ty = Con = Gxpw — Oxgu = Gxpp = - - -

Uxan

The above expression statec that the resultant longitudinal
stress at A is equal to the stress at A due to ¢. alone
minus the stress at A due to deck A,B,C, etc. From equations
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(16) and (17) equation (18) may be expresscd as {ollows:

. %a L
(11) 'E:A"g; = 7)0 ¢0A - %Ar; ¢AA - %Brb ¢M - %‘Q ¢CA

or by rearrangement :

(20) %{ﬂ‘i’m* 'E'f)‘a+%rud’m+%ﬂ¢u*'”=¢m

Similar expressions may be derived for all decks of the deck-
house resulting in a set of simultaneous equations in which
2a/40 > 48/%e etc., are the unknowns. The ¢ terms are ob-
tained from Johnson's curves as explained previously.

Final Expression for Stress

Having obtained through superposition the combined effect
of several decks on the stress in the deckhouse side, Johnson
introduces the deflection coefficient C to reflect the influence
of differential deflections between deckhouse and hull, Since
considerable discussion was given in the text of the paper con-
cerning the deflection coefficient, it will be sufficient to
state that once this coefficient is obtained, the final expres-
sion for stress may be written as follows:

(21) %’-‘ [{%}/ +{1_2C§’§%}Y-J%myw+ c% + {2%’-1}%%}»"0

where ¢, is the stress from the combined effect of the various
decks, all other terms being defined previously. The above
expression was derived from simple algebraic relationships re-
lating all terms to the base of the deckhouse, It may be shoun
that equation (21) reduces essentially to a shearing component
plus a bending component at the base, {.e,,

(22) £ N ¢ U

¥ g

To do this let:
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Substitution into Equation {21} ylelds:
1 , ‘
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Simplifying and noticing that at the base A,B,D - A,B D res-

pectively we obtain-

9
= A C-B
Ex Gx \
- d — ed’
* 7% *
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APPENDIX II

DESIGN EXAMPLE
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Deckhouse Material: Aluminum

Hull Hateriel: Steel

Cross Sectional Area of Hull: A, = 1025 1in®

Moment of Inertia of Hull: I, = 141,000 in2-ft2
Maximum Bending Moment: M = 88,000 ft-tons

Nonsymmetry Adjustment to Deckhouse Length:

Effective length for Ol-level

50/350 = 0,143 Therefore, from the Design Simplifications
P.l9:

Le = 50 +50 = 100 FT.
ot

Effective length for 02-level
40/350 = 0.114 Therefore:

. = 4o +do = 80 FT

Since:
léﬂl - _&o_ - 0. 80 )
150/ /o0
the second level may be included. Therefore, the effective
length for both levels (per the Design Simplifications
p. 19) is:

_ _8o4+1loo0 _
Ay = ———— = 90 ft.

Stress Ratio, 6v/6%

’e’/L = 99/350 = 0.26
From Figure 7, for Cu=1Srr, Gr/0op = o.5]
From Figure 8, for cwm « & &7, <y = \.o00

Therefore:
V-‘r/\'ﬁ') s .57 x\loo = .57
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STRUWCTURAL ARRAMGEMENT STRESS - RATIe DiAGRAM

of 06 Hovsa

STE AREA = l~3(u-z

SUEAR (AG FACTOR:

b/g -z 2‘/90 - 0.2

FRoM TlGURE |0
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ACTUA L EQiv - LEVER | MomenT

I TEM AREA FACTOR €3) AREA =T. w2- FT

W STRESS M SHEAR X MATERMAL i )

o2~ 63.0 0s7ko093 ko34 | .3 | 16.0 [1\80.8

02- DECK: STE (13) V. S 057 k093 k« o 34 2.0 \S. 7S 47.2

oz - SIPES 26 4 o068 — < o34 3.3 .8 97. 9
o7 - SI1bE STF (2) _

( re> Frem DECKA 2. & 062 x o 34 o.c \4.32 7.2
o072 - 510 STF (2) 2.6 Cbb| — ko34 e b (2. 74 76
o0zZ-s\pe STE (=) Z & o70] - ko34 o. 6 . 16 6.7
02 -S\DE STF (2 26 |o| - ko 34 o7 osgl| 6.7

oy - B 2,0 [([079K%093 ko34 \&B, B 2.0 \2. G
o -veac STe (13) (.9 079 ko 93 Kk o 34 4,z 2.7S 22.¢
Sl - SIDES 42.0 o089 - ko34 | (4. 4 3.8 4.7
ol- SI1PE STE (3) 2.6 | o®| - ko34 o7 .32 4.4
(USTED FRowm DECK )
ol- sioe <TE () 2. & c87| - ko34 0.8 4.74 2.8
O\- Sipe sTe (2) 2.4 09| - ko34 . 8 3 |6 2.5
Ape=| ©4.6 | 13.2 826.%
Ce = Ay Ca (102) (14) - > Mpe =|1292. 4
Ay +Ape 1025 + 6.0

2
Le= Ty + Ay (cu-ce)  + My C¢

= 14,000 + 1025 (14.0-13,2)° + \292.4 (13.2)

= 58, 76

TORE =5 i
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DtRessES °
AT STRENGTH Deckc G‘D-Mc’e . S58yo02 X132 = 4,82 TS\
MATERIAL | STeEel. Ig 158, 1k

.64 vsy

AT BASE of DelKHOWXE ¢ 0—; = 4.82 X 0.34 =
MATER (AL ! ALusAInUM

AT DecKitovse Tof 0; = %:J_> i = .57 X .64 = 0,93T'5|l
)

MaATeRIAL ' A Lo kv

i~ LEeVEL
AT @ - G, = 079 X164 = \.30 TSI
VMATER AL« ALUMINUM

AT eel q‘l - M (Du - C.e3 58,000 (30.0—(3'2\)
MMATERLAL | STeel- IE \‘;8, M6

= &.\4 T,
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TUe DIsTRIBUTION OF

LONGITUDINAL STRESSES 1S /l
wANTED HERE

A S9sTeM of STRESSES 1S
APPLIED AT THE RASE SUcH
THAT VERTICAL § LoNGITUDINAL
DISPLACEMENTS ARE coMMTIBLE

wWI(TH THoSe PRODUCED BYW
PLEXVURE OF THE HOLLL

FIGURE 2

"The approach is to use the Alry Stress Function
to represent the stress in a rectangular plate,

which is attached to the hull and is analogous
to the deckhouse side."
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ASSUMPTION OF SHEARING
$TRESS DustRiBvTion
MADE UERE

FIGURE 3

"Consideration is then given to the effect on the
stress caused by attaching a plate to the deck-
house side., The attached plate represents a deck.®
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L/7 Lfz
| L DECKHOUSE
]
MWI%O
_zo ] 1 —» X
—
ASSOMED SHEARING BASE of DECRHOUSE
<STRESS DPISTRIBUTION (MAIN STRENGTH bear)

h

"Cx‘{ = %o g_ﬁs:uo(hx

F . 8 (fﬁﬁ (h=1,3,5...)

U!

FIGURE 4

"The basic assumption used throughout Johnson's
analysis 1s that the shearing stress distribution
in the deckhouse at the connection to any deck
varies linearly along the length of the deckhouse."
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Pro-

ject CD vertically upward to obtain the value of 61/, corresponding to ¢, =tSFT

Draw a

the given value of 4£r/L to the

with neutral axis of hull 15 feet

FIGURE 5

— e r————

Erecct ordinate AB from
to ship length, L (interpolating as necessary).

horizontal line BC to the curve for the given breadth of deckhouse, b,

ing

'Y

for single level deckhouse,

curve correspond

Stress ratio
below strength deck,

s e 194
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FIGURE 9
"The approximation of linear stress in the deckhouse based on
Johnson's solution forgy/sp« It was found expeditious at this
point to rationalize a linear distribution of stress between
the possibly nonlinear values of stress at the strength deck
and top os deckhouse.™
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FIGURE 12

*Simple beam relations. In this part of the analysis,
the deflections at the base of the deckhouse are
assumed equal to those of the main hull girder.

Later the effect of differential deflections between
deckhouse and hull will be brought into the analysis."




