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ABSTRACT 

This study is concerned with standing waves 8e^1" 
erated by a two-dimensional wave maker in a 

ine waves of small amplitude was obtained. 

c^spondî^^^de^fiscimrion”6« Äfral be 

equations'3^ ZeTeTonll Ä—l^ode^solved 
hSe for the velocity potential, free surface elevation 
and frequency-amplitude relation wl^he computatlon 
carried to the third order ofapproximatlon The f q y 
amnlitude curves for two constant amplitudes of wave 
Ser were found to consist of two non-intersecting 

branches of oscillation; the range "arUcuS'mode. 
linear effects was also determined for th® Pa™;c“i“rf”e_ 
^profiles of standing waves were computed for the fre 
quencies on each branch of the oscillation. 

Thp stability of non-linear forced two-dimensional 
standin^waves'was studied by investigating the poBsibiUty 
of excitation of the fundamental mode ^ croBS waves. A 
system of equations was again derived for solutions 
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cross waves by extending the method used in the two-dimen¬ 
sional case. The solution corresponding to the first mode 
of the longitudinal component and the first mode of cross 
waves was solved by the method of iteration to the second 
order of approximation, and yields the following results: 

(1) The half-frequency relation between the cross waves 
and wave maker, 

(2) The frequency for excitation of the cross waves, 

(3) The length/width ratios of the tank at which the 
cross waves can be excited by an infinitésimal 
amplitude of wave maker, and 

(4) The phase relation between the cross waves and the 
wave maker. 

The experimental investigation comprises essentially 
two parts: forced two-dimensional standing waves and cross 
waves. The experiment of two-dimensional standing waves 
serves as a verification of the theoretical solutions for 
both the frequency-amplitude relation and the profile of 
the standing waves. A satisfactory agreement was indi¬ 
cated in the comparison of the theoretical prediction and 
of the experimental results. For cross waves, the fre¬ 
quency-amplitude curve was obtained from the experiment in 
addition to confirming the results of the theoretical 
analysis above mentioned. 
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I. INTRODUCTION 

In the past decades the mathematical theory of water 
waves has been extensively developed. Experimental work be¬ 
comes Increasingly important to examine the theoretical 
analysis and to explore more facts for the development of 
more sophisticated problems in the field. In experimental 
investigations wave makers are generally used to generate 
different types of waves on the free surface of liquid for 
the study of wave motions under certain boundary conditions 
or of the interaction of waves with bodies in the liquid. 
Most frequently, there arise two-dimensional problems and 
two-dimensional progressive or standing waves are required 
for experimental investigations. It was observed that the 
two-dimensionality of the motion produced by a two-di¬ 
mensional wave maker could not be preserved under certain 
circumstances due to lateral instability. This instability 
occurs In the form of standing waves with their crest lines 
normal to the wave maker [1, 2, 15](l). For a long chan¬ 
nel with dissipation at the far end the standing waves ap¬ 
pear only near the wave maker and their amplitudes decay 
rapidly along the channel; while for a finite-length chan¬ 
nel with a vertical wall at the far end finite-amplitude 
standing waves of this type can be generated [3> The 
frequency of the standing waves was found to be only half 
that of wave maker as a subhamonic mode of forced oscil¬ 
lation. Hereafter, this type of standing waves Is called 
cross waves. 

As a general approach to the study of three-dimensional 
surface waves generated by two-dimensional wave maker, a 
rectangular channel of finite width and length is desirable 
for the energy in the system is finite and thus the assumption 
of a radiation condition at infinity can be avoided. Further¬ 
more, in a slightly dissipative system, the effect of vis¬ 
cosity on three-dimensional waves in a long channel becomes 
significant. Ursell [3] showed that the amplitude of waves 
is exponentially damped along a semi-infinite channel of 
constant width and depth. A slightly dissipative system 
will be considered here; hence, a rectangular tank with a 
pair of wave makers parallel to each other and normal to the 
side walls is taken to be a methematical model In this in¬ 
vestigation. Here, we mean by a slightly dissipative system 
that the effect of viscosity can be neglected but there does 
exist slight dissipation to decay all modes of free oscil¬ 
lation and thus to ensure a periodic motion due to forced 
oscillation. For forced oscillation the motion in general 
consists of free modes of oscillation and a forced periodic 
motion due to forcing agency. The term, forced oscillation, 

(1) Numbers in IJ refer to References. 
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used in this study refers only to the forced periodic motion 
in a restricted sense as a result of slight dissipation in 
the system. 

The objective of the present investigation is to study, 
both theoretically and experimentally, the stability of forced 

\ two-dimensional standing waves and the mechanics of excitation 
of cross waves by two-dimensional wave makers in a rectangular 
tank. A complete investigation of the problem of forced three- 
dimensional standing waves in a rectangular tank is not pos¬ 
sible due to the fact that it is non-linear with infinitely- 
many degrees of freedom for oscillation. However, some par¬ 
ticular solutions of practical significance can be investi¬ 
gated in a restricted manner. The problem of forced two- 
dimensional standing waves of finite amplitude will be solved 
as a family of particular solutions to the problem as a whole, 
and then the cross waves will be investigated. Therefore, the 
stability referred to here is in the sense that two-dimensional 
standing waves can be preserved without exciting the funda¬ 
mental mode of cross waves. 

1. Linear System 

It is natural to begin the study by investigating the 
linearized version of the problem. The classical process of 
linearization will lead the problem to a linear two-dimen¬ 
sional one, the general solution of which is to be found as 
a system of forced two-dimensional standing waves of small 
amplitude. A spectrum of resonance frequencies of the two- 
dimensional system can then be obtained. As is known in the 
linear theory of oscillation, the linear solution is not valid 
when the system is in resonance, which is defined by the 
phenomenon that the amplitude predicted by the linear solution 
approaches infinity as the forcing frequency approaches a 
resonance frequency of the spectrum. However, the non-linear¬ 
ity and viscosity prevent the amplitude of standing waves from 
becoming infinite. Since the linear system is basically two- 
dimensional, the two-dimensional standing waves of small 
amplitude are always stable except in the neighborhood of each 
resonance frequency of the system. In order to investigate 
the range of stability in the system as a whole, non-linear 
solutions have to be investigated in each neighborhood of a 
resonance frequency. A non-linear solution of two-dimensional 
standing waves will first be obtained and then the non-linear 
solution of cross waves of the fundamental mode for the purpose 
of investigating stability. 

2. Non-linear Two-dimensional System 

Finite-amplitude progressive waves have been subject 
to numerous investigations since Russell's experiments [5j. 
The problem was first solved by Stokes in 1847 [6] and sub¬ 
sequently extended and refined by other authors [f-13] by 
the method of successive approximation based on the exact free 
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surface conditions. The existence theory was finally estab¬ 
lished by V proof of Levi-Civita [10] for the infinite-depth 
case and later extended to finite-depth case by Struik [11]. 
No analysis of similar kind was available for finite-ampli¬ 
tude standing waves until in 1952 Penney and Price [14] 
treated the problem of free two-dimensional standing waves 
of finite amplitude. The difficulty involved here is that 
for progressive waves of permanent form a uniform velocity 
can be superposed on the system and then the problem is re¬ 
duced to a steady two-dimensional motion. This mathematical 
simplicity does not exist in standing waves. However, they 
solved it by expressing che velocity potential and free sur¬ 
face elevation as two Fourier series in x with coefficients 
which are functions of t and then approximating to these 
coefficients as Fourier series in t by the method of per¬ 
turbation. The resulting solution is in the form of a 
double Fourier series in x and t with coefficients which 
are power series in a constant A (A/jf is approximately 
equal to the wave-height/wave-length ratio). In order to 
Investigate the highest standing waves, their solution for 
the deep water case was carried to the fifth order. The 
same problem was later investigated experimentally by 
Taylor [l], who made a series of experiments to produce the 
highest two-dimensional standing waves. The free standing 
waves were produced approximately by a pair of wave makers 
executing small-amplitude oscillatory motion in a rectangu¬ 
lar tank near the resonance frequency of the fundamental 
mode. The experimental results were in good agreement with 
the profile predicted by Penney and Price; in particular, 
the 900 angle at the crest of the highest standing waves 
was verified. The frequency-amplitude curve of forced stand¬ 
ing waves was found to consist of two non-intersecting 
branches which are similar to those occurring in the theory 
of non-linear mechanical oscillators. In his experiment, 
lateral instability was observed to set in at the moment 
when the standing waves reached a sufficiently high amplitude. 

The approach adopted here to solve the problem of forced 
two-dimensional standing waves of finite amplitude is similar 
to Penney and Price's approach. Of course, the existence and 
stability of two-dimensional waves has to be assumed for the 
moment. A theoretical investigation of the two-dimensional 
system will be carried out here. The non-linear solutions 
in the forms of the velocity potential, free surface elevation 
and frequency-amplitude relation will be obtained for small 
amplitudes of the wave maker. The solution will also provide 
quantitatively the range in which significant non-linear 
effects occur. The experimental investigation in this case 
will serve essentially as a verification of the theoretical 
results. Due to the possibility of exciting cross waves in 
the three-dimensional system, forced two-dimensional standing 

-3- 
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3* Non-linear Three-dimensional System 

A free surface of liquid under forced osciiiatinn haa 
long been the subject of Investigation. Three-dimensional 
UUonnfnW?rhmayHbe eXSlted a3 a result of forced oseU- 

by wave°maker SscU^lng in“he ïîqSîdi^The^aîf!^1^1" °r 
standing waves as a subharmonic mode of forced oscillatlonCy 
were most frequently observed. Faraday In l8?l FirI «ihh» 

"ceVaf 3 Ä Sfll^uí^in^ sur- 
quencv of the mííííf/.?1 It; was flrst found that the fre- 
Dlatey The^r-eí?^ t dlng waves was only half that of the 

s .*;? ;sss sa « 
ourf^tLniï1'^ BenJaraln and Urst?!y[20] recenîîrworked 
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phenomena and shows th^t both^alf-irequency ^d^îî^fre^076 
quency standing waves can be excited A?? L 

«ftÂc^roVo^^lï? Õ? s^Äli ?lde 
free surfae! ul of oscillation more or less normal to the 
that the half fr-elf1'^6*633’ these results should suggest 

circumstances^6"07 0r0SS WaV63 Can be exoited -1er cer- 

obserïëd6by’FaîSdavWirhifeeel,atfd b? f w?ve maker were flrst 
in 1<W fpl whiph^q ihiS e^Perlment Í15] and later by Schuler 

r äcä “LS SsEä~*- 
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It is believed that three-dimensional standing waves 
can be excited in the system under consideration only due 
to the non-linearity in the free surface conditions since 
the linearized version of the system is basically two- 
dimensional. A non-linear solution for the fundamental mode 
of cross waves will be investigated based on the exact free 
surface conditions. The method used to solve the non-linear 
two-dimensional standing waves will be generalized for this 
purpose. The experimental part of the investigation for 
excitation of cross waves is expected to verify as well as 
to supplement the theoretical analysis since only the second- 
order solution will be carried out here. 

As mentioned at the beginning the complexity involved 
in the theoretical and experimental investigations is due 
to the fact that it is a non-linear system with infinitely- 
many degrees of freedom for oscillation. The present in¬ 
vestigation, however, will provide the linear solution of 
the system (forced two-dimensional standing waves of small 
amplitude); the non-linear solutions of the two-dimensional 
system (forced two-dimensional standing waves of finite 
amplitude); the range of significant non-linear effects in 
the two-dimensional system; and the general characteristics 
of cross waves. 
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II. FORMULATION OF THE PROBLEM 

2*1* Dimensional Equations and Boundary Conditions 

Finite-amplitude standing waves are generated in a 
rectangular tank by a pair of two-dimensional wave makers. 
The tank is taken to be of infinite depth. The x-y plane 
of the rectangular coordinates coincides with the un¬ 
disturbed free surface and the z-axis is vertically up¬ 
wards. The wave makers have a width W and are a distance 
2L apart. (See Fig. 2.1) 

Figure 2.1 
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The fluid is assumed to be homogeneous, incompressible, 

inviscid and moving irrotationally, hence there exists a 
velocity potential, $*U),which describes a velocity field 

[22] as 

1’ = - (2.1) 

and satisfies the Laplace equation 

= 0 

for 0 S 2L , o< W and Z*>-oo, 

The free surface conditions, 

(2) 

and 

(2.2) 

(2.3) 

(2.4) 

have to be satisfied on the free surface, 

Z*-ï?V) , ^2,5^ 

where a zero atmospheric pressure is assumed and 

f* =$£*$£+$$ . 
The boundary conditions are 

for infinite depth case, 

$* —► function of t* as -oo ; 

on the walls, 

= 0 at y*= o and W ; 

and on the wave makers, 

|C= FCZ’) 

ay* 

(2.6) 

(2.7) 

(2.8) 

(1) The asterisk on the upper right indicates a dimensional 

quantity. 
(2) The subscript of an independent variable on the lower 

right indicates partial differentiation. 

•*7- 



In his study of forced progressive waves of small 
amplitude, Havelock in 1929 [24] obtained, by means of an 
integral theorem, a general expression of the velocity po¬ 
tential for *he function F . The motion in general 
consists of a system of progressive waves far away from 
the wave maker and a local disturbance in the vicinity of 
the wave maker. However, he could simplify the expression 
of the velocity potential by an approximation that the 
motion of the wave maker is an exponential function with 
respect to the depth, i.e, * * 

Tf Z 
P(ií) = Ae , (2.9) 

The motion of a plunger-type wave maker corresponds to 
T*= 0, but Havelock found that as 0, the local dis¬ 
turbance becomes infinite in the deep water case while 
the system of wave motion away from wave maker remains un¬ 
changed. The oscillatory motion of a flap-type wave 
maker can be approximated by the exponential function 
Eq. (2.9) by a proper choice of T* without the difficulty 
involved in the plunger type. A flap-type wave maker is 
adopted with its motion approximately described by an 
exponential function and then the boundary conditions on 
the wave makers become 

= o(*cr*e^SinOH* at X*-o (2.10) 

and 

-|^ = -o<*o-*e Sin-oM:* at X*=2L . (2.11) 

In Eqs. (2.10) and (2.II), the amplitude of a wave maker 
at the undisturbed free surface, <**, is assumed to be 
small and then the motion is limited at rê=0 and 2L. 
Therefore, the motion of the wave maker is, in a sense, 
linearized and the non-linear waves are excited essen¬ 
tially due to resonance. 

2.2 Dimensionless Equations and Boundary Conditions 
:-- L V2 

, .. fy a choice of length unit VIC and time unit (-g-ir ) 
following dimensionless quantities are defined: v ' • 

the 

x.Jtf , r.*£ , ..M- , , / 

A set of dimensionless equations and boundary conditions 
can be derived from Eqs.(2.l) to (2.II) as follows: 

_L 
W 

v2$= 0 for 0$ X£2TT;0<yN<£and Z> -00 . 
(2.12) 
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with J = ” V$ . 

$ —* function of t s.3 

on 
(2.13) 

= ^ t) • 
' ^ (2.14) 

-oo 

# = 0 
3/ at y30 and Vx i 

and |^=«CTs;no-te*/2 

= -o<as;norteV2 
3X 

at 

at 

X = 0 

X= ?.Tt . 

(2.15) 

(2.16) 

(2.17) 

The coefficient of £ in the argument of the exponential 
function is chosen to be 1/2. 

2.3 Transformation of Homogeneous Boundary Conditions 

In order to have homogeneous boundary conditions for 
later Fourier series expressions of the velocity potential 
and free surface elevation, it is desirable to introduce 
a transformation 

$= aacrsIn-i-S^Tte2''’2 + V (2.18) 

in which ? is the new velocity potential; hence ^ sati- 
fies the Laplace equation 

^2Cp-0 for ö$X<2Tr,ö$y$Jand Z>-oo (2.19) 

and the homogeneous boundary conditions, 

—> function of t as 1-+ - œ , (2.20) 

= 0 at Xs0 and 2TT , (2.2l) 

and = ^ aty*OandT^, (2.22) 

Substituting Eq. (2.18) for $ in Eqs. (2.13) and (2.14), 
we have two transformed free surface conditions, 

%- Vt- jî’-wSiViCTte^fq’xCosl-ftSiMf)^ 23) 

and 
+ 2o<a6iVi jCoso^t6^2-Jo(2orZ5i’«?o,t €% 

= %ç**(firfy-V* +vaSi‘naieV3(ÇxCosZ-Sirj) (2.2k) 

on the free surface, z=Ç(*,y,t) , 
where 

I2 = * Vy * 9Ï . 
-9- 



Now, the problem is to look for the possibility of a 
velocity potential,^, and free surface elevation,/, as 
solutions of Eqs. (2.19), (2.23) and (2.24) and satisfying 
the homogeneous boundary conditions, Eqs. (2.20), (2.2l) and 
V w•22 i• 

-10- 



III. LINEAR THEORY OF FORCED STANDING WAVES 
-ÍN A RECTANGULAR TAflK 

3.1 Brief Review of Linear Theory 

Since there is no general solution possible for the 
non-linear partial differential equation formulated in the 

previous section, approximate physical picture can be 
obtained, with the least mathematical effort, by solving 
the linearized equations. The additional assumption in¬ 

volved is that the amplitude of standing waves should be 
small in comparison with the wave length. The problem is 

then reduced to finding a velocity potential, $ , as 

solution of the Laplace equation l22], 

V2$ = 0 for 0¿x<2Tr,ü¿Z¿-oo 

and satisfying the following linearized boundary 

conditions, 

+ ¢)2 — 0 on Z = 0 » 

$—* functions of t as 7 —►-o0 » 

and ±o«TSígate2/2 at X - 0 and 2tt . 

(3.1) 

(3.2) 

(3.3) 

(3.1*) 

After the solution of $ is found, the free surface 

elevation can be obtained from 

(3.5) 

The normal modes of free standing waves of small 
amplitude satisfying the above system are given by the 

velocity potentials [23] 

imo(x,y,Z)e' __ . , . ,. 

where m, n are integers, Cmn is a complex constant, 

O'™ = JrA'X1 * n* (3.7) 

and the real part on the right-hand-side of Eq. (3.6) is 
taken. The frequencies 2^ given by Eq. (3.7) form 
the spectrum of natural frequencies of the three dimen¬ 

sional system, and it can ^e proved that 

V 1 
(3.8) 
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independent of the width , which would reduce to the 
two dimensional system, - On = 1, if m.= 0. 
Then, the free motion is o^the form 

S2î>mn(x,y-Z)e‘'0’,"nt (3.9) wi r\ 

and a frequency analysis leads to the spectral frequencies 
Eq. (3.7) (3). 

For forced oscillation, in general the motion consists 
of free modes of oscillation, Eq. (3.9)* and a forced period¬ 
ic motion having a frequency Gfc tt equal to the forcing 
frequency. The amplitude of forced motion approaches in¬ 
finity as approaches a resonance frequency, while the 
other properties of the forcing agency are kept constant 
as generally recognized in the linear theory of oscillation. 
A measurement of resonance frequency provides the spectrum 
of the resonance frequencies. However, in the sense of 
forced motion defined in Sec. I for the dynamical system 
under investigation, the free modes are only transient and 
do not exist in the steady periodic motion due to slight 
dissipation. Hereafter, the solution of free modes of 
standing waves will be neglected and only the steady period¬ 
ic solutions are to be investigated. 

3-2 The Linear Solution of Forced Motion 

The linearized version of the problem of forced oscil¬ 
lation is basically a two-dimensional one, since the linear¬ 
ized free surface condition, Eq. (3.2) and the motion of 
the wave maker, Eq. (3.4), are independent of y. Let the 
solution of two-dimensional standing waves of small ampli¬ 
tude be 

$= ZotO'SiVi-j-g^Siioat-f $ CU6”2Cosnx SmCg-fc+g) (3.10) 
n«o 

satisfying all conditions except those on the free surface. 
The phase angle € has to be 0 or n in order to have a 
solution. Substituting Eq. ¡3.10) for $ in Eq. (3.2), leads 
to 

C/a( k2oa)Sm|- Sinat + a* C n-a*) Cos nx Sin cat f 6 ) * 0 
n»o 

0r 0* 
Sin3: otgCos nx (3.11) 

in which the negative sign is for £ =0and the positive 
fore = ft . In order to determine the coefficients An, 
Sin X /2 is expanded into a Fourier cosine series for 
0 ^X^2Tt, then 

„ 00 /* 
JL - A V' Cosnx 
^ T 1 ns| 

(3.12) 

-12- 
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By comparing the coefficients of cosnx on the right-hand 
sides of Eqs.(3.il) and (3.12), it is found that: 

and 

a»= * (3'13) Tr(4n»-i)(n-a\) 

in which the positive sign is for £=0 and the negative for 
Sift; but as we substitute both An and £ into Eq. (3.6), 
the sign becomes positive in front of the summation sign 
for either case. 

It follows from Eq. (3.5) that the free surface 
elevation is ^ 

Ç=M[l-2c’27Âfe]coSCTt . (3.14) 

3.3 Numerical Computation 

A numerical computation was carried out for the total 
amplitude of the linear standing waves at the point of sym¬ 
metry in the tank, x =Tt. Since this is a simple harmonic 
motion, the total amplitude is 

The frequency-amplitude relation based on Eq. (3.1^) Is 
shown in Pig. 3.1 for the wave maker amplitudes, 
« = O.OI94 and O.0388 and for the first mode of oscil¬ 
lation only, i.e. near1. 

The spectrum of resonance frequencies can now be 
determined from the solution, Eq. (3.14) or Eq. (3.15) 
as the amplitude |^| approaches infinity at ö^/TT » where 
n is an integer, hence, s vl # 

3.4 Behavior of the Linear Solution 

The spectrum of discrete resonance frequencies 
On ^ n for the two-dimensional system is obtained v^en 
the amplitude of standing waves becomes infinite atd^-*n. 
The spacing of these resonance frequencies decreases as 
the mode of oscillation becomes higher and tends to zero 
at the highest mode. The spectra of resonance frequencies 
for both free and forced motions are identical. If the 
forcing frequency of the wave maker is away from the re¬ 
sonance frequency, the periodic solution obtained in 

-13- 
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Sec. 3.2 is always stable since this is the only possible 
solution based on the linear theory. In this case the fre¬ 
quency of standing waves is equal to that of the wave maker 
and the amplitude of standing waves is a function of frequency 
at any location and linearly proportional to the amplitude 
of the wave maker (see Eq. (3.1^)). If the forcing frequency 
is in the neighborhood of a resonance frequency, the linear 
solution would contradict physical sense and thus is no 
longer valid. Then, the non-linear solution for standing 
waves of finite amplitude should be investigated in each 
neighborhood of a resonance frequency of the spectrum of 
the three-dimensional system. Although the two-dimensional 
standing waves of finite amplitude are only a family of 
particular solutions among the non-linear solutions of the 
three dimensional system, an investigation of the transi¬ 
tion from the two-dimensional linear to non-linear solu¬ 
tion will lead to determine approximately the range of sig¬ 
nificant non-linear effects in the neighborhood of a reson¬ 
ance frequency. Ir this range the two-dimensional stand¬ 
ing waves may be unstable for there is a possibility of ex¬ 
citation of cross waves under certain circumstances. 

In the case of free oscillation, the solution of 
higher modes can be generalized from the fundamental one 
by considering the higher mode as composed by a number of 
fundamental ones, i.e. by using a wave-amplitude/wave¬ 
length ratio based on the solution of the fundamental mode. 
Physically, this is possible by putting a partition or false 
wall vertically along the crest-trough line. This kind of 
simple procedure does not exist in the forced motion and 
each mode has to be solved individually. A simple demon¬ 
stration for this is to compute approximately the wave-amp- 
litude/wave-length ratio near the resonance frequency based 
on Eq. (3.14), e.g. 

ÄA 
Ç2I 

= _£ 
3 

and 

in which 

1 Wa' =_l 
I ial/A, 0 

J-Sil- JL 
IÇjl 3 
X| 

at )C-qi 

3^3- 

I W*. = 7 

* W/ M ^ 
For free waves the ratios 

should be 1 instead of 5/6 and 7/9. In addition, it 
indicates that increases as n does. 

* 
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IV. NON-LINEAR FORCED TWO-DIMENSIONAL 
STANDING WAVES IN A RECTANGULAR IMK 

4.1 General Remarks 

Forced standing waves of finite amplitude will be 
obtained as a non-linear solution of the two-dimensional 
problem as well as by investigation of the range of signi¬ 
ficant non-linear effects. In this range infinitely many 
solutions may possibly exist. Among them, two families of 
solutions are of significance, i.e. the non-linear two- 
dimensional standing waves and the fundamental mode of 
cross waves. The former will be treated in this section 
and together with the linear solution in Sec; III a complete 
solution is presented to the two-dimensional problem in 
the system as a whole provided that the stability criteria 
for two-dimensionality in the non-linear range can be es¬ 
tablished. At this moment, this problem is treated Just as 
a two-dimensional one for the purpose mentioned above. 
An approach similar to Penney and Price's [14] is used 
here to find an approximate solution which is, in its 
final form, a double Fourier series in x and t. The vel¬ 
ocity potential (p ar.d free surface elevation r are ex¬ 
pressed as two Fourier series in x with coefficients 
which are functions of t. Two sets of non-linear ordi¬ 
nary differential equations are derived from the free sur¬ 
face conditions for these coefficients. Then, a periodic 
solution is found by the method of iteration, which is 
generally applied to find the response curve (the fre¬ 
quency-amplitude relation) in non-linear mechanics [25. 
26,27j. 

There are indeed two branches on the frequency- 
amplitude curve for forced standing waves of finite am¬ 
plitude as found by Taylor [l]. They are on each side of 
the resonance curve (the frequency-amplitude curve of free 
oscillation) and disconnected due to neglecting of vis¬ 
cosity. It is found that the non-linear and linear fre¬ 
quency-amplitude curve are in good agreement in a wide 
overlapping range. The frequency-amplitude curves are 
computed to the third order for two different amplitudes 
of the wave maker. The coefficients are computed only to 
the second order. Finally, two profiles of standing waves 
with the frequencies on each branch of the frequency-ampli¬ 
tude curve are computed. 

4.2 Fourier Series Expressions for <t> and ^ 

Assume the velocity potential to be expressible in 
a Fourier series in x with coefficients which are functions 
of1 t/ 

y- X bn(t)£n2Co$rix . 
n=0 (4.1) 

This series satisfies Eqs. (2.19) to (2.22) except the free 
surface conditions, Eqs. (2.23) and (2.24). If Ç iS 
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eliminated in Eqs. (2.23) andfe.24), a partial differential 
equation is obtained with only one dependent variable, <p . 

But this would increase the order twice, and the multiplica¬ 
tion of the series becomes very difficult to handle. Sup¬ 
pose that Eqs. (2.23) and (2.24) could be solved for Z in 
terns of <p , then ç would also be a Fourier series. Hence, 
assume 

00 

£ = a-°~- + £ anCt)Cosnx . (4.2) 

These two series are considered as solutions of the free 
surface conditions, Eqs. (2.23) and (2.24). Substituting 
Eqs. (4.1) and (4.2) into Eqs. (2.23) and (2.24) and com¬ 
paring the coefficients of Cosnx, two sets of non-linear 
ordinary differential equations are obtained with the de¬ 
pendent variables, aQ and bn, and the Independent variable, 
t. As seen in Eqs. 12.20) and (2.21), this process in¬ 
volves the multiplication of two Fourier series and an 
exponential function with its argument as a Fourier 
series. After two Fourier series have been multiplied, 

Coq^x has to be expanded into another Fourier series. 
A special function was developed to handle this expan¬ 
sion (see Appendix A for details) [14] as follows: 

E(Xyyw-)* %Co$$yL[E(\$yx)+E(^/ò+/*’)") (^*3) 
Sal 

in which 

E(N,-S)* I^7Sn(s) . (4 
Ni*<r 

The function Sn(s) is a series of an, and both E (X,s) 
and Sn(s) were computed up to third order in Appendix A. 
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(1) 

^•3 Two Sets of Non-Linear Ordinary Differential Equations 
for the Coefficients an and bn of the Fourier Series 

to oii\SUb!tÎtUïvng Eq8, and (4,2) ln Ecls- (2-23) and 
^2.24J and by the use of the expansions, Eq. (4.3), one 
obtains: 

* ¿Äs Cos SX 
S*l 

= ¿0+ ^ [Ecn,s-n)+E(Ki; 

OO 

OOOO , ^ 

"J i'xl^i.S-mny £(^, 5««,]j 

^ÿ-Sin’fftfEci.oJ+zfEiOSJCM SX] /,. ., 
and s*i J I'*5) 

9 00 
% + 2 Ä6 Cos SX 

>*l 

" I, ^ . 
' ¿ ntv, { E(^«)+ ¿ Cos SX [EC 
n*i s»i JJ 

+ ^SÍnOt[||45q{E(¿,n)+|eo$Slí[E(i,i.«)*.É^,4+„)JJ 

'JIÄ ">|C« » N,í-™«)f Ri ,4, ) 

' re [bc^,o)+2^ BCiis)Cos5îCJ , 1 
(l) The dot on top Indicates a differentiation with 

to time, t. respect 

-18- 
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Comparing the coefficients of Cossx, then 

T = ¿o* !> kViE(n,n)' ' 5 ^ tukuE(vwn;m-n)4 CosOt [B( 

totV) 
' ^-ôinot { 2 ^jS5Ci|2(ww;E(^,w-r»>-2í*mi)É(rH¿yvi-»i)Jj 

—¿olM'Sin^tEOjO) (^.7) 

for S ¿I > 
oo . «e 28 

"^p-Sir»Cît|^llkV)[E(m'^S-n)+B(w*,^,6tn)J+ 5Íièr[E(^^' 

w)*( n»\ * ^ 

+ ^^CoSOtjE(¿,$)-2;¿q(E(¿>M)+E(í>*)j] (4.8) 

and 

-¾2 = -2-1.2[EínyVv)-n)-E(^/'^‘»'«)]-S ^k^EC^»^) 
xui ytet y^Ti 

4 i^.Smot{f ^êr- 
•i '•yvM ■»r| I 

'î^t'°)J ; (U.9) 

for S> i, 

w*« n*> 

' ¿Mbh [Ë(«.4-n)»6t*'.4'll'U)3 
«î. ('S. 10) 

4- áS-Sinot í lui,■¡■»Mt»»)}' E(i 4) 
TT *1*1 w ‘i 

- Í Z ^¾- (^2 '") ' t<. ¿y- 1 Oj ! 
w*i ***' ^ ^ 

4.4 Solution by the Method of Iteration 

The equation obtained in the previous section will 
be solved by the method of iteration. A consideration of 
the order of magnitude of the coefficients, as and bs,is 
essential for the solution. Penney and Price, in their 
treatment of non-linear free standing waves Ll^]j had 
successfully shown that as is of the order As and b3 of 
the same order or higher, where A is the amplitude of 
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linear free standing waves. For this problem, there does 
exist a small parameter, i.e. the amplitude of the wave 
maker It is necessary to use caution in taking a simi¬ 
lar approach, because in free standing waves one may solve 
for a fundamental mode of oscillation and the solution of 
higher modes can be obtained by considering the motion with¬ 
in each wave length as a fundamental mode. By contrast, 
in forced standing waves the wave maker can be operated at 
a frequency of any mode, and higher modes cannot be obtained 
in this way as discussed in Sec. 3.4 and have to be solved 
individually. Therefore, the order of magnitude of as and 
bg depends on the mode of the desired solution. From 
Sec. 3.4, it was shown that the non-linear effect is con¬ 
fined to the neighborhood of a resonance frequency of 
the spectrum, <3^- n for n = 1,2,3,... in the dimension¬ 
less form, which corresponds to a natural frequency of 
free standing waves. Examining the sets of Eqs. (4.7) to 
(4.10) for linear free oscillation by neglecting those non¬ 
linear and forcing terms, it is found that 

• • 

as = bs and as = -sbs , 

or bs + sbs = 0 (4.11) 

with the solutions 

bs=f3sSi»(./st+6S) for s* iy2/3,.-. (4.12) 

For a periodic solution, not all of these components can 
be present since their frequencies in general, are not 
exact multiples. The frequency, is also the reson¬ 
ance frequency of the system as s is an integer. There- 
fore, one has to confine himself in finding a solution 
which belongs to one of these modes. When the wave maker 
is operated in the neighborhood of one of these modes, a 
solution exists with the frequency of the wave maker as a 
fundamental frequency. 
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However, for forced oscillation there are some forcing 
terms on the right of Eq. (4.11) with the linear term 
of the order of K; then, there do exist the particular 
integrals for those values of bs in which//TT~ is not 
a multiple of the forcing frequency o*. The set of 
equations for linear forced oscillation is obtained 
from Eqs. (4.7) to (4.10) as follows: 

Oe - 2b0* fty! cos at 

à. = - S.Vvat 

n - h - — 

= hf _±2i2_ Sirtot a 

(4.13) 

for r\ z I 

by assuming that « is of the same order as all co¬ 
efficients.. The solution of Eq. (4.13) yields 
exactly the same results obtained in Sec. Ill based 
on the linear theory. 

For the moment, a solution is to be found for the 
fundamental mode of forced two-dimensional standing 
waves, i.e. a solution with the fundamental frequency 
in the neighborhood of cr = 1. Then, the iteration 
process may be started from an approximate solution 

b, =/3 Sin (at ♦ 6) 
where ß is more or less the ratio of wave amplitude 
/wave-length of the standing waves corresponding to 
Penney and Price's A, which is proportional to & 
as the frequency is far away from O' = 1 and becomes 
much larger than & near O' = 1; hence, o( is of the 
order of ß or higher. In the light of the linear 
solution obtained in Sec. Ill, a.0 and b0 are always 
of 0(o< ); ai and b-^ of 0 ( 0/b*¿ “ l)) i an and bh 

(n ^ 2) of 0( ot/id2-^)). Now considering the order 
of magnitude of the coefficients separately with re- 

a2, bx a*, b* 

OCI^Nlß*) ••• 

spect to (X 

CU, b0 
OCol) 

and ß 

> b.i 

where <T“ ä 1 because of the first mode of oscil¬ 
lation. The order of magnitude of the coefficients 
with respect to * cannot be expressed in integral 
powers similar to (3 , but the magnitude ^ —| 

decreases rapidly as n ^ 2 in comparison with 
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1 

o 
for g'' OC 1. Therefore, for the sake of simplifying the 
computation, it is assumed that 

a0’b0 alibl a3ib3 
0 (f3 ) 0 (p ) 

and 0( is of 0( ß ) or higher; during the process of itera¬ 
tion the contribution of I—&—I to an and bn will be re- 

I <j -n I 11 u 
covered in the nth order of approximation while those in¬ 
volved in the terms higher than the nth are neglected. 

If solutions corresponding to any higher mode, say, 
the nth m0de, are desired, it can be assumed that a0, b0, 
an, bn are of 0 ( ß ); a^i, b^i an+1, bn+1 are of 
0 ( and so forth. 

Now, the problem will be solved for the first mode 
of oscillation, i.e. in the neighborhood of <j = 1. Sn(s) 

and E (X ,>t) required in the computation are listed in 
Appendix A. As a result of expanding Eqs. (4.7) to (4.10) 
by keeping terms to the third order, eight equations are 
obtained for as and bs (s = 0,1,2 and 3) as follows: 

Q.0- 2b0 * ( i * ^ûo)û,b, ~ (i+ûo)bi * 4°!^-Sind(( 1+ ^Clo-^CLJbi+ J 62 J (4.14) 

CL,* t>,[(i+icu+tai)* jcii + fâ]+ 

ào = --^pS/'nOt (( + fate, +fa + ¿a,1] 

= -b, (i+fa+ fa-fa* fa]-a,bi (4.19) 

(4.18) 

1 
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¿2 =-2b»-2û.b,-(/tJa,;û,6, 

*^-5inat Jfía,'} ( 4. ao ) 
i i 

-3^j" 3Â(b,- ^Aibi~ •çû.fbi 

(4.21) 

4.4.1 First-order Solution 

By taking only the first-order terms in Eqs. (4.14), 
(4.15), (4.18) and (4.19), and eliminating a0 and a*, one 

has 

2otoCi-2aV 
IT Sindt 

(4.22) 

and 

SinOt (4.23) 

Then, the Integration of Eq.,(4.22) leads to a periodic 

solution. 

¿miLL&i Smat 
(4.24) 

and 

a.= ^Ccsai (4.25) 

from Eq. (4.14). It can easily be computed that the 
coefficient, a 0, is the variation of the undisturbed 
free surface due to the volume of fluid displaced by the 
wave maker in motion. 

Eq. (4.23) can be rewritten as the following [26]: 

b,><3*b, = w*-» t>, * Smat (4.26) 

Since the interest is centered on a periodic solution with 
the frequency O' of the forcing function, one starts with 
an approximation solution 

b¡ s ß Sin (ot + €) (4.2?) 
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where the amplitude (3 will serve as a parameter in higher 
order of approximation and the phase angle 6 indicates that 
the standing waves do not necessarily have the same phase 
as the wave maker. Substituting Eq. (4.27)>into the rieht- 
hand-side of Eq. (4.26), one has 

where 6 has to be 0 or 

b + alb,= [±«j1-i)8 + 

it in order to have a solution. Then, 

—&2ÇV]S'noé (4.29) 

Por a periodic solution, the secular term [25], which is 
the particular integral due to the term on the right-hand- 
side of Eq. (4.29)* must vanish. Hence, the first-order 
solution is 

b,= ßSin Cot * € ) 

with 

(4.30) 

(4.31) 

and a,* (2/3- -Zfr-JoCesct (^.32) 
where the positive sign is for £ 
£ * Tt . 

= 0and the negative for 

The phase relationship between the wave maker and 
two-dimensional forced standing waves was found experi¬ 
mentally by Taylor [l] as shown in Fig. 4.1. A theoreti¬ 
cal interpretation is that the motion of a fluid particle 
in the neighborhood of the wave maker has to be the same 
as that of the wave maker in the direction normal to it, 
and thus the wave maker must always be in phase with the 
motion of a fluid particle. Comparing the direction of 
streamlines with the motion of the wave maker sketched in 
Pig. 4.1, the phase relationship is evident. This can also 
be applied’to any higher mode of oscillation. 
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<y< i 
o- > i 

Pig. 4.1 Phase Relation 

The first-order amplitude of standing waves at x = it 
is 

^x»ic = ßa* )Cosoi (4.33) 

Hence, the negative sign should be used for £ * p'and 
CT > 1, while the positive sign for £ = it and <r< 1. 
For convenience in the later computation, the sign is 
absorbed in ß such that ß is positive for C > 1 and 
negative for d<l and £ is always equal to zero. Then, 
only the upper sign is used in Eqs. (4.29) to (4.33) from 
here on. 

4.4.2 Second-order Solution 

By taking the terms up to second order and elim¬ 
inating the linear term of a0 in Eqs. (4.14) and (4.18), 
one has 

- 2010Sin ot-jaú + btCb,-¿âiï-â^-Smot ( 

- 2Çjf-2Co$at ( b, f ot*o3 Sm ¿at 
(4.34) 



rí^Qt0íUíi0n 0f Eq' ^-3^) is obtained by substitutine the 

hand- sid^an^integrating twic^10"8 80Otl°n °n the rl«ht- 

b,*^ß&5mat (4.35) 

~ ¿Lfll<l*o,>/j-s$<5*4ol)-$£i.(9-4to±*6o,)*joi‘i: Jsiiàep) 

soÍutíon.lnA!fo?tl0n 00nStantS eqUal t0 2er° for the Periodic 

a. -¿.b,j. 

.if^i.üî^«ajte2o4 

(4.36) 

order^solutions 'on^ th°r íhK(.1ínear te™ of bo and the first oraer solutions on the right-hand-side of Eq. (4.18). 

Eq. (4^4),a slmllar P^cedure to that used in obtaining 

¿i + b, ¿íj-20 J Smot- ja0 b, - ^-Smoi [b^(i-2ax)CU- ¡oOi’HO'Xl,] 

+ *òn £°sot 2&0 ~ ] -r jCLoi?, (4.37) 
or 

¿>] * o'b, • 

* f|ff2i0<f l"3)- ^ (Ii30**i6a'-I5)]$in 2ot ( 4.38 ) 

ÉheÍn¿nethobmnslar te™ mUSt VanlSh f°r a Perlodio solution. 

b, • ßSmOt- 

with 

and 

45100^22^ =0 
31C 

(^.39) 

(4.40) 

a,i (p-¿g2.)vccsat 

+ (is^o'-zscvjaijai 

Finally, it follows from Eqs. (4.16) and (4.20) that 

(4.41) 
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¿b, = ^ís^Smot(4.42) 

•4^5iiCl(bt+4 O'^'ido* ¡4(71'iicyCíJ + CoiGtibf^Qt+^jQ,) 

-- ^'-xVm s/rtoí 
+ í * ^ur)t^iO- ^04 aV] Snioi 

with the solutions, 

^*^7I^5/.aí (4.43) 

and 

« a .1 fr’rr1 ^6g<7^-540¾ ^oib'gi-iéa') i 400* „ 
/0577 j/sir* J ffm-oV k**01 

I 
4(l-2cft 

ífo'- s¿^^]CosMÍ 

(4.44) 

Only the particular integral due to the forcing terms is 
taken since the solution with ¢^2-will disappear for the 
steady periodic motion. Note that Eq. (4.40) is identical 
with Eq. (4.31) of the first-order solution, i.e. the 
frequency-amplitude relation near O’ "1 remains the same 
as for the linear theory in Sec. 3*2. Therefore, in order 
to get the non-linear characterisitc of the frequency- 
amplitude curve, the third-order solution has to be in¬ 
vestigated. 

4.4.3 Third-order Solution for the frequency-amplitude 
relation 

As mentioned in Sec. 4.1, the third-order solution 
only deals with the non-linear characteristic of the 
frequency-amplitude relation, which is then used for the 
computation of the second-order solution in the previous 
section. To do this, only the secular term of the follow¬ 
ing equation has to be computed from Eqs. (4.15) and 
(4.19) by elimination of a-^. 

'b,+bi=--£b,(ae+fá+a2+fa?)-¿é,(¿*+¿aoáo+át+1 a, ) (Qjfò-adfi) 

~^¾.-Ä/* CL)bf * 2o»!bib¡ + 2bibi + 2btb¿ 

+ ^5inat [(h20l)(l+¿at+¿ti) '¡oCH'H&X'+j&l&i - 70(151+IIGX)0.X 
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* 

*-^r Cosat [20^0.- %a,)b,-#b, + a+fa - ¿a,)à. 

--^0+4,-2^0,)0, * -fí¿l ] 

^ ^01Z01 [OA,6m2at* 
(^.45) 

The second-order solutions of an and bn are put into the 
right-hand-side of Eq. (4.45), and the coefficient of Sin<jt 
provides the third-order frequency-amplitude relation as 
follows : 

(O'-0p+^$*n + , K,(%? (4.46) 

where 

^ = ' 0^1-^)(34^-27) 
4- JiTzaU) (4.47) 

K, = -Síisio^úiías^^ 2(l±lS±22lS2£^¿ 
42a(2a'-t) (4.48) 

K,= ( 3,00,ggoo6* 1,374,28a:*- / J2,3o0f|V- 743,4040^1500^, Ü20)l 

-(Séa^soa+.&a'ns . (stW\n ,4K\ 

- (45-ma'-i2a+--it,ioi+2loa*)/iï5(2-al) (4.49) 

Ks = -GteM'^+Ï.SSl.oUü'-m^cnW-liiiSîioKfyTsrfàtejSés)^ 

*í'30-%O,-/Ó00<-^ga<1y/,5a + (’%¿400*-^<4l?2oVi//8íé)<J^, 

+af3,/36a,.4,7waí-U24a*+/5&aV^/Z5.í2.0.J (4-5°) 
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4.5 Numerical Computation 

4.5.I The Frequency-amplitude Curves 

Eq. (4.46) Is rewritten as the following: 

a2= , - K, $)$ - ^ <SL]/p (4>51) 
Here the frequency of non-linear two-dimensional standing 
waves is considered as a function of ß with ot as a para¬ 
meter on the c-(3 plane. Since it is non-linear in both CT 
andß, Eq. (4.51) is again solved numerically by the 
method of iteration. Only two wave maker amplitudes, 
OC = O.OI94 and O.O388, were computed. For the range of 
magnitude of «, the last term is small in comparison with 
the-second term on the right-hand-side of Eq. (4.51). For 
0( = O.O388 andŒ*l, 

, 2 
K3 = -5.1631 and ( 0(/Tt ) = O.OOOO3813 

while 

hence, 

4<r (1-2(¿I = -1.3333 
3 

SIT » 
and the last term was neglected in the computation. 
With a small variation of a in the neighborhood of <r * 1, 
Eq. (4.51) consists essentiallypOf two parts: one is a 

takes a positive value for O'>1 and a negative for 0e* 
to take account of the phase relation between the wave 
maker and standing waves. For non-linear standing waves, 

1 should imply that the oscillation:’is on the branch 
on the left of the resonance curve and<j>l on the right 
branch for the first mode. The resonance curve (the 
frequency-amplitude curve for free oscillation) of the 
third order can be obtained by letting CX=o in Eq. (4.5l)i 
then, 

(4.52) 

where K0 is given by Eq. (4.47). The procedure of 
computation is to break Eq. (4.51) into two parts! 

and 

%2 = 

|t 400(-1-201) 
^ ITTß 
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I 

in which the upper positive sign is foro*< 1 and the lower 
negative for and 0 is an absolute value again for both 
cases. The iteration was started with a = 1 for different 
ß 's and ex = 0.019^ and 0.0388 until the final OCn and %2 
were in agreement with their previous trials within the 
fourth place after the decimal, i.e. less than 0.1# in error. 
Then, <J = //%j + %o was Plotted against ß as shown in 

Based on the solution of bo, bi and b2 in Sec. 4.4.4, 
the free surface is at rest at Sin not =0-, orct = nVo’ • 
The free surface elevation to the second order can be ob¬ 
tained from Eq. (4.2) by using a0í ai and ag of Eqs. (4.36), 
(4.4l) and (4.44). Then, the total amplitude, |.AJ., at X-=7t 
as a function of o* IS 

|A| = ?Í»TT/0 it-' 

(4.55) 
in which the negative sign in front of ß is for <î<l and 
the positive for <j> 1. The computed C-iAJ curves are 
shown in Pig. 4.3 for 0(=0.0194 and 0(=0.0388. 

4.5.2 The Profiles of Forced Standing Waves 

The profiles of the free surface at rest were computed 
for O’= O.965 and 1.000 with o< * 0.0194. The free surface 
elevation, Eq. (4.2), to the second order leads to 

^ s 4» &| Cos X + 0-t Cos2X j 

in which a0, ai and a2 are given by Eqs. (4.36), (4.4l) 
and (4.44). The parameter,/3 , in the coefficients may be 
obtained from Pig. 4.2 ^ 

as 2 (3 = O.217 

and 2 A = 0.694 

for a = 0.965 

for O’ = 1.000 

The computed profiles are shown in Pig. 4.4 
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(b) ö'« 1.000 

FIO. li.U Profiles of Forced Two-dinenaionel Standing Waves 
for O' = 0.019li 
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^•6 Higher Modes of Forced Two-Dimensional Standing Waves 

The procedure to find a solution for any higher mode 
Is exactly the same as for the fundamental mode presented 
In previous sections. The assumption of the order of magni¬ 
tude of the coefficient made in Sec. 4.3 provides a start¬ 
ing point to compute Sn(s) and E(x ,/jl) and then a set of 
equations can be obtained from Eqs. (4.7) to (4.10) to any 
desired order of magnitude. The non-linear frequency- 
amplitude relation will appear in the secular term of the 
solution belonging to the equation with the frequency 
near the wave maker frequency at the third order of ap¬ 
proximation. The final forms of the coefficients will 
be a Fourier series in t with its fundamental frequency the 
same as the one of the wave maker and the coefficient as 
a function of cx.^ando*. The3 is determined explicitly from 
the cr-ß curve for a particular (8 . It will also be noted 
that the resonance curve of free oscillation (« = 0) should 
remain the same for all modes of oscillation. 

^•7 Comparison of the Linear and Non-linear Solutions 

A comparison of the non-linear frequency-amplitude 
curves obtained in Sec. 4.5.1 with those of the linear 
theory in Sec. 3*3 is made in Fig. 4.5. The agreement is 
surprisingly good for the region with the frequency far 
away from<j= 1. These results indicate that the non-linear 
effect is essentially confined to the neighborhood of the 
resonance frequency, the range depends on the amplitude of 
the wave maker and also provides the range of significant 
non-linear effects as far as these two values of oc are con¬ 
cerned. These ranges determined from Fig. 4.5 are 

0.93 < <J/j1 < 1.05 for a = 0.0194 

0.92 < a/(y1 < 1.08 for « = 0.0388 

A comparison of the Resonance curve with Penney and 
Price's indicates good agreement for |A|< O.75. The dis¬ 
crepancy at high amplitude may be on account of the follow¬ 
ing two reasons: (l) The present solution is based on the 
third-order curves and second-order Eq. (4.55), while 
their result is of the fifth order; (2) In Penney and Price's 
computation the second term of Eq. (4.47) for K0 is missing 
as a result of approximating all <y values on the right of 
the equation for the frequency-amplitude curve which is 
equivalent to letting a = 1 in Eqs. (4.47) to (4.50) and 
(4.55). 
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V. NON-LINEAR FORCED THREE-DIMENSIONAL 
STANDING WAVES IN A RECTANGULAR TANK 

5.1 General Remarks 

The preliminary investigation based on the linear 
theory in Section III shows that the linearized version of 
the problem under consideration is basically two-dimension¬ 
al. The forced two-dimensional standing waves of small 
amplitude are from the linear solution of the system and 
are always stable except in the neighborhood of a reson¬ 
ance frequency. This result leads to the general con¬ 
viction that three-dimensional standing waves in the 
system can be generated only due to the non-linearity in 
the exact free surface conditions (See Eqs. (2.23) and 
(2.24))in the range of non-linear effects and hence the 
forced standing waves must be of finite amplitude. The 
non-linear solution of forced two-dimensional standing 
waves obtained in the previous section provides the range 
of stability for the linear solution and also represents 
a family of particular solutions to the problem as a whole. 
The present section is to investigate the underlying 
mechanics of exciting the fundamental mode of cross waves 
based on the exact free surface conditions. In addition 
to generalizing the expansion of the product of an ex¬ 
ponential of a Fourier series and another Fourier series 
into the three-dimensional case, the approach is essential¬ 
ly similar to Sec. IV, but the degrees of freedom for the 
solutions are doubled. A system of non-linear ordinary 
differential equations will be derived for the coefficients 
of the double Fourier series in x and y of ^ and Ç. These 
equations can be solved by the method of iteration to any 
desired order of approximation. Only the second-order 
solution is found here and thus the result will be qualita¬ 
tive. However, a quantitative result can be obtained if 
the elaborate computation is to be carried on to a higher 
order of approximation. With the second order solution, 
it is found that the half-frequency mode of subharmonic 
oscillations is indeed the fundamental mode of cross waves 
and the favorable condition to excite cross waves depends 
on the length/width ratio of the tank and the amplitude of 
motion of the wave maker. It is expected that some quanti¬ 
tative description of cross waves is to be obtained from 
the experimental investigation in the later part of the 
investigation. 

1 



5.2 Fourier Series Expressions for (p and ^ 

Assume 

^lÍB^Co^Cosnxe^1*''''2 (5.!) 
mso ' 

which satisfies the Laplace equation, Eq. (2.19)^ and the 
homogeneous boundary conditions, Eqs. (2.20) to (2.22); 
and also assume 

00 00 

IlAmnCtiCosYniyCosy!* for £(5.2) 

which together with <p , Ea. (5.l)> satisfies the free 
surface conditions, Eqs. (2.23) and (2.24). Then, 
neglecting all harmonics higher than Cos JLy, 
approximately 

^ = ^BonCosvixe^ ¿ BinCos^e^’'’^ Z Cosiy 
v?To 

where bn = -®on> ^n = ®lnanc^ "^n “ J~Jß +" n2 ; 

konCoòvyW. + Cosntt Cosi'j 

(4#*2C«Co$k*)G05Íu 

(5.3) 

and 

(5.4) 

where a0 = ?Aoo. Co = 2A10 an^ = Aon. = ^ln ^or h^l. 

Therefore, the solution of three-dimensional waves is 
desired with only the fundamental mode of cross waves. 
Let 

^ s ^ (5.5) 

with 

and 

r * 1 a» Cos**. ¿ ; üv,>ö.„ (5-6) 
v\*l v»»-oO 

(%+^C.iCos^CosAv^fcMé^Cos.ij . (5'7) 
w«.i , 

C-w 
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ÏSgTHHiKH, an, bh . en and ^ 

The general procedure of solution is to substitute 
V?and ç above into the free surface conditions, Eqs. (2.23) 
and (2.24); first to obtain four equations in terms of 
cos nx by comparing the coefficients of Cos m£y for m = 0 
and 1; and then to obtain four sets of ordinary differential 
equations in an* bn* cn and dn for n =0,1,2,•••. by compar¬ 
ing the coefficients of cos nx for n = 0,1,2,••*. These 
equations can be solved by the method of iteration to any 
desired order of approximation, as in the previous section. 
The present problem differs from the two-dimensional one 
by containing two parameters, one of which is for cross 
waves and the other for the longitudinal component. There 
exist two frequency-amplitude relations in the fundamental 
modes of the two components to determine these two para¬ 
meters. Prior to the above-mentioned procedure, eMU Cos ^ I y 
is to be expanded in addition to Cos/lx which ap- ^ 

?oa£?\in the free suri,ace conditions, Eqs. (2.23) and 
(2.24). The expansion e Cos/xx developed in Appendix A 
is again used in this section. The expansion 

eXl«CojM£y = F 2 Cos sly FcX,st,u.)] 

where I f5(X(/M)CosSX (5.8) 
and the related functions are developed in Appendices B 
and C and computed to the third order. 

Wv sy^em °*\ eQuations in terms of the functions 
^VAyUand ^(Xyi^ are given in Appendix D. 

5.# Solution by the Method of Iteration 

The system of Eqs. (D.l) to (D.8) in Appendix D is 
based on the dimensionless equations formulated in Sec II 
An examination of the mode of oscillation in the three- 
dimensional system is necessary before any assumption of 
the order of magnitude of the coefficients an, bn, cn and 
dn can he made. Since the interest is only in the funda¬ 
mental mode of cross waves, the component mode in the 
transverse direction is fixed» The resonance frequency 
corresponding to this mode, depends only on the 
width of the tank for the infinite-depth case, and 

(5.9) 
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where the cross wave length Is for the fundamental mode 
of cross waves. In dimensionless form, 

LOf * L/\AJ - X . (5.10) 

Hence, we are looking for a solution of cross waves with 
a frequency U) in the neighborhood of (Dn - J~X but the 
corresponding longitudinal mode of oscillation still re¬ 
mains to be determined, for there are infinitely many 
discrete resonance frequencies. The unit used in the 
derivation of the dimensionless system in Sec. II implies 
in this case that X= 2L for the assumed and Ç in 
Eqs. (5.1) and (5.2)-because #the cos nx in the summation 
should in general be Cos 2where is the wave length 
of the longitudinal component. This means that the funda¬ 
mental mode in the longitudinal component has been chosen 
and the frequency relation between these components and 
the length/width ratio remains to be determined. The 
resonance frequency of the longitudinal mode O’ 1 =<. 1 can 
easily be verified. The generalization to higher longi¬ 
tudinal modes will be treated later. It is natural to 
consider that 0 and S are of the same order, which leads 
to the assumption that a0, b0, e0, (Íq, a^ and b^ are of 
0 (ßorS) while ci, di , ag , b2 of 0 ( ß* or81) and so 
forth. In general the order of magnitude of cs and ds 
is fixed relative to as and bs which depend on the longi¬ 
tudinal mode of oscillation to be solved for in a manner 
similar to the two-dimensional case. 

The next step is to compute the function fs(X,/¿) 
to the third order as given in Appendix B and also to 
use E(X./U) in Appendix A for the expansion of the system 
of Eqs. (D.l) to (D.8) in Appendix D to the third order. 
The system of second-order equations is given as follows. 

(Xos2bo^cx,b{-b^^jicedo-ildU-á^r-^5\f\at 

+ ^^(i+^ao-¿a,)Co5at (5.n) 

a,= (5.12) 

a2= (5.13) 

C0= 2d0 ^ Aûodo(5.1^) 

C,= ¿i^2¿ico+M^o'ib,clo + -^f’JtcloSinat-^iCoCoiot (5.^-5) 
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OLq- - SinO^t C K ■^CL\ ) (5.16) 

+ (5.17) 

à-i 2bt -&ib, + ^—SmoÎCl+^ûot^-A, ) 

¿0 = -2Mo-llaflöt0-^fCoSi>iat 

C, = - V, d, - ¿ b, Co - J(la, d o ♦ -H* Co S.^at 

(5 

(5.20) 

First,the pair of Eqs. (5.1^) and (5.19) Is solved 
again by Duffing's method of Iteration. By eliminating c0, 
then 

do* AAo = ~ zO-tído*Ido)- ¿/¿odo + ^-^feto-CoCl-ZO^JSinat' 

^-^-\2iölo“Co)Cosat 
(5.21) 

The equation of the linear free oscillation as the first- 
order approximation is 

d, * Wo * O (5.22) 

which yields the solution, 

do s 8 5¡n<CJüt+ 6) (5.23) 

and Co* 2800 Cos (out* 6) (5.24) 

where 8 is a parameter, £ is the phase difference with the 
wave maker and u)?^, Then, substituting Eqs. (5.23) and 
(5.24) and also Qç - Sinfft, which is the first- 
order a0 from Eq.(5.l6), into the right-hand-side of Eq. 
(5.21), there results: 

¿o+cjüMo- (uMtéSiVi(cut 16)*Sin(ot-wt-é) 

+ 'S^T*[Cü^",+2a^*l'2oCJl+uí)J Siníot+cjüt fé) (5.25) 

Note that the lowest frequency of the forcing function on 
the right-hand-side of Eq. (5.25) is equal to o-0), which 
has to be the fundamental frequency of cross waves for the 
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existence of a steady periodic solution, 
been proved that 

GO = 9½ 

Therefore, it has 

(5.26) 

and the phase difference 6 has to be zero or . 
As far as the analysis up to this stage is concerned, the 
phase angle either zero or 1^/2 will satisfy the conditions 
required to yield a periodic solution. However, the re¬ 
sult of experimental measurements in Sec. VIII indicated that 
the phase angle should be ïï/2 ; and the following computa¬ 
tion will be based on £ = tt/2 . 

Eq. (5.25) becomes 

cLo* üûicLo ~ S ( u)* - ^ ( 4<a)2- i jjCos out 

+ S£-i t.2u)x) Cos 3^^ 

which gives 

(5.27) 

¢0 * SCoscot| + i2tol.)Cos3Gût (5.28) 

with the secular term 
toi.ji-1*0 (5.29) 

For ttfal , ois V2 and (T «i which is the frequency 
of the wave maker or the corresponding longitudinal mode 
in agreement with what has been chosen. Furthermore, 
the ratio of length/width of the tank for exciting this 
three-dimensional mode witho(-*-0 as a limit is 

I = >4 (5-30) 

From Eq. (5.1^), one has 

Co = -2Su)[i--^-(4u)l-i)]5inüot+55|^-(4oü2-5;5in3urt (5.31) 

by use of Eqs. (5.28), (5.23) and (5.24) together with 
the solution of a0 =_iSLcos(rt> 

TC 

For the fundamental mode of the longitudinal compon¬ 
ent, the pair of Eqs. (5.12) and (5.17) lead to 

o')0+¿ao) 
(5.32) 

independent of and dj-,, and identical with Eq. (4.37) in 
the two-dimensional case. Hence, the solutions are 
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(5.33) 
with the secular term 

and 
(cl-\)ß + -á2°^g!i ,0 

(5.34) 

a,= ^(5tl40,;-i^(lí.2íolJj + ((3.^)oíoi(ji 

* • W*- I4C (i5i24o*-28C*> ] Cciiat 
(5.35) 

twcTparameters^S * and '^in'this^ñrobi “f6 that there are 
of the frequency-amplitude relatif ^em<.^or ^e4ermination 
the longitudinal component of stand? 0f 0r0ss waves an<J of 
second-order solutions obta?L? ? ngawaves- For the 
(5.34) which is still I?naai?d h?re' ^ aPPears in Eq. 
ent of S ; while the absence of 5 1^61¾%31101 1"dePen<l- 
there are no cross waves in ^ in E<ï* (5.29) means that 
quency and amplitude TherefÍL ^ar relatl°n of fre- 
of the non-linear solution cannnf h 6 results 
higher order of apnroximafirm -t ^ unless a 

quency-amplitude relation similar^c^the ?Ut a?r the fre" 
case presented ln Sec. IV milar to the two-dimensional 

301v5d “ “« 

a.. ¡ 

Aed ^ . i « ^ • ** 

(5.36) 
^Casot. 4[^.i2!^SiLjCo62at 

b° ‘ ; S'”ot ‘ 

+í^-iSÍU0S4^]5lVl2fft (5-37) 

■ 5fpV.4^^+^^JCos2ot (538) 
4(1-20¾ 

b - 4*0020*) ^ . 
2 IfflTd-O1) + (5 39) 

^ 315 u : 1'-^0 t ^04-0J;] ¿in Jot 
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k 2 (pSCîJtoüV 2u)1-J Si'noüt 

+ 12(3,V) í^(4^l+ 2u)1,+ bl+buf+iMoû'-'i)] 

-{ [^S(2J|uJlt2oül+ ï)- Sâ^L(AlLoi\ U)VJ!;Jj 5r«3u)t ^5 •40^ 

^(^u)(4ioV2(Aíí)-MüL\^.6ü)l..au)‘-i;J¿o»3u3Í 2W- 
(5.41) 

5.5 Higher Modes in the Longitudinal Component of Standing 
Waves 

For higher modes in the longitudinal component, the 
half-frequency relation between the wave maker and cross 
waves remains the same, while the length/width ratio of the 
tank 1 found in Sec. 5.4 is different for having cross 
waves with o<-*o. The ratio for any longitudinal mode can 
be obtained by the following consideration. Write the 
velocity potential in dimensional form as 

/= I! ^ 
' wts« n*o 'x ^ (5.42) 

in which —corresponds to miyin the dimensionless 
form used in the last section. Now, instead ofL/ir let 
the unit be chosen as >f/2Tt , and 

a> = !> 5 6™ Cosmiy Cot,roce Jy"'-t'W 2 (5.43) T M*0 ' 
where Í' = ~7Ç. By using the new unit, Eqs. (5.2l) to 
(5.31) remain unchanged, then Eq. (5.30) gives 

therefore, 

or 

1' = 1/4 

1 -7?, 
2L/n 
2*1 

a = L/vV * ^ 
nw 

I 
4 

where n is integer corresponding to the n 
longitudinal component. 

.h (5-44) 
Ln mode of the 
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With only the second-order solution, the results are sum¬ 
marized in the following: 

(1) The fundamental mode of cross waves has a frequency 
which is half that of the wave maker (Eq. 5.2o). 

(2) The frequency which can excite the cross waves is 
in the neighborhood of <1)2 = £ only. Note that 2 
(Eq. (5.29) differs from Eq. (5.34) which is identi¬ 
cal to the two-dimensioi al case of the same order^of 
approximation. In Eq. (5.34), the term 4«O’ (1-20^)/0-^/1 
gives essentially the two-dimensional standing waves r 
of small amplitude as the frequency is away from the 
resonance frequency (See Sec. 4.5). The absence of 
the corresponding term in Eq. (5.29) indicates that 
there are no linear cross waves and the cross waves 
exist only in the neighborhood of <4)2 = 

(j) The most favorable condition to excite cross waves 
exists for the length/width ratio of the tank JL = fi 
when the amplitude of the wave maker is very small/ 
However, as X, the excitation depends on a critical 
value of« (See Eq. (5.29)), where n is the mode of the 
longitudinal component of standing waves. 

(4) The phase angle between the cross waves is 0 or IT/9 
By using the experimental result obtained in SéòVvilI 
t = Tr/2. 

in Kn=S1?ceoMe n!wè1!î??r characteristic does not appear 
in Eqs. (5.29) and (5.3^) at the second order, similar to 
the two-dimensional case in Sec.IV, the quantitative re- 
SU^t^îanîîot be ol5talned. The relation betvreen the frequency 

.t!}e two parameters (ßandS) remains yet t be determined, 
higher order of approximation has to be carried out for 

this purpose. As mentioned In the Introduction, the 
Interest Is centered only on the mechanics of the excitation 
of cross waves, an elaborate process would be involved in 
the computation of a higher-order solution. It is expected 
that the experiment will provide some information of the 
frequency-amplitude relation of the cross waves. 
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VI. EXPERIMENTAL EQUIPMENT 

6.1 General Description 

The experimental investigation was carried out in 
the Hydrodynamics Laboratory of Massachusetts Institute 
of Technology. A rectangular tank, 3 feet 6 1/4 inches 
long, 2 feet 3/16 inches wide and 3 feet deep with glass 
sides and ends was built for this purpose. Due to the 
symmetry of the problem, only one wave maker was used. 
The flap-type wave maker is located inside the tank on 
the rails, which are parallel to the side walls, and 
hence the distance between the wave maker and the end is 
adjustable. An adjustable connecting rod is used to 
transmit the circular motion of the eccentric cam to 
oscillatory motion of the wave maker. An AMES dial gage 
and a displacement gage (Linearsyn Model S2) are located 
at the top of wave maker to measure the amplitude of the 
wave maker and to record the motion of the wave maker for 
the determination of the phase relation. The amplitude 
of standing waves is measured by a resistance-type wave 
gage, which is fixed into a point-gage staff mounted on 
a cross beam. The whole unit can be slid along the cross 
beam. The output of the wave gage and of the displace¬ 
ment gage is recorded on a four-channel Sanborn Model 150 
Oscillograph. The frequency of the wave maker is measured 
by an electronic counter system. An aluminum circular 
plate is mounted on the fly wheel with 400 holes on its 
periphery with a light source on one side and a photo¬ 
electric tube on the other. The tube is connected with 
an electronic counter. When one side of the wave maker 
is in use, aluminum wool is put in the other side to absorb 
the waves generated. The overall arrangement is shown 
in a schematic diagram and a photograph (Figs. 6.1 and o.2). 

6.2 The Driving Unit and Wave Maker 

The driving unit consists of the following parts: 

(1) A 3-h.p. U.S. Motor Varidrive with a continuous speed 
range of 44.5 bo 310 rpm, i.e. 0.7^2 to c.p.s. 
The speed was roughly calibrated with the counter on 
the motor, which was used as a guide to the range of 
frequency needed for an experiment. After the motor 
is warmed up, the variation of speed is usually less 
than 0.05# near 2 c.p.s. and even less for lower 
speed. (Fig. 6.3). 

(2) A fly wheel, 2 feet in diameter and 1 inch thick, 
on which an eccentric sliding block and its guiding 
frame are bolted. The eccentric sliding block is 
driven by a motor and thus its position can be 

f 
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varied during a run. The eccentricity is recorded 
on a counter on the wheel. Owing to an error in 
construction, there exists a minimum eccentricity 
or minimum wave maker amplitude of about 0.14 degree. 
A circular aluminum plate with holes on its periphery 
is bolted on the fly wheel and used as a light-beam 
cutting device for the electronic counter system 
(Pig. 6.4). 

(3) An adjustable connecting rod, made of a brass rod 
of 3/4-inch diameter and steel tubing of 3/4-inch 
I.D. The rod runs Inside the tubing and is fixed by 
four setscrews to suit the neutral position of wave 
maker. A ball joint connects the rod at the center 
to the top of wave maker. Two adjustable steel 
wires run from the middle of the rod to each end on 
the top of wave maker to adjust the wave maker and 
to keep it parallel to the end of the tank. 

The Wave Maker 

The wave maker is made of a plexiglass plate of 3/^- 
inch thickness and of 3-foot height. At its lower edge, 
a brass hinge of the same width is screwed on and rests 
on a movable cross beam. The center of the hinge is 
1 37/64 inches above the floor. The top and two sides of 
the wave maker are reinforced by three aluminum angles. 
There is a clearance between the wave maker and the side 
wall of about 3/32 inch. A spring-loaded hard rubber 
seal is used for the wave maker (Fig. 6.5). The upper 
part of the seal was usually lubricated with water 
brought up by high-amplitude waves; but when the amplitude 
of waves was small, water was injected periodically into 
the seal. 

6.3 Wave Gage 

A resistance wave gage is made of two platinum wires, 
O.OO8 inch in diameter, spaced 1/4 inch apart. The wires, 
insulated from each other, are stretched on a bow-shaped 
frame, which is fixed into the point gage staff (Fig. 6.6a). 
During measurements, about one half of the length of wires 
was submerged vertically in water. The wires were con¬ 
nected to one branch of the bridge circuit (Fig. 6.6b). 
The output of the gage depends on the amount of submer¬ 
gence (nearly a linear function) and was recorded by a 
Sanborn Recorder. Before each run, the wires were wiped 
with a damp cloth and foreign matter was removed from 
the water surface. Static calibrations were made before 
and after each run by moving the gage up and down. 
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During a run, the gage gave continuous recording of total 
wave amplitude with respect to time at a point. The over¬ 
all error for the gage recording system was found to be 
less than 3-5# [28]. 

6.4 Dial Gage and Displacement Gage 

An AMES dial gage with 0.001" graduation was used to 
measure the amplitude of the wave maker at the top of the 
wave maker, 3 feet from the hinge. The measurement was 
made for each run when the wave maker was oscillating at 
a low speed (Fig. 6.7a). 

The motion of the wave maker was also measured with 
a displacement gage, a linear variable differential trans¬ 
former (Linearsyn Model S2), the output of which is 
directly proportional to the displacement. In order to 
investigate the phase relation between the wave maker and 
the standing waves, the motion was recorded simultaneously 
with the wave amplitude on two-channel Permapaper in a 
Sanborn Recorder. This device has two parts: a coil 
assembly, 11 1/8 inches long, 0.312 inch I.D. and 3/4-inch 
O.D., and a magnetic assembly. The transformer has a full 
range of 4-inch stroke and an excitation voltage of 6 volts. 
(Fig. 6.7 a,b). The gage was located at the top of the 
wave maker. 

6.5 Electronic Counter System 

The electronic counter system consists of four parts: 
1. an electronic counter, 2. a photo-electric tube, 3. light 
source and 4. a light-beam catting device. (Fig. 6.8) 

A Hewlett-Packard Model 521C electronic counter and 
a RCA lP4l photo-electric tube were used. The light source 
was supplied by a 200-watt projector lamp of two-parallel- 
filament type which was focussed on the photo-electric tube 
through a light-beam cutting device. A circular aiuminum 
disk of 26-inch diameter was provided with 400 holes of 
3/32-inch diameter equally spaced at 19/64 inch near its 
periphery and was mounted concentrically on the fly wheel 
with the light source on one side and the photo-electric 
tube on the other. The light beam, uhe holes and the 
photo-electric tube were properly lined up. The focus of 
the light source was adjusted in such a way that the tube 
could receive maximum intensity and area of the light 
through the holes. 
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(a) Photograph

(b) Circuit Diagram of Linear Variable 
Differential Tranaforiaer

PIG. 6.7 Dial Gage and Linear Variable Differential Transfonaer
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VII. METHODS OF MEASUREMENT 

7.1 Depth of Water 

The depth of water was measured directly by a scale 
submerged in the tank. All runs were made at a depth of 
two feet except two runs which were used to study the 
depth effect on the finite-amplitude standing waves. The 
depth was used as a check of the deep-water assumption; 
hence a correction of resonance frequency was made for 
runs with Insufficient depth of water. The error involved 
in measurement is negligible since the value of the hyper¬ 
bolic tangent, nearly equal to one, is not sensitive to 
this error. 

7.2 Frequency of Wave Maker 

There are 400 holes on the rim of the circular disk 
mounted on the fly wheel. The light beam was cut 400 times 
in a revolution and a counting period of 10 seconds was 
usually used. The total number of electric pulses sensed 
by the tube due to the cutting of the light beam was 
automatically recorded by the counter in a period of 10 
seconds and can be read off directly. The error of the 
counter is Í1 count. Hence, for a frequency of, say, 
2 c.p.s., the system may have an error -0.0125#> which is 
smaller than the variation of speed due to the motor. 
The total error involved in frequency measurement was esti¬ 
mated at less than 0.05# (including the speed variation of 
the motor). 

7.3 Wave Height 

Wave height was measured in centimeters by a resistance 
wave gage. Before and after each run the gage was calibrated 
to check the error in the recording system. The calibration 
was made by moving the gage up or down. The direction and 
amount of displacement were recorded on the permapaper in 
the Sanborn recorder and the corresponding value was taken 
from the scale on the point gage staff. Usually more than 
one attenuation was used to measure high amplitude stand¬ 
ing waves. For the measurement of the frequency-ampli¬ 
tude relation of two-dimensional standing waves, the wires 
were located at the middle of the tank about 3/8 inch from 
the end wall, which is the point of symmetry for all modes 
of oscillation (Fig. 7.1). For cross waves, the wires 
were set about 3/8 inch from the side wall at the point 
where the crest of bngitudinal waves was located and the 
composite waves were later analyzed (Fig. 7.2). The 3/8 
inch distance between the wires and the wall are necessary 
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FIG. 7.1 Sample of Measurement on Two-dimensional Standing Wavee

FIG. 7.2 Sample of Measurement on Three-dimensional Standing Waves
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to avoid the capillary effect as well as to keep the part 
of the wires above the free surface well insulated from 
each other. The error due to the wire not being exactly 
located at the crest can be estimated, for example, from 
the computed profiles of the two-dimensional standing 
waves given in Pig. 4.4. If L = 18 inches (the smallest 
length used), it is about 2# off the exact location of 
crest. The error of the amplitude is negligible as shown 
in Pig. 4.4, since the slopes are small both at the crest 
and trough in this case. When the standing waves are at 
the greatest height, the error can be approximately computed 
as follows. Let the angle made bv the free surface with 
the vertical near the crest be 45° and the free surface 
near the trough be horizontal, then the amplitude .IA| is 
0.063 too small for I AI max.= 1-367, hence the error is 
always less than 5$. 

The wave gage and point gage staff were fixed on a 
sliding block on a traversing beam for the measurement of 
the profile of two-dimensional standing waves. The beam 
was carefully leveled and the position of the gage could 
be read on the scale of the beam the relative position of 
which was determined before and after each run. 

7.4 Amplitude of Wave Maker 

An AMES dial gage was clamped on the angle at the 
top of the side wall and its sliding shaft touched the 
wave maker at a distance of 3 feet from the hinge. All 
measurements were made visually as the wave maker oscil¬ 
lated at a low frequency. The graduation on the gage 
is 0.001 inch. 

The linear variable differential transformer wa;. 
sometimes used to measure the amplitude of the wave 
maker in addition to its phase relative to that of the 
standing waves. A calibration is required by means of 
the dial gage. 

7.5 Phase Relation 

The phase relation between the wave maker and the 
standing waves at the location of the wave gage could 
be obtained from the two-channel Permapaper in the San¬ 
born recorder by recording the outputs from the wave 
gage and linear variable differential transformer 
simultaneously. The directions of oscillation for the 
standing waves and wave maker had to be calibrated. For 
two-dimensional standing waves, the relation could be 
directly determined from the graph, but an analysis is 
necessary to get the cross wave components from the 
composite waves recorded by the system. (See Figs. 7.3 
and 7.4) 
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7Analysis of Composite Standing Waves for the Components 

Since the wave gage measures the oscillation of the 
free surface at a point on the horizontal plane with respect 
to time, the record shows the composite standing waves with 
components of different frequencies. It is assumed here 
that the composite standing waves are composed of only two 
modes, the full-frequency mode and the half-frequency mode 
with all of their higher harmonics neglected. The former 
is essentially that of the longitudinal standing waves 
and the latter that of the cross waves. A graphical method 
was adopted for decomposition. With & and T as the fre¬ 
quency and period of the cross waves, the composite stand¬ 
ing waves are given by 

Z| = A 5m cut + 0 Si* Í2u>t+ 6) 

where A and B are amplitudes of cross and longitudinal 
waves respectively, and e is the phase difference, 

bhifting the profile in either direction by a quarter of 
a period of cross waves, 

* A5i*cüCt+-J-) + 0 Si* [2uk t + -«■ fi J 

s ACoscüi - BSiVvC2u)t+ 6) 
Hence 

¿(Z,+ Z2) *¿ACS»*cüt+ Co6 0ü*t) 

= ^ASi* Cwi* -§-) 

or ‘TrlZi* Zil 
If we shift the profile by a half period of cross waves, 
then ' 

Z2 s A6m -f ) f BSm (2uût+ CUT É ) 

a “A Si* Lût Q S\'r\ (2u)t + 6) 

Hence , 

2 1♦ Zj ) * BSi* (2U)t+ 6 ) 

or |B| 8 ¿ |Z, ♦ Z2| 

Note that the component of the cross waves can be obtained 
by Eq. (8.4) with a shift of its phase, T/4, and the total 
amplitude can then be computed by Eq. (8.5). A similar 
procedure can be applied to obtain the longitudinal 
component by a phase shift of T/2. 
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FIO. 7.U PhAM Halation for Cross Wavas

-60-



VIII. EXPERIMENTAL RESULTS AND DISCUSSION 

The experimental program of the investigation 
consists mainly of two parts: 

(1) Two-dimensional standing waves for the study 
of the finite-depth effect and the verification 
of the theoretical solution obtained in Sec. IV 
(See Table 8.1 for the summary of experiments); 
and 

(2) Cross waves for study of their excitation at 
different length/width ratios of the tank as 
well as frequency-amplitude curves. (See 
Table 8.2) 

8.1 Limitations of Experimental Equipment 

Due to the symmetry of the problem, only one wave 
maker was used in the experiment and this has no limita¬ 
tion in general except for the highest two-dimensional 
standing waves due to the significant wall effect as 
the angle between the free surface and end wall tends to 
45° near the crest. The depth of water was kept at 2-feet 
which is very close to the infinite-depth case; however, 
the high accuracy of frequency required for the study of 
non-linear waves still demands a frequency correction 
which will be discussed in detail in the next section. 
There are no limitations on the frequency of the wave 
maker for the range under investigation but the lower 
limit of the eccentricity on the fly wheel as mentioned 
in Sec. 6.2 gives the smallest amplitude of the wave 
maker at about 0.14°. For the study of excitation of 
cross waves a smaller amplitude of the wave maker is 
desired for the small value of length/width ratio. The 
range of length/width ratio available is 0<Jt<1.5 
which is satisfactory both for two-dimensional waves 
and cross waves. For cross waves, the effect of vis¬ 
cosity becomes significant for large values of A. 
The viscosity was neglected in the analysis, hence 
the investigation is limited to small values ofjt. ^ 
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8.2 The Effect cf Finite Depth 

The analysis is based on the assumption of infinite 
depth. For free waves of finite amplitude, Penney and 
Price [14] concluded that the difference between infinite- 
depth and finite-depth cases could be neglected if the 
depth is greater than one quarter of the wave length, i.e. 
n/X> corresponding to IT Vi- > the first two- 
dimensional mode. The smallest value of it tyL in the ex¬ 
periment is 2.443, which is 63$ greater than Penney and 
Price's value. The discrepency is still shown in the 
correlation of the frequency-amplitude curve for most 
cases; perhaps the high accuracy of frequency required in 
non-linear waves was overlooked by them. A finite-depth 
analysis has not been attempted here, however, it was found 
that a frequency correction based on the linear theory 
yields good correlation of the data. As is well known in 
the classical theory of small amplitude water waves, the 
frequency O*' ¿IT can predicted by the formula: 

0,#a‘s jk#+anh k#h where (8.I) 

for the finite-depth case. Hence, a frequency correction 
factor is defined as 

X = +imh-?£j2- =+,^(8.Í1) 

where 2L = nX* and h. = 1,2,3,. ... . for 1st, 2nd, •3rd,vv. ihormal 
mode of oscillation. Due to the height of the tank being 
insufficient to provide a depth which gives within 
the accuracy required, a series of experiments (Runs 1 to 3) 
was made to test the correction factor used in the non¬ 
linear case. The results (Fig. 8.I) indicate that the cor¬ 
rection yields good correlation for the three depth/length 
ratios and the data are also in good agreement with the 
computed curve based on the theoretical solution of the 
infinite-depth case. The remaining runs have a depth of 
2 feet and the frequency correction factors are listed in 
Tables 8.1 and 8.2. Therefore, the correction factor 
tanh (TTh/L) based on the linear theory was used throughout 
the analysis and Penney and Price's J/X > 1/4 is not suf¬ 
ficient as far as the frequency of standing waves of 
finite amplitude is concerned. 
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8.3 Forced Two-Dimensional Standing Waves 

1. Frequency-Amplitude Curves of the First Mode 

A series of experiments was carried out for the 
frequency-amplitude relation of forced two-dimensional 
standing waves. Two different amplitudes of the wave maker 
were used to investigate the non-linear effect and several 
depth/length ratios were tested (Runs 1 to 9 in Table 8.1). 
The frequency of the wave maker, equal to that of the stand¬ 
ing waves, was measured against the amplitude of standing 
waves near the point of symmetry (about 3/8" from the end 
wall). The experimental results in dimensionless quanti¬ 
ties, shown in Fig. 8.2, indicate satisfactory agreement 
with the theoretical prediction. A careful choice of the 
length/width ratio is required to ensure the stability of 
the standing waves. As a result of the analysis in Sec. V, 
no cross waves can be excited if the half-frequency of 
the wave maker is smaller than the resonance frequency of 
cross waves of the fundamental mode. If the half-fre¬ 
quency of the wave maker is nearly equal to the resonance 
frequency, the fundamental mode of cross waves can always 
be excited with JL = n/^, but for H ¿ n/4 it can only be 
excited with a critical amplitude of wave maker depending 
on In this light, the length/width ratio was deliberate¬ 
ly kept away from n/4 and the half-frequency of wave 
maker was smaller than the resonance frequency for all 
runs in the experiment. 

The test was started at a frequency much smaller 
than the resonance frequency of the first mode and then 
the frequency of the wave maker was slowly increased to¬ 
ward the resonance frequency. The phase relation between 
the wave maker and standing waves is shown in Fig. 7.3(a), 
which confirms the prediction in Fig. 4.1. The ampli¬ 
tude of standing waves increases rapidly as the frequency 
approaches close to the resonance frequency; then the Jump 
of amplitude from the left to the right branch of the fre¬ 
quency-amplitude curve occurred at a critical frequency 
near the vertical tangent accompanied by a change of phase. 
The critical frequency for the jump depends on the ampli¬ 
tude of the wave maker. This phenomenon is ver; well 
demonstrated by Fig. 8.2. Again, the phase relation 
agrees with Fig. 4.1 as shown in Fig. 7.3(b). A further 
increase of frequency led to a decrease of amplitude 
until it reached the point of transition to the second 
mode. 

The test was continued by decreasing the fre¬ 
quency back to the path Just passed and building up the 
amplitude of standing waves as high as possible. During 
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the test, each adjustment of the frequency of the wave 
maker caused some disturbance on the free surface due to 
the difference in frequency and a period of time was re¬ 
quired to reach a steady state. The experimental points 
shown in Fig. 8.2 are steady two-dimensional standing 
waves and so are the rest in Figs. 8.1, 8.4. A measure¬ 
ment was not attempted for the highest standing waves 
possible due to the fact that the disburbance caused by 
the wave maker would not decay even for a longer period 
of time and the wall effect became significant at such 
a high amplitude. It is believed that this disturbance 
causes the instability of the free surface in the form 
of small breaking wavelets. The whole system remained 
essentially two-dimensional in that no cross waves of 
appreciable amplitude would develop even for a long 
period of time, however, this instability makes the 
measurement of amplitude at a particular point meaning¬ 
less. Taylor [l] had the same kind of difficulties in 
his experiment and the profile of the highest standing 
waves was taken within a very short period of time be¬ 
fore the instability developed. The three-dimensional 
or conical type standing waves observed in Taylor’s 
experiment did not appear in the experiment because of 
the particular length/width ratio chosen. A run with 
the length/width ratio equal to 0.97 (L=23.5 inches) 
was tried. It was found that the two-dimensional 
standing waves of small amplitude was stable, out the 
system became unstable as the frequency reached the 
region of non-linear effects and three-dimensional 
waves of finite amplitude with full frequency were 
observed. The oscillation was along one of the di¬ 
agonals with half wave length and full frequency of the 
wave maker. Its nature is similar to that of the cross 
wave case which will be described in detail in the next 
section. 
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2. Profiles of Two-dimensional Standing Waves of 
the frlrst Mode “ 

Two profiles of two-dimensional standing waves 
on each branch of the frequency-amplitude curves for ot =0.0194 
were made to test the error involved in the second order 
computation presented in Sec. 4.5. (Runs 10 and ll). The 
comparison shown in Fig. 8.3 indicates a better agreement 
foro*=0.965 than(j=l.000 and the error which appeared in 
the amplitudes near x=0 and it is about 5$ for the latter 
and less than 1$ for the former. The disagreement near 
S- 0 for O' «1.000 is due to the fact that the measurement 
is actually the envelope of standing waves rather than the 
instantaneous profile as computed, while the good agreement 
for o*=0.965 indicates that its profile is not far from the 
simple harmonic oscillation. The experimental difficulty 
involved in obtaining a profile of higher amplitude is 
that the amplitude becomes very sensitive to the variation 
of the frequency which could not be kept within the limit 
required for the duration of a run due to the characteristics 
of the motor. The crest-height/trough-depth ratio for 
^=1.000 is equal to 1.43 as compared with the maximum value 
1.84 found by Penney and Price. The photograph of the two- 
dimensional standing wave is shown in Fig. 8.5 for the 
first and second modes. 

3. Frequency-amplitude Curve for the Second Mode 

Since the solution for the second mode has not 
been carried out, it would be instructive to see how the 
amplitude of the wave maker affects the second mode of oscil¬ 
lation as well as the frequency-amplitude curve in a 
dimensionless plot to compare with the first mode. Runs 8 
and 9 with two different lengths of the tank but the same 
dimensionless amplitude of wave maker a were made for the 
purpose. The result indicates (See Fig. 8.4) that the 
second mode differs slightly from the first mode at large 
amplitude in the neighborhood of the resonance frequency; 
while for small amplitude it agrees with the rough esti¬ 
mation based on the linear theory in Sec. 3.6, i.e. the 
amplitude of the second mode is about 20^ higher. The 
important implication of the result is that the amplitude 
increases with increase of the mode of oscillation at the 
same value of 0“/(Tn and the range of frequency of higher 
modes becomes narrower. The non-linear frequency range 
for the second mode is approximately 0.88<a/(j2< 1.10 as 
compared with the non-linear range for the first mode 
O.93<a/ai< for the particular a. Therefore, the 
high mode of oscillation in the system is essentially non¬ 
linear in characteristic for a sufficiently large o(. 
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Table 8.1 

Summary of 
i 

Run L h 

Experiments on Two-Dimensional Standing Waves 

TTh . 
/L [tanh 20 = Vg 

inf. depth 

1 18 24 4.I89 

•2 18 18 3.142 

3 18 14 2.443 

4 19.5 24 3.867 

3 19.5 24 3.867 

6 29.5 24 2.556 

7 29.5 24 2.556 

*8 29.5 24 5.112 

*9 35.5 24 4.2*8 

10 27.5 24 2.742 

11 27.5 24 2.742 

0.9998 0.566° 

0.9982 0.775° 

O.9932 1.024° 

O.9996 1.233° 

0.9996 1.022° 

0.9940 0.935° 

0.9940 1.962° 

1.0000 0.935° 

O.9998 1.127° 

0.9955 0.868° 

0.9955 0.868° 

O.O387 I.3070 

0.0388 I.3070 

O.0387 I.3070 

0.0778 1.2558 

0.0388 1.2538 

0.0389 I.0209 

0.0778 I.0209 

O.0390 I.0209 

O.O389 O.9307 

O.0388 1.0574 

O.0388 1.0574 

* The second mode. 
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FIO. 8.3 Comparison of Theoretical and Experimental Results for Profiles of 
Two-dimensional Standing Waves« el3 0.019b 
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(a) The First Mode

(b) The Second Mode

FIQ. 8.5 Photographs of Tvo-diaensional Standing Weses
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8.4 Cross Waves 

The experimental program on cross waves is aimed at 
investigating the possibility of exciting the fundamental 
mode of cross waves under the conditions predicted by the 
theoretical analysis in Sec. V as well as obtaining the 
frequency-amplitude curve of cross waves. Two series of 
experiments were made: first, at the length/width ratio 
¿ = -Ç- with the smallest amplitude of the wave maker avail¬ 
able and second, at Ü / /4 with a critical amplitude of 
wave maker for excitation. The experimental conditions 
are summarized in Table 8.2. Two photographs of cross 
waves are shown in Pig. 8.8, 

(l) The experiment for Ü = n/4 

With the smallest amplitude of wave maker available 
it was possible to excite the cross waves at the fre¬ 
quency u;/2TT as uû2xjL. The frequency-amplitude curves 
plotted in Fig. 8.6 are in agreement with the resonance 
curve of free oscillation. The absence of the data 
nearCO/a)i = 1 is due to the fact that near this fre¬ 
quency the amplitude of cross waves became smaller than 
that of the longitudinal mode, both of which are very 
sensitive to the variation of the driving frequency of 
the wave maker; therefore, the System of waves is very 
unstable. The cross waves were always started at the 
frequency nearly equal to but smaller than 0)/(v¡ = 1 
and were not visible until the amplitude of cross waves 
is comparable with that of the longitudinal component 
of standing waves. The amplitude increased rapidly with 
a small decrease in the frequency of wave maker. The 
amplitude of the longitudinal component of the standing 
waves decreased as the amplitude of cross waves increased, 
the surface approaching a two-dimensional form at high 
amplitude. The violent type of instability due to splashy 
wavelets similar to the two-dimensional case mentioned in 
the previous section was also observed. This disturbance 
which appeared at £|A| > 1.0 depended on the amplitude 
of the wave maker and made it difficult to obtain ac¬ 
curate measurements. 

For 1= 1 several trials were made to generate cross 
waves, but without success; instead of the type observed 
above, three-dimensional standing waves with half wave 
length and half frequency of the wave maker oscillating 
along one of the diagonals of the tank were observed. 
The oscillation appeared to be stable; but, by:a slight 
adjustment of the adjusting string at the top of the 
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wave maker (which changes the effective length of the tank 
on two sides near the top of the wave maker); the amplitude 
of the standing waves may change or the oscillation may 
shift to the other one of the diagonals. As the tank was 
not square, the oscillation was along the longer diagonal, 
since the oscillation for the first mode of cross waves is 
associated with the fourth mode of the longitudinal compon- 
ent of the standing waves at £ = 1. The possibility of the 
half-frequency mode of the longitudinal component in oscil¬ 
lation has to be considered. A run with £ / 1 was made 
with the frequency of the wave maker operated near 2 
which is not in the range of the resonance frequency for 
cross waves; but no half-frequency mode was observed. 
Together with the similar standing waves of full-frequency 
mentioned in the previous section, it suggests that this 
peculiar type of oscillation might be caused by the fact 
that the wave maker is not perfectly parallel to the end 
wall. 

(2) The experiment for £ ¿ n/4 

Three different length/width ratios with several 
amplitudes of wave maker were tested. For £= 0.289 
and O.362, the cross waves could be excited with^the 
smallest wave maker amplitude; however, for £= O.562 a 
critical amplitude was found to be n = 0.0121. The fre¬ 
quency-amplitude curves are shown in Fig. 8.7! These 
curves are in the form of a parabola similar to the reson¬ 
ance curve and their vertices lie on the right of the 
resonance curve. In this case, it was possible to have 
the cross waves of small amplitude and to determine the 
onset frequency, which depends on the amplitude of wave 
maker. The result of Howard's analysis [21], based on 
the quadratic theory and £ a: 1/4, indicates that the 
critical amplitude of the wave maker has the following 
relation with the frequency: 

ur «i ~ (a*-o2 o- 
i 

By approximating this relation to correlate the data, then 
for£ / /4 and a / 1. CXo is essentially proportional 
t° I as plotted in Fig. 8.9. 

(3) The Phase Relation 

The phase angle between the cross waves and the wave 
maker is measured by a wave gage at y = 0 and the displace¬ 
ment gage at the top of the wave maker. A sample of measure¬ 
ment is shown in Fig. 7.4, which gives the phase angle 6 
in Eq. (5.31) equal to 1/2- 

-74- 



Table 8.2 Summary of Experiments on Cross Waves 

Run L 2 6 2CX 

101 6 0.279° 0.0571 

102 12 0.990° O.O832 

103 12 0.443° 0.0454 

104 18 0.835° O.O57I 

105 ]8J.4 0.279° O.O203 

111 7 0.287° 0.0504 

112 7 0.366° 0.0642 

113 7 0.447° 0.0785 

114 8.75 0.279° O.O392 

115 8.75 0.448° O.O63O 

116 8.75 0.604° 0.0848 

117 14.5 0.286° 0.0242 

118 14.5 0.364° O.0308 

119 14.5 0.443° 0.0376 

120 14.5 0.609° O.0515 

[tanh Ijp ]V2 f- 

O.998I 1/4 

O.9945 1/2 

O.998I 1/2 

O.998I 3/4 

O.998I 3/4 

O.998I O.289 

O.998I 0.289 

O.998I O.289 

O.998I O.362 

O.998I O.362 

O.998I 0.362 

O.998I O.56O 

O.998I O.56O 

O.998I O.56O 

O.998I O.56O 

h 

24 

20 

24 

24 

24 

24 

24 

24 

24 

24 

24 

24 

24 

24 

24 
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8 5 The Stability of Two-Dimensional Standing Waves and 
Excitation of the Fundamental Mode of ¿ross Wavejs 

The linearized version of the problem is basically 
two-dimensional and thus the two-dimensional standing waves 
of small amplitude are always stable. Since tne linear 
solution does not apply in the neighborhood of a resonance 
frequency, a non-linear solution has to be solved in each 
neighborhood. By means of comparing the linear a£d ™n- 
linear solutions in Pig. 4.5 for the first mode of two- 
dimensional standing waves, the range of ^rifijant non 
linear effects can be approximately determined; it depends 
on the amplitude of the wave maker. For the particular 
values of c* in the experiment, they were found as: 

0.93 < a/cr, < 
0.92 < cj/CTi < 

1.05 for (X = 0.0194 
I.08 for (X = O.O388 

The exact range of non-linear effects cannot be determined 
by the comparison; however, the limiting case for Ol-»0 
is of interest. For a-»0 (Free oscillation), the non¬ 
linear range can be determined as 0.93 < a/£n5 1 
where the frequency 0.93 is determined by the highest 
possible free standing waves based on the results of 
Penney and Price [14]. The spacing of the discrete reson¬ 
ance frequencies becomes closer as the mode of oscillation 
increases; therefore, higher modes of standing waves are 
essentially non-linear in their characteristics. 
non-linear two-dimensional and three-dimensional standing 
waves may exist in this range and the stability of two- 
dimensional standing waves in general is extremely 
ficult to investigate for there are infinitely-many modes 
of three-dimensional oscillation. However, the interest 
centers only on the stability of two-dimensional standing 
waves in relation to the excitation of the fundamental mode 
of cross waves. The result of Sec. V indicates that the 
cross waves can be excited at the half-frequency of the 
wave maker nearly equal to the resonance frequency of the 
first mode in the transverse direction by an infinitesimal 
amplitude of wave maker with£.=n/4(n is an integer). 
The experimental result indicates that for x. / /4, 
there exists a critical amplitude of wave maker for ex¬ 
citation depending on ,£. In the light of these results, 
a stability diagram is constructed in Fig. o.lO for the 
half-frequency of wave maker near or smaller than the 
fundamental mode of cross waves as cx ^ 0. In the dark 
area, the cross waves exist with cX ~ 0 and in the shaded 
area the cross waves can be excited with a critical value 
of « The extent of the shaded area depends on the magni¬ 
tude’ of «. The region above W/a),»! is unexplored. The ray 
through the origin has a slope, - ¿(oycü,) = 7=f 
hence,it represents a particular value of X- ^ 
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IX. CONCLUSIONS 

From these theoretical and experimental investigations, 
the following conclusions can be drawn: 

(1) The linearized version of the problem of forced stand¬ 
ing waves generated in a rectangular tank by a two-dimension¬ 
al wave maker is basically two-dimensional and the solution 
for forced two-dimensional standing waves of small ampli¬ 
tude is always stable. The linear solution is not valid 
in a neighborhood of a resonance frequency of the system; 
therefore, a non-linear solution has to be obtained, in 
each of these neighborhoods. By means of comparing the 
linear and non-linear solutions, the range of significant 
non-linear effects can be approximately determined for a 
particular a. In this range, infinitely many non-linear 
solutions may exist. Since the non-linear range depends 
on o< and since the spacing of the resonance frequency be¬ 
comes closer at higher modes, standing waves of higher- 
modes with sufficiently large amplitudes of the wave maker 
are essentially non-linear in character. 

(2) Forced two-dimensional standing waves of finite 
amplitude were obtained as a family of particular solutions 
in the non-linear range in the three-dimensional system. 
Two non-intersecting branches of oscillation were found 
theoretically and experimentally for the frequency-ampli¬ 
tude curve relation. The third-order solution obtained by 
the method of iteration used in Sec. IV is in good agree¬ 
ment with the experimental result. In the experiment, 
stable two-dimensional standing waves could be generated 
if the half-frequency of the wave maker is smaller than 
the resonance frequency in the transverse direction and 
the length/width ratio of the tank is not equal to a 
multiple of 1/4. 

(3) The stability of two-dimensional standing waves of 
finite amplitude in the sense of avoiding the excitation 
of the fundamental mode of cross waves was investigated 
by means of finding the possible solution of the cross 
waves. The analysis shows that the cross waves have a 
frequency equal to half that of the wave maker and can be 
excited near the resonance frequency in the transverse 
direction with infinitósimal amplitude ( cx%o) at ¿ = n/4 
and with a critical amplitude as £ / n/4. 
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(4) The frequency-amplitude curve of cross waves for in¬ 
finitésima! amplitude of wave maker at Jt =n/4 was found 
experimentally in agreement with the non-linear resonance 
curve of free oscillation for the two-dimensional case. 
For a finite amplitude of the wave maker at jt / n/4 * it 
is essentially parabolic in shape with its vertex on the 
right of the former and similar to the resonance curve. 
Hence, the frequency-amplitude curve for cross waves can 
in general can be described approximately by the resonance 
curve for the two-dimensional case. 
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Appendix l{'E[X,jU) and SH(s) Functions for 

the Expansion of e Cosjux 

Rewrite Eq. (4.2) as the following: 

> where Ol«; a-* (A.l) 
v\s-oO 

If ri-it Keinx 
<n*-oP * 

then ^n- illa„b,e“^§fa„bs^“(A.2) 
/u-o* 5*-5«**wV 

03' 

Let 

and 

henee 

og iSX 00 
52=4¿S2^)6 , where ¿¿(5)*.(A.3) 

í* -oO 

ÇN = ^2 5w(s)et5x ; (A.4) 

i . .iw 
(A.5) 

<,*-00 

S»*«0 Ifi-yfi 

SN(S)= 2úMSw.,(5-m) 
V*l*-90 

(a.6) 

Continued application of Eq. (A.6) leads to 

o« oo oo 

Sw<s)=I 1 2 (A-7 
mi»'0O y\»**0 p,^i ' ' 

It will be observed that S^(s) = S^(-c) since ûn = û-n. 
Also 

and 

Soto)* I , 5o^)Ä0 for SfO 

S|(S)= as for all $. 
(A.8) 

Mow, we write 

(..9) 
N=0M* m»0 S—«* 

LSX tsx 

where 

ECX;S)= E(X,-S)= ¿2NNli 
tj*0 

(A.10) 
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¡i 

and therefore 

e^coyAX= i 2 eUiyU)X ] 
<¡>3-00 J 

&C 
= 2. ^[Ei^iyu^EO <6^)] ^ L6X 

S»-oi 
oC 

= E(X;/uc> ^^sSX^cK^^EcX^t/c)] 4 (A.11) 

Values of Sm(s) to Third Order 

60(0)= i ? SoCS)*Ofor alisal 

Si CS)* dj for all S 

62(0)= a* f 20-? 

SxCi) « 2Û0a,120.,02 

62(2) = aa.ax 

Si(5)= 20.,0¾ 

>63(0) s ö-e 

S3 o) * 3û«aV 3^f 

S3 (2)* 

63(^)= af 

Values of F,(x yU ) to Third Order 

EOvo) * o+Ifto^aî^V) *•-^0--|a.)a* 

E c.\ I ) = 4 ( 1+ 4ft. * )a, + ¿V, flt * a? 

E(KZ)= -10-^0^+^(i-r^sja? 

E(\i)’ TiA-i+ TÇClfa + ^A* 
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Appendix 3, F(X,/^) and Tn(s) Functions for the 

Expansion of e^a Cos/ity 

Rewrite Eq. (5.7) as the following: 

^7iz , where Cm« C-* (B.l) 

n i lÿ)Jc 
Consider as K , as (X\ and ¿2**0 for 

**«$• 
n* I in Eq. (A.l), then Eq. (A.ll) leads to 

where 

with 

' f COS5ÍV [FiX/yuj+piX,^)] (B.2) 
s*l ^ 

FtXS)» FtX,-s)« Tu«) (b.3) 

s T.^s; (See Appendix A) (B.4) 

By the use of Eq. (A.8), we have 

Toio)* I p 0 for all 540 (B.5) 
an(j oö 

Ti d)* ^ c«6lK,x? TiC5)sO for all S.t i (B.6) 

Now, Eq. (A.o) leads to 

Tn<»* f T<wOTm-i(B-T) 

with, in addition to Eq. (B.4), 

Tmc-ío* Tíjcs; (b.8) 

due to Eq. (B.3). 

-93- 



Hence, 

i- A 

\ i 
00 

12^) = 2 Tiiw)T,(S-m;= Tld) [T|C5-i; + Ti(5-h)1 
m*-oe J 

T2¿o)-2Ti2ü) 0 T*2 Í2) * T2(6; ä ofor s>3 

’rjci,)1!LT'‘m,TiC4'r";s^C|)C'ri£5'l^T*':*+|)] 

f3(o)=0 Tjco^x’o; Tj(2)*o T,w=T,J(0 

for 554. (B.9) 

fyû 
”T*C5;>=v,ft«1'<>v’,r:sCS'm)‘ T;<i)[T3<4-0f Tj^o] , 

T4(o; » ¿T,*0) T*o)-o r+a)*4Tf(,) T+(3) = 0 

' TfO) 1^(^) = 0 for 5 5 S' 

Also 

T|£l> * Kit*"6''™ ' 2 Jj-" ^ |5;(yeisx J 
OO oO 

tSX 

ISK 

where 

s i 5 Si(s)êl 

S) - £ Lr»C}.¥ 
4*1» "í® 

Then 

where 

with 

and 

tr<o * £ .£ sv^4* 
^ i>'*0 

Sk)Có) — ^ d4^i Sw-i 
WU-O® 

. Soto)-I , SoCS)sO for 5*0 

SiCSjsCà for all S . 

(B.10) 

( B. 11 ) 

(B.12) 

(B.13) 

(B.14) 

(B.15) 

Now. F(A-S) In terms of 1^(1) Is 

Fcx^) = T0cy+4 w f r2(5) (B.16) 
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For S= Oy I / 2, 3,--- 

Pcx,oí = Tc,<.o)>j£r,l0)*£Ttlr>).r£ri<o)---*T0l0)+£iïi)* — 

pCX.,1) > ToCi)t^TiCO-f|-'riCi,.^T5Ü).|---s¿-('|ío^f¡5flíJ_.. 

p^î)* T<,a)^T,y.- ^Ti¡a/,... (B 37) 

PcA.3)s ToCî^^T.cîI^VjCî^Vjîîx--*^’^,),... 

By using Eqs. (B.IO) to (B.13), 

F(><o)-1+¾11 siwe1-4^-- = I [s;c«.-è\»)+.-leiix 
5*^ ^**#0 

Fc)', ï) * ^f s^wie^ï- - J 
**-«»• T 

Fex, 2)=s'twe^ •• •=I (b.i8) 
S*-«ô $*-o« 

£*-*50 

and let 

with 

because of 

RX//*o* X •fsc^y/M;Cossx 
^*-oO 

fsCK/*) * fscx,/*; 

S'N<s) = SnC-s; 

(B.19) 

(B.20) 

Hence, by comparing the coefficients of CosSX on the 

right-hand-sides of Eqs. (B.l8) and (B.19)., we have 

fs (X/O) - So (5) + -fcSz<5)+ •- ' 

fiCKO- + S'i<-U + $S'i<V*"- 

fs c^y 2) - -J£ 5,(6) + --- 

fi ^-3) = -^53(6) + -- 

(B.21) 



Values of S'N(s) to the Third Order 

So(O) = I , 

s;cs) = cs 

Sá(o)= Co 

83(0)= Co 

S0(S)-O for all 

for all S 

$2(1)= 2COC 

63(0= 0 

Si ! 

$2(2)= Cf 

Values of fs( X ,/J.) to the Third Order 

fo(A,0)= $¿(0) + -^ $2(0)+.. • =1+^1^ 

fi (N/0)s Sod) + ^ Sico^-' * * = jCoC, 

fîCX,o) = ö 

fo CX/> ) = + 6^(0) + * * • - -£Co 

fiC^O) * ^ c,) S3 <-1 )<■••• = C, 

MX,!) -^5,^2)4.^53(2) + -- . 

feCX.t') -^:52(0)4---- ^Co1- 

f^X.Z.) ^2^5^1) + --. r i^C0C, 

fz(\2) = 0 

fo cX,^) - 5jCo)+• • • s ^ Co 

f, CN, 3 ) ^- 0 

{o. (X/ 5) = 0 
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Appendix C. Expansions of the Product of 
Fourier Series 

It Is desirable to expand the following products: 

°° 
Ri= ¿A^Coi^x ^.ßnCostf* for ßns 6-n 

**•0 

Oo 

and 
V1»0 

P 2 - ¿AmCosrvix ^StiCoiMJC for 6,, iß-, 

(c.l) 

(C.2) 
*>-1 M'.-OO 

Into Fourier Series. For Eq. (C.l), 
«0 00 

R S 2 X S AwBk, [Cos (.vyi^n)X + Cos cru-10)% J 
v«»o 

In which 
oo oo oo OO oo 00 

2Ia~b n CoS Cvvi^-in ) % = ^ CoS SX A vvi VMS.« »1*0 ^ 4 ^ 
and 

I 
s»o v^*0 

^ ^ ßn Cos i ' •• i X 
oo oo OJ _ 

= 2 A^ß^4 S 6k, + 2- ^ A^i 
— *" 11 ^50 *4*0 *,0*4 ("»»M 

Then, 

-Vw, 2P, = |a«b„,*2c«s4 A-eu^co^A^eu+Ic«»»^ a-,6, 
*,*o S*o '«••o s*\ vm»o 5*, i *4*0 

0« ** bOOO 5« ¢0 4jO *0 
- 6e2AsCosSx^¿Cos5x2A^^.*,+ ¿Cos$>¿A>-5,^+JcW5xjAw6 

M’1*# ^«-1 ^* I *44*S ^*i »***» ^ ^ 

' 5.A^6w,^6o^AsCo4 5X+ ¿Cossx^ AmÍ 64.^4- ¢. ) (C.3) 
W4*0 *)*-0 /.- I / w*-0 

For Eq. (C.2), 

P^LIA v^Cos^x- Ao J [2 ^ ß^Cos /IX- 80I 
*4*0 *44*0 

V ^o ys K 
= ¿A^ß^-2Ao26*^^4' 8^) 

^V| ‘J**-! S*l M*4*P 

>¿ ^ V 
^ CoS SX ^ A 44-4 Í ßs'**4 ^ *V4 ) (C.4) 
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Appendix D. The System of Ordinary Differential Equations 
for Cross Waves 

Coefficients of CosOx&sOiy: 

nz0 ^ n.-o J 

i)t 22 i) 
7flM « ^ ec~>* 

( Ooofl -fpr^yO) 

+ [fe^H ) °)+fc ( > 2 )J 

^vElo^i ^ w I , p.v*»-»)t£ p+*v,^n) - E(^U,; 

t(>- ^ [^(^+^,0)^(^0,,2)] 

) P'V*i'M)-r£^+0.j p+wm)t£(*v41f0,ip'»w+i,i)t Ec^+vi, p+^w)3 

[fpivU+0,,0)'fp('O,^;2)] 

I ^ 22 

n)+[|o(^;o)+je(^+0,2)] 

'? 2^[WM?p-m-n)+E(0,^; p+m+n)+£(^)p^wr:)t ¢(^+0,p+^i)] 

E(vW*,vyi i) 
«WH >,*0 J 

+ i 
«WH >,*9 ^ 

2 ¿ ¿ )1^0(,, [E(^+i2,p’W'io)+£(wi‘»vl,,p+^+^)3fp(^+v(,,i) 
i 

« I O® o* f 
"2 ^ 2 y/'iv'+'^,')^A,^^E(vk1+0,)'rt1'^)fo(w\rOil) 

v»,*ow*o 1 

'522 2^(m^íborndn [E^Oyp-^r^+^vvi^viyp+vyvvoíJ^p^vVV*^,, l) 

4- 5möt|^ 2“4^,1 [E(*+ £ /*'► ')' £('H3r,oorV>)J jofa^iO) 

Ç 2wri^ fr, 
^¿¿■^rr K- p-i^n) t E(^¿yp+rwn) 'fo+lfw ) *^v,+i, p+^jj 

ir 'fpi^i/0) 
4 21 rrlEc^+i.^i-E^d ,yvitK, )Jfô(^+í»0 v/i* 0 *,»0 



+ Z 2 Z- 2^^ir > f™")* ^^)] 
«*fl»i*o|r»l 1 

0<9 

v'5’© ' »4^ ^iO 
oo OP ^ 

4ZZ^m I.^<vi+^vT,>/'^^(vHí'vvi'^^feív,4’i,¿>^ 
Will w*l 

«Ml Ml p*-1 

- ¿ E.0^6^,‘)[ß^iI^)+)]{V«/ •) 
'/t*° VOMI»« 

+ 5 ^^5" [ i yv^)^ .w)] -fo(r&i, i) 

+zf ¿ Eívi^pwt'^Jfp^. o] 

+-2^005011^(^0)^(^0)+2 E(in)fo(io) 

' ZZ^fECÎ^^E^.^j^oi.o) ] 

i r Dô 

'^otV5iM^t|EOiO){e,a,o)t 2 ZEo^;-fwd/0)J (d.i) 

Coefficients of Cos sx Cos Oßy, for S ^ 1: 

£U = 2 2Év.£(vi^)fo^o)+2Z kvife^+E^/^jífWVÍ^Í^Cw.o)] 
J v1*0 1 WIH n»o y 

+2^. ¿« E^n^^j)-** 5 ^ ¿/I [f Êvl^w)] (i^,1 )] 
’’l*® >ASI MO * 

«*«*1*« 

-¿Ui yniokw,bt, •kEíwUm;p+r»vKi)J [|s.^(vM^oH^,p(^+’Hio)J 
«*1s«»Vop>l 

•''¿ZS ^äMä^[B(\LfU,,onn)-E(v¿,^,m-vi)][fs(-vi,»U,0)^^U.2)1 
vy\tj rt*-0 

Z ZZvir'’r‘^w’^[^^^p,wi'w)+^f^' i^h)] 

; o) + o)♦ {^(-^13,,2) ^firp^^í)] 
j i ao oö ' 

'■3: ZZ [^-(^1^/ym+“)4'^i"'< u''jyv,'n )][{^*^.o)-fi(-a,*^,i)j 
^ *WH> *1*0 

'4 ^ P'^'^)f EívO^p"**)*p^«)] 

[ jvp ('^«f i O ) ^"fstp ('vi,^ ,0 ) - (‘^♦'U*,! )--fyrp 
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-íjj^ U, d ¡n**) t E ,^-^)] [{i o )•♦ fj (xL+^Zj 2 )] 
0< oC »O -n 

(\i,*^,,0) ^)3 

0^ oO 

ÍV1+-H 
<*1»« M«0 ' 

* Z SS 2 WM''Ut)bu,dM[E^vVH-ll.>p''^'vl)+E(^U,)p^^)J[f$-pfwfZl,yl) + fi»p(‘W^;l)J 

Wl»**'*d - -í 
-¿I^JwoinDlv.á-tEíwA.p-wmí+Eí^.pt^^^fi-píwii.O-t+ítftwni.^iJ 

^i»« 

■,'^'S|Viot|[E(n^,>*'-n)-Eíw^»>Hn)]|5(rH^1í>) 

ÍEíH p' )t Eív)+¿ / pr»i' i)-K^, P'VM'n )- íty^l, ph^n )] 
/*H**OtH - r _ _ 

¿VRr o) J 

*11 ^r[Ê^,„,n,-EiV„^,vv^)lfS^í, I) 
y>\rO *!*9 

'îïl^êr^M, p'Vvi^) + E(^i;p+^'W)'EH+i;p'^*w)'Ê^Íy|^+y')3 

[{s*p(^í; 0+ 'fVftt+i . O] 

- 5 2^b^ E(vM-iy/t)^[E(^+2 (W'H)4-E(vi*^y*wn)][-fj^(v^,o)^^(O)} 
vi «»unso 

ÍS^c¡-[E^z/ 
«*i 

)tE(vi+i, 1 )] 
«»( 'íSI p*l^ 

CX3 
[fi'pfw^o^+'fjopCvi+^c?)] 

-. £ 2V*d» vi){s 
lJi1.fi - . --- ■* v(*o 
p6 00 

«*l *•« 

♦ ¿S^éf [EW'Í»'"'íJf.WÍ ■') 
n*M vi»© ^ 

+2^ár[^i-p^'M)4'^i'p^+vi)4'^^7t‘vi+y’)‘rÊ^z|pf^''0!] 
«*l Vl»0 ^ 

[{s'pinP^^O-f'-f^pi'Ä^, i) 3 ^ 

+ ^Wt{E(i.o)fs(í.oJ+jE(í,«)ífwio)'fi~(¿t)]-J^cí£<in)fi(í,¡J) 

■ ¿S'4Írr[E(íi»rt')',’Êív"«’>’)][fs-MÍz'I|)*fs»"'íj'0)] j 

-oi^S'VatlEOsO)^1^)f ^ Eíi^^rfs-^í'/0^ j (D* 2) 
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Coefficients of Cos Ox Cos ¿y: 
06 yO 

lÍ,Eí^M)fo(V1,l)+2£¿ br^C£^',n1'n)4E^'vV,‘*’'0)Jfyy'íV'',) 
^ y\*0 >»«l »*0 

+ I ¿n Í^ )[fo(4*(o)^0,1)] +1 ^>0)* 

'22 ^nbw,^E(wHW^/vv^[^(^/p^»HH)*’Eivnm<Prw',,'|]fp!) 
",‘<”'10 VO*«oMk»| 

I O* «o 

■‘’f [^^♦^JvM^)'E('v2Mn¿i»>i'»i)][í{o(‘4^^; i 3)J 

+ ^n^dw[E(^ví,|^^f(^^yp*^)'£6W,p^,)'£^^>Ptv11'nÍ! 

*>«*on*o 

-1 ¿Uflínf^)^--p'"**^] 

w**«^*e 

"¿¿If t>'^)tgfÄ<ni/ww)] 
OH f*| - - - - 

[3{p /1) ^ fr 3 ) 3 

*i 2- S ^ E(w^<w'^)J['fo(vv«r»Jl,Jo)<’{«ivvwT2*i2)3 
VO»0 0*0 ’ 

**vo ^ 

•« OJ.OO 

'2 [R^, O'WÏ+Bl'Vnltft'HrHfrStwÛj 

[f p (>*♦■&, o) f fp c wink j 1 ) j 

+^-s;»ot ff^^T1 [ eK'«-'"'6^' -^tf* (>,H' ') 

* ^ 15-^^![E(nf¿,p«>*»)*E(''»¿,(>l<«l)-K^.[W>i)-g(>K¿,pmt«l)J 

fH»*i, O 

* S2'|í^rfE('i,í,'^')'E(ií.'-¿.««")]íf»í'i3.*¿.»)*'f»('í.,'^í)3 
«OH O** ^ ' 

^rl 
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< , 90 
^2i^bn[£(^,r»i-^)+E(^t2'A1*'')jfvv'^v'+2' 0 

yvli| <1»0 

^•0/r,^H'+E(^(^)], i) 

»1*0 
•jC OÛ 

wlH 
0000¾ 

+v^') 

<W»| <l»0 r ^ r J \ 1 
of. o* J Llw*("VÎit2’'® 2-) J 

+ 2 S 2^¾ [Etälf’-'*'*)*-EW*i,)«rEòVÍKi)] 

- E(2,0)^0(211) ' ¿2E(ii'*)'f*(ii\ )) 
V<1*l 

- ^’o^^^t-ÍBCbo^oú, 1)+ I £(wvvi)^ci/i) ] (D>3) 
^ ' MS'I J 

Coefficients of Cos $x C03I ^ for 5^1: 
• * >0 »0 , 

= 4¿oÜ,E^/^)fi(^/i)+2 [Eí^wi-vi )+• E(n;WKi)J [li-wC^ly 1 )+ (vo, I ) ] 

OO • oc 06 
tu,b», Eivn^^-nJ-fjCwi^ I ) 

^*0 J wiíen'O ' 

+ I|dn[EK,».- »)*■ Uoj»^,(1¾ 0)*{i.„ili,,lj w„,î)J 

-l|S w^b^|^[E(^«/p'>*lf»i)fE(^/p^'rt)][^.p(vvit^l)>-^.p(vyM’M/oJ 

I 00 »£ 

,*»e>,«o 
o* _ o*> &*> I S? r 

^ I )0^(-^,^,1)^^^(11.^,3)+f*rpl*U*<*l2w3/) 

■4 [5(^13,,^^)+^6^,+^^-10)] 
Mio I*-P 

It** *4 *6 
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, «at, où - 
' g 22 ¿vU^íi^LEC&ni,p.»v)-M)tE^V¿(pf^rlj+^^^wnJr^-JLní.^'M)] 

bí>-p ) t3^h¿, O+fs'p^'^.í )t ^-u ,3 )J 

[E^+^wvvitn) - ^(víh-vI^vvI-m)] [-^(witvli(o) t 
W1--0W-0 

oo o* 00 

+¿222^ p-^f*)'£(Ai+v£ o**w-n)J 
witoivop'l > . 

o® oo 

- 2 2. b^d*[£(Al+V^/vl*V1 )+ ííw+'^^l-^iJ^Cvvini^J+jíC-VvH^/'t)] 
Wl 5-0 *1*0 1 

•>oo* o® r 

p-wi -V1 )+ £(ww U,, p-r « K rt) ♦ 5 (^+ ÜI p-*i™)*£(vwv2, ptwi^J 

1 [^5-^(^+^0)+-^(^^0)+^(^+^2)+1^1,(^^,,¾)] 

+^.5¡not) 22_^ÍT'[E(v'+2iyyi'n)"E(^^w-yi)]-fí>(m¿,i) 
l VV1*. c M»0 

+22.2 ^rt+^pf*»»-«)'^^,p-w^-EíW+J,pfvm-djj 

[*fi-p(n+^ i) + *fjfp(yi+>, o] 
O0 / si 

'12 [E(^+í,^)^(-0,+ ^/im+’M 

+22 2 E(^/p+M-oj-p^+i p^v,.M)^;jj 

ífs*p(^/0;+ fi+p eú+£,o)+fi‘f> 

'Á4n^1)* »m)]fi(mj,\) 
00 ^ 

' 2 2 ^10 ^ -*’'^ f(^2 ' ^)][l)+fi*m(**ttl)J 
m*)w*-0 

«o o® »f - u 

r ' [fi-píH+z, O + fitpín^i, 0] 

- 12U,ö(n 5(i n ) [ fs r^+í/ 0)+fsC*+tl)] 
vi*o 

* fi-mhi'i&fi-ní'bDj 
t«M 1*-0 

oú o® 

T 2 2 ;Ä^i,^)^£(^¿;"l'«)]í/í(^.+2/0>/i(^2y2)J 
^11 M'« 
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221 
M1*( »JiO ^-1 

í fi-f>Wlo)+f>f) M+l 0)+ fyf, C^lD+fau+i z)JJ 

' ^rCos°t ( J(4ÏÏM E(in)fs (i O+líjwlfai^nkB(Ír*i‘n)][f^(li)tf^(¿,)] 

-2E(£o)fi(í,i) * ¿ZËCz.nïif*-»'^'1')* fs+'+'Cz! ')] ] 

- 20(¾ ^/n 2ct jE(i.0)fs:i,i) + 2 > ) + fi+~> t1'1)]] (D.4) 
MU 

Coefficients of Cos Ox Cos o/y: 

/0 Opoc p 
Q? - ill MvQnbnlEtr'iW'nl-Ef'n.v+nijfodV'O) 
2 wi»0 '»•o 

+ 2^.21 mnQmbn[E(n/pm,yHi)*’ECv\,p+r*’iri)‘E^'P-'’'!- '> ¡'[(n,!)*»*>i)J -fptn,o) 
wo »‘op*1 

**•0 ««o 

+ 2 111 mnCr„bn[E(*,p-»»ii)+E(nJpi*M)-E(%P-»f»)-i(yipt#»n)]fp(Y)si) 
m*t A*Op*l 

. oC OC 
' K c, ^ ¡¿2 W Cindr, [E(^m )jfo^ / / ) 

” rrliO «*û 

o* o» y'1 

^Í’H nnEnd*[EM.m'nhEt'Un'V+^lfof'Uito)+ f0C^,l)J 

*l*0***^* 

M'0H*O 
2S 

+ i%¿¿ wCndrilEfy,p'">"h£»Mi-r»j 'Efâ, p+wtn)! 
m*»H*ep*l r r i \ r a ï ^ r [Tp(Ui,o)r J 

+ ^îdvEMiMfo^.oï'Ù^z)] 
“ »»o ^ 

+EM, )][f»i (^,0)-^1, (1^,1) J 
jl ao <>• 

22 c»idn LEM,'*"*)* EMi, )][foCüi,o)-for^,,i)] 

+ % 22 [Ei^'EHH^ttfy^whEfysP-wnfiLPt»»*)] 
’ Lfp^'O)- fp(^,2)] 

y)*0 »vi*i »1*0 ^ I 

90 «e oo 

vi*0 * **i» |fl*0 * 

iS2 4^icf [E(j,^)-E[i^ \ M^sO *■*■* - — ■“ 
! Z*« ***♦«*0 
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4 ^2ftt,(**'*)]/p^,0 

'^E(i,o)foC|o)-J£ii,„)f,(io)»Ij5ÊCir,)|»(Î.e) 

* ¿¿îkiLE^."1",1 L' : '""JJÎ«"(i°) ) wii n*i J 

Coefficients of Cos Sx Cos oly, for s.M: 

QO OÖ 

¿s= [EM/^^ÉK^rtmsíAo) 
nr-o rt=<J J 

eo <>5 oô ^ 

wtío »tío píl r C C ^ "I r L^pc^.o;-*’J 

+ 22™* c^b* [zt*,"'™)' fi ( * > * ) 

(D.5) 

^»e >1*0 

,0-¾¾ P« 0« P* -1 

i S ^ ^ ^10 ^ [EK ) J 

"•”“r 
9* V* 

yviîO n*o 
po ?« 0< 

^ i 2 2 ¿ ^n ^ ^ ^ ^ ^ E^> p+**»-« )' E ^ p'^) ^ E<*^ f" ^3 
VMÍ 0 H*c p*! “ - 

po oO 

C'j'S-'p^w)1 ) * {vp1 /1 ) 3 
po op 

■‘'a iz^C^d* [fj c-v;M/o)t fi (-^,,1)] 
rt\*0»*O J 

[fírp¿^,P) v 

4 ¿nEC^^Cfs^1,0)' f^rw^J Y1S.0 J 

**■ ÊÏS* 22-^1^^ j™'*')* .WM-M 4- >*1*| *1*0 

»*1*1 *1*0 

+ [Ettti/p^'*1 )+♦'E^/p'^ )+Î^, pr^'M)j 

- 2¿ nkv, Ec^,n)fs()°/ô) - ^2 f5+***¿v1'o0 
«3-0 V*1*l»1*0 

' WM*1 M*D ‘ 1 
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, Kl)Wl-Kl)] 

4 S2S 4^¾ p'^)+ £(^p**™)-í(ip«w«)-E¿{>p*»'»)] 

”^r' Lfpíí,0;*^íí,.)j 

4 4^cf 
wtsOniO 1 

41.21 -^q- E^.p^^-Rr p^'M)J 

P Efi-p^ i)+f^f cí.o] 

VM*I 

+1^[ Üi.nrfilte) [Eii^Ki-wJJf^iloJ+f^^c)]} 

(D.6) 

Coefficients of Cos Ox Cos -ÁZ: 

s 22 mn^í^(’i'vr,'n^'^íyi'vvi4'M)]{^wfo¿M'|)42^*,^f6cy'/0^4’‘fíty'/l)]j 
OO 06 O« 

^ {¿Uifp(n,.|)-»-^CK,[^p(vi/0)*-ppon,2)] j 
90 00 

42$l2'0r"ndl[EM„ P'VvKM)-»’ ; p+Wl'M )' Í (-Ul, p'^'») ' E(^y P+ )J 

r {û^[fp(^)+fp(-a,,z)>¿CM Cff 61,1 í+'fpí'A, y3 )] j 

t :!~2? 1 dn ECtfi/rtJÍfo 
“ M-0 

^ **f«l *1^® ^ 

+■ ¿2 [£(-^ £(-4,^^[4(-^,1)-^(-^,,3)] 
X Ar*l •> c 4 

¿Z JO 00 ^ 

4 -^: 222^^ IE^m<p'»vi'HH t(\^;p-^+ij+Jzò^p+M^M)] 
VM»1 ^»Op»| 

Ltp(-41/0- (-4^/¾ >3 
^ 0Ö r 

- 25^1^1^(^/^)(0(^.0-2 22 i hmiJ']'« i*'*) 
v,*-0 

oö »0 

v*»| 1O0 
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- ifo 
«o 

- ^ ^Uiclv, ([E^/c*\Pw<*)] 
VV<*-| ^*<? 

+ i^~<3t j 1 i )3^^.0 

■‘'¿I p-”-’)*-^!. pwx^-ftí p-««1’) -Blip* n ) J 

+ IS T^êtlElh”'*» )-Eli ”>■•* Úíf'il^’fiií 2->J 
»v\t<3 H*0 

+ 112- 4^7 [g ^ ^ p-^t £^; ?+»»«)-£({,!>*»«>E(£p*w)] 

^'°r lfci.o)+frd,z)l 

-ECi.o){o(f, 1)-2½ ECi.™)fi« (i> 0 +%7ZZ\ 
V*1*| v 'i*, 

Coefficients of Cos $x Cosh, for s£l; 

¿s= ¿^ynnhtEinjM'nyEinsmnïjfeû^fsC^OrC-iffiM'ty+fii*'*)!J 
»VI«« n»o 

OfiO» »<• 00 0« »O -j 

f-j2 n b» [EC* ~ EC** ) ~Ec 

r {2û„[fsj<*,0+fs+B ( <; Cmífa (",0)+fiy (»,o)+fa( *¿) rfty <*lj]j 

+ 2 11 "'"dn CeU^-EC^**")] 
"" * ° [2Û* [fs / *>/i rú,*)]+Gi [SftC^ürficilJjJJ 

+4! 12 ^âniEC^^n^ECUt,^*) -EC^p-wJ-Efà.p*'***)] 

¡2ú"[fyf (^,0): fi^■■ 0)^(^1^)] 

+ ^4*VtuO-fstâsDj 
* n*<? J 

+ LE?- 2 X- dnlEc^.^^yE fUiy (*^y ' ) ^ faff* 10 ~fa ¿¿j 4 vn«| uso 
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-M
v-
- 

MW nsO 

Oe oó oc ^ O# O» QW 
¿ E(V*, p+"*»)+ECV*, p-+u*)+£hJ„t P+*1~ *)] 

* ifi-ptll.i )+^^,0 +fi./,nU)+fi.prU',5j] 

- 4%nbnE<-*> *)fi (n< I )-2 2^ £ n fo\ [El*, **•*)+E( ”, )] [fs.J n, / )tj¡^ (»,/)] 

- ^ ¿^Ondri ECA,,'i)[f¡<-J.,o)rfíe¡X„z)]- 5 5 'U,d. [Ec&,**“*)+ E(\>., 

t-^-5, notify ^;^--- ¿ Eli, rmni-Eli >»-»)] fs (& 0 

+ Ilf [B(ip^)iBCi^yi(i^)'F(ipt^)] 
r Cfi'pti'O* fsy(i, i)] 

^^2-^!^rCB(í^)'Bci,yn^)][fsC¿o)t{s(¿/2)'] 
•M*t ti*0 ^ 
^ 0* >• 

p^yEd' ¡»"-»a 
íjif ti o) f ^ + cii)+fSfF ci ij] 

-ZECi,o)fs Ci I)-2^B(i^)[fi^({, O+fitm {{,!)] 

+ 1S 4^7 Í&*■ £l*' CÍ/ o]J 

(D.S) 
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