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I. INTRODUCTION

The reflection of acoustic energy by a rough su: face, such as the ocean
bottom, is of practical interest. If the acous ic signals propagated in
such a marner occur between moving source and receiver or reflector,
and if the reflecting boundary is not-too-rough,* then, due to a single
pulse, there may be numerous more or less discrete "arrivals" (Refs.
1,2) at both temminals of the propagation path. These arrivals which
may have an associated doppler shift in frequency arrive along various
"multipaths." In signal-processing techniques using time and frequency
correlaticn, an understanding of relationships among kinematic, geo-
metric, and environmental aspacts of such a problem is essential. This
paper presents an analysis for determdning on a statistical basis ex-
pected acoustic sigial arrival times and corresponding expected doppler
frequency shifts for both one-way and round-trip paths. There may also
be an ioncspheric radar application.

This paper proceeds by analyzing the transit time and doppler
frequency characteristics of a narrow pulse on cne-way multipaths from

a sea bottom with random normal distribution of slope but negligibly

w
A not-too-rough surface is one which has variances of surface eleva-

tion derivatives sufficiently small that there is no appreciable
occultation of surface area at oblique incidence angles; as a related
practical matter in transmitting energy to a receiver or reflector,
it is necessary that surface correlation lengths be sufficiently
great that at least the first Fresnel zone is nominally flat.

1
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large bottom elevation variance; it convinues--through a convolution
of this "one-way" case--by determining the properties of narrow pulses
on round-trip multipaths; next, this round-trip, narrow pulse analysis
is oxtended to long pulses anu, finally, the importance cf non-
negligible bottom elevation variance and source and receiver-reflector

motion is considered.



II. ANALYSIS

A, ONE-WAY PATHS, NARROW PULSE

Let Fig. 1 represent one of a number of ore-way paths between a
moving acoustic source, S, and a moving receiver, R, i.e., a narrow
pulse transmitted from § is r~-:lved at R inteuciunally (communicating)
or unintentionally (interferring). The analysis is restricted for now
to narrow (deita-function) pulses for simplicity but the more generai
finite width puls2> will be treated subsequently with a measure of
"narrow" given then. In this, 6 is the local slope cf the reflectinc
boundary which is presumed to have correlation lengths of bottom ele-‘
vation and its first two cerivatives very large relative to the wave-
length of the acoustic energy. As a concomitant of this, ic is pfe-
sumed also that bottom elevation variance is unimportant. As this
latter assumption will not always be valid, the effect of importantly
large elevation variance i: treated in a subsequent section. For the
sake of simplicity in disc .ssing the problem, only one-dimensionel
roughness in the direction of proupagation will be considered; extension
to two-cdimensional roughness is possible though tedious (Appendix I).
The one-dimensional problem is reasonably descriptive of the two-
dimensional situation because the probability of paths at large
azimuthal excursions from the plane of Fig. 1 is small (Ref. 2) for

typical sea bottom, and this being so, the signal transit time and

3
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doppler frequency betweer. S and R are determined with only small error
by in-plane components.
Now in Fig. 1, the relationships aiong the several variables is

\3

as follows:¥

x
1

Zg coC @ (1R)

1

Xp = X zy ¢ot (p - 26) (1B)

from which it develops that a ray rrom S will reflect to R if

B =0y = % [w - arccot (x[- :: cot cp)] (2)

where the subscript M indicates that a multipath exists between S and
R es a function of ©, 2y, 24, and xy. It has been shown (Refs. 1,2;

Appendix I) that if 6 has a Gaussian, i.e., normal distribution then

the probable or expected number of multipaths in an increment of

bottom distance x is

Al

[ %
p(M in dx: ¢, z,,z.,x.)!dB(N1)= ) -
i

?
W] exp (-84/209) dx (3)

It may be mathematically more satisf:iing to assume tar 9 as having
Gaussian distribution; if g << 1 3% makes little difference which

assumption is made, although as 6 < tan 8, Gaussian & yields greater

"If index of refraction variation is, on the average, important then
this analysis must be modified (Ref. 2).

5



expected values as is clear from Eq. 3. Presently, experimental data
are insufficient to make a decision between the two assumptions and a
Gaussian aistribution of 0 is used to simplify calculation.

Now the epected number of multipaths in dx may, using Egs. 1A
and 3, be transformed to the expected angular density of one-way multi-

paths E(N1) as

“oa12
B,(0)
iqg(i'gl—) = ‘(ﬁ) [- ® ] csc® @ exp (-9,2;,/2026) 4)

In anticipation of determmining transit time and doppler frequency
of multipeh arrivals, the cumulative expected number of multipaths

E;"(cp) between 9 = 0* deg and ¢ is determmined from Eq. 4 as

- ® lee(n) ]| . ]
:.;*(cp) *j(; [—55# de (5)

tha integration being carried from ¢ = 0' to aveid a singular point at
=0 wh:‘.chlarises from using 6 rather than tan © in Eq. 3.

Given the conditions described graphically in Fig. 1, signal
transit time and doppler frequency may be determined. From Fig. 1 the

cne-way signal transit time of narrow pulses is

tl/(zs/c) = [csc ® + (24/2,) csc (¢ - 29)] (6)



and the one-way doppler frequency is, approximately (Appendix II)

[Séggég&)] = cos @ + (va/vg) cos (p - 26) (7)

In Egs. 6 and 7, ¢ is sound speed, fp the at-rest frequency of the
sound propagation of S and it is assumed that v; and v, are positive
as shown in Fig. 1. Figure 2 shows Ef(w), tl(w) and Afl(m) for the
following values of parameters to be used in this paper unless other-

wise noted:

Xn/2g = 5.5

z, = zo = 2200 fathoms = 13,200 ft = 4024 m

ve = vy = 0.0l c

c = 5000 fps = 2961 knots = 1524 m/sec

P = arccot [xn/(zg + 2p)] = 20 deg (8)
%hin = 15 deg

" Phax = 25 deg
O = 3,75 deg = 0.0655 radian

[-8,(0)/By(0) ! = (2025 ££) = (312.5 m)"

Figure 2 has special utility in that if transmission from £ is between
% 1a and @ax only, then for this beamwidth the expected number of one-

way multipaths between S and R is just Er(¢5.,) - Er(¢51,).
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1. Multipath Maximum Number for Fixed Beamwidth
Equation 5 which gives an expression for expected number of multi-
paths may be used to determine beam depression to maximize the number

of arrivals at R from & for a given beamwidth, Ay, Consider
g €t

B (O o +bte .
E(N) = (%) [— E—:-(m—] ~/cp:-§Acp - csc® @ exp [-(eﬁ/Zcé)] dp (9)

where Ap is a fixed beamwidth and ¢, is the beam center., If Eq. 9
be differentiated with respect to ¢, and set equal to zero, then there
results the condition for which E(Nl) is maximized as a function of

Yo e

Using Leibnitz rule, the derivative of Eq. 9 with respect to @

is
JE(N; ) 23 ByC0) . 3 o2
_a.c_po_‘_ = . (TT) - B-e-(-u-)- cscC (% + iA¢) exp [-en (q)e + %ACP)/? 9]

(10A)
- csc® (9, - &AP) exp [-6': (C §A¢)/2°ae] + 0}

If this derivative be set equal to zero there results

csc® (g, + BAP) exp [-Of.(cp. + ﬁAcp)/2o"e] =
(10B)

csc® (o - QACP) exp [-eﬁ(% - éACP)/QU%]

-

9
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which by reference to Eq. 4 is simply the condition that [dE(g )]¢h =
ax

[d—E%Ll]%x « In other words, for a given beamwidth Qpax - %in = AP,
a

the number of multipaths within Ag will maximize when the angular den-
sity of multipaths at the beam's edges are equal; generally ¢, #
arccot [x,/(zs + zy)] = ®, , the apparent specular point.
2, Doppler Frequency Mean-Slope Deviation Relationship®

A measure of surface slope standard deviation from the doppler
frequency mean devolves from the case in which S follows R at fixed
Xas i.e., |vs] = |val. Then, for & small, doppler frequency is given

by

[L%étéésl] >=cos ¢~ C 3 (¢ - 20)

= . 28 sin

(11)

and for this condition the expected value of the absolute deviation of

doppler shift is, for 0y small also

m/2
*’[l“i‘ 521)” =2 BENR o (-6°/203) a8 (12)

o] \IE; (of:]

?‘F
What follows may bear some pertinence also to an electromagnetic
source and its receiver moving relative to a randomly refracting
ionosphere,

10



where ¢ = @(6) from Eq. 2. If a mean value of ® = ¢, = arccot

xp/(2s + 2p) i, used, then

(0f, /£5)

406 sin @
E[ v /G ‘——J2_n'——— (13)
i.e.,
E| (8f,)] =2 yf2/m (vs/c)f,04 sin o, (14)

Apparently, therefore, mean doppler shift is a direct measure of ocean
bottom roughness variance; for conditions of Eq. 8, Eq. 1. takes a
value of 0.2 cps/kcps. A related result is obtained if ((Af;)*) is
determined instead of <{JAof,|) .
3. Transit Time and Doppler Frequency Characteristics

Figure 2 and the analysis leading to it provide a basis for de-
scribing some of the statistical characteristics of signal transit
time and doppler frequency. Generally, the expected number of arrivals

until t{ is

@, (t]) dE(N, )
[E(N‘ )]t;st{ i 'é(t{) [T] ae (15)

where @, (t{) > ¢ and wz(t{) < ¢, are angles appropriate, as in Fig. 2,

to a transit time t;. Thus the time rate of arrivals is just the

11
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derivative of Eq. 15 which, using Leibnitz rule, is (with primes

omitted)®

dE(N) _ [dE(N )] (dcp)} _{’dE(Nx)“ (dw); (16)
s f[sp] @) fEe@)

where Qu1n S ®,(t;) <@, and Qo < P (t1) < Puax, ¥ = arccot

xa/(2s + 2p); if wz(tl) < Qain O if 9, (t;) > Guax then dysdt, = 0.
The expected number of arrivals from S at R pdrior to a given

time t, is available in an alternative form from Eq. 16 by integration;

thus

ty

- EM)] 4 :

[E(N)‘)]t1 St{ —[ [-?t—l ] dt, (17)
s in

where the integrand of Eq. 17 comes from Eq. 16 with the associated

restrictions, and t,;, 1s the least transit time appropriate to the

beam, (Paaxs %nia ). Clearly

t! Tuax

o] @t

A parallel construction for doppler frequency characteristics is

possible and one may write straightforwardly the anaiog of Eq. 16 as

b
It is assumed that dx,/dt = 0 as a consequence of small vs and v,;
this introduces a negligible error.

12



dE(N,) _ [dE(NL)] ( do )} - {[GE(NQ] ( do )} (19)
AL { dep dAf, CPE(Afl ) dep dafy Wy (A )

where @i, < wz(Afl) < s and @y < @, (Af;) < @ax. In this ¢, =

oL (Af, )aax ] from Eq. 7; again if ¥, and @, lie outside the interval

(%eins Pnax) then (a%-cfel-) = 0,

The expected number of arrivals from S at R with doppler frequency

less than a given value Af{ is, in parallel with Eq. 17,

AEY
- ‘ dE(N; )
[E(N1 )]Afx SAf{ = '[ [13?1—] daf, (20)

The transit time and doppler frequencv characteristics of the
signals are not independent as Fig. 2 suggests: For a given one-way
path arrival time, one of two possible sonar beam depression angles is
permissible, in general, and the doppler frequency is fixed by these
angles. Hence for one-way transmission, doppler frequency is one of
two values fixed by arrival time.

Figure 3 shows the cumulative number of "arrivals," i.e., multi-
paths of a single very narrow pulse as a function of time and doppler
frequency. For the typical values of Eq. 8, numerical values from
Fig. 2 are

maximum number of multipaths or "arrivals":

[E(Nx )]"x = 1.32 (}é’—i’%c’—f-t-) (1025 ft)-l = 5.4

13
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and from Fig. 3,

time interval of 50 percent of the arrivals:

(At)o.s = (5.854 - 5.848) 3%5%8951% = 15.8 msec

Figure 2 indicates that

maximum doppler frequency (Af; Jaax:

Af - 50 fps .
(?ZL)..X = 1.88 (W%E) = 18.8 cps/kcps of £,

and Fig 3 shows

frequency interval of 90 percent of the arrivals:

A [(%ﬁ)] = (1.880 - 1.8535) ( 50 ss) = 0.265 cps/keps of £,
° 0,9

i.e., substantially all the arrivals have doppler frequercy between
18.5 and 18;8 cps/keps for R closing on § each at one percent sound
speed, and for typical geometry and ocean bottom conditions.

The situation which Fig. 2 typifies may be elaborated. If § is
not transmitting omnidirectiorally (0 £ ¢ £ 180 deg) but is limited
(%in S ©® S ®ayx) then the expected number of multipaths to R may as
stated be determined as the difference EF(®.:) - Bf(qui,) for this
latter case. The distributions of Fig. 3 will, of course, be modified

by this, but these actual distributions may be determined from Fig. 2

15



with care for beam limits. If further, R is "listening" with a limited
beam then the number of multipaths and their time and frequency charac-
teristics will be determined by the interval 4x of ocean bottom which
is common to the beamwidths of both S and R. Finally, if the upper
bounding surface is planar for waves of fraquency f, (Ref., 3) then the
number of paths to R from S via the surface may be determined by re-
placing zy, in the foregoing by 2z, - z, (the distance above the bottom
of the virtual receiver). If (z, - Zx)/Z, << 1 then the number of
paths via the bottcm and surface is approximately that via the bottom
alone, and the arrival time and doppler frequency characteristics will
be similar also for the two path types. Hence for this situation,
numbers of arrival and densities of arrivals in time and frequency will
be approximately doubled.

B, ROUND-TRIP PATHS, NARROW PULSE

The treatment above of one-way paths provides the basis for deter-
mining the expected nw.Ler, transit time, and doppler frequency of
round-trip paths for sound waves reflected from a not-too-rough
boundary. Figure 4 gives the gecmetry and nomenclature for this round-
trip case which is a straightforward elaboration of Fig, 1.

Now if p(M in dx; : @, 23, 2a, Xp) is the probable number of out-
going multipaths occurring in dx;, and p(M in dxg ¢ @, 2s, za, %) is
the corresponding number of a raturn path occurring in dxg, then the
probable number of round-trip paths as a result of reflection at R
going threough dx; and dx is the product of these individual incre-

mental roumbers and

16
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FEMN) = [dg)((f“ )] [dg)(:‘, )] dx, dxe (21)

The expected numbev E(N; ) of round-trip paths between S and R is the

integral of Eq. 21, i.e.,

E(N) = / / dE(N; ) (22)
Ax, Axg

or in explicit form as a function of beam depression angle

(%) (zs 2 [ Bg(O)] (P hhax f(% hax 3 2
= —_ - m csC™ ¢ CsC ¢
TT) 0 (¢ aita (92 )a tn 1

exp {% [(e../oe): + (e./oe):]} do, dey

As ¢; and % and independent, if R is ensonified and reflects only in

(23)

the two downward qusdrants and if the transmitting and receiving beams

at S are identical, then from Eqs. 4 and 23
a 1]
%) = [ECM))] (24)

If, however, R is ensonified from both planar surface and rough bottom
and can reflect these arrivals in either the bottom or surface-bottom
paths, then the trtal cxpected number of multipaths may be as large as

4[E(N,)]?. For the example of the preceeding section for one-way paths

18



with zy = 2z, , this takes a value of 4(5.4)° > 116, not to be sure, all
of the same intensity. Figure 5 shows the density of multipaths in
transmit-angle (¢, ) and receive-ang’e (¢ ) space based on the inte-
grand of Eq. 23 and it is interesting that the maximum angular density
occurs for @ = 18.7 degrees, at lesser depression than the "specular"
angle 9, = 20 degrees. Figure 5 is, of course, a two-dimensional
representation of a surface and provides a basis for considering the
transit time and doppler frequency characteristics of round-trip
multipaths and their density distribution in time-frequency space.

The round-trip transit time t, of a narrow pulse is

th =t + 5 (25)

where

ty/(2s/c) = [csc ® + (zy/2s) csc (@ - 26¢)], 1 = 1,2

Thus once the geometry of Fig., 4 is fixed, t; = t;(¢;). The round-
trip doppler frequency is

Afp = Af; + Af. (26)

where “-here is associated with each direction a doppler frequency

given approximately as (see Appendix II)

19
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Vs /C

[(Af fo) ] = [cos ¢ + (vn/vs) cos (p - 28 )], i=1,2

and again Afy = Afy (@),

Given the foregoing equations, it is of interest at first to de-
scribe the arrival rate of a narrow pulse on round-trip paths. Now
the probability of an arrival during dts is just the probability of an
arrval at R during dt, multiplied by the probability of an arrival at
S from R during dt; = d(ty - t,), summed over all ty = t, + tp. This

is shown schematically in Fig. 6. Thus

R tnl - (ta )I ia
p(M in dtn) = [ p(M in dt;) p(M in dte) dt; (27)
t

l)lu

or, omitting primes

(%{-:ﬂ) _ /(~t.. - (Gadata [%m]t, [%—é—?‘l]‘ ét; (28)

179 T P

with the constraint that all of the interval t,, tg lies within the
interval %41, aax. Considering the complexity of the relationships
among t,, tg and ¢, @&, it is likely that the maximum of Eq. 28 is
most readily found through numerical integration of that equation. A

construction similar to Eqs. 27 and 28 yields for dopper frequency

[ " ] ! (Afx) ! Af.’ - Afl

Dfp-(0f5 Juax

21
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and the maximum of this may again be found numerically. Figure 7
(obtained by graphical calculation and subject therefore to some
error) shows the time and frequency distributions resulting from Egs.
28 and 29. For the parametric values of Eq. 8, the interesting points
of Fig. 7 are:

transit time t, for maximum arrival rate: (taldsax rate

(tadoax rate - (tadain = (11.699 - 11.695) (13,200/5000) = 16 msec

maximum rate of arrivals:

%?_’) = 58 [(13,200)(5000>/n’] (1025 ££)™ = 0,37/msec

doppler frequency correspondigg,to m-ximum spectral density:

252 = 3,757 (50 £ps/5000 fps) = 37.57 cps/keps of £
-]

maximum spectral density of arrivals:

dné?.; N (52) (sooo ips ;3,200’ ft) (1025)-3 = 0.9(10)° /£,

The time and frequency distributions of Fig. 7 are each without

relation to the other. Thus one may desire the arrival density

23
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distributed in both time and frequeney. Equation 21 may be trans-

formed from (x,, X; )-space to (t,, Af,)-space through the Jacobian;

thus

s

2 _lae) | ] dEN,) (x5 %)
PE(N) = [dx;l ][ dxeL] J (v hE, dty dAf, (30)

where

xda-??:

It may, however, be more convenient to write Fq. 30 as a function of
(¢y5 @) rather than (x;, % ). Equation 30 represents a surface over
the (ta, Afy) plane, the height of which measures the density of

arrivals as a function of time and doppler frequency. If Eq. 30 be

written

oy - [me)fae] | gy o

then if Eq. 31 be evaluated at Af, = Afy (a constant), there result

Ul

the time rate of arrivals per unit doppler frequency at Afy. Con-
versely, if Eq. 31 be evaluated at ty = t4 (a constant), there results
the spectral density of arrivals per unit time at ty. The surface

represented by Eq. 31 is shown for typical values of bottom-bounce

25

-y



geometry (Eq. 8) in Fig. 8. 1In this figure, in (ty. Afy)-space not
enclosed by the zero contour arrivals are impossible; the liues of in-
finite arrival density are a set of measure zero in (t,, Afs)-space,
consequently total arrivals remain bounded as previous analysis has
shown. The relationship of Figs. 4 and 7 to Fig. 8 is this: The
(ta, Lfq)-space of Fig. 8 is the transformation frem (®,, ¢ )-space
of Fig. 4 by means of the Jacobian [ JCoy, &)/ (tas .Fa)|; Fig. 7R rep-
resents the time rate of change of the cross-sectional srza of a slice
through the surface of Fig. 8 for a constant-time section and Fig. 7B
is the corresponding change of cross-sectional area in tnhe orthcgonal
direction. Shown also in fig. 8 in Sec. A-A is a typicel time race
of arrivals plot, and in Sec. B-B a typical doppler spectrum. In this
section, finj.te beames for transmitting and receiving may cause inter-
mittencies, i.e., because of beam limits, certain t, - Af, pairs are
prohibited.
C. LONG PULSES

If the pulse transmitted to R and reflected is not very narrow,
then conceivably arrivals at S from discrete points of x will overlap
in time upon return tc S. Suppose the pulse transmitted by S§ has dura-
tion AT. An ariival at time t, may then be a leading edge of a pulse
appropriate to ty, or to some portion of a pulse the leading edge of
which cccurred prior to 1a. Thus at time t,, the rate of arrival of

long pulses is

GE(N, ) 4 e dE(N, )
(] - [52] e, (52

R"AT 2 tlln
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whers the integrand comes from Eq. 28. The expected number of discrete

arrivals at S at t, is just the integral of Eq. 32, i.e.,

t
= [, [
ES <?j_dEt(:: )> AT

whiera <:::dE( ) ::> is a mean value of [dE( )] during ty - AT toO

dt. dtl
vy. Fiuvre 9 shows an extension of Fig. 7R for a long pulse with

Ar/(zs/m) = 0.004 which for values of Eq. B8 correspcnds to AT = 10.6

[ a0
msec. In Fig. 9 the maximum of [E(NL‘,)]AT 20,22 {(zs/n) |- 35?37 H

thus for the typical values of Eq. 8

expected number of discrete, simultaneous arrivals:

(£ ar 0.22 {(3-34-2’%-92)3 (1025 ft)z}

3.7

i.e., at ta(zs/c) = 11,702, there are arrivals at S reflezted from R
along an expected number of 3,7 discrete paths. Referring to Eq. 33,
if it is desired that no more than [E(N,)]‘;T arrivals are to be
expected at . given instent, then

A rdE(l .
AT = lb) A,/L dte . (34)
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Using Fig. 7A and the non-dimensional form of Eq. 34 gives

pulse length for a maximum of one arrival at a time:

AT 1
= 58 = 0,001
tZS;'C; fTi — B, /
9: )

For the values of Eq. 8 this corresponds to AT = 0.00l
\

13,200 ft )=

> pPs
2,54 msec pulse length. This latter calculation gives some measure to
the meaning of "aarrow pulse." It appears reasonable to call a narrow
puilse one such that as a function of the geometry c¢f concern, i.e.,
Fig. 4, it is expected that no more than one round-trip arrival will
occur at a given instant. Some intuition to the relation between
pulse width, beamwidth and expected number of discrete arrivals may be
gained by over-plotting on Fig. 5 time bands corresponding to pulse
widths of AT; the integral over the angular intervals corresponding to
the time bands yields also [E(N )JM. This is shown in Fig. 10 where
transmittiag and receiving beamwidths of 10 degrees centered at a de-
pression angie of 20 deyrees are included to show the truncating effect
on expected arrivals due to restricted beams. Apparently from Fig. 10,
after a sufficient period of time that an arbitrarily large fraction of
the pulse width has passed from the (¢, ¢ )-space, a succeeding pulse
may be transmitted with an expected degree of ambiguity resulting.
Thus a basis for puise repetition frequency is established for bottom-
bounce mode of propagation of sound.

The spectral distribution of a long pulse is, with reference to

Fig. 8, the integra. over the surface between (t, - AT) and t, and an

30
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infinitesimally wide st2ip dAf,. Thus, using Eq. 31, the spectral

distribution of arrivals at t, for pulse of width AT is

dE(§é) - iﬁ_ 2 _ Bg(O) /‘tl dE(Nl )\i dE(Nl) (x1 ’&)
[ ] ]AT_ (TT) [ Ber; ty-AT2tg 1 dx, \ O J WD) dty, (35)

Section B-B of Fig. 8 provides a basis for long pulse return spectra;
the integration of Sec. B-B over AT will have a smoothing effect on the
section. The resulting spectrum for pulse length of AT # 0 will prc-
gress from that shown in the section, to one of roughly Gaussian char-
acter, then eventually to a more or less flat spectrum for very long

pulses.,



III. PERTURBATIONS

The analysis in the foregoing admits kinematics and bottom slopes but
keeps the geometry of Fig. 4 static and assumes a planar bottom for
computing 6y and t and Af., The error in this needs to be considered
as a qualification to the analysis. Now from Eq. 2, 9, may be written

das

6M=

~ol -

[w - arccot (5& -5 ot w)] (36)
Zy Zy

The uncertainty in x, arises in the motion of § and R during AT, i.e.,

during AT, X, changes by an amount
Axg = (vg + vp) AT (37)
If 0 << 1, vs = vy and z; = 24 then

(%.) - Axy 2= 2z4 cOt @ =~ 2V4AT
]

2z5 cot o, [1 - (%%) (TE%}ET) tan w%]

where the second element in the brackets is an error term. For the

(38)

I

typical values used previously
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Vs AT _ e
(??) (5;73) tan ¢, = (0.001) (0.004) (0.364) = 0,000015

i.e., the fractional error in x, due to vs and v, during AT is()(lO'S).
Another unrelated uncertainty arises if x, is estimated from a knowl-
edge of ¢, and {2zg) ; Xp may then be uncertain by approximately
(o,/(zs )) cot @, , i.e., about 400 ft for conditions of Eq. 8 (Eq. 40).
The uncertainty in zs and z, arises from the fact that a surface
having a slope standard deviation g has also an elevation standard
deviation g, , so that the distances of S and R above the point of re-
flection are uncertain in the order of o,. In ' * present problem we

2

have assumed values of g and of [-Bg(O)/Be(O)} and we may approximate

o, from these.® Now, approximately

Oy = Oy/7, (39)

where r, 1s the correlation length of bottom elevation, If r, = o(re) =

O{[- BS(O)/BQ(O)]Q} as is likely, then

5, = 0{ 0y [- Bye0)/B,0)] ¥} (40)

”
In what follows some intuitively based approximations are used. In
parallel with 8 = arctan dz/dx = Az/Ax if bz << Ax, the assumption
is made that gy = 0, /r;. Also, it for example BB(r) is of the form

By(r) = o‘; exp [-(r/re)z’:i, then [-Bé((‘))/BQ(G)]"it % V-Z-/r9 .
34



For the values of Eq. 8 used previously

o, = o{(%—“-) (1025 ft)} = 67.5 ft

and from Eq. 25, the magnitude of uncertainty in t, is* Aty /(2g/C) =
2\[§ko,/(zs)) c¢sc ¢, which has a typical value of 0.043. A com-
parison of the value ATa/2s/c = 0.043 with the time interval of Fig.
78 shows that with 80 percent of the arrivals occurring within 0.045,
importantly large time dislocations of expected arrivals occur due to
bottom irregularities. Thus, for the situation in which correlation
length for bottom elevation is very small compared with the ensonified
interval, arrivals will occur more or less randomly in time and the
standard deviation of the time uncertainty tends to be o, = 245(0, /¢)
¢sc ¢,. Hence the situation described in Figs, 2, 3, 7A, 8, 9, and 10
and the pulse repetition frequency criterion are ideals to be hoped
for but not to be expected, A more reaiistic estimate of arrival rate

(as in Fig. 7R) of narrow pulses is described by

[%:_é_:‘;_z]cz i} \[5;10‘. [' [Egé.:ﬂ] exp -%(t",: 1:"‘)a dty  (41)

in which O, is the standard deviation of round-trip travel time
(E 2\f§ (o,/c) csc m,) and a random normal distribution of z hence t,

is assumed. The operation of Eq. 41 tends of course to diminish the

L
It is assumed that ot, is proportional to the square root of the sums
of variances of z for each leg of the round-trip path.
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maximum rate of arrivals and the number of simultaneous arrivals for
wide pulses and to distribute arrivals over a greater interval of
time. Figure 7A contains a dashed estimate of the effect of Eq. 41
upon the g, = 0 case calculated there.

The effect of bottom irregularities upon doppler frequency is
much less pronounced, Equation 26 shows Af, to be uncertain to the
degree that 8, is uncercain; this has been shown to be very small.
Thus the doppler frequency distributions of Figs. 2, 3, 7B, and 8 are
saticsfactorily descriptive, but Fig. 8 will be smoothed as mentioned

above by time-of-arrival uncerteinty.
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IV. CONCLUSIONS

This paper contains an analysis for determining the time of arrival
and doppler frequency characteristics of a pulse transmitted to a
target by reflection frum a not-too-rough surface such as the sea
bottom, and gives riumerical values for a typical sonar applicétion.
The analysis may be important in signal preocessing associated with
one-way transmission (communication and interference) and round-trip
cransmission (ranging) and in the interpretation of data from marine
geophysical surveys.

The analysis shows that given sonar beam and source-targe . geom=-
etries, the expected number of one-way or round-trip paths between
the source and target is determined primarily by the variance and
correlation length of surface slope, but that the incremental time
of arrival of the propagation along these paths is determined pri-
marily by the variance 0of surface elevation from which slope variance
derives. Contrasted to dependence of time of arrival upon surface
elevation variance, doppler frequency is dependent primarily upon
surface slope variance. Thus, given the relationships among vari-
ances and correlation lengths for surface elevation and some of its
derivatives (p. 33), the expected number and doppler frequency char-
acteristics are determined primarily by the slope statistics of ths
surface and time-of-arrival characteristics by surface elevation

statistics.
37

—m—"0



Furthermore, the analysis shows a basis for maximizing or other-
wise modifying the expected number of arrivals for a given beamwidth
through so:.ar beam positioning or through tailoring of pulse length
or pulse repetition trequency. A criterion for pulse length and
pulse repetition frequency for tottom-bounce propagation emerges
from the analysis.

Lastly, the analysis need not be restricted to the sonar problem
described here, but may be applicable to ionospheri- and other mete-
orological investigations in which reflecting or refracting centers

may be in motion and source and target may or may not be moving.
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APPENDIX I
DERIVATION OF RELATION FOR EXPECTED NUMBER OF MULTIPATHS

Consider a counting furcotior Fq such tuat

Eq (8., ©) % when |8, - e8| <d/2

I

0 otherwice

where 9 = 3(») and 9w (x) are functions of x. Then, in the region of
x of interest, i,e., Ax the numier of one.way crossings N, will be

(Ref. 4)

N, = 1im f | 6 | Fa(Eu, 8) Ix I-2
d=C Ax

Now suppose that e'(x) is a random process with W(8,, 8’: x) as joint
probability density functicn with e"; Then the expected number of
erossings of (8,, ), i.e., the number of one-way mulcipaths over a

one-dimensionally rough surface is given as

®
. I'4
E(Nx ) = / / ) 9, l W(e", OI: X) dB dX 1-3

Ax -

40
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Now if 6 and 8’ have normal distribution, then

@ 2 ’ 2
_ 1 ' 1f% 6 ’
E(N) = We"’_é .4; L IB I exp [- = (-&-:) + (-c—e—l) ] de’ dx I-4

Integrating first with respect to 6 yie.ds

G,
E(,) =2 (3%') -/A- exp [_ 3 (e.,/oe)"] dx I-5
X

But if Be(r) is the correlation function of 6 and if Beo(r) is the
correlation function of 8’ then it is true By(0) = o’e and By, (0) =

-Bg(O) = o’é,, SO

B.(0)
E(N; ) = %- [- '5%(57 ‘4; 2xp [- % (O./oe)’] dx I-6

Ay

In a similar way, the expected number of one-way multipaths for

two-dimensional roughness *s (Ref, 2)

[E(N, )] == |- / f exp g'f dxdy I-7
2D Ax JAy ) (]

in which #y = 8y (X,y) and for round-trip multipaths for two-dimensional

roughness

41
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I-8

2 2 2 2
1 ] 0 d D4
exp (- —H-) + (—1-‘-) + (—-'i) + —'1) }dxl dxg dy; dy=
{ 2 (ce A % ). %) \%/,

and this could of course be elaborated to round trips over two-
dimensionally rough surfaces bounding both surface and bottom, in
which case an eight-fold integral would result (Ref. 2).

What has gone before assumes 8 is randomly distributed and z is
precisely known, which may not be true. If 8 and z are simultanecusly

uncertain then the counting function becomes for z =z - ¢

Fq (8, 2) -%‘- when | cot (9 - 20) - Xa = (éggzg) cot

0 otherwise

. d
55 I-9

In this event E(N,) becomes (for z’ = 98)

G<N;)=////,%{cottw-zel-ﬂ%m} 1-10

oW [z, 0, 8¢ x(¢p)] dz d8 d8’ dx

integrated over the whole domain of z, 8, 8’ and x. The complexity
of this for the purpose of evaluatior makes tnhz approximate approach

of Eq. 41 appealing.
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APPENDIX II
DOPPLER FREQUENCY RELATIONSHIPS

Let Fig. II-1 be used to represent doppler frequency for both one-way
and round-trip paths. For the one-way path if f, is the at-rest radi-
ation frequency of S then the frequency f;, received at R is*

% - 1* (v/c) cos (@ - 26;) I

1l - (vs/C) cCs P

If v¢/c << 1 and va/c << 1, as is usual, then

%L = ELE;_& = (vs/c) cos @ + (va/c) cos (¢, - 26;) II-2

In the round-trip case, the velocity v, may be resolved into a
component bisecting the arriving and returning rays, in which case,

using the approximation just developed

(]

(bf) = (vg/c) cos @ + (vs/c) cus @y
R
II-3

+ 2(n/e) cos {3 [(wa-202) + @-200)]}oosf} (@ -200) - (@ -201)]}

w q"‘, ¢
See, for example, any elementary physics text.
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Applying suitable trigonometric identities to this gives
(Afa/fo) = (vs/c) cos @ + (vp/c) cos (¥;-28;)

II-4
+ (vs/c) cos @ + (vy/c) cos (§-29;)

that is, for the round-trip case «t is as if a doppler frequency

[3%§§§§%l] = cos ¢ + (va/vs) cos (9;-28;), i =1,2 II-5

may be associated with each leg of the round-trip path.

R2-11
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FIGURE 1l-1 Doppler Frequency Calculation Geometry
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