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3 NOMENCLATURE

I SYMBOLS SUBSCRIPTS

B( ) correlation function L lower

B"( ) correlation function M multipath
second derivativeI max maximum

c acoustic phase velocity;
sound speed min minimun

rE expected value o surface to bottom or reference
value

Af doppler frequency
S(Appendix II) R receiver/refleator

J Jacobian (Eq. 30) S source

5N rumber of multipaths or R round-trip
arrivals

p(.) probability u upper
z elevation

r correlation distanceI6 slope

x distance downrange from

source 1 outgoing or one-way

y distance crossrange, 2 returning
normal to x-z

C centerSz distance above reflecting
bottom

1 8 bottom slope

a standard deviation

F v speed

9 acoustic ray angle to
horizontal

AT pulse time
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I. INTRODUCTION

The reflection of acoustic energy by a rough su race, such as the ocean

bottom, is of practical interest. If the acous ½c signals propagated in

such a manner- occur between moving source and receiver or reflector,

and if the reflecting boundary is not-too-rough,* then, due to a single

pulse, there may be numerous n..,re or less discrete "arrivals" (Refs.

1,2) at both terminals of thc propagation path. These arrivals which

may have an associated doppler shift in frequency arrive along various

"multipaths." In signal-processing techniques using time and frequency

correlaticn, an understanding of relationships among kinematic, geo-

metric, and environmental aspects of such a problem is essential. This

paper presents an analysis for deterv.nilng on a statistical basis ex-

pected acoustic sig,.al arrival times and corresponding expected doppler

frequency shifts for both one-way and round-trip paths. There may also

be an ionospheric radar application.

This paper proceeds by analyzing the transit time and doppler

frequency characteristics of a narrow pulse on one-way multipaths from

a sea bottom with random normal distribution of slope but negligibly

A not-too-rough surface is one which has variances of surface eleva-
tion derivatives sufficiently small that there is no appreciable
occultation of surface area at oblique incidence angles; as a related
practical matter in transmitting energy to a receiver or reflector,
it is necessary that surface correlation lengths be sufficiently
great that at least the first Fresnel zone is nominally flat.

1
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large Iottom elevation variance; it con',.inues--thr-ouqh a convolution

of this "one-way" case--by determining the properties of narrow pulses

I on round-trip multipaths; next, this round-trip, narrow pulse analysis

is extended to long pulses anu, finally, the importance of non-

i negligible bottom elevation variance and source and receiver-reflector

motion is considered.
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II. ANALYSIS

A. ONE-WAY PATHS, NARROW PULSE

Let Fig. 1 represent one of a number of one-way paths between a

moving acoustic source, S, and a moving receiver, R, i.e., a narrow

pulse transmitted from S is r"-_:ived at R intei,,Linally (communicating)

or unintentionally (interferring). The analysis is restricted for now

to narrow (delta-function) pulses for simplicity but the more general

finite width puls2 will be treated subsequently with a measure of

"narrow" given then. In this, 8 is the local slope of the reflecting'

boundary which is presumed to have correlation lengths of bottom Rle-

vation and its first two cerivatives very large relative to the wave-

length of the acoustic energy. As a concomitant of this, it is pre-

sumed also that bottom elevation variance Is unimportant. As this

latter assumption will not always be valid, the effect of importantly

large elevation variance Ji treated in a subsequent section. For tha

sake of simplicity in disc ,ssing the problem, only one-dimensional

roughness in the direction of propagation will be considered; extension

to two-dimensional roughness is pOS3ible though tedious (Appendix I).

The one-dimensional problem is reasonably descriptive of the two-

dimensional situation because the probability of paths at large

azimuthal excursions from the plane of Fig. 1 is small (Ref. 2) for

typical sea bottom, and this being so, the signal transit time and

3
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doppler frequency between S and R are determined with only small error

by in-plane components.

Now in Fig. 1, the relationships &iong the several variables is

as follows:*

x = zS C.)2C (1A)

Xft - x = zA cot (p - 2e) (1B)

from which it develops that a ray from S will reflect to R if

9 = O M [p- arccot (xg - z3 cot C)]z (2)

where the subscript M indicates that a multipath exists between S and

R as a function of w, z,, z1 , and xR. It has been shown (Refs. 1,2;

Appendix I) that if 0 has a Gaussian, I.e., normal distribution then

the probable or expected number of multipaths in an increment of

bottom distance x is

p(M in dx: cp, zs, zp, xt) R dE(N ) = - exp (-2/22) dx (3)

It may be mathematically more satisf,:i tg t-o assume tar 9 as having

Gaussian distribution; if cO << I it, makes little difference which

assumption is made, although as 8 ' tan 0, Gaussian 0 yields greater

If index of refraction variation is, on the average, important then

this analysis must be modified (Ref. 2).

5



expected values as is clear from Eq. 3. Presently, experimental data

are insufficient to make a decision between the two assumptions and a

Gaussian oistribution of 8 is used to simplify calculation.

Now the e-'pected number of multipaths in dx may, using Eqs. 1A

and 3, be transformed to the expected angular density of one-way multi-

paths E(N ) a3

.x=1 )= csca Cp exp (-O'/2co.) (4)

In anticipation of determining transit time and doppler frequency

of multipath arrivals, the cumulative expected number of multipaths

E*(p) between cp = O deg and c is determined from Eq. 4 as

E*(m u(C FEC 1  dcp (5)

I o

the integration being carried from p = O+ to avoid a singular point at

S= 0 which arises from using B rather than tan e in Eq. 3.

Given the conditions described graphically in Fig. 1, signal

transit time and doppler frequency may be determined. From Pig. I the

one-way signal transit time of narrow pulses is

I"

t 1/(Z5 /c) = [csc ýO+ (zR /z3) csc (cp - 28) (6)

6



and the one-way doppler frequency is, approximately (Appendix II)

(AlIfo)]
vs/c )I cos CP + (v /vs) cos (ep - 2e) (7)

In Eqs. 6 and 7, c is sound speed, fo the at-rest frequency of the

sound propagation of S and it is assumed that vs and vp are positive

as shown in Fig. 1. Figure 2 shows E*(cp), ti(0) and Af.( ) for the

following values of parameters to be used in this paper unless other-

wise noted:

xt/zS = 5.5

z3 = zo = 2200 fathoms = 13,200 ft = 4024 m

vs = VA = 0.01 C

c = 5000 fps = 2961 knots = 1524 m/sec

%po = arccot [xl/(z, + z.)I = 20 deg (8)

CAR I a = 15 deg

4ý&X = 25 deg

a a= 3.75 deg = 0.0655 radian

[-BO(0)/B (0))1 = (1025 ftr' = (312.5 m)'

Figure 2 has special utility in that if transmission from S is between

± n. and cp , ,nly, then for this beamwidth the expected number of one-

way multipaths between S and R is just E*(q.ax) - E*(9si,,).

7
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1. Multipath Maximum Number for Fixed Beamwidth

Equation 5 which gives an expression for expected number of multi-

paths may be used to determine beam depression to maximize the number

of arrivals at R from S for a 'ven beamwidth, A•p. Consider

I\ FBý(O)1 rc 0+i4cp2 9E(N 1 ) =csc ep exp [ /2cl)J dp (9)

where Aco is a fixed beamwidth and cp, is the beam center. If Eq. 9

be differentiated with respect to cp, and set equal to zero, then there

results the condition for which E(N,) is maximized as a function of

'4c•

Using Leibnitz rule, the derivative of Eq. 9 with respect to (4

is

rdrI71* cac N. + iacp) exp [-eP.(%~ + JACP)/2aos]

(loA)

- Cse ((p. - jtcp) exp -e(CPO - Acp)/2?91 + 0~

If this derivative be set equal to zero there results

csc 2< +- .,<,> exp [-, + =&,</,, }

(1l0B)

csc2 (2 - j-Acp) exp [-e(c - *Acp)/2a?]

9
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I
gwhich by reference to Eq. 4 is simply the condition that VCLa

(P 14),d(.) * In other words, for a given beamwidth c,,. - p. I = Acp,

I the number of multipaths within Acp will maximize when the angular den-

sity of multipaths at the beamts edges are equal; generally cp

arccot [x,/(zs + zm)] = CPa, the apparent specular point.

1 2. Doppler FreqUency Mean-Slope Deviation Relationship*

A measure of surface slope standard deviation from the dopplerr frequency mean devolves from the case in which S follows R at fixed

f xR, i.e., IvsI = Ivft. Then, for e small, doppler frequency is given

by

(A fc a! -cos p- c (cp - 20)

9 - 20 sin,

5 and for this condition the expected value of the absolute deviation of

doppler shift is, for o0 small also

[ I/f)1] -2 T2 2 sin c exp (-6'/2c1 ) de (12)J £i (v,/f , -2 exp

weWhat follows may bear some pertinence also to an electromagnetic
source and its receiver moving relative to a randomly refracting
ionosphere.

[10



where p = cp(8) from Eq. 2. If a mean value of C-, M - arccot

xR/(zs + zm) iv used, then

E[I (AfI/fO 4a, sincp (13)(V /vsc) - ()

i.e.,

EI(Aft,)I E- 2 4-2JT (vs/c)foo8 sin cp (14)

Apparently, therefore, mean doppler shift is a direct measure of ocean

bottom roughness variance; for conditions of Eq. 8, Eq. 1 takes a

value of 0.2 cps/kcps. A related result is obtained if <(Af,)o> is

determined instead of <IAfI> .

3. Transit Time and Doppler Frequency Characteristics

Figure 2 and the analysis leading to it provide a basis for de-

scribing some of the statistical characteristics of signal transit

time and doppler frequency. Generally, the expected number of arrivals

until t1' is

[E(N" ],<ti t CP'(t) [dEN dc (15)

where p, (t,') > cp and cp1(t') < cp are angles appropriate, as in Fig. 2,

to a transit time t,'. Thus the time rate of arrivals is just the

11
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derivative of Eq. 15 which, using Leibnitz rule, is (with primes

omitted)*

dE(Nd dr\ (16)

i where qj < cL(t) < cpo and cpo < cpu(t,) < qPsx, p = arccotr x,/(zs + zm); if cpA(t,) < cp6 1 or if rn,(t ) > ca then dy/dt1  0 .

The expected number of arrivals from S at R orior to a given

time tj is available in an alternative form from Eq. 16 by integration;

thus

E (NI )11 4A ti = fts [ d, dt (17)

where the integrand of Eq. 17 comes from Eq. 16 with the associated

Srestrictions, and tin is the least transit time appropriate to the

beam, (cpsg, axII). Clearly

ilim I [d? CP&x E

Jim ft ILI!&.] dt1  fePa rd~ dc (18)

A parallel construction for doppler frequency characteristics is

possible and one may write straightforwardly the analog of Eq. 16 as

It is assumed that dxp/dt = 0 as a consequence of small vs and vo;
this introduces a negligible error.

[ 12
I



(EN FEN l dCP) {[dE (NIL ]dvNCPu c(Af 1 (19)

_T~~ ~~ __=,dp k=

where c6 ! cp (Af,) < p.c and V,' < pu(Af,) c 6,.. In this CP =

c (Af1 ). ] from Eq. 7; again if cp, and vu lie outside the interval

(c0in, qax) then (dc) 0.

The expected number of arrivals from S at R with doppler frequency

less than a given value Af1' is, in parallel with Eq. 17,

E(N 6 ( f[ ] dAf, (20)

The transit time and doppler frequency characteristics of the

signals are not independent as Fig. 2 suggests: For a given one-way

path arrival time, one of two possible sonar beam depression angles is

permissible, in general, and the doppler frequency is fixed by these

angles. Hence for one-way transmission, doppler frequency is one of

two values fixed by arrival time.

Figure 3 shows the cumulative number of "arrivals," i.e., multi-

paths of a single very narrow pulse as a function of time and doppler

frequency. For the typical values of Eq. 8, numerical values from

Fig. 2 are

maximum number of multipaths or "arrivals":

[E(N] = 1.32 13,200 ft 1025 ft = 5.4

13
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and from Fig. 3,

time interval of 50 percent of the arrivals:

S3, 200 ft

(At)o 5 = (5.854 - 5.848) 3 ft 15.8 msec

Figure 2 indicates that

maximum doppler frequency (Of) :

=Af= 1.88 50= i8.8 cps/kcps of f.

and Fig 3 shows

frequency interval of 90 percent of the arrivals:

t ~ ~ =(1.880 - 1.8535) lk = 0.265 cps/kcps of f.

i.e., substantially all the arrivals have doppler frequercy between

18.5 and 18.8 cps/kcps for R closing on S each at one percent sound

speed, and for typical geometry and ocean bottom conditions.

The situation which Fig. 2 typifies may be elaborated. If S is

not transmitting omnidirectiornally (0 9 p 9 180 deg) but is limited

(4 1, !5 p s •,x ) then the expected number of multipaths to R may as

stated be determined as the difference E*(.&x ) - E*(q6 a) for this

latter case. The distributions of Fig. 3 will, of course, be modified

by this, but these actual distributions may be determined from Fig. 2

15



with care for beam limits. If further, R is "listening" with a limited

beam then the number of multipaths and their time and frcequency charac-

teristics will be determined by the interval Ax of ocean bottom which

is common to the beamwidths of both S and R. Finally, if the upper

bounding surface is planar for waves of fr-quency f0 (Ref. 3) then the

number of paths to R from S via the surface may be determined by re-

placing zf in the foregoing by 2z, - zR (the distance above the bottom

of the virtual receiver). If (z, - z,)/z, << 1 then the number of

paths via the bottom and surface is approximately that via the bottom

alone, and the arrival time and doppler frequency characteristics will

be similar also for the two path types. Hence for this situation,

numbers of arrival and densities of arrivals in time and frequency wi!l

be approximately doubled.

B. ROUND-TRIP PATHS# NARROW PULSE

The treatment above of one-way paths provides the basis for deter-

mining the expected nw.aber, transit time, and doppler frequency of

round-trip paths for sound waves reflected from a not-too-rough

boundary. Figure 4 gives the geometry and nomenclature for this round-

trip case which is a straightforward elaboration of Fig. 1.

Now if p(M in dx,: p1, z,, z4, xp) is the probable number of out-

going multipaths occurring in dx, , and p(M in d : c&, zs, zo, x ) is

the corresponding number of a rnturn path occurring in dx, then the

probable number of round-trip paths as a result of reflection at R

going through dx, and dxe is the product of these individual incre-

mental numbers and

16
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d2 E(N [dEN] [dE(N] dx) dx (21)

The expected number E(N ) of round-trip paths between S and R i s the

integral of Eq. 21, i.e.,

E(N) = f f d2 E(N• )(22)

or in explicit form as a function of beam depression angle

E(TMq) =)cscf a)aIsc•

e x p " ½ e M/ a ) + d c 1  d q%

As p, and c% and independent, if R is ensonified and reflects only in

the two downward quadrants and if the transmitting and receiving beams

at S are identical, then from Eqs. 4 and 23

E(N ) = [E(Nj )] (24)

If, however, R is ensonified from both planar surface and rough bottom

and can reflect these arrivals in either the bottom or surface-bottom

paths, then the total expected number of multipath3 may be as large as

4[E(NI )]2 . For the example of the preceeding section for one-way paths

18



with zt a! z,, this takes a value of 4(5.4)2 > 116, not to be sure, all

of the same intensity. Figure 5 shows the density of multipaths in

transmit-angle (cp1) and receive-angle (qý) space based on the inte-

grand of Eq. 23 and it is interesting that the maximum angular density

occurs for p a! 18.7 degrees, at lesser depression than the "'specular"

angle cpo = 20 degrees. Figure 5 is, of course, a two-dimensional

representation of a surface and provides a basis for considering the

transit time and doppler frequency characteristics of round-trip

multipaths and their density distribution in time-frequency space.

The round-trip transit time tR of a narrow pulse is

t = t, + to (25)

where

tl/(z3/c) = [cSc C + (zN/z,) cac (CP - 2e,)], i = 1,2

Thus once the geometry of Fig. 4 is fixed, t1 = ti(cpl). The round-

trip doppler frequency is

A =f + Afr (26)

where there is associated with each direction a doppler frequency

given approximately 4s (see Appendix II)

19
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I

Of [co /CSCP 1 + (vR /vS) cos (,01 - 28)J, i = 1,21 I
and again Af1 = AfI (VI).

Given the foregoing equations, it is of interest at first to de- 3
scribe the arrival rate of a narrow pulse on round-trip paths. Now

the probability of an arrival during dt" is just the probability of an I
arr-'al at R during dt, multiplied by the probability of an arrival at 1
S from R during dt 2 = d(t' - t,), summed over all t' = t, + t.. This

is shown schematically in Fig. 6. Thus F
p(M n dt) itt• (ts ),i 1,

p(M in dt") f p(M in dt,) p(M in dtg) dt, (27)
(tJ I ,l

or, omitting primes I

I ka(t t t dt, (28)-

I
with the constraint that all of the interval tI, te lies within the

interval cp, 1, . Considering the complexity of the relationships I
among t,, t9 and ch, %, it is likely that the maximum of Eq. 28 is

most readily found through numerical integration of that equation. A

construction similar to Eqs. 27 and 28 yields for dopper frequency

I

Z WI.. ( ) N JAf" (29)"Afit- W2 )a. a * J(Af, ) A- Af,

21 I
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I

and the maximum of this may again be found numerically. Figure 7

(obtained by graphical calculation and subject therefore to some

error) shows the time and frequency distributions resulting from Eqs.

28 and 29. For the parametric values of Eq. 8, the interesting points

of Fig. 7 are:

transit time tg for maximum arrival rate: (to)gax r-ta

(tR)Max rate - (tR )a4u - (11.699 - 11.695) (13,200/5000) = 16 msec

maximum rate of arrivals:

-E 58 [(13,200)(5000)/1] (1025 ft)" = 0.37/msec

doppler frequency corresponding to 'xiimum spectral density:

Af m 3.757 (50 fps/5000 fps) = 37.57 cps/ikcps of f.

maximum spectral density of arivals:

dWA- .(52,) ( 500 f ps 13,0 t) (102 5)-2 _ 0.9(10)6/f,

The time and frequency distributions of Fig. 7 are each without

relation to the other. Thus one may desire the arrival density

23
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I

distributed in both time and frequency. Equation 21 may be trans-

formed from (x1 , xY )-space to (t,, Afm )-space through the Jacobian;

thus -.

d2 E~) [dEa i[dEoN1 )] Jx (,.* *x***3  dt, dAfR. (30)d•(N) Ld×x (to , 6f) It

where

S(xix t Ft-

It may, however, be more convenient to write Eq. 30 as a function of

(cpi, % ) rather than (x1 , xe ). Equation 30 represents a surface over

the (to, Afm) plane, the height of which measures the density of

arrivals as a function of time and doppler frequeticy. If Eq. 30 be

written

dt, = [ jg L( V4w. (31)

then if Eq. 31 be evaluated at AOR = Af' (a constant), there results

the time rate of arrivals per unit doppler frequency at Afo. Con-

versely, if Eq. 31 be evaluated at to = t' (a constant), there results

the spectral density of arrivals per unit time at tR. The surface

represented by Eq. 31 is shown for typical values of bottom-bounce

25-



geometry (Eq. 8) in Fig. 8. In this figure, in (to, -Ifx)-!pice not

enclosed by the zero contour arrivals are impossible; the lites of in-

finite arrival density are a set of measure zero in (to, Afq)-space,

consequently total arrivals remain bounded as previous analysis has

shottn. The relationship of Figs. 4 and 7 to Fig. 8 is this: The

(tA, Af1 )-space of Fig. 8 is the transformation frcm (wj, qp )-space

of Fig. 4 by means of the Jacobian lJ(cp,, cb)/(tR, Lf,,)I; Fig. 7A rep-

resents the time rate of change of the cross-sectional area of a slice

through the surface of Fig. 8 for a constant-time section and Fig. 7B

is the corresponding change of cross-sectional area in the ortbcgonal

direction. Shown also in Pig. 8 in Sec. A-A is a typice- time rake

of arrivals plot, and in Sec. B-B a typical doppler spectrun. In this

section, finite beams for transmitting and receiving may cause inter-

mittencies, i.e., because of beam limits, certain tm - Afp pairs are

prohibited.

C. LONG PULSES

If the pulse transmitted to R Rnd reflected is not very narrow,

then conceivably arrivals at S from discrete points of x will overlap

in time upon return tc S. Suppose the pulse transmitted by S has dura-

tion AT. An arrival at time to may then be a leading edge of a pulse

appropriate to to, or to some portion of a pulse the leading edge of

.hich cccurred prior to Lq. Thus at time tp, the rate of arrival of

long pulses is

[ dE(N=) d ft rdSNi2 dtd (32)

26



CID-

_~ 0V,

a--at

U.- U
0.0 I

~ 4> I

~ -lo
>.

44.

-4 4-

rd lei t

0:/A :1une odo i.-uvi oii
02



wflerý. the integrand comes from Eq. 28. The expected number of discrete

arrivals at S at t' is just the integral of Eq. 32, i.e.,

= fe dE a.t] dta

AT/(z•/•)~ ~ ~ ~ ~t -A 2.t0 whic foIaue E. 8 orsed oAL•1.

(33)

ree. n 9m E(N )AT-

Wrie(z? is amean value of dE( durigt Tt
wre~K dtm I dtRrigt- To

k-R Pi,,,re 9shows an extension of Fig. 7A for a long pulse with

!ýT(ZSTT)= 0.004 which for values of Eq. 8 corresponds to AT Z' 10.6

msec. In Fig. 9 the maximum of [Es A a! 0. 22 {(zS /,T)2 Bý(0)]

thus for the typical values of Eq. 8

expected number of discrete, simultaneous arrivals:

[E= 0.22 1(13t2O0 ft)3 (1025 ft)

= 3.7

i.e., at tA(zs/c) -: 11.702, there are arrivals at S reflected from R

along an expected number of 3.7 discrete paths. Referring to Eq. 33,

if it is desired uhat no more than [E(N9)J] arrivals are to be

expected !t.. given instant, then

/dE( ] (34)
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Using Fig. 7A and the non-dimensional form of Eq. 34 gives

pulse length for a maximum of one arrival at a time:

AT a58 /0.001

For the values of Eq. 8 this corresponds to AT = 0.00 t13,200 ftI % ,000 fps_

2.64 msec pulse length. This latter calculation gives some measure to

the meaning of "narrow pulse." It appears reasonable to call a narrow

pulse one such that as a function of the geometry of concern, i.e.,

Fig. 4, it is expected that no more than one round-trip arrival will

occur at a given instant. Some intuition to the relation between

pulse width, beamwidth and expected number of discrete arrivals may be

gained by over-plotting on Fig. 5 time bands corresponding to pulse

widths of AT; the integral over the angular intervals corresponding to

the time b&ids yields also CE(N )]A . This is shown in Fig. 10 where

transmitting and receiving beamwidths of 10 degrees centered at a de-

pression angle of 20 degrees are included to show the truncating effect

on expected arrivals due to restricted beams. Apparently from Fig. 10,

after a sufficient period of time that an arbitrarily large fraction of

the pulse width has passed from the (cp1, % )-space, a succeeding pulse

may be transmitted with an expected degree of ambiguity resulting.

Thus a basis for pulse repetition frequency is established for bottom-

bounce mode of piopagation of sound.

The spectral distribution of a long pulse is, with reference to

Fig. 8, the integral. over the surface between (tp - AT) and tA and an
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infiritesimally wide strip dAft. Thus, using Eq. 31, the spectral

distribution of arrivalo at tp for pulse of width AT is

FE N)I (X ),A I'dt (35)AT= ft -A:Tt. (N•d,]• x I tA,

Section B-B of Fig. 8 provides a basis for long pulse return spectra;

the integration of Sec. B-B over AT will have a smoothing effect on the

section. The resulting spectrum for pulse length of AT # 0 will prc-

gress from that shown in the section, to one of roughly Gaussian char-

acter, then eventually to a more or less flat spectrum for very long

pulses.
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III. PEWPURBATIONS

The analysis in the foregoing admits kinematics and bottom slopes but

keeps the geometry of Fig. 4 static and assumes a planar bottom for

computing OM and t and Af. The error in this needs to be considered

as a qualification to the analysis. Now from Eq. 2, 8O may be written

ds

eO= [cp - arccot - cot C] (36)

The uncertainty in x4 arises in the motion of S and R during AT, i.e.,

during AT, xN changes by an amount

Axk = (VS + vg) AT (37)

If a8 << 1, vs -: vM and za • z, then

(XM) - Axx - 2z3 cot VO - 2v$AT

(38)

= 2z3 cot ep, 1- k_ J ( (zc)) tan co]

where the second element in the brackets is an error term. For the

typical values used previously
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U

A () )t = (o.oo0 (.004 0.364) 0.000015

Ii.e., the fractional error in x. due to V3 and v. during AT is 0 (10-15).3 Another unrelated uncertainty arises if x4 is estimated from a knowl-

edge of cp. and <zs> ; xp may then be uncertain by approximately

( (a,/ Zs>) cot cp0, i.e., about 400 ft for conditions of Eq. 8 (Eq. 40).

The uncertainty in zs and z. arises from the fact that a surface

Shaving a slope standard deviation ae has also an elevation standard

deviation o,, so that the distances of S and R above the point of re-

flection are uncertain in the order of a,. In - present problem we

have asswaned values of and of [-B'(O)/Be(0)], and we may approximate

a, from these. Now, approximately!
1 00 a,/r, (39)

where r. is the correlation length of bottom elevation. If r, = O(r 8 ) =

o(-B'(0)/,Bg(0)]* I as is likely, then

10 alf 0 1 {a0 [- B a(0)/B 9(0] 4  (40)

In what follows some intuitively based approximations are used. In
parallel with 0 arctan dz/dx n- Az/Ax if Az << Ax, the assumption
is made that 08 - o/!r,. Also, if for example B6 (r) is of the form

Be(r) = a' exp [.(r/r8 )2J, then [-BO(O)/Be(0)]-' -_ /,,
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For the values of Eq. 8 used previously

a,= O (3.7 T) 025 f -) 67.5 ft

and from Eq. 25, the magnitude of uncertainty in tR is* AT/(Zs/C)

r2-(o/<zs>) csc rp. which has a typical value of 0.043. A com-

parison of the value AT,/Zs/C = 0.043 with the time interval of Fig.

7A shows that with 80 percent of the arrivals occurring within 0.045,

importantly large time dislocations of expected arrivals occur due to

bottom irregularities. Thus, for the situation in which correlation

length for bottom elevation is very small compared with the ensonified

interval, arrivals will occur more or less randomly in time and the

standard deviation of the time uncertainty tends to be a t 2f 4(o./c)

csc cP.. Hence the situation described in Figs. 2, 3, 7A, 8, 9, and 10

and the pulse repetition frequency criterion are ideals to be hoped

for but not to be expected. A more realistic estimate of arrival rate

(as in Fig. 7A) of narrow pulses is described by

I E __ dta (41)
qt_(1411 )IC o '[IPA LkŽJexP j(1li-t 4

in which at is the standard deviation of round-trip travel time

(- 2* (a,/c) csc ý 0) and a random normal distribution of z hence tn

is assumed. The operation of Eq. 41 tends of course to diminish the

It is assumed that atm is proportional to the square root of the sums
of variances of z for each leg of the round-trip path.
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maximum rate of arrivals and the number of simultaneous arrivals for

wide pulses and to distribute arrivals over a greater interval of

time. Figure -/A contains a dashed estimate of the effect of Eq. 41

upon the a, = 0 case calculated there.

The effect of bottom irregularities upon doppler frequency is

mnuch less pronounced. Equation 26 shows Afm to be uncertain to the

degree that Om4 is uncercain; this has been shown to be very small.

Thus the doppler frequency distributions of Pigs. 2, 3, 7B, and 8 are t

satisfactorily descriptive, but Fig. 8 will be smoothed as mentioned b

above by time-of-arrival uncertainty. T
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IV. CONCLUSIONS

This paper contains an analysis for determining the time of arrival

and doppler frequency characteristics of a pulse transmitted to a

tdrget bY reflecLion frum a not-too-rough surface such as the sea

bottom, and gives numerical values for a typical sonar applicetion.

The analysis may bp important in signal processing associated with

one-way transmission (communication and interference) anq round-trip

cransmission (ranging) and in the interpretation of data from marine

geophysical surveys.

The analysis shows that given sonar beam and source-targe, geom-

etries, the expected number of one-way or round-trip paths between

the source and target is determined primarily by the variance and

correlation length of surface slope, but that the incremental time

of arrival of the propagation along these paths is determined pri-

marily by the variancejof surface elevation from which slope variance

dc-.ives. Contrasted to dependence of time of arrival upon surface

elevation variance, doppler frequency is dependent primarily upon

surface slope variance. Thus, given the relationships among vari-

ances and correlation lengths for surface elevation and so-me of its

derivatives (p. 33), the expected number and doppler frequency char-

acteristics are determined primarily by the slope statistics of the

surface and time-of-arrival characteristics by surface elevation

statistics.
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Furthermore, the analysis shows a basis for maximizing or other-

wise modifying the expected number of arrivals for a given beamwidth

through so ;•r beam positioning or through tailoring of pulse length

or pulse repetition trequency. A criterion for pulse length and

pulse repetition frequency for bottom-bounce propagation emerges

from the analysis.

Lastly, the analysis need not be restricted to the sonar problem

described here, but may be applicable to ionospherIc and other mete-

orological investigations in which reflecting or refracting centers

may be in motion and source and target may or may not be moving.
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APPENPDIX I

DERIVATION OF .RELATION FOR EXPECTED NLMBER OF MULTIPATHS

Consider a counting furZtio- Fd such t;at

1

F 4 (8.., 0)= when 10, - el < d/2

I-1-

= 0 othrwodie

where 0 = 3(>:) and 3.(x) are functions of x. Then, in the region of

x of interest, i.e., Ax the nuamter of one..way crossings N, will be

(Ref. 4)

N = lim f ' ; F(6,, ) ix 1-2d-0. fa x

Now a;uppose that 9'(x) is a rondom process with W(em, 9': x) as joint

probability density function with am. Then the expected number of

crossings of (aM, B), i.e., the numbor of one-way mu]'zipaths over a

one-dimensionally rough surface Is g~ven as

E(Ni) = / 9' I W(Oe• 8': x) dO dx 1-3
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L.- m-m • - ________ ________ _____ r_

Now if 6 and 6' have normal distribution, then

E(N1 ) = I I J- fe exp 7 + I dx 1-4

Integrating first with respect to 6" yie,.ds

E(N1 ) = • (°L J exp [-½ (G./oG)j dx 1-5

But if Be(r) is the correlation function of 6 and if B6 ,(r) is the

correlation function of 0' then it is true B (0) = a2- and B,1(0) =

-B(O) = so

E(N -I. ~ J 'xp [..~ (Ow/O,)D] dx 1-6

In a similar way, thwe expected number of one-way multipaths for

two-dimensional roughness ý.q (Ref. 2)

I rB()*r BO)1 1  e' e
[E 2D "Y 0 Jxd I~.J x~

in which OM - 6(x,y) and for round-trip multipaths for two-dimensional

roughness

41



1-8

exp 9 + +2 Cr + j djdvddt

and this could of course be elaborated to round trips over two-

dimensionally rough surfaces bounding both surface and bottom, in

which case an eight-fold integral would result (Ref. 2).

What has gone before assumes e is randomly distributed and z is

precisely known, which may not be true. If e and z are simultaneously

uncertain than the counting function becomes for z = F - e

F4 (e, z) = when J cot (p-20) - (1 I , 1)cot • 1-9

= 0 otherwise

In this event E(N,) becomes (for z' f 8)

= ffff = ~ cot Cep - 20) - 'I E{zý-CCX ot CP1 -

* W [z, e, 9': x0p)] dz dO WO' dx

integrated over the whole domain of z, e, e' and x. The complexity

of this for the purpose of evaluatiox, makes tba approximate approach

of Eq. 41 appealing.
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APPENDIX II

DOPPLER FREQUENCY RELATIONSHIPS

Let Fig. II-1 be used to represent doppler frequency for both one-way

and round-trip paths. For the one-way path if fo is the at-rest radi-

ation frequency of S then the frequency fl received at R is*

f + (vR/c) cos (00 - 281) 11-i

t 1 - (vfc) cos •,

If vs/c << 1 and vq/c << 1, as is usual, then

A = f, - fo 2 (v,/c) cos cp + (vg/c) cos (CP1 - 2e,) 11-2iL fo

In the round-trip case, the velocity ve may be resolved into a

component bisecting the arriving and returning rays, in which case,

using the approximation just developed

F OR a!(v,/c) cos C + (vs/c) cos q

11-3

+ 2(v"/c) cosil [(0,-20.) + (qpý-28,)]}cos{l [(q%-28.) - (ep1 -281)]l

See, for example, any elementary physics text.
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Applying suitable trigonometric identities to this gives

(Af q/fo) (vs /c) cos cpl + (vR /c) cos (cpj -20,)

11-4

+ (vs/c) cos qb + (vR/c) cos (cib-202)

that is, for the round-trip case -Lt is as if a doppler frequency

(VIs/ýC)) = COS CPI + (V /Vs ) cos (pI-28, ), i = 1, 2 11-5

may be associated with each leg of the round-trip path.
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