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ABSTRACT 

In [1] and [2] identities for the wave equation similar to 

the energy identity were derived by showing that if u is suf¬ 

ficiently smooth, there exist linear first order operators Nu 

such that Nu Ou, with Q = ò^/òt^ - A, can be written as the di¬ 

vergence of a vector. Thus if 0 u =* 0 a certain surface integral 

in (x,t) space vanishes identically and this yields the identity. 

One of these operators is 2rtur + (r2+t2)ut + 2tu, another is 

+ ^ut + u r ** !xl • For the familiar energy identity 
Nu = Uj.. 

In Part I of this report these identities will be re¬ 

derived for three space variables by noting that certain trans¬ 

formations, in particular the Kelvin transformation, leave the 

wave operator invariant and hence the classical energy identity 

can be transformed into other identities. 

In Part II, the Kelvin transformation and the resulting 

identity are applied to incoming and outgoing waves as defined 

by Lax and Phillips [3,4], 

In Part III the main theorem of the first part is used to 

prove the following result in geometrical optics: Suppose 

that we are given a smooth, star-shaped perfectly reflecting, 

three-dimensional body that extends to infinity and that a high 

frequency harmonic source of light illuminates the region out¬ 

side the body in such a way that no shadow is cast. The field 

is given by a solution of a boundary value problem for the re¬ 

duced wave equation. There is also an approximate solution 

given by geometrical optics. The theorem states that these two 

are asymptotically equal in the limit of infinite frequency for 

the harmonic source. 
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In [l] and [2] identities for the wave equation similar 

to the energy identity were derived by showing that if u 

is sufficiently smooth, there exist linear first order 

operators Nu such that NuDu, with D » ò^/òt^ - A, can 

be written as the divergence of a vector. Thus if 0 u « 0 

a certain surface integral in (it) space vanishes identically 

and this yields the identity. One of these operators is 

2rtur + (r2+t2)u^ + 2tu, another is rur + tu^ + u with 

r * |3?|. Por the familiar energy identity Nu * u^. 

In Part I of this report these identities will be 

rederived for three space variables by noting that certain 

transformations, in particular the Kelvin transformation, 

leave the wave operator invariant and hence the classical 

energy identity can be transformed into other identities. 

In Part II, the Kelvin transformation and the resulting 

identity are applied to incoming and outgoing waves as 

defined by Lax and Phillips [3.4]. 

In Part III the main theorem of the first part is used 

to prove the following result in geometrical optics: Suppose 

that we are given a smooth, star-shaped perfectly reflecting, 

three-dimensional body that extends to infinity and that a 

high frequency harmonic source of light illuminates the 

region outside the body in such a way that no shadow is 



cast. The field is given by a solution of a boundary value 

problem for the reduced wave equation. There is also an 

approximate solution given by geometrical optics. The 

theorem states that these two are asymptotically equal in 

the limit of infinite frequency for the harmonic source. 

I. Energy Identities 

1. The classical energy identity. 

o 
Lemma 1. If u has second derivatives in L in D then 

2J/Ut Ou|a*| “/ ««t2+<"“lX - "n V'10' 
D D 

where tn,xn are the components of the unit normal in time 

and space and un is the derivative in the direction of the 

outward space normal to D. 

For future reference we note: 

a) On that part of D for which t is constant the inte¬ 

grand is u^ + |Vu|2. 

b) On that part of D which is independent of time 

the integrand is - u^. un. 

c) On that paît of D which is characteristic, xn " ± ^ 

the integrand is (uf + (|Vu|2 - u2)) where u_ is the 
«/2 s n 8 

derivative along the bicharacteristic in D, un is the outward 



space normal derivative. Thus the integrand involves only 

derivatives in the surface. 

It is convenient to have the three-dimensional wave 

operator in polar coordinates (r,ó,<¡>) and to introduce 

w ■ ru as dependent variable. Setting .A * sin"2Ôò2/ò<l>2 + 

sin”sin 0ô/ò0)/ò0, we find 

Ou » r"1 Lw * - wrr - r”2A w) 

• 

By substitution in the energy identity one can find 

an identity for w. A more convenient expression Involving 

only derivatives of w is obtained by adaing to u^Qu » r“2w^.Lw 

a divergence expression which vanishes identically. In 

this case we add (r^w2)^ - (r’1w2)tr. We then obtain 

Lemma 2. If u has second derivatives in L2 then 

w ** ru satisfies 

2 J r2ut Ou dv « 2 J" w^Lw ** J ^ (w2+| \fo|2)tn 

f <S> i 
- 2wtwnxn> dö- 

Here <P is an arbitrary domain in t,r,0,<¡> space, dv, do* 

are volume and surface elements, wn is the normal derivative 

of w in the space direction. Also 
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- - - ™ 

a) On that part of Ç with t constant, the integrand 

is w? + I Vw|2. 

b) On that part of invariant in time the integrand 

is - 2w.w . z n 

c) On that part of ^ that is characteristic the 

integrand is -i- (w2 + (|Vw|2 - w2)), where w0 is the 
*/2 ns 

derivative along the bicharacteristic. 

d) Where G* is space-like the integrand is positive 

definite in u if tn is positive. 

2. The Kelvin Transformation. 

We consider the Kelvin transformation 

(1) X* » x/(r2 - t2), t' - t/(r2 - t2) or r* - r/r2 - t2 

leaving unchanged. It maps the exterior of the cone 
2 2 r « t into itself taking the origin into infinity and 

the point («,0) into the origin. The cone r2 « t2 is 

mapped into a *cone at infinity" since r2-t2 - (r^-t*2)"1. 

The cones r + t » k are mapped into the cones r* ^ t’ * l/k. 

Thus the "cone at infinity" orthogonal to r-t - k is mapped 

into r'-t' “ 0. To find how the operator L transforms we 

note that A is invariant and d/òt + b/or ■ (r* ^ t1)2 
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(ò/òt1 - ò/òr*)* Hence ò2/òt2 - ò2/òr2 * (r,2-t'2)2 

(ö2/0t'2 - ó2/ór|2). Thus rOu » Lw * (rt2 - t,2)L*w in 

obvious notation. Thus, setting u* * w/r' we see that if 

u « w/r satisfies Q u a o then u* satisifes* û'u* - 0. 

Puthermore, Lemma 1 or 2, the energy identity can be 
2 2 

applied to u* in the primed space in the rraage of r > t , 
* 2 2 

i.e. in any subdomain of r’ > t' , and then transformed 

back into the unprimed space to yield an identity for 

r ® 
u * —- u' in the case of Lemma 1 or directly for w in the 

case of Lemma 2. However it is awkward to transform surface 

integrals from the primed to the unprimed variables. We 

note instead the transformation of the volume integral 

I aj^ u^Qu’dv' * /wtfLW a J (2rtwr + (r2+t2)wt)Lw r'^dv 

D» f r' $ 

a 2Í(2tx*Vu + (r2+t2)u. + 2tu)f7udv 

Furthermore 

2tx*VuQu - (2rtut(5?*Vu) + div (tu2x) + 2 div (t(x*Vu)Vu) 

- div (t|Vu|2xJ 

^ee 15J. 
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Is a quadratic form in Vu, ut as is 
o W 

(r2+t2)ut0u - •! ((r2+t2)(u2+|Vu|2))t + div ((r2+t2)utVu) 

and also 

2tuCTu - 2(tuu^)t - div (2tuVu) + (u2)^. 

In general a quadratic form in Vu,u^. cannot be a divergence 

expression. It follows therefore that when the three above 

expressions are added the sum must vanish since we know, 

from the primed space, that the sum must be a divergence. 

Thus we obtain 

2 
Lemma 3» If u has second derivatives in L then 

(2tx*Vu + (r2+t2)u 

D 

(r2+t2)u2+(Vu)2) + 2uut - u2 } - { t(ut " (Vu)2)5?«n 

.+2tu)a u dv 2tutx*Vu + ^ 

+ [2t(5?*Vu) + ( |x|2+t2)ut+2tu]un y xn } ds 

where iT is the unit space normal out of the surface. 

It is also clear that the restriction in the derivation 

2 2 
of this result to the domain r > t may be dropped. 
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We can obtain an identity for w corresponding to 

Lemma 2 by adding the appropriate divergence expression which 

in this case îb J \ (wV1(r2+t2))rt + | (w2r’1(r2+t2))tr} 
D' 

dödOdrdt and we obtain 

Lemma 4, If w has second derivative, in L^ then 

J (2rtwr+(r2+t2)wt)Lw %-¡{{\ (r+t)2(wr+wt)2 + ^ (r-t)2 

(wr-wt)2 + I !r2+t2)(|7vr|2 - tn- f t(w2 - |VW|2) 

3t*n + (2trwr + (r2+t2)wt)wn } xn } .d| 
r 

This identity was derived in [2]. 

The surface integrand is positive definite for space¬ 

like surfaces with * 0 and involves only surface deriva¬ 

tives on characteristic surfaces. 

The last statement can be derived by noting that the 

integrands of the surface integrals in both Lemmas 2 and 4 

involve only derivatives of w. Now / w,, L'w « 
J ^ ri 2 

J (2rtwy + (r^+t^)w^)Lw Hence the difference between 

the two corresponding surface integrals vanishes identically. 

If the integral over S' is transfomed directly into an 
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integral over S we see that we have then two equal integrals 

over S whose integrands are quadratic forms in Vw and w^. 

Hence we would have an identically vanishing integral over S 

whose integrand is of the form + Ptn where Q, P are 

quadratic forms in Vw, w^. Thus J (div 5 + P^)dv vanishes 

identically. But since Q and P are quadratic forms in Vw, 

Wj. it follows that (Î » 0 and P * 0. Hence the integrands of 

the two surface integrals are the same. Hence the surface 

Integral of Lemma 4 is what we would have obtained by trans¬ 

forming directly on the surface integral of Lemma 2. 

If the surface in the unprimed space is characteristic 

the image in the primed space is also characteristic and 

the integrand of Lemma 2 involves only characteristic 

derivatives in the primed space and hence after transfor¬ 

mation only characteristic derivatives in the unprimed 

space as we wanted to show. 

4, Other identities. 

It might now appear that we could obtain still another 

identity by applying the Helmholtz transformation T to the 
o 

primed space. However T is the identity transformation 

and hence no new information is obtained. 

Every invariant transformation leads to an identity 

but no other new identity can be derived from transforming 

the classical energy identity. For, the remaining invariant 



transformations are a translation, rotation or stretching 

of the coordinates. From the identity in Lemma 1 it is 

clear that a translation produces the same identity and from 

Lemma 2 a rotation does the same. Stretching the variables 

X* » kx, t' ** kt also leaves the identity of Lemma 1 invariant. 

However when a translation or rotation is applied to 

the coordinates one obtains from Lemma 4 new identities. 

The most interesting comes by taking t1 * t+c in the identity 

of Lemma 4 and equating coefficients of c. Thus one finds 

JJ w(rwr+twt)Lw r"2dv = J { (^(r+t) (wr+wt)2 + ^(r-t) (wr-wt)2 

+ t( IVw12 - w2))tn - ((w^ - |Vw|2) x*n 

+ 2(rwr + twt))wn)xn } dS. 

This identity was used in [l]. 

A shift of the origin in space or a rotation of the 

axes also lead to new identities. However stretching the 

variables plainly leaves these identities invariant. 

5. Hyperbolic systems. 

A somewhat similar principle can be applied to a vector 

solution u of the symmetric hyperbolic system 
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X 

y 
where x = (x^ ...xn) and A 

matrices. 

A ...) are constant 

Energy conservation yields, over any domain D 

where tn is the time component of the normal and *n is 

the space component. 

This system is Invariant if length and time are stretched. 

Hence if u(x,t) is a solution, so is u(kx,kt) and hence 

^ * X'Vu + tu^ is also a solution. 
k®l 

Applying the identity one obtains: 

0« J / (*.Vu + tut)2tn - (x»Vu + tut)(Axxn)(x»Vu+tu<fc) ^ d<r . 

Prom this one may, for example, conclude that if u has 

initially compact support then in any finite region the 

decays 
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This method can in fact be used on the wave equation 

and the identity of Lemma 4 obtained after some further 

integration by parts. 

II. Application of the Kelvin transform to incoming 

and outgoing waves. 

In [3,4] an outgoing solution u of the wave equation 

in free space is defined as one which vanishes identically 

for r < t+k, t > 0. By the Kelvin transformation, 

r « r’/r^-t'^, t * t'/r'^-t*^ and thus the corresponding 

solution u' * «pp to an outgoing solution vanishes for 

r' > -V+k“1, t' > 0. 

We introduce the Hilbert space of Cauchy data X « (^,4)) 

found by the closure of data of compact support in the 

unprimed space. The norm is the energy norm 

Ml “/ (4>s + |Vÿ|2)|dx|. The corresponding Cauchy data 

for a solution w of Lw « 0 will be (r^,r(|)) and the identity 

of Lemma 2 suggest the norm |MIW = J ( (r(())2+| V(r^) |2) ^ 

which we call the w-norm. Since the space of data is found 

by closing the space of data of compact support these two 

norms are the same. 

On the other hand the Cauchy data (4>,v) are carried by 
the Helmholtz transformation into the data 
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(ÿ',^ ) with V* “ -ir Ÿ -^4)* <) “ -TT ♦ 
j.-1 ri¿ ri¿ ri^ r' r* 

but these data do not necessarily form an element of the 

H'-space, i.e. Cauchy data of finite energy norm in the 

primed space. 

However there do exist subclasses of data in the 

space H*• 

It is also clear that any set of data can be split 

into its outgoing part and orthogonal complement by making 

use of the geometry of the primed space. In the primed 

space the outgoing wave vanishes on the cone r’+t* * u 

and the orthogonal complement vanishes in r' < t*. The 

two components of the initial data are found by the fol¬ 

lowing algorithm. First solve in the primed space the Cauchy 

problem for the corresponding data up to the time t* * k/2. 

Call the data at t' » k/2, Then solve two Cauchy 

problems backwards in time where the first problem has the 

same data as for |X| < k/2 and zero outside and the second 

problem has the same data as X2 for |X| >_ k/2 and zero inside. 

The two sets of corresponding data at t •* 0 are the outgoing 

part and the orthogonal complement. The first set yield 

the data of the outgoing componenc. 

To make the argument rigorous we note the following. 

We apply the identity of Lemma 4 in the primed space to 

the slab 0 <, t* < k/2 and replace w by aw^bWg. The 



coefficient of ab in this identity gives us a "scalar 

product" identity in the primed space. Now if w1 and w2 

are the two solutions to the two Cauchy problems described 

above this identity reduces because of the choice of data 

on t' “ k/2 to 

t' =0 

If this is transformed to the unprimed space we have 

t=0 

or the two sets of data are orthogonal as required. 

III. Geometrical optics with no shadow. 

We want finally as an application to show that geo¬ 

metrical optics yields asymptotic solutions to the reduced 

wave equation. The problem we consider is the following. 

Let V be the outgoing solution of 

AV + o)^ » 6(x-a) 

which vanishes on B where B is ¢) star-shaped with respect 

to a point inside it which we take as origin. We shall show 
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00 

that V is given by the Fourier transform 

u satisfies 

dt where 

Qu * 0, u * 0 on B, ut = 0, u ® ^ 6(x-í), for t * 0. 

Furthermore this transform in turn is asymptotic to the formal 

expansion in íd found on taking out the contributions due 

to the singularities of u. 

Consider the solution u described above. It is given 

by ia>“1(p-t)B(p-T)o“1, where p ■ in the region bounded 

by t ® 0, the body cylinder B generated by the body in 

time and a characteristic surface, R, formed by the reflected 

rays of the cone p * t. Across this characteristic surface 

u will have a singularity of the same type; that is, if D 

is the interior of the reflection surface R, then in the 

complement of D exterior to B, the solution is given by 

(1) u - W1 {(p-t}5(p-t)p”^+X^(Ç)8(Ç)+XgSg(|)+*.. } 

Here XR, Xg are smooth functions, £ is the normal distance 

from R and Sg satisfies j « 6((-) etc. For details, 

see [5]. In the interior of D, u is a solution of the 

wave equation which vanishes on B and is a smooth function 

œ' '^(M) on R. Furthermore on R the integral 
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(2) K«)) -/#£(r+t)2((ri|»r+(H»t)2 + ^ <r-t)2((r(»r-(r4»t>2 

+ 4 (r2+t2)(|V(H))|2 - <ri|»2)?tn 

- f t((r$)2 - |V(r4»|2)if-rî + (2tr(r<»r 

+ (r2+t2)(r<l)t)rO)n> xn} 
r 

Is bounded. 

Corresponding statements are true of ut,u^.t, etc. 

A modification of Theorem I in [2] which is given in 

the appendix shows that m J t2udt converges and is bounded 

T 

in terms of K. Here T(x,y,z) is the value of t where the 

line X ® constant cuts the reflection surface R. Hence 

J uetotdt 

T(x,y,z) 
00 

exists. Similarly o> J u^e^dt exists as do the integrals 

T 

of utt. And all these integrals are bounded independent of 

0). 

We can now evaluate 
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00 00 

ü) J ueiüitdt ■ -i y' ude^ 
T T 

asymptotically by integrating by parts. The asymptotic 

expansion will be of the form eixüt (Xq-KiT^X^. .. ) and the 

remainder will be of order of1. On the other hand 
T 

ue^dt has a similar expansion for p - (x-î| f 0 

00 

by (1). Hence J ue^dt is asymptotically equal to an 

0 

expression of the form 6í£0t(Xq‘Ko“1X1. .. ) where Xq,X^ are 

functions of ï. 

We now have 

Theorem: If u is a weak solution of ßu « 0 exterior to 

B and satisfies u « 0 on B, u « ioT^if-a), u^. ■ 0 for 

/°° imt exists and 
ue dt/is asymptotically of the form 

0 

.) where t(x) is the value of t on the 

characteristic surface formed by the reflection of the cone 

|5f-H| « t on the body B. 

We must finally show that the desired function V is 

00 

in fact J ue^dt. We note that 

0 
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00 00 vP J ue^k^dt * - y1 u^e'^^dt + ô(5í-?) 

0 0 

« - y Aue"dt + 6(30-ii) 

0 

By the same methods as in [2] and noting the singularity in 

u at t ■ t(x) one can show 

00 00 

Aue-^dt - A / ue-^dt. 

0 

Herce the integral satisfies the reduced wave equation with 

the non-homogene ou s term öfST-it). The integral vanishes on 

the body B since u ® 0 there. It remains to show that the 

solution is outgoing, i.e. that it satisfies the Sommerfeld 

* 
radiation condition. Again consider 

00 J CO J ue“i^)tdt * J ue’^dt + J ue"iuytdt 

0 0 T 

The first integral consists of two terms eiü^/p and a 

term of the form c^Xít) which separately satisfy the 

Sommerfeld radiation condition since t —> r at infinity and 

X becomes Independent of r. The second integral is split 

*A function f satisfies the Sommerfeld radiation condition 
if r(fr - leuf) - o(l) as r —> ». 
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by setting u - Uj+Ug where Uj Is the solution of £7 u - 0 

in D which has the same data as u on R and Ug is the solu¬ 

tion given by the retarded potential on B, i.e. 

Uß(?#t) «y'i [ ]dT with R the distance from (x,t) to 

the variable point on B and [ ] means the retarded value on 

B . The same argument, slightly modified, as that in 

[2] using (vi) of the modified theorem in the appendix 

00 

shows that f Uge’^^dt satisfies the radiation condition. 

T 00 

On the other hand J Uje“la>^dt also satisfies this condition 

T 

by a similar argument involving the representation of Uj 

by mean values over R. 

Hence V is given by the Fourier transform 

0 

and thus has the desired asymptotic expansion. Substi¬ 

tution of the form in the differential equation yields the 

expansion explicitly. It could also be computed directly. 
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Appendix, 

We prove here a modification of the main theorem of 

[2] that is necessary for the results of Part III. 

Theorem: Let -A be a strongly star-shaped infinite body 

which satisfies / i do* < where R is distance from Ÿ 
J R2 D£ 

to the point on the body, S is the minimum distance, 

s is a constant, k is a constant, and do- is surface element 

on-/ • Let D be the region bounded by the cylinder 

generated by / in time and a characteristic surface R 

whose generators go to infinity as t Let u be a 

smooth solution of 47 u - 0 in D which satisfies u ■ 0 on 

and u ■ ÿ on R where $ satisfies 

///$ <r+t)2((r0)r+(r4»t)2 + f(r-t)2((r4»r - (r<»t)2 

+ |(r2+t2)(|V(r(t))|2 - (r4>)2) } tn 

- { t((r$)2 - mr<»|2)M 

+ (2tr(rí)r+(r2+t2)(r<|))t)(r4>)n 1 xn f -g 
r 

dS 

00 • K({)) < 00, 
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Then W * ru satisfies the following inequalities 

*) f + w^)dv < ^ t2 for t large enough, 
^ r 

where A is a fixed region in space. 

Furthermore 

Ü) |u(?,t)| < , 
26 et 

Ul) J t2 do- < ^ , 

where a depends on the shape of the body, on K and 

6 is the minimum distance to the body, and 

00 K 
iv) J t2q2(x,t)dt < 1+e 

0 
00 

v) 1,2+6 / ^2(ur+ut)2dt < Kx 

0 

where q is any derivative of u. 

This theorem is proved by proving modified forms of 

Lemmas 1-6. Lemma 1, [2], is another formulation of 

Lemma 4. The modification is to consider the domain D 

instead of a slab 0 « t < ty In Lemmas 2 and 5 the 

estimates on the right are all replaced by suitable multiples 
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of K. In Lemma 4, Uj is a free space solution with the 

same data on R instead of the free space initial value 

solution. In Lemma 5» A/6^ is replaced by 1^6e and in 

T 2 2+e Lemma o , r becomes r and A becomes k. 

¥In 12J the factor r2 should read r . In the proofs of 
Lemmas 5 and 6 an obvious change in the use of Schwarz' 
lemma is required. 
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