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PREFACE

This Memorandum presents a method of estimating the bearing angle
of an incoming plane wave using an arbitrary ground array of sensors.
It was prepared for the Advanced Research Projects Agency's VELA
Analysis study. The project is a broad and continuing system-oriented
study of the detection of nuc lear bursts above the ground.

The Memorandum should be useful to those concerned with acoustics

and seismology, as well as those interested in data processing.
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SUMMARY

This study is concerned with developing data processing
techniques to obtain bearing angle estimates of plane sonic waves
using arbitrary ground arrays of microphones. The evaluation of
the accuracy obtainable as measured by the rms bearing angle error
is computed in detail for a l6-station square array. A novel
feature of the method is that the ground trace velocity of sound nced
not be known a priori or measured independently, but can be derived

from the same measurecments as the bearing angle.
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1. INTRODUCTION

STATEMENT OF THE PROBLEM

Given an array of nondirectional microphones which measure sound
pressure, it is desired to measure the bearing angle of an arriving
plane acoustic wave in the infrasonic region: that is{ in the frequency
range of from .1 to 1 cps. The array may be of arbitrary geometry in
the ground plane. A novel aspect of the problem is that the local
velocity of sound propagation is not presumed known except for a
nominal value of B 344 m/sec, The actual velocit, may deviate by
5 to 10 percent. The local ground trace of sound propagation is also
obtainable from the measurements as described; however, estimates of
the elevation angle of the plane wave are not,

DESCRIPTION OF THE MODEL

The plane-acoustic wave is presumed to be generated a large
distance from the array. As the sound wave is propagated through the
atmosphere, the wave undergoes changes in both orientation of the phase
plane and amplitude. The amplitude decreases slightly due to atmos-
pheric absorption, but primarily due to the dilution of the sound
energy over a greater volume. Superimpused on these systematic effects
there are also random changes in phase at each point on the phase plane
caused by turbulence in the atmosphere. Thus, the wave which arrives
at the array is not strictly a plane wave. The surfaces of constant
phase are taken to consist of a plane plus random deviations from the
plane. An excellent discussion of the propagation properties of

infrasonic sound waves through the atmosphere is given in Ref. 1.
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The acoustic plane wave energy (noted as the signal) is presumed
to be small compared to the atmospheric turbulence pressure (noted as
noise) in the same frequency range. It is assumed that the signal has
been detected by other means and that the gross direction (within,
say, one quadrant) of the wave has been determined. This Memorandum
is therefore not concerned with the detection problem but with the
improvement of the estimate of the local bearing angle of the sound
wave. The data at each array point are the result of processing the
received dats through noise-reducing line microphones to improve the
signal-to-noise ratio. This Memorandum does not, however, attempt to
evaluate the nature of the background noise or the effects of various
data processing operations on the statistical properties of the signal
and noise. These problems will be considered in future studies. A
class of bearing estimation methods are developed and the effect of
two specific methods is evaluated for certain standardized error models.
The measure of merit  used is a nommalized standard deviation of bearing
angle error, noted as L(8). A set of computations of L(8) is performed

for a square array consisting of 16 equally spaced array points.

D et ntona gy



I1I. DISCUSSION OF THE ESTIMATION METHOD

The basic data required are the transit time of the wave from a
fixed station or array point with coordinates (xo, vo) to each of the
other stations with coordinates (Xi’ yi). Let this time be noted as
T Then the estimation process involves the following: If each of

the values of T, is plotted in the (X, Y) plana

where d is a normalizing .cale factor, at the value (Xi’ Yi)’ iE will

be shown that the transit time for a plane wave can be represented as

o , 2 2
AJX + ALY +AXY + A X +AY (1)

The bearing angle & and the ground velocity Cp are estimated from the
coefficients A1 and A2. The process then involves estimating the
coefficients A, by curve fitting of Eq. (1) to the data set

]
1 ;1 i =1, 2, ;vc;, N for an (N + 1) station array. Let the

measured value ol i be given by
e I Gk AT
ke Mol Ay 13

where Ti is the "true" transit time given by Eq. (1) and ATi is the
random error in transit time due to such causes as initial phase
errors or deviation from the plane phase surface, and errors in
estimating T from the processing of signals from the array micro-
phones. As an example, an obvious method of estimating T4 is by

cross correlation, That is
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where S; is the observed signal from the ith array point and S, is
the observed signal }rom the reference array point. The observed Ti
and the statistics of ATi will be determined by such factors as
the actual interval of time over which the cross correlation is performed
whether the computation of the cross correlation is for sampled data
or for continuous data, and the sampling rates; the time and space
correlation properties of both the signal and noise components of the
observed signal; and the difference in the initial timing errors of
each observed signal due to initial phase errors of the plane wave.

The above effects, as well as alternate methods for generating

the To will be considered in subsequent studies. For the purpose of

this study, the random variable ATi is assumed to have the following

properties

E(ATi) =0
2
= &4 4 Case A (4)
E(ATi ATj) ol T
2
(AT * = ' Case B
E\Ali Aj) @ Jl_]

where E( ) signifies the expected value and 6ij Ly 4 & fa =0,
i 7 j. The quantity wij is a normalized correlation coefficient and

is assumed to have the form

wij = exp {-rij/k} (5)

: . Eh .th .
where r.. is the normalized distance between the i and j station

i)
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and k is a constant » O.

The coefficients Aj of Eq. (2) are obtained by generalized
least-squares procedures as follows: Let N + 1 be the number of
stations so that the number of transit times T4 measured from the

reference station is N. Define an N X N positive, definite, symmetric

matrix p with elements {p v}' Then let
)

N

Z, P =) g (T, =1, (6)
i=1  j=1

L
N
[\/’I -4

The values of Aj are selected which minimize Q.

When the following conditions hold, the solutions are as indicated:

p = 1 (identity matrix) = least-squares solution (7a)
p = diag {pii} = weighted least-squares solution (7b)
p = {pu,v} = generalized weighted least-squares solution § e
py = I = minimum variance solution (7d)

The general formulation for Eq. (7c) is shown, from which Eqs. (7a),
(7b), and (7d) are given as special cases. Computations of L(8) are
performed for the square array consisting of 16 equally spaced arrays
separated by distance d between x and y coordinates of adjacent stations.
Similar computations are performed for the linear case (A3 = A4 = A5 =

0) and for certain subsets of stations to measure the improvement

rate in L(@) as more stations are processed.

CORRELATION MATCH VERSUS MISMATCH

The effects of mismatching the weighting matrix p and the ATi




correlation matrix . are computed as follows

Case I1: p = 1; ;, Givem by Bqy; (b4); Case By k > O

Gage 1I: p = y=1; , g&iven by Eq., (4), Case B; k » 0

That is, the ATi data correlation is actually as given by Eq. (5),

but a least-squares solution Eq. (7a) is used. Note that as k = 0,
min(rij) fixed, i ¢ j, ¢ - I, so that the solution for the Aj approaches
the matched condition given by Eq. (7d), i.e., Case Il. The matched

condition is optimum in the following sense, The estimates Ai obtained

are random variables with zero mean and covariance matrix 8 = {B ] W, W) =

g v

1,2,...5. B is positive definite (in the quadratic case, A3, AA’
A5 4 0) and S the covariance matrix of any other linear unbiased
sbbinmtor of A" = (., A, i Ag)s

| 2 )

Thus, a comparison of the values of L(g) for the matched and
mismatched case shows how much is gained by using a minimum variance
estimator as opposed to a least-squares estimator. Comparison of the
subsets N = 3, 7, 15 (linear) and N = 7, 15 (quadretic) shows how
much is gained by using the additional stations. Finally, a comparison
of L(9) for the quadratic curve fit and the linear curve fit shows
how much additional root mean square error is caused in assuring an
unbiased estimate of the bearing angle 8. It may be desirable to
accept a linear model for Eq. (l) and a small bias in & with smaller
ms .

ADVANTAGES OF GENERALITY OF METHOD

The technique does not depend on the specific geometry of the

array. Thus, the method lends itself to field data measurement




procedures since dropping bad data does not upset the computations.
Further unreliable data can be weighted to have less effect,

In Appendix A the solution for the coefficients Ai is given in
terms of the observations Ti' The equations for the covariance matrix

B required to evaluate the variances of § and ¢ are also derived,
8

In Appendix B ‘he justification for Eq. (1) and the interpretation

of the coefficients in terms of the geometry of the plane wave and

local meteorological conditions are shown. The condition for accepting

a linear model is derived; that is, setting A3 = Aa = AS = 0 in
Bq. (1)«

In Appendix C the nomalized rms bearing angle error L(@) is
derived in terms of the covariance matrix B of the parameter estimates
;. The ground trace transit time to travel the distance d given by
the scale factor in defining X and Y is defined as T, The nommalized
ms error in Ty M(g), is also derived in terms of the same variables.
The results are presented in tables following Appendix D. Table 1
presents L(g) for the Case 1, (p = I) versus selected values of k

(o)

for the Linest case & = 0°, 15°, 30° and 45° &hd W=-3, 7, 15: ihe

value of the ratio

R=L(Q) g/ L&)

is also shown in the table where L(e)min is the matched processing
case p ¢ = L. The value of R, which is 2 1, shows the gain obtained
by using the matched processing. The same information is presented
for the quadratic case for N = 7, 15 in Table 2. 1In Table 3, the

same information is presented for M(g) for @ = &50. As shown in

A 1 . - TErNSTENEeR, o ”

e A
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Appendix C, M(@) = L(®) for ¢ = 0% and 90° and the max imum

|M2(9) - L2(6)| occurs at 8 = 45°,

In Appendix D the computations of M(8) and L(3) for a specific
square array of sensors is described. The Fortran program for the
computations is given. The results are presented in figures following
Appendix D. Figures 3 to 8 are plots of L(8) versus § for the para-
meters as plotted for fixed values of k = ,125, 4 and 256. 1In Fig. 3,
k = .125 is taken as indicating independent timing errors so that,
since y = 1, the least-squares solution is a matched solution. For
Fig. 4, k = 4 is taken as a moderately mismatched least-squares
solution. In Fig. 5, k = 256 is taken as a heavily mismatched solution.
For Figs. 6, 7 and 8, the matched solution is presented for the
corresponding cases of k of Figs. 3, 4 and 5. Figures 9 and 10 show

L(e) versus k for fixed @, for the linear case N

3, 7 and 15 and

the quadratic case N = 7, 15, Figure 9 is for 8 0° and Fig. 10 is

[}

for § = 450. Both are for Case I, p = I. The same data are presented
in Figs. 11 and 12 for Case II, the matched case for py =1, Other
angles are obtainable from Tables 1 and 2. Note that for Case L

L(®) is labeled L(e)L.S. and for Case II, L(e)min' The value R of

Tables 1 and 2 is given by

L(e)L.S.

R e >
L(e)min

where corresponding values of each of the parameters are used in the

ratio.

e g



By inspection of the tables and graphs conclusions can be made
as to the accuracy in bearing angle obtainable as a function of bear-
ing angle @, increasing station numbers, using linear versus quadratic
curve fitting, the degree of mismatch for the least-squares estimate,
and the accuracy gain using a minimum variance estimate.

For example, in Fig. 4 for linear curve fitting there is apparently
little to be gained at any angle 6 by processing more than N = 3.
However, in the quadratic case there is a substantial gain by going

from N = 7 to N = 15. This gain is dependent on © and increases

monotonically from 6 = 0° to 0 = 45°.
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ITI. CONCLUSIONS

A method of estimating the bearing angle of a plane sonic wave
using an arbitrary* ground array of sensors has been developed. The
method does not require knowledge of the propagation velocity of
sound. In fact, the ground trace velocity of sound can be derived
from the data processing.

Equations for evaluating the rms bearing angle error and the rms
ground trace timing error were developed.

Computations of L(6) and M(8), the normalized rms errors, were
performed for a specific square array consisting of 16 equally spaced
microphones. For this array, the computations demonstrate the accuracy

obtainable in terms of the rms timing errors and provide a basis for

determining how to efficiently process the field data.

Subject to certain mild restrictions, e.g., the stations shall

> >
not all be celinear and N = 2 (linear case) and N = 5 (quadratic case).

A ettt s
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Appendix A

DERIVATION OF PARAMETER ESTIMATE EQUATIONS

QUADRATIC MODEL

It will be convenient to relabel the variables of Eq. (1) as

follows: Let

2D g, 2 og . dOaa g gl W S SN
i i i i t A i i i -
Then Eq. (1) can be written in matrix form as
=27 A (A'l)
T e {Tij 2 N X 1 (column matrix), N2 5§
A= LAi: = 5 X 1 (column matrix), of unknown parameters Ai (A-2)

. ), g @)

and Z(U) is an N x 1 colunin MAETIX, U = 1, 2, ccwg ds

In particular, values of A, noted as A , are sought which minimize

the quadratic form
Q=(ZA-T)p2A-T) (A-3)

where T is the N X 1 column matrix of observations of Ti and the

prime indicates the transpose. Upon setting the gradient Q = 0 one

% (1)

obtains the well known result

% =
A=(z’pz)1z’pT (A-4)

%* Fik o : : !
( ) indicates the inverse of the matrix ( ), and the transpose.
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where it is assumed that the columns of Z are linearly independent so

that (2’ P Z)-1 exists.

"
It is easily demonstrated that A 1is unbiased; that is

E(A) = A (A-5)

The covariance matrix of A" is given by (see Eq. 4))

3 IF % 5 3 = d

B = EL{A - A][A’ - 4]’ «2(2’ 6% L g o Vvopz@ p2 1 Gase B

il g 1 2 | h=5)
s pay & p° 2@ pE) Case A

2 I, the matched least-square case gives (y = 1)

%

S L (A-7)

It is well known that case 7d, the minimum variance estimator,

% (1)
is given by

y T (A-8)

and the corresponding smallest covariance matrix for the matched

correlated case, corresponding to p¥ =1, is

b B (A-9)

LINEAR MODEL

The derivation for the linear case is the same as the quadratic
case except that since A3 = A4 = A5 = 0, the definition of Z in

Eq. (A-2) is changed to

g = (2, 2@

- : - > - eI i, =
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and N 2 2 is required. All equations (A-1) to (A-9) then hold with

¥ A
the above changes. For example, B and B are 2 X 2 matrices instead

AR U T e A

—— - - —— T
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Appendix B

DERIVATION OF CURVE FITTING EQUATIONS

It is assumed that a plane acoustic wave is incident at the
s : 11 da : .
array at bearing angle 6 and elevation angle (E - $, as defined in
Fig. 1. Since the quadrant is assumed known, there is no loss in

generality by assuming the wave as incident in the first quadrant

such that

= g I i = U
The equation of the phase plane is
(sin § cos 8)x + (sin P sin 8)y + (cos P)z - P = 0 (Be1)

Consider the position of the phase plane when the plane is incident
at the reference station with coordinates (xo, S 0); then P is

given by
P = sin $ [ (cos e)xo 4+ (gin O)yoj
and the equation of the phase plane is
sin # L(cos 8) (x - xo) + (sin 8)(y - yn)j + (cos §) z =0 (B-2)

It is required to compute the transit time of the phase plane
from its position when incident at station (xo, yo) to the time when
the phase plane is incident at (x, y). Note first that the
distance of the point (x, y) from the phase plane through station

(xo, yo) as given by Eq. (B-2) is
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P = -sin @ [(cos 6)(x - xo) + (sin 8) (y - yo)j (B-3)

where X, and y are selected such that - (xi - Xo) =0, - (yi = yo) =0

for each of the station coordinates. The transit time is given by

(2,3)

ray theory as

Ty | n(r) dr (B-4)
cC 4
0o "o
where
co c
n(r) = o= = =i (B-5)
c+v . n i Vn

is the index of refraction at a distance r along the ray from the
station at (x, y) to the plane, given by Eq. (B-2), formed by a line
perpendicular to the plane and

nominal velocity of sound = 344 m/sec at 20°C

C =
0
n = unit vector in the direction of wave propagation, or
perpendicular to the phase plane
-—
v(r) = wind velocity vector
¢ = local velocity of sound
= e —t -
V, =V - nprojection of v on n

It is assumed that the medium is horizontally stratified so that
both ¢ and v are functions of height only. For a standard atmosphere

one may write

c

c(z) = <, + = 0<2z<10 km (B-6)
where
i3 4.4 meters/sec/km(z)

dz

- T—
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v(z) versus z increases logarithmically with z for heights up to 30
to 50 meters and then at a slower rate.(3) However, for the purpose
of this discussion, wind height will be considered a slowly increasing
linear function of height which can be represented over the range of
altitudes of interest as
- B-7
v (z) = v (o) + K =z (B-7)
Setting z = r cos 0, Eq. (B-4) becomes
p v_(z).
T = N Y [1 .l de z - — J dz (B-8)
c cos § . ¢ = c
o o o o
d
where p is sufficiently small so that l E%/co | << 1, and
(vn(z)/co) < < 1. Substituting Eq. (B-7) into Eq. (B-8) and integra-
ting Eq. (B-8) gives
v (O) \2 7
s Bl o _(L . cos P [de } B-9
e [1 c ] c ) 2 dz gt K1 ( )
o o o
FEquation (B-9) is a quadratic in p which can be written in the form
2
Tmgp+BPp (B-10)
On substituting Eq. (B-3) into Eq. (B-9) one finds
T=A X+A Y+A XYTA X2 + A Y2 (B-11)
1 p4 3 4 2

The coefficients Aj are given by
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Al = (y sin P cos 8) d
A2 = (y sin 0 sin 8) d
) 2
A3 = (28 sin” ® sin € cos 8) d° (B-12)
2 2
A4 = (B sin2 f cos™ 8) d
2 2
A5 = ( sin2 g sin- €) d”
-1 ) Vn(O)
Lt
gl
q:
C
O
(B-13)
K 1 cos @ [de -
o TR T e Y M
é
O
Define the effective ground trace velocity Cg by
ol |
cg =y sin P
Then estimates of both cg and 8 may be obtained as follows:
Note that
A2 o
tan & & =—, @ = tan ° (A /A > (B-14)
A1 2 L
1
i -1\ _ 2 gy 2
s <d cg ) [Al * A2 ] (B-15)

Thus the estimates of A1 and A2 provide estimates of the bearing
angle 6 and the effective ground trace velocity. The quantity L8 is
the time for the wave to travel a distance d on the ground,

If 8 = 0, so that the linear model for T can be used, the amount
of data processing is reduced and the rms of the estimates of 6 and

T0 is decreased. From Eq. (B-11)
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From Eq. (B-12)

so that Eq. (B-16) can be written

T =gpdl+t

The value of p/d sin P is clearly determined from Eq. (B-3) as
p/d sin § =X cos @ + Y &in ©

so that the maximum magnitude of p/d sin § = the maximum normalized

dimension of the array. Let this characteristic value be D where

D = max (———E:———>

d sin ©
% e Ty
Then, if
ks SOy
[Alz + Azz] :
one may take B = 0, and therefore Ay = A, = A5 = 0, and use the

linear model.

(B-16)

(B-17)

(B-18)
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Appendix C

BEARING ANGLE ACCURACY

The relationship between the bearing angle 6 and the coefficients

of the curve ‘it Al’ A2 is given in Eq. (B-14). This relationship is

nonlinear. However, if the errors in the coefficients are small,

then the errors in 6 can be determined as follows

tan § = A2/A1

\
R I s s |
av = Ccos o] 2

Ay

where AB is the random error in 6 due to random errors AA1 and AAZ in

the parameter estimates Al and Az. Since E(ATi) = 0, then E(AAj) =0,

=1, 2,3, ..., 5, and E(48) = 0. Then

2 cos 6\4
A 2 & - 1 - /
E(487) ( A,/ (4, - a1 B, (A - a]

where B2 is the 2 X 2 submatrix of the covariance matrix given by

Eq. (A-7) or Eq. (A-9); e.g.

B = B11 B12 g e b11 b12
= e
2 B21 B22 b21 b22
where the b,, are the normalized covariance E(AA, AA,) = ~2 |
1] 1 J 1)
[ B, . | gl
1)

The value of A, used in the estimation is matched to the appropriate

J

choice of p for a given { to determine which B matrix to use.

From Eq. (B-12)

D e e gy

(C-1)

(C-3)

(C-4)
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A1 =T cos 9, A2 =T sin 6,
sc that
2
2 ot OB flo .2 - .
E(A87) = :—) icos ¢ b11 + simn © b22 -2 b12 cos 6 sin 6
o !
Define
2 N EgAGZZ
(::/'r )

the normalized variance of 6.

Equation (C-6) shows that E(Aez) is inversely proportional to
TO, the ground transit time of the wave over the distance given by
the scale factor d. Assuming d to be fixed (say the x, y coordinate
distance between adjacent stations in a square array), then TO = 0
as § » 0. (See Fig. 1.) In this case the ground trace velocity is
infinite and 6 becomes indeterminant, as is expected. Thus, it is
required to limit @ so that # 2 ﬁo before an attempt to estimate §

is considered. Define

= E(Aez) = g— * L(8) in radians
(o]

Cp0

L(8) is shown in Tables 1 and 2 and gives thr bearing angle accuracy
in radians.

From Eq. (C-6) note that if b11 = b22

2
E(Aez) = <$—) {bll =8 b12 cos 6 sin 6}
o

so that L(8) is symmetrical with respect to 6 = 45°. When the

stations are placed symmetrically with respect to the line y = x,

(C-5)

(C-6)

(C-7)

(C-8)
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then it is obvious that one may interchange y and x and demonstrate
that b11 = b22 so that the symmetry conditions given by Eq. (C-8)
hold.

Finally, Eq. (C-1) seems to require 6 ¢ /2. However, one can
define cotan 6 = Al/AZ and derive Eq. (C-6) as the end result so that

Eq. (C-6) does hold for all 8.

TRANSIT TIME ERROR

From Eq. (B-15)

A, M. + A pA
o5 1 1 2 2 (C-9)
) T
)
so that
A =
E( To) 0
E(AT 2) a1 (b cos2 8+ b sin2 ® + 2cos 8 sin b, ,} (C-10)
o 1 1 22 12
If b11 = b22, which holds for stations symmetrically placed with
respect to the line Y = X
2
E(ATO ) b 9 i b, .} = M2 ) C-11
—— = { 717 T 2 cos 8 sin © 120 = M(8) (C-11)
The normalized variance M2(9) is symmetric with respect to 8 = 45°.
Note that when
8=0o0r 8 =mn/2, M(B) =L() (C-12)
for any value of §
2 2 j
M(8) - L°(8) = 4b. . sin 9 cos 9§ (C-13)

12

and therefore

S =



- _— e e s e e et——
25
M2 2
(8) = L (8) = 2 b12 (C-14)

the equality sign holding for 6 = 45° when the symmetry conditions

b11 - b22 hold and

M (8) + L2(0) = 2 » (C-15)

independent of 6.

Table 3 presents M(8), 6 = 450, for the linear and quadratic

case with k from .125 to 256 and values of N as indicated.

i, e i B . N ————— L a e _p ko
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Appendix D

COMPUTATION OF NORMALIZED BEARING ACCURACIES
L(8) and M(8) FOR A SQUARE ARRAY

In this appendix computations of L(f), the normalized bearing
accuracy, and M(6), the normalized ground trace timing accuracies given
by Eq. (C-11), are described for a specific array configuration shown
AT Eriegs, B2

The numbers in Fig. 2 show the normalized coordinates (X, %) snd
station index number.

For the linear case, L(8) and M(%) are computed for the first
four stations (N = 3), the first eight stations (N = 7), which includes
the previous stations, and all the stations (N = 15).

For the quadratic case, L(®) is computed for N =7 and N = 15
defined over the same set of stations as in the linear case for
corresponding N.

0°, 15°, 30° and 45° for

Computations are performed for 8

(2)J, j = -3 to 8, in steps

values of the correlation parameter k
of 1. For small values of k (.125 or .25) the effect is essentially
the same as taking ¢ = I, so that this case will not be computed sepa-
rately. For large values of k, the ATi errors at each station are
heavily correlated, and one may note the effect of using a mismatched
processing such as least squares on this data versus using the matched
processing, p v = I, of Eq. (7d). The Fortran program from which L(&)
and M(9) are computed is shown on the following pages. Figures 3 to

12 present the L(8) values graphically for possible interpolation and

visual comparison. Tables 1 to 3 present numerical results of the program

'}v ! 2 . ¥ W'“,"T‘—' = "'.l



pe

b

-

® Oz (©- ®
&——O——O—0

L)
i

0 ] 2 3

Fig.2— Square array station layout in normalized coordinates
(station identification number in circle)
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Note that the Fortran program is sufficiently general to handle
an arbitrary set of stations and not just the square array described
above, provided N 2 2 in the linear case and N 2 5 in the quadratic

case, and not all the stations are colinear.
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C
C PROGRAM TO COMPUTE NORMALIZED BEARING ACCURACY AND NORMALIZED GROUND
C TRACE TIMING ACCURACY FOR LEAST SQUARFS AND “INIMUM VARIANCE CASFES.
REAL K
DIMENSION 21(35)422(35)923(38)424(735)475(35)9sNN(35)9sCAY(35)sTHETI(3
15)95(191)92(35435)3sR{35+35)sSINE(35)3COSINF(25)sPST(35935)+P(35935
2)192T(35935)92T2(35435)92110(35935)712(25935)9213(35935)+8(35435)s2
321(35935)9C(35435)4CT(353+35)9231(35935)4ELSQ035+35)9EL(25)4+241(35,
435)9EMSQ(35:35) sFEM(35) 4 IPIVOT(35) s INNEX(23592)sFELL(35)sEMM(35) sELRI
535)9yEMR(35)
READ 29sN2sLB2+sLC2sL129sLA2sLF2
READ 19(Z1(N)sN=1sN2)
READ 19(Z2(N)sN=19N2)
READ 19(Z3(N)sN=]1sN2)
READ 19(24(N)sN=1sN2)
READ 13(Z5(N)sN=1sN2)
READ 2+(NN(LB)sLB=1sLB2)
READ 3,(CAY{(LC)sLC=1sLC2)
READ 4o (THET(LI)sLI=1,LI2)

1 FORMAT(18F4e0)
2 FORMAT(1814)
3 FORMAT(BF9.3)
4 FORMAT(12F6e2)
5(19])’]0
C
C Z MATRIX (N2 X 5) IS FORMFD,
DO 10 I=1,5
DO 10 N=1,N2
IF (leFEQel) Z(Nol)=Z1(N)
IF (1eEQe2) Z(NsI1)=22(N)
IF (I.EO.3) Z(NQI)=Z3(N)
IF (1eFQoe&) Z(Ns1)=Z4(N)
10 IF (1e¢EQe5) Z(NsI1)=25(N)
C
C R MATRIX (N2 X N2) IS FORMED,
DO 20 I=1sN2
DO 20 N=1sN2
20 R{TsN)= SORT((Z1(I)=Z1(N))I*%2+(22(])=22(N))*%*2)
C

C SINE AND COSINE VALUES ARE CALCULATED HFRE TO SAVE TIMFE,
RAD=1e74532925E-2
DO 25 LI=1,L12
THETA=THET (LI )*RAD
SINE(LI)=SIN(THETA)
25 COSINE(LI)=COS(THETA)

D gy,
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C PROBLE™M BEGINS.
c
C LINEAR WHEN LA=1s QUADRATIC WHEN LA=2.
DO 10U LA=1sLA2
IF (LAsNE.1) GO TO 27
LR1=1
M=2
GO TO 28
27 Lfhi=g
M=5
&
C A VALUE OF N IS PICKED.
28 DO 10v LB=LB1,LB2
N=NN(LB)
C
C A VALUE OF K IS PICKEDs PSI MATRIX (N X N) IS FORMED.

DO 100 LC=1sLC2
K=CAY(LC)
IF (LA«FNQe1) PRINT 20009NsK
IF (LA«€Ne2) PRINT 2001sNsK
2000 FORMAT(1H]1 92X s6HLINEAR»4X s 2HN=T2434Xs2HK2FBe3///)
20U1 FORMAT(]1H1»2Xs9HQUADRATIC »4Xs2HN=124+4X+2HK=2FBe3//7)
DO 30 LE=1sN
DO 30 LD=1N
PSI(LDsLE) =EXP(=R(LDsLE)/K)
30 P(LD»LE)=PSI(LDHLE)

CASE 1e¢ RHO MATRIX = IDENTITY (N X N) IS FORMED. (MISMATCHED)
2T MATRIX (M X N) = 2 (N X M) TRANSPOSE IS FORMEDe.
2TZ MATRIX (M X M) = MATRIX PRODUCT OF ZT AND Z IS FORMED.
2TZ INVERSE MATRIX (M X M) IS FORMED.
B (NORMALIZED COVARIANCE MATRIX = M X M) = MATRIX PRODUCTS OF
2TZ INVERSE (M X M)y 2T (M X N)s PSI (N X N)y Z (N X M)y ZTZ INVERSE
(M X M) IS FORMED.
DO B8C LF=1sLF2
IF (LFeNEWs1) GO TO 50
DO 40 l=1sM
DO 40 J=1sN
40 2T(Ied)=2(J])
CALL MATMUL (ZTsMyNsZsMy2T72)
CALL MATINV (2ZTZsMsSs0sIPIVOT»INDEXsISING)
IF (ISINGeNE«DJ) GO TO 71
CALL MATMUL (ZTZsMsMsyZTeN»l11)
CALL MATMUL (Z114MsNsPSIsN»Z212)

NANONNNN

o — S a— e e e - - .~~$
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ala) aXalaNaXal

NNANOND

CALL MATMUL
CAL!L MATMUL
PRINT 1002
FORMAT(1HO ¢4X 919HCASE 1
PRINT 1Nn03
FORMAT(//TX»32HRB
DO 43 I=14M
PRINT 1004s(B(I1sJ)sJ=1sM)
FORMAT(1H +sF17e8+4F15.8)
GO 10 60

(Z12sM9yNs2ZsMy213)
(2133MeMy2T2sMsB)

1002
1003

43
1004

CASE 2+ RHO MATRIX
PSI INVERSE MATRIX
B
N)s PSI INVERSE
50 CALL MATINV
IF (ISINGeNE«O)
CALL MATMUL
CALL MATMUL
CALL MATINV

IF

(N X N)
(N X N)

= PSI

(N X N)s 2
GO TO 72
(ZToMsNsPsNs»221)
(221 9MeNsZsM,yB)
(ISING.NE«O) GO TO 73
NORMALIZED COVARIANCE MATRIX B
PRINT 1C05
1005 FORMATI(//4Xs16HCASE 2
PRINT 10013
DO 51 I=] .M
51 PRINT 1004(B(IsJ)ed=]l M)

FOR MISMATCHED AND MATCHED CASESH

NORMALIZED GROUND TRACE ACCURACY EMy
(MATCHFD)
(MATCHED)

LR = EL (MISMATCHED)

MR .= EM (MISMATCHED)

60 DO 62 LI=1,LI2
C(ls1)=COSINE(LD)
C(2+s1)==SINE(LI)
C(3+1)=0,
Cl4r1)=0,
C(5+1)=0,
CT(1s1)=COSINE(LI)
CT(1s2)==SINE(LI)
CT(1+3)=0.
CT(1+4)=0,
CT(1+5)=20.
CALL MATMUL

/ EL
/ EM

(CTeloMsBosMseZ31)

- . e e e———
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(MISMATCHFED))

(NORMALIZED COVARIANCE MATRIX)/)

INVERSEs (MATCHED)

IS FORMED.

(NORMALIZED COVARIANCE MATRIX = M X M)
(N X M)
(PyNsSsOsIPIVOT»INDEX» ISING)

= MATRIX PRODUCTS OF 2T
INVERSE IS FORMED.

(BsMySsO0sIPIVOTINDEXSISING)

1S PRINTED OUT.

(MATCHFD)

NORMALIZFD BEARING
AND RATIOS OF
AND

ARF PRINTED OUT.

ACCURACY EL»

e B il AL ey e

(M X



62
1006

71
1007

72
1008

13
1C09
8u

81

90
1010
100

33

CALL MATMUL (231s19MsCHrlELSQ)
FL(LT)=SQRT(CLSA(1s1))
C(291)=SINE(CLI)
CT(192)=SINE(LT)

CALL MATMUL (CTs19MeBsMeZ241)
CALL MATMUL (Z41919MeCrl+EMSQ)
EM(LI)=SQRT(EMSOQ(1s11})

IF (LFeNEe«l) GO TO 62
ELL(LI)=EL(LT)

EMM(LTI)=EM(LT)

PRINT 1006 sTHET(LI)9FL(LI)oTHET(LI)oEM(LIT)

FORMAT (/(T7Xs2HL(F6e292H)=2F12eB94X9s?2HM(F6E4292H)=F1248))

GO TO 80

PRINT 1007

FORMAT (1HC 94X 924HZTZ INVERSE IS SINGULAR,)
GO 70 80

PRINT 1008

FORMAT (1HC 94X »24HPST INVERSE IS SINGULAR,)
GO TO 80

PRINT 1CO09

FORMAT (1HO 94X 9»30HB MATRIX (CASE 2) IS SINGULAR.)
CONTINUE

PRINT 81

FORMAT (1HO)

NO 90 LI=1sL1I2

FLR(LIN=FLL(LI)/ZEL(LIT)
EMR(LI)=EMM(LI)/ZEM(LT)

PRINT 101CsTHET(LIV»ELR(LI) »THET(LI)EMR(LI)

FORMAT(1H 34X s3HLR(F6e¢292H)=F12e894Xy3HMR(F64292H)=F1248)

CONTINUE
CALL EXIT
END

L an oo
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C MATRIX MULTIPLICATION

10
20

15
20
C BIG
30
35
40

45
50
60
70
80
85
90
95
100
105
1C7

SUBROUTINE MATMUL (AsMsNyBsLsC)
DIMENSION A(35,35)sB(35935)5C(35535)
DO 20 I=1,M

DO 20 K=1,L

SUM=0.,

DO 10 J=1,4N

SUMaSUM+A (19 J)*#B(JsK)

CllsK)=SUM

RETURN

END

MATRIX INVERSION WITH ACCOMPANYING SOLUTION OF LINEAR FQUATIONS
SUBROUTINE MATINV(AWNsBsMsIPIVOT, INDEX s ISING)

DIMENSION A(35+35)98(1+1)9IPIVOT(35)sINDFEX(35+2)
EQUIVALENCE (IROWsJROW)s (ICOLUM»JCOLUM), (Ty SWAP)

INITIALIZATION
ISING = O
DO 20 J=1,yN
IPIVOT(J)=0
LOOP ON 1
DO 55U 131N
IROW = O
AMAX=040
SEARCH FOR PIVOT ELEMENT
DO 10% J=1sN
IF ¢ IPIVOT(J)eEQel ) GO TO 105
DO 100 K=1,N
IF ¢ IPIVOT(K)eEQel ) GO TO 100
IF (ABS(AMAX) «GE+ABS(A(JsK)) ) GO TO 100
IROW=J
ICOLUM=K
AMAX=A (J,K)
CONTINUE
CCNTINUE
IF (IROWL.EQe0O) GO TO 750

- i S
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119 IEIVOY(ICCLUM )=l

INTERCHANGE RCWS TO PUT PIVOT ELEMENT ON DIAGONAL

130 IF (IROW.EQsICOLUM ) GO TO 260
150 DO 2C0 L=1sN

16 SWAP=A(]IROWsL)

170 ACIROWSL)=A(TICOLUMsL)
200 A(ICOLUMsL)=SWAP

205 IF (MilEsO) GO TO 260
210 DO 220 =Yy M

220 SWAP=B(IROWsL)

230 B(IROW,L)=B(ICOLUMsL)
25U B(ICOLUM,L)=SWAP

260 INDEX(1s1)=IROW

270 INDEX(14,2)=1COLUM

PIVIDE PIVOT ROW BY PIVOT GLEMENT

330 A(ICOLUM,ICOLUM)I=1.0

340 DC 350 L=1,N

350 A(ICOLUMSL)I=A(ICOLUML)/AMAX
a5% IF (M¢LE-V) GO TO 380

380 DO B70 LE]lwH

370 BOICOLUMsL) =B (ICOLUMIL)/AMAX

COMPLETE THE PIVOT

38C DO 55U L1=1sN

390 IF (L1+EQeICOLUM) GO TO 550
400 T=A(L1,ICOLUM)

420 A(L1sICOLUM)=C,D

430 DO 450 L=1sN

450 A(LYL)=A(L1sL)=ACICOLUMyL)*T
455 It (MeLELO) GO TO 550

460 DO 500 L=1sM

500 B(L1sL)=B(L1sL)-B(ITOLUMsL)*T
550 CONTINUE

INTERCHANGE COLUMNS

600 DO 710 I=1,N

610 L=N+1-~1

620 IF ( INDEX(Ls1)eEQeINDEX(Ls2) ) GO TO 710
63C JROW=INDEX(L»s1)

¢ 2
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640
650
660
67V
700
705
710
740

JCOLUM=INDEX(L»s2)

DO 705 K=]N
SWAP=A(KyJROW)
A(KsJROW)=A(K»JCOLUM)
A{KsJCOLUM)=SWAP
CONTINUF

CONTINUE

RETURN

SINGULARITY FLAG

750
760

ISING = 1 + N = ]
GO TO 740
END

36
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INPUT
3
Input Variable Explanation of Variable Restriction’ Input
Order Name Format
1 N2 Total number of stations s 36 1814
1 LB2 Number of sets of stations 1814
1 LI2 Number of © values = 35 1814
1 LC2 Number of k values S 35 1814
1 LA2 Linear case only when LA2=1, 1814
linear and quadratic case
when LA2=2
I LF2 Mismatched case only when LF2=1, 1814
mismatched and matched cases
when LF2=2
2 21 x coordinate of each station s 35 18F4.0
3 Z2 y coordinate of each station s 35 18F4 .0
4 Z3 Product of x and y coordinates
of each station 18F4 .0
5 Z4 x2 of each station 18F4.0
6 Z5 y2 of each station 18F4,0
J NN Number of stations minus one NN>2 for
used in each set linear
NN>5 for
quadratic 1814
8 CAY Correlation parameter 0<k<10,000 8F9.3
9 THET Bearing angle of plane wave
in degrees 12F6.2

7‘The program is designed to handle the parameters as indicated by the
restrictions. The program however has not been checked to the limit

of these restrictions. Computations for the cases presented in this
report have been checked. Other cases may require additional verifica-
tion.
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Sample Input
15 7 12 4 2 2 N2 B2 LOR LIZ LA&2 LR2
30 3. Oo 1. 3. 20 30 20 10 20 10 00 20 10 OO Zl
O 3. T e 1le 3 2e 2e 2 e 1. 3G 2e 0 O 1 ) 22
0. 9. O. 3. 3. 6. 6. “. 2. 2. 10 (\. (\. n. Oo 23
90 9. 00 1. 9. 4 o 9. 4 o ]_. 4 o lo Oo 4 1. Ov ZQ
O. 9. 9. 9. 1. 9. “. “. l‘. 1. 1. “. O. 0. 1. 25

3 o 15 N
e12% 25 5 le 2 Le Be 16 GIANY;
32 64 128, 256 CAI

O 15 30, 45 THFTA

OUTPUT

N = Number of stationsg minus one
K = Correlation parameter
L(®) = Normalized bearing angle accuracy
M{(5) = Nomalized ground trace timing accuracy
LR(§) = L(:)mismatched
L(c)mat:c:hed
MR(E) = M(c’)mismat:c:hed
M(e)mat:ched
t
Jﬂ_.w ol e - — T @ -



Sample Output
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0O )=
15.00) =
30.,00)=
45 ,0N) =

O )=
15.00)$
30, 0N)=
Qs.nﬁ):

Q) )=
15,00)=
20,00) =
45,00 ) =

0.27311860
023902597
0.21059807
019918097

0.27308573
0623896962
021051850
0.19909079

1.00012037
1.00023580
1.00037797
1.00045294

LINCAR N=' 3 K= 1.000
CASFE 1 (MISMATCHED)
B (NORMALIZED COVARIANCE MATRIX)
007456377 -0403492071
-0603492071 0607456377
L Oe = Qs2735116860 M (
L 195« G0 )= 0630340427 M
L( 30ec0)= 0632378387 M (
L{ 4560C)= 0633092972 M(
CASE 2 (MATCHED)
P (NORMALIZED COVARIANCE MATRIX)
007457582 -06403493867
-0e¢03493867 Ne07457582
L{ 15e00)= 0630338944 M(
L( 30eC0)= 0432378016 M(
L 4500 )e  (0a33092973 M (
LR Oe )= 1.00012037 MR (
LR{ 15400)= 100004874 MR (
LR( 30e00)= 100001143 MR (
LR{ 45:N0)= 099999996 MR (
S ;}h"

g
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N=7
1S = ] St EEG e ! [P T e pe-aetery
3 Mismatched case -
p =1
_ k = .125 T
e—— —— quadratic
. case il
> linear case
o] i N+ 1 = number of |
§ stations
O
o 1.0
g
o e -
8
o -
TR e piltan ]
e
Q .-
B 3
©
E 0.5
[ =4
:;: + -
-d i M= 3 =
7
— =
15
i 1 | ] | } ] ] | ] |
% 0 15 30

6, bearing angle in deg

45

Fig.3—Normalized rms bearing angle accuracy versus bearing angle




L(#), normalized rms bearing angle accuracy
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1.5 T T T | T l l | | T T T
Mismotched case
i s
| k=4 g
— — quadratic
H case ad
linear case
i N + 1 = number of |
stations
N=7
_\ — ]5 _
\\‘\‘\
0.5
o N =15 4
- : _:7 A
3
0 I | { | i | | L ] i | i
0 : 15 30 45

6, bearing angle in deg

Fig. 4—Normalized rms bearing angle accuracy versus bearing angle




42

it T T T 1 T 1 T T T T T T
Ll Mismatched case a
p =1
kk = 286 |
e = quadratic
- case ’
> linear case
g L. N 4+ 1 = number of _
o stations
o
g0
™
| =
o . =
£
6 - ol
2
£ - _
|
T O[S~ =S 4
Py —
o S
E s VA
=« 0,5 ~
R ~
S
A - H g
- i S
- B T — """';:-...._ . ) _.
= "-'--_.__‘_--. — — . "'II.“ _
e e
0 | | | L | | TR I | | |
' 0 15 30 45

8, bearing angle in deg

Fig.5—Normalized rms bearing angle accuracy versus bearing angle




L(8), normalized rms bearing angle accuracy
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o5 N=7
SN e = T T T o Sk
b Matched case s
py =1
N k = 0,125 ]
—— —— quadratic
e case Y
linear case
o N + 1 = number of _
stations
B S S—,
]5’ — i i — — g — em—
i e
1. N =3 y
i
= — 2
| | | | | | | L | I ]
15 30 45

6, bearing angle in deg

Fig. 6—Normalized rms bearing angle accuracy versus bearing angle
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1.5 T T T T T T T T T T T T

Matched case
py =1
=4
—— —— quadratic

case
linear case

N + 1 = number of |
stations

1.0

——
™ it b il e
T GEmee G GtE G eSS dvem— o

0.5

L(8), normalized rms bearing angle accuracy

0 15 30 45
6, bearing angle in deg

Fig. 7—Normalized rms bearing angle accuracy versus bearing angle

r
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L(8), normalized rms bearing angle accuracy
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t:8 T T T T T l T T T B T
5 Matched case d
oy =1
k = 256
—— —— quadratic
case |
i linear case
* N + 1 = number of |
stations
1.0
0.5
e S
—

8, bearing angle in deg

Fig.8—Normalized rms bearing angle accuracy versus bearing angle
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