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ABSTRACT 

It has been shown experimentally that cylindrical shells subjected to 
side on air blast will go into two main types of failure.  These are 
buckling and collapse.  The buckling type of failure, is described by a 
deformation pattern which consists of a number of lobes around the peri- 
phery of the shell and one half wave length along the length. The 
collapse is described by a straight failure hinge.  The type of failure 
will depend upon the geometry of the shell and can be predicted from an 
elastic stress and buckling analysis of the shell as discussed in this 
report. The analytical details of representing the deformation patterns 
and the method for calculating the energy absorbed and the resulting de- 
flection under normal and elevated temperature conditions due to a given 
loading is described completely in this report. In addition to energy 
and impulse methods of solving the problem a deformation type variational 
principle is employed to set up the governing nonlinear differential 
equation for the time dependent deflection in the plastic region. The 
biaxial stress strain law used for both the normal and elevated temperature 
cases is an elastic linear hardening law. 

Of greatest importance in the report is the computation of the energy 
absorbed or work done by internal forces in the shell for very large 
plastic deformations. This work or energy car be used to compute the 
impulse to give a prescribed deformation; it can be used to compute 
the deformation for a given energy input to the shell (assuming all of 
it goes into plastic deformation); it can be used to compute static load 
for a given deformation; or it can be used as a design criterion itself. 
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1.  Introduction 

A, General 

Shell theory, especially the dynamic plasticity of shells, is in such 
a state at the present time that one can only hope to obtain approxi- 
mate solutions to the problems that are of practical interest today. 
Very little work has been done on the dynamic plasticity of shells 
due in part to the mathematical complexities of the theory and proba- 
bly due to the lack of experimental evidence with which to check the 
results of the theoretical developments.  Fortunately the electronic 
compter will enable us to overcome some of the mathematical diffi*- 
cultles. 

Extensive use is being made of cylindrical shells in missiles and 
submarines. Therefore more complete experiments are being conducted 
on these structures and more experimental evidence is becoming avail- 
able to those working in the field of dynamic elasticity and plasti- 
city. More theoretical develppment on this problem is needed and it 
is for this purpose that the present report has been written.  This 
report contains an approximate method for predicting large elastic 
and plastic deformations of shells under static and dynamic loads. 

1 2 
Experiments have shown '  that cylindrical shells subjected to side on 
blast can go into two main types of failure.  These are buckling and 
coHafree.  The buckling type of failure is described by a deformation 
pattern which consists of a number of lobes around the periphery of 
the shell and one half wave length along the length as shown in Fig- 
ure la. .Both of these figures are taken from Schuman's experimental 
results.    The type of failure will depend upon the geometry of 
the shell and can be predicted from an elastic stress and buckling 
analysis of the shell as will be seen later in this report. 

B. Objective of work, definition of problem and philosophy behind method 
of approach 

. The maid objective of this work ii-to predixrt^^the final plastic de- 
formation of a cylindrical shell of given geometry at a given temper- 
ature exposed J:o a side on blast of predetermined charge weight ex- 
ploded at a known distance ftfbm the shell.  There are two facits to 
the problem; the first is to obtain the blast pressure parameters 
and tlie second is to determine the plastic response of the shell un- 
der dynamic loading.  The plastic problem is a large deflection prob- 
lem involving deformations which are many times the thickness of the 
shell; deflections which may be of the order of the radius of the 
shell.  Furthermore the blast almost always occurs as a side on load 
so that the shock wave progresses at some angle to the longitudinal 
axis of the shell.  This will induce a nonaxisymmetrical loading re- 
sponse.  The shell has end supports and the distance between these 
supports can be small.  Thus a deformation pattern will result which 
depends upon both the longitudinal and peripheral coordinates. 
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A complete solution of this problem would involve solving a set of large 
deformation shell equations subject to a yield condition and an appro- 
priate stress strain law of the incremental type.. A solution of the 
above type would involve a very great effort resulting in a vejry large 
computer program.  Since the input parameters to the shell analysis L. 
Isuch as material properties and details of the loading can only be ob- 
tained to a very limited accuracy and errors accrue in numerical solu- 
tion of large computer problems one might well ask the question whether 
the large amount of numerical effort necessary to solve particular cases 
using numerical techniques will give any more accuracy than rough approx- 
imations. In view of the above evauluation of the problem, it only 
seems plausible to attempt an approximate solution based on the simpli- 
fied deformation thepry of plasticity. 

Let it be clear what assumptions are to be made in this theory and what 
are the basic ideas that are being proposed.  Firstly it is being assumed 
that the plastic stress strain law of the material can be approximated 
by a deformation type law with linear hardening in which the octehedral 
shear stress is a unique function of the octehedral shear strain.  Sec- 
ondly, it is assumed that once collapse or buckling is reached then the 
entire shell is in the plastic region.  In this theory it is assumed 
that as the shell is loaded it can either buckle or go into a collapse 
failure. Once the type of failure is determined it is assumed that the 
shell will continue in this type of failure pattern as it deforms plas- 
tically,  in order to determine whether collapse or buckling will occur 
several methods are proposed.  The simplest method is to use elastic 
membrane shell theory to calculate the load at which yielding starts to 
occur at the center of the shell — this can be called the yield load • 
which starts collppse.  The buckling load can then be computed by class- 
ical elastic buckling theory.  If the yield load is less than the buck- 
ling load the shel] should collapse and if it is greater, the shell 
should buckle. 

A more sophisticated approach would be to compute the static collapse 
load with a given collapse pattern and compare this with the plastic 
static buckling loads if the collapse load is less than the buckling 
load collapse should occur and vice versa.  Once it is determined which 
type of failure will occur from the above simplified analysis then the 
work done by the internal forces in deforming the shell plastically is 
computed by assuming either a collapse or buckling pattern as previous- 
ly determined.  In the determination of this plastic work it is assumed 
that only the lateral deformation (i.e. deformation perpendicular to the 
cylinder axis) is of significance and that the longitudinal and tangen- 
tial displacements can be neglected. 

Several criteria are presented for computing the deformation under the 
blast.  One such criterion is to equate the change in kinetic energy of 
the shell to the work done by the internal forces during this change. 
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The change in kinetic energy is computed~ in terms of the impulse given 
to the shell. The result is an expression for the impulse which will 
result in a given deformation. A second criterion is to estimate the 
energy flux (energy/unit area) delivered to the shell from the blast 
and then equate the energy flux timP.s the shell surface area to the 
work done by the internal forces. The result will be an approximate 
expression for the deformation in terrns of the charge weight and dis­
tance from · the explosion. 

A third criterion is to employ Hamilton's principle in the plastic re­
gion, assuming a given collapse or buckling pattern. The result will 
be a differential equation for the lateral deformation as ·a function of 
time. For this calculation the pressure distribution must be known ex­
plicit¥.y. The use of the Hamilton's principle with the work computed 
on the basis of deformation theory is . of course, open to question since 
there are more accurate variational principles for plasticity. However, 
if only loading is considered and we assume no elastic recovery after 
the maximum deformation is reached it should give a reasonable approxi­
mation. The assumption of no elastic recovery has been checked for 
plates under static loading17 and has been found to be a valid one. 

C. Physical arguments backing up method of approach 

The theory depends upon the assumption that the shell buckies or col~ 
lapses and then continues deforming plastically in the same type ~ - : 

pattern. The accuracy of the cmrnputation of buckling and collapse , 
loads does not seem critical as long as we can be sure which pattern 
will occur. In the plastic calculations the detailed assumption of a 
collapse pattern is not critical since it is determined by one para­
meter -- the length of the plastic hinge. However the buckling pattern 
is quite a bit more complicated since it depends upon the numbe r of 
buckling lobes and the assumption of how rapidly the deformation dies 
out around the periphery as one proceeds from the front where the blast 
load first hits. An exponentially decaying cosine wave is assumed in 
one particular calculation but other types of patterns are possible. 
One other such pattern is discussed in this rpport and consists of a 
series of hinges around the periphery. 

The as s umption on the degree of decay around the periphery ~s guided 
by the experimental results. The number of lobes is computed from 
classical buckling theory and has been found to agree with experimental 
results. The deformation patterns which have been employ~d in the plas­
tic theory are likewise based upon experimental results. 

The major item of contention concerning the validity of this theory is 
the fact that a deformation (total) type stress-strain law has been used 
instead of a flow{(incremental) law and that a linear hardening law 
has been used as an approximation to t~e real material law7 and that the 
eleva~ed temperature is assumed to decrease t he hardening and decrease · ~ 

the yield point. The latter assumptions concerning elevated temperature 
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behavior have been demonstrated for one dimensional systems; it therefore 
seems plausible that the same type of behavior should hold true between 
the octohedral shear stress and strain for biaxial systems. If we are 
concerned with loading paths consisting of the first laoding and assume 
that there is no elastic recovery but that the shell remains permanently 
at its laryest deformation (as was shown approximately for plates17 ), 
it would seem plausible t~at a total strain theory should give =easonable 
results. 

II. Theory 

A • . Plastic energy absorption relations 

Assume that the shell is exposed to an impulsive load of short dura­
tion which imparts an initial velocity to the•tructure. The problem 
is the equivalent to one in which the structure has an initial kinetic 
energy. 3 •4 If no instabilities occur in the elastic region when the 
atructure goes plastic therP. could be a plastic instability point. I! 
instability does not occur at all and the structure is loaded further, 
then ~here will ~e a point at which the structu~e will collapse. 

~ 

The deformation energy (or work done by the internal forces) per unit 
volume of an elastic-plastic body can be written: 5 

e_. 

V = f Ozdrr,; ~ ~&. 
0 2.. 

[ 1] 

~=If vr~- ~)a.+-(Oi- O'i) ~~-(~-~.) "+-'CC.,"' .. T1a~? Z'iiA'") 

~ =- Yj v(~A:-~,.) .. +(~1-€~)~+(£~-~),.~if'~ .. +~1.~~~-~.k .. ) 
6 = ~~ 1- Er .,. GA .J lc = Bulk Modulus 

where: 6;, a-.,... J Ui!- are the direct stresses, z.1".., ~ ~ "2:"-l.r... are 
the shear stresses, ~ ~ ~.,J ~a the direct etrains and ~,~;1 -.J ¥,.c. 
the shear strains. ' 

The curve of Vi vs e; describes. the stress-strain law of the 
material. Assuming an incompressible material ( t9 -. 0 ) and partic­
ularizing our analysis to a thin shell, we obtain 

V ~ f [ [e?rr el~;;} el~ 
~ = v cr. ... _ a; a; ;- u, J..,.. .1 r.r, a. ~ 

The expressions for the strains are6 

) 
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where  £,,€*    )r  are the midsurface strains,   2   is the radial distance 
from the midsurface to any elemeuc within the thickness of the  shell, and 
K*    ^V,  "C     are the curvatures and twist.    The values ^     ^    ^-    are   . 
(allowing large deflections)7 

[4] 

and the curvatures and.twist are 

Y«-     a* Jcf [5] 

A general deformation type elastic-plastic stress-strain law can be writ- 
ten  (assuming a Poissons ration of \) 

^ ' ! %Ce+ + i^) [61 

where 
^ r -5 I'-VCe^J [7] 

in which <o Cf* ) »O for the elastic region. Now neglect all terms in 
the strains which contain L4 and V" / assuming that they are small com- 
pared to <W and its derivatives.  Then 

[8] 

Consider an elastic-linear hardening incompressible material which has a 
stress-strain law as shown in Figure 2.  This stress-strain law can be 
written 

Elastic Case      UiCZi)   -■ Q    for   C- < G.* j ^L * Gs 
[9] 

Plastic Case      OJ C€i ) -  X C'~ *s/e')  for  A; ><^  (TI ■> (H 

(The. special case of -A ■ 1 describes a perfectly plastic material) 

Going back to the general expression for the energy, and substituting the 
stress-strain law of equ. [9] 

V'j/f ^fieji-*0~ ^)3^€i* Jfdt j* [io] 
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Substituting the expression for ^«.' from [2] 

Using the strain expressions [8] and integrating with respect to *" 

V=///l^^^^J      [13) 

**"»- m*+ mr&T-i tozp M^r- <£(*$?* *: 

The strain terms in equation [8] which involve £■ are associated with 
bending, the other terms are the membrane strains. For very thin shells 
sometimes the bending strains can be neglected and the resulting energy 
expression will be (neglecting the last term) 

y~Ll  (h*'*-^***'*)*2^*)/***)}****<.     l151 

Some materials can be considered perfectly plastic.  For this case A~l 
in the plastic region and 

f   zjL£!b tMrKsäüat/cpd*. [if] 
The energy of deformation in the elastic region can be obtained from _[13] 
by letting ^ so .  However a more accurate expression for the elastic re- 
gion can be obtained by starting with the elastic stress-strain law for 
any Poiisson ratio, i.e. 

^=4T^^V    y   **^v^o [6a] 

The elastic energy is 

Thus tir 

^ ~r{ilK*> [***'*>*>+ 7rA<<<4)l*cM4> [13a] 
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where 

[19] 

In some cases the deformation of the shell may be axisymmetric and the de- 
flection W will then be independent of <?  .  For this case expression [13] 
becomes 

Now define a new variable V- */l and let  ^wrWj/^^J    then the 
integrals can be written in terms of dimensionless quantities as follows: 

We first combine the elastic and plastic cases in one set of integrals 

noting that: 
a. For the elastic case   A-O 

b. For the plastic case   v = //i- 

The combined integrals are then 

„here L *fi ? A     fß I^S-f'/Jj      * 

+kwcgf-ttPc^pm^ [20) 
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Thus the integrals are dimensionless quantities which are functions of 
•    the dimensionless ratios "^Vi  aSl.      ^/äA   •  Equation [9] is the 

form that the electronic computer used to compute the integrals numer- 
ically for a given shape -ffK 'j cß ) » given parameters a't.^ ^SXA 

arid a series of values of  '**r*//a<. 

B. Extension to thermoplastic deformation 

1. Employment of a bilinear stress-strain law 

One dimensional thermoplastic tests have been conducted by Alder and 
Phillips18 and Bellf9'^0 some of the results of which are discussed 

21 m a book by Goldsmith. ^ The effect of temperature on th*» stress-. 
strain law is also discussed qualitatively by Rhinehart and Pearson. 
To this author's knowledge there have been no biaxial thermoplastic 
stress-strain tests to date.  In fact the basic elements of thermo- 
plasticity are just starting to be discussed in the literature.^3 
Therefore any biaxial thermoplastic stress-strain law which is: assum- 
ed will have to be based mostly upon intuition and partly upon extra- 
polation of the one dimensional tests.  Based upon the above mentioned 
references it seems that the effect of temperature on the stress- 
strain law is to lower the yield stress, lower the elastic modulus 
and decrease the degree of hardening of the material.  If a bilinear 
(elastic-linear hardening) stress-strain law is assumed for the room 
temperature case,then it seems logical to use the same type law for 
the thermal case with the degree of hardening decreased and the yield 
stress lowered in the plastic region. The assumption will be that 
the relation between (77 and €*l  for the biaxial case is the same as 
that between 0"" (stress) and (5 (strain) in a one dimensional test. 

In terms of the previous parameters this would mean as the temperature 
is increased the A is increased (with an upper limit of -A =1) and 

e the yield stress, Cx    ,   is decreased.  In the elastic region the mod- 
ulus of elasticity would decrease. The effect of temperature on Ö* 
and G  is contained in the literature,  but the effect on hardening ( ^) 
must be determined at the present time by extrapolation from one di- 
mentional tests. °'1^'2^ In materials which are almost perfectly plas- 
tic ^>\ = / ) at room temperature we can only assume that the total effect 
of elevated temperature will be to decrease the yield stress. 

Keeping in mind the above concepts let us rewrite equation [19] as 
follows* 

where ^ is the term in the bracket of the .last integral in eq. [19]. 
This expression can be further rewritten as 

* - £ü -£££ <^ - ^ -^^ —i 
i/r 
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where X denotes the sum of the  «*  and /&    integrals and Vf corresponds 
to the  ^ integral. 
We need only compute the values of I and Vi (which are both independent 
of -A ) and the above expression gives us V for any A .  Thus in the 
plastic region the elevated temperature case can be obtained directly 
from the results of the room temperature case by assuming the appro- 
priate values for O,, CTi  and A . All three of these parameters can 
be extrapolated by fitting a bilinear curve to the one dimensional 
thermoplastic tests.  '-^"^ 

19 20 
2. Extrapolation of the Bell Parabolic Law 

In lieu of assuming a bilinear law one might extend the one dimensional 
Bell Law19'20 which is 

<£=/«. f'- O^T 
where p# is a universal constant ( JTT.o  *'#•/»v»•<*» *• ), (Tx is the normal 
stress and ^ the strain; T is the temperature in degrees Kelvin and ^ 
is the melting point of the metal.  It oould be assumed that the same 
functional relationship holds between the octahedral shear stress and 
strain, i.e.  m 

However in the absence of any biaxial tests we will consider here only 
the approximation given by the bilinear curve. At some late date either 
an extension to the Bell Law for the biaxial case or a modification of it 
will be studied further. 

C. Impulse-energy relation 

Let I be the impulse per unit mass applied to the shell.  The impulse 
momentum relation for an elemental mass  er**-   can be written: (only the 
lateral velocity H<Cr is being considered, Ü   and /i/" are being neglected) 

'ttrel'**  s X er** [21] 
where >W is the lateral velocity imparted to the mass by the impulse. 
Thus                          # 

**r  = X [22] 

The Kinetic energy imparted to the shell is 

T-flft^ctAvifftf* 
* *'     " '  *W (23] 

where p't   is the mass per unit area and cfA   is an elemental area.  The 
impulse can vary over the surface.  Therefore write the impulse as 

X^jrX^V^J [24j 
Thus from [21] -r   y . ^ T->-/^*/5r \jji 

Equating the initial kinetic energy to the energy of deformation absorbed 
by the shell the expression for the impulse per unit mass becomes: 
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The total impulse on the shell will then be 

The impulse per unit area will be 

If the impulse is uniform 

and 

/>*;>; = / 

-r^^ -yV -£it 
rraL 

[26] 

[27] 

[28] 

[29] 

[30] 

It should be mentioned that the expressions for the impulse hold when the 
shell has reached its final state of defoicmation and has come to rest and 
all the initial kinetic energy is used up in energy or work of deforma- 
tion. 

D. Approximation to energy flux delivered from explosion 

The energy flux density (energy per unit area) that is directed toward 
the cylinder from theljlast is a function of the charge weight and dis- 
tance of the change from the cylinder.  It has been found^'^S that the 
energy flux for an underwater explosion can be written approximately as 

e* -x. c "/*-- 
where Ef   is the energy per unit area, C is a constant, W is the charge 
weight and R is the distance from the explosion to the target.  Assuming 
a constant energy distribution over the cylinder the total energy avail- 
able to do damage to the cylinder would be 

where a  is the cylinder radius and L is the length. 

Using an energy balance this total energy can be equated to the work 
done by the internal forces during deformation of the cylinder .(this 
work was denoted by V in the previous sections of the report) 
Thus 

or -7f~ 
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where  V   is the nondunensional energy  function as given by  [19b].    This 
function is computed later in the report for a variety of cases.    Using 
this   v  function together with experimental results on buckling and 
collapse of steel and aluminum cylinders as given by Schuman '     we could 
derive a value for C and thereby obtain a seim-empirical  formula for ob- 
taining the plastic deformation of cylinders  for any charge weight and 
distance.     Such a semi-empirical relation will be discussed later in the 
report» 

B. Approximate pressure dustribution and impulse delivered to shell from 
blast 

1. Pressure distribution 

If one proposes to use a more exact approach such as the governing 
differential equations or variational principles in the plastic region 
for computing the response of the shell to the blast, the pressure 
distribution in space and time must be known over the entire cylinder. 
Approximate pressure results for overpressures less than 25 psi are 
given in the literature.  Tests are currently being conducted at 
the Aberdeen Proving Ground  to verify these results. One such test 
result is illustrated in Fig. (10) . Qualitatively the pressure time 
plots look similar to the plots that are obtained by employing the 
curves in the Nuclear Effects Handbook.   The Aberdeen Experiments 
seem to show a finite duration of the positive phase whereas the re- 
sults form the Handbook show an exponential decay of the pressure with 
time. A calculation |ßf the pressure vs. time for the test case at 
three locations around the cylinder using the curves in the Nuclear 
Effects Handbook together with the plots of Baker and Schuman  and 
the work of Goodman  is shown in Figure (11) ,  It is plainly seen 
that there is no good agreement between the Handbook theory  and 
the experiment.  This indeed points to the fact that rman^more press- 
ure measurements and comparisons are in order. 

2. Impulse distribution 

Along with the pressures at various.locations around the periphery 
the impulse was also measured by integrating the pressure time rela- 
tion at the various joints.  For the test cylinder described above 
the impulse distribution was as shown below: 

o      o        o        o o o 
Angle 0     90       180      240        300        330 

Impulse 8     4        8        6 6 7 
(psi-ms) 

This indicates that the total impulse does not vary drastically from 
point to point around the periphery as was originally anticipated in 
earlier work      when an exponentially decaying  impulse was assumed. 
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F. Simplifications in the energy expression 

The complete energy expression can be written 

V =J[f kJ€L   +/ nJ*il*/* [31] 

For very thin shells undergoing very large plastic deformations 
^.   >> ^ if    ^ ■ 1   ( perfectly plastic material),   then 

V *^V ^-^^ V^K<f) * Wi/^tc [32] 

For  some physical cases ^J't/ti ^ ^ /   ^    ö/iL   «^    / so 

^* 2-^p±jrfc**)c/*c/*-   '") 
Elastic analysis 

A. Buckling 

A r&thec extensive study of elastic buckling of a cylindrical shell 
under nonuniforin lateral pressure is given by Almroth.  He repre- 
sents the pressure on the shell by the relation 

fStf)   *   f>i   t   ft C4A.Cp [34] 

The pressure at ^ ■=0 is (<p* + T, )    •     Almroth obtains the critical 
value of  ffm +?,)       for buckling of the shell. The nonuniformity 
of the pressure is described by a parameter f*  defined as 

-P ' f*/(i>.if>) . [35] 
He obtains a variety of critical load curves for ,/> *Ö.X" ; this 
is the case which will be considered here.  These buckling curves 
are shown as solid lines in Figure 3.  The yield load corresponding 
to a ngnuniform pressure as given above with   ß" -a. o, JT"     will 
be considered in the next section.  In figure 3 it was assumed that 
E = 1000 (SJ   .  OT being the yield stress in pure tension. 

For uniform loading the classical theory of buckling of cylindrical 
shells is presented by Timoshenko.  It is found that the lateral 
pressure at which buckling under uniform loading will occur is given 
by the following relation: 

W • tä k^T^rr y-:^v"/ *^^/ t361 
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where ^H» is the number of full waves around the periphery of the shell. 
It has been found by Reynolds that in lobar buckling such as this, the 
circumferential parameter '>v approximately satisfies the relation 

 '      _  / a 3 V^ [37] 

anc that buckling will always occur with only one half wave along the 
length.  In other words, if /v^ denotes the number of axial half waves 
along the length, then m = 1 and n is determined from equation [37] . 
The factor 1.23 has to be adjusted so that n turns out as a whole number. 
Once n is determined then equation [36] will give the value of the buck- 
ling load for uniform loading. 

B. Yield or collapse 

Assume that the shell is thin and that membrane theory is adequate to de- 
scribe the stress patterns in the shell. Assume also that the shell is 
of length 1 and is supported at each end.  Take the origin or coordi- 
nates at the center of the shell as shown in Figure 4. The membrane 
forces are shown on the differential element in Figure 5. 

If -iPf*-»*?)    is the static load per unit area applied laterally to the 
shell then it follows from the basic membrane equations  '   that 

*v--/ii^'^ [381 

where j,fcS)      and Ti.^V/J are functions of ^ which are to be determined 
from the boundary conditions on NK   fiJx*4, /Vy •  If some of the boundary 
conditions are given in terms of displacements then the following mem- 
brane equations in terms of displacements must be utilized; 2 

e^v- - M+JJ/A/KJ*/*- Ir/j^'^J      [391 

where t is the shell thickness, E is the modulus of elasticity, u,v,w 
are the displacements (see Fig. 5) and ^j/2/J ^ -f+fcf) are arbi- 
trary functions to be determined from the boundary conditions. 

Now assume that the pressure *& fjc^ cf)        can ^e represented as 

^ = p.frcf)     J   fret) =^ */fi€tc*j*ct)) [40] 
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The solution will be obtained for the boundary conditions 

By straight forward integration of equations [38] and [39] subject to 
boundary conditions [41] it is found that 

Nf   ~ * f>0 />Vj [42] 

So at the center of the shell  ?c -= o      gf  rö 

Now let -p ~ fp + p )    (tlie critical yield pressure at <?-»0 j  corre<- j..., 
'   ^*  '   sponds to Airtiroth's calculations for buckling) 

in which 

[45] 

[46] 

Then A i 

Using the Von Mises yield condition 

The critical pressure for yield at   X. at ^ ^ ö      is 

which for f> *. o r*     ) —    j reduces to 
' 2    J^ /_       [48] 

These yield curves are shown as dotted lines in Figure 3. 

C. The criterion for buckling or yield 
12 

It is clear from Schuman's experiments  that both buckling and yield 
collapse can occur.  The main problem is to be able to predict which 
type will take place.  Once buckling or collapse has commenced the 
plastic deformation will take place in that particular pattern into 
which the failure has started.  It should be made clear at this point 
that the collapse and buckling criteria are not to be used to approx- 
imate any of the dynamical parameters of the shell; they are to be 
used only to determine which type of failure will start.  Once this is 
known then the plastic analysis as given in the previous sections will 
be employed to determine the plastic deflections and impulse values. 
Buckling or yield could be predicted by the above relations in the 
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previous section by employintf the following criterion: 

If the buckling load is less than the yield load the shell 
should buckle; if the yield load is less than the buckling 
then the shell should collapse. 

One might argue that we need a more accurate criterion such as the 
collapse load which has been defined as  the load for which the struc- 
ture remains in equilibrium, but the displacements can increase inde-f 
finitely, geometry changes being ignored. As will be seen later, due 
to the nonlinearity of the displacements and due to possible hardening 
effects, we cannot determine a "collapse load" as such. A more posi- 
tive criterion /as to whether the shell will collapse or buckle) such 
as the yield point load and plastic buckling load used above may seem 
over simplified, but it is, very subtlely, a more realistic outlook. 

IV. nhitial Plastic Analysis 

A. General 

If we attempt to define a static collapse load by equating the work 
done by the external forces to the work done by internal forces, the 
following relation would result 

■ssx7r 

pf^cfi) yUJ-fccf) ^ojjccfes    -   Y or   IA/=V n 
where W is the work done by the external load, fOSk,et),   during the de- 
formation, AAT^K,^) f  cind V is the work done by the internal forces dur- 
ing this deflection as defined previcusly in the report.  Using this 
criterion let us attempt to define a collapse load for the cases of 
interest. 

B. Axisymmetrical Collapse 

Consider the axially symmetric lateral loading of a perfectly plastic 
shell subjected to both static and dynamic loading which is assumed 
uniform over the shell.  The problem is to estimate the static collapse 
load and to determine the impulse-deflection relationship in the plas- 
tic region. 

Shells under axially symmetric external load usually collapse with a 
deformation pattern resembling two frustruras of a cone with a hinge 
circle at the center of the cylinder as shown in Figure 6.  Accord- 
ing to the sign convention used in this analysis 4*r is positive inward. 
The work done by the internal forces in this deformation is 

[49] 
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Integrating,   we obtain 

"TF 
A ^ 2 ^> 

^i^A^-r^c^;; 
Assume  that  the  shell  and deformation pattern are  such that 

**Vl„a   *</ j    ^/Ä  »/ [51] 
the  energy expression  reduces  to 

V = zILSit**r.L [52] 
For static loading the work done by the external uniform lateral load is 

Equating the internal energy absorbed by the shell to the work done by the 
external load it is found that 

^ r TT ^        > <rs=e€t [54j 
Expression [54] implies that the load will not b*» dependent on the deflec- 
tion throughout the plastic region.  Therefore u.äs load will correspond to 
any deflection in the plastic region and can therefore be termed the static 
collapse load. 

It is interesting to note that the load corresponding to yield in an elastic 
shell with ordinary hoop tension is 

Thus [54] predicts that the static collapse load is about 15% higher than 
the load at which yielding will start.  For shells in which V^ is not much 
greater than unity, higher order terms in the energy must be included.  If 
second order terms in  **/* /A^w    are retained, the energy becomes 

v*4&&* (*£ + i*£) (56) 
Therefore the static load-deflection relation in the plastic region will be 

The effect of the nonlinear terms is to stiffen the shell so that the plastic 
deflection for a given load will be definite value.  As the deflection in- 
creases these nonlinear terms become more predominant and it is no longer 
possible to define a load at which the deflection increases indefinitely. 
Using relations [52] or [56] with [28] the impulse-deflection curve in the 
plastic region can be obtained.  With equation [52] we obtain: 

JX 0i- rriu [58] 
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With [56] we obtain 

The static collapse load does not define collapse in a dynamic problem. 
In fact if the load is applied dynamically the actual magnitude of the 
load can be much greater than the static collapse load and still not re- 
sult in plastic deformation.  It is the load-time relation that is im- 
portant and the impulse is a lumped parameter which essentially is a 
measure of the Ipad time history. 

C. Nonaxisymmetric buckling and collapse 

If we compute the work done by the pressure during the deformation a 
linear function of the deflection will be obtained, i.e. 

then 

if     '^-- ^ SSk.cfi) 

I 

The work done (V) by internal forces is in general a nonlinear function 
of /M/i as we see from equation [.19], [20] and the curves plotted in 
Pig. (8), (9).  By equating the work done by the external pressure to 
the work done by internal forces an expression will result between the 
load ft  and the deflection *J\    .  It is therefore certainly not plau- 
sible to talk about a collapse load for large deflections.  If a power 
series in terms of ^i is fitted to V = ff***)    then one of the terms 
will be linear in *<^J  ; if all terms except the linear one are ne- 
glected then a collapse load could be defined in the same sense as in 
the axisymmetric case. 

For the axisymmetric case we were able to define such a collapse load by 
neglecting the higher order terms in V.  It was found that the collapse 
load was 15% higher than the load at which yield would start in the 
shell.  If the buckling load is as close as 15% to the yield point load 
there is a possibility that we will predict the wrong pattern of de- 
formation.  In cases where the two loads are far apart (say 100% apart) 
we should be able to use the buckling-yield criterion to predict the 
correct pattern. 

7. Post failures nonaxisymmetric collapse and buckling 

A. Collapse 

The deflection pattern for collapse is shown in Figure 7 and can be 
written analytically as follows: 

«rr*,*) m -<*•.</ - \/**-t[Jo --fa*/-        [60] 

Letting x. '* ^^U   

where #6 is the width of the hinge line as shown in Figure 7.  Using 
these deformation expressions and equation [33] the work done on the 
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shell in deforming it plastically in collapse can  be written 

\ß 1 
[62) 

where 

[63] 

After some mathematical manipulation and substitution of 

t--%it'***l       '*•*■& £"**■ J (64) 
it is  found that V can be written 

•^ViA  
[65] 

or  finally 

\/r    2JI*iß    /    fa/A)'-   £>■   JeL.I.    /gf.^ 1 (66) 

Now using the  impulse  equation  [27]   and assuming that 

£'*.+) * Sfc.<p) = e.-** (67i 
The relation between the impulse and the deformation can be written as 
(assuming A * 2) 

-^ *^ov* v ^ [68] 

The deflection is actually described by ^/o 

B. Buckling 

1. First approximation - continuous curve 

For the post failure buckling region the circumferential parameter 
takes on great importance and the simplification given by equation [33] 
cannot be employed.  Instead, the plastic work has to be computed from 
the more general integral expressions. We use equation [19] and assume 
a post failure deflection pattern of the form 

2. Second approximation - series of hinges around periphery 

Upon closer examination of the buckling failures it is seen that the 
ideal buckling pattern of a continuous cosine wave as defined above 
does not exactly describe the post failure deflection in all cases. 
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Possibly a more realistic pattern for some cases might be a series of 
hinges, the depth of which becomes smaller around the periphery as 
shown below: 

The number of such hinges could be determined by the number of elastic 
buckling lobes as described before.  It is expected to do more work 
with such deformation patterns in the future. 

C. Energy expression from numerical integration of the general integrals 
using first buckling approximation 

The curves of V    are plotted in Figures 8 and 9 for buckling and 
collapse failure as a function of the deflection and the geometric para- 
meters of the shell.  The buckling curves were fcomputed for the para- 
meters J s"i. j    ^ " 4fc •  The values of f*-  satisfying relation [37] were 
used in these calculations.  It is seen that the collapse results using 
the simplified formula (equation [66]) compare well with the more exact 
curves shown in Figure 8 for , 2. <^»/ß *, 4 

D. Variational principle and governing differential equation in plastic 
region 

The principle of extremum potential energy can be applied if we are 
dealing with a deformation theory as is the case in this work.  Green- 
berg  writes this principle as follows: 

[69] 

where      ^ ~f (f TtJ^ )t/V ' ~ JT: U-*/*   r V/-M/ 

The integral over V  is the potential energy or work done by internal 
forces during deformation and the integral over !2L is the work done by 
surface tractions. 

If we extend the principle to the dynamic case then its extension can 
be written as Hamilton's Principle " 

s/ 'ir-uiJt -o [70] 
t, 
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where    T * hf >U A*J *cJA the kinetic energy 

A* * mass per unit area of shell 
dA m element of surface area 
*r » velocity normal to  shell  surface   (the  longitudinal and tan- 

gential  inertia are being neglected) 

32 The variation  is  taken just as  in  the elastic problem by Love. 

This problem is equivalent to the  following problem in the calculus 
of variations: 

Find   the   function yk) which takes on a given value  for x ■ a 
and x » b and which minimizes the definite  integral 

x - £Fr*:f,f*)cJK, [7i] 
The result is that F must satisfy the Euler Equation 

*4-k(*4.)** (72) 
In our case 

F-z r-u 

Tri^H>V*  - i£*i>S ***>€»*A [74] 

We fit a power series cbrve to \/ from results like the ones in Figs. (8) 
(9).  Thus 

V ~ [A + &*rc +C<*IU+0'*JI2 +  ...J       [75] 

and       K/ = £f>CK*,t)'U-.SK,<t>6J* 
where tf fk. & £•) ^s the pressure applied to the shell 

This results in the following nonlinear differential equation in time for 
the determination of ^wj 

*y; ** 0*^4MA   +   [S+lC^ + lC*r.\~~J  sy^«e#;/*yV>*   [76] 

This will be the governing differential equation for the loading regime. 
The initial conditions are 

***?*)   « ^ '*) -G [77] 

This equation will be valid as long as the deflection increases and un- 
loading has not yet started to occur.     If it is assumed that the shell 
deformation  increases to a maximum and has no elastic recovery then the 
maximum deflection determined  from this equation will give the permanent 
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Based on careful  study of the existing plasticity  flow theories of today 
it  is difficult  for  this author  to see how the  important complications 
such as nonlinearity  in the strians and stress-strain  law in addition 
to nonuniform dynamic  loading can be  included and result  in a solvable 
problem.     In such plastic dynamic biaxial  stress problems  this author 
sees very little hope   for any but the deformation theories  and the 
energy type procedure   for actually getting reasonable answers  in a rea- 
sonable time. 
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set.     if we assume that elastic unloading occurs then the initial con- 
ditions  for  the elastic unloading regime cam be determined  from the  sol- 
ution of this equation.    An^elastic equation using the §J.astic potential 
energy can  then be solved  for  the elastic recovery regime.     A closer 
look at this approach to the problem will be given during the next  sev- 
eral months.     However,   "for the present time the energy approach as 
given in the next section will be used to approximate the plastic defor- 
mations. 

VI.  Practical  use of the energy criterion 

A. The energy criterion 

Using the energy relations described in Section D earlier in this 
feport we arrived at the basic relation 

wher<= C is to be determined from experimental results.  Using results 
for collapse behavior of steel shells we find that C Ä 16000 (where 
all units are in pounds and inches) . A very rough expression gov- 
erning the plastic behavior of steel shells in the collapse region 
is 

Vc   « n^COO   -£ c^Z [77] 

B. Future work with the energy criterion 

Since  it has not as yet been determined how much hardening there  is 
in the material and since  there are some doubts about the true buck- 
ling post  failure pattern,   these items shall have to ^e determined 
more definitively in the near  future before an adequate  semi-empiri- 
cal buckling formula can be obtained similar to the collapse  formula 
above.     Also more accurate collapse measurements will have to be 
taken  in order to obtain a better collapse relation than above. 
More work is also in order to obtain a more accurate expression  for 
the energy  flux density. 

VII.   Discussion 

The great  advantage of the energy absorption method as described here 
and elsewhere  in the  literature^'*'^"   '*   '        is  that many complications 
can be considered in the analysis and still  result in a tractable pro- 
blem.     For  example  it  is  seen that we have considered here nonlinear- 
ity  in the  strains,   strain hardening in the  stress-strain law and non- 
uniform dynamic loading.     This type of theory has one main disadvantage - 
we have  to assume a deflection pattern.    However  it must be realized 
that even  in  some of the more  spohisticated plasticity theories assump- 
tions on the pattern must also be made. 
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Figure 2 Elastic-Linear Hardening Law 
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Figure 5 Shell Element Membrane Forces 
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Figure 6 Deformation Pattern of Shell for Axisymmetric Collap se 
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Figure 7 Deformation Pattern of Shell for Nonaxisymmetric Collapse 
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Figure 8    Post  Failure Collapse  and Buckling Curves 
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Fig. 9c. Post Failure Collapse and Buckling Curves 
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Fig.   9b     Post Failure Collapse  and  Buckling Curves 

-33- 



!*4 

.oooS 

' ,000/    - 

^Ü 
.OOOOl   — 

.00000/ 

.000000/ 

•#• 

Fig    9a.   Post  Failure Collapse  and Buckling Curves 
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