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ABSTRACT

It has been shown experimentally that cylindrical shells subjected to
side on air blast will go into two main types of failure. These are
buckling and collapse. The buckling type of failure.is described by a
deformation pattern which consists of a number of lobes around the peri-
phery of the shell and one half wave length along the length. The
collapse is described by a straight failure hinge. The type of failure
will depend upon the geometry of the shell and can be predicted from an
elastic stress and buckling analysis of the shell as discussed in this
report. The analytical details of representing the deformation patterns
and the method for calculating the energy absorbed and the resulting de-
flection under normal and elevated temperature conditions due to a given
loading is described completely in this report. In addition to energy

and impulse methods of solving the problem a deformation type variational
principle is employed to set up the governing nonlinear differential
equation for the time dependent deflection in the plastic region. The
biaxial stress strain law used for both the normal and elevated temperature

cases is an elastic linear hardening law.

Of greatest importance in the report is the computation of the energy
absorbed or work done by internal forces in the shell for very large
plastic deformations. This work or energy car be used to compute the
impulse to give a prescribed deformation; it can be used to compute

the deformation for a given energy input to the shell (assuming all of
it goes into plastic defcrmation); it can be used to compute static load
for a given deformation; or it can be used as a design criterion itself.
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LEST OF SYMBOLS

O = 4‘-’-‘- \/fa;-a:,)‘+ /0‘,-0’2)”4—(63-0“._)‘4-((27'} T’:Lfffa.")

(Octahedral shear stress is fi/s 62)

e = g' \/(6._-6?)‘f-/67-é;)"+(6; €)%y H e AuL”)

Ox, 64,02, Z7, T;,‘,J Zox  8ix components of stress; U ¥ are direct
stresses - 7/s are shear stresses

. » ) I
€ €&, Ep x X Yok six components of strain; & s are direct
i e s At A strains - Js are shear strains

6 = €t é? +C&a
T bulk modulus of material
= volume of the body
é,)gb)' strains in the midplane of the shell

z radial distance from the midplane of the shell to any element in
the shell

£ ¢ cylindrical coordinates describing the position of the element
along the length ( #& ) and around the periphery (&)

7 -7

A radius of the midplane of the shell (mean radius of the shell)
W, T curvatures ( /< ) and twist ( Z ) associated with bending
7  and twisting of the shell element

u'ov;u‘ displacements of the shell elementv; (f longitudinal, A/ tangen-
tial, «/~ radizl

E modulus of elasticity of shell material

") Poisson's ratio for shell material (assumed ) for plastic region)
w(€ ) function of €

. strain at which yielding in pure tension would oocur

Os yield stress in pure tension

A parameter involved in the plastic-linear hardening stress strain
law; it is the slope of the (;-€: curve in the plastic region
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thickness of the shell

length of the shell

work done in deforming shell

element of mass

velocity of mass in radial direction

impulse per unit mass

mass density of shell material

initial kinetic energy put into shell by pressure pulse
total impulse

g'h\l"bht.§~<l\”‘

° amplitude of a~
Ne Nx, Neeyy  stress resultants

:f(o[) ﬁ@) 6/4) arbitrary functions of ¢ which are determined from the
boundary conditions

’/5 7) pressure distribution
,5 ' parameter used to Jefine the peripheral pressure distribution
"o number of circumferential waves in buckling pattern

Gﬂ.)c pressure which initiates collapse
(7,,)‘ pressure which initiates buck]®ng
f/.g,) spatial distribution of the impulse
£ (x!¢)) spatial distribution of the deflection
&' = X/,
oo width of plastic hinge

L parameter defining periphery die out of spatial deflection dis-
tribution in buckling

f., P, pressure parameters defining distribution of pressure such that
2t P, is the pressure at & =0

€ r'/(fc th)
diagjeter of shell
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(T)).
;lf:)p
(V)

(Vs

portion of the nondimensional energy function which arises
when strain hardening is present (see eq. 19b and Figs.8,%a-9c)

portion of the nondimensional energy function which is present

for both hardening and nonhardening cases; for a perfectly plastic
material ( A =1) it is the only part of the function which remains
(see eq. 19b and Figs.8,9a-9c)

the value of for a collapse pattern

the value of for a buckling pattern

the value of for a collapse pattern

<1 < NN

the value of for a buckling pattern
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1.

Introduction

A. General

Shell theory, especially the dynamic plasticity of shells, is in such
a state at the present time that one can only hope to obtain approxi-
mate solutions to the problems that are of practical interest today.
Very little work has been done on the dynamic plasticity of shells
due in part to the mathematical complexities of the theory and proba-
bly due to the lack of experimental evidence with which to check the
results of the theoretical developments. Fortunately the electronic
compter will enable us to overcome some of the mathematical diffie
culties.

Extensive use is being made of cylindrical shells in missiles and
submarines. Therefore more complete experiments are being conducted
on these structures and more experimental evidence is becoming avail-
able to those working in the field of dynamic elasticity and plasti-
city. More theoretical develppment on this problem is needed and it
is for this purpose that the present report has been written. This
repoyt contains an approximate method for predicting large elastic
and plastic deformations of shells under static and dynamic loads.

Experiments have ahownl'2 that cylindrical shells subjected to side' on
blast can go into two main types of failure. These are buckling and
collajse. The buckling type of failure is described by a deformation
pattern which consists of a number of lobes around the periphery of
the shell and one half wave length along the length as shown in Fig-
ure la, Bgth of these figures are taken from Schuman's experimental
relultl. The type of failure will depend upon the geometry of

the shell and can be predicted from an elastic stress and buckling
analysis of the shell as will be seen later in this report.

Objective of work, definition of problem and philosophy behind method
of approach

. The main ohjnctiuntéf this work iscto predice™he final plastic de-

formation of a cylindrical shell of given geometry at a given temper-
ature exposed -0 a side on blast of predetermined charge weight ex-

" ploded at .a known distance f£rom the shell. There are two facits to

the problem; the flrst is to obtain the Dblast pressure parameters
and the ‘second'is to determine the plastic response of the shell un-
der dynamic loading. The plastic problem is a large deflection prob-
lem involving deformations which are many times the thickness of the
shell; deflections which may be of the order of the radius of the
shell. Furthermore the blast almost always occurs as a side on load
so that the shock wave progresses at some angle to the longitudinal
axis of the shell. This will induce a nonaxisymmetrical loading re-
sponse. The shell has end supports and the distance between these
supports can be small. Thus a deformation pattern will result which
depends upon both the longitudinal and peripheral coordinates.
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‘A complete solution of this problem would involve solving a set of large
deformation shell equations subject to a yield condition and an appro-

. priate stress strain law of the incremental type.. A solution of the
above type would involve a very great efifort resulting in a veyy large
computer program. Since the input parameters to the shell analysis :.
such as material properties and details of the loading can only be ob-

! tained to a very limited accuracy and errors accrue in numerical solu-
ticn of large computer problems one might well ask the question whether
the large amount of numerical effort necessary to solve particular cases
using numerical techniques will give any more accuracy than rough approx-
imations. In view of the above evauluation of the problem, it only
seems plausible to attempt an approximate solution based on the simpli-
fied deformation thepry of plasticity.

Let it be clear what assumptions are to be made in this theory and what
are the basic ideas that are being proposed. Firstly it is being assumed
that the plastic stress strain law of the material can be approximated
by a deformation type law with linear hardening in which the octehedral
shear strees is a unique function of the octehedral shear strain. Sec-
ondly, it is assumed that once collapse or buckling is reached then the
entire shell is in the plastic region. In this theory it is assumed
that as the shell is loaded it can either buckle or go into a collapse
failure. Once the type of failure is determined it is assumed that the
shell will continue in this type of failure pattern as it deforms plas-
tically. In order to determine whether collapse or buckling will occur
several methods are proposed. The simplest method is to use elastic
membrane shell theory to calculate the load at which yielidiing starts to
. occur at the center of the shell -- this can be called the yield load -
which starts collppse. The buckling load can then be computed by class-
ical elastic buckiing theory. If the yield load is less than the buck-
ling load the shell should collapse and if it is greater, the shell
should buckle.

§ A more sophisticated approach would be to compute the static collapse
" load with a given collapse pattern and compare this with the plastic
static buckling loads if the collapse load is less than the buckling
load collapse should occur and vice versa. Once it is determined which
type of failure will occur from the above simplified analysis then the
work done by the internal forces in deforming the shell plastically is

. computed by assuming either a collapse or buckling pattern as previous-
} ly determined. In the determination of this plastic work it is assumed
i that only the lateral deformation (i.e. deformation perpendicular to the
§ cylinder axis) is of significance and that the longitudinal and tangen-

tial displacements can be neglected.

4§ Several criteria are pfesented for computing the deformation undzr the
4 blast. One such cfiterion is to equate the change in kinetic eriergy of
. the shell to the work done by the internal forces during this change.




The change in kinetic energy is computéd.in terms of the impulse given
to the shell. The result is an expression for the impulse which will
result in a given deformation. A second criterion is to estimate the
energy flux (energy/unit area) delivered to the shell from the blast
and then equate the energy flux times the shell surface area to the
work done by the internal forces. The result will be an approximate
expression for the deformation in terms of the charge weight and dis-
tance from the explosion.

A third criterion is to employ Hamilton's principle in the plastic re-
gion, assuming a given collapse or buckling pattern. The result will
be a differential equation for the lateral deformation as a function of
time. For this calculation the pressure distribution must be known ex-
plicitky. The use of the Hamilton's principle with the work computed
on the basis of deformation theory is. of course, open to question since
there are more accurate variational principles for plasticity. However,
if only loading is considered and we assume no elastic recovery after
the maximum deformation is reached it should give a reasonable approxi-
mation. The assumption of no elastic recovery has been checked for
plates under static loading 7 and has been found to be a valid one.

Physical arguments backing up method of approach

The theory depends upon the assumption that the shell buckdes or col=
lapses and then continues deforming plastically in the same type . ..
pattern. The accuracy of the computation of buckling and collapse .
loads does not seem critical as long as we can be sure which pattern
will occur. In the plastic calculations the detailed assumption of a
collapse pattern is not critical since it is determined by one para-
meter -- the length of the plastic hinge. However the buckling pattern
is quite a bit more complicated since it depends upon the number of
buckling lobés and the assumption of how rapidly the deformation dies
out around the periphery as one proceeds from the front where the blast
load first hits. An exponentially decaying cosine wave is assumed in
one particular calculation but other types of patterns are possible.
One other such pattern is discussed in this rpport and consists of a
series of hinges around the periphery.

The assumption on the degree of decay around the periphery 1s guided

by the experimental results. The number of lobes is computed from
classical buckling theory and has been found to agree with experimental
results. The deformation patterns which have been employ=d in the plas-
tic theory are likewise based upon experimental results.

The major item of contention concerning the validity of this theory is

the fact that a deformation (total) type stress-strain law has been used
instead of a flow((incremental) law and that a linear hardening law

has been used as an approximation to the real material law; and that the
elevated temperature is assumed to decrease the hardening and decrease ' ~
the yield point. The latter assumptions concerning elevated temperature

-



II.

behavior have been demonstrated for one dimensional systems; It therefore
seems plausible that the same type of behavior should hold true between
the octohedral shear stress and strain for biaxial systems. If we are
concerned with loading paths consisting of the first laoding and assume
that there is no elastic recovery but that the shell remains permanent]y
at its laryest deformaticn (as was shown approximately for plates ),

it would seem plausible that a total strain theory should give reasonable
results.

Theory
A. Plastic energy absorption relations

Assume that the shell is exposed to an impulsive load of short dura-
tion which imparts an initial velocity to the .8tructure. The problem
is the equivalent to one in which the structure has an initial kinetic
energy.3' If no instabilities occur in the elastic region when the
structure goes plastic there could be a plastic instability point. If
instability does not occur at all and the structure is loaded further,
then there will »e a point at which the structufe will collapse.

The deformation energy (or work done by the internal forces) per unit
volume of an elastic-plastic body can be written:

€
V=) oide: + Kg* (1]
2 z

= \/— \/(6, é’) +(é -€a2) +(€z -&) *-{()x, *)'73 rdu)

6 =€, + 67_ +E, ) /£ = Bulk Modulus

where 6;/ F'r) 02 are the direct stresses, 2’:7, ’5,; ZLa. are

the shear stre.sses, €, e,) €, the direct strains and 3';7 a—a} Vax
the shear strains.

0 = (02 0™ (G- G3) % (03-G) + 6By Tya' )
e

The curve of 07 vs €; describes the stress-strain law of the
material. Assuming an incompressible material ( & = © ) and partic-
ularizing our analysis to a thin shell, we obtain

Vs féfzr;{’ﬂafafht_7¢/25

Ci=\G -0y + Oy v 3 Tyt , CG=F\aHabrgth
6

(2]

The expressions for the strains are

€. = € k; % ]
T € - K ) C‘;:é‘-z‘(‘. ) 7:5’—2.32.
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where €, <, ¥ are the midsurface strains, 2 is the radial distance
from the midsurface to any elemeuc within the thickness of the shell. and
K)K, k., T are the curvatures and twist. The values g €&, & are
(aliowing large deflections)’ e

- D >
CcMAE) . aiFerdry

)' dx. ‘%4.&‘:%-"

and the curvatures and.twist are

_ Q&r J% J
ReER L ReRRedy .

L 3,
T=2 500 * a5
A general deformation type elastic-plastic stress-strain law can be writ-
ten~ (assuming a Poissons ration of %)

0;--%;‘_3(6“{6,)

. (6]
0; = % % (51— +f 6:.)
T = %
=1 ¢ 9y
where o
é—: = 5[1—60((,-)] [7]
in which wde¢;) =0 for the elastic region. Now neglect all terms in

the strains which contain ¢« and 4/, assuming that they are small com-
pared to 4~ and its derivatives. Then

b= ()2 g ‘(ﬁ)'—‘f“);%’r‘ (8]

%y = 3::5 =

Consider an elastic-linear hardening incompressible material which has a
stress-strain law as shown in Figure 2. This stress-strain law can be
written

Elastic Case w(Ce,) -p for € < 2 , 0; <05

4

(9]
Plastic Case NCC; = A (" “/¢;) for &.>¢&; R > 4,

s
A=/=()@de:)
‘(The. special case of A = 1 describes a perfectly plastic material)

Going back to the general expression for the energy, and substituting the
stress-strain law of equ. [9]

L p3r 8, L€
V=4[-{ O/Ee;[/—z\(/-‘r/e;)_?alegadqoc/za’: [10]

—i5—
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v '-'// /[54//—,\) +EAE € Jadpolecs - % anate (11]

Substltutlng the expression for €, from [2]

f [f(/-o\);;*é%(’zrjddfdhd} EA &, /ral.t S=c % *66'*6 +£“ [12}

Us:Lng the strain expressions [8] and integrating with respect to t

v//[jfﬁ-A)[{-x +—;,3] [13]
42,\Ec[(zpe+»)\,5+}r+2‘ :;,fir e b ;%,:t:a.]f‘/"'l*

- s,\f, naLE [14]
e 4(35) ST ) 4(29)" ) %
e (%H:) +"'l‘.ax. &*l(%{);*lf"v)
Ww) -( "“’)"( Tet) - AR (R ) 2 g; HOEVAY
N _ .J.cn-) (ade/ + %‘%{- :.L;“, g‘f..,¢

The strain terms in equation [8] which involve #£ are associated with
bending, the other terms are the membrane strains. For very thin shells
sometimes the bending strains can be neglected and the resulting energy
expression will be (neglecting the last term)

&Ly oor
: Vc:[[ {?,- E(/—A)éx(k,4)+2£v§r€:tm}.d¢d¢_ [15]

Some materials can be considered perfectly plastic. For this case 4 =/
in the plastic reglon and

,._// Za\Ef.r{.ma/gﬁdL (1€]

The energy of deformatlon in the elastlc region can be obtained from [13]
by letting A =0 . However a more accurate expression for the elastic re-
gion can be obtained by starting with the elastic stress-strain law for
any Pogsson ratio, i.e.

0, = =_ - &
x /w("""‘)é?) , 0% = =l €, 4VE,) [6a)

Ty = g %y

The elastic energy is

V {f,uh(é;ﬁzoécerﬁfv.tﬁ_/f{ )n‘vl) dz

Thus .
E J
= / / 7 [t etia) + £ Belec))]achdy [13a]
-6=




where

vels )« $(30) SV 1ES) -0 E + 4 (5) - %(55)+ ¥+ 20508%)
Alng) = (%5)7 B, ( S 2y 22

In some cases the deformatlon of the shell may be axlsynunetrlc and the de-
flection 4o~ will then be independent of ¢ . For this case expression [13]
becomes

V= 2rra/7§- Eﬁ-A)[f'-(f--,L:AJ [17]
© 2) X A >
THers + .*‘_‘,-!-Qr[m-n-)‘\'/a-uzn 228 aé%mz f‘%ﬁdz %
e 4 ()4 pa) = (3K)* (18]
He) = - (i‘:’)?’%é'f) X
Now define a new variable %'z %/, and let av=av; £72'¢f) then the

integrals can be written in terms of dimensionless quantities as follows:

We first combine the elastic and plastic cases in one sev of integrals

noting that:
a. For the elastic case A =0

b. For the plastic case V=4
The combined mtegrals are then

-.-Efl-»\)tdm , El- N\ al 72T
Y K / ey + (//,.A.:)u ///3-"”"‘/‘/

+A ﬁftéa'L/ fzz-ft)V-?#-d’f (4.?'; f’)\# M(V:“' E_,.l-&-'- ‘
\/#22 -?J

- [-z/sw)\/:(-_uf (4.([-3-) z +a
where [ g4 fi- \/‘%_T]//“/‘/
—FEre*ract
20 ) = () (B4 (L) (L) (D 4 (E) ()= or5 ) 24 (45)”
FEORCE) - CR G ) B F 20
Fujo)= £2 - (%2)(4) 5 () /‘Ln) -(3)E (g)(#)b
+ACTE A A E IR ) - L) S )
¢ 2y B () 4’—1’/7-)’/:‘?)"(#)6,')/%)
Brie) = (88 =(RITRE) VL) 2 B) (L) 21 L) )
HBVOE) () #20-)08) ) VL) (ﬁ‘;)

(19]

. G e O T e —————— ey N e e . e o -
- - ... -~ - gl Ko ﬂ'ﬂ"—"—!—-
r d $
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Thus the integrals are dimensionless quantities which are functions of

. the dimensionless ratios ok , 4, €/2a . Equation [9] is the
7/
form that the electronic computer used to compute the integrals numer-
ically for a given shape £z '/ ) . given parameters 9% f/4g
anid & series of values of AYo./a :

B. Extension to thermoplastic deformation
l. Employment of a bilinear stress-strain law

One dimensional thermoglastic tests have been conducted by Alder and
Ph1111p518 and Bell some of the results of which are discussed

in a book by Goldsmlth.21 The effect of temperature on the stress-
strain law is also discussed qualitatively by Rhinehart and Pearson.
To this author's knowledge there have been no biaxial thermoplastic
stress-strain tests to date. In fact the basic elements of thermo-
plasticity are just starting to be discussed in the literature. 23
Therefore any biaxial thermoplastic stress=strain law which is::assum-
ed will have to be based mostly upon intuition and partly upon extra-
polation of the one dimensional tests. Based upon the above mentioned
references it seems that the effect of temperature on the stress-
strain law is to lower the yield stress, lower the elastic modulus

and decrease the degree of hardening of the material. If a bilinear
(elastic-linear hardening) stress-strain law is assumed for the room
temperature case, then it seems logical to use the same type law for
the thermal case with the degree of hardening decreased and the yield
stress lowered in the plastic region. The assumption will be that

the relation between 0, and €; for the biaxial case is the same as
that between 0 (stress) and € (strain) in a one dimensional test.

In terms of the previous parameters this would mean as the temperature
is increased the A is increased (with an upper limit of A =1) and

/ the yield stress, O0s , is decreased. In the elastic region the mod-
ulus of elasticity would decrease. The effect of temperature on Oy
and & is contained in the 1iterature,24 but the effect on hardening (A)
must be determined at the present time by extrapolation from one di-
mentional tests.l8:19.20 71h paterials which are almost perfectly plas-
tic (A=) at room temperature we can only assume that the total effect
of elevated temperature will be to decrease the yield stress.

Keeping in mind the above concepts let us rewrite equation [19] as
follows:

: :—va:;a = BLea) I [y f//,uw} o[ s } - Exgnie (152

where 4 is the term in the bracket of the .last integral in eq. [19]).

* This expreesion can be further rewritten as
- \4 VF'/V—A)
= +A -AVIme
V ® Gl "¢y {Z} 7} s (19b)
V3
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where Z denotes the sum of the o and /3 integrals and Y correspnnds

to the A4 integral.

We need only compute the values of I and V) (which are both independent

of A ) and the above expression gives us V for any A . Thus in the

plastic region the elevatéd temperature case can be obtained directly

from the results of the room temperature case by assuming the appro-

priate values for €, 0; and A . All three of these parameters can

be extrapolated by fitting a bilinear curve to the one dimensional

thermoplastic tests. ™’ + 20

2. Extrapolation of the Bell Parabolic Lawlg’20
In lieu of agssuming a bilinear law one might extend the one dimensional
Bell Lawl g which is

O =8, (1~ "72;:_)\/67

where £, is a universal constant ( S¥. © X#/mm?> ), Oz is the normal
stress and €&, the strain; T is the temperature in degrees Kelvin and 7
is the melting point of the metal. It could be assumed that the same
functional relationship holds between the octehedral shear stress and

strain, 1i.e.
ox} =/A% (- %&-> ngz_

However in the absence of any biaxial tests we will consider here only
the approximation given by the bilinear curve. At some late date either
an extension to the Bell Law for the biaxial case or a modification of it
will be studied further.

C. Impulse-energy relation

Let I be the impulse per unit mass applied to the shell. The impulse
momentum relation for an elemental mass w~ can be written: (only the
lateral velocity sw is being considered, & and A/ are being neglected)

. M'fdw=.7.'a‘». [21]
where m#/ is the lateral velocity imparted to the mass by the impulse.

Thus ’
ms = [22]

The Kinetic energy imparted to the shell is

Te) g ptarteld = 4 [t T 94 -

where Pt‘ is the mass per unit area and oA is an elemental area. The
impulse can wary over the surface. Therefore write the impulse as

Iey)=T, %) o]
T=42t L[ F¥%z)dA =

Equating the initial kinetic energy to the energy of deformation a.)sorbed
by the shell the expression for the impulse per unit mass becomes:

Thus from [21]

-9~

- S e " . .
- - e— T - T YT T T Ao R N
5



i

RS S BN

.- ¢
%" hlﬁ & I - - WP o » T

) 2
J’f}Z;fﬁﬂz')aﬁd

The total impulse on the shell will then be

r, =\ Vv

L :‘%{'JQ.sz;%?%;¢)¢a04 =:4(L/AV;5;%€;;%)¢£4

The impulse per unit area will be

b &¢ f:V 2, T
°f V g A

If the impulse is uniform
dc‘%;n)==/

and

_ =
Zpt =\/v LE—

:/2%7)6ﬂ4

(26]

[27]

(28]

[(29]

[30]

It should be mentioned that the expressions for the impulse hold when the
shell has reached its final state of defokrmation and has come to rest and
all the initial kinetic energy is used up in energy or work of deforma-

tion.

. Approximation to energy flux delivered from explosion

The enprgy flux density (energy per unit area) that is directed toward
the cylinder from the Rlast is a function of the charge weight and dis-

tance of the chafpge from the cylinder. It has been found3-

5 that the

energy flux for an underwater explosion can be written approximately as

Ep = € "R+

where é§c is the energy per unit area, C is a constant, W is the charge

weight and R is the distance from the explosion to the target.

Assuming

a constant energy distribution over the cylinder the total energy avail-

able to do damage to the cylinder would be
Et :C%_Z’TGL

where a 1is the cylinder radius and L is the length.

Using an energy balance this total energy can be equated to the work
done by the internal forces during deformation of the cylinder (this
work was denoted by V in the previous sections of the report)

Thus
\ v: Et‘

"4 T = = v G; ¢al
or Ce-._z- GL—\/_\/ F LA
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where YV is the nondimensional energy function as given by [19b]. This
function is computed later in the report for a variety of cases. Using
this Vv function together with experimental results on buckling and
collapse of steel and aluminum cylinders as given by Schuman™’'“ we could
derive a value for C and thereby obtain a seim-empirical formula for ob-
taining the plastic deformation of cylinders for any charge weight and
distance. Such a semi-empirical relation will be discussed later in the

report,

Approximate pressure dustribution and impulse delivered to shell from
blast

l. Pressure distribution

If one proposes to use a more exact approach such as the governing
differential equations or variational principles in the plastic region
for computjing the response of the shell to the blast, the pressure
distribution in space and time must be known over the entire cylinder.
Approximate pressure resgéts for overpressures less than 25 psi are
given in the ligterature. 3$sts are currently being conducted at

the Aberdeen Proving Ground to verify these results. One such test
result is illustrated in Fig. (10). Qualitatively the pressute time
plots look similar to the plots that ar36obtained by employing the
curves in the Nuclear Effects Handbook. The Aberdeen Experiments
seem to show a finite duration of the positive phase whereas the re-
sults form the Handbook show an exponential decay of the pressure with
time. A cdlculation $6f the pressure vs. time for the test case at
three locations around the cylinder using the curves in the Nyglear
Effects Handbook toasther with the plots of Baker and Schuman and
the work of Goodman is shown in Figure (ll1). It is plainlz seen
that there is no good agreement between the Handbook theory2 and
the experiment. This indeed points to the faet that wmangrmore press-
ure measurements and comparisons are in order.

2. Impulse distributﬂon

Along with the pressures at various, locations around the periphery

the impulse was also measured by integrating the pressure time rela-

tion at the various points. For the test cylinder described above

the impulse distribution was as shown below:

Angle 0° 90° 180° 240° 300° 330
Impulse 8 4 8 6 6 7

(psi-ms)

o

This indicates that the total impulse does not vary drastically from
point to poiTE around the periphery as was originally anticipated in
earlier work when an exponentially decaying impulse was assumed.
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F. Simplifications in the energy expression

The complete energy expression can be written

"/[/ arde; +/ orde; ] 42 (31]

AN

/// ‘//-A)l- ElE ¢ [adfddcd i - 54 zzraz.t-

For very thin shells undergcing very large plastic deformations

|
3
z
;

C >> € if A= 1 ( perfectly plastic material), then
: v ,‘/7"’;5:,* N PP (32)
[ (] ’
For some physical cases We/a = < 5 Q, =< / 80
that

“ = (5)FT
Thus

V= RGEAL S [ gtes )

III. Elastic analysis
A. Buckling

A rather extensive study of elastic buckling of a cylindrical shell
under nonuniform lateral pressure is given by Almroth.  He repre-
sents the pressure on the shell by the relation

Pre) = 2, + 92 condd [34)

The pressure at ¢ =0 is (9, + 7,) . Almroth obtains the critical
value >f (4, +,) for buckling of the shell. The nonuniformity
of the pressure is described by a parameter f defined as

£ P/ptn,) _ (35
He obtains a variety of critical load curves for P = &.J° ; this
is the case which will be considered here. These buckling curves
are shown as solid lines in Figure 3. The yield load corresponding

to a nenuniform pressure as given above with P = 0, will
be considered in the next section. In figure 3 it was assumed that
E = 1000065 ; d}' being the yield stress in pure tension.

For uniform loading the classical Sheory of buckling of cylindrical
shells is presented by Timoshenko. It is found that the lateral
pressure at which buckling under uniform loading will occur is given

by the following relation:

I-\);' ‘ fﬁk >~ g IR
' (fe.), ‘-5-;)[;,,_,,(,* Ry t A -, ,M'ui)_/ [36)

i b A" Rt
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where 7 is the number of full waves around the periphery of the shell.
It has been found by Reynoldsll that in lobar buckling such as this, the
circumferential parameter 7 approximately satisfies the relation

“;IL; ~ 423 VAT [37]
/ + /e > L

ane that buckling will always occur with only one half wave along the

length. In other words, if »» denotes the number of axial half waves

along the length, then m = 1 and n is determined from equation [37].

The factor 1.23 has to be adjusted so that n turns out as a whole number.

Once n is determined then equation [36] will give the value of the buck-

ling load for .uniform loading.

Yield or collapse

Assume that the shell ig thin and that membrane theory is adequate to de-
scribe the stress patterns in the shell. Assume also that the shell is
of length 1 and is supported at each end. Take the origin or coordi-
nates at the center of the shell as shown in Figure 4. The membrane
forces are shown on the differential element in Figure 5.

If Prx,4#) is the static load per wunit area applied %atfrally to the
shell then it follows from the basic membrane equations that

N‘_—/ = a;o/x ¢)
Ney = /a a-—‘tz/x ¢ L)

a/v
Ne =- é =P * 7‘;/40)
where Jc,/cﬂ) and :‘._/c/) are functions of fwhich are to be determined
from the boundary conditions on N,‘J Ny, Mg - 1f some of the boundary
conditions are given in terms of displacements then the following mem-
hrane equations in terms of displacements must be utilized:

Etu = [(Nx-INg)elx + £ cp)
Etaur = 2//+J)/A/x¢4/x- Q/Qg‘/‘*,ﬁ/(/)

Etar = O (Ng - N ) + E¢ ‘;
where t is the shell thickness, E i1s the modulus of elasticity, u,v,w
are the displacements (see Fig. 5) and L) o f, /¢/) are arbi-
trary functions to be determined from the boundary conditions.

[38]

(39]

Now assume that the pressure f/x/ g/) can be represented as
2 = 79,7(/4’) 5 Fep) = 1+ 7“/,9, coaed)

-13-
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The solution will be obtained for the boundary conditions

Nxg = O a?t £ =0 ‘7 r,mwﬁ,
By straight forward integration of equations [38] and [39] subject to
boundary conditions [41] it is found that

NS’ = & m, f/(/) (42]
N“/ = -ﬁ,l— £'rg)
Ne = B ZF0) +iap, #@)- Lo &2 £7q)

[41]

in which ,

@) =-Plypang , F£'0)=-Prp, cacy
So at the center of the shell x =0 , ¢ =0

Ny = alp,+p,) ) N =0

Ne= Joptp) v g P = Vealpup) v fxtbarn ) i

Now let ?: /Ps tz) (the criticali yield pressure at & =¢© ; corre+ (44]
’ sponds to Admroth's calculations for buckling)

(43)

Then

/\/¢=d79

X (45])
Nx svap +$x p F
Using the Von Mises yield condition
S p % 'S A,
Ne“=MNeNg +Ng* + 3Neg "= 05 7¢ [46]
The critical pressure for yield at =g =0 is
/
=0s
/f)c S £v/, orIr )+ ECE “‘g)(zj_,)+fm (47]
which for (-0, )=, 2 reduces to
P / [48]

2

[f)c = Us Ore .76 —0232F (L/D) % +.006%96 (4/0)7
These yield curves are shown as dotted lines in Figure 3.

C. The criterion for buckling or yield

It is clear from Schuman's experiments12 that both buckling and yield
collapse can occur. The main problem is to be able to predict which
type will take place. Once buckling or collapse has commenced the
plastic deformation will take place in that particular pattern into
which the failure has started. It should be made clear at this point
that the collapse and buckling criteria are not to be used to approx-
imate any of the dynamical parameters of the shell; they are to be
used only to determine which type of failure will start. Once this is
known then the plastic analysis as given in the previous sections will
be employed to determine the plastic deflections and impulse values.
Buckling or yield could be precdicted by the above relations in the

-14-
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previous section by employing the following criterion:

If the buckling load is less than the yield load the shell
should buckle; if the yield load is less than the buckling
then the shell should collapse.

One might argue that we need a more accusate criterion such as the
collapse load which has been defined as3 the load for which the struc-
ture remains in equilibrium, but the displacements can increase inde#
finitely, geometry changes being ignored. As will be seen later, due
to the nonlinearity of the displacements and due to possible hardening
effects, we cannot determine a '"collapse load" as such. A more poai-
tive criterion [as to whether the shell will collapse or buckle) such
as the yield point load and elastic buci:ling load used above may seem
over simplified, but it is, very subtlely, a more realistic outlook.

IV. lnitial Plastic Analysis
A. General

If we attempt to define a static collapse load by equating the work
done by the external forces to the work done by internal forces, the
following relation would result

Y4 b/
/[ POy cp)artey) cdedep =\ or W=V

[

where W is the work done by the external load, psn, &), during the de-
formation, #4vvk,¢f), and V is the work done by the internal forces dur-
ing this deflection as defined previcusly in the report. Using this
criterion let us actempt to define a collapse load for the cases of
interest.

B. Axisymmetrical Collapse

Consider the axially symmetric lateral loadinc of a perfectly plastic
shell subjected to both static and dynamic loading which is assumed
uniform over the shell. The problem is to estimate the static collapse
load and to determinc the impulse-deflection relationship in the plas-

tic region.

Shells under axially symmetric external load usually collapse with a
deformation pattern resembling two frustrums of a cone with a hinge
circle at the center of the cylinder as shown in Figure 6. Accord-
ing to the sign convention used in this analysis ## is positive inward.
The work done by the internal forces in this deformation is

o r } -
vegotent (VIR B E (R R A

la‘
)\ $OR) L R)E )
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Integrating, we obtain
V = #Ta Ot [ 4 yate \P e \ 3 5 =
I I
/ g e/q
*L*E/T{')A Ly Y, 1 /e \3L e \ T Lt
5 \/4/%)9*‘2 tn.)zz"/e-.) o™
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Assume that the shell and deformation pattern are such that

Yo/r,, <</ 5, “ra >/ [51]
the energy expression reduces to
270%
V= ZEL AL [52)
For static loading the work done by the external uniform lateral load is
W= 27a o Yol (53]

Equating the internal energy absorbed by tl.ec shell to the work done by the
external load it is found that

Po = 2 4Gt . 03 =E¢ 54

T == . O« 1 (54]

Expression [54]) implies that the load will not be dependent on the deflec-
tion throughout the plastic region. Therefore v1..is8 load will correspond to
any deflection in the plastic region and can therefore be termed the static
collapse load.

It is interesting to note that the load corresponding to yield in an elastic
shell with ordinary hoop tension is

Thus [54] predicts that the static collapse load is iabout 15% higler than
the load at which yielding will start. For shells in which %’a is not much
greater than unity, higher order terms in the energy must be included. 1If
second order terms in ety are retained, the energy becomes

V = 4rrar¢r(gﬁ+#:&.‘) (56)

Therefore the static load-deflection relation in the plastic region will be

Ay

P W $ T L) [57]
The effect of the nonlinear terms is to stiffen the shell so that the plastic
deflection for a given load will be definite value. As the deflectior in-
creases these nonlinear terms become more predominant and it is no longer
possible to define a load at which the deflection increases indefinitely.
Using relations [52] or [56] with (28] the impulse-deflection curve in the
plastic region can be obtained. With equation [52] we obtain:

> _ ard:. ¢t ¢
Tort)” = “TEEARL £ (58]
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With [56] we obtain 4 ~ L a z
- M,
(L6 = "TAGE (3L« § 557 £ o

mh i
The static collapse load does not define collapse in a dynamic problem.

In fact if the load is applied dynamically the actual magnitude of the
load can be much greater than the static collapse load and still not re-
sult in plastic deformation. It is the load-time relation that is im-
portant and the impulse is a lumped pargmeter which essentially is a
measure of the lpad time history.

C. Nonaxisymmetric buckling and r.ollapse

If we compute the work done by the pressure during the delormation a
linear function of the deflection will be obtained, i.e.

if wrs sy L)
{,or
then W = ““’;/[ Prd) L) noleley

The work done (V) by internal forces is in general a nonlinear function
of M/, as we see from equation [19], [20) and the curves plotted in
Fig. (8), (9). By equatiag the work done by the external pressure to
the work done by internal forces an expression will result between the
load p, and the deflection 4 . It is therefore certainly not plau-
sible to talk about a collapse load for large deflections. If a power
series in terms of avp is fitted to V = £/ ) then one of the terms
will be linear in 4/ ; if all terms except the linear one are ne-
glected then a collapse load could be defined in the same sense as in
the axisymmetric case.

For the axisymmetric case we were able to define such a collapse load by
neglecting the higher order terms in V. It was found that the collapse
load was 15% higher than the load at which yield would start in the
shell. If the buckling load is as close as 15% to the yield point load
there is a possibility that we will predict the wrong nattein of de-
formation. 1In cases where the two loads are far apart (say 100% apart)
we should be able to use the buckling-yield criterion to predict the
correct pattern.

V. Post failure, nonaxisymmetric collapse and buckling
A. Collapse

The deflection pattern for collapse is shown in Figure 7 and can be
. written analytically as follows:

arled)w acengp -\/a*- % [do f:z]“ (60]
Letting x 'z X/
Y @) = ccedf — \/a ['/_z..,]" Sfor o<cx’ec{
cacmd—NVar-% [1oaa]" { <x’o (61)

where & is the width of the hinge llne as shown in Flgure 7. Using
these deformation expressions and equation ([33] the work done on the

-17-
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shell in deforming it plastically in collapse can be written

- 2GEL ¢/z')

- )f /;M \/a*- 4/’/43 :) ]4/44/& (62]
-d 72’
< aa)

‘f‘/f/ [a‘“-‘/- \/4 3 é_"(/_z‘,)i- 44‘(‘;

where “Anr)
(/ ‘m-’ 4‘—/'2..::&') S 04&'4£ J 4:4,'.."’./1“3‘)ﬁ'_£q,‘°[63]

After some mathematical manipulation and substitution of
=2 [saw] Loyl falr-2e] (64]

it is found that V/ can be written

ooy, .
E-?i-‘: L2 / ;-\//..y M;)J’- [65]
or finally

V= 2 uaép [3(2)- £* §4\/-@)"]. 7: ‘.6,3].4:;

Now using the impulse equation [27] and assuming that
f/z;) = £k eyp) = e Y [67)

The relation between the impulse and the deformatlon can be written as

(assuning 8 = 2)1;_ = 2¢tLO0VK \/-? o8
<=3 [402) - 9%/ EF]

The deflection is actually described by d‘/D

Buckling
l. First approximation - continuous curve

For the post failure buckling region the circumferential parameter
takes on great importance and the simplification given by equation [33)
cannot be employed. Instead, the plastic work has to be computed from
the more general integral expressions. We use equation (19] and assume
a post failure deflection pattern of the form

f-f&qu) o~ T’ ¢"'"coanql R~ ocgarr

N 69
T TR @ -4 '”Qa /&”—4) - T agla 37 [69]
2. Second approximation - series of hinges around periphery

Upon closer examination of the buckling failures it is seen that the
ideal buckling pattern of a continuous cosine wave as defined above
does not exactly describe the post failure deflection in all cases.

J18=
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Possibly a more realistic pattern for some cases might be a series of
hinges, the depth of which becomes smaller around the periphery as
shown below:

The number of such hinges could be determined by the number of elastic
buckling lobes as described before. It is expected to do more work
with such deformation patterns in -he future.

Energy expression from numerical integration of the general integrals
using first buckling approximation

The curves of \/ are plotted in Figures 8 and 9 for buckling and
collapse failure as a function of the deflection and the geometric para-
meters of the shell. The buckling curves were tomputed for the para-
meters ) =4 , A = /g . The values of # satisfying relation [37) were
used in these calculations. It is seen that the collapse results using
the simplified formula (equation [66]) compare well with the more exact
curves shown in Figure 8 for ., 2 «¥e/p <. § .

Variational principle and governing differential equation in plastic
region

The principle of extremum potential energy can be applied if we are
dealggg with a deformation theory as is the case in this work. Green-
berg writes this principle as follows:

J[Uj:'ﬂ [69]
¢
where U=/([U}J¢£ )a/v'—_S/T;u‘;a/f = V-w
v'

The integral over v’ is the potential energy or work done by internal
forces during deformation and the integral over 2. is the work done by
surface tractions.

If we extend the principle to the dgnamic case then its extension can
be written as Hamilton's Principle3

¢
é'f ‘[T—ujd;‘ =0 [70]
¢
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where T = %;,a,éfzdd the kinetic energy

A = mass per unit area of shell

ﬂ“ element of surface area

“ = velocity normal to shell surface (the longltudlnal and tan-
gential inertia are being neglected)

The variation is taken just as in the elastic problem by Love.32

This problem is equivalent to the following pr®blem in the calculus
of variations:

Find the function 4/x) which takes on a given value for x = a
and x = b and which minimizes the definite integral

6
r = [F(x, 2, 3')de (71]

The result is that F must satisfy the Euler Equation
F _ ef ) .
arr L/ a?') =0 [72)

F= T-U

In our cace

g war, o, XL , F >~ (73]
Thus
T = 4 fjunrtdA = [0 Vo) oA (74]
We fit a power series chrve to \/ from results like the ones in Figs. (8)
(9). Thus \/._,[,44.84./'04-6“’2"-*0"’33*"'_7 -
and W= [plode)s, Fey)dA
where 79(‘;‘ 4" ) is the pressure applied to the shell

This results in the following nonlinear differential equation in time for
the determination of 4

«Q/a Fled)dA + [B+200/34300% -] =/,4;.,g¢) fld)dA (76]
/]

This will be the governing differential equation for the loading regime.
The initial conditions are .

This equation will be valid as long as the deflection increases and un-
loading has not yet started to occur. If it is assumed that the shell
deformation increases to a maximum and has no elastic recovery then the
maximum deflection determined from this equation will give the permanent

-20=




Based on careful study of the existing plasticity flow theories of today
it is difficult for this author to see how the important complications
such as nonlinearity in the strians and stress-strain law in addition
to nonuniform dynamic loading can be included and result in a solvable
problem. In such plastic dynamic biaxial stress problems this author
sees very little hope for any but the deformation theories and the
energy type procedure for actually getting reasonable answers in a rea-
sonable time.
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set. If we assume that elastic unloading occurs then the initial con-
ditions for the elastic unloading regime can be determined from the sol-
ution of this equation. An_elastic equation using the glastic potential
energy can then be solved for the elastic recovery regime. A closer
look at this approach to the problem will be given during the next sev-
eral months. However, for the present time the energy approach as

given in the next section will be used to approximate the plastic defor-
mations.

VI. Practical use of the energy criterion
A. The energy crdaterion

Using the energy relations described in Section D earlier in this
feport we arrived at the basic relation

- 0 ¢l
Cf’;z-naz. =V 37,,_

wherc C is to be determined from experimental results. Using results
for collapse behavior of steel shells we find that C 2« 16000 (where
all units are in pounds and inches). A very rough expression gov-
erning the plastic behavior of steel shells in the collapse region

18
V. = /79,000 %5 o';'LE (77)

B. Future work with the energy criterion

Since it has not as yet been determined how much hardening there is
in the material and since there are some doubts about the true buck-
ling post failure pattern, these items shall have to e determined
more definitdvely in the near future before an adkquate semi-empiri-
cal buckling formula can be obtained similar to the collapse formula
above. Also more accurate collapse measurements will have to be
taken in order to ohtain a hetter collapse relation than above.

More work is also in order to obtain a more accurate expression icr
the energy flux density.

VII. Discussion

The great advantage of the energy absorgtion method as described here
and elsewhere in the literature :4,14,15,16 is that many complications
can be considered in the analysis and still result in a tractable pro-
blem. For example it is seen that we have considered here nonlinear-

ity in the strains, strain hardening in the stresa-strain law and non-
uni form dynamic loading. This type of theory has one main disadvantage -
we have to assume a deflection pattern. However it must be realized
that even in some of the more spohisticated plasticity theories assump-
tions on the pattern must also be made.
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Figure 2 Elastic-Linear Hardening Law
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Figure 5 Shell Element Membrane Forces
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