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I. Introduction

When a plane wave strikes a plane interface separating two different homo-

geneous, lossless, isotropic dielectrics, there arise reflected and refracted

constituents in addition to the incident wave. If the field impinges from the denser

medium (having the slower wave speed, and dielectric constant el), the refracted

wave emerges at a steeper angle with respect to the normal to the interface, and for

incidence at the critical angle, refraction is parallel to the boundary. For still

steeper directions of incidence, total reflection obtains and no propagating field is

transmitted into the thinner medium (with dielectric constant C2). While the

processes of reflection and refraction may generally be interpreted in simple ray-

optical terms involving the concepts of wave fronts, rays, and ray tubes, this

mechanism fails when incidence is along the critical angle. In this instance, the

finite cross section of a tube of parallel incident rays shrinks to zero for the

refracted rays parallel to the interface. The ray tube argument is directly relevant

when excitation arises from a point source in the denser medium because the

critically incident rays then lie on a single cone which may be surrounded

unambiguously to form a corresponding ray tube. The rays bounding the tube after

striking the interface belong to the reflected and also the refracted categories (see

Fig. 1(a)), thereiuy making an interpretation difficult. It appears plausible that the

critically refracted ray may react back on the denser medium by refraction (Fig. l(b)),

and since such a wave process cannot be explained by conventional geometrical optics,

it must be a diffraction effect if it does indeed arise.

This paper is devoted to a review and further study of wave phenomena of this

type, generally classed as "lateral waves", "head waves", or "refraction arrivals",

with the latter terminology customary in the vocabulary pertaining to wave propagation
I

in elastic media. Each of these designations describes a special feature of the wave:

the first highlights the lateral or sideways propagation of the wave parallel to the

interface; the second derives from the fact that under transient conditions, this wave

furnishes the first response in certain regions of the medium containing the source

(see Fig. 6); and the third focuses on the important role played by refraction in
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2
establishing the wave. In applications involving electromagnetics , the term

"lateral wave" has found broad acceptance and will be retained here. The various

characteristics of this wave on an ordinary dielectric interface are reviewed first

for operation in either the transient or the time-harmonic regimes. Concepts of

wave coupling involving the incident, reflected, and refracted constituents are
3

emphasized, and refractive index diagrams are employed to provide a graphical

description of the wave front and ray trajectories, and also to clarify certain

analytical features in the exact representation integrals for the fields from which

the lateral wave may be extracted by rigorous techniques. The interpretation in

terms of wave coupling, and the use of refractive index diagrams, furnish additional

insight which has been absent from the more conventional treatment.

Crucial for the existence of the lateral wave is the possibility of supporting

wave propagation at two different speeds. In the example discussed, the different

wave speeds occur in the denser and thinner medium, respectively, and the wave

coupling at the interface produces a diffraction effect in the form of a lateral wave.

If a single medium may support different wave speeds, lateral waves may arise at

a bounding surface without the accessibility of a second region; in this instance,

critical refraction and the associated wave coupling takes place among the various

field types present. This aspect is illustrated for an anisotropic cold plasma wherein,

for example, the ordinary and extraordinary waves have different propagation

characteristics, and also for a warm plasma wherein one may find electronacoustic

and ionacoustic waves in addition to those descriptive of electromagnetic phenomena.

Depending on the number of wave types considered, it may be possible to have

several kinds of lateral waves which arise from selective coupling between different

species. An understanding of the coupling mechanism is furnished again by the

refractive index diagrams (Figs. 7(b) and I1(a)).

The lateral wave arises from a branch point contribution which must be accounted
for during the asymptotic evaluation of the integral representation in the far zonn
(or at high frequencies). In the thinner medium, the lateral wave field is
evanescent (see Fig. l(b)).
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The lateral wave constitutes a diffraction effect which is generally weaker

than that associated with the direct and reflected (geometric optical) fields. This

aspect does not constitute a handicap under transient conditions where different

wave constituents at an observation point may be distinguished by their different

arrival times; however, in the time-harmonic regime, the weakness of the response

makes detection more difficult. An exception occurs when the direct and reflected

fields are excluded from certain spatial regions which are nevertheless accessible

to the lateral wave. This situation may arise when the denser of two media is

inhimogeneous; the geometric -optical fields may then be confined to an illuminated

domain, but excluded from the refraction shadow zone (Fig. 14(b)). The latter may,

however, be penetrated by the lateral wave which then represents the dominant

contribution. A similar situation may occur in a homogeneous, but anisotropic region

with the confinement of the direct and reflected fields caused by the anisotropy

(Fig. 7(a)). Losses in the denser region may serve to attenuate the conventionally

dominant field constituents, thereby favoring the lateral wave, which propagates

largely in the exterior low-loss medium (Fig. 15 ). These possibilities are

illustrated by examples (Sec. V).

While the lateral wave progresses undisturbedly on a single infinite boundary,

it is affected by other interfaces or by discontinuities. An example of the former is

provided by a ditct, formed either in the thinner or the denser medium. For the

situation depicted in Fig. 2(a), interaction with the perfectly conducting plane takes

place via the exponentially decaying lateral wave field in the thinner (fast speed)

medium; evidently, the interaction is expected to be minimal when the duct width is

large, but substantial for small ducts. Alternatively, when a duct exists in the slow-

speed medium, the lateral wave should be influenced by multiple reflection (Fig. 2(b)).

These anticipations are substantiated by analysis. The present examples also lend

themselves to a discussion of the role played by the lateral waves in the spectrum of

waves that can be guided along the interface. It is found that these strongly source-

dependent waves do not belong to the proper mode spectrum but that they represent
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the contribution from a portion of the continuous spectrum. In this regard, they

resemble leaky waves, the connection with which is also explored (Sec. VII).

If the supporting surface is terminated abruptly, an impinging lateral wave

may be scattered by the discontinuity generated in this manner. Two prototype

problems are cited to demonstrate this effect; the boundary is a semi-infinite plane,

embedded either in an anisotropic cold plasma or in an isotropic warm plasma.

These problems show furthermore how lateral waves may be excited by structural

discontinuities on the supporting surface (Sec. VI).

It is noted from Fig. l(b) that the lateral wave exists only in a certain region

of space bounded by the critically reflected ray (dashed line). In the vicinity of this

ray boundary, the lateral wave field undergoes a rapid transition which cannot be

described in simple ray-optical terms. A more complicated analysis is now required

and is alluded to in the text (Sec. VIII). Analogous transition phenomena occur also

for lateral wave species associated with configurations other than the simple dielectric

in Fig. l(b).

While the presentation here deals only with plane structures, it is to be

expected that lateral waves may exist also on curved boundaries (Fig. 3). Although

some preliminary studies of this more complicated phenomenon have appeared in the
4literature , further work is required to render an understanding of the behavior of

this wave as comp] Ate as that of its simpler counterpart on a straight interface.

The prec,'ding discussion has served to highlight salient physical aspects of

lateral wave fields under rather general conditions. The further elaboration of these

concepts, and some substantiation by analytical means, is to be found in the remainder

of this paper. To simplify the analysis, the source configuration is taken to be a line

distribution of electric or magnetic currents flowing parallel to the interface or

boundary, thereby rendering the associated fields independent of the coordinate

parallel to the source axis. No essential features are lost by this assumption; the

choice of an arbitrarily oriented dipole source merely introduces azimuthal variation
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and polarization effects which are not rele.ant to the present discussion, and also

a distance decay characteristic of three-dimensional rather than two-dimensional

propagation. Only the most familiar problem, involving a plane boundary separating

two homogeneous isotropic dielectrics, is treated in some detail to provide an

analytical foundation for the physical interpretation of the solution. The reliance in

other examples is primarily on physical concepts, and no mathematical details are

given in order not to extend further the length of this paper. The interested reader

may wish to consult the source material referenced at appropriate places in the text.

II. Plane Boundary Separating Two Simp~e Homogeneous Regions

Lateral waves in their most familiar form arise when a spatially confined

source configuration radiates from a homogeneous isotropic dielectric half-space

which is separated by a plane interface from an optically thinner exterior region

(Fig. l(b)). Each half-space region is designated as "simple" since it supports wave

processes at a single speed only. The solution and interpretation of the corresponding

boundary value problem is reviewed in this section, both for the time-harmonic and

for the transient regimes.

Also included here is the case where tlUe medium containing the source is

uniaxially anisotropic. While such a medium may in general support two wave speeds

and is no longer "simple" in the sense defined above, only one wave type is required

when the source distribution and the orientation of the anisotropy are chosen

appropriately. The considerations in this section are confined to this special case

and illustrate certain anomalous effects which are not encountered in an isotropic

environment.

A. Two Isotropic Dielectrics

1. Time-harmonic regime

The boundary value problem for the configuration sketched in Fig. 1(b),

with a line source parallel to the x-axis and located at (y, z) = (0, z '), is a classical
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one in electromagnetic theory . If the line distribution is coriposeo i-it znetic

currents of unit strength, the magnetic field consists of the single coiTmponent H =-HX
from which the non-vanishing electric field components E , E may be derived byy z

differentiation. The solution for H in the region z < 0 may be given in the form of a

Fourier integral:
2 ' 5

W 1 1 - in I 1 eirly
H(y, z) - + (,j)e (I)

4c J X

where

1 2 2 2 2 2 2r X "kaZ 7/12? C k Uj PCaco= C~~2, v.j= k-r , ,k €q ' =w 6.j . (Ia)

A time dependence exp(-iwt) is implied and suppressed. £1,2 denote the dielectric

constants in the two regions and p is the permeability common to both. The imaginary

part of the modal propagation constants x. is defined to be positive; for the losslessJ

case (cl 2 real), nti is positive when real. The integration path avoids the branch

point singularities at n = as shown in Fig. 4(a), and branch cuts are introduced

to render the integrand single-valued on the four-sheeted Riemann surface. The pole

singularity of 170 is not relevant to the present discussion.

The contribution from the first term inside the square bracket in (1) yields

the field in the absence of the interface and may be represented in the closed form:
.uel (1)(k

Hl(YZ) V -- CH (k r) , (2)
14 o I

or asymptotically for large k r,

1 0 1
H lY' Z) ~ 4 e I+0 ( 2a)

where r is the distance from the source to the observ'ation point. No simple

expression as in (2) is obtainable for the remaining integral H which may, however,
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2 ,21/2
be approximated by asymptotic techniques. If k r k ly +(z+z )]/>> 1, where r

is the distance from the source image to the observation point, the principal contri-

bution to the integral arises from the vicinity of the saddle points in the integrand,

and from any singularities which must be crossed during the deformation of the

original integration path into the steepest descent path. The saddle points 7s are

specified by the condition

d__. I +Vz =- - at nS (3)

d +iy] = 0 , ore dl

which relation yields ns=k sin g, where 6 denotes the angle between r and the negative

z-axis. Along the modified paths through the saddle point as shown in Fig. 4(b), the

integrand in H2 is exponentially smaller than its value at ni and the integral may2s

therefore be approximated by its contribution arising from the vicinity of 7' . Since

Ins I <k I and kI>k2 , the branch point at (+k2 ) or (-k 2 ) is intercepted when k2 < I7s I<k 1.

The asymptotic approximation of H2 thus contains the saddle point contribution,

(y (~Ti) _2_ Q + k r

(4)

and for sine >sinO , where B = sin-I/c2T. is the angle of critical refraction, also
cc

the branch cut integral contribution,

weI e ei[kl (Ll +L 3 )+k2L ]+inr/4

H2b(YZ) 2r 1-C (k L )3/2 U(L 2 ) k 2 L 2 »>> 1 (5)

The Heaviside function U(L 2 ) U(0-Bc ), which equals unity when its argument is

positive and vanishes when its argument is negative, delimits the domain of existence

of this field constituent. The saddle point yields the reflected wave of geometrical

optics, while the branch point contributes a diffraction effect in the form of the lateral

"These paths follow the steepest descent contour in the vicinity of ' only; they are
sufficiently accurate for the present discussion and are much simpLer than the
ccmplete steepest descent paths (see Fig. 19(b)).
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wave (see Fig. 1(b) for a definition of L1,2, ). The form of the phase function in (5)

substantiates the interpretation in terms of a wave process which follows the tra-

jectory in Fig. 1(b), and further support for this contention will be had from the

transient analysis in Sec. 2.

2,5
While these elementary results are well-known , they are presented here

to permit an interpretation via the refractive index diagram and also to emphasize

the previously mentioned concept of wave coupling. The refractive index diagram is

a plot of the directional dependence of the refractive index n, or equivalently, to

within a constant factor, of the wave number k = kn (k. = W r/-o is the wavenumber

in vacuum). The wave vector k appearing in a plane wave - exp(ik" r) specifies the

direction of propagation of the phase front, and the corresponding normal to the

refractive index diagram, the ray, specifies the direction of power flow (lossless
3

conditions are assumed). In the isotropic media considered above, the wave vector

and ray are parallel since the refractive index diagrams are spheres with radii n

and n 2 , respectively, as shown in Fig. 5. These plots represent equivalently

K()) = k n (n ) vs. r z k n ; points on the curves yield propagating waves (real n )oz, y oy z

while the absence of a point n on the curve for a specified real value of n indicatesz y

a non-propagating solution (complex nz). Evidently, propagating solutions in regions 1

and 2 occur only in the wavenumb,'r intervals I k <konI = ko/cl/ = k, and

IT11 <kon2 ko• 2 /eo = k2 , respectively. Figure 5 shows where the double-valued

functions xtl() a1nd X2(r) possess branch points. These singularities are located where

two values of x coalesce, and one observes that this happens at r =±kI and Ti = ± k2 .

One notes from (3) that the saddle point nS may be inferred from the wave-

number plot by a simple graphical construction: it corresponds to that point on the

plot for region I for which the downward normal (i.e., the reflected ray) makes an

angle 0 with the negative x-axis. The utility of the refractive index diagram in locating

the saddle points of radiation integrals and in interpreting the resulting field contribu-

tions in ray-optical terms has been considered elsewhere in some generality and will
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3
not be repeated here. Instead, we proceed to a discussion of the lateral waves

which are known to arise from branch point contributions. It has already been

mentioned how the branch points may be located on the wavenumber diagram, and we

shall now investigate the corresponding wave types. For the branch point at 1 = k2 , a

ray (designated by 2) propagates parallel to the interface in the exterior medium 2,

but the same value of ?i also admits of two propagating rays in medium 1: an upgoing

ray 1 and a downgoing ray 3 inclined at the critical angle e with the positive andc

negative z-axes, respectively (Fig. 5). These are precisely the ray trajectories in

Fig. l(b) which interpret correctly the asymptotic field contribution in (5). It is

also evident from Fig. 5 that the resulting wave arises from the coupling of the two

separate wave types in regions I and 2 at the boundary since both branches of the

wavenumber diagram are involved. The diagram therefore permito the direct

construction of the lateral ray trajectories and highlights the physical mechanism

of the associated wave process. While the preceding remarks apply to the branch

point at 7 = k 2 , analogous considerations hold for 1 = -k2 which gives rise to a lateral

wave propagating in the opposite direction.

No such wave phenomena may be associated with the branch points at 1 =k

since they do not admit of propagating waves in the second medium. This pair of

branch points therefore does not give rise to lateral waves and, as noted from the

analysis, it plays no special role in the asymptotic solution. It should also be noted

that if the source is located in the optically thinner medium 2, one cannot construct

a ray trajectory corresponding to that in Fig. l(b) since there is no real incident

ray which may excite a refracted ray parallel to the boundary. This follows at once

from Fig. 5 because all directions of propagating incident rays in medium 2 are

accomodated by the wavenumber interval J lii < k2 , and critical refraction in medium 1

does not occur in this range. A detailed analysis confirms the absence of a lateral

wave in this instance.

It may be remarked that there exists a lateral wave in medium I which is excited by
an evanescent incident wave from medium 2 and which refracts again into an
evanescent wave. Because of the exponential damping associated with this field
constituenc in region 1, it is not considered furtter.
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Upon comparing Eqs. (2), (4) and (5), it is observed that the lateral wave

amplitude is O(1/ko L 2) with respect to that of the direct and reflected waves, at

least at large lateral distances L2 for which rrL 2. Since ko L 2is a large

quantity, the lateral wave field is dominated strongly by the geometric-optical field

constituents and is therefore of secondary importance in problems of this type. An

exception occurs when the source and observations points lie near the interface, in

which instance the direct and reflected geometric optical waves cancel and the

remaining O(l/kIr) term in (4) becomes comparable to the lateral wave amplitude.

A modification is required near the angle of total reflection where L2-O0 in (5); the

behavior in this transition region is described in Sec. VIII.

Finally, from an asymptotic evaluation of the fields in region 2 of Fig. l(b),

one finds2 that there exists a geometric-optical constituent in the form of a rcfracted

wave, and that the field corresponding to the lateral wave is evanescent. This is

consistent with the ray diagram in Fig. 5 which does not provide for energy transfer

from the lateral wave into medium 2. Such a transfer of energy is possible, however,

under more general conditions where medium 2 may support two or more distinct

wave speeds; in this instance, the lateral wave sheds propagating ray's into both

regions. This aspect is explored further in Sec. IV.

2. Transient regime

While the time-harmonic lateral wave field in the preceding

configuration constitutes a second order effect as compared to other field constituents,

this is not true under transient conditions as will now be demonstrated. Although the

response to excitation by a pulsed source may be evaluated for arbitrary observation
6,7

times , it suffices for the purposes of the present discussion to consider initial

field values only. These may be recovered from the thine-harmonic high-frequency

solutions in (2a), (4) and (5) by recourse to well-known asymptotic properties of the

Laplace transform. Namely, if Gi(r, t) denotes a function of space and time which
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vanishes identically when t<t , and if u(r, s) is its temporal Laplace transform,

OD Co
u(r, s) = e u(r, t)dt = e s e u(rg+t )dg , (6)

t b
0

where (Re s) is positive and large enough to assure convergence of the integral,

then the principal contribution to the integral for large s arises from the vicinity of

g =0. Let us assume that u(r,t) behaves near tt according to

u(rt )~9(do+d1g+d2 2+. Re a > -I , 1 t-t° (7)

where the d depend on r only. Then by substituting (7) into (6), inverting the

orders of summation and integration, and utiliziag a well-known integral formula

for the gamma function r(x), one obtains the asymptotic expansion of u(r, s) for

large s,
st 00 d

u(r, s)e 0 1 n r(a+n+l) (8)
-- a+n+ln'- s

When s in (8) is replaced by (-i~r), this result describes the high-frequency behavior

of the time-harmonic field u(r, -iw). Since the same coefficients dn appear in (7) and

(8), the transient response near the time of arrival t = t of the first signal may be

deduced from the time-harmonic high-frequency result, and vice versa. If the

right-hand side of (8) also contains multiplicative integral powers of s, these may

be interpreted as time derivatives of the transient field.

These considerations may now be applied +o the formulas in (2a), (4), and (5).

Upon writing (Za) in the form

C eViw r/c

H('Z f r T__Hl2Y/2-ir,/r /c "I (-iw) 1/ 2 )

The gamma function in this section is not to be confused with the reflection
coefficient denoted elsewhere by the same symbol.
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where cI = (w/k 1 ) is the propagation speed in medium I and it has been recognized

that r(I/2) = rrl/2 one finds by comparison with (7) and (8) the following transient

s oluti on,

(y z -Z1 0 t1 (10)

3t'2,/ZTT,~/r/c Et-(r/clj)]i 'i I

The excitation for this time-dependent field is the temporal impulse 6(t) whose

Laplace transform equals unity and therefore does not appear explicitly in (9). This

conclusion may also be verified from the known exact solution for the impulsive line
7

source field

1 t 2n[t2_ () /c 2I 22_ / 1 1c

A
which reduces to (10) when tf(r/c1). It is understood in (10) and (11) that H 10 when

r

t<- . Evidently, the primary field is in the form of a cylindrically spreading
Cl

disturbance which originates at the source at time t = 0 and reaches the observation

point after the time interval t = (r/c) required for the signal to traverse the distance

r at the propagation speed c V

In a directly analogous manner, the reflected field in (4) corresponds to a

temporal response

AA2( z t)s p _t I £C cos•+.Icsin'6 tc..I/ '~ __

H -(Y zt) A ec- (12)

Z I Frr/c TcCos 8+I/-in2Ge Ft-L ' CI
Cl

which represents a cylindrically spreading disturbance that appears to emanate from

the image point and arrives at (y,z) after a time interval t=r/c . Since r>r, the

reflected pulse is received after the primary signal.

The dielectrics are assumed to be dispersionless so that el are constants
independent of frequency.
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Finally, upon writing the lateral wave contribution (5) in the form

i(L[-- +-L]

Hzb(y.z) ~iW e N 3 U(L 2 ) (13)
z ) ( -)(L 2 /C2)3/2 1-iW)3/2 2 , (

one derives the transient solution for tfT =(L I+L3)/CI+(L2/C2

H2b(y, z;t) ~ - C 2 [t-T] 1 2 U(L 2 ) (14)
2b at I TT (-e)(L /C3/1

with the understanding that the first response arrives at time t = T. Unlike 'he direct

and reflected fields which spread cylindrically, the lateral wave front i4 planar and

may reach certain observation points before any other signal. This feature, arising

from the fact that a portion of the wave propagates in the second medium with speed

c 2 >cI, accounts for the previously mentioned designation of "head wave" and serves

to clearly distinguish the lateral wave response from the remaining constituents.

This is true despite the fact that the field discontinuities across the impinging lateral

wave front are weaker than those associated with the direct or reflected signals

(see (10), (12), and (14)). Thus, in contrast to the time-harmonic case, the transient

lateral wave response is not obscured by the stronger direct and reflected fields.

The configuration of wave fronts associated with the various field

constituents is shown in Fig. 6 for the special case where the source lies in the

interface. This implies that r = r and Ll = 0, thereby simplifying the drawing. The

direct and reflected fronts now coalesce along the semi-cylindrical surface r =c t

(Fig. 6(a)), while the lateral wave front in the region 0>0c is given by

L 3+L2 sine ] =c t, where sin e- (c /C 2) is the critical angle (Fig. 6(b)). Also

shown (Fig. 6(c)) is the refracted wave front which spreads cylindrically into the

upper medium with speed c 2 . When these fronts are combined into the single

picture in Fig. 6(d), one observes that observation points in the vertically shaded

region are reached first by the lateral wave. Fig. 6(d) also illustrates why a lateral

wave constituent must be preseat. The direct signals in regions 1 and 2 propagate
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with speeds cI and c 2 , respectively, and since c 2 >c 1, the field from the high-

speed region spills over into the low-speed region to provide for the required

continuity across the interface. This spill-over effect gives rise to the lateral

wave. It is readily verified that points along the lateral wave front are reached by

ray trajectories L 2 and L3 as sketched in Fig. 1(b), thereby confirming the validity

of the ray diagram.

This concludes the discussion of the role played by the lateral wave in the

well-explored configuration involving two homogeneous, isotropic dielectrics. The

purpose of this review has been to establish and substantiate relevant concepts on a

familiar example. In subsequent problems wherein the medium characteristics are

more general, recourse will be had to the physical concepts emphasized above,

without detailed mathematical justification. The reader interested in the analytical

treatment may wish to look up the references which are cited at appropriate places

in the discussion.

B. Isotropic and Uniaxially Anisotropic Dielectrics

1. Line source excitation

In an anisotropic dielectric, the propagation characteristics depend

on direction so that the refractive index plot is no longer sphrrical. While there

exist in general two distinct wave species, customarily called "ordinary" and

"extraordinary", it is possible to select special source distributions which exnite

oniy one of these wave types. The simplest example which nevertheless retains

distinctive features of anisotropy involves a uniaxially anisotropic medium excited

by a magnetic line current oriented perpendicular to the optic axis. The medium is

characterized by the dielectric tensor c = (u u +v v )e +w w C2, where u , v and~ --' -'O-- -O 1 -O - -- O "

w are unit vectors parallel to the u, v, and w axes, respectively. A cold plasma

under the influence of a strong external magnetic field along the w-axis exhibits

uniaxially anisotropic properties of this type, with cl = and e2 = Co(I " Z/UZ) 2

where Co is the dielectric constant of vacuumn while wp and w represent the plasma
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and applied frequencies, respectively. It may readily be shown8 that the corres-

ponding refractive index surface has two branches, one of which is spherical while

the other is either spheroidal or hyperboloidal depending on whether £2 >0 or

S2< 0, respectively, with eI >0. When the fields are generated by a magnetic line

source parallel to the x-axis, only the last described wave species is excited and

suffices for a complete description even in the presence of a plane interface which

separates the anisotropic medium from an isotropic one. This configuration is

shown in Fig. 7(a), and the composite wavenumber plot (for w<w p) is given in

Fig. 7(b)).

An analysis of the problem leads to an integral representation for the

magnetic field H xH which is similar to that in (1) except that KI(T) now has a form

descriptive of the hyperbolic shape of the wavenumber surface . A study of Fig. 7(b)

reveals the existence of only one set of branch points on the real n-axis: namely

at n -±k . From an asymptotic evaluation, one deduces three contributions to the0

field in the plasma region: the direct and reflected waves which arise from saddle

points, and the lateral waves which arise from branch points. These field

constituents may be interpreted in terms of ray optics; salient features of the field

deduced directly from the refractive index plot are found to be in complete agreement
8

with the analytical results. In particular, since the refractive index diagram for

the plasma medium has an open branch, the direct and reflected rays are confined

to certain angular regions in space, thereby creating a shadow zone as shown in

Fig. 7(a). The dashed lines emanating at the source define the limiting incident

rays, and the second set of dashed lines represents the limiting reflected rays;

since neither the direct nor the reflected rays penetrate beyond these lines, they

constitute the shadow boundary.

The lateral wave which follows the trajectory in Fig. 7(a) is not excluded

from the geometrical shadow region. Its variation may be shown to be as follows: 8

iko[LI N(G I )+L 3 N(O 3 )+L2 1

HZb0C )c3/ U(L 2 ) , (15)Zb (L2)
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an expression similar to that in (5) except that the ordinary refractive index n is

replaced by the ray refractive index N(e) which depends on the angle 0 between the

ray and the positive z-axis. (N = n cos o, where a is the angle between the ray and

k). L 2,3 are the ray paths predicted from the refractive index plot. In a similar

manner, one may use the plot to construct a lateral wave solution propagating to

the left.

An important feature is contained in this result for a half space region

comprised of even such a simple anisotropic medium as the uniaxial: the lateral

wave field is dominant in the shadow zone which is not penetrated by the direct or

reflected field constituents. Thus, under appropriate conditions of excitation, there

may exist in a homogeneous anisotropic half-space certain spatial domains wherein

the late-al wave does not compete with stronger contributions to the field but is itself

the dominant constituent. This aspect, which does not arise in the analogous isotropic

environment, lends further significance to the lateral wave field.

2. Excitation by a highly directive source

An interesting "thought experiment" may be performed to lend further

support to the validity of the trajectory sketched in Fig. 7(a). From the discussion

in Sec. I, it is recalled that critical refraction plays an essential role in the

explanation of the wave processes associated with the lateral wave contribution. It

may then be expected that the lateral wave is strongly excited by a source configuration

which emits substantial radiation along the critical angle, but that small amplitudes

result when this condition is not satisfied. A highly directive source whose radiation

pattern is given by a narrow beam is suited to this purpose. Such a source may be

realized by a linearly phased current distribution which extends over many wave-

lengths and whose beam may be scanned by altering the phase constant. The far-

zone fields of this antenna in the presence of an anisotropic half space are easily

calculated and yield essentially the line source result multiplied by an "array

factor".9 The array factor associated with the lateral wave is found to be small

unless the incident beam (i. e. , the incident ray representative of the power carried
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in the beam) points along the critical direction; in the latter instance, the array

factor, and therefore the lateral wave field amplitude, shews a strong peak
9

(Fig. 8). This phenomenon is particularly striking in the shadow region of

Fig. 7(a) wherein the lateral wave yields the only significant contribution, and it

confirms the essential role played by critical refraction in the establishment of

the lateral wave.

III. Bounded Region Supporting Several Wave Species

The preceding examples have illustrated the propagation characteristics of

lateral waves in the most familiar situation comprising two homogeneous half

spaces, each capable of supporting only a single wave species (this is true for

ordinary dielectrics and also for the special case of the aforementioned uniaxially

anisotropic medium). The previously emphasized wave coupling plays an important

part in explaining the propagation mechanism and evidently involves fields which are

associated with two distinct spatial regions. In media of more general makeup

which may individually support two or more wave species, this coupling arises

between different wave types along a boundary in the same medium but is otherwise

directly analogous to the situation in Sec. II. Several specific examples will now be

discussed, and the conclusions are then extrapolated to regions exhibiting

propagation characteristics of extreme generality.

A. Isotropic Warm Plasma

A simple and timely example of an isotropic medium capable of supporting

wave processes at different speeds is provided by a plasma formed of a collection of

electrons, ions, and neutral particles. To a lowest order of approximation, the

effect of this medium on an electromagnetic wave may be represented by an

equivalent dielectric constant of the form e = e [-(w /hi •)], where w and w denoteo0 p P 10a

the plasma frequency (for electrons) and the wave frequency, respectively.

In this simplest model, the ions provide a stationary neutral background, and the

electrons oscillate about their stationary equilibrium position due to the influence of
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the (weak) impinging electromagnetic field. If the thermal motion of the electrons

is taken into account, one is led to the definition of a dynamical pressure p

descriptive of acoustic effects in the electron gas, and the resulting medium may
10Ob

now support two wave species: an electromagnetic (also frequently called an

"optical") wave which contains all of the magnetic field and has no charge

accumulation, and a dynamical (often referred to as "electronacoustic") wave

which has all of the charge accumulation but no magnetic field. The two wave

processes exist independently in an unbounded homogeneous plasma and proceed at

different speeds: the electromagnetic wave is characterized by a wavenumber

k=k k = (tU/c)j )'F whcre e is the previously defined dielectric constant of the cold

(incompressible) plasma, while the electronacoustic wave is characterized by a

wavenumber k =k(c/a) = (a)/a)'/T, where c is the electromagnetic propagation speeda

in vacuum and "a" is the acoustic propagation speed in the electron gas. When a

boundary is interposed along which the impinging electromagnetic wave has a per-

pendicular electric field component, wave coupling must be introduced in order to

satisfy the boundary conditions on the composite electromagnetic and dynamical

fields.

The simplest configuration involves a homogeneous compressible plasma

which exists in a half space region bounded by a perfect conductor. The wavenumber

or refractive index plot for the medium consists of two concentric spheres as in

Fig. 5 since the wave processes are isotropic; however, the radii are now given by

k and k for the electromagnetic and acoustic waves, respectively (Fig. 9). Onea

observes from the diagram that a lateral wave is excited by an incident electron

acoustic ray 1 which refracts into ray Z propagating with the electromagnetic speed

parallel to the boundary and which sheds energy back into the electronacoustic field

along ray 3. It is also noted from the diagram that the reverse process cannot exist;

A line distribution of electric dipoles oriented perpendicularly to the line axis is a
suitable source; a magnetic line current does not excite an incident dynamical wave.
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i. e. , there is no lateral wave excited by an incident electromagnetic field since one

cannot find a corresponding electronacoustic ray path parallel to the boundary. From

these trajectories, one constructs the phase characteristics of the lateral wave as

follows:
ik a(LI +L 3 )+kL 2 ]

Pb c (L32)3/2 U3(L 2 ) , (16)

where p denotec the electronacoustic pressure, and the restricted domain of existence

of the wave as expressed by the step function U(L 2 ) follows from Fig. 9(b). The

amplitude dependence on distance - (L.2 )'3/2 is not predictable from the wavenumber

plot, but may be anticipated from the result in (5); this variation is typical of the

branch cut integral contribution (subscript b in (16)) in the rigorous analysis which

yields the lateral wave constituent. It may be remarked that these simple considera-

tions are substantiated completely by a rigorous solution of the boundary value

problem12 which, of course, yields as well additional space-independent factors

entering into the amplitude function.

Attention should be called to the complete analogy of the ray trajectories

sketched in Fig. 9(b) with those for the two-medium problem in Fig. l(b), provided

that all wave processes are now taken to occur in the same medium. The analogy

can be carried even further to the construction of the wave fronts; the resulting

picture is shown in Fig. 9(c) and is obtained by folding the upper portion of the

drawing in Fig. 6(d) onto the lower portion. While wave phenomena of the type

sketched in Fig. 9 are novel in electromagnetics, they are familiar in the theory of

wave propagation in elastic media, lb

B. Uniaxially Anisotropic, Cold Plasma

A somewhat more complicated example of a configuration capable of

supporting wave processes at different speeds is provided by an anisotropic medium.

Even in the simplest case of uniaxial anisotropy, there exist two distinct wave species,

This simple picture applies only when the wave processes are non-dispersive and
should therefore not be taken literally for the warm plasma.
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the ordinary and extraordinary. While only one of these is excited by the source

arrangement described in Sec. IIB1, both wave types must be considered in a more

general situation. This is found to occur, for example, when a line of magnetic

currents is inclined at an arbitrary angle TWwith respect to the optic axis as shown

in Fig. 10(a), in which instance both the ordinary ("o") and extraordinary ("e"l)

waves are excited by the source and are coupled at the perfectly conducting boundary.1 3

Since the fields are independent of the x-coordinate and the line direction and optic

axis are assumed to be contained in the x-z plane, the relevant portion of the

refractive index diagram is the intersection of the surface of revolution in the

S-ii- wavenumber space (Fig. 10(b)) with the plane g = 0 (ý is the wavenumber in the

x-direction)(Fig. 10(c)).

The existence of a lateral wave may again be predicted by studying the ray

configurations obtained from the wavenumber plot. In reference to Fig. 10(c), it

must be kept in mind that rays 1 and 3 are projections on the y-z plane only since the

actual rays drawn normal to the wavenumber surface in Fig. 10(b) in the g = 0 plane

possess as well a component along the •(or x) axis. Thus, the true lateral wave

trajectory is not the one shown in Fig. 10(d) but it possesses as well a displacement

parallel to x. One observes that the lateral wave is excited by an incident "et ' ray 1

which couples to a critically refracted "o"' ray 2 traveling along the boundary; this

ray then refracts into "le"t ray 3. The analytical form of the lateral wave contribution

is then constructed as before and leads to an expression as in (15) except that L 1 ,2,3

now refer to the ray paths in the present problem, Only one lateral wave, existing to

the right of the dashed line, has been shown in Fig. 10(d); a similar wave exists in the

left-hand region and its trajectory and coupling mechanism may be determined by

analogous considerations. All of these conclusions have been confirmed by rigorous

In the example of Sec. IIBI, the line source (along x) is oriented perpendicularly to
the optic axis which lies in the y-z plane. The , =0 plane then intersects the wave-
number surface in the trace shown in Fig. 7(b), and all of the normals to the surface
are contained in the • r 0 plane.
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analysis. 
13

C. Arbitrary Medium

From the preceding graphical considerations which have been confirmed

by rigorous solutions of special problems, one may predict the occurrence and the

type of lateral waves which arise under quite gteneral conditions. It shall be assumed

that the medium in question can support several wave types, each of which possesses

a known refractive index surface. An example is provided by a multi-species

(electrons and ions) compressible plasma under the influence of an external d.c.

magnetic field,which is characterized by a variety of wave solutions with different

propagation characteristics. Consider, for example, a multi-branched wavenumber

surface whose relevant portion (for line source excitation along the x-axis) is the

section shown in Fig. 1 (a). Along a perfectly conducting boundary at z 0 0, wave

coupling occurs which gives rise to a multiplicity of lateral waves. As previously,

the existence of such waves is predicted by the ability to draw a ray trajectory which

contains an incident ray, a ray retracted parallel to the boundary in another wave

species, and still another refracted ray which carries energy back into the medium.

One observes from Fig. I I(a) that three such possibilities exist. The simplest

corresponds to coupling between wave types 3 and 4, with the former providing the

lateral portion while the latter accounts for the incident and emerging fields. The

resulting trajectory, quite similar to the one in Fig. 10(d), is shown in Fig. 11(bI).

Somewhat more complicated is the lateral wave which couples wave types 2, 3, and 4,

with 2 representing the lateral portion and either 3 or 4 furnishing the incident or

emerging rays. In this instance, the wave can be excited by incident rays of either

type 3 or 4, and energy leakage takes place into either types 3 or 4. Possible ray

paths are now: 4'-2'-4', 4'-2'-3', 3'-2'-4', 3'-2'-3', which express the various

combinations (Fig. 11(b 2 )). Still more diversified is the wave for which species 1

provides the lateral portion (Fig. II(b 3 )). In all cases, the lateral wave field varies

As noted earlier, the points corresponding to lateral rays 1,2', 3" on the refractive
index diagram also yield the real contributing branch points of the multi-valued
function ;(t7).
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according to (see also (15))14

ik [L.N. (8.)+L.N. (e.)+LkNk(TT/Z)J

A L 3/2 U(Lk) (17)
"k

where L., L. and Lk represent the path lengths along the incident, emerging, and

lateral portions of the trajectory, respectively, while ecM and N (ea ) denote the

corresponding ray angles (measured from the normal to the interface) and ray

refractive indeces. A is a factor which depends on the source strength, on the

medium parameters and on k0 but not on the space variables Liij.

A remark is in order on how these ray trajectories are employed in an actual

calculation of the field at an observation point P. Consider, for example, the three

lateral waves excited by incident ray Z (last diagram in Fig. I I(b 3 )). One constructs

the refracted rays 2, 3,4 in such a manner that they arrive at P along the direction

required from the refractive index plot. The intersection of these rays with the

interface then determines the lateral segmentsLlI , L I , and L, respectively,

as shown in Fig. 11(c). It must be kept in mind that Fig. 11 has only the projection

of the trajectory on the y-z plane, and that there may in general be displacements

parallel to x although the source and observation points lie in the y-z plane (thus,

the lateral segments for the three waves need not be colinear). The total field at P

is the sum of all possible wave solutions which may propagate fror- the source to P

along trajectories consistent with the refractive index diagram.

IV. Plane Boundary Separating Two Homogeneous, But Otherwise Arbitrary Media

We are now ready to proceed to the most general situation wherein two

arbitrary, but homogeneous, media are separated by a plane interface, and a source

is embedded in one of the half-space regions. By invoking the frequently emphasized

viewpoint of wave coupling at the boundary, this pro. 1•.m differs only slightly from the

one discussed in Sec. IIIC wherein only one region is accessible. In the present

instance, one merely examines the refractive index surfaces for the composite region
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and deduces the lateral wave trajectories accordingly. For example, let us assume

that the surfaces labeled I and 2 in Fig. 11(a) describe propagation in the upper region

z> 0, while the remaining surfaces 3 and 4 characterize propagation in the lower

region z<0 (if surfaces I and 2 are spheres, they might be descriptive of an isotropic

compressible plasma occupying the upper half space (see Fig. 9(a)), while surfaces

3 and 4 are representative of the ordinary and extraordinary waves, respectively,

in a cold anisotropic plasma filling the lower half space). The refractive index plot

for the composite region is then precisely the one in Fig. 11(a), and the determination

of the lateral wave fields proceeds as before. If the source is in the lower region, a

lateral wave may be excited which follows the same trajectory as in Fig. I 1(bd).

Fig. 11(b 2 ) is also applicable provided that the lateral segment 2' is drawn in the

u region since only the upper medium supports wave type 2 (see Fig. 12(a)).

Neither the 3-4 nor the 2-3-4 coupling mechanism leads to an energy transfer into

the upper half space. However, the lateral wave which arises from the coupling of

all the wave species 1-2-3-4 sheds energy both into the upper and lower regions as

shown in Fig. IZ(b). The analogue of the third sketch in Fig. 11(b 3 ) is not relevant

since no incident ray 2 is available from the lower medium; such a possibility does

exist, however, when the source is located in the upper half space.

15
The analytical dependence of the field is the same as in (17), and it should

now be clear how certain salient features of the lateral waves under quite general

conditions may be predicted directly from the refractive index plots.

V. Configurations Wherein the Lateral Wave Field is Dominant

While the preceding discussion has dealt only with the lateral wave contribution

to the far field of a confined source distribution, it must be kept in mind that

there exists in addition a geometric-optical (direct and reflected or refracted) field

For information concerning polarization effects and the factor A in (17), a more
detailed analysis is required. 14
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which generally predominates over the lateral wave because of the latter's more

rapid decay with lateral distance (see (2), (4) and (5)). Although this aspect is not

detrimental in the transient regime where the various field constituents at an

observation point may be distinguished by their different arrival times (see Sec. IIA2),

it poses a problem under time-harmonic conditions. It is therefore relevant to

explore time-harmonic situations wherein the lateral wave contribution is the only

important one and is therefore easily detectable. This requires, in essence, an

arrangement which eliminates the geometric -optical field without affecting the

lateral wave.

A. Homogeneous, Anisotropic Medium

One such arrangement has already been explored in a special example

(Sec. IIB), and relies on certain types of anisotropy to confine the direct and reflected

rays to certain limited regions of space. This happens when the refractive index

plot has an open branch because the range of propagating wave solutions is then

restricted to a certain angular region about the gyrotropic axis. When a boundary or

interface is interposed, the reflected rays are similarly confined, but no such

limitation applies to the lateral wave which freely penetrates the geometric-optical

shadow region (Fig. 7(a)) and represents the dominant field contribution there.

B. Inhomogeneous Medium

The confinement of the geometric-optical field to certain limited regions

of space may also be brought about by inhomogeneities even when the medium is

isotropic. An example is provided by a continuously stratified dielectric having a

profile as shown in Fig. 13(a); such a variation is characteristic of a plasma medium

whose electron density increases from zero at z = co monotonically toward the origin.

When a line source is placed into the region at an elevation z'>z I and the frequency is

high enough to justify the application of ray optics, the rays emanating at the source

are refracted by the medium inhomogeneity into a zone of illumination which is

separated from the remaining shadow zone by the envelope (caustic) of the refracted
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ray system (Fig. 13(b)). 16

If the inhomogeneous medium is separated by a plane interface at z = z from

a homogeneous half space with dielectric constant e < P(z )(see Fig. 14(a)), one

obtains the ray configuration in Fig. 14(b) which comprises reflected rays and rays

refracted into the lower region, in addition to those sketched in Fig. 13(b). This

complex of rays is still confined to a limited region of space which is bounded by the

previously described caustic, except near the interface where it is bounded by the

glancing ray. A lateral ray is launched by that incident ray which arrives at the

interface at the critical angle; the resulting trajectory 1-2-3 in Fig. 14(b) shows that

the refracted ray 3 penetrates the geometric-optical shadow region where it constitutes

the dominant contribution to the field. The lateral wave behavior is now given by:

ik 0 n(z)sl - dr+ Fn(z)s 3 dr+L n I

A3/2 U(L 2 ) , (18)

L2

where L 1, L2 and L3 denote the path lengths along rays 1,2, and 3, respectively,

sI are unit vectors tangent to rays 1 and 3, and n = N// is the refractive index.

Evidently, a combination of the effects described in this section and the

preceding one may be anticipated when the medium is inhomogeneous and anisotropic.

C. Lossy Medium

A third, and quite simple, mechanism for removing the geometric-optical

f Ad at large lateral distances is the presence of dissipation which is effective in all

of the cases discussed so far. Let the half-space containing the source be lossy, but

let the exterior region be filled with a lossless material. Since both the direct and

reflected waves progress entirely within the lossy region, these fields decay

exponentially. The lateral wave, on the other hand, proceeds in the exterior

lossless environment for most of its trajectory (see for example Fig. 1(b)), and its
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dissipative decay is due only to the relatively short path segments in the lossy

medium. This effect is important for the communication between two points
2

located within a bounded lossy material', and is relevant as well to propagation
5

within a lossy duct (Fig. 15). The bound waves (surface waves) which may arise

in this instance also decay along the entire lateral trajectory within the lossy region.

VI. Reflection and Diffraction of Lateral Waves

The considerations so far have served to describe the behavior of lateral

waves excited by sources in regions of quite general composition. The discussion has

been limited to single boundaries or interfaces which extend to infinity, thereby

assuring the existence of the wave in its pure form. It is, however, relevant to

inquire how the lateral wave is modified when the above-mentioned idealized conditions

are no longer applicable. We shall consider two types of perturbations which have

received detailed attention. The first arises wh,-ri an additional boundary or interface

is inserted, thereby creating a slab or duct region, and the second occurs when the

boundary supporting a lateral wave is terminated abruptly. In keeping with the general

tenor of this paper, these effects will be discussed in simple physical terms which

appeal for their plausibility to the constantly emphasized physical propagation

mechanism of the lateral wave. In each instance, a rigorous mathematical justification

is available which supports the ccnclusions reached on purely physical grounds.

A. Lateral Waves in Duct or Slab Regions

When a second boundary is brought into the vicinity of the interface in

Fig. l(b) from the exterior side, a duct of the electrically thinner dielectric is created

(Fig. 2(a)). Since the lateral wave field decays exponentially away from the interface

in the exterior medium, this second boundary is expected to have little effect as long as

While it is not possible to define the same ray trajectories in a lossy medium (the
dashed ray paths in Fig. 15 are not to be taken literally), the analytical expressions,
when continued into the range of complex C, remain valid, thereby justifying these
conclusions.
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the gap width d is sufficiently large. Detailed analysis substantiates this expectation.

For small gap widths, on the other hand, a modification is encountered which may be

explained by multiple reflection of the evanescent wave fields.

When a duct is formed by truncating the electrically denser dielectric as in

Fig. 15 (see also Fig. 2(b)),the propagating rays refracted back into the medium are

reflected and refracted upon reaching the second boundary, thereby giving rise to the

multiple trajectories shown by the dots and dashes in Fig. 15. The total lateral wave

field at a given observation point is then calculated by summing up the contributions

from the various individual lateral waves which arrive via direct, singly reflected,
5

and multiply reflected paths. If the duct is lossy, only the heavily marked trajectory

is important since it alone has the smallest path segment in the dissipative region.

B. Reflection of Lateral Waves

A different reflection process is operative when the region is terminated

laterally as in Fig. 16(a). One now expects the lateral wave field at an observation

point within the denser dielectric to be comprised of two parts: the contribution in the

unterminated region plus a reflected contribution as shown in Fig. 16(a) (note the

different reflection mechanisms in the two regions separated by the dashed line). The

validity of this conjecture is verified by invoking a rigorous image argument which

permits replacement of the reflector by an image source (Fig. 16(b)).

C. Excitation of Lateral Waves by Diffraction

Since a source of applied currents in a suitable environment may excite

lateral waves, it is not unreasonable to anticipate that sources induced by diffraction

give rise to a similar effect. This has been demonstrated on two prototype problems

susceptible to rigorous analysis: diffraction by a perfectly conducting half plane in
1 Za 17

either an isotropic warm plasma or in an anisotropic cold plasma. As noted in

Secs. IlIA and IIIB, either medium, when bounded by a perfectly conducting infinite

plane, may support lateral waves which can be excited by an applied line distribution

of sources. Since the edge singularity on a half plane acts like a virtual source,
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an incident plane wave striking the edge should set up a diffraction field, among the

various constituents of which are included the lateral waves. This turns out to be
12a

the case , and the resulting ray trajectories for the compressible isotropic plasma,

deducible directly from the previous results in Fig. 9, are shown in Fig. 17. ((16)

applies as well, with L = 0; it is recalled that rays 2 and 3 refer to the optical and

acoustic waves, respectively). One finds, furthermore, that the excitation amplitude

depends on the equivalent induced source strength at the edge in the same manner as

that of the lateral wave in Sec. IIIA depends on the applied source strength, thereby

confirming the physical mechanism postulated above. It should be emphasized that

these edge-excited lateral waves do not furnish the entire diffraction effect, but that

there exist, in addition, radially propagating cylindrical waves as well as surface

waves which travel along the screen and decay in the sidewise direction. 12a

In a similar fashion, one may deduce the lateral waves excited by the edge of

the half plane when the latter is embedded in the anisotropic cold plasma described in

Sec. IIIB. The trajectories now are those given in Fig. 10(d), with the source located
11at the edge (i. e. , L1I = 0), and the functional dependence is the same as in (17). 1

D. Diffraction of Lateral Waves

The above-mentioned half plane configuration immersed in the anisotropic

cold plasma lends itself to the rigorous demonstration of another interesting effect:

diffraction of a lateral wave by the edge discontinuity. If the incident field is generated

by a line coorce and if only the "extraordinary" constituent is considered, one observes

from Fig. 10(c) that the incident ray structure is confined to a wedge shaped region

about the vertical axis passing through the source. The source may therefore be

positioned in such a manner that no direct "e" illumination, confined to the interior

of the dashed triangle in Fig. 18, strikes the edge. However, the source excites a

lateral wave (see Fig. 10(d), reflected about the vertical axis) which propagates

toward the edge and is then diffracted. One expects the diffraction field to include

cylindrically spreading waves of the "o" and "e" variety (the "e" field is confined to a
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wedge shaped region about the edge), as well as lateral waves reflected from the

edge; the latter are shown on the upper side of the half plane, and a similar contribu-

tion existing on the lower side has been omitted in order not to complicate the sketch.

The trajectories follow at once from Fig. 10(c), and the relevant spatial dependence is

deduced from (17), with the amplitude coefficient now determined by the strength of

the incident lateral wave field as well as the scattering effect of the edge. These
17

physical concepts are confirmed by the mathematical analysis , and it may there-

fore be concluded that the lateral waves constitute a wave type which may be

reflected and diffracted in a manner similar to that encountered among the more

familiar geometric-optical wave species. In particular, the validity of the ray picture

descriptive of lateral wave propagation, and with it the coupled wave character of the

associated wave process, appears amply confirmed by the preceding examples.

VII, Spectral Considerations

It has been demonstrated by the preceding discussion that the lateral wave

constitutes a wave species whose well-defined existence depends, however, on the

presence of a localized source. The propagation mechanism associated with the

lateral wave trajectory is not relevant in the absence of excitation, and one does not

therefore expect to encounter this wave constituent in a source-free arrangement.

Since source-free solutions satisfying appropriate boundary conditions determine the

spectrum of waves which may be guided along a given boundary or interface, iu is

of interest to inquire into the relation of the lateral waves to the guided wave spectrum.

The simple example of two homogeneous, isotropic dielectrics serves as a

relevant illustration. The solution for the field in the denser medium has been given

in (1) which constitutes a representation in terms of the continuous mode spectrum

along the y-coordinate parallel to the interface (the mode spectrum along y determines

the characteristics of the waves guided along z). An alternative representation in

terms of the mode spectrum along z (guided waves along y) may be obtained by

deformation of the integration contour in Fig. 4(a) about the singularities of the

integrand in (1). To this effect, it is convenient to define the multisheeted 7 surface
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in such a manner that the spectral requirement Im XI 2>0, with htl, 2 given in (la),

is satisfied on the entire top sheet. The corresponding branch cuts then follow the

rectilinear contours shown in Fig. 19(a) (all of the cuts actually coincide with

portions of the real and imaginary axes, but some have been displaced for the sake of

clarity). Since no other singularities lie on the top sheet, a deformation of the contour

leads to the two branch cut integral contributions in Fig. 19(a). The absence of poles

on the "spectral" sheet of the ri-surface implies that the spectrum of waves guided

along y is wholly continuous.

It may already be surmised from these considerations that the lateral wave

has some relation to the continuous spectrum of guided waves along y since its

existence was shown to be connected intimately with the branch point at rj = k2 .

However, the lateral wave is basically an asymptotic high frequency (or far field)

constituent whereas the present discussion concerning the modal representation is

unrestricted. To pass on to thc high-frequency regime, still another contour integral

representation is useful: the steepest descent representation (Fig. 19(b)). The

steepest descent path (SDP) is that integration contour along which the integrand decays

most rapidly away from the saddle point (see (3)), and its general shape for the
*

present problem is shown in Fig. 19(b). At high frequencies (or great distance from

the source), the principal contributions to the SDP and branch cut integrals arise from

the vicinity of the saddle point and branch point, respectively, thereby providing the

previously described ray-optical field constituents. The role of the lateral wave may

now be characterized more precisely as follows: at observation points lying in its

domain of existence, the lateral wave represents compactly the asymptotic contribution

from a portion of the continuous spectrum (the portion arising from the k 2-branch

point). The remaining (kI branch point) portion of the continuous spectrum is

SDP is the complete steepest descent path which ends on the lower Riemann sheet
when k 2 <rs - kl; the connection to the endpoints of the original path on the top sheet is
then brought about by the branch cut integration P 2 . For most applications, the
simpler path in Fig. 4(b), which follows the steepest descent contour in the vicinity of
the saddle point only, is sufficiently accurate.
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represented compactly by the saddle point (geometric-optical) result. Evidently,

the asymptotic effect of the continuous spectrum associated with the branch point at

k2 is seen only in certain spatial regions (those reached by the lateral wave), while

the spectrum due to the kI branch point contributes everywhere.

The characterization of the lateral wave field as a compact representation of

the asymptotic contribution of part of the continuous spectrum in special regions of

space is reminiscent of another field constituent which behaves in a similar manner:

the field contributed by leaky waves. A well- explored prototype structure for the

leaky waves is the dielectric gap shown in Fig. 2(a). The field solution in the lower

dielectric is given again by the integral in (1) except that the modal reflection

coefficient r0 (7) for the unbounded upper medium is replaced by F(r)) appropriate to

the gap configuration. It is found that P(n) retains the branch points at •:k 1 , but that

a series of complex (leaky wave) poles takes the place of the branch points at *k 2.

Those poles do not lie on the spectral Riemann sheet Im xt >0, and the spectral

representation in terms of waves guided along y, obtained as before by contour

deformation (Fig. 20(a)), is therefore again wholly continuous. In the steepest descent

representation, the path SDP passes partially into the second Riemann sheet and, for

observation points yielding sufficiently large is , may intercept there some of the

leaky wave poles (Fig. 20(b)). The corresponding residues furnish diffractiox,

contributions to the asymptotic field, in addition to the geometric-optical constituents

arising from the saddle point. Since the guided wave spectrum was seen to be

continuous, the (improper) leaky wave poles provide a compact asymptotic formulation

of a portion of this spectrum in certain spatial regions (i. e. , those for which the poles

are intercepted by the SDP).

Because of these spectral similarities between the leaky and lateral wave

fields, and also from Fig. 2(a) wherein the diffraction field for a gap region is

represented in terms of a lateral wave, it is suggestive to seek a quantitative equiva-

lence between these two wave types. Since the decay of a leaky wave along the inter-
18face is exponential whereas that of a lateral wave is algebraic, no one-to-one
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correspondence is feasible. However, the possibility exists that an accumulation of

wave contributions from one species is equivalent to a superposition of those from the

other. The validity of this conjecture has been proved for the case of a large gap

wherein a ray-optical approach predicts the dominance of a single lateral wave in the

diffraction field (Fig. 2(a); the effect of the perfectly conducting boundary is

negligible since the lateral wave field is evanescent in the gap). An analysis in terms

of leaky waves reveals that the leaky wave poles for the large gap configuration cluster

around 1 = k2 and that their cumulative effect may be summed into a closed form2 5
descriptive of a single lateral wave field. This establishes a quantitative equivalence

which demonstrates furthermore that the ray-optical representation involving a

lateral wave is more descriptive of the propagation mechanism in the diffraction field

for a large gap than the leaky wave formulation.

VIII. Behavior in Transition Regions

The asymptotic representation of the lateral wave field as in (5), (16) or (17)

evidently breaks down when Lk' the lateral path length along the interface, approaches

zero. This happens for observation points lying in the vicinity of the angle of total

reflection which bounds the region wherein the lateral wave is present (see, for

example, the dashed lines in Figs. I(b) or 10(d)), and the asymptotic procedure in

these transition regions must be modified. The analytical feature in the radiation

integrals accounting for the transition effect is the presence of a branch point near a

saddle point. The required asymptotic technique has been discussed in detail in the
llteatur2, 8

literature 2and leads to a parabolic cylinder function as the canonical form

characteristic of the field behavior near the boundary of the domain of existence of

the lateral wave. The use of this canonical function yields continuous and finite

values for the fields as L -k0.

IX. Summary

While a general survey of the material contained in this paper has been given

in the Introduction, it is not inappropi'iate to summarize at this time certain salient

features. It has been shown that the use of ray optics, combined with the plane wave
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refractive index 'diagrams for the medium (or media) in question, permits the pre-

diction of the types of lateral waves which may be supported on a plane boundary or

interface and also leads to the direct construction of the spatial phase and amplitude

dependence of the wave. The media in question can be quite arbitrary, i. e., they

may be anisotropic and they may be able to sustain simultaneously electromagnetic

and dynamical wave motion. A wave coupling approach has been emphasized which

aids in the understanding of the physical propagation mechanism. It has been noted

that a rich variety of lateral waves is possible when the composition of the medium is

sufficiently general (Figs. 11 and 12).

In the time-harmonic regime which has received primary emphasis in the

text, the lateral wave mnust usually compete with the stronger geometric-optical field,

a feature complicating its detection. It is therefore worth emphasizing again that

situations do exist where medium inhomogeneity, anisotropy or dissipation renders

the lateral wave dominant in certain spatial regions (Sec. V). This aspect should be

useful for the independent detection of the wave, either by direct measurement of the

field in the region of dominance, or by the introduction into this region of an auxiliary

scatterer whose scattered field amplitude is directly proportional to the strength of

the impinging lateral wave (some of the considerations in Sec. VI are relevant in this

connection). While much experimental evidence on lateral waves is available in the

literature on wave propagation in acoustically compressible and elastically deformable

media, this is not the case in the electromagnetic regime. Such experimental verifica-

tion app.ars highly desirable and may stimulate further interest in the use of the

lateral wave as a diagnostic tool or as a carrier of electromagnetic energy.

Some final remarks are in order concerning further analytical work required

to provide an understanding of certain lateral wave effects not included in the pre-

ceding discussion. One area, that of lateral wave propagation on sharply bounded

A more detailed analysis is required, however, for the evaluation of polarization of
the wave and for the dependence of the wave amplitude on the medium parameters. 14
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curved interfaces (Fig. 3), has already been mentioned in the Introduction. A second

is concerned with the excitation of lateral waves on "interfaces" between inhomo-

geneous regions, with the "interface" caused not by a discontinuity in refractive index

but by discontinuities in the first or higher derivatives of the index profile. Since the

profile itself is continuous, no refraction takes place at the interface, and the lateral

wave is excited by the tangent ray. This circumstance may lead to enhanced lateral
19

wave amplitudes , and the systematic exploration of the amplitude dependence on the

analytical characteristics of the index profile is desirable for the purpose of shedding

further light on the propagation mechanism under these conditions. These aspects are

presently under consideration at the Electrophysics Department of the Polytechnic

Institute of Brooklyn. In addition, further work on transient propagation, especially

in dispersive anisotropic regions, would be useful for a clarification of the energy

flow characteristics in the lateral waves.

References

l.a. C. B. Officer, "Introduction to the Theory of Sound Transmission", McGraw-

Hill Book Company, Inc., New York (1958).

b. W.M. Ewing, W.S. Jardetzky, and F. Press, "Elastic Waves in Layered

Media", McGraw-Hill Book Company, Inc., New York (1957).

2. L. M. Brekhovskikh, "Waves in Layered Media", Academic Press, New York

(1960). Ch. 4.

3. L. B. Felsen, "On the Use of Refractive Index Diagrams for Source-Excited

Anisotropic Regions", Radio Science (NBS), 69D (1965), p. 155-169.

4.a. F. Gilbert, "Scattering of Impulsive Elastic Waves by a Smooth Convex

Cylinder", J. Acoust. Soc. (Am.), 32 (1960), p. 841-857.

b. Y.M. Chen, "Diffraction by a Smooth Transparent Object", J. Math. Phys.,

5 (1964), p. 820-832.

5. T. Tamir and L. B. Felsen, "On Lateral Waves in Slab Configurations and

Their Relation to Other Wave Types", IEEE Transactions on

Antennas and Propagation, AP-13 (1965), p. 410-422.



35

6.a. B. van der Pol and A.H.M. Levelt, "On the Propagation of a Discontinuous

Electromagnetic Wave", Nederl. Akad. v. Wetenschappen,

Amsterdam 63 (1960), p. 254-265.

b. N.J. Vlaar, "The Transient Electromagnetic Field From an Antenna near the

Plane Boundary of Two Dielectric Half Spaces", App. Sci. Res. 10B

(1963), p. 353-384.

7. D.S. Jones, "The Theory of Electromagnetism", The McMillan Company,

New York (1964), Sec. 10.1.

8. L. B. Felsen, "Radiation From a Uniaxially Anisotropic Plasma Half Space",

IEEE Transactions on Antennas and Propagation, AP-1 1(1963),

p. 469-484.

9. L. B. Felsen and B. Rulf, "Radiation from a Directive Antenna Embedded in

an Anisotropic Half Space", Electrophysics DepE rtment, Polytechnic

Institute of Brooklyn, Report PIBMRI-1183-63, August 1963.

10.a K.G. Budden, "Radio Waves in the Ionosphere", Cambridge University Press

(1961), Ch. 3.

b. M. Cohen, "Radiation in a Plasma", Phys. Rev., 123 (1961), p. 711-721.

11. A. Hessel, N. Marcuvitz and J. Shmoys, "Scattering and Guided Waves at an

Interface Between Air and a Compressible Plasmna" IRE Trans. on

Antennas and Propagation, AP-10 (1962), p. 4 8 - 5 4 .

I1Z.a. F. Labianca and L. B. Felsen, "Diffraction by a Half Plane in a Compressible

Plasma", Paper presented at the Symposium on Antennas and

Propagation, Washington, D.C., Sept. 30-Aug. 1, 1965

b. S. N. Samaddar, "Electronacoustic Lateral Waves in a Hot Plasma",

Raytheon Co., Sudbury, Massachusetts.

13. S. Rosenbaum and L. B. Felsen, "Radiation in Layered Anisotropic Media"

Paper presented at URSI Fall Meeting, Dartmouth, New Hampshire,

Oct. 1965.



0 0

> 0.

4- 0) 00
04 Cu ' -. -~ -

41 0 -n V 9
o ~ ~ c ,co (dU 4: 0 < 8

Ml0 LA ( 0

00 bo od 4 u
U) ~( 0 . -

.~ U Cu 0 -0 .4 U
0 1 ' 0e (d

u aU )CuU
- ~ ~ ~ ~ C 84 C 4U1- - >

84 14 45C Cu
u 0 0

-~ 4 U ~ >4 r. 0 P4 )

0.z z 0 Cu
* 0 ~ 00 0.

(d ) 4J -.- 04 %4 0

-4 :3 u ( 10to~U) U l Cu 'd '0
-~4 U) CuVC~ .

4) S: $ E
~P ~ * u)

C' 0 .- - 1-4~

0) 84 0 . uE48 0 U
(A 4-b 0 to be 0
o 0 14 ~ C ~*C

* E~ Z
C ~ p4 C ~ 0'

c o -0 : 1 C u * u .~U )~0

U) 0 to ed C 0 dCu
--4 1, -

0 C

-. 4
* Cu *0 Cu C

U) I-Iz

U) H

LA '0 r- a



37

z EVANESCENT

C2• e2 L2

0 /

RSOURCE S-R DOMAIN OF
EXISTENCE OF
LATERAL WAVE

(a) lb

Fipure I Ray Considerations (i/i Section Shown)
(E I > E 2)

(a) Ray tube dilemma
(b) Lateral ray trajectory

PERFECT CONDUCTOR

62

(a) (b)

Figure Z Lateral Waves in Ducts

(a) Duct in thinner medium
(b) Duct in denser medium



38

Figure 3 - Lateral Waves on a Curved Boundary
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