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Experiments  on Wave   Interactions  Between 

Plasma  and  an Electron Stream 

in a  Magnetic  Field 

J,   R,   Apel  and  A,   M,   Stone 

ABSTRACT 

Experiments have been conducted on the UHF v/ave interactions 

between a plasma and an electron stream (Refs, 1 and 2), and com- 

parisons made between the measured and calculated values of fre- 

quencies and wavelengths.  The apparatus consists of a plasma 

source producing a plasma column 1 cm in diameter with n adjust- 
9      13   -3 e 

able between 10 and 10  cm  ; an electron gun yielding 180 ma 

at 2000 volts, flowing coaxially with the plasma; and a collimat- 

ing magnetic field of 400 oersted intensity.  The theory and 

measurements show the instability to be due to the interaction of 

the electron cyclotron wave in the plasma with the "plasma wave" 

in the beam. 
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I.  INTRODUCTION 

There are several wave mechanisms by which a plasma and an 

electron beam may interact, and these have been the subject of 

intensive studies during the past few years. The interactions 

arise from the coupling of two plasma waves having nearly the 

same phase velocities. This paper reports on the experimental 

study of a certain type of interaction, 

II.  THEORETICAL DISCUSSION 

Consider a two-component system consisting of a stationary 

plasma of plasma frequency co and a streaming component, or 

beam, of plasma frequency av and velocity v,.  In the presence 

of a magnetic field, there may exist within the plasma a longi- 

tudinal plasma oscillation near the plasma frequency having 
2    2 the  dispersion relation  1  -  to    /a)    =  0,   and a transverse  cyclo- 

tron oscillation near the cyclotron frequency a; having disper- 
2  2    2C 

sion characteristics given by 1 - Cü /(a) - to ) = 0.  Similar 
P       c 

waves exist in the beam but are Doppler-shifted by an amount kv, 

due to bodily transport of the oscillations by the streaming 

motion.  Here k is the wavenumber. 

In the case of infinite, uniform geometry, the longitudinal 

waves in the two components may interact, leading to the two- 

stream instability (Ref. 3); the transverse waves may also inter- 

act, leading to a cyclotron-cyclotron instability (Ref, 4).  If 

the geometry of the system is finite, however, the fringing of 

electric fields at the boundary introduces some transverse compo- 

nent to the longitudinal oscillation, thus leading to wave propaga- 

tion and energy transport (Ref, 5).  If the phase velocity co/k of 

the wave in one component is equal to the phase velocity of the 

transverse wave in the other component, a coupling between these 

two waves may arise and a new type of instability may result.  It 

is this type of interaction which forms the basis for the remain- 

der of the discussion. 

- 1 - 
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These considerations may be made more precise by formulating 

the appropriate boundary-value problem in cylindrical coordinates 

and treating the beam and plasma as tensor dielectrics (Ref. 4). 

For the case of a cold beam and a cold plasma of radius r, sur- 

rounded by a conducting cylinder of the same size, the dispersion 

equation takes the form 

D(to,k) = 0=1- 

2 
CO 
P % 

(co-kv,_)' 
b 

1 - 

2 
^P 

"2*2 

2 

^     ,       ^2        2 (c^kvb)   -coc 

(1) 

where xm is the first root of the zeroth-order Bessel function. 

Figure 1 illustrates the dispersion characteristics of each 

wave in each component, without coupling between them taken into 

account.  The values of parameters are those of experimental in- 

terest.  The generally horizontal lines represent the waves in 

the plasma while the sloping lines represent those in the beam. 

The beam waves are labeled "fast" and "slow" according to whether 

their phase velocity co/k is greater or less than v, .  Wherever two 

lines cross, the phase velocities are equal and an interaction is 

possible.  If the slopes öco/ök = v     are oppositely directed 

in the vicinity of equal phase velocities, energy will be prop- 

agated in opposite directions in the two components and a complex 

frequency co = 0) + ioL will result, leading to a non-convective 

instability and to growth in time.  If, however, the group veloci- 

ties of two waves have the same sense near a crossing, a convective 

instability arises, which may be described by a complex wavenumber 

and which leads to growth in space.  Such is the situation in the 

- 2 - 
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vicinity of kv./co -= 0.4 on Fig, 1, where the effect of finite 

radius has caused the plasma cyclotron wave to have nearly the 

same group velocity as the slow plasma oscillation in the beam. 

If now one solves the dispersion equation with interactions 

taken into account, a graph similar to Fig, 2 results.  This fig- 

ure shows the upper half-plane of Fig. 1, with complex wavenum- 

ber assumed.  Re(k) is plotted with solid lines, Im(k) in dotted. 

The approximate experimental operating points are indicated 

where Im(k-, ) is a maximum. 

III.  EXPERIMENT 

In order to observe the beam-plasma interaction discussed 

above, we have constructed the experimental apparatus shown in 

Fig. 3, 

At one end is a steady-state PIG-plasma source which generates 

a plasma column 1 cm in diameter, whose density is adjustable be- 
9      13 3 tween 10 and 10  electrons/cm .  The electron temperature as de- 

termined by Langmuir probes is about 8 eV.  The neutral pressure 
-4 

in the interaction region is a few times 10  torrr resulting in 

an electron-neutral collision frequency of a few megacycles.  De- 

tuning of a resonant cavity through which the plasma flows is used 

to monitor the electron density continuously, and this density 

measurement is verified by pulsed Langmuir probe measurements 

downstream.  In general the densities as determined by the two 

methods are within a factor of two of one another.  On the right of 

the apparatus is the electron gun, which yields 180 ma of beam cur- 

rent at 2000 volts, focussed into a column 1 cm in diameter.  The 

beam flows coaxially with the plasma and is collected within the 

PIG after traversing some 60 cm of plasma.  Modulation between 800 

and 3000 mc/s may be applied to the beam by an adjustable re-entrant 

cavity, out is not essential to the excitation of the inter- 

action.  A uniform magnetic field of up to 400 oersted collimates 

- 4 - 
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both beam and plasma.  Traveling probes are used to sample the rf 

signals emitted during the beam-plasma interaction as well as to 

determine the spatial distribution of electrons.  These signals 

are observed in real time on a 3000 MHz oscilloscope and on a 

spectrum analyzer.  A phase- and amplitude-sensitive coaxial bridge 

network is used to determine wavelengths and growth rates. 

At the start of the experiment, the important plasma and beam 

properties are known fairly accurately.  When the beam is pulsed 

on, a spatially-growing wave is excited in the plasma under prop- 

er conditions of plasma density, magnetic field, and beam volt- 

age.  By pulsing the beam for only 1 microsecond, effects such as 

subsidiary ionization and disruption of the plasma are avoided and 

the properties of interest are nearly those existing at t = 0. 

The wave frequency is in the UHF region, the oscillations occur- 

ring in packets or bursts which give the signal the appearance of 

amplitude modulation.  During any one burst, the wave amplitude 

quickly reaches a limit (not predicted, of course, by the linear 

theory above) where it persists for several tens of periods before 

decaying; the latter is probably due to a combination of interrup- 

tion of the electron beam by the intense interaction and heavy Lan- 

dau damping by the turbulently-heated electrons in the plasma. 

Rather large amplitudes are reached before the limitation; for ex- 

ample, the power picked up by a small probe located at the edge of 

the plasma is about 0.1 watt when the input dc power to the beam 

is 80 watts.  The probe extracts only a small fraction of the total 

UHF power;   hence, the power level due to the interaction must be 

in the vicinity of several watts. 

The wave exhibits growth in space which is observed to be ap- 

proximately exponential as one varies the probe position from the 

muzzle of the electron gun toward the plasma source, much as shown 

in Fig, 4,  This graph given power versus axial distance for four 

- 7 - 
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values of beam voltage V. , The position of the maximum value of 

power increases as the square root of the voltage, indicating it 

is associated with the velocity of the wave. 

As the plasma density and magnetic field strength are varied, 

so are the wavelength X (equal to 277/Re(k)) and frequency f at 

which the interaction occurs, as shown in Figs, 5 and 6,  (There 

js actually a spectrum of frequencies for any set of values of f 

and f , leading to a broad line as observed on the spectrum analyz- 

er having a Q of about 10,)  The wavelength measurements indicated 

by dots on Fig, 5 are compared with those computed assuming the 

wave to have the same velocity v,_ as the beam and frequency f: the 
b 

latter are indicated by squares on Fig, 5.  In general, the meas- 

ured wavelengths imply a phase velocity slightly less than v,, which 

is as it should be;  the slow plasma wave in the beam travels at 

a velocity slightly less than that of the beam (Fig. 1).  Also 

shown is the negative of Im(k) (or the axial growth constant) as 

obtained from the average slope of logarithmic plots of data similar 

to those on Fig. 4,  There is a maximum interaction frequency, f   , 

beyond which growing waves are no longer observed.  In all cases, 

the interaction frequency is less than either f  or f , implying 
P    c 

that the wave must be associated with the propagation of an elec- 

tron cyclotron wave in the general direction of the magnetic field. 

If the beam-cavity modulation feature is used and the modulation 

frequency is chosen about equal to the frequency f at which the in- 

teraction occurs naturally, the Q of the spectral line is increased 

to about 200,  The time behavior of the wave is much less erratic 

with modulation present, indicating that the broadening existing 

without modulation is chiefly due to Fourier components arising 

from the fluctuating wave amplitude. 

The same cavity permits a direct check on the interpretation 

of the interaction as being due to an electron cyclotron wave in 

- 9 - 
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the plasma.  In the absence of the beam, a cyclotron wave is launched 

in the plasma column by exciting the cavity, and its phase and 

amplitude are determined; the excitation frequency is chosen to be 

the same as the interaction frequency f which would occur at that 

particular plasma density.  Now, when the beam is turned on and the 

cavity is greatly detuned so as to avoid modulation, it is found 

that the same phase and wavelength relationships exist in the spa- 

tially-growing wave as were possessed previously by the cyclotron 

wave.  In addition, both waves are approximately circularly polarized, 

as determined by two E-sensilive probes at right angles to both 

B and to one another. 

IV.  COMPARISON WITH THEORY 

On Fig. 2 are two points labeled "Approximate Experimental Op- 

erating Points."  These occur at values of Re(k) and to where Im(k) 

is a maximum, i.e., at the value of wave number which represents 

the most rapid growth.  A comparison of experimental and theoreti- 

cal values of these variables is given below for one set of experi- 

mental conditions.  The agreement is excellent except in the case 

of Im(k), where thermal or Landau damping has reduced the growth 

constant below that for the cold plasma case. 

Cü/OJ      ReCkvA 6ü )     Im(kv /w ) p b p v p 

Theory 0.29      0.32 -0.036 

Experiment     0.26      0.30 -0.026 

On Figs. 5 and 6, the curves labeled "Theory" show the calculat- 

ed functional behavior of f and X versus f , using Eq. (1) and the p 
measured values of density, magnetic field, and voltage.  No fitting 

or normalization of data has been done in making the comparison.  It 

- 12 - 
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is  seen  that   the   theory   accounts   rather well   for   the   properties  of 

the   interaction,   with  the  largest   departures  occurring at  higher 

plasma  densities. 

V.   SUMMARY 

The experiment and theory show the beam-plasma interaction to 

be a convective instability resulting from the synchronism of a 

longitudinal plasma wave in the beam with a transverse cyclotron 

wave in the plasma.  This coupling occurs because of the finite 

radial boundaries.  The wave parameters appear to be well described 

by the theory. 
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