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Experiments on Wave Interactions Between
Plasma and an Electron Stream

in a Magnetic Field

J. R, Apel and A, M, Stone

ABSTRACT

Experiments have been conducted on the UHF wave interactions
between a plasma and an electron stream (Refs. 1 and 2), and com-
parisons made between the measured and calculated values of fre-
quencies and wavelengths. The apparatus consists of a plasma
source producing a plasma column 1 cm in diameter with n_ adjust-
able between 109 and 1013 cm_3; an electron gun yieldinge180 ma
at 2000 volts, flowing coaxially with the plasma; and a collimat-
ing magnetic field of 400 oersted intensity. The theory and
measurements show the instability to be due to the interaction of
the electron cyclotron wave in the plasma with the '"plasma wave'

in the beam,
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I. INTRODUCTIO:

There are several wave mechanisms by which a plasma and an
electron beam may interact, and these have been the subject of
intensive studies during the past few years. The interactions
arise from the coupling of two plasma waves having nearly the
same phase velocities. This paper reports on the experimental

study of a certain type of interaction.
II., THEORETICAL DISCUSSION

Consider a two-component system consisting of a stationary
plasma of plasma frequency ub and a streaming component, or
beam, of plasma frequency w5, and velocity Vp* In the presence
of a magnetic field, there may exist within the plasma a longi-
tudinal plasma oscillation near the plasma frequency having
the dispersion relation 1 - ubz/u? = 0, and a transverse cyclo-
tron oscillation near the cyclotron frequency m having disper-
sion characteristics given by 1 - u% /(u? - uéz) = 0. Similar
waves exist in the beam but are Doppler-shifted by an amount kv
due to bodily transport of the oscillations by the streaming
motion. Here k is the wavenumber.

b

In the case of infinite, uniform geometry, the longitudinal
waves in the two components may interact, leading to the two-
stream instability (Ref. 3); the transverse waves may also inter-
act, leading to a cyclotron-cyclotron instability (Ref. 4), If
the geometry of the system is finite, however, the fringing of
electric fields at the boundary introduces some transverse compo-
nent to the longitudinal oscillation, thus leading to wave propaga-
tion and energy transport (Ref. 5). If the phase velocity w/k of
the wave in one component is equal to the phase velocity of the
transverse wave in the other component. a coupling between these
two waves may arise and a new type of instability may result. It
is this type of interaction which forms the basis for the remain-
der of the discussion,
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These considerations may be made more prceccise by formulating
the appropriate boundary-value problem in cylindrical coordinates
and treating the beam and plasma as tensor dielectrics (Ref. 4).
For the case of a cold beam and a cold plasma of radius r, sur-

rounded by a conducting cylinder of the same size, the dispersion
equation takes the form

W (akkvb)
= 2 2 a%z
201 wb
Her l - gy - 7 (1)
W-w, (u»kvb) -,

where xo1 is the first root of the zeroth-order Bessel function.

Figure 1 illustrates the dispersion characteristics of each
wave in each component, without coupling between them taken into
account, The values of parameters are those of experimental in-
terest. The generally horizontal lines represent the waves in
the plasma while the sloping lines represent those in the beam.
The beam waves are labeled '"fast'" and 'slow' according to whether
their phase velocity w/k is greater or less than Vi Wherever two
lines cross, the phase velocities are equal and an interaction is
possible. If the slopes dw/dk = vgroup are oppositely directed
in the vicinity of equal phase velocities, energy will be prop-
agated in opposite directions in the two components and a complex
frequency w = w, T ia& will result, leading to a non-convective
instability and to growth in time., If, however, the group veloci-
ties of two waves have the same sense near a crossing, a convective
instability arises, which may be described by a complex wavenumber
and which leads to growth in space. Such is the situation in the

-2 -

|ty p——— - . > _— o = T . T r BN & amaten D I M ttnd . Vo



ATZId JOILINOVA FLINIJA ANV AYIIWNOID TVIAVY ILINIA
‘SNOIIDVHIINI LAOHLIM VWSVId ANV WvIZd JI0 WVYDVIA NOISHE4SIA T "814

VNS Td M

& T-1

e o =

EL LR B

WSy Tid M

FAY A HOMLOTIDAD

-

o'z

Hew o2

TSy ld NI

TAY W MOHLOTIAD

TINGY Td NI 2AY W YLy Tid

In copz
._..__:

o ptip =T

On 2. 1= 3

= n... =

£ Z=

y o p—

3 "&‘-“ g ,
4 Akf

e T

ittt B s e




o o o e D e e T T, 1 3wt AR ity

The Johns Hopking University
APPLIED PHYSICS LABORATORY
Silver Spring, Maryland

vicinity of kvb/ub = 0.4 on Fig. 1, where the effect of finite
radius has caused the plasma cyclotron wave to have nearly the

same group velocity as the slow plasma oscillation in the bheam,

If now one solves the dispersion equation with interactions
taken into account, a graph similar to Fig. 2 results. This fig-
ure shows the upper half-plane of Fig. 1, with complex wavenum-
ber assumed. Re(k) is plotted with solid lines, Im(k) in dotted.
The approximate experimental operating points are indicated

where Im(kl)is a maximum,

III. EXPERIMENT

In order to observe the beam-plasma interaction discussed
above, we have constructed the experimental apparatus shown in
Fig. 3.

At one end is a steady-state PIG-plasma source which generates
a plasma column 1 cm in diameter, whose density is adjustable be-
tween 109 and 1013 electrons/cmS. The electron temperature as de-
termined by Langmuir probes is about 8 eV, The neutral pressure
in the interaction region is a few times 10_4 torr, resulting in
an electron-neutral collision frequency of a few megacycles. De-
tuning of a resonant cavity through which the plasma flows is used
to monitor the electron density continuously, and this density
measurement is verified by pulsed Langmuir probe measurements
downstream. In general the densities as determined by the two
methods are within a factor of two of one another. On the right of
the apparatus is the electron gun, which yields 180 ma of beam cur-
rent at 2000 volts, focussed into a column 1 cm in diameter. The
beam flows coaxially with the plasma and is collected within the
PIG after traversing some 60 cm of plasma. Modulation between 800
and 300 mc/s may be applied to the beam by an adjustable re-ehtrant
cavity, but is not essential to the excitation of the inter-

action. A uniform magnetic field of up to 400 oersted collimates
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l both beam and plasma. Traveling probes are used to sample the rf
signals emitted during the beam-plasma interaction as well as to
determine the spatial distribution of electrons. These signals

are observed in real time on a 3000 MHz oscilloscope and on a
spectrum analyzer. A phase- and amplitude-sensitive coaxial bridge

network is used to determine wavelengths and growth rates,

At the start of the experiment, the important plasma and beam
properties are known fairly accurately. When the beam is pulsed
on, a spatially-growing wave 1s excited in the plasma under prop-
er conditions of plasma density, magnetic field, and beam volt-
age. By pulsing the beam for only 1 microsecond, effects such as
subsidiary ionization and disruption of the plasma are avoided and
the properties of interest are nearly those existing at t = O.

The wave frequency is in the UHF region, the oscillatians occur-
ring in packets or bursts which give the signal the appearance of
amplitude modulation., During any one burst, the wave amplitude
quickly reaches a limit (not predicted, of course, by the linear
theory above) where it persists for several tens of periods before
decaying; the latter is probably due to a combination of interrup-
tion of the electron beam by the intense interaction and heavy Lan-
dau damping by the turbulently-heated electrons in the .plasma.
Rather large amplitudes are reached before the limitation; for ex-
ample, the power picked up by a small probe located at the edge of
the plasma is about 0.1 watt when the input dc power to the beam

is 80 watts. The probe extracts only a small fraction of the total
UHF pgower; hence, the power level due to the interaction must be

in the vicinity of several watts.

The wave exhibits grdwth in space which is observed to be ap-
proximately exponential as one varies the probe position from the
muzzle of the electron gun toward the plasma source, much as shown

in Fig. 4. This graph given power versus axial distance for four
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values of beam voltage Vb' The position of the maximum value of
power increases as the square root of the voltage, indicating it

is associated with the velocity of the wave.

As the plasma density and magnetic field strength are varied,
so are the wavelength X (equal to 27/Re(k)) and frequency f at
which the interaction occurs, as shown in Figs. 5 and 6. (There
is actually a spectrum of frequencies for any set of values of f
and fc, leading to a broad line as observed on the spectrum analyz-
er having a Q of about 10.) The wavelength measurements indicated
by dots on Fig. 5 are compared with those computed assuming the
wave to have the same velocity Vo as the beam and frequency f: the
latter are indicated by squares on Fig, 5. In general, the meas-

ured wavelengths imply a phase velocity slightly less than v which

)
is as it should be; the slow plasma wave in the beam travelg at

a velocity slightly less than that of the beam (Fig. 1). Also

shown is the negative of Im(k) (or the axial growth constant) as
obtained from the average slope of logarithmic plots of data similar
to those on Fig. 4. There is a maximum interaction frequency, f

max
beyond which growing waves are no longer observed. In all cases,

)

the interaction frequency is less than either fp or fc, implying
that the wave must be associated with the propagation of an elec-

tron cyclotron wave in the general direction of the magnetic field.

If the beam-cavity modulation feature is used and the modulation
frequency is chosen about equal to the frequency f at which the in-
teraction occurs naturally, the Q of the spectral line is increased
to about 200. The time behavior of the wave is much less erratic
with modulation present, indicating that the broadening existing
without modulation is chiefly due to Fourier components arising

from the fluctuating wave amplitude.

The same cavity permits a direct check on the interpretation

of the interaction as being due to an electron cyclotron wave in
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the plasma. In the absence of the beam, a cyclotron wave is launched
in the plasma column by exciting the cavity, and its phase and
amplitude are determined; the excitation frequency is chosen to be
the same as the interaction frequency f which would occur at that
particular plasma density. Now, when the beam is turned on and the
cavity is greatly detuned so as to avoid modulation, it is found

that the same phase and wavelength relationships exist in the spa-
tially-growing wave as were possessed previously by the cyclotron
wave. In addition, both waves are approximately circularly polarized,
as determined by two E-sensitive probes at right angles to both

B and to one another,

IV, COMPARISON WITH THEORY

On Fig. 2 are two points labeled "Approximate Experimental Op-
erating Points." These occur at values of Re(k) and w where Im(k)
is a maximum, i.e., at the value of wave number which represents
the most rapid growth. A comparison of experimental and theoreti-
cal values of these variables is given below for one set of experi-
mental conditions. The agreement is excellent except in the case
of Im(k), where thermal or Landau damping has reduced the growth

constant below that for the cold plasma case.

R
aVub e(kv/bab) Im(kvv/ab)
Theory 0.29 0.32 -0.,036
Experiment 0.26 0.30 -0.026

On Figs. 5 and 6, the curves labeled '"Theory'" show the calculat-
ed functional behavior of f and A versus fp, uc ing Eq. (1) and the
measured values of density, magnetic field, and voltage. No fitting

or normalization of data has been done in making the comparison. It

- 12 -
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is seen that the theory accounts rather well for the properties of
the interaction, with the largest departures occurring at higher

plasma densities.

V. SUMMARY

The experiment and theory show the beam-plasma interaction to
be a convective instability resulting from the synchronism of a
longitudinal plasma wave in the beam with a transverse cyclotron
wave in the plasma. This coupling occurs because of the finite
radial boundaries. The wave parameters appear to be well described

by the theory.
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