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ABSTRACT

A computer program, called the Planetary Ephemeris Program (PEP), is being written

at Lincoln Laboratory. The purpose of the program is to improve planetary and lunar

ephemerides using the results of radar and optical observations. In this report, we

derive the differential equations that are numerically integrated in PEP to determine

as functions of time the positions and velocities of the planets, of the Earth-Moon

barycenter and of the Moon, and the partial derivatives at these positions and ve-

Iocities with respect to initial conditions, masses and other parameters. Newtonian

theory with the usual unrigor.us gene-al relativistic corrections is employed. The

equations of motion and the equations for the partial derivatives with respect to ini-

tial conditions are presented in the form needed in the Encke's method ci integration

used in PEP.

Accepted for the Air Force
Franklin C. Hudson
Chief, Lincoln Laboratory Office
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GENERATION OF PLANETARY EPHEMERIDES

ON AN ELECTRONIC COMPUTER

I. INTRODUCTION

A computer program, called the Planetary Ephemeris Program (PEP), is being written at

Lincoln Laboratory. The purpose of the program is to improve planetary and lunar ephemerides

using the results of radar and optical observations. The procedure for improving ephemerides

is as follows. First, we integrate the differential equations of motion of the planets, of the Earth-

Moon barycenter and of the Moon using provisional values for the various parameters (such as

initial conditions and masses) appearing in the theory of gravitation and motion employed. We

also integrate the differential equations for the partial derivatives of the position and velocity of

the bodies with respect to these parameters. Then, for each radar and optical observation, we

calculate the theoretical values of the measurements made in the observation and the partial

derivatives of these theoretical values with respect to the parameters. Using the differences be-

tween the observed and theoretical values of the measurenments, the errors of the measurements

and the partial derivatives of the theoretical values of the measurements, we form the normal

equations and solve them to get corrections to the parameters. With the adjusted parameters,

we reintegrate the equations of motion and the equations for the partial derivatives; applying

the results of these integrations, we again form the normal equations and solve them to get fur-

ther corrections to the parameters. This process is repeated until we obtain convergence. Us-

ing the paranivters thus obtained in the integration of the equations of motion, we generate ephe-

merides which best agree with the observations in a least-qbcu-res sense.

In this report, we present derivations of the foj mulas used in PEP to determine as functions

of time the positions and velocities of the planets, of the Earth-Moon barycenter and of the Moon,

and the partial derivatives of these positions and velocities with respect to the various param-

eters. In a second report, we will describe the derivations of the formulas used in the compari-

son of theory and observation and in the least-squares analysis parts of the program. In a third

report, we will present the documentation of the computer program itself.

In deriving the equations in this report, we employ Newton's theory of gravitation and motion

with the usual unrigorous general relativistic corrections. Since one of our purposes in analyz-

ing radar and optical observations with PEP is to test general relativity, the equations of motion

employed should be derived in strict accordance witl J, principles of this theory. As explained

in Sec. .V-C. the equations of motioi of the general relativistic N-body problem have been derived

in principle; it is only necessary to learn thy derivation and to put the equations in a form amen-

able to the gene'ation of ephemerides. The equations will resemble the Newtonian equations

with rigorous rather than unrigorous general relativistic corrections. Tne rigorous general

relativistic treatment will be presented in a subsequent report.



In PEP, the position and velocity of a planet, of the Earth-Moon barycenter or of the Moon

are determined as functions of time by numerically integrating the Encke differential equations

for these quantities, with the positions of perturbing planets being determined during the integra-

tion from an input magnetic tape. The partial derivatives of position and velocitywith respect to

masses and other parameters (not initial conditions) are determined as functions of time by nu-

merically integrating the differential equations for these quantities, while those with respect to

initial conditions are determined as functions of time either by assuming that they are equal to

the partial derivatives of position and velocity with respect to initial conditions in the elliptic or-

bit osculating to the true orbit of the body at the initial time, or by numerically integrating the

Encke equations for these quantities.

We feel that numerical integration on an electronic computer using Encke's method can yield

centuries of planetary and Earth-Moon barycenter ephemerides of the accuracy required by the

observations to which the ephemerides must be fitted. In the case of the Moon, however, nu-

merical integration of Encke's equations might not yield an ephemeris accurate for centuries,

although it certainly would have the required accuracy for decades. Thus, we would have to

manipulate the equations further into a form that would yield accurate results for centuries of

numerical integra.tion.

We have not used the traditional method of obtaining planetary motions by expansions in series

for a number of reasons. First, the higher accuracies we require necessitate a higher-order

perturbation theory and many more terms in the truncated series than were required when the

present ephemerides were generated. Further, the equations we numerically integrate are di-

rectly derivable rom the theory of gravitation and motion employed, while many operations have

to be carried out to derive the series solutions, thus introducing the possibility of error. Finally,

it is easy to introduce additional forces in the numerically integrated equations, whereas the con-

aideration of the effect of additional forces on the series solutions requires much effort.

PEP could be expanded to numerically integrate the equations for the motion of the Earth

about its center of mass, in addition to the equations for the motions of planets around the Sun,

of.the Earth-Moon barycenter around the Sun and of the Moon around the Earth. In this way, all
the present ephemerides of the motions in the solar system could be completely and rigorously

revised, instead of only revising the ephemerides of the motions of the center of masses of the

various bodies, assuming the present expressions for the rotation and precession-nutation of the

Earlh. However, even if we assume these expressions, significant improvements in the ephe-

rnerides of the motions of the center of masses can be made.

Recent radar observations at Lincoln Laboratory and elsewhere of Mercury, Venus, Mars

and the Moon$ have much greater accuracy than optical observations of these bodies. However,

optical observations have the advantage of having been made over a period of several centuries.

Us:ing both radar and optical observations to improve ephemerides takes account of the stated

aditantages of both kinds of observations. In addition, the dimensionality of the space of observa-

tions is increased to four over the two obtainable using only optical observations; that is, radar

observations of time delay and doppler shift give range and range-rate measurements in addition

to the two angular measurements given by optical observations.

f These manipulations have since been performed and will be presented in: M. E. Ash, "-Generation of the Lunar
Ephemer4 on an Electronic Computer," Technical Report 400, Lincoln Laboratory, M.I.T. (24 August 1965).

The Sun and perhaps Jupiter have also been detected with radar, but the results of such observations are not yet
of the accuracy or nature needed in improving ephemerides.



With PEP, the fact that fitting ephemerides to observational data is done by an electronic

computer and is completely automated implies that more accurate ephemerides will be generated

than if traditional methods (largely dependent upon hand computation) were used, even with ex-

actly the same observational data as input. Of course, more observational data are available

now than when the present ephemerides %were generated, even without counting radar observations.

In the process of improving ephemerides, we obtain improved values of the various param-

eters appearing in the theory (such as planetary and lunar masses); we also test the validity of

the theory employed. Some hypotheses which we are interested in testing are:

(1) Does the Sun have a detectable second harmonic in its gravitational
potential?

(2) Are the values, of the gravitational constant and the velocity of light
functions of time?

(3) Is there an advance of the perihelion of the orbit of Mercury and the
other planets as predicted by general relativity?

(4) Is the general relativistic expression for the time delay of a radar
signal passing near the Sun correct? 1

(5) Can atomic time be identified with the proper time of general relativity?

The prediction of the advance of the perihelion of Mercury's orbit has been verified previously.

Since experimental results are supposed to be reproducible, and since we intend to check this

advance with more accurate data, the effort we make to do this is not without merit. In order

to test the general relativistic effect on the time delay of the radar signal, we need -bservations

of Venus or Mercury at superior conjunction at the frequency of Lincoln's Haystack radar

(8 X 109 cps). These have not yet been made, but hopefully will be made in the next few years.

3
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II. ELLIPTIC MOTION

A. CHANGE OF COORDINATES

In Fig. 1, fP is the longitude of the ascending node of an elliptic orbit, i is the angle of in-

clination of the orbital plane, and w is the argument of perigee. We wish to find the transfor-

mation from the (x, y, z) coordinate system to the (-, y,2) coordinate system, whose R-axis is

pointed in the direction of perigee, whose Y-axis is pointed in the direction of motion at perigee,

and whose i-axis is perpendicular to the orbital plane.

Fig. 1. Euler angles.

If we rotate the xy-plane about the z-axis through the angle f2, we obtain an (x, y', z') co-

ordinate system related to the original one by the equations

x' = x cos n + y sin a

y' = -x sin n + y cos t

Z'= z

Rotating about the x'-axis through the angle i, we obtain

XII = xt

y" = y' cosi + z' sini

z" = -y' sini + z' cosi

Finally, rotating about the z"-axis through the angle w, we see that

= x' cosw + y" sinw

y= -x" sin w + y" cosw
z=z"

The net result of these three transformations is seen to be

= (cos fQ cos w - sin n sin w cos i) x + (sin S cosw + cos 11 sinw cos i) y

+ (sinw sin i) z

Y = -(cosf2 sinw + sinf cos w cosi) x + (-sinS sinw + cosfl cos) cosi) y

+ (cosw sini) z

7 = (sin 2 sini) x - (cosf sini) y + (cosi) z (Il-i)

Equation (I-1) is an orthogonal transformation, so its inverse tra,.=:jformation is given by

the matrix which is the transpose of the above matrix. Thus, we have

5
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x = (cos S cos ce - sinS2 sin w cos i) R- (cos 2 sinw + sin S cos W cosi)

+ (sin S2 sin i)

y = (sinS2 cosw + cosS2 sin w cosi) R + (-sin S2 sinW + cos2 cos W cosi)
i -(cos P sin i)

z = (sin co sini) R + (cos o sini) 3 + (cos i) . (II-2t

These formulas agree with those given in Ref. 2.

B. DETERMINATION OF POSITION AND VELOCITY AT A GIVEN TIME
FROM ORBITAL ELEMENTS

The differential equation system

d2
dy Ply, j = 1, 2, 3 (11-3)

dt p

where i > 0 and p = (y ) + (yZt + (y3t) ' represents the motion of a body traveling in a conic

section. We shall assume that this conic section is an ellipse.

The various parameters used to describe elliptic motion are:

a = semimajor axis

e = eccentricity (0 < e < 1)

i = orbital inclination (0 < i< 1800)

Q = longitude of the ascending node (0 .< R < 3600)

o = argument of perigee, measured along the orbital plane from the ascending
node (0 < co < 3600). (Note: the longitude of perigee is the quantity

1 = initial mean anomaly at time to (00 t 0 < 3600)

= mean anomaly at time t (0 ' 9 < 3600)

f = true anomaly at time t (00 .f < 3600)

u = eccentric anomaly at time t (00 . u < 3600)

n = mean motion

p = semilatus rectum

The quantities (a, e, i, n, w, fo) are the elements of the elliptic orbit and, along with the time,
1 23.1 2 3

completely determine the position and velocity (yt, y , y , y1, , ' ) in the orbit.

Let (_, 3) be the Cartesian coordinate system in the orbital plane whose R-axis points in the

direction of perigee and whose Y-axis points in the direction of motion at perigee. The following

equations are derived in Ref. 3 (the formula numbers in square brackets are those in the reference).

1) +(5r ) +( r ) p(--1) [Z6, 411 (11-4)
p a

p = a(l - e 2) (11-5)

= [44] (11-6)P -1 + e cos f

p = a(1 --e cosu) [51] (11-7)

n = i 1/z a- 3/2 [43] (11-8)

t= f + n(t -t o0) [50] (11-9)

6



f u - e sinu 1491 (11-10)

tanf = - -- tane u 52] (II-tt)
2an tan 5

--a(eos u- e) [541(l' )

=aJ - eZ sinu [55] (11-13)

These are the basic formulas which we shall assume to be known. Differentiating (11-9) and

(II-10) with respect to time, we find that

dt du
n= = (4-e cosu)w

Thus,

du na (11-14)
dt p

Equations (II-12), (11-13) and (11-14) together give

2na sinu (II-45)
x sin-p

-na?1 4-e2
- cos u (11-16)

1 2 3 .1 .2 -3Suppose we are given (a, e, i, a, w, f), and we wish to find (y y y y , ,, ) at time t.
Equation (11-9) determines the mean anomaly I at time t, from which Kepler's equation (II-10)

'solved by iteration) gives the eccentric anomaly u at time t. Then, formulas (II- 7), (11-12),

(11-13), (11-15) and (11-16) determine R, y, X, Y at time t. If we define

b = cosS2 cosw - sin f2 sinw cosi

b12 =-cos f sinw -sinf2 cosw cosi

b2 4 = sin 2 cos w + cosf sinw cosi

b2 2 = -sin 2 sin w + cos 2 cos w cos i

b3 1 = sinw sin i

b32 = cosco sini (11-17)

we finally obtain, by (11-2),

YJ b i + bj 2

=b+ b~l j= 1, 2, 3 (I4-18)
y b j= bx+ bjz y

C. DETERMINATION OF ORBITAL ELEMENTS FROM POSITION
AND VELOCITY AT A GIVEN TIME

1 2 3 -1 .2
Suppose we are given (y , y , y , y , y , y3) at time t, and are required to find (a, e, i, 2, co, 1o),

with £o being the mean anomaly at time to.

7



We define

p2 .Iy l) + (y2)2 + (y3)2

v = (: 1)z + (: Z)z + ( 3)2
2 1 2 2 3.3

P - V y + +y y (11-19)

Then the vis viva integral (11-4) immediately determines one of the elements:

Z- (11-20)21
-v

P

Differentiating (11-7) with respect to time, we obtain

dp du _ na 2 e sin u
T = aesin u dt p

by (11-14). Since

dp_ . vd p '

this gives

e sinu - .(Ip.

na

Further, (11-7) can be put in the form

e cosu =-P (II-22)
a

The simultaneous solution of (11-21) and (11-22) determines e and u. The mean anomaly to at

time to is then found from Kepler's equation (II-10), and formulas (II-12) through (11-16) deter-

mine x, y, x, Y. Solving (II-18) for the bjk, we have

bjl= (yj y

j= 1,2,3
biz 1_ ( ,jR yJx) )

which can be put in the form

bjl = y j o u---- )-Y sin

ji p na

y yj s in u _ j  c o  u e  j , Z , 3 ( 1- 2 3 )

These formulas agree with those in Ref. 4, in which 4 t was used as the time variable instedd of t.

By means of the above methods we can thus determine a, e, to, and bjk (j = 1, 2, 3; k = 1, 2)

given the position and velocity (yl, y , y3, 1, 2, 23) at time t. From these quantities, we can then

1 2 3 .1 .2 3
determine the values of (yl, y , y , y , ) at any time from the formulas given in Sec. II-B above.

To determine i, 9 and w, we must solve (11-17). First, we have

8



sini = jb l + b32
3jl73 0 .i '<' 800 .(1-4

cosi= b1bzz - bizb 21

Further, if i # 00 or 180, we see that w is determined by the relations

b31

Co 2 1 0 < w < 360* (11-25)
b 2 +b 2
34 32b3 b3

Finally, we see that l is determined by the relations

sing = bzi cosw( -bz sine

0'.< n <360- (11-26)
cosR = b4 l cosw -bl 2 sinwI

If i = 0° or 180% the equations in (11-17) assume the form

bl cos (£ )) bZZ = ± cos (2 )

biz = -sin(w ± 9) b31 = 0

b 2 1 = sin(S ± lw) b 3 ? = 0

where the plus sign of the :E symbol is to be used if i 0 0, and the minus sign is to be used if

i = 1800. Thus, g and co are indeterminate when i = 0° or 180 ° . We might make the conven-

tion.that when i = 0° or 180 °, we set 2 = 0 and determine w by the relations

cosw = b11

sin w = -bl 2  . (II-Z7)

D. PARTIAL DERIVATIVES OF POSITION AND VELOCITY
WITH RESPECT TO ORBITAL ELEMENTS

1 2 3 .4 .2 3
Regarding the position and velocity (y , y , y , k , , k ) at time t as functions of the orbital

elements (a, e, i, l, w, t), v.e derive the following equations.

a3 = - - (t-t
aa a 2 a 0

j = 4Z, 3 (II-28)

__ 4 3ex(t - t0 )1  3n~ -_t_0)
a - + Zap J + 11-

eZ

-yj  abjl Z bJ sinuae -1 ez j  n

j = 1, Z, 3 (I-z9)

a cosu+ + --- + x__y - -2ae p n p bjZ p "e2

9
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ayj-

0 j 1, Z, 3 (11-30)

a y ex~ a+
np +jZ b2F e2Z)]

a I = (sinS2) y3  a_ =(sin 2) S3

YF 81
2 .2

___ = -(cos g) y3 z = -(cos 12) y 3
8 i T(11-31)

8i = (sin w cosi)R ai = (sinw cosi) 3x
3i a

+ (cos W cos i) y + (cos W cos i) 7Y

y 2  .2-- = -Y -5--S -Y

S z  (11-32)
ay 8y  a *4

2_Y3  a 3
_- = 0 0

ayj OYB,-bj27 - b jtY

j = 1Z, 3 (11-33)

To show the validity of the above formulas, we note that in (11-18) the bik are functions of

i, S2, co, and x, y, x, y are functions of a, e, 20, t. Therefore, we first differentiate (11-17) with

respect to i, S2, w, and find that

8b 1 1a"---= sin S2 sin o sin i (sin 2) b

i- sinfS coso sini (sinS2) b

8b28i=-cosS sincw sini = -(cos P) b3 1

8b 22
ab-- -cos R cos w sini -(cos 2) b

8b 3 1
= sin wcosi

a i

8b 3 2 = cos W cosi • (11-34)ai

10



b - = -- sin S2 cosw - co sc;Q sin w cosi = -b

a b12-- -s2= sin 0 sin w - cos S2 cos w cosi = -b2z

8b21
39 cos 2 cos w -sin S sinw cosi = bl

---- cos sinw -s in S2 cos w cos i b 2

ab 3 1 0

a o • (11-35)

1 -cos S2 sino - sin 2 cosw cosi b

a8b12

ab = -cos R cos w + sinS sin o cosi = -b
aw 11

ab sinf Ssinw + cosf Scosw cosi = b2 2

aw b

ab = -sing2 cosw -cosQ sinw cosi = -b
8w

* ab3 1b 31= cosw sin i = b2

b 3Z -sin w sini = -b 3  (11-36)

Then, (11-34) through (11-36) and (11-18) together show that formulas (11-31) through (11-33) are

valid.

Next, by (11-8), we have

a n (11-37)

Further, (11-9) and (II-10) give

3 n (t t o u -e CO u 8u
-2 (tt a Oa e oa'

8 = u - sinu - e cosu au
3e 3e ae

1 = a =al e cos u au
a0 at0 at0

By (11-7), these equations imply that

-i



au 3 n(t - t0 )

Da Z p

au_ a sinu
5e p

Du a (11-38)
0 p

From (11-7) and (11-38), it follows that

3P = (1 -e cosu) + ae sinu up 3 nae(t-t) sinuOa Da a - p

a.p = -a cosu + ae sinu = -a cosu + a e sin u
'57e ae p

B:ae sinu Ou a esinu (11-39)
0.O

Having obtained the above formulas, we use (11-12) to (11-16) to find the derivatives of3, y,

x, y with respect to a, e, 9o"

Ox (cosu-e)-a sinu au (t t
5a Oa a Za

=-a-a sinu -=-a + xsinu
Te e n1

= -a sinu = . (11-40)

ay Ou 3y

4 e
F1 - esinu + a F11--e4 cosu a (t-t

0 0

O x a sinu On 2na sinu una cosu Ou n sinu 8
Oa p =_ p p a + 2 a

3 3n na cosu t-t 0) 3u nae sinu (t-t )
aZa a 2 p L [a Z pa

-to)] 3ny(t - to)
.( + -p t ] + (II-4Z)-Za +  Z-a-p ' O N I-1- e2

12



-na 2 cosu u + na 2 sinu 8p _ ax cosu + a cosu sinu
a p 8 e z - np

ax= na cosu 3u na sinu a- ay + xex4at 0 _ ay 0+ 0r (11-43)

po p o I F eZ

ay a 2d-e 2cosu an +2na F- el - cos u _ na F1-e 2sinu au
aa p 8a p p 8a

naz 41 eZ cosu a

2 aP

ppZp
3 +2- +3n 2aZ [ i- e'sin u(t -to 3nae sin u(t--t 0)1

3 2a 0P z al ____ _ z

- ex(t-to ]  3n 2 - eZ-x0(t1

Y 02a 2ap p (11-44)

yna e cosu na -- e sinu 3u na 1-e2 cosu .pa e 0=-== 2 0 3e 2 -
p4 1-e P

ey xy + Z (a cosu + ex sinu

(1-e) p p n

a5y naJ1 -e cosu 8p na 4-e 2 sinu au = - a (11-45)
o p - --o p P = np P

Equations (11-40) through (11-45) and (11-18) together show that formulas (I-Z8) through (11-30)

are valid.

E. PARTIAL DERIVATIVES OF ORBITAL ELEMENTS WITH RESPECT
TO POSITION AND VELOCITY

Regarding the orbital elements (a, e, i, 2, co, f ) at time t as functions of the position and
12 3. .2 2 3velocity (y , y , y , y , , at time t, we derive the following equations.

8 a _ Z 2 y

ay 3  p3

j 1, Z, 3 (11-46)
8a Za2 y

a=e sinu [ P _ V) l + Cosu 2 1

ay n [ p3  1 p

j 1, 2, 3 (11-47)
ae - sinu [y .( --') 5 j  2p , 3 cosu I.+

ay a

13



3ny- E

Do cos u-e [7,J (pAT)y'] y' sin u 03naYJ -to)y nae p3 e'p j) a "3

j 1, , 3 (11-48)

a f 0 Cos u-e (2 ~ j pj,  sinu + n ~ -t0
,8 j  nae a e i

yi= (-31 sin w + !-. cosw cosi+ (bi 2 . , +b 2  y

ay a yj a8y Dy3  z Dy3

ab22 abI) 1149

-b1 1 3y j  b 22 / sini , j = 1,...,6 (11-49)

where (y ,..., y6) = (y1, .. ,3 ), and where the bkI/ay are given in (11-58) and (11-59) below.

The same remarks apply to the following two sets of equations.

Dco -~ ab 34 cost0 - - sinw , j ,...,6 (11-50)
ay j  si 1 Csm- \Wy ayj

8y j  S8 oy j s- Y3

a ~ 1 21~ b

S sin sin - cosi j=4, 6 (11-51)

C)y 3  IIW) rf a

Equations (TI-46) follow directly from formula (11-20). To derive (11-47) and (11-48), we

first differentiate (II-Z) and (11-Z2), obtaining

a(e sinu) _ SrJ ( 3. YJ

Dy 3  na nap
j = , 2,3 (11-52)

a(e sinu) _ yv) (F J
8 J  z na L

naa

aD(e cos u) Zy3  y I

y3  -7- 'payp a I e 1o j , 3 (11-53)
D(e cosu) -p

For any variable a, we have

a(e sinu) = sinu De + e cos u au
Da e o a a

a(e cosu) = cosu -e sinu

a - o -e sin C

which can be put in the form

De Dsinu a(e sinu) + Cosu D(e cosu)
Ta 8 a a

Du = a o (e sinu) asinu (e cosu), (11-54)
Dc e s a a s

14



Equations (11-52) through (11-54) together imply the validity of formulas (11-47) and of the following

formulas.

LuL *cos u [,kJ ( v.) y 1 y Jsin u2
ayj  nae 3 - 3 ep P a

j = 1, 2, 3 (11-55)

Ou-_ cosu [y 3 _(j. )&-1 2 y sinu
3 j  nae a t etJ

Let a be any variable. Differentiating (11-9) a.d (II-10) with respect to a, we see that
at On (t _u O(e sinu)
' +  u" (t o = - (11-56)

a a O oe (t ) a a O8ce

where, by (11-8),

an 3n a (11-57)
a Za Oa

Formulas (11-48) then follow from (11-52) and (11-55) to (11-57).

Next, we differentiate (11-23) with respect to yJ and J, obtaining

3bk1 cosu 6 ykyj cos u y k nu Oa
ay3 p kj - 3 2na z yT

+yksinu k Ou j 1, 2,3
p na) y j  k = , 2,3 (11-58)

bk_ sin u _ sinu a - sinu + Cosu u
j na kj 2na yj  P n a+ "

bkZ I ( yin u 6  k .uk(cosu-e) Oa-
j +_ P kj

ay I-eZ p 2na ay 3

+ Yk cosu yk sinu) au

p na y

+ y esinu + t e(cosu-e) A ap( -e 2 . (1 e ) ii j 1,2,3

abk 2  1 k (cosu-e) aa k= 1,Z,3 (11-59)

O -ea j2na 2  ojf

+ (yk ) aksinu) Ou

siy y e (cos u '-e) l.
+ smu+ -t --~y

o(l - nea) - aj

Here, the Kronecker delta 6 kj is defined by

0k 1 if j k

Sif j =k (11-60)
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'9 Differentiating-(II-24) with respect to yJ (j = 1 .... 6), we see that

i '-+ 8b3 2, e~osi i °'tsin & + ---- Cos W

3y 3  ay ]  
8 y 1

b8b b b abz
-sin i b b _ __ -_b (11-61)

ayj 8yj  ay 2 8y ayj

Multiplying the first equation of (11-61) by cos i and th'9 second equation by sin i, and subtracting,

we obtain (11-49). Further, differentiating either the first or the second equation of (11-25)

yields (11-50). Finally, by differenticating (11-26) we see that

Cos--2Ios -b-- ab,- sin w - (b2 1 sin w + bz cos&) -c-88y 3  8y3  0y3  y

-i= cos - - i n sin& -(b 1 inw + b1 z cosW) y (II-62)

Multiplying the first of these equations by cos 9 and the second by sin f2, and subtracting, we

obtain (11-51). Here, we use the fact that by (11-17)

cosi = (b 1 sin&) + b., cosw) cosS -(b 1 1 sin(e + b1 z cosco) sin

F. CHECK OF ELLIPTIC ORBIT FORMULAS

The elliptic orbit formulas derived in the preceding sections were used to write computer

subroutines needed in Encke's method for the numerical integration of the equations of motion

and the equations for the partial derivatives with respect io initial conditions of a planet. These

computer subroutines then enabled us to check the va.idity of the elliptic orbit formulas in the

following manner.

First, note that the position and velocity (yl ..... y6) in an elliptic orbit satisfy the dif-

ferential equations system

k+

dy k yk+3
=y

k+3 k
Qy - _y k = 1, 2, 3 (11-63)

p

k k k+3 k+3
y =Y O y y0  whent = t0

Let ... 6 ,6) denote the elements (a, e, i,fQ, w, fo ) of the elliptic orbit. Differentiating system

(11-63) with respect to f l, we obtain

d(ayk/af j ) _ ayk+3
at aftj

d(3 yk 3/8pj) _ 31 k j -y - k k= 1,2,3
dt 3 3 j, ap j~ ., (11-64)

k k k3k+3 k+3
-0 .= when t =t

apf3  aj ' l apij 0
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Given the orbital elements, we calculated numerically the quantities yk and ayk/aftJ (j, k = 1. 6)

for selected values of time using the formulas of Secs. I-B and I1-D above. Also using these for-

mulas to determine the initial conditions y k and ay 0/3
j (j, k = 4, . . . , 6), we numerically inte-

grated the 42 differential equations (11-63) and (11-64). The results of the numerical integration

and the calculations from the formulas agreed to within the accuracy expected of the numerical

integration, sho\iing the validity of the formulas in Sees. II-B and II-D. This was also a check

of the computer subroutines to calculate yk and Dyk/aP3J (j, k = , .... 6), and of the numerical

integration subroutine. (We had to write our own numerical integration subroutine, since there

was none available which used double precision arithmetic operations.)

Next, given the orbital elements, we calculated the position and velocity at the initial time

from the formulas in Sec. II-B. Then, using the formulas of Sec. II-C, we calculated the orbital

elements from this position and velocity and observed that the final and starting orbital clemcnts

agreed to within the roundoff error expected in the calculations.

Finally, given the orbital elements, we calculated the matrix (ayk/aIj) from the formulas

in Sec. I-15 and the matrix (a/J3/yk) from the formulas in Sec. II-E for selected values of time.

Multiplying these two matrices, we found that the result differed from the identity matrix to

within the roundoff error expected in the calculations.

All the elliptic orbit formulas derived above are valid for all choices of the orbital elements

(a, e, i, S2, c,1o), except that son,- -of the formulas in Sec. II-E for the matrix (O3J/ayk) become

indeterminant for e = 0 or i = 0, 180' because here the matrix (ay k'ap3 ) is singular. Now, the
only time that the formulas for (D3j/Dy k ) are used is when we are integrating the equations for

the partial derivatives of the position and velocity of a planet with respect to initial conditions

using Encke's method, and we wish to change Encke orbits. It is not very probable that, at the

instant when the Encke orbit is changed, the orbital elements would be right at one of the critical

points. In the case of the integration of the planetary motions, this could never happen.
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III. NEWTONIAN EQUATIONS OF MOTION

A. TWO-BODY PROBLEM (PLANET-SUN) WITH PERTURBING FORCES

We wish to find the equations of motion of a celestial body about a central body, with this

motion being perturbed by N other bodies (whose positions are known as functions of time) and

by forces dependent on the position and velocity of the given body relative to the central body.

Let the subscript s denote the central body (s = Sun), p the given body (p = planet), and
th

J( < j N) the j perturbing body. Let -y denote the gravitational constant, and suppose that

(x . x , x 3 ) is an inertial coordinate system. We make the failowing notational conventions:

xk coordinate of central body, etc.
s

k k k k k
xis =x - xs = coordinate of j relative to s, so that x s -x sj etc.

rsj r.s = disiance between s and j, etc.

F kt h coordinate of additional force on p
p

M mass of s, etc.

Then, by Newton's laws of motion and gravity, we have

d2x k k N k

M dt 2
s _YMsM p  + y M  M j r

ps j=*i is
k = 1, 2, 3 (III)

d2xk xk N xk. .
M P= YM M sp2 +y .PI P t 2 ! P + ymR Z Mj J--P + F k

pdt 2pr T pr T
ps j=1 iP

By dividing the above equations by Ms and Mp, respectively, and by subtracting the first equa-

tion from the second equation, we find that the equations of motion of p relative to s are

d2x k Ms k
". _ 1+ N11 Y + V F p k = 1, 2,3 (-2)

dt yM s  rps  P

where the perturbing planet term is given by

N MV /k k .k
P = 7,M - k = 1, 2,3 (111-3)

j=1 srp j

Effects containtd in-the (1/M ) F k term in (111-2) determined in this report are
p p

Ilk r general relativity effect [see (IV-52)]

kS second harmonic of the Sun [see (111-50)]

If we let F k denote forces acting on the planet in addition to those enumerated, (111-2) becomesP

daX~k  --il s  + 0 + k  4 Il k  + S k  + F k 1 , 3 (111-4)

ps
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B. THREE-BODY PROBLEM (EARTH-MOON-SUN) WITH PERTURBING FORCES

) We wish to find the equations of motion of the Earth-Moon barycenter about the Sun and of
the Moon about the Earth, with these motions being perturbed by N planets (whose positions are
known as functions of time) and by additional forces F e and Fm acting on the Earth and Moon,

- i respectiv-!ly. We assume that these forces are expressible in terms of the relative positions
\ and velocities of the Sun, the Earth and the Moon. t

Let the subscript s denote the Sun, e the Earth, m the Moon, and j (I < j < N) the j per-
turbing planet. Otherwise, the notation in this section is the same as in Sec. 111-A above. New-

ton's laws of motion and gravity then give

dZx k k k N kd s Xes xI + - X m s + y E M Xjs
dt 7 e r 3 Mm r +3 ,Mj --3-

es rms p rjs

d2xk x k k N k
e M + m e, je + i Fe k= 1,2,3 (111-5)s 3 M. 3 E -3 kM,, e 115d es rme j=1 rje e

2k k k N kd x Xsm x x.

dt rms rMe j=1 rj m m

Let the subscript c refer to the center of mass of the Earth-Moon system. Thus,

M =M +M xrn
cc e c

M (M16
k e k m M. kXe -M X + TF Xm

C MC e e I-t

h: k Mm k k = 1,2, 3 (111-6)

Xes ez M Xme
c

xk k Me k
ms cs + i- 'mec J

By multiplying the second equation of (111-5) by Me/M and the third equation by Mm /M and by

adding the results, we obtain

d 2xk Mex k M X k N 'v M
c se m sm ( /] e'Y3 !s _ M M Pd + 7 _ JMe

dt - cres c rr 5 s  j=c rje

+ (Fk + m , k= t,2,3 (111-7)
jm/

By subtracting the first equation of (111-5) from (111-7), we see that the equatinns of motion of

the Earth-Moon barycenter relative to the Sun are

Zt k- /M\/x k M
cs 1 + Xm) es M sd tM 4= -! f 3 +  M _ _5 - -

res c rms /

+-k 4--(Fk +Fk) , k= 1,2,3 (111-8)
M e mc
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where

kN M. M x k

M.(M -Y s M_. k= ,2,3 (111-9)
pt s c rje c rjm rs

Here we have used the fact that

Me

Me +M en = M e

Mm + M c s C (

Next, to obtain the equations of motion of the Moon about the Earth, we subtract the second

equation of (111-5) from the third equation, with the result that

d k M x k

dt . M !L k k + + k 1 2, 3 (111-10)
t2 sM sr3 (M m M e/e

me

where

k k
Bk= es -ms

s3 3Ires rms/

k= 1, 2,3 (III-44)
I N M. x~r_ x k(

sr. r.j \ jm je!,.

Effects contained in the [(11M c ) -(Fk + F ) term in (111-8) determined in this report are
c e

k
R = general relativity effect [see (IV-5Z)]

Sk = second harmonic of the Sun [see (111-50)]

Effects contained in the [(4/Mm) Fk - (4/Me) FeI term in (11I-10) determined in this report are

Hk = second and third harmonics of the Earth, and the second harmonic
of the Moon.

If we let F k and F k denote the forces acting on the Earth and Moon in addition to those erume':-
e m

ated, (111-8) and (III-40) become

cs = - + res + ms +4k +Rk

NC sk k-c F k + m k = kZ 3 S)-
2 s M k3

dtM) cres c ms/

vsk + (F k +F k k 1 H2,3 -(111-2)
Mc e m

d Zx kM k
me cme +B k k kk I k
dtzs M sr3 M m ( m-Mk- e e~me
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L

If we desire the equations of motion of the Earth-Moon barycenter to have the appearance of

perturbed elliptic motion, we can write them in the form

~k
dZxk / Mc\ -cs +Ak + kRk +sk,cs = 'y s 1+ _c-c-- +  +A k+ R

dt - Ms r

+ ( k + Fk) k= 1,2,3 (1-3
+Mc(e m

where
( ) k  Me Xek ~,23(I-4

Ak I+M 3 M --

Ak ,M (1 + 3.)xs M: 3: M~ 3~ k 1, 42, 3 (111-14)=T~s- \cs c es c rs /

C. PLANETARY PERTURBATIONS

The magnitude of the acceleration relative to the Sun that the Sun gives to planet p is

M s  M) -- (111-15)

ps

The magnitude of the acceleration relative to the Sun that planet j gives to planet p at its closest

approach to p (assuming that the Sun, p and j are in a straight line) is

' s M (111-16)
S rjp r,

where the plus sign s usLd if j is between p and the Sun, and the minus sign is used if p is be-

tween j and the Sun [see (111-2) and (III-3)). Using (111-15) and (111-16), the equations in (IV-52)

for the general relativity effect, the information in Table I, the fact that (yM s ) = 2.96 x 10-4

AU /dayZ, and the following discussion of the Earth-Moon dipole term, we derived Table II.

According to (111-3), we can write the effect of the Earth and the Moon on a planet as

k M ( x k  
k)+s Mm (xr, x ks

em -
=  eMp es --2 p m (_1- 7)

ep es mp ms

The effect of a hypothetical body of mass M c  Me + Mm at the Earth-Moon barycenter is

c YMsM- T -M-)s cp rics

We wish to determine the dipole term

T k= a k _ S2k (1II-19)

em c

According to (111-6), we can write
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TABLE I

PLANETS IN THE SOLAR SYSTEMt
(Note: The masses of the outer planets include those of their satellites.)

Mass Mean Period Inclination
Planet (Sun = 1) Distance (AU) (years) Eccentricity (deg)

1. Mercury 1.70X 10- 7  0.387 0.241 0.2056 7.004

2. Venus 2.45X 10- 6 0.723 0.615 0.0068 3.394

3. Earth-Moon 3.04X 10- 6  1.000 1.000 0.0167
barycenter

4. Mars 3.20X 10- 7  1.524 1.881 0.0934 1.850

5. Jupiter 9.55X 10- 4  5.203 11.862 0.0484 1.305

6. Saturn 2.85X 10- 4  9.539 29.458 0.0557 2.490

7. Uranus 4.37X 10 5  19.18 84.01 0.0472 0.773

8. Neptune 5.18X 10- 5  30.06 164.79 0.0086 1.774

9. Pluto 2.78X 10- 6  39.44 247.69 0.2502 17.170

tSee Ref. 5.
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J

M rme + M \( Z
res Mr 1 w V r cs

M (Me Y (rme,2

r rC 1 + 2W e rme + e me (III-ZO)rms =rs +w s Mc rcs \M c rcs)

where

3 1 1xm x s

rme rCS (III-Z4)
w = rme cs

with exactly similar equations holding with the subscript s replaced by p. According to RCf. 6,

we then have

( (M.I (rme

es Ccs =0S

4o (M ( -me)'
1 1 2 (-1) P f(w s ) \ e ) ' \ r c s2!
rms rcs tOc cCs =0

where the P are Legendre polynomials,

[/] (-1i (21 - Zi)! z1-2i I-3

P,(Z) U M -0 ---i) (111-)3
i =O

The first few Legendre polynomials are

P(Z) = 1 P(ZP (=Z Z) =

0 13  ? z.  2 5z

P3 (Z) = Z -Z , Z4 1- Z- + -8 (111-24)

From (111-21), we obtain

0 0 m ( r m e )

Z Q3 1(ws ) M) rres rcs 1=0 \ r s

1 1 2 Q (W M (Me)2  (111-25)3 - 3 E(1,Q31(Ws) (me) \r-cs/

rms rcs f=O

where

QUM P l(Z) P z 3(Z) P 3(Z (III-Z6)

a l +az+a3 =

According to (111-24), we see that

Q0(Z)= , Q3(Z) =3Z , Q(Z)= 5 Z- 3 (111-27)

30 31 32 Z52
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! Finally, in formula (111-19), by substituting (111-25) and the exactly similar equations obtained

',,by replacing the subscript s by p, and by ignoring powers of rme/rs and rme/rp higher than

: the second, we see that

M M M rme 2 rxk xkki c M e M re 1[_me w Xcs 5 z 1)
3-y T 37V s M s M r 2cs)

s c Mc I s r [ rme S-c--s Z -

r-2 x x[ rck ]
rme z  1 me __ Xc12_ Wp Wp Z l-S

The last column in Table If is then calculated using (111-28), Table I and the following Udad.-5

Mean distance of Moon from Earth =384,400 km = 0. 0026 AU

m = 1 . 1 1M = 82.31 = 0.15
c

M Me--= 1- m-- =e 0.98785 (III-zg)
c c

It can be seen that the effect of the Earth and Moon on a planet can be written as (111-18)
rather than (111-17), even in the case of Venus, because the entry in Table II represents the

maximum magnitude of the dipole term when the planet is closest to t'le Earth, and this maxi-

mum will be much less at other points in the orbit. Further, the sign of the dipole term os-

cillates as the Moon orbits the Earth.

The largest satellite of Jupiter i3 Ganymede, and according to Ref. 7 we have

mass of Ganymede - I
mass of Jupiter 1z,300

distance from Jupiter = 7.156 X 10-3AU (111-30)

Thus, (111-4-8) implies that the maximum error in neglecting the displacement of Ganymede from

Jupiter in computing the perturbation force on Mars is

1TIkl = 1.45 X 10-17AU/day'

which is three orders of magnitude less than the maximum effect of Pluto on Mars. In general,

we can conclude that it is quite accurate to assume that the mass of an outer planet -satellite

system is concentrated at the center of mass of the system wrhen determining the effect of the

system on a planet.

The total mass of the minor planets (asteroids) is estimated to be about 3/10,000 that of the

Earth.8 It would be rather diffit-ult to include the gravitational effects of these asteroids, except

for some of the larger ones, such as Ceres, Pallas, Juno and Vesta. But let us consider the

largest asteroid, Ceres. According to Ref. 9, we have

mass of Ceres 1-11
mta-ssf -- un- 3.3Z X 1

mean distance from Sun = 2.767AU

Thus, by (111-16), the maximum acceleration of Mars due to Ceres is

(0 5.0 X 10"1AU/day z

Z6



which is less by an order of magnitude than the effect of Pluto on Mars.

The maximum acceleration relative to the Sun that a distant star f can give to a planet p of

distance A from the Sun is, by (11-16),

fYMs (Mf/Ms)[(rfs2 ]

= r [)f - ]
Sz r fp/ r

rfs fp p

2,M s (Mf/Ms) A

3
rfs

Here we have assumed that rfs = rp + A. The nearest star is at a distance of 4 light years =

2.52 x 05 AU from the Sun. Assuming that its mass is the same as the Sun's, we have

d f = 3.70 X 10- 2 0 AAU/dayz

where A ranges between 0.387 AU for Mercury and 39.44 AU for Pluto. To obtain the accelera-

tion of the Moon relative to the Earth due to the star f, we set A = 0.0026 AU. Since there are no

really massive stars in the neighborhood of the Sun, and since the effect of a star on the accelera-

tion of a planet relative to the Sun goes down as the cube of the distance, we -an feel justified in

considering the solar system as a closed system in discussing the orbital motions of the planets.

The effect of the displacement of the Moon from the Earth in the equations of motion of the

Earth-Moon barycentei is given by the term Ak in (111-13). Inserting (II-25) in formula (111-14)

and ignoring powers of (rme/rcs ) higher than the second, we obtain

M M M r 2[x k k
Ak (+c e Mm Me 2 [ 3w cs (15.2 (iIi-3 )

s M )M Mc krc ~ 5 rm s rc .s (1i-z1

A simple calculation gives

lAkl $j Z X 1010 AU/day2  (111-32)

so that it is important to retain this term in the equations of motion of the Earth-Moon barycenter.

Equations II1-4) for the motion of a planet in the case of a planet with sate-llites are to be in-

terpreted as the equations of motion of the center of mass of the planet-satellite system. The

error in these equations in representing the motion of the center of mass is given by a term simi-

lar to the term Ak of (111-14). Mercury and Venus have no detectable satellites, and the satellites

of Mars have very small mass; so this possible error is only of concern for the outer planets.

However, by (111-30) and (111-31), the error in ignoring the displacement of Ganymede from Jupi-

ter in the equations of motion of the center of mass of the Jovian system satisfies

Ak i . 10- 1 4 AU/day 2

Further, the short periocl of revolution of Ganymede about Jupiter (7.15 days) and the long period

of revolution of Jupiter about the Sun (11.86 years) would tend to cause the values of Ak at various

times Lo cancel each other. So, in general, we can conclude that (111-4) represents the motion of

the center of mass of a planet-satellite system in the case of an outer planet-satellite system.
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D. SECOND HARMONIC OF THE GRAVITATIONAL POTENTIAL OF THE SUN

Let (x 1 , x Z, x3 .be a Cartesian coordinate system with origin at the center of mass of a body

B of mass M. Let dM be an element of mass of the body B. The gravitational potential outside
of B is then

+U =(- -1 2) +73J (111-33)E [ (x 1 I ) + (xz  _ 2)+ (x3 3 _ 2 13l/Z

2 = 1 2 2 3 2Letr = (x) + (x) + (x). We have

aU + 2U + a2U 0

a(xi) 0(xZ) a(x3)

U 12- for large r (111-34)
r

We introduce spherical coordinates (r, 0, Vo) by the formulas

x = r sine cosq0

x r sin sin V 0 < r < -, 0 < V < Z7r, 0 (E < 7r (1I1-35)

x = r cose -

Because of (111-34), U can be expanded in spherical harmonics

yM n P (Cos 0)
r + 2 (anh cosh9 + bnh sinhV) n (111-36)

n=1 h=O r

where

P dn (Z _- 1) n  n =0, 1, 2....Pn(Z) =Pn )  4 n
no n nAl dZ n

dhPn(Z)
P = ( - z) h 0, ,...,n (111-37)

(see Refs. 10 and 4i). The first few Legendre polynomials P n(Z) are given in (111-24).

Let us write
[3 ]/

r(x - E) : [4_

[j= (xJ1

E (11-38)

j=1
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According to Ref. 6, we then have

co

1 p~ ) ( ) (11-39)
r(x - )-r Zr tq)(

1=0

where q is the cosine of-the angle between the vectors r and (,

3

q = z (III;.40)

j=1

By (111-33) this implies that

co

U -- -Y z y n '4( C (q ) ndM( ) (111-41)

Comparing (111-41) with formula (111-36), we see that

n

M (anh cos hp + bnh sin hp) P nh (Cos )=- B P n (q) dM() (111-42)

h=0

Since the origin of the coordinate system is at the center of mass of the body, we have

Pl(q) rOd() -= 0 (111-43)

j=1

Thus, the summation in (111-36) can start with n = 2,

00 n ,Pnh (COS  y)

U = -yM + ZM Z (anh cos b + b sinh c (111-44)r r nh2hflh n rnn=2 h=0r

If the body is symmetric about a line through its center of mass, and we choose the x 3 -axis

to point along this line, (111-44) reduces to

U .. ..+ !M 0 P(C s) (111-45)r r n
n=Z r

where we have written Jn for ano. In the case of the Sun, we thus suppose that the gravitational

potential is given by

MS+ -- (R \s [ZS Z r3 (111-46)

where R s = 6.96 X 105 km is the radius of the Sun, and the coefficient S. of the second harmonic

of the Sun is to be determined by its effect on the motion of a planet. We may assume that the

x3-axis of symmetry of the Sun points along the axis of rotation of the Sun.

Let (X1, X2 , X3) be the coordinate system with origin at the center of mass of the Sun in which

the equations of motion are expressed. We have
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3

xi E Cjxxj = C'fx

f=1

j = 1,2, 3 (111-47)
3

CX x
xJ423

1= 2

where (C ,) is an orthogonal matrix. Let (F 1
, F , F 3 ) be the components of the force on a planetonapane

of mass X p due to the Sun in the (X 1, X , X3 ) coordinate system. Since

F = -M grad U (1II-48)P

formulas (111-46) and (111-47) give

- -MX /MM " /) _ 3]
+ /r -r- R2 r[Z E rR C 31

3

The force on the Sun due to the planet is minus (111-49). Since the equations in (111-4) are derived

by subtracting the equations of motion of the Sun from the equat.ions of motion of the planet, the

term S k in (111-4) is [for use in (111-12) the subscript p should be replaced by c

sk ( L s) ' [rps -1 gZ - gC k , k = 1, , 3 (11-0)
2 YIM )rZ 7- 45 2 3 3k

rps ps ps

where xk = Xk , and where

3 xp

f=1 ps

We recall that S. is the second harmonic of the Sun's gravitational potential and has the dimen-

sions of a length squared, and that R s is the equatorial radius of the Sun. The quantities

C31 (1 = 4, 2, 3) are determined in Appendix C.

E. HIGHER HARMONICS IN THE GRAVITATIONAL POTENTIALS

OF THE EARTH AND MOON

The purpose of this section is to derive the force on the Moon due to the Earth, considering

terms up to the third harmonic in the Earth's gravitational potential and up to the second harmonic

in the Moon's gravitational potential.

We shall assume that the Earth is symmetric about its axis of rotation. Let the coordinate

system (x , x , x ), with origin at the center of mass of the Earth, be referred to the true equinox

and equator of date, so that the x 3 -axis points along this axis of rotation. Then, by (111-45) and

(111-24), we have
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-YMe YMeJZ 3 2 YMeJ 3 (5 ros3  -_(3U =- r + (I cos'E- +  G - cos0)(-
r r

where, by (111-35),
3

cos o x (II-53)
r

According to Ref. 12, we have

J2
z 1.0827 X 10 -

R
e

J
3 = -2.4 X 40. 6 1101-54)
1-t3

e

where Re = 6378.17 km is the equatorial radius of the Earth.

Let (X4 , X2 , X3 ) be the coordinate system referred to the mean equinox and equator of

1950.0, the reference system in which we are integrating the equations of motion. Cho( sing

the origin of this coordinate system to be at the center of mass of the Earth, we can write

3

XJ AeXt
f= I

j = 1, Z, 3 (111-35)
32

9=i

where the orthogonal matrix (Aie) is given in Appendix A. Then, by (III-5Z) through (111-55) and

(111-48), the components of force (F , F , F3 ) on a particle -of mass M due to the Earth in the

coordinate system (X4 , X 2 , X3 ) are

-YMeMXk TMeMJZ [Xk 1

Fk M e3 . + e (- c osZ 0 - 2 ) - 3A cos 0
(X 3 r4 jr 2 2 3k 1

r r

+ r (-f cos 3 0-2
r

-Ak (L cos, 0 -  ) k = ,Z,3

3k (I1-56)

Suppose that 13 is an extended physical body of mass M (the Moon in our case), and let
2 3 1423

(X , X , X ) be the coordinates of its center of mass. Let ( ,, 3) be the coordinates of a mass

element dM in B relative to the center of mass of B. By (111-56), the force FB on B due to the

gravitational field of the Earlh has components

k Fk(,, + dMV( ) Fk(X) + C k (1-

where
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A1

Ck S Fk(X + 4) - Fk(X)] d(

We write

Ck =c k + c k + Ck (111-58)

where

[yrS + P r)3] dM()

where

r(X -- + =  (3 r+ )J31

j-i
Xk 5 3 3 A3 kCO

Gk(x) =-W (-7 cos e-z) 4

r r~
Xk 3 1 A3k 15

HR(x) =- ( cos3e - cos ) - (-i- cos e-3) (11l-60)

r r

Equation (111-39) implies that

00

: 1 _ 4 (_ 1), P(q)1 )f (11I-6t)
r(X + 

1 
- r r

1=0

where the P (q) are Legendre polynomials and where

r (xJ)Z

j=

jZ

3

q X3 (III-6Z)

j=t

Since P (q) only contains even powers of q for I even, and odd powers of q for f odd, expres-

sion (111-61) contains no square roots of the quantities (Q1, , 3), only products and powers. In

fact, P2 (q) t is a homogeneous polynomial in (Q , 42 , 3 ) of degree I with coefficients depending

on (Xl/r, XZ/r, X3 /r). Equation (111-61) implies that
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0o

r(X + )n  r n  1-1
(=G

Qn q
= ( Pa I(q)"" Pr (q) (111-63)

01 +a=1 n

where Q_,(q) is a homogeneous polynomial in (Q , , 3) of degree I with coefficients depending

on (Xl/r, XZ/r, X 3 /r).

If we insert the above expression for I/r(X + )n into the integrands in (111-59), we obtain

r Z =0 r iB
=0

k YMeJz co Rf k X )CZ 4 r
r =0 r

o

C - 3 C Rk(Q, r) dM(Q) (111-64)
r C=0 r B

where the R k [4, (X/r)] are homogeneous polynomials in (4 , Q , 4) of degree f with coefficients

depending on (X1/r, XZ/r, X 3 /r). Actually, the above series start with f = 1, because the

integrands in (111-59) are the differences of functions evaluated at (X + 4) and X. Since (4Q, 4 , 4) =

(0, 0, 0) is the center of mass of the body,

SSSB 4JdM()=0 , j= , 2,3 (111-65)

so we may assume that the series (111-64) start with I = 2. The integrals fffB R k dM (4) involve

the moments and products of inertia of the body, while the integrals fffB R k dM (4) l 2 ) depend

on the higher moments of the body. We ignore these higher moments which, by the discussion

in Ref. 43, is equivalent to ignoring harmonics higher than the second in the body's (= Moon's)

gravitational potential. We can therefore assume that

c k _ MeJ Rk 2 (, r ) dM()C 1 4 12 rr B

k =MeJz R k X
2 r """SB 2Z r

k RQYMeJ3 kC R X4 ) dM(4) *(1-

C 3 = r

3 r ""1 B 32 r(1-6

The effect of the third harmonic of the Earth's gravitational potential in the force Fk(X) of

(111-56) is of the order J 3 /r 5 . Thus, to the accuracy to which we are working in this section,

we can assume that Ck and Ck are zero, because the coefficients multiplying 1/r6 and 1/r7 in

C k and Ck will involve J2 and J3 times similar constants associated with the second harmonic
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of the Moon's gravitational potential. (The fact that C k and C k are no larger than the effect of
2 o3agrta h feto

the fourth harmonic of the Earth was actually checked by direct computation, but the calcula-

tions are too lengthy to reproduce in this report. ) Finally, examining expression (111-59) for
C k, and noting (111-33) and (111-48), we may assume that C k is minus the force due to the second

harmonic of the Moon's gravitational potential acting on the Earth (where the Earth is considered

to be a point mass).

The Moon is approximately an ellipsoid with three unequal axes. Let (x , x , x ) be a co-

ordinate system with origin at the center of mass of the Moon such that the x3 -axis points to-4

ward the north pole of the Moon (which is one of the axes of the ellipsoid), the x -axis points2

along the axis of the ellipsoid pointed in the direction of the Earth, and the x -axis completes

the right-hand system. Let I. be the moment of inertia of the Moon with respect to the x3 -axis.

We may assume that the products of inertia with respect to the (x , x , x ) frame are zero, so

that

SSJ [ e) 2~] dM(Q) = I~ j j =4, 2, 3j 11-
7-i (111-67)

sB }i JdM(Q)=0 i j
1 2 3

Let a, b, c be the axes of the ellipsoidal Moon in the x , x , x directions. According to Ref. 14,

we have

b+c = 4737.9 km
2

a - c = 1.09 km

a - b = 0.36 km (111-68)

3 = 0.397
b2Mm

13 - I
3 2= 0.000420
14

3 - 0.000628
12

IZ - I
12 1 = 0.000208 

(111-69)

The above values of the moments of inertia of the Moon (wnich determine the second harmonic

of the Moon's gravitational potential) were obtained from the observed shape and physical lira-

tion of the Moon. It is to be expected that in the near future the second and higher harmonics

of the Moon's gravitational potential will be accurately determined by placing an artificial satel-

lite in orbit about the Moon.

According to (II1-Z4), (111-42) and (111-44), the second harmonic of the Moon's gravitational

potential is
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U 2 PZq) t dMQ)
r

= -,y [3 x iX SSS &'4dMQ) -Q j~ )2dQ)]
7 2 2 iJMO 2 )d(

r ,j r

Equations (111-67) give

32

2r3 = j 1-3QtdQ

i 

3

U T 1 [ -3(~) CC ()dM

4r' _ [ N f2

Using the fact that Z (xJ/r) 1, this can be put in the form
j=-

3

U [ 3 (Xj~z 1 1
j=1

2 3 ,i r_ 21

r j=2

Introducing polar coordinates (111-35), Ehe first line of (III-70) implies that

2 3 2  cos .( + 2 sin p) sin2 0 + 2 13 cos 0- !(1 +1 1
r

-= {[I3 - (14 + I 2 ) ] [2" cos20- + 3 (14- z) cos q sin o} (111-71)
r

Comparing this expression with (111-37), (111-41) -nd (111-42), we see that

y'M

U = 3M [a 2 oP 2 0 (cos 0) + a 2 2 cos 2 q' Pzz(cot 0)1 (111-72)
r

where

Mma 2 0 a 13 (I +I2)

Mma2 2 = (1 -1) (111-73)

which implies that

z 4Mma 2

13 - I, = m(a20 - Za22) (111-74)

We shall use expression (111-70) for the second harmonic of the Moon's gravitational potential.

We have derived (111-72) through (111-74) so that we can determine improved values of the
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quantities (Iz - II) and (13 - 1I) in (111-70) from a possible future publication of improved values

of az0 and a 2 .

Let (Xi, X2 , X3) be the coordinates of the center of mass of the Moon relative to the center

of mass of the Earth in the coordinate system in which we are integrating the equations of motion.

Let (x , x 2 , x 3 ) be the coordinates of the center of mass of the Earth relative to the center of

mass of the Moon in the coordinate system used in formula (111-70). Then, the relation between

(X, X Z
, X3 ) and (x1, x , x 3 ) is given by

3

xi = - Bj X

j = 1, 2, 3 (111-75)
3

f=1

where the orthogonal matrix B is determined in Appendix B.
k 1 2 3Let C1 be the components in the (X , X , X ) coordinate system of minus the force due to

the second harmonic of the Moon's gravitational potential acting on the Earth (where the Earth

is considered to be a point mass). Then, by (111-48), (111-70) and (111-75), we have

C k _ _ u
14 e aXk

M Xk
e-5 3

r j=2 ) D 2  - (111-76)

where

3

D. 2 := B -(111-77)3 r y
1=1

Formulas (111-56), (111-57), (111-58) and (111-76) combine to give that the force on the Moon due to

the Earth is

k M e M mk + 7M eM m(!e)' J [_]

Fk + Z (-e m 5
m 3 r z  r R 2 r 2 3k cos e0

e

+ YMM (R )Z MR3 3 13_- r- 1MX (L' D' -3DjBj
m m j=2

+ M Mm (R 3 J rk _ 3 5+ Z e t i2 (L- cos 3 E) _ -L- cosO0)

_A~( co~o 3) , k=i,, (II78

3 5 2 31

where Re and Rm are the radii of the Earth and Moon, and where we have assumed that C2  0,

C 't = 0. The force F k on the Earth due to the Moon is minus the force on the Moon due to the3 e
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Earth, Fk Fk. Equations (III-10) for the motion of the Moon relative to the Earth were
e m

derived by subtracting the equations of motion of the Earth from "he equations of motion of the

Moon. Thus, the Hk term in (111-12) is

k3H C M i-r- e R2 1 1ro e- )-A 3 kcoso]
r s ine eL me

M ~ ~ L D Z fI L(Dj - 3D BJk
me M e m

M m in j=2

R 3 J x k

+(le) 3 j'me 3 5 s3 5os)
me R rme

e

-A (5 2 s , k= 1,2,3 (111-79)

where we have used the notation of Sec. III-B with xk = X k , r m r, and M = M + M . Thec e m
constants (Re jz, J3) and (Rm, I, 12, 13) are given in (111-54), (I11-68) and (111-69). (We must

evidently assume that Rm = b.) The matrices (Aij) and (Bij) are determined in Appendices A

and B. By (111-53) and (111-77), the quantities cos 9 and D. in (111-79) are

3 £xm

cos E = A A3 e
3= me

3 t

B.=mEB , j = 2,3 (111-80)D3 f=, y rme

Table III is constructed using the expressions for the forces perturbing the motion of the

Moon relative to the Earth given in (111-11), (111-12) and (111-79).

TABLE III

MAXIMUM ACCELERATIONS OF THE MOON RELATIVE TO THE EARTH (AU/DAY 2)

(Note: A constant acceleration of 10-15 AU/day 2 will move a body 1 km in 10 years.)

Due to Acceleration Due to Acceleration

Earth 1.33 X 10-4  Mars 3.45X 10-12

Sun 1.55 X 10- 6  Jupiter 1.98 X 10- 11

2nd harmonic of Earth 2.40X 10" 10  Saturn 7.05X 10-13

2nd harmonic of Moon 3.00 X0 12  Uranus 1.12X 10- 1 4

3rd harmonic of Earth 2.00 X 10- 14  Neptune 3.25 X 10-15

Mercury 1.14X 1012 Pluto 7.53 X 1017

Venus 
1.80X 10 10
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The higher harmonics of the Earth's gravitational potential are known quite accurately be-

cause of their effects on the motions of artificial Earth satellites. If the higher harmonics of

the Moon's gravitational potential are similarly determined by placing an artificial satellite in

orbit about the Moon, the effect of both the second and third harmonics of the Moon can be n-

cluded in the Hik term above. In this case, the second, third and fourth harmonics of the Earth,
kthe interaction between the second harmonics of the Earth and Moon (the C2 term in (111-66)),

and the effect of the terms in the gravitational potential of the Earth which arise from asym-

metries about the north-south axis (tesseral harmonics) can all be included.

The effect of tidal friction on the motion of the Moon is small, since it is estimated that the

increase in the sidereal day as a result of tidal action is 7.2 X 10- 4 sec per century.1 5 However,

the effect of tidal friction should be included in the equations of motion of the Moon, if harmoiiics

in the gravitational potentials of the Earth and Moon higher than those considered in this report

are included in the equations of motion.
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IV. GENERAL RELATIVISTIC EFFECT

A. MATHEMATICAL FORMALISM OF EINSTEIN'S GENERAL THEORY
OF RELATIVITY

Euclidean n-space Rn is defined as tne set of all n-tuples (x. x n ) of real numbers

x (j =1..., n). An open ball of radius r about a point x (x .. n) in 51n is the set of all

points x (x1 ,...,Xn) inn such that z -x )2 < r. A manifold Mn of dimension n is a
cnt H

separable connected Hausdorff space such 'hat !ach point in M n has a neighborhood which is

homeomorphic to an open ball in 5n. t That i.-, each point p in Mn has a neighborhood U in Mn

such that there is a one-to-one bicontinuous map f:U - B onto an open ball B in . The map

f puts a coordinate system on U in the sense that to each point q in U is associated the co-

ordinates (x 1 , ... , x n) = f(q). Suppose that fI:U 1 - B I and fz:U2 - B. are two coordinate systems

such that the intersection of U1 and U2 is not empty. Then the change of coordinates is given by

the map f2 
°  , :B1 - B2 , as sketched in Fig 2. A differentiable manifold of dimension n is a

manifold of dimension n which has a covering by coor~irate ,ieighborhoods such that the co-

ordinate transformations are infinitely differentiable. The manifc- is analytic if the coordinate

transformations are analytic.

BI 3-3-6 1 B

Fig. 2. Coordinate system on a manifold.

The simplest example of an n-dimensional manifold is Euclidean n-space itself. Examples

of two dimensional manifolds are provided by surfaces in Euclidean three-space, such as the

cylinder, torus and sphere. A manifold can be defined without any reference to a higher dimen-

sional Euclidean space. Roughl.i speaking, one might imagine that a manifold is a space which

can curve back on itself in the large, Lut which locally looks like Euclideai, space.
1 n I n

Let (x , . . . , x ) and (y, . . . , y ) be two overlapp;ng coordinate systems on a differentiable

manifold Mn of dimension n. A tensor T contravariant of order p and covariant of order q is

expressed in these two coordinate systems in the form$

tSee Ref. 16 for definitions of these topological concepts.

t See Ref. 17 for a rigorous abstract definition of tensors on a differen~iable manifold.
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T=T P dx ®...®dx 0)-- ... aV .q "
~ qax ax~

, .. 01 p IV-1),i T= p P. d @...dy ql-1 -) 1)

ay ay

Here, we use the Einstein summation convention in which repeated upper and lower indices are

summed. The components of the tensor T transform according to the tensor rule of trans-

formation:
vI  v a a

S l " a p i i"''4 p ax 8x q ay ay I p

"q  V " ' q a a y  Dxp l 1 ax V

In the general theory of relativity, the space-time universe is imagined to be a four-

dimensional differentiable (or perhaps analytic) manifold. The gravitational potential in the
z

space-time universe is given by a symmetric hyperbolic covariant tensor of order two ds

g,,dxi 0 dx v , called the metric tensor. Symmetric means that gv = gvl, and hyperbolic means
that for each point of space-time universe there is a coordinate system (xO, x1, xz, x3 ) such that

dsz = dx0 @ dx0 - dx1 (8) dx1 - dxz @ dx2 - dx3 (S) dx3  (IV-3)

at-that point.

Let (gap) denote the matrix inverse to the matrix (g,,,). The Christoffel symbols are then

defined by

a ( *-ga3 go + a go gf) (IV-4)
\ Z axV  xt ax /

(see Ref. 18). If we think of the metric tensor g} v as being the gravitational potential, then we

should think of the Christoffel symbols as being the gravitational field. The Riemann curvature

tensor is defined by

ar0 a r 0aRa  L% PFf 8Fv F a_ a

R a - - +r xv rc -r r (IV-5)

We further define

R RpRliv I'vA3

R g g[IVR [IV  (IV -6)

(see Ref. 19).

It is then postulated that the gravitational potential in the space-time universe satisfies the

Einstein field equations

- I g ,R = -T (IV-7)

where tc is a constant and where T is a tensor defined in terms of the distribution of matter

and energy in the space-time universe. Multiplying both sides of this equation by g1W , and

summing on L and v, we see that

40



R=#cT (IV-8)

If there is no matter at a given point of the space-time universe, then T 1 0 and by (IV-7) and

(IV-8) the Einstein field equations become
R =0 (IV-9)

at this point.

The above equations involving the metric, Christoffel symbols and Riemannian curvature

can be expressed in more abstract differential-geometric terms. This abstract approach would

be appropriate for a discussion of the space-time universe in the large. For local discussions,

the formulation in terms of local coordinate systems is sufficient.

A curve, or world line, in the space-time universe M is a map -Y: [a, b] - M of an interval

[a, b] in the real numbers into M (see Fig. 3). In a coordinate system (x0 , x , x2 , x3 ) on a co-

ordinaLe neighborhood U in M, the curve can be written in the form

xP = y(s) , s E [a, bJ (IV-40)

The tangent vector to the curve is then

= dx l a (IV- 4)
ds aX11

A vector X = X (0/8x 1) at a point is said to be time-like if cg > 0, null if g l = 0, and

space-like if gUXLIX V < 0. The path of a light ray through the space-time universe has null

tangent vector, while the path of a material body through the space-time unive, se has time-like

tangent vector. A curve in the space-time universe with space-like tangent vector has no physi-

cal interpretation.

An observer in the space-time universe follows a time-like world line -y through the space-

time universe. Suppose that this observer possesses an atomic clock and that he defincs a sec-

ond of time to be a certain number of oscillations of this atomic clock. Then, in traveling along

hs world line y from the point y(a) to the point y(b) in the space-time universe: it is postulated

that the observer will see that the number of elapsed seconds is given by the proper timu integral

a b

Fig.3. Curve on a manifold.

41



1 b dyR dy V
ab c~ g s sTa = a d-' d (IV-42)

where Z- is a constant, dependent upon the specific chemical element whose atomic oscillations

run the atomic clock and upon the number of oscillations defined to be in a second. The above

integral depends only on the world line y and the gravitational potential g ti. The wor ld line de-

pends on whether the observer is accelerated, etc. Thus, it is only reasonable to postulate

(IV-IZ) for the rate of a clock for an ideal atomic clock, since the effect of impulses on the rate

of a mechanical clock would depend on the details of its construction.

Let y:[a, b] - M be a null or time-like curve in the space-time universe M. The i.ngth of

y is defined as

ab Jg dx1 ' dxV
L(y,) =- t s- ds V13

The curve -y is a geodesic if L(y) is a minimum for all nearby curves joining 7(a) and Y(b) in M.

If the parameter s satisfies g[V (dX?/ds) (dxV/ds) = constant along the curve, then a null or time-

like geodesic satisfies the differential equations

d 2x----P + r P dxR dxv= 0 (IV-14)

ds 2  Rv ds ds

(see Ref. 20). It is postulated that the path followed by a particle of negligible mass through the

space-time universe, subject to no force except that due to the gravitational potential in the

space-time universe, is a time-like geodesic.

In order to employ the theoretical facade outlined above ir. concrete situations, we make the

following comments. First, in an inertial coordinate system (t, x , x , x ) of special relativity

far removed from poaderable matter, the gravitational pteritial should assume the form

21 2- 2 2 - 3 Z 5
ds cdt -(dx) - (dx) -(dx) (IV-15)

Here, c is the velocity of light, and dt z is short for dt @ dt. In the spherical coordinate system

(t, r, 0, qp), defined by

t=t

1
x 1 r sine cos p

2
x = r sine sin

3
x r cosO (IV-16)

the metric (IV-14) becomes

ds 2 = c Zdt - dr z - rz dO- r z sin E d' 2  (IV-17)

Second, in a general relativistic coordinate system which closely approximates a Newtonian

inertial coordinate system, the Newtonian expression for the motion in a weak gravitational

potential U of a particle of small mass with velocity small relative to the velocity of light should

be approximately the same as the general relativistic expression. We therefore have approxi-

mately
2 2
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ds 2 = (c + 2U) dt -(dxI ) -(dx ) -(dx3 ) (IV-48)

Here, we assume that U goes to zero at spatial infinity and that the Newtonian acceleration of

a particle is -grad U. (The convention in Ref. 22 is that the Newtonian acceleration of a particle

is +grad U.) Using the fact that (IV-18) satisfies the Einstein field equations, a more exact ex-

pression for the metric is 2 3

ds 2 = (c + 2U) dt2 - (I - .-!U) f(dx4 )2 + (dx 2 )2 + (dx 3 )2 ] (IV-19)
c

B. MOTION OF A PLANET OF SMALL MASS IN THE GRAVITATIONAL
FIELD OF THE SUN

Let V be a coordinate neighborhood in the space-time universe containing an isolated

spherically symmetric body, and suppose that (t, x , x , x ) are coordinates on V such that the

center of the body follows the world line given by x j = 0 (j 1, 2, 3). The gravitational potential

on V may be written
2 _ i

ds 2 = g 0 0dt @ dt + g oidt @ dx i + gio dx @dt + gidxl (g) dx j  (IV-2O)

Here, and in the following, we assume that Roman indices i, j, ... take on only the values 1, 2, 3.

Since the body which generates the gravitational potential (IV-20) is spherically symmetric and

isolated, we may suppose that

(1) the gravitational potential is static, i.e., the components of the metric
tensor do not depend on the variable t;

(2) the line element (IV-20) does not change its form under a rotation of the
coordinate axes (xi, x 2 , x3 );

(3) at a large spatial distance r = 4T(xli)T+ (xZ)Z + (x 3 )2 from the body, (IV-20)
approaches the value (IV-15).

From these assumptions and the fact that outside the body the Einstein field equations (IV-9) are

satisfied, it follows that there is a coordinate system (t,, x!1 , x , x2) on V such that outside

the body the metric tensor has components 2 4

900 = 5 c 'goj = 0

xi xj

2c r.eZar (IV-24)gij =-,ij ,-- 2a Zi -s

42 22 32Here, the Kronecker delta 6.. is defined by (11-60), r* = (x,.,) + (x,) + (x3) , c is the velocity
of light at a large spatial distance from the body, and a is a constant. Comparison of (IV-2)

and (IV-18) with U = -(yM/r,) shows that

yM (IV-22)
Cc

where y is the gravitational constant, and M is the mass of the body. The constant a has the

dimensions of a length and is much smaller than the geometric radius of the body (in the case of

the Sun, a = 1.48km). In the spherical coordinate system (t,*, r,, e,), so.:) defined in terms of1, 2 3V 1)thmerc(V2)bc es5
(t,, X x,, x) by equations similar to (IV-t6), the metric (IV-21) becomes 2 5
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2a cz 2 r* \ -22 _ds\'" d r - dr - (de + sin E e*d,) (IV-23)
ds ( TA dt - I

The metric given by (IV-Z4) or (IV-23) is called the Schwarzschild exterior solution of the Einstein

field equations. The solution is not valid inside the body, so that the apparent singularity in the

metric for r, = 2a does not really exist.

If we write out (IV-i4) for the motion of a body of small mass in the metric (IV-Z4), we will
jk

obtain Newton's equations of motion with a small correction Rk on the right-hand side. We then

suppose that this same correction applies to the Newtonian equations of motion of a planet with

non-negligible mass acted on by the gravitational attraction of the Sun and other planets and by

other forces, obtaining III-4).. Of course, the rigorously correct procedure would be to derive

the equations of motion in a completely relativistic manner, with the equations for the comparison

of theory and observation also being derived according to the general theory of relativity. How-

ever, given-the limitations stated in Sec. I, we continue with the less rigorous procedure of using

the relativistic equations of motion of a planet of small mass in the gravitational field of the Sun

to correct the Newtonian equations of motion of a planet.
4 2 3

The coordinate system (t*, x*, * , x,x) could be changed very slightly and the equations of

motion of a particle of small mass would still have the appearance of the Newtonian equations of

motion with a small (but different) correction on the right-hand side. If we are to follow the plan

of correcting the Newtonian equations of motion, this correction should be obtained in the general

relativistic coordinate system which most closely fits the Newtonian coordinate system. The

only reason that the coordinate system (t,, x,, x*, x*) with metric (IV-ZI) could be this "best-

fitting" coordinate system is the apparent simplicity of the metric (IV-Z1).

In a coordinate system (t, x ,x , x ) with flat metric (IV-45), the d'Alembertian operator 0

is defined on a function f by the equation

1f O2 f _8Of _ 2f
Of = IZ 2 3 (IV-24)

c at2  a(x1) 8(x2) 8(x3)2

Note that 't = 0, Ox3 = 0 j = 1, Z, 3). The natural differential geometric generalization of the

d'Alembertian operator to a coordinate system (x 0 , x 1 , x 2 , x 3 ) with metric ds 2 = g[Vdx' ) dx v is

Of = g V a f .gIr Of (IV-25)

8x Sx v [LV Oxy

where the summation on the Greek indices runs over 0, 1, Z, 3.f A coordinate system (x , x , x , x0 1Z x 3 ) n erc

is harmonic if Ox' = 0 (p. = 0, 1, 2, 3). Given any coordinate system (x* , x,*, x*, x*) and metric,

a new coordinate system (x 0 , x 1, x , x 3 ) which is harmonic can, in general, be found. (We

would have to find four independent solutions of the linear hyperbolic partial differential equa-

tion with nonconstant ,oefficients Of = 0, which can be done because Cauchy's problem can

be golved for this type of partial differential equation. Z 7 ) Suppose we are concerned with an

insular disti ibution of matter contained in a coordinate neighborhood. We may assume that

this coordinate neighborhood extends off to infinity, with the insular system being contained in

a spatially bounded part of the coordinate neighborhood. Then, Fock2 8 proves that if certain

natural conditions are satisfied by the metric at spatial infinity, a harmonic coordinate system

on the coordinate neighborhood is defined uniquely up to a Lorentz transformation. These con-

ditions essentially state that the metric goes sufficiently fast to the flat space value (111-15) at

tSee, for example, Ref.26.
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spatial infinity, and that no gravitational waves impinge on the insular system from the outside.

In the case of the isolated spherically symmetric body considered at the beginning of this

section, the harmonic coordinate system (t, x , x , x ) can be made unique up to a rotation of the

spatial axes by specifying that the world line followed by the center of the spherically symmetric

body is.given by xi = 0 (i - 1, 2, 3). In these harmoniL coordinates, the meti ic tensor has com-

ponents
2 9

=(r-,,) 2z
goo ( -- c2  

, goi = 0
ro= _+a 9xi

gi -0 + a) i r-a- r2x1 x3  (IV-26)

where a is given by (IV-22). In the spherical coordinate system (t, r, 0, (P), defined in terms

of (t, x 1 , x , x 3 ) by (IV-46), we have 2 9

ds2 = (r-+---) cz dt z  r+a) dr2 - (r + a) A(d2 + sin Odq ) (IV-Z7)
ds +-~ cdt dr 2 2

The relation between the (t*, r., 0 *, (p ) coordinate system of (IV-Z3) and the(t, r, 0, (p) coordi-

nate system of (IV-Z7) is obviously given by

t*, =t , r. r+o

0 , (p * (p (IV-28)

so that the transformation-between the (t*,.X1, x. , x 3 ) coordinate system of (IV-24) and the

(t, x , x , x 3 ) coordinate system of (IV-26) is given by

t t x. x (1 + i = 1, 2, 3 (IV-29)

The Schwarzschild metric has also been expressed in what are called isotropic coordinates.

In isotropic rectangular coordinates (1,3E RI R2 ), the Schwarzschild metric has components

90 (= + -- ) 20

=-(1 + -) 6 ij (IV-30)

while in isotropic spherical coordinates (t, i, e, ), it is given by

s2 4 2 4 2 2 2-1 --
ds cdt - (1+ =) (dx +i 2d +T sin Od(P) (IV-31)

(4 + a)

(see' Ref. 30). Comparing (IV-23), (IV-28) and (IV-31), we see that
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- '

t*=i t=t

a2 a]€2
r,, (1 + Fr [1+ (-2=) 2 F(I-) (IV-32)

e, =e e=e

which implies that

t., =t t =t

(IV-33)

X i + + )z x i  x [4 ( ) i , 2, 3

There are, of course, infinitely many other coordinate systems besides these three in which

the Schwarzschild metric can be expressed, but these three are generally used in the literature.

We shall now derive the Lquations of motion of a particle of small mass in each of the coordinate

systems discussed above, even though we have reason to believe that the harmonic coordinates

are closest to the Newtonian coordinates.

First, we note that, by Ref. Z9,

00 Oi
g = LO") = 0

c

___1+a2 2 xi] (IV-34)
(I + -) L r r

r

by Ref. 24,

oo = ( r*) goi 0g* Z- r,. - ' g =

i j3

ij=-6 + 2a (IV-35)
9* ij r* , zr?.

and, by (IV-30),

oo 4 (1+ )z1 Z° i0 1 0
(1- ')

6 ..
iJ = 4 (IV-3 6)

Z423
1' Z 3_)

Thus, by definition (IV-4), we have in the (t, x 1
, x , x ) coordinate system that
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r °  =0 , r 0  =0 rk..=. k.. =0
00 oj jo

0 0 OO ag 0 0  k 1 gk agoooj rjo-- axi r 00 axI
r3

rk =~ 3 g ag~_3~
r 2 ( + - agi) (IV-37)

with exactly similar equations holding in the starred and barred coordinate systems. Equation

(IV-14) for a geodesic then becomes
3

d 2t o dt d xj =0

dTs Z roj ds ds

dk kk dx' dxJ  k t
dx + E ~ r__4 r (L)2=0 (IV-38)ds2  ij ds ds 00 ds(V-8

-S i, j=1 t W Ts od

Since

d dt d
ds ds dt

z 2 2
d2  dt)2 d2  d t d

ds T- 1 dt dsZ t

the second equation in (IV-38) can be written

dxk+ k dx i dxj  k d t/ds2 dxkdx + ] dx dt+k

dtz i, p dtdt (dtds) Z =0

Now, by the first equation in (IV-38), we have

23
d t = Zdt2 o' rdv
d2 dt,2 Z5 oj dtds -- t'l o

j=1

8o that we can finally write

d2xk k dx i dx j  k dxk o dx j
- + r ij dt dt +r -2 , r 0 (IV- 9)dt dtdt o0 dtj -

i, j-. j=I

Exactly similar equations are valid in the starred and barred coordinate systems.

Using (IV-26), (IV-34) and (IV-37), we perform a simple calculation in the (t, x , x , x

coordinate system that gives
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(r a x
o ( + a) (r-a) r

? k I - )

k ccx r
oo 3 + e3

r r

X X 4t axixk (. + )] (IV-40)

Similarly, using (IV-24), (IV-35) and (IV-37), we find that in the (t., x., x, x:) coordinate

system

axj

o3 (r, - Za)r.

2 k

30 3 r/
r,.

ax" X.ij
rik 26 X~iJ r 2 + 1 I Ia (IV-41)

-4 23
Final.y, using (IV-30), (IV-36) and (IV-37), we find that in the (t, , R3) coordinate system

oJ I1 _k ) I1 + _L 3

Z-k (1 - '-
ifk = c x 2

oo -3 ( )7r (I+)

k 3 (_ k Ri 6 - 4 ) (IV-4Z)

ii (+)I 6iij k ik

Formulas (IV-39) and (IV-40) show that the equations of motion of a small mass if the

(t, x , x , x ) coordinate system are

dZxk YMxk  k
+ 3 = R (IV-43)

dt
2  r

where

kM r ka dxId
r3(1 + C_3 Z- r 3 -- '- +9 9=1t+

Z dxk + (3 xk3 9 dt (IV-44)
dt 3r t )]I
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Similarly, formulas (IV-39) and (IV-41) show tiat the equations of motion of a particle of small

mass in the (tb, 1 x, x 3 ) coordinate system are

dxk -YMx
- + - k (IV-45)

dt }  r 3

where

... = -- - Zx, 7"-'.. -,2'-z3 r3T7-_ c _____-. 1

+ Z+ (IV-46)

Finally, formulas (IV-39) and (IV-4Z) show that the equations of motion of a particle of small

mass in the (t, R , E R ) coordinate system are

d. k vM k
+ = (IV-47)d-z R

where

%M~k [1 _/M 3

&i Y (4M)7 -T (4+- j T_r 27 cd r]1 r

-- (1 1 f dR ' dt k (IV-48)

In the case of Mercury,

-E;-- -- 2 - 3 X108
r r,, r

v..V 10 -4
C * C C

-"" 1-- 1.5 X10
c c c

Thus, using the fact that for small z
4

(1 z z)n

we drop all terms in (IV-44), (IV-46) and (IV-48) which contain (a/r) or (a/r) (v/c)2 as factors,

obtaining,

xk [ 1d +21 3

R 3 k Mc 'l' ] + d-y- dt / IV-49)
3r -r c Z =3 d rX=1 t

[ x+? dx
Rr., -Z t Y't-/ -3 t-L ] dt*r : C f=1 C rI,* 1=1 c to-=

(IV-50)
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3 3

= y l'~ ica f,2 4-yM d5Ek~ Z .k NME- [4_ 1 dt2 d k  _ dR!

-- 2 N T ---Ct (IV-51)

r c t=1 c r

Equations (IV-43), (IV-45) and (IV-47) are invariant under rotation of the coordinate axes.

From this it easily follows that the motion given by these equations lies in a plane in each of the

three coordinate systems.

By coordinate transformations (IV-28), (IV-29), (IV-32) and (IV-33), the curves in the three

coordinate systems given by (IV-43), (IV-45) and (IV-47) are exactly similar, even though these

equations have dissimilar appearance. As is well known, these curves are ellipses with advanc-

ing perihelions.3 1 , 3Z,3 3 The expressions for the periods of these ellipses, in terms of the semi-

major axes of the ellipses, will vary in the different coordinate systems because of relations

(IV-28) and (IV-32).

We have two candidates for the relativity term in (111-4) and (111-12). Because of the har-

monic and isotropic criteria, and for the sake of definitiveness, we choose (IV-49) [or equiva-

lently (IV-5 1)] to be this term. In the notation of Sec. Ill-A, it is

k rMsRf 3 T1

-x 4 --- k,-dz

rp 3 Pp rps c L d

+ 4 d ( R.~) k = 1, Z, 3(V-)
-Z dt E X ps tk , , I - 2

where we have multiplied (IV-49) by a dimensionless constant Rf. If we perform a least-squares

analysis on the value of Rf and other parameters to fit theory and observation, Rf will converge

to the value I if the relativity correction belongs in the equations of motion, or to the value 0

if the Newtonian theory is correct. By (IV-22),

yM sz = 
(IV-53)

c

where c is the velocity of light at a large spatial distance from the Sun.

C. METHOD OF SOLVING THE PROBLEM OF THE MOTION OF A SYSTEM
OF MASSES IN GENERAL RELATIVITY

If we raise indices in the Einstein field equations (IV-7), we obtain

1111 - 1 g [V R = -)<T" v  (IV-r i)

These equations are nonlinear and hyperbolic in the unknown functions g . The fact that they

are hyperbolic implies that gravitational waves can exist. Their nonlinearity allows us not only

to determine the potential g V, but also the mass tensor T', i.e., the motion of the masses.

In all other field theories, such as Maxwell's for the electromagnetic field or Newton's for the

gravitational field, the field equations are linear and the equations for the motion of bodies in

the field are separate from and additional to the field equations. But in Einstein's theory, the

eqoations of motion are contained in the equations for the field.

The divergence of the left side of the Einstein field equations vanishes,
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V(R 1 1 - R (IV-55)

(This was one of the attributes which led Einstein to choose this tensor for the left side of his

equation.) Thus, we have

M.iv =8T} v  TvVr 61v

S= ' + T +Tr =0 .(IV-56)
ax 01L

The simultaneous solution of (IV-54) and (IV-56) will determine the field and the rmotion of the

masses; of course, (IV-56) is a consequence of (IV-54).
To obtain.an approximate expression for the mass tensor, let p(x 0 , x1 , x2 , x3 ) be (in some

sense) ihe invAriant density of matter in the space-time universe. We suppose that

T}LP dxs' dxv (IV-57)
P -~ -

where s is the proper time of the element of matter at the point (x , x , x , x ). If the element

of matter is following a world line x1' = x1l(s), then the defining property of s is

dx ' dxv  (IV-58)9,V d d s - !V 58

If we imagine that we are concerned with a particle of small mass and small dimensions which

has negligible effect on the gravitational field, (IV-56) and (iV-57) imply that the particle follows

a time-like geodesic through the space-time universe.3 4 Thus, assumption (IV-i4) is not really

an assumption, but is a consequence of the Einstein field equations.

The method of solving the field equations for the field and the motion of the masses is pre-

sented by Fock, and by Infeld and Plebanski.3 5 The latter follow the work of Einstein, Infeld

and Hoffmann 3 6 and assume that the masses are point singularities of the field, so that the mass

tensor is zero everywhere except along the world lines of the particles, where it is given by

delta functions. Fock assumes a continuous distribution of matter concentrated in a finite num-

ber of regions, so that the mass tensor is differentiable everywhere, and is zero outside of the

finite number of regions. The methods used by Fock and by Infeld and Plebanski are approxi-

mation procedures and are essentially the same; Fock assumes that he is always working in a

harmonic coordinate system, while Infeld and Plebanski make supplementary coordinate condi-

tions at each step in the approximation.

To be specific, let us outline Fock's procedure with a continuous distribution of matter

concentrated in a finite number of regions. We first assume expression (IV-57) for the mass

tensor T1'' (at a later stage in the approximation, we can assume a more sophisticated form of

the mass tensor using the fact that the bodies are elastic). Then we solve (IV-54) for the gravi-

tational potential g lip to first order in v/c, obtaining (IV-19) with some additional terms of the

form dt g) dx times quantities involving the velocity of the matter generating the field. This is

called the Newtonian approximation. We use this solution for the potential to write equations

(IV-56) for the mass tensor T"' to first order in v/c. The solution of these equations is used

to solve (IV-54) for the gravitational potential g ' V to second order in v/c. This solution for the

potential is then used to write equations (IV-56) for the mass tensor T w to second order in v/c.

We could, in principle, continue this procedure indefinitely, but the sulutions and equations in

this post-Newtonian approximation are accurate enough for our purposes.

51



At whatever stage we stop in the approximation procedure, we will have found in a specific

coordirnate system a system of second order ordinary-differential equations for the motions of

the masses, and an expression for the gravitational potential in terms of the motions of masses.
If hecoodiatesytemis~tx1 2 3If the coordinate system is (1, x 1 , x , x ), t can be made the independent variable of the equations

of motion. Numerical integration of the equations of motion will determine ephemerides in this

specific coordinate system of the planets as functions of t. The-relation between the coordinate

time t and the proper time T of an atomic clock on the surface of the Earth following a world

line y(s) (s = t) is given by (IV-12). This integral can be evaluated because we know the gravi-

tational potential in our specific coordinatc. system. Knowing the general relativistic theory of

radar and optical observations of a planet, we can comp; te the theoretical values of observations

made at given instants of atomic time. Then, making a least-squares adjustment to the initial

conditions and parameters appearing in the theory of motion, we can determine the general

relativistic ephemerides which best fit observation.
This report is concerned with Newtonian theory -nd any general relativistic corrections

that are easily obtained. The procedure outlined above can and should be documented and

pursued; this we hope to do, following Fock and Infeld and Plebanski.3 5
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V. EQUATIONS FOR PARTIAL DERIVATIVES OF POSITION AND VELOCITY

WITH RESPECT TO INITIAL CONDITIONS AND PARAMETERS

A. PLANET CASE

Let (xps . x.. x 6 ) denote the components of position and velocity of a planet relative to theps ps
Sun. Equation (111-4) for the motion of the planet can be written in the form

dxkps  k+3=7- ps

Sr P

ps

xk xk xk+3 = xk+3 whent=t

ps ops ps ops 0

Let a be a parameter upon which the motion of the planet depends, such as an initial condition,

a planetary mass, the second harnonic of wre Sun, etc. Differentiating system (V-I) with respect

to a, we see that the quantities (Ox 1/a, .... ax 6/la ) satisfy the differential equations systemtoS

d(8x k /aa) axk+'

dit Oa

d(3x k+3/aa) IM k 3ran 2 ax k

ds 1(xp/Ms) k / a, )( x 5 Vx
dt + - sr e

ps ps

ax~~~ ~ ~ kkx xk3 a +

_ __s oMps whent(t

Oa aa aa oa

We have 8xofps/aa = 0 (1 = 1, 6) for all parameters ai which are not initial conditions.

The value of xlp/Saa for an initial condition a depends on the specific initial condition. For

example, if we let e =x~os then 8xs/Saa = 6 . We shall choose the initial conditions as

6 __ ____ ops 1jop

) = (a, e, ,, w, I), the orbital elements of the elliptic orbit osculating to the true

orbit of the planet at the initial time t , because we will be integrating differential equations
system (V-2) for ax k / f (j, k = 1, ... 6) by means of Encke's method as explained in Sec. VI-A.

ps p

Also, we are going to use the results of the integration to make a least-squares correction to1 6
the initial conditions, and it is more meaningful physically to adjust (1 _.. ,_ 6 ) than to adjust

1 6 4 6 1 6 P p
(x ...... xs). The relation between (P 1, .... tP) and (x x ) is given in Secs. 1I-B
and II-C, while the values of Oxo /O3p are given in formulas (1-28) to (11-33) with t t

op5 p 0
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-CL
If we desire to take account of a possible time variation of the gravitational constant, we

might suppose that

YM = (YMs) ° [1 + (t-t o] (V-3)

where X is a parameter to be determined by comparing theory with observation. We then have

A, s\ (+ -tMs

ax - (TMs)o (t-t o) (V-4)

with the a(yMs)/oa term in (V-Z) being zero for all other parameters a.t

The term a(Mp/Ms )/a in (V-2) is zero for all parameters a, except for c = Mp/M s . in

which case it takes the value 1.

To determine the term a0 lk/ac in (Y-2), we differentiate (IJI-3) with respect to a, obtaining

axk NM. 3x Ox axk

j= jp 3p 1=1

if a is not the mass of a perturbing planet. Here, we have to assume that

ax.k

Ma j k, , 1,2,3 (V-6)
ksk kOx. OxJ's O x p ax p

Oa Oa Oa a

since it is supposed that (xuse xins x.l are given as definite functions of time. If a is the mass

of some perturbing planet, a = Mi/Ms, then we must add the following term to (V-5):

I.k Xk
p is k= 1,Z,3 (V-7)

(rip ris)

If a X, we must add this term to (V-5):

a jb ss

If ae is an initial condition for planet p, assun. tion (V-6) that Ox. /Oa is zero relative to

Oxp 5 /O is certainly justified. However, if a is some parameter other than &na initial condition,

axik/aa could be comparable or even larger than axk /Oa so that expression (V-5) for a~k /laj s P S
would be incorrect in nature. For use in PEP, (V-5) is exactly correct when the perturbing

planet input magnetic tape used in evaluating (111-3) is kept the same between iterations, but not

when the ephemerides on the perturbing planet tape are replaced by the results of just completed

t We do not consider (yMs) 0 as a parameter to be adjusted because it is the usual practice in celestial mechanics
to set V(-iijo 0. 01720209895, which defines the unit of lengith (the Astronomical Unit) once the uinit of time
has been specified.

54

=-14 17



integrations for use in the next iteration. In any case, because (V-5) contains the factor (Mj/Ms),

it is less important than (V-7) or thc first term on the right of the second equation in (V-Z).
Since we only need approximate values for the partial derivatives in the iterative process of
finding least-squares corrections to the various parameters, assumption (V-6) is thus reasonable.

From an operational standpoint, it is necessary.

it is probably sufficiently accurate to suppose that ORk/8ot = 0 and 8sk/8c= 0, except when
a =Rf or =S /RZ, respectively. However, for the sake of completeness, we shall evaluateC=Rf oo =27 S

these quantities. First, differentiating (IV-52) with respect to Z, we see that

ak _(7M )-R xks / Z ),' xk+3

DR/ 3 v \ f x 2  1PS 2=4
r \- ps pW c ps_4

k s =1 2+=1 1ps 8

ax I3] , k=1,2 , 3 (V-9)

rPs 1]rs

where

6

Vps s 2 ( psxI PSx

2=4

3
r -v5 = x PS (-O

Vp z Psp psv- oX

2==

We have denoted the parameter with which we differentiate (IV-S2) by ff so that there will be no
confusion with the gravitational radius of the Sun a appearing in this formula. If = Rf, we

must add the following term to (V-9):

/s 1+ ]1 ~k3

4 • , k , Z, 3 (V )

rps psc

ps PS

(yM~ ~ ) (tt+3[ 4 x+

PS ' . PS c csxp -0

Second, differentiating ( -50) with respect to a, we see that
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ak YMs(1 + ) R 2 S2 js axk 5xk 3

Sr rps/ R s rps z ps
PS PS ps =

k

.3g 3Csk-, k 1,-Z, 3 (V-13)
2

where, by (111-51),

3 1ax Is  x 3 "
a rps = = rps i4 P-/ (V-14)

PS =

Ifa = S /R we must add the following term to (V-13):

(f 5 )= [pMs, w5 Zst3akd ti4,2,3m.o (V-15)
rYM (I ps k 1

If a M /, we must add this term to (V-43):

PSS

r ps-/ - (-~ g - - )-k]3gC k 1 k,2,3 (V-15)
rPS S

If M = /M, we must add this term to3)

5y s_ (45)Z S .[ (1 Z 3(y5) (- )R 5 2R 2 [.k (- gC~3k Ck k= 4,2,3 . (V-16)

B. EARTH-MOON CASE

4i  6 4 6Let (x cs ..... xs) and (Xme~ ..... Xme) denote the components of position and velocity of the
Earth-Moon barycenter relative to the Sun, and of the Moon relative to the Earth, respectively.

These components will be considered as primary quantities determined by integrating the equa-

tions of motion. The components of position and velocity of the Earth and Moon relative to the

Sun(Xe . .. x ()s ... Xm) are determined from them by formulas (11I-6). Equations

rs es ms s

(IfI-42) for the motions of the Earth-Moon barycenter and the Moon can be written in the form

dxYs~ (k-t0 M R~ 2[

cs k+3

dt -Xcs

Cs _il be cn i e xe am m

es ems
c m

k k k+3 k+3c ocs cs ocs o

56

k+



dx
k

me k+3dt me

-IXk3 M x kc m4- k +* +H k+ k1 2, 3 (V

dt =-TMs M -3 k k + rm M .e
VJ

me

xk = xk k+3 = k+3 whent = t
me oxne Xme oXhne 0

Let a besome parameter upon which the motions of the Earth-Moon barycenter and of the

Moon depend. Differentiating systems (V-18) and (V-19) with respect to a, we see that the
quantities (3x 1/ace..., ax6s/8c) and (3x 1 /aa, ... ax 6/ X.) Satisfy the differential equations

ax/aa) me me
systems

d(a k/ace) axk+3
e_____ xcs
dt - aa

k+3 ,k k kd(3x /aaC) (M M~ M msdt =-Ms + MC)a M es +m c xm

dt~ S( M c er 3 Mcr 
es rns

Mx e  Mxk [ M  x M a( M)

M, 3 4 M aa
( r cs r~i [' ) MI

es ms k= 1,2,3 (V-20)

a(Mc/MS) a1 k 9Pk aSk+ s j+ - + -- + a --

+ -L (F k+ F k

k k axk+3 a k+3
axcs ax ocs cs Ocs when t = t
aa 3a ' aa aa

d(ax k /aa) ax k+3

me me
dt av

d(axk+3/a a) M k 3 ax x ax k
me YM c1 me Z x me_ me
dt = sMs 3 Xme aa aa/

rme \ rme 1=I
M Ye ks me cs aB k  k= , Z, 3 . (V-21)

Ms r aa Ms 3 aarme rme

E + + -( F 1 F i
aa aa aa Um m Mfee

ak axk axk+3 axk+3ame ome me aXome when t t

aa aa ' aa aa 0
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Let ... ... ) be the orbital elements of the elliptic orbits osculating
at the initial time to the true orbits of the Earth-Moon barycenter around the Sun and of the

Moon around the Earth, respectively. Since we shall be integrating the differential equations

for the partial derivatives with respect to initial. conditions by means of Encke's method, we

choose the-.initial conditions with respect to which we take partial derivatives to be (P/, ... Y, P)

and (P34 .... 0 ). The initial conditions 8xk /3 # j and 8xk / (j, k = !,... 6) are then
m'* m~ ocs c ome m aete

determined by the elliptic orbit formulas of Sec. II-D. Of course, we have

ak8xocs
- =0

m
j, k =. . 6 (V-2Z)

kaXom e8- =0

c

Further, the initial conditions of (V-Z0) and (V-Z) are zero for any parameter a not an initial

condition.

We divide the initial conditions and parameters appearing in the theories of motion of the

Earth-Moon barycenter and of the Moon into the following three classes:

Initial osculating orbital elements of orbit (,l . 6
of Earth-Moon barycenter about the Sun

Mass of jth perturbing planet = Mj
Mass of Sun js Ms

(V-23)

Relativity factor Rf

S2

Second harmonic of the Sun =s

Initial osculating orbital elements of orbit 1 6
of the Moon about the Earth (Plm, Pm) (V-24)

Mass of Earth + Moon Mc
Mass of Sun MCs =

Mass of Moon M Mm (V-25)
Mass of Earth + Moon mc M

Time variation factor for gravitational
constant

For parameters a of the form (V-Z3), we shall assume that axk /aa 0, and for (V-24) that
k me

Xs = . We make no such assamptions concerning parameters (V-Z5). Comparing the
magnitude of the Ak term in (111-13) given by (111-32) with the magnitude of the perturbing planet

effects in Table II, we see that it is indeed reasonable to assume that 8xcs/O/3m = 0, since we

must assume that 4 k is independent of the initial conditions for the perturbing planets. The

assumption that DX e /3 i = 0 is not precisely true, but according to Table III these derivatives

are much smaller than the 8 xm /fl m and we have to make some such assumption to make ourme m
problem manageable. Comparing Tables II and III, we see that it is reasonable to assume that
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the 3xme/aMjs are zero relative to the 8xak /aM. (We repeat that in the iterative determination
me jSCS js*

of the least-squares correction to the various parameters, only the approximately exact values

of the partial derivatives with respect to these parameters are needed, not the exact values.)

For parameters of the type (V-23) for which we assume 8x k /8a = 0, the equations in (111-6)Lie
give

ax k ax k1
es xcs

Ba aa
k = I, Z, 3 (V-26)

ax k ax k
ms csj

aa aaC

We now determine the quantities on the right side of (V-20) for these parameters a. First, of

course, 8(yMs)/Sa = 0 and (/aa) (Mc/Ms) = 0. Next, we have0 ~s c s
(M k+ Mm k axck 3 + \Max

x xk axe s! Mm m 3ms}

res r) /

The expressions for aR /Da and ask/aa are given in formulas (V-9) through (V-17), with p re-

placed by c. Finally, differentiating (111-9) with respect to a, we see that

NM [3s Mex + m +n
ac = M ' s  a c ' Mc

ax l / Me rje j 

Mm Me , k= 1,2,3 (V-28)
ax M c r 3 Mcr

S rj~e  rM

where we have made assumptions analogous to those of (V-6), namely,

kaxis = 0

ax. k ax. k ax k a
Je, s es - cs k= 1,Z,3 (V-29)

k k k kax. ax. axk _ axks
am = 0a ___- ace

If a = Mi/Ms, we must add the following term to expression (V-Z8) for a'k/aa:

ie + Xim k= 1,2,3 (V-30)M c- r 3 Mcr 3 - 3

rie crim ris/
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thsFor the initial conditions 6 . . )f (V-24), we assume khat ax /af3m = 0. By (111-6),

this implies that

es Mm me
afj M #3

m k=1,2,3 (V-31)

ax k M axk
ms= e me

apj M c api

We now determine the quantities on the right of (V-Zl) for a = P m . First, of course,

a(vMs)/aIJ =o and (a/aPj ) (Mc/Ms) = 0. Next, differentiating (III-IA) with respect toPJ and

using (V-31), we see that

aBk a me m eses Me ks I

OP a M x x M )

m s es rs

ax k M
_me lM I. +... e 1 k= 1, 2, 3 (V-32)
api (Mc 3 Mc

M. res crms

k N 3 a 'M Xk I M k x
k -m M s  N M 3me m - ieXie Me x im)'

ap4 '4 E.I p Mc 5 ~M 5/i=1 1=1 a cri e c rim/

me (Mm Mm 1 + k= 1,2,3 (V-33)

ap\ Mc 3. M

In (V-33) we have assumed that

axis
x = 0ap 3

k kax k M a
m me k= 1,2,3 (V-34)

-ms e  k 2

axk axk ax k M
im is -ms -- e Me

M ap ap Mc 3P M

Finally, differentiating (111-79) with respect to I3m we see that

k yMMc J( axk 5X k 3

rH sc me meapm mm Re rme r =t me

× 2fm/ (T cos 2 9o- ) + *'-- \ '-- cos -Ak

ax 1 5 3 3(os) _Me cos c - 3A)
afl/ rme
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R(\ 3 ax k-t rx 33 mem

\meJ R __ k 5
' 

x
" me;- m'  me: .. me me x

+ - R"2-- [rme p r Z X me ,e
i=Z rme 1=1

x~ 3 + -(? J3 "~",,--'-
mee

(o Xme me ame 5 3 i5o -5 cos e - C =os )
r x ne : 2

m me -

-k
a 3(Cos 0) x5 -1A Come (4-' Cos? 0- L k= 1,2,3 (V-35)

313J (r me 2 3 )-45 3 kcoe]
m

where, by (111-80),

3 axI 1 3 a
(cos9 1me Xme e h x8(cs r _ -Z 31 ' z , me --m

S rme =1 meh i = , 3. (V-36)

1 mxe me x h Xme
Di. rme 3P3 Bimx me _-_

m 1=1 m me h=4

We now consider the parameters Mcs = MC/M s and Mmc = Mm/Mc . Regarding these as

independent parameters, formulas (111-6) imply that

3(Mc/M s ) 3(Mc/M s)
C S) = 0 (V-37)
Mcs Omc

a(Mm/M c ) 3(Mm/M c )
- 0 m c = 1 (V-38)
8Mcs 8mc

(Me/M C) a(Me/M C)
=C 0 - (V-39)

3Mcs 3 Mmc

ax k ax k M a
es xcs _m me

3Mcs 3Mcs M 0 3Mcs
k 4 1, Z, 3 

(V-40)

ak axk a
ms cs e me
CMcs -Mcs + Mc CMcs

a 3kaxk Mma 3 k
es - c s me

Mmc 8Mmc Mmc me

k= 1, 2, 3 (V-41)

ak ax k M a
Ms. cs Me 'me k

mm M Xme
mc mc c me

0
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The quantities on the right-hand sides of (V-Z0) and (V-Z) for a = M are as follows. First,

of course, 8%'yMs)/;M) = 0 and (/aM CS) (Mc/Ms = . Next, we have

Me xke s  Mx x axks (Me i Mm 4

e es m ms es ems

"M 3 aX M M 3 M M

3 (Me XesXes m mms - e M
i-3 L aMcs Mc r 5  r5 m m

1=1 es ms

axk 3 xe[ me* (1 - axSa m 3 3 + L. bMC rms res = cs

5 5 m , k= 1,2,3 (V-42)
r es rms

The expressions for aRk/aMcs and aSk/aMcs are given in formulas (V-9) through (V-17), with
p replaced by c. Differentiating (111-9) with respect to Mcs, we see that

aMk _ M 1  ,ax~ s (M x +x M x k x'm\am - Ms E s m m 7 '+-
M j= 1 a Mc r j e r m i n,

ax k /I M MM ka
Xs e Mm i Me MM xme 3, 3 Mc r. 3 / Mc Mc [aMcs r 3  r3

cs1 c rje jm je

3ax I .kX x X .~k X

L i a m e j e _ m r ,)k = 1 , 2 3 ( V 4 3 )

where we have assumed that

aMcs

e es ax + m me k 1,Z.3 (V-44)

amCs MCs CS FCS C CS

a k axk a x k axk M axk
S - s acs C- me

Ta- am 5  M am

Differentiating (III-1) with respect to M cs, we see that
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ak r axk ax 3c I k I
3 s Cs r s = cs ms msam ~ s am 3  am 5 5

ms Ms es rms

axk 1 M 3\ 1 ax M x kx I
me 1 + el )+ m me ( m es es

am--:-I--- M_-3-,3 am M 5
cs res ms r S e re

!exk s xI
M , k= l,Z,3 (V-45)

c r
ms

kNM. ka' 3 ax I~3~~
C ms E L cs rj / cs

cs j=1 s c rje jm =1

X(x Xim axk me MM Me 1
x je jm m ( je m

a /Xe(M x.x . M xk X.\,
+3 __ me + c +- c k= 1,2, 3 (V-46)

am M __5 M ' 2 i
=1 Cs C r je c rj

where we have used (V-44) in deriving (V-46). Let H k denote the right side of (V-35), with

partial derivatives with respect to 93J replaced by partial derivatives with respect to M

Then, differentiating (111-79) with respect to Mcs, we see that

1k H k k+ k 1,2,3 (V-47)

amcs c M / M S) I

The quantities on the right-hand sides of (V-Z0) and (V-Zi) for a = Mnm are as follows.

First, of course, a(vMs)/aMmc = 0, and (a/aMC) (MC /M s) = 0. Next, we have

IM xk M x k /xk x k ~, 0 k
Mes MmcXmsMXm: xs xki)

rs 3s m e

3ax m
. ( 1 +  M 1 - 3 C+ M-EM k )Mcr3 +M c r "T m c me)

es ms

k x+ M xk xa

es m s / Ms Mc A Mmc

3 axe kx xms Xs
X ( )+3 m m es es - /  k= 1, 2, 3. (V-48)

ses es ms
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ka and aSk/aM
lThe expressions for 8Rk/sM and are given in formulas (V-9) through (V-i7), with

p replaced by c. Differentiating (111-9) with-respect to Mmc, we see that

kN k k 3 1k M M (x je 's I
ai VEs(k3 3 \'c mec

=1 rM rx I c

Mm k .1 m k I, ax me
m J-me hS k

Mc + r e t x 3
X'k c -+ --- '! ."c _ Mc

j c je rm je

whe hM mve eammc 

mM rim,  e jin i=4

X e . x k k =1,e2,3 (V-49)
r je m]M

where we have assumed that

ax. k

ax.k ax.k axk ax k M ax k

Sje Jsk eX~s cs M me +xk k= 1,2,3 ,V-50
m am mc am M c Mm me

mc M mc mc c mc

Differentiating (III-it) with respect to Mmci we see that

k k3 ax1
3Bk-=Y axcs _ k )-__am_ s ME.) r 3 r 3 m c me)

es ms V

(xkxi r _s 8 Mmc M + Mcr

es ms res

3ax'1 IM ~k1 M I k I
+3 me Mm xxs es + Me ms1sxf, k= 1,2,3 (V-5t)

c res c ms
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kN m [/ ax k 31  CI I~x

mc s j=1 L- mc me/ re r Li \iOmc

e .k xI k xI ak

-XI m ) xne Mm 1 Me

rje rjm / mc cr'je jc m

3 ax Ie/M xx M x k  If \

+ 3 Z, O Km +m i V2 k= 1,21,3 (V-52)
1=1 mc rje c rjm /

where we have used (V-50) in deriving (V-5Z). Differentiating (111-79) with respect to Mmc, we

see that 8H/OMmc is given by (V-35), with partial derivatives with respect to PJ being re-

placed by partial derivatives with respect to M mc

We now consider the time variation parameter X in the gravitational constant as given in

(V-3). Formulas (111-6) imply that

ax k axk M xk
eXs x s  Mm me

OX OX M OX

ck 3 e kxk e
ms- +s e mOX OX M~ OX

The quantities on the right sides of (V-20) and (V-21) for a = 2A are as follows. First, of course,

O(yMs)/OX is given by (V-4) and (O/O)(M/Ms) = 0. Next, we have that (O/0\) [(M/Mc) (Xes/res +

(M m/M C) (Xms/rms)] is given by the right side of (V-42) with partial derivatives with respect to

MCS being replaced by partial derivatives with respect to A. The expressions for OR /3X and
OSk/OX are given in formulas (V.-9) through (V-17), with p replaced by c. If we let P k denote

A
the right-hand side of (V-43), with the partial derivatives with respect to Mcs being replaced

by partial derivatives with respect to X, differentiation of (111-9) gives

Mk  N k M kk
3_b=_ 4 k N -M)( (/M x+M xm x.\

S X+(yMs)o t 0 ) E + , k = 1,2,3 (V-54)

j=i s rje rm rjs/

If we let Bk and TIk denote the right-hand sides of (V-45) and (V-46), respectively, with the

partial derivatives with respect to Mcs being replaced by partial derivatives with respect to X,

differentiation of (III-11) gives

1k kOBk k x ke  x
3B k Bk + (YMs)o (t- ot) - _ ms k= 1,2,3 (V-55)

res rms/

k N M.(.k

ax 'ifX +(YM (to Ms(t 0 k= I,2,3 (Vrj
e

j= r3m je

If we let H k denote the right-hand side of (V-35), with partial derivatives with respect to j

being replaced by partial derivatives with respect to X, differentiation of (111-79) gives
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ak (YM ) (t -taH = s) + so o ) H k k - 1, 2, 3 (V-57)

We have not derived the differential equations satisfied by the partial derivatives of the posi-

tion and velocity of the Moon with respect to the higher harmonics of the gravitational potentials

of the Earth and Moon, because the gravitational potential of the Earth has been determined quite

accurately from the motion of artificial Earth satellites, and the gravitational potential of the

Moon will be determined quite accurately in the near future from the motion of artificial lunar

satellites.
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VI. ENCKE'S EQUATIONS OF MOTION AND ENCKE'S EQUATIONS

FOR PARTIAL DERIVATIVES WITH RESPECT TO INITIAL CONDITIONS

A. PLANET CASE

1 6
Let (xps ,..., x ) denote the components of position and velocity of a planet relative to the

Sun, satisfying (V-1) with initial conditions (xo,. . ., x s) and with the gravitational constant
1 6 opJ ops

yM s being given by (V-3). Let (y ... , yp..) be the solutions of the equations in (11-63) with

["- (yMs ) [4 + (M /Ms)], and with initial conditions (x 1 ... , x s). The quantities
so 0 p ops, ops

(y s .... , y6) are the components of position and velocity in the elliptic orbit osculavLng to the

true orbit of the planet at the initial time. Let

k = k k k = i, ... ,6 (VI-1)ps = ps -Yps ...

Subtracting (11-63) from (V-i), we see that the quantities 6 6 satisfy the system of

equations

k
dps k+3

d-- = ps

kM k

k

-X(t -to ]+ps +k + Rk +S k+ 1I Fk

k 4 k+3 Lps =  Pps = 0 whent = to

where pps= (yps)2 + (y2s)2 + (yps) . The quantities (y~s .... Y6) are known as functions

of time from the formulas in Sec. II-B, so that if we numerically integrate (VI-2) to find

(Q ,. 6 ), the position and velocity of the planet (x, . . . , x ) can be determined from (VI-1).Ps ps PS p
Let axk /ai3 J (j, k = ... 6) denote the partial derivatives of the position and velocity of

ps p 4 6the planet relative to the Sun with respect to the initial osculating orbital elements (P , .P... , 1 "

(a, e, i, f2, w, 10 These quantities satisfy differential equations (V-2) with initial conditions

axk /aP J (j, k 1, .. .,6). Let 8 yk /ap j (jk = 1, .. .,6) be the solutions of differential equa-
ops p p P

tions (11-64). With these same initial conditions and with 1 = (yMs)° [i + (Mp/Ms)J. We define

Dx Y I j, k= 1,...,.6 (VI -3)

P3 aflj afj3

Subtracting (11-64) from (V-Z), we see that
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,'I

~k+3
dt pi

d k.+3  k

t 0yM + ~)[(~~-3 ) 3~
P, ps

3 "2 k  x I  kyy 3xk 3

rPpLi PS1Pj k= ,2,3

j Ps ps= t .... ,6 (VI-4)

k 3 k
__)f/1 S3x p O % x s'\1

r3 \r j)S JI3 OPl
p (PS 1=1 p

+ Sk + aRk +ask +a I Fk

k k+31p .i 1pj =0 when t = t

The quantities ay k /oaP are known as functions of time from the formulas in Sec. II-D, so that
pS p3 k

if we numerically integrate (VI-4) to find the 71pj, fhe partial derivatives of the position and

velocity of the planet with respect to the initial osculating orbital elements ax k /a3 can be de-ps p

termined from (VI-3).

If the quantities p get too large as time progresses, a new osculating elliptic orbit can be

chosen and the integration of system (VI-2) can commence again with initial conditions zero. If

we are also integrating system (VI-4) and desire to change Encke orbits, the following procedure

must be followed. Let (P 1, . .. ,/6) be the osculating elliptic orbital elements at the initial time

to; let (x*, .... x6 ) and 8x, /aP (j, k = 4 .... , 6) be the position, velocity and partial derivatives

with respect to initial conditions at the time t.:. at which we wish to change Encke orbits. These

quantities are known from the numerical integration of the equations of motion and the equations for

the partial derivatives with respect to initial conditions from time to to time t.. Let 6

be the osculating elliptic orbital elements at time t, determined from the formulas in Sec. II-C.

Integration of (VI-2) and (VI-4) with initial conditions zero from time t., to time t determines the
1 6position .and velocity of the planet (x ,..., x ) and the partial derivatives of position and velocity

with respect to the orbital elements at time t,*, axk/a I (j, k = i, . . . , 6). Then, to determine the

partial derivatives with respect to the orbital elements at time to, we must use the relation

axk 6 6 -. x O-= Ox 1 , k , 6 (VI-5)

0 / j  a f j a x, - / i

1= i =4w~

where the matrix afl/ax,, is determined from the formulas in Sec. T"-E.

The elliptic orbit position and velocity in the new Encke orbit osculating to the true orbit at

time t* seatisfy differential equations (11-63) with i = (yM s) (4 + M p/M s), where

(vM s )*, = (YMs)° [t + X(t, - to) l  (VI-6)
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Thus, the factor (yM ) in (VI-2) with initial conditions zero at time t* must be replaced by
(YMs},,, and the term X(t - to) replaced by a term G(t - t,) satisfying

TM s = (YMs ) [1 + G(t-t*)] (VI-7)

which implies that

G = X (VI-8)1 +XMt, -to)

Exactly similar comments apply to (VI-4).

B. EARTH-MOON CASE

Let (x 6 ) and (xm .. 6 6) denote the components of position and velocity of the
cs'** cs) me' Xme)

Earth-Moon barycenter relative to the Sun and of the Moon relative to the Earth, satisfying

(V-18) and (V-19) with initial conditions (x 1 .x6 ) and 6 We tht
ocs ocs (Xomrep ... Xome). e assuie a

the gravitational constant yM is given by (V-3). Let (ygs ...... Y6s) and (y 1e, ... y6me) denote

the components of position and velocity in the elliptic orbits osculating at the initial time to the1 6
true orbits of the Earth-Moon barycenter and of the Moon. The quantities (ycs y Ys ) are the

solutions of the equations in (11-63) with ± = (yMs ) [4 + (M c/1s) and wi h initial conditions

(xo s ..... x 6s ) , while the quantities (yme ..... m) are the solutions of (H-63) with
= (YMs) (M /M ) and with initial conditions (xime .. x 6  ). Let

so c s ome ome
k Xk -k

Cs k- Cst ... ,.6 .(VI-9)

k k  k
me me -me

Subtracting (11-63) from (V-18) and (V-19), we see that the quantities Qcs' .. cs) and

Sme' . me ) satisfy the system of equations

kd cs _k+3

dt - cs

k+3( ss [cs Me M m ]
d cs M3c 1 1 k

dt) 1 s + M li 3  \Mc r3 + Mc r 3 Ycsdt~ P- (Ts ° t+\ es ms

Me + Mm I kcs M C Mc M k

3 + M c - m e

es ms s ms k= i, Z, 3 (VI-10)

k Mxk

X(t-t) 3 + M ms+Rk k

es M

+1( k +Fk
M (Fe M

k k+3
cs = cs 0  whentt 0
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k+3

dt -me

dek+3 sm kmec_ okmme X 
-- (Yso r3 me r 3 Xt-0rm 3 k = 1,Zo3 (VI-11)me me me

+Bk + i k + 1 ( k m m-- F k)

-- k =k+3 0  whenMe=e/
me = me 0 whent=t

w I1Z Z)2 y32 m l 2 2 + 3 z
where pncs = ycs ) + (yes) +(yes) and pme = (Yme) + (Yme) + (YMe). The quantities

1 6 1 6
... yes) and (yme ..... Yme) are known as functions of time from the formulas in Sec. II-B

so that, if we numerically integrate (VI-10) and (VI-44) to find Q 4 6 and 6 1 1m6
cs .. me .... an me),**

the -position and* Velocity of the Earth-Moon barycenter and of the Moon (x4 *, ... x 6 .) and

(x 6 ... 6m) can be determined from (VI-9).
me me.

Let axk /893 and axk /a i (j, k = 1, . . ., 6) denote the partial derivatives of the positioncs c me m
and velocity of the Earth-Moon barycenter and of the Moon with respect to the initial osculating
orbital elements (P ..... 1 p ) and (P 1 ..... 6). These quantities satisfy differential equations

c'~* c m kmk
(V-20) and (V-Z) with initial conditions axk /api and 3xk / 3 3 (j,k = , ... , 6). Let

k k ocs c ome m
ayk /3p 9 and 8 y e/p (j, k = 1, ... , 6) be the solutions of differential equations (11-64) with

cs c me
these same initial conditions and with ji = (yMs) o [1 + (Me/Ms)I and i = (yMs) o (Me/Ms), re-

spectively. We define

=ax k ayk
k Cs 8 Ycs

77j apj aft
j,k= 1,...,6 (VI-I2)

ax xk e a k

k me me
Nmj -"
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Subtracting (11-64) from (V-ZO) and (V-Z1), we see that

_q k +3
= k+3

dii. =(yM )o (dt " Mc) J[ rc~ -(M ee+3r s/ +Mm~c r s )

_(cs 1 M + m I k-- 3 3 M k rcM

8Ycs[Cs ceees s m

Yf~ cs Ycs e5  M

a3 k x M

ap j MC 11 3 M r e3 es

3 rC se

ee3 cs\Mc r5 Mc k=, Z3ms C= esj= ... 6 (I-3

×Xmsxrms)+ 3tto L3 8fx I\M

ms I. a \M

k x k k i
x es e Mm s ( csxe M
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dt dt

dill M ae1 1 me

me Yme5me m (VI-1r3

me e ( rm

3 (t-o)/3xakx k2,

me me
f= m me me\ m

8Xm /f kfik,-

+ p 3Il~m + kB m m Mee
k k+3 k kh1t2t

3mj x mj = o

The quantities ay l and ayme/SI3l are known as functions of time from the formulas in
cs ak k

Sec. II-D so that, if we numerically integrate (VI-13) and (VI-44) to find the e and mj we can
find the partial derivatives of position and velocity with respect to initial osculating orbital ele-
ments for the Earth-Moon barycenter and for the Moon from formulas (VI-I1,).

The method of changing Encke orbits for the Earth-Moon barycenter and for the Moon integra-tions is the same as discussed at the end of Sec. VI-A. It will be necessary to change Eneke orbits

more often in the case of the Moon than in the case of the Earth-Moon barycenter.
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APPENDIX A

PRECESSION-NUTATION OF THE EARTH

The notation 1950.0 denotes the beginning of the Besselian year, which is the instant near

the beginning of the calendar year 1950 when the right ascension of the mean Sun was exactly
t 8 h4 0 m . In more conventional notation, 1950.0 is thus J.E.D. 2433282.423 or 1950 January

0d.923 Ephemeris Time (see Ref. 5).

1 2 3 1Let (X , X , X ) be a rectangular coordinate system whose X -axis points toward the mean

vernal equinox of 1950.0, whose X 3-axis points toward the mean north pole of 1950.0, and whose

X2 -axis completes the right-hand system. In more concise language, we say that (X , X , X3)

is a rectangular coordinate system referred to the mean equinox and equator of 1950.0 This is
123

the coordinate system in which we are going to integrate the equations of motion. Let (x , x , x

be a coordinate system referred to the true equinox and equator of date with the same origin as

the (X , X 2 , X 3 ) coordinate system. The x -axis points toward the true vernal equinox of date,
3 .2

the x -axis points toward the true north pole of date, and the x -axis completes the right-hand
1 23 1 2 3

system. The relation between the (x , x , x ) and (X , X , X 3 ) coordinate systems is

3

xi = A yjx

j = 1, 2, 3 (A-1)
3

i 1

where the orthogonal matrix A is given by

3

A.. = f N 2 P fj i,j = 1, 2, 3 (A-2)

with N and P being the nutation and precession matrices, respectively. The matrix A appears

in formulas (111-55) and (111-79).

We now give the established expressions for the precession and nutation. First, we follow

Ref. 37 in defining the angles

to = Z304'.948T + 0.1302T 2 + 0'.0179T 3

z = 2304'948T + 1'.093T2 + 01.'019ZT 3

o = Z004'255T - 0':.426T - 0'.'0416T 3  (A-3)

where T is measured in tropical centuries of 36524.Z1988 ephemeris days from the epoch 1950.0

(J.E.D. 2433282.423) to the instant of interest. Then the precession matrix at this instant is

given by 3 8

73

~-- 7



P = coso cose cosz - sino sinz

P 12 = - sino 0cose 0cosz - cos t 0 sin z

P - s in  cos z

P z I C°o cos 0 sin z + sin ° cos z

P2 =z - sint 0 cos e sinz + cost 0o cos z

P Z3 = - sin 0 sin z

' Pt = cos to sinO0

P 3 Z = -sin to sin 0

P 3 3 = cos O (A-4)

The mean obliquity of the ecliptic is

c o0 = 23027'08.126 - 46':845T - O"0059T 2 + 0'.00181T 3  (A-5)

where T is measured in Julian centuries of 36525 ephemeris days from the epoch 1900 January

0.5 E.T. = J.E.D. 2415020.0 to theinstant of interest. Let A0 and Ae be the nutations in longitude

and obliquity, respectively, as given by the series in Ref. 40. The true obliquity of the ecliptic

is then

C = C + AC (A-6)

Pinally, the nutation matrix is given by 4 1

N N N 4 -3 1COE -0o, sine

N = N2 N22 N23 Lo cosE 4 -. (A-7)

N31 N32 N33 A0 sine. Ae
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APPENDX B

ROTATION AND PHYSICAL LIBRATION OF THE MOON

423Let (yl, y , y ) be the coordinate system with origin at the center of mass of the Moon whose3
coordinate axes point along the principal axes of inertia of the Moon. The y -axis points along

the axis of rotation of the Moon, while the y -axis always points in the general direction of the

Earth, ',he period of rotation of the Moon about its center of mass being the same as its orbital2 4

period. The y -axis completes the right-hand system, so that the (y , y ) plane is the plane of

the Moon's equator. In this coordinate system, the second harmonic of the gravitational potential

of the Moon has the form (111-70).
423Let (u 1

, u2
, u ) be the coordinate system with origin at the center of mass of the Moor re-

ferred to the mean equinox and ecliptic of date, and suppose that . is the longitude of the de-

scending node of the lunar equator on the ecliptic of date measured from the mean equinox of

date, that 9 is the inclination of the lunar equator on the ecliptic of date, and that q' is the angu-
14 2 3lar distance of the positive part of the y -axis of the coordinate system (y , y , y ) from the

descending node of the lunar equator. Then (11-4) and (11-2), with 9 = €, i = -e and W = 0, imply

that

3

yJ =ZU.u

j , 2, 3 (B-I)
3

Zi U I.y2

j = 4 J

where

U -= cos€ cosq - sine sin( cose

U42 z sine cosqip + cos€ sin( cose

U 13 = - sin p sin e

U2 4 = - cos sinq - sin cosq( cose

U22 z - sin sinp + cos 0 cosqp cos e

U2 3 = - cosp sin E

U3  - sine sine

U2 =cos 0 sin 0

U33 -cos 0 (B-2)

Let (x , x , x ) be the coordinate system with origin at the center of mass of the Moon re-

ferred to the mean equinox and equator (of the Earth) of date. Let E be the mean inclinaticn

of the ecliptic as given in (A-5). Then we can write4 2
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3

1=1

j = 1, 2, 3 (B-3)
3

xi = Vj uq

where

"Vt Vt Vt3 "
44 41V2 4 3 1 0 0

V2 1 VZz V = 0 Cos E°  sinE (B-4)23 o o

V31 V32 V33 0 -sine0 CosE °

Combining (B-1) and (B-3), we see that

3

Y, = W ji2X12=42

j = 4, 2, 3 (B-5)
3

xi = V Wljyl

where

3

W = , UjkVk , j, I = 1, 2, 3 (B-6)

k= 4

so that, by (B-4), we have

Wjz = j Cos o - U j 3 sin E j =, Z, 3 (B-7)

Wj3 = j2 sin c° + Uj3 Cos

4 2 3Let (X , X , X3 ) be the coordinate system with origin at the center of mass of the Moon re-

ferred to the mean equinox and equator (of the Earth) of 1950.0, the reference system in which

we are going to integrate the equations of motion. Then we have

3

xJ = p Py X2

j = 4, ,3 (B-8)
3

Xj = z Pijx f
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where (P y is the precession matrix of (A-4). Combining (B-6) and (B-8), we have

3

yJ-- BjX'
i=14

j =, 2, 3 (B-9)
3

X3 =  B, Bjy I

i=14

where

3

BjY=Z WjkPkI , j, I= 4, 2, 3 (B-10)

k= I

This is the matrix B which appears in (111-75) and (111-79).

Let ( be the mean longitude of the Moon, measured in the ecliptic from the mean equinox

of date to the mean ascending node of the lunar orbit and then along the orbit. Let Q2 be the

longitude of the mean ascending node of the lunar orbit on the ecliptic measured from the mean

equinox of date. Finally, let I be the inclination of the mean lunar equator to the ecliptic. Then

the angles i, 0, qp of formulas (B-2) are 4 3

= + U

I = + p

= 4800 + ((S -) + (7--u) (B-11)

where a, p and T are the physical librations in node, inclination and longitude, respectively.

We now determine the quantities on the right side of (B-11). First, the inclination of the

mean lunar equator on the ecliptic is 4 4 ' 4 5

I = V°32'20 '' = 1* 53889

= 0.0268587 radian (B-12)

Next, according to Ref. ,6, we have

Q = 259? 183275 - 0? 0529539ZZZd

+ 10557 X 10-12d 2 + 5.0 x 1-20d3

- = 11!250889 + 13. Z293504490d

-20407 X d0-12d - V.I x 0-0 d3  (B-13)

where d is the number of days that have elapsed from J.E.D. 2415020.0. Finally, the physical
' 47

libration of the Moon is

T =- 12'.9 sinI - 0'.3 sin21 + 65'.2 s; n '

+ 9'.7 sin(ZF - 21) + I':4 sin(ZF- 2D) + Z'.5 sin(D- 1)

-0'.6 sin(ZD- 21 + f') - 7.3 sin(ZD- 2)
- 31.0 sin (21) - 1) - 0".4 sin 21) + 7".6 sin Q2 (B -14)
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P

p =-106" cos f+ 35" cos(ZF- 1)-1" cosZF

- 3" cos (ZF- ZD) - 2" cos (ZD- I) ; (B-15)

I(T- 9) = .08" sinI- 35" sin(2F- I) + 11" sin2F

+ 3" sin (ZF - 2D) + 2" sin (ZD - 1) (B-16)

" }where I is given by (B-iZ) measured in radians, where we have taken the parameter f in Ref. 47

to be f = 0.73, and where the arguments I, V, F and D are given in Ref. 40 as functions of time.

The relations between the arguments 1, 1', F and D, and the arguments g, g', w and w' in Ref. 47

are given by 4 8

e=g g=-

(B-17)D=g'-g'+ w-w' wJF- 2
F=g+ w w' F -D -
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APPENDIX C

ORIENTATION OF THE SUN

According to Ref. 49, we have

Inclination of solar equator to ecliptic Is = 7 ° 151

Longitude of ascending node of solar} (C-I)

equator on ecliptic s (t) = 730401 + 50'.25t

where t is the time in years from 1850. Thus, in 1950.0, the longitude of the ascending node

of the solar equator on the ecliptic was

Q = 7503! 75 = 750 0625 (C-2)
5

Now the rate of the precession of the equinox backward along the ecliptic is 50".25 per year. Since

formulas (C-1) were derived from observations, we can conclude that no precession of the solar

equator along the ecliptic has been observed. If the Sun had an equatorial bulge, such a precession

would arise from the gravitational action of the planets. Thus, the fact that no precession of

the solar equator has been observed puts an upper limit on the possible magnitude of the second

harmonic of the Sun's gravitational potential. However, the planetary torques acting on such a

solar equatorial bulge would be so small that this upper limit is not much of a restriction.
1 2 3

Let (x , x , x ) be the coordinate system with origin at the center of mass of the Sun whose
3 1

x -axis points toward the north pole of the Sun, whose x -axis .s the intersection of the equator

of the Sun and the mean ecliptic of 1950.0, and whose x2-axis completes the right-hand system.

Let (u , u , u ) be the coordinate system uith origin at the center of mass of the Sun referred

to the mean equinox and ecliptic of 1950.0. Then the results of Sec. II-A imply that

4 1 u2
x = u cos2 s +u sin Rs

x =-u sing cosl +u 2 cos 9 cosl +u 3 sinlS S S S S

3 1 sin I s  u2 sin Is + u 3 Cos I (C-3)x = u sin 5  sil - cos 5  sin 5 + cs .(C

1 2 3
Let (X , X , X ) be the coordinate system with origin at the center of mass of the Sun referred

to the mean equinox and equator of 1950.0. The relation between the (u , u , u ) and (X1, X2, X

coordinate systems is given by (B- 3), with co = i being the mean inclination of the ecliptic in

1950.0. Combining (C-3) and (B-3), we see that

x X I Cos vr X2 sinn cos 7+ X3 sin 2 sin

x = sinlQs cosI s + X (cosSR5 cosI s cos? -sinI s sin 7)

+ X 3(cos Qs cosI s sin? + sinI s cos?)

x 3= X sin 2s sinI s-X (cos 2 s sin Is cos + cosIs sin )

+ X 3(-cos g s sinI s sin T + cos Is cos F) (C-4)

79

V



Finally, comparing (111-47) and (C-4), we see that the quantities C3 k (k = 1, 2, 3) appearing

in (111-50) are
C31 = sinS s sin Is

C3 2 = - c°s sinI cos'-cosI s sin7

C3 3 = - cos Ss sinIs sin? + cosI s cosT (C-5)
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