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The convex duality theory as developed by Charnes-Cooper-Kortanek 
which is valid for non-differentiable quasi-concave functions is applied to 
derive a gradient inequality for a non-differentiable function involving a 
symmetric quadratic form with positivity required only on a given convex 
polyhedral cone,  generalizing a theorem of Edmund Eisenberg.   No assump- 
tion is needed either that the primal problem attain its extremal value,  since 
the CCK duality theory includes this possibility.    The theory directly applies 
to the non-homogeneous problem where now the given cone is replaced by the 
intersection of a finite number of half spaces. 

If  f(x)   is a convex differentiate function over  R   and A is a real 

T mxn matrix, then the gradient inequality   (x-x ) f    ^0   whenever   Ax SO 
o 

holds if and only if x   minimizes f(x) over X = {x|Ax ^ 0} .    This inequality 

has a Farkas-Minkowski equivalent which follows directly from the Farkas- 

Minkowski lemma.    This dual e Aiivalent is exactly the statement of convex 

duality as developed by Charnes-Cooper-Kortanek—  which is also valid for 

non-differentiable convex functions.    It is this statement of convex duality 

2/ 3/ that E. Eisenberg —  and S. M. Sinha —    developed in an elegant manner for 

T T      ~ the important special case,   f(x) = a x + (x Cx)2 . 

U    See [5], pp. 605-608. 

2/    See[l0j. 

_3/    See 19J.    This development parallels the methods of Eisenberg's earlier 
article,  "Supports of a Convex Function," Bulletin of the AMS,  Vol. 68, 
No. 3, May 1962, pp. 192-195, to prove a dual theorem for a quadratic 

<J)(x) =aTx +  S (xTC.x)1    , 
i=l 1 

where  C. are as above, 
i 
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Part of their concern (e. g., Sinha) has been that one cannot directly apply 

the usual convex programming methods to the problem. 

T T        I 
min  a x + (x Cx)2       with  Ax ^ b ,   and x 2 0 

T       i 

because of non-differentiability of   (x Cx)2 .     However,   this type of non- 

differentiability can be overcome, as well as that of the more general 

i T   i   i 

non-differentiate constraints   A x + (x B x)2^ b , by a simple transformation 

and the introduction of "spacing" variables.      This device of Charnes and 

Cooper may be found, for example,  in Charnes-Cooper's "Deterministic 

Equivalents for Optimizing and Satisficing under Chance Constraints," 

Operations Research,  Vol. 11,  No- 1, pp. 18-39, January-February 1963, 

(which was circulated as an ONR report in 1960-61) or in the Charnes-Cooper- 

Thompson paper,  "Characterizations by Chance-Constrained Programming" 

at the Symposium of Mathematical Programming, June 1962, whose proceed- 

ings were published as Recent Advances in Mathematical Programming, 

R. L. Graves and P. Wolfe, editors. 

In particular the extended dual equivalent of the "gradient" inequality 

for the non-differentiable symmetric function,   f(x),  of Eisenberg will now be 

directly derived from the CCK duality theory,  in a manner which generalizes 

Eisenberg's theorem. — 

Theorem     Assume that   f(x) = a x + (x Cx)2 ^ 0   whenever 

T 
x€ X =  {x|Ax ^ 0} , where   C   is symmetric and   x Cx ^ 0   on   X. 

Then there exist   IT ^ 0   and   z   such that 

(i)    Az 2= 0 

(ii)    TrTA + aT+ zTC = 0    and    zTCz ^ 1. 

1/    See E.  Eisenberg,   [l0], Theorem 3; onr theorem, however,  is a _» w T T    2 
generalization since we do not require   x Cx ^ (a  x)   . 



Proof      Consider the problem: 

(I) 

min T ax + t 

ject to -Ax               ^ 0 

-xTCx + t2 ^ 0 

t    2 0 

Assume for the moment that the constraint set is convex, which would be the 

T 2 case, for example, if   -x Cx + t    were quasi-concave.    It should be empha- 

sized that in convex duality theory,  concave constraint functions are not needed 

per se, but only that the constraint set which they determine be convex. 

Generalizations to quasi-concave constraint functions were developed by 

Arrow-Hurwicz-Uzawa and by Arrow-Enthoven. — 

T 2 In our formulation the set determined by   -x Cx + t   ^0   alone is not 

convex.    However, the additional inequality  t S 0   chooses one nappe of the 

elliptic hyperboloid determined by the quadratic inequality, thus defining a 

convex set whose differentiable support system is now determined by usual 

processes of differentiation.    Observe that the infimum exists, and in fact 

a minimum value of zero is actually attained.    Introducing this support system 

brings problem (I) into the following equivalent inequality form. 

(I) 

T mm ax + t 

subject to       -Ax 2:  0 

xT(-Cx ) + t ^ 0    for all x    with   xTCx = 1,  -Ax   ^0     -^ or a a      a a 
t ^ 0 

1/    See [l] and [2]. 
T T       ~ 

2/    Since the cone a x + (x Cx)22 0   contains   -Ax S 0 by hypothesis, qne may 
as we have done,   further restrict xa to range over -Äxa^ 0.   If x Cx = 0 
on Ax S 0 , then the ordinary Farkas-Minkowski lemma applies. 
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Lemma 1       The linear inequality system for (I) as presented above completely 

T 2 determines the convex constraint set,   -Ax ^0,-xCx + t   ^0,   t^O. 

T 2 Proof       Over   xc X   and   t 2: 0 , the inequality   -x Cx + t   ^0   determines 

T 2 a convex set, and therefore for any   (x , t )   with  x   Cx   = t      and non- 7      a   a a     a     a 

vanishing gradient,  (-2Cx , 2t ) £ 0   ,    it follows that 

X
T
(-CX )+«^ o. y a        a 

Therefore, if   (x, t)   is feasible for problem (I),  it satisfies the system 

xT(-Cx ) + t s 0   for all x    with  xTCx    = 1 a a a     a 

t 2: 0  . 

T 2 Conversely,  if   (x, t)   satisfies this system and   -Ax ^ 0 , then   -x Cx + t   ^ 0 ; 

T T 
for in the trivial case of  x Cx = 0 ,   we are done.   In the case of  x Cx ^ 0, 

x T set   x   =—= r   so that  x   Cx  = 1  and   -Ax  ^ 0 , and therefore   x    is a 
01    (xTCx)* a     a a 

member of our indexing set.     Therefore, 

xTf   "Cx  i)    + t ^ 0 => t ^ (xTCx)1 => tZ ^ xTCx . Q. E. D. 
V{xTCx)2/ 

Lemma 2       The linear inequality system for (I) is a Farkas-Minkowski 

system. 

Proof       Since problem (I) has finite optima it suffices to consider bounded 

coefficients because it is only these which the differential system need 

encompass,  i.e. , it suffices to consider a compact index set, I,  contained 

T 
in   {x   |x   Cx   = 1 , Ax   ^ 0} .    Therefore the possibly infinite differential 

!_/     Compare [2], p. 788, where the property of quasi-concavity of the 
constraint functions,  gJ ,  is used to establish this fact.    They point out 
that for this purpose it suffices that the constraint set be convex. 
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subsystem has interior points.    We now distinguish two cases on the remaining 

finite subsystem,    -Ax 2 0 . 

Case 1 There exists   x    suchthat   -Ax   >0.    It then follows that (x , t ) ————— o o o   o 

is an interior point for the entire system for   t    sufficiently large.    Thus, we 

have a canonically closed Haar system and therefore a Farkas-Minkowski 

system. 

Case 2 The system   Ax 5 0  has no interior points, i. e., X = {xlAx = 0} 

and X is an   (n-r) flat.  1 ^ r ^ m .   In this case we may choose r  linearly 

independent equations from this subsystem which also determine X  ,  say 

A.x^-f A-x,5 0 , where A,  is   rxr   and nonsingular and A- is rx(n-r) . 

Therefore, problem (I) becomes 

T T mm    a, x, + a-x- + t 

subject to    A.x,  + A-x« = 0 

xJc-C.x )+ xJ(-C,xJ + t ^ 0    ,     x   € I 1        1 or        2        2   or or 

where   C,  is   rxn,C2if (n-r)xn  and 

t^ 0 

C, '1 
C = C . 

'2. 

To prove the Farkas-Minkowski property for the given system we first 

reduce variables via  x, = -A, A2x2 ,—    to attain: 

min    (a- - a. A, A2)x- + t 
T T    -1 T 

subject to      x, (-C-x  + A, (A   )   Cx )+ t £ 0 ,   x e I c       c, ot       c la a 
ts 0 

iy    See [l2] for a general discussion and proof of a similar technique for 
resolving duality gaps for infinite linear inequality systems which do not 
have interior points. 
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Since the original system is compact, the reduced system also is and, in 

addition, contains no trivial inequalities. 

Clearly the linear inequality system of (1 ) has interior points. 

Therefore, it is a Haar system and the semi-infinite duality theorem applies 

to (1 ) and its dual (II ): 

(ur) 

max     2 O'X + Ofi 
a       « 

subject to      S(-xTC^+X^TA^AJX = aJ- a^A'^A. 
Q      a   Z      all    2a 2       11«: 

SX + u = 1 a a  w 

a r 

Therefore, let (xi,t* ; X.*, |JL*)  be a dual optimal solution.    In order to go from 

T T   T    -1 "^ 
the reduced system (I  ) to the original system (I), simply set x"!?  =-x| A-(A,   ) 

and  w* = a, A"!  + Sx   C, A'  \* .    Therefore   (xf,xS|,t* ; <*>*, X.*, n*)   is a dual iiaiia i     c 

optimal solution for  (I) as we now easily check.    First, the dual problem to 

(I) is of course: 

(ID 

max   wT.0 + S 0« \ +0.^ 
<* a 

T 
subject to       JA, + S (-xTC1

T) X. s: al 
i     a       a   i     a 

wTA2+5(-XJC2^a =a2 
r x. + u  = i a    a r 

\, |A i 0 . 
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T To check dual feasibility for (II), observe first that the expression for   a,    is 

T verified directly by substitution for OJ*    and \*.    The required expression 

T T for a. is obtained by substituting for w*   into the first constraint of (II ), i.e., 

a^a^Az + f(-xJcJ+xJcTA^Xj^^-rxJcJx*   . 

Finally the equality of the (I) - (II) functionals follows directly from the 

equality of the (I )-(II  ) functionals.    Therefore the proof of Lerama 2 is 

complete.    Thus,  because of Lemma 2, there is no loss of generality if we 

assume that Ax ^ 0   has interior points; a Farkas-Minkowski system is 

always attained, and therefore the semi-infinite duality theory applies to the 

dual problems (I) and (II).   For future reference in the proof of our theorem, 

we rewrite problem (II) in its original form. 

(ID 

max   w «0 +2 0'\ + u • 0 
a       « 

subject to  -w A +  S(-x   C)\ = a 
a      o        at 

2X , a  or + |JL = 1 

T    T T where w ,\ ,|x 2 0   and \   have only finitely many non-zero components. 

Now the minimum of problem (I) is assumed at  x* = 0 , t* = 0, and 

possibly at other points with   t* / 0 .   Assume,  in general, that   (x^.t*)   is 

an optimal solution to (I).   A dual optimal solution exists by the extended dual 

theorem, say,   (w    ,X     , fi ).   Now since   OtX  and  S \   + n* = 1,  if follows 
a   a 

that 

z = Sx*X* + 0-|i*€ X       (i.e., feasible)   since all 
a o  a 

x^'s are feasible. a 
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Therefore,  (-Sx* X.* )TCxp+1* ^ 0 for all x.with xF C*.Q= 1,  -A::. *■ 0. 

In particular,    \* ^ \*(Zx*X*)    Cx*  , and summing we get 

t* ^ z:\*t*2 (rx*\*)Tc{z:x*x*x ,  i.e., or a   a oi  a) 

zT Cz S t* 

This inequality is with respect to any optimal solution to problem (I),  (x*,t*). 

Any non-degenerate optimal solution,  i.e.,   x*  Cx* 4 0   yields an equivalent 

one with  t    =1,   namely,   a —r* r +1 = 0.      Thus, the inequality 
(x*1 Cx*)^ 

T becomes   z  Cz ^ 1 ,   which of course already includes the case of degenerate 

solutions. 

Therefore, the   z   that occurs in the optimal dual solution is exactly 

the one required of the theorem, i. e. , 

zTCz ^ 1 

aT + zTC + wTA - 0      and     Az ^ 0 . 

To complete the proof of the theorem we consider the general case 

T 2 where the constraint set Ax ^ 0 ,   -x Cx + t   £ 0 , t £ 0   may not be convex if 

T all that we require of  C   is that it be symmetric and  x   Cx £ 0   on  Ax ^ 0 . 
2 

For example, the set given by:   t   -XjX-^0,   t^O, and   x.,x2 ^ 0   is not 

convex.    However, we may still apply our duality theory. 

Consider the partial support system given by 

-Ax        ^ 0 

xT{-Cx ) + t ^ 0    for   x €l , a a 

t ^ 0 
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where  I is defined as follows: 

I = {x   lxTCx   =1 ,   Ax   S 0} n{xll(xll ^k} or    or       or a 

T 
for some fixed (large) k > 0 .   Thus, I   is a compact set in R    .    Since   x Cx 

is continuous, it is bounded on I, and the image is compact.    Further,  the 

infinite subsystem has interior points, as seen by simply taking some 

T 
t  >  max lx   Cx  I .    Therefore by Lemma 2  we again obtain a Farkas- 

1001 

Minkowski system. 

To show that this minimization problem is bounded below,  we need 

only show that the dual problem is feasible.    Following Eisenberg, — we now 

show that the equality system, 

TrT(-A) + zT(-C) = aT 

Az + y=0;TT#y^0 

is consistent.    By the finite Farkas-Minkowski theorem this is equivalent to 

T showing that a u ^ 0   whenever   -Au ^ 0 

-Cu + ATv = 0 

v^ 0   . 

T To this end, assume (u, v)   satisfies the above system.    Claim   u  Cu ^ 0 ; 

T T T T T for u   Cu = u A v = v Au , and   v Au s 0   since Au ^ 0  and v ^ 0 .    On the other 

hand,   Au ^ 0 => a Cu S 0; hence u Cu = 0 .   Thus Au ^ 0 => aFyx + ivFcvi)1* 0 , 

T 
which finally implies   a u ^ 0 .    Observe that we have used all the assumptions 

of the theorem. 

iy     See E. Eisenberg [lO], Appendix B, where a similar argument is presented 
for dual feasibility. 
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Thusi the dual problem is feasible,  and by taking k  large enough we 

can include enough points in the index set  I  so that the partial support system 

contains the proper coefficients which permit dual feasibility.    This completes 

the proof of the theorem as stated. 

In closing, we remark that the general convex duality theory also pro- 

vides analogous results for the related non-homogeneous problem —   where 

now the feasibility region is given by   Ax ^ b.   In this general context, the 

minimum need not be assumed, which is consistent with the Extended Dual 

Theorem.    However,  to avoid this situation in the statement of duality, 

2/ Sinha —   introduces an assumption which requires the existence of a feasible 

T solution (TT, Z)   with   z   Cz < 1   if the dual problem is feasible.    This assumption 

is not necessary for duality theory because the extended dual theorem includes 

3/ the possibility of the primal problem not attaining its extremal value. —    To 

illustrate this phenomenon consider the following example introduced by 

4/ 
Sinha—    and its semi-infinite equivalent. 

(I) 

mm -x2 + t 

subject to     -x. - x_ + t    ^0 

>   2 

t ^  0 

y See [lö],   section III. 

Zl See [9].  p. 15,  for an exact statement of this assumption. 

3y For an example of this situation see [8], p. 215. 

4/ See Sinha,   ibid.,   p. 15. 
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In this example, inf(-X2+ t) = 0 ; for clearly t-x-^ 0 over the constraint 

set, and taking x, = 2, x_ = n, and t = n + 2/n for n = l, 2- . . - , proves the 

assertion. Note that this infimum is not assumed. Introducing supports, 

(I) becomes: 

(I) 

min -x2 + t 

subject to     x, ^2 

■> ->      ll 

x^-x*) + x2(-X2) + t ^ 0   for all (x" x") with (x^^+Cx^)  =1." 

t ^ 0 

The dual is: 

(ID 

max 2w 

Ots. subject to w + Sl-x, )\        =0 

S(-x?)\        =-1 
a      2    a 

S \ + u = 1 
a   a 

where   w, X., JJL ^ 0 . 

/yv /yV j», j- ^« 

Now, taking   x.    =0,x_=l,X.   ^l.fx   =0,w   =0   and remaining 

variables zero, we attain the dual optimum.    Observe that in this example 

the  z of the inhomogeneous counterpart to Theorem 1 is  (0,1),  so that 

T z   Cz = 1 . 

1_/     Observe that for the inhomogeneous problem, one may no longer further 
restrict   x     by  Ax   ^ b  as in the homogeneous case. 
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