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Abstract

Concatenation is a method of building long codes out of shorter ones; it attempts to
meet the problem of decoding complexity by breaking the required computation into
manageable segments. We present theoretical and computational results bearing on the
efficiency and complexity of concatenated codes; the major theoretical results are the
following:

1. Concatenation of an arbitrarily large nu.nber of codes can yield a probability of
error that decreases exponentially with the over-all block length, while the decoding
complexity increases only algebraically; and

2. Concatenation of a finite number of codes yields an error exponent that is infe-
rior to that attainable with a single stage, but is nonzero at all rates helow capacuy.

Computations support these theoretical results, and also give insight into the rela-
tionship between modulation and coding.

This approach illuminates the special power and usefulness of the class of Reed-
Solomoen codes. We give an original presentation of their structure and properties,
from which we derive the properties of all BCH codes; we determine their weight dis-
tribution, and consider in detail the implementation of their decoding algorithm, which
we have extended to correct both erasures and errors and have otherwise improved.
We show that on a particularly suitable channel, RS codes can achieve the performance
specified by the coding theorem.

Finally, we present a generalization of the use of erasures in minimum-distance
decoding, and discuss the appropriate decoding techniques, which constitute an inter-
esting hybrid between decoding and detection.
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I. INTRODUCTION

It is almost twenty years since Shannonl announced the coding theorem. The prom-
ise of that theorem was great: a probability of error exponentially small in the block
length at any information rate below channel capacity. Finding a way of implementing
even moderately long codes, however, proved much more difficult than was imagined at
first. Only recently, in fact, have there been invented codes and decoding methods
powerful enough {o improve communication system performance significantly yet simple
enough to be attractive to build. 2%

The work described here is an approach to the problem of coding and decoding com-
plexity. It is based on the premise that we may not mind using codes from 10 to 100
times longer than the coding theorem proves to be sufficient, if, by so doing, we arrive
at a code that we can iniplement. The idea is basically that used in designing any large
system: breax the system down into subsystems of a size that can be handled, which
can be joined together to perform the functions of the large system. A system so
designed may be suboptimal in comparison with a single system designed all of a piece,
but as long as the nonoptimalities are not crippling, the segmented approach may be the
preferred engineering solution,

1.1 CODING THEOREM FOR DISCRETE MEMOCRYLESS CHANNELS

The coding theorem: is an existence theorem. It applies to many types of channels,
but generally it is similar to the coding theorem for block codes on discrete memoryless
channels, which will now be stated in its most modern form.5

A discrete memoryless channel has I inputs Xss J outputs yj, and a characteristic
transition probability matrix pji = Pr(yj/xi). On each use of the channel, one of the
inputs X, is selected by the transmitter. The conditional probability that the receiver
then observes the output yj is pji; the memorylessness of the channel implies that these
probabilities are the same for each transmission, regardless of what happened on any
other transmission. A code word of length N for such a channel then consists of a
sequence of N symbols, each of which comes from an I-symbol alphabet and denotes one
of the I channel inputs; upon the transmission of such & word, a received word of length
N becomes available to the receiver, where now the received symbols are from a
J-symbol alphabet and correspond to the channel outputs. A block code of length N and

rate R (nats) consists of eNR code words of length N, Clearly eNR < IN; sometimes we
shall use the dimensionless rate r, 0 € r < 1, defined by IrN = eNR or R=r inl,
NR

The problem of the receiver is generally to decide which of the e code words was
sent, given the received word; a wrong choice we call an error, We shall assume that
all code words are equally likely; then the optiinal strategy for the receiver iu principle,
though rarely feasible, is to compute the probability of getting the received word,
given each code word, and to choose that code word for which this probability is great-

est; this strategy is called maximum-likelihood decoding. The coding theorem then
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asserts that there exists a block code of length N and rate R such that with maximum-
likelihood decoding the probability of decoding error is bounded by

Pr(e) < e-NE(R),

where E(R), the error exponent, is characteristic of the channel, and is positive for all

rates less than C, called capacity.
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Fig. 1. E(R) curve for BSC with n =,01,

Figure 1 shows the error exponent for the binary symmetric channel whose cross-
over probability is . 01 — that is, the discrete memoryless channel with transition prob-
ability matrix Py = Pop = 99, Py, = Py =-0L As is typical, this curve has ‘chree5
segments: two convex curves joined by a straight-line segment of slope ~-1. Gallager
has shown that the high-rate curved segment and the straight-line part of the error

exponent are given by
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E(R) = max {E_(P,»)-pR}

O<p=<1
P
where
- J I , 14p
T (P o) = 1/(14p)
mo(P,p) = -In Z z Pipji ) ,
=1 it ]

P being any I-dimensional vector of probabilities Pi; this is called the unexpurgated
error exponent, in deference to the fact that a certain purge of poor code words is

involved in the argument which yields the low-rate curved segment, or expurgated error
exponent. An analogous formula exists for the exponent when the inputs and outputs form
continuous rather than discrete sets. It should be mentioned that a lower bound to Pr(e)

is known which shows that in the range of the high-rate curved segment, this exponent

*
is the true one, in the sense that there is no code which can attain Pr(e) < e_NE (R) for

E*(R) > E(R) and N arbitrarily large.

Thus for any rate less than capacity, the probability of error can be made to
decrease exponentially with the block length. The deficiencies of the coding theorem are
that it does not specify a particular code that ackieves this performance, nor does it
offer an attractive decoding method. The former deficiency is not grave, since the rel-
atively easily implemented classes of linear codes6 and convolutional code57 contain
members satisfying the coding theorem. It has largely been the decoding problem that
has stymied the application of codes to real systems, and it is this problem which con-

catenation attempts to meet.

1.2 CONCATENATION APPROACH

The idea behind concatenated codes is simple. Suppose we set up a coder and
decoder for some channel; then the coder-channel-decoder chain cati be considered from
the outside as a superchannel with exp NR inputs (the code words), exp NR outputs (the
decoder's guesses), and a transition probability matrix characterized by a high proba-
bility of getiing the output corresponding to the correct input. If the original channel is
memoryless, the superchannel must be also, if the code is not changed from block to
block. It is now reasonable to think of designing a code for the superchannel of length n,
dimensionless rate r, and with symbols from an eNR-symbol alphabet, This done,
we can abandon the fiction of the superchannel, and observe that we have created a code
for the original channel of length nN, with (eNR)Nr code words, and therefore rate rR
(nats), These ideas are illustrated in Fig. 2, where the two codes and their associated

coders and decoders are labelled inner and outer, respectively.

By concatenating codes, we can achieve very long codes, capable of being decoded
by two decoders suited to much shorter codes. We thus realize considerable savings in
complexity, but at some sacrifice in performance. In Section V we shall find that this
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Fig. 2. Tlustrating concatenation.

sacrifice comes in the magnitude of the attainable error exponent; however, we find that
the attainable probability of error still decreases exponrentially with block length for 211
rates less than capacity.

The outer code will always be one of a class of nonbinary BCH codes called Reed-
Solomon8 codes, first because these are the cnly general nonbinary codes known, and
second, because they can be implemented relatively easily, both for coding and for
decoding. But furthermore, we discover in Section V that under certain convenient
suppositions about the superchannel, these codes are capable of matching the per-
formance of the coding theorem. Because of their remarkabie suitability for ocur
application, we devote considerable time in Section III to development of their struc-
ture and properiies, and in Section IV to the detailed exposition of their decoding
algorithm,

1.3 MODULATION

The functions of any data terminal are commonly performed by a concatenation of
devices; for example, a transmitting station might consist of an analog-to-digital con-
verter, a coder, a modulator, and an antenna. Coding theory is normally concerned
only with the coding stage, which typically accepts a stream of bits and delivers to the
modulator a coded stream of symbols. Up to this point, only the efficient design of this
stage has been considered, and in the sequel this concentration will largely continue,
since this problem is most susceptible to analytical treatment.

By a raw channel, we mean whatever of the physical channel and associated terminal
equipment are beyond our design control. It may happen that the channel already exists
in such a form, say, with a certain kind of repeater, that it must be fed binary symbols,
and in this case the raw channel is discrete. Sometimes, however, we have more free-
dom to choose the types of signals, the amount of bandwidth, or the amount of diversity
to be used, and we must properly consider these questions together with coding to arrive
at the most effective and economical signal design.

When we are thus free to select some parameters of the channel, the channel con-
templated by algebraic coding theory, which, for one thing, has a fixed number of inputs
and outputs, is no longer a useful model. A more general approach to communication

T S A . o B

B A A R o e 20

RPN I N




B ]

H
b 5o 2STTTE L e Cmames £ e e T .- R LT

theory, usually described under the headings modulation theory, signal design, and
detection theory, is then appropriate. Few general theoretical results are obtainable

in these disciplines, which must largely be content with analyzing the performance of
various interesting systems. Section VI reports the results of a computational search
for coding schemes meeting certain standards of performance, where both discrete raw
channels and channels permitting some choice of modulation are considered. This gives
considerable insight into the relationship between modulation and coding. In particular
it is shown that nonbinary modulation with relatively simple codes can be strikingly
superior either to complicated modulation with no coding, or to binary modulation with
complicated binary codes.

1.4 CHANNELS WITH MEMORY

Another reason for the infrequent use of codes in real communication systems has
been that real channels are usually not memofyless. Typically, a channel will have long
periods in which it is good, causing only scattered random errors, separated by short
bad periods or bursts of noise. Statistical fluctuations having such an appearance will
be observed even on a memoryless channel; the requirement of long codes imposed by
the coding theorem may be interpreted as insuring that the channel be used for enough
transmissions that the probability of a statistical fluctuation bad enough to cause an
error is very small indeed. The coding theorem can be extended to channels with mem-
ory, but now the block lengths must generally be very much longer, so that the channel
has time to run through all its tricks in a block length.

If a return channel from the receiver to the transmitter is available, it may be used
to adapt the coding scheme at the transmitter to the type of noise currently being
observed at the receiver, or to request retransmission of blocks which the receiver
9 Without such a feedback channel, if the loss of information during
bursts is unacceptable, some variant of a technique called interlacing is usually envi-

sioned.lo In interlacing, the coder codes n blocks of length N at once, and then trans-
mits the n first symbols, the n second symbols, and so forth through the n NJ‘h
symbols., At the receiver the blocks are unscrambled and decoded individually. It is
clear that a burst of length b < n can affect no more than one symbol in any block, so

that if the memory time of the channel is of the order of n or less the received block

cannot decode.

of uN symbols will generally be decodable.

Concatenation obviously shares the burst-resistant properties of interlacing when
the memory time of the channel is of the order of the inner code block length or less,
for a burst then will usually affect no more than one or two symbols in the outer code,
which will generally be quite correctable. Because of the difficulty of constructing ade-
quate models of real channels with memory, it is difficult to pursue analysis of the
burst resistance of concatenated codes, but it may be anticipated that this feature will
prove useful in real applications.
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1.5 CONCATENATING CONVOLUTIONAL CODES

We shall consider oaly block codes nenceforth. The principles of conczienation are
clearly applicable to any type of code. For example, a simple cenvolutional code with
threshold decoding is capable of correcting scattered random errors, bri when charmel
errors are too tightly burched tte decoder is thrown off stride for awhile, and until it
becomes resynchronized causes a great many decoding errors. From the outside, such
a channel appears to be an ideal bursty channel, ir whichk errors donot occur at all
except in the weli-defined bursts. Very eiiicient codes are kaown for such chanreels,
and could be used as outer ccdes. The reader will no doubt be able to conceive of other

applications.

3.6 OUTLINE

e

This report consists of € largely self-sufficient sections, with two a2ppendices. We
anticipate that many readers will find that the material is arranged roughly in inverse
crder of interest. Therefore, we shall outiine the substance of each sectior and the con-
nections between them.

Section M begirs with an elaborate presertation of the coacepts of minimnum-distance
decoding, which has two purposes: to acquaint the reader with the substance and utility
of these concepts, and to lay the groundword for a generalization of the use of erasures
in minimum-distance decoding. Though this generalizatior is an interesting hybrid
between the techniques of detection and of decoding, it is not used subsequently.

Section Iil is an attempt to provide a fast, direct route for the reader of little back-
ground to an understanding of BCH codes and their properties. Emphasis is placed on
tke important nonbinary Reed-Solomon codes. Though ine presentation is novel, the only
new resulis concern the weight distribution of RS ccdes and the implementatior: of much
shortened RS codes.

Section IV reports an extension of the Gorenstein-Zierler error-correcting algorithm
for ECH codes so that both ¢ rasures and errors can be simuitaneously corrected. Alsg,
the final step in the GZ algorithm is substantially simplified. A close analysis of the
complexity of implementing this algorithm with a computer concludes this section, and
only the results of this analysis are used in the last two sections. Appendix A contains
variants on this decoding algorithm of more restricted interest.

Section V contains our major theoreticai . esults on the efficiency and complexity of
concatenated codes, and Section VI reports the results of a computational program evai-
uating the performance «f concatenated codes under a variety of specifications. The
reader interested chiefly in the theoretical and practical properties of these codes will
turn his attention first to Sections V and VI. Appendix B develops the formulas used in
the computational program of Section VI.
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O. MINIMUM-DISTANCE DECODING

We introduce here the concepte of distarnce and minimum-distance codes, and discuss
how these concepts simplify decoding. We describe the use of erasures, and of 2 new
generalization of erasures. Using the Chernoff bound, we discover the parameters of
these schemes which maximize the probability of correct decoding; using the Gilbert
bound, we compute the exponest of this probability for each of three minimum-distance
decoding schemes over a few simple channels.

2.1 ERRORS-ONLY DECCDING

In Section I we described how an inner code of length N and rate R could be concat-
enated with an outer code of length n and dimensionless rate r to yield a code of over-
all length n ard rate rR for some raw channel. Suppose now one of the enNrR WOrGs
ol this code is selected at random and transmitted — now do we decode what is received?

The optimum decoding rule remains what it always is when inputs are equaily likely:
the maximum-likelihood decoding rule. In this case, given a received saquence T of
iength N, the rule would be o compute Pr(f I?) ior each of the TR (de words T.

The whole point of concatenation, however, is to break the decodirg process into
manageable segments, at the price of suboptimality. The basic simplification made pos-
sible oy the concatenated structure dof the code is that the inner decoder can cecodie
(make a hard decision on) each received N-symbol sequence independently. In doing so,
it is in effect discarding all information about the received N-symbol block except which
of the ebrR inner code words was most likely, given that block. This preliminary proc-
essing enormously simplifies the task of the cuter decoder, which is to make 2 final
choice of one of the enNrR total code words.

Let g= eNR. When the inner decoder makes a hard decision, the outer coder and
decoder see effectively a2 g-input, g-output superchannel. We assume that the raw chan-
nel and thus the superchannel are memoryless. By a symbol error we shall mean the
event in which any cutput but the one corresponding to the input actually transmitted is
received. Normally, the probzbility of symbol error is low; it is then ccnvenient to
assume that all incorrect transmissicns are equally probabie — that is, to assume that

the transition probability matrix of the superchannel is

P .y
- 1+]}
Ja-1
pji_ (1)
1-p, i=j

where p is the probabiiity of decoding error in the inner decoder, hence of symbol error
in the superchannel. We call a channel with such a transition probability matrix an ideal
superchannel with g inputs and probability of error p.

Recall that the maximum-likelihood rule, given T, is to choose the input

-

sequence f{ for which the probability of receiving ?, given -fh, is greatest. When
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the channel is memoryless,
a n
Pr(rl?) = ’Hl Pr(r, Ex‘i).
1= -

But since log x is 2 monoionic function o x, this is equivalent to marinizing

n
n
log T1 Prir;lt) = Z log Prix i) (2)
i=1 ]
1=

Now for an idezl superchannel, substituting Eqgs. 1 in Eq. 2, we want {o maximize

n
z a'(r,,1.), {3)
i=1
where
1cg (i-p), r; = fi
a' (ri,fi) =

- b
l‘g (q-l), ri#fi.

Define the Hamming weiglt a(ri, fi) by

a(r.,f.)= 4)
T2 1, r.# ii.

Since

P
a'(r;,f.) = log (1-p) # [log m]a(ri.fi;.

maximizing Eq. 3 is equivalent to m: ~imizing

o n
n log (1-p) + {log m Z a(z fi‘n.

i=1
Under the assumption p/(q-1) < (1-p), this is equivalent to minimizing

n

ag@EDH= ) a1 (5)

i=1

dH(;'?) is called the Hamming dis’cancell between T and ?, and is simply the number of

places in which they differ. For an ideal superchannel, the maximum-likelihood
decoding rule is therefore to choose that code word which is closest to the received word
in Hamming distarce.




Although this distance has beea defined between a received word and a code word,
there is no difiiculty in extending the definition to apply between any two code words. We
then define the minimum distance of z code as the minimum Jamming distance between
any two words in the code.

A code with large minimum distance is desirable on two counts. First, as we shall
now show, it insures that all combinations of less than or egual to 2 certain number t
of symool errors in n vses «f the channel will be correctable. For, suppose T is sent
and t symbol errors occur, so that r; # fi in t places. Then from Eq. 5

D=t ()
Take scme other code word '5. We separate the places into three disjoint sets, such that
rso i .i - &
1€4Sc Hi #gandr =1 (73

e note that the set S o C2n have no more thin t elements. Now the distance between r
and é’,

n
dH(F.E) = Z a(r;, g;)
i=1
= z a(r;, g;) + Z a(r;,g;) + Z a(r;, g;)s (8)
ie S0 ie Sc ie€ Se
can be lower-bounded by use of the relations
a(ri,gi) = a(gi,fi) =0, ic So
a(ri,gi) = a(gi,fi) =1, ie Sc 9

a(ri,gi) 2 a(gi,fi) -1=0, 1ice¢ Se

Here, besides Eqs. 7, we have used a >0 and the fact that for i € Sc’ T # g; Substi-
tuting (9) in (8) yields
4, 8) 24,0 - s | 2d - t. (10)

Here, we have defined lSeI as the number of elements in Se and used the fact that
d.H(g,?) zd if E and T are different words in a code with minimum distance d. By com-
bining {6) and (10) we have proved that

dH(r,f)<dH(r,g) if 2t <d. (11)




¢

In other words, if to is the largest integer such that Zto < d, it is impossible ‘or any
combipation of to or fewer symbol errors to cause the received word to be closer to any
other code word than to the sent word. Therefore no decoding error will occur.
Another virtue of a large minimum distance follows irom reinterpreticg the argu-
ment above. Suppose we hypothesize the transmission of a particular code word; given
the received word, this hypothesis implies the occurrence of a particular sequence of
errors. I this sequence is such that the Hamming distaace criterion of Eq. 11 is sat-
isfied, then we say that the received word is within the minimum distance of that code
word. {This may seem an unnecessarily elaborate way of expressing this concept, but,
as in this whole develorment, we are taking great pains now so that the generzalizations
of the next two sections will foliow easily.) Furthermore, the preceding argument shows
that there can be no more thar one code word within the minimum distance of the
received word. Thereiore, if by some means the decoder generates a code word that
it discovers to be within the minimum distance of the received word, it can without fur-
ther ado announce that word as its maximum-likelihood choice, since it knows that it is
impossible that there be any other code word as close or closer to the received word.
This property is the basis ifor a xmmberlz"ls of clever decoding schemes proposed
recently, and wiil be used in the generalized minimum-distance decoding of section 2. 3.
A final simp:ification that is irequently made is to set the outer decoder to Gecode
only when there is a code word within the minimum distance of the received word. Such
a scheme we call errors-only decoding. There will of course in general be received

words beyond the minimum distance from all code words, and ¢n such words an errors-
only decoder will fail. Normaily, a decoding failure is not distinguished from a decoding
error, although it is detectable while an error is not.

2.2 DELETIONS-AND-ERRORS DECODING

The simplifications of the previous section were bought, we recall, at the price of
denying to the outer decoder ali information about what the inner decoder received except
which of the inner code words was most probable, given that reception. In this and the
iollowing section we investigate techniques of relaying somewhat more information to the
outer decoder, hopefully without greatly complicating its task. These techniques are
generalizations of errors-only decoding, and will be developed in the framework that has
been intrcduced.

We continue to require the inner decoder to make a hard decision about which code
word was sent. We now permit it 10 send along with its guess some indication of how
reliable it considers its guess to be. In the simplest such strategy, the inner decoder
indicates either that its guess is fully reliable or completely unreliable; the latter event
is called a deletion or erasure. The inner decoder normally would delete whenever the

evidence of the received word did not clearly indicate which code word was sent; also,
a decoding failure, which can occur in errors-only decoding, would be treated as a dele-
tion, with some arbitrary word chosen as the guess.

10




In order {o make use of this reliability information in minimum distance decoding,
we define the Elizs weight by

-
0, T, reliabie and r, = fi
P 3

b(r;,i;) =18, r; erased {12)

1, r. reliable and r. # f.
L i i” i

< . - . . - - 16
where P is an arbitrary number between zero and one. Tnen the Elias distance

- A - - - -
between a received word r and 2 code word £ is defined as

. n
dE(r,f) = z b(ri,z‘i). (13)
i=1
Note that Elias distance is not deiined between two code words.

We shall let our decoding rule be to choose that code word which is closest in Elias
distance io the received word. Let us then cuppose that some word T from a code of
rainimum (Hamming) distance d is transmitted, anc¢ in the n transmissions (i) s dele-
tions occur, and (ii) t of the symbols classed as reliable are actually incorrect. Then

dp(r.0) = t + ps. (14)
Take some other code word ‘5. We separate the places into disjoint sets such that
So ¥1i=g

if :. £ . = t. r 3~
SC 1.1 7 gl’ I'l 11, rl eligble

i€ (15)
S d if fi #g, T; deleted

e r . .
kSe if fi * g5 r; # fi’ r; reliable

Note that
sl <+t

and (16)
ISdl < s.

Now the distance beiween T and E can be lower-bounded by the relations
> f.)l= i
b(r;.g;,) >alg,f;}=0, ie€s,

bir,g) = alg, f;) = 1, i€5, -

b(rligl) = a(g!rfl) -1+ ﬁ = ﬁv 1€ Sd
b(ri,gi) ?«a(gi,fi) -1=0, i€ Se

11
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where we have used Egs. 12 and 15, Now

n
d(r.8) = Z 5(r; g;)
i=}

zZ a(gi,fi)+z alg;,f;) + z [a(gi,fi)-Hﬁ]%Z [a(g;. £;)-1]

ieSo ieSc iesd isSe

= d,{.8) - (-p)ls,] - Is,|

>d - [1-B)s ~ 1, (18)

where we have used Eqs. 13, 16, 17 and the fact that the minimum Hamming distance
between two code words is d. From Egs. 14 and 18, we have proved that

(7. 8) > dprf)ift+Ps<d - (1-p)s - ¢ or 2i +s <d. (19)

(The vanishing of f shows why we took it to be arbiirary.) Thus with a decoding rule
based on Elias distance, we are assured of decoding correctly if 2t +s <d, in perfect
analogy to errors-only decoding. When we decode only out to the minimum distance —
that is, when the distance criterion of {19) is apparently satisfied — we call this dele-
tions-and-errors decoding.

That erasures could be used with minimum distance codes in this way has long been
recognized, but few actual decoding schemes have been proposed. One of our chief con-
cerns in Section III will be to develop a deletions-and-errors decoding algorithm for the
important class of BCH codes. There we find that such an algorithm is very little more
complicated than that appropriate to errors-only decoding.

2.3 GENERALIZED MINIMUM-DISTANCE DECODING

A further step in the same direction, not previcusly irvestigated, is to permit the
inner decoder to classify its choice in one of a group of J reliability classes Cj’ 1<j<7,
ratner than just two as previously. We define the generalized weight by

ﬁcj’ r; in class Cj and r, = fi
c(ri,ii) = (20)
B ., r. in class C; and r. # f.
ej i j i™oi
where 0 < ﬁcj < ﬁej < 1. It will develop that only the difference
a. = .-
J Be.’l ﬁCJ

of these weights is important; aj will be called the reliability weight or simply weight
corresponding to class Cj' We have 0 < aj < 1; a large weight corresponds to a class

we consider quite reliable, and a small weight to a class considered unreliable; indead,

12




if ej <e we shall say class C. is less reliable than C!. The case a. = 0 corresponds
to an erasure, a2nd of zzj = 1 to the fully reliable symbols of the preceding section.
Let us now define a generalized distance

n
dG(;._;) = Z olr,, 1), (21)

i=1

-
Again we suppose the transmission of some word { irom a code of minimum distance d,
and the reception of a word in which ncj symbols are received correctly and placed in
class Cj’ and nej are received incorrectly in Cj' Then

3
dg(r. 1) = Z [1Be;ReiBe; (22)
i=1

Take some other code word ?, and define the sets So’ Scj’ and Sej by

4 3 —
So Ti=g
ie<S . iff#g, r.=1, r.inclass C, (23)
cj 17% i P 1 j
LSej if fi # g T; #* fi’ Ty in class Cj
Note that
Is 5l = n;
(24)
ISejI < nej'
Using Egs. 20 and 23, we have
c(ri,gi) Za(gi,fi) = 0, ie So
= - = i 25
c(ri,gi) =alg,f) -1+ ﬁej ﬁej’ ie Scj (25)
c(ri,gi) Za(gi,fi) -14 pcj = Bcj’ ie Sej’

where the second relation depends on r, = fi * g ie€ Sc" Now

3|
n
d(r.g) = Z b(ri,gi)
i=1

icS0 j=1 ieSc. ieSe.

— J —
> ) algpf)+ ) { ), (algp f)=14B ) > (algy £,)~1+8,)
) )

13
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[ SR T N

- -

J
4o 8) = dglf,2) - z [0-B) s ;1 +01-8 s ;1]
=1

J
>d - z [(l—ﬁej)ncj-l-(l—ﬁcj)nej (26)

j=1
Thus, using Egs. 22 and 26, we have proved that

e

i
)

dsER) > d ) o [(1-,4+B 5

cj Cj+(1-BCj+pej)n -]< d,

€]
J

or Z [(1-aj)ncj+(1+aj)nej]<d. (27)

J:

[

Therefore if generalized distance is used as the decocding criterion, no decoding error
will be made whenever ncj and nej are such that the inequality of (27) is satisfied. When
in addition we decode only out to the minimum distance — that is, whenever this inequal-
ity is apparently satisfied ~ we say we are doing generalized minimum-distance decoding.
This generalization is not interesting unless we can exhibit a reasonable decoding
scheme that makes use of this distance criterion. The theorem that appears below shows
that a decoder which can perform deletions-and-errors decoding can be adapted to per-

form generalized minimum-distance decoding.

We imagine that for the purpose of allowing a deletions-and-errors decoder to work
on a received word, we make a temporary assignment of the weight ai = 1 to the set of
reliability classes C. for which j € R, say, and of the weight a:'i = 0 to the remaining
reliability classes Cj’ j € B, say. This means that provisionally all receptions in the
classes Cj’ j € E, are considered to be erased, and all others to be reliable. We then

let the deletions-and-errors decoder attempt to decode the resulting word, which it will
be able to do if (see Eq. 27)

2 Z Do + Z (ncj+nej) <d. (28)
jeR jEE

If it succeeds, it announces some code word which is within the minimum distance
according to the Elias distance criterion of (28). We then take this announced word and
see whether it also satisfies the generalized distance criterion of (27), now with the
original weights aj. If it does, then it is the unique code word within the minimum dis-
tance of the received word, and can therefore be announced as the choice of the outer
decoder.

We are not guaranteed of succeeding with this method for any particular provisional
assignment of the aJ!. The following theorem and its corollary show, however, that a

14




small number of such trials must succeed if the received word is within the minimum
distance according to the criterion of Eq. 27.

Let the classes be ordered according to decreasing reliability, so that aj > a, if
j <k. Define the J-dimensional vector

-
[+

(ai,cz,... ,aJ),

Let the sets R_ consist of all j<a, and E  ofall j2a+1, 0<a<J. Let'E'abethe
J-dimensional vector with ones in the first a places and zeros thereafier, which repre-
sents the provisional assignment of weights corresponding tc R = Ra and E = Ea' The
idea of the following theorem is that @ is inside the convex hull whose extreme points
are the '3;, while the expression cn the left in Eq. 27 is a linear function of @, which
must take on its minimum value over the convex huil at some extreme point — that is, at
one of the provisional assignments -;21'

d
THECREM: If Z [(l-aj)ncj+(1+aj)nej] <d and e > e, for j<k, thereis some

j=1
a.
integer a such that 2 Z nej + Z (ncj+ne:;) < d.
j=1 j=a+l

Proof: Let

J
f(i) = z [(l-aj)ncj+(1+aj)nei]'
i=1

Here, { is clearly a linear function of the J-dimensicnal vector 2. Note that

a Jd
f(a;) =2 Z nej + Z (ncj+nej).
i=1 j=a+l

We prove the theorem by supposing that f(aé) 2d, for all a such that 0 € a <J, and
exhibiting a contradiction. For, let

>
i}
—
!
Q

>
n
A

>
mn
]
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so that the xa can be treated as probabilities. But now

J
.¢;= Z A -E'.
aa
a=0
Therefore
Jd J Jd
fla)=1 z )\aa; = Z kaf(a;) zd Z )xa =d.

a=0 a=0 a=0

Thus 1£ f (::'1) zd, all a, then { (?) =d, in contradiction to the given conditions. There-
fore f (a;) must be less than d for at least one value of a. Q. E.D.

The import of the theorem is that if there is some code word which satisfies the
geaeralized distance criterion of Eq. 27, then there must be some provisional assignment
in which the least reliable classes are erased and the rest are not which will enable a
deletions-and-errors decoder to succeed in finding that code word. But a deletions-and-
errors decoder will succeed only if there are apparently no errors and d - 1 erasures,
or one error and d - 3 erasures, and so forth up to to errors and d ~ ?.to - ] erasures,
where to is the largest integer such that Zto <d- 1. If by a trial we then mean an oper-
ation in which the d — 1 - 2i least reliable symbols are erased, the resulting provisional
word decoded by a deletions-and-errors decoder, and the resulting code word (if the
decoder finds one) checked by Eq. 27, then we Lave the following corollary.

COROLLARY: to + 1 < (d+1)/2 trials suffice to decode any received word that is
within the minimnm distance by the generalized distance criterion of (27), regardless
of how many reliability classes there are.

The maximum number of trials is then proportional only to d. Furthermore, many
of the trials -~ perhaps all — may succeed, so that the average number of trials may be
appreciably less than the maximum.

2.4 PERFORMANCE OF MINIMUM-DISTANCE DECODING SCHEMES

Our primary objective now is to develop exponentially tight bounds on the probability
of error achievable with the three types of minimum-distance decoding discussed above,
and with these bounds to compare the performance of the three schemes.

In the course of optimizing these bounds, however, we shall discover how best to
assign the weights a. to the different reliability classes. Since the complexity of the
deccder is unaffected by the number of classes which we recognize, we shall let each
distinguishable N-symkbol sequence of outputs yj form a separate reliability class, and
let our analysis tell us how to group them. Under the assumption, as usual, that all
code words are equally likely, the task of the inner decoder is to assign to the received
yj an xJ. and an aj, where xJ. is the code word x for which I:’r(yj |x) is greatest, and a,
is the reliability weight that we shall determine.
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a. The Chernoff Bound

We shall require a bound on the probability that a sum of independent, identically
distributed random variables exceeds a certain quantity.

The bounding technique that we use is that of Chernoff 17 ; the cerivation which follows
is due to Gallager.18 This bound ii known'?

=

-nE

tc be exponentially tight, in the sense that

no bound of the form Pr(e) < e , where E=e= is greaier than the Chernoff bound expo-

nent, can hold for arbitrarily large n.

Let Yy 1 €£i<n, be n independent, identically distributed random variables, each
with moment-generating function

gls)=e> = Z Pr(y) %7,

and semi-invariant moment-generating function

p(s) =1n g(s).

Define Ymax to be the largest value that y can assume, and
y= z yPr(y)

Let Y be the sum of the ¥y and let Pr(Y=nb) be the probability that Y exceeds né, where

Ymax =8 >y. Then

Pr(Y=né) = Z Pr(yl,yz,. oo ,yn) f(yl,yz,. .o ,yn),

where

£y )1 Ygreeer¥p) =
0 otherwise,

Clearly, for any s 20, we can bound { by

B p¥pre e s¥y) S es[Y-n&].

Then

_ _ _ n sy,
Pr(¥zné)=1{ <« eSY e nsé _ e nsd e :

i=1

17
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where we have used the fact {tat the average of z product of independeat random vari-
ables is the product of their averages. To get the tightest bound, we maximize over s,
and 1ot

E(6) = max [sé-p:(s)}

s20
Setting the derivative of the bracketed quantity to zero, we obtain

g'{s)

6 =p's) =—g—(§)_'

It can easily be shown that p'(0) =y, p'(®) =y , and that p’{s) is 2 monotonically

max
increasing furction of s. Therefore if Ymay > 5 >y, there is a non-negative s for
which 6 = p*(s), and substitution of this s in (sé—u(s)) gives E(5).

As an example, which will be useful later, consider the variable y which takes on

the value one with probability p and zero with probability 1 - p. Then

g(s)=pes+l-p

p e
6=p'ls)=—
pe +1-p
es___ﬁ__l_p
“1-% p
6(1-p) l-p
E(5)= 8 In ~—r-InT 5

=-6Inp - (1-6) In (1-p) - IC(5),
where
J(8)=~561n 6~ (1-8) In (1-6).

Then if 1 2§ 2p,

Pr(Y>n6) < ¢n[-81np—(1-8)1n (1-p)-3C(6)]

This can be interpreted as a bound on the probability of getting more than né occur-
rences of a certain event in n independent trials, where the probability of that event in
a single trial is p.

From this result we can derive one more fact which we shall need. Let p = 1/2, then

n
Pr(Y=ns) = z '1‘\; 2 M<2
i=né

-n en3(3(6).

It follows that

(:5) < 10,

18




b. Optimizatica of Weights

We now show that the probebility of decoding error or failure for minimem-distence
decoding is the prcoebility that a certein sum o independent identically distribzuied ran-
dom varizbles exceeds 2 ceriain geantity, a2nd therefore that we ca2n tse the Chernofi
bound.

Let 2 code word irom 2 code & length n and minimum distance d be transmitted.
We know already that 2 minimum-distance decoder will f2il 10 Gecode or decode incor-
rectly if and only ii

2 [ncj(l-aj)%nej(lécj)] =4 (29)

for, in the case of errors-only decoding, zll Gj = 1; of deletions-and-errors decoding,
aj = 0 or 1; and of generalized minimum-distance decoding, 0 < cj < 1

Under the assumption that the channel is memoryless and that there is no correia-
tion between inputs, the probabilities pcj of a2 correct reception in class C. and pej of an
incorrezt reception ix class Cj are coastant and independent from symbol to symbol.
Cons:der the random variable that for each symbol assumes the value {l-c.) ii the sym-
bol is received correctly and is given weight aj, snd (1 +aj) if the symboi is received
incorrectly and given weight aj. These are then independent, identically distributed ran-

dom variables with the common moment-generating function

s(1~a.) s(14a.) :
g(s):Z Pej @ 3+peje 1. (30)

Furthermore, the condition of Eq. 29 is just the condition that the sum of these n ran-
dom variables be greater than or equal to d. Letting 6 = 4/n, we have by the Chernoif
bound that the probability Pr(e) of error or failure is upperbounded by

Pr(e) < e PE'(8) (31)
where
E'(8) = max [s6-p(s)], (32)
s20

p(s) being the natural logarithim of the g(s) of (30). This bound is valid for any particular
assignment of the ¢, to the reliability classes; however, we are free to vary the aj to

J
maximize this bound. Let

E(6) = max E'(§) = max [sé~p(s)].
a, s,a,

] J

It is convenient and illuminating to maximize first over the distribution

E(8) = max [sé-u_ ()], (33)
S
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where
2 () =ming(s)=minlngls)=lnming(s)=Ing (s). (3¢)
:j C!j a.
g(s) is mizimized by mimimizing g(s), aod we sbkail now do this for the three &Hypes of

minimam-distence decoding.
For errors-only decoding, there is no ckoice in the Cj’ all f which must egral ars;
thereicre,

- o= 25| Y . 35
gm(s) =gs)=e Z’ Pej : [Z pcj - (35)
) L3
The {otal probability of symbol erroris p=Z pej' Making the substitutioes s* = 25 and
]

8' = 5/2, we see that this bound degenerates into the Chernoff bomnd of sectica 2. 42 on
getting more than d/2 symbol errors in a sequence of n transmissions, 2s mignt be
expected.

For deletions-and-errors decoding, we can assign some outputs to a2 set E of erased
symbols and the remainder to a set R of reliable symbols; we want to choose these seis
so as to minimize g(s). In symbols, aj =0, allje E, and e, = 1, a1 je R, so

-
_.2s S‘ S Z \
gis)=¢ /, pej +e (peji—pcj) + / pcj .
jeR JEE jER

Assigning a partic ar output yj to E or R rnakes no diiference if

2s

R - 1
@7 Poj tPgj = € (PeytPey)
or
Pej  _,
L.=—-=e
d cj

Here, we have defined Lj, the error-likelihood ratio, as pej/pcj; we shall discuss the

S

gignificance of L, below. We see that to minimize g(s), welet j € E if Lj >e © and

jeR i Lj < "5 — that is, comparison of Lj to a threshold that is a function of s is the

optimum criterion of whether to erase or not. Then

g (s) = e?® p (s) + €% py(s) +p,ls),

where
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. - rf < S
pe(s)z Z pej’ JER Lj <e
JER
— {35)
- < : -5 ;
pd(S)- z (pe{nq)' jJeEE Lj >e
EE

2,653 = 1 - b5} — pyls):

Finally, for generzlized minimum-disiance decoding, we have

ej

whick we can mirdmize with respect fo a single cJ v setting fhe derivative

ag(s) o(l-c ) s(l%cj)

10 zero, as long as 0 < cj < 1. The resulfing condition is

e 3 =5 = L.,
! c; J
or
a. = —l—ln L.
R | 2s ]

Whenever LJ is such that —{In Lj)/?.s > 1, welet o = 1, whiie whenever -{In Lj)/?.s <0,
we let aj = 0. Then

r
2s ——
gm(s) =€ Z pej * Z pCj +e® Z (pej:rpc') +e° z 2 pejpcj !

jeER JER L]GE jeG
where
jeR if L<e S,
jeE if L=21, (37)

j € G otherwise

and we have used e ] = 'J—'7—_ when j € G.

Let us examine for a moment the error-likelihood ratio L.. Denote by Pr(xi,yj) the
probability of transmitting x, and receiving yj, the ratio Lij between the probability that
X; was not transmitted, given the reception of yj, and the probability that X; was trans-
mitted {the alternative hypoihesis) is




= I -

Toereglyy  Prglypy PR

The optimum decisica rule for the irmer decoder is to choose that X for which Prix, ij)
is maximum, or eguivaleadly for which Lij is minimem. Bmt now for this X

Thus

L.=minL._..
3 i 1j

We have seen that the optimum reiiability weights are proportional to the Lj: thus the
error-lixelihood ratio is theoretically central to the inner decoder's decision making,
both to its choice of a particular output and to its adding of reliability information to that
choice. (The statistician will recognize the Lij as sufficient statistics, and will appre-
ciate that tke simplification of minimum-distance decoding consists in its requiring of
these statistics only the largest, and the corresponding vaiue of i.)

The minimum value that Lj can assume is zero; the maximaum, when ali q inputs are
equally }ikely, giver yj, is g- 1. When g = 2, therefore, Lj cannot exceed one. It fol-
lows that for generalized minimum-distance decoding with binary inputs the set E of
Eq. 37 is empty.

In the discussion of the Chernoff bound we asserted that it was valid only when
6 Zzp'(0), or in this case & 2;:;]1(0). When s = 0, the sets R and E of (36) and (37)
become identical, namely

jeR' if L=1
J€E if L<1.

Therefore pl'_n(O) is identical for deletions-and-errors and generalized minimum-distance
decoding. If there is no output with Lj <1 (as will always be true when there are only
two inputs), then p;n(O) for these two schemes will equal that for errors-only decoding,
too; otherwise it will be less. In the latter case, the use of deletions permits the prob-
ability of error to decrease exponentially with n for a smaller minimum distance ns,
hence a larger rate, than without deletions.

We now maximize over s. From Egs. 35-37, pm(s) has the general form

28

ky(8)=1n [e p,(s)+e’ p1(8)+po(s)].

Setting the derivative of (s 6—pm(s)) to zero, we obtain

2 e®® p,is) +e° p () + e’ ph(s) +e° pj(s) + Py(s)
5=“;n(s)= 2s s
e p,(s) te” p,(s) +p(s)

(38)
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which has a solution when 226 2 -,:;n(ﬁ). SubsHtuting the value of s thus obtained in
(sé—,;m(s)), we obizin E(5), and thus a bound ¢ the form

-nE
Prie) < e nE(8), (39)
We would preier a2 bound that guaranteed the existence & a2 code of dimensiconless
rate r and length » with probability of decoding failure of error boanded by

Pr(e) < e BE(T)

The Gilbert bound20 asserts for large n the existeace of a code with a2 g-symbol alpha-
bet, minimum distance 6n, a2nd dimensiorless rate r, where

¥(s) 1In{g-1)
lnq-'o Ing °

r<il-

Substitution of r for & in (39) and using this relation with the equality sign gives us the
bound we want.

2.9 ¢
2.5
1.87 |
1.9 |
/csmmzzo MINLILIA-DISTANCE EXFONENT
2
H
F4
= DELETIONS-AND-E22CRS EXPONENT
-
~ 00 2ORS-ONLY EXPONENT

0.5 |-

| |
0.2 0.4 0.6 0.8 0.97
DIMENSIONLESS RATE, r

Fig. 3. Minimum-distance decoding exponents for a Gaussian
channel with L = 3.
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c. Computationa: Comparisons

To get some feeling for the relative performance of these taree progressively more
involved minimum-distance decoding schemes, the error exponents for eaca of them
were computed over a few simple channels, with the vse ¢f the bounds discussed above.

In order to be able to comrpute easily the error-likelibood ratio, we considered only
channels with two inputs. Figure 3 displays a typical resuit; these curves are for a
channel with additive Gaussian noise ¢f unit variance and a signal of amplitude either +3
or -3, which is a high signal-{o-noise ratio. At lower signal-to-noise ratios the curves
are closer. We also considered a two-dimersional Rayleigh fading chaanel ior various
signal-to-noise ratios.

For these channels, at least, we observed tha* tbough improvement is, of course,
obtained in going irom one decoding scheme to the cext more comglicated, this improve-
ment s quite slight at high rates, and even at low rates, where improvement is greatest,
the exponent for generalized minimum-distance decoding is never greater than twice that
for errors-only decoding. The step between errors-only and deletions-and-errors
decoding is comparable to, and sligh®ly greater than, the step between the latier and
generzalized minimum-distance decoding.

From these computations and some of the computations that will be reported in Sec-
tion VI, it would seem that the use of deletions offers substantial improvements in per-
formance only when very poor outpuis (with error-likelihood ratios greater than one)

exist, and otherwise that orly moderate returns are to be expected.
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IIl. BOSE-CHAUDHURI-HOCQUENGHEM CODES

Our purpose now is to make the important class f BCH codes accessible to the
reader with litfle previous background, and to do so with emphasis on the nonbinary BCH
codes, particularly the RS codes, whose poweriul properties are insufiiciently kmown.

The preseniation is quite single-minded in its omission of all but the essentials
needed {0 understand BCH codes. The reader who is interested in 2 more rounded expo-
siticn is referred to the comprehensive and still timely book by Peterson.é In particular,
our treatment of finite fields will be unsatisfactory to the reader who desires some depth
of understanding about the properties that we assert; Albert21 is 2 widely recommended
mathematical text.

3.1 FINITE FIELDS

Mathematically, the finite ficld GF(q) consists of q elements that can be added, sub-
tracted, multiplied, and divided almost as numbers. There is always a field element
called zero (0), which has the property that any field element P plus or minus zero is §.
There is also an element called one {1), such that $° 1 = B; further, 8-0=0. I B is
not zero, it has a multiplicative inverse which is that unique field element satisfying the
equation B - B_l = 1; division by P is accomplished by multiplication by 5_1.

The simplest examples of finite fields are the integers modulo a prime number p.
For instance, take p = 5; there are 5 eiements in the field, which we shall write I, Ii,
III, IV, and V, to distinguish them from the integers i{o which they correspond. Addi-
tion, subtraction, and multiplication are carried out by converting these numbers into

Leir integer equivalents and doing arithmetic modulo 5. For instance, I +III=1V,
since 1 +3=4 mod 5 NI +IV=1l, since 3+4=2 mod 5; 1-1lI=1IIl, since 1°-3=3
mod 5; III - IV =1I, since 3°4 =2 mod 5. Figure 4 gives the complete addition and
multiplication tables for GF(5).

! il it 1v v | I il 1v \
| eIV | i | il I 1v v
I i iv v ] I I Il IV | fir v
Hryiv v | It e Y I \%
IV VvV I Il itr v v v iy it | \
\ ! i 1 v v \ \% \% \ \% \%

ADDITION TABLE MULTIPLICATION TABLE

Fig. 4. Arithmetic in GF(5).

Note that V + B = B, if B is any member of the field; therefore, V must be the zero

element. Also V+*B=V, I*8=p, sol mustbe the one element. Since I I =1II"°1III=

IV.7V=l, 7L I, ml = 11, m =11, and =,
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In Figure 5 by these rules we have constructed a chart of the first 5 powers of the
field elements. Observe that in svery case B = B, while with the exception of the zero
element V, ﬁé = 1, Furthermore, both II and III have the property that their first four
powers are distinct, and therefore yield the 4 nonzero field elements. Therefore if we
let e denote the element II, say, 1= a® = a4, HH=e, H= c3, and IV = az, which gives

us a corvenient representation of the field elemerts for mulhphcz’non and division, in

log
the same way that the logarithmic relationship x = 10 107 gives us a convenient repre-

sentation of the real numbers for multiplication and division.

3 4 5 + |x,2
B 8% 8> 8" p° LY
3
i I | 1 1 : i 2
|31 DU VAN B & I | it l 3
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Fig. 5. Powers of the field elements. Fig. 6. Representations for GF(5).

Figure 6 displays the two representations of GF(5) that are convenient for addition

and multiplication. If P corresponds fo a and ab, and Yy corresponds to ¢ and ad, then

B+Ye—eat+cmod5 f-Y+—=a—-cmod5 B y—— [b+dmod4]’ andﬁ-y-l‘—‘
[b‘d mod4]' where —— means 'corresponds to' and the 'mod 4! in the exponent arises,
since a4 =a®=1.

The prime field of most practical interest is GF(2), whose two elements are simply
¢ and 1. Addition and multiplication tables for GF(2) appear in Fig. 7.

It can be shown21 that the general finite field GF(q) has q = pm elements, where p
is again a prime, called the characteristic of the field, and m is an arbitrary integer.
As with GF(5), we find it possible to construct two representations of GF(q), one con-
venient for addition, one for multiplication. For addition, an element B of GF(q) is
represented by a sequence of m integers, bl’bz" .o ’bm' To add B to a, we add b1
to ¢y, b2 to c,, and so forth, all modulo p. For multiplication, it is always possible

to find a primitive element ¢, such that the first g - 1
powers of a yield the g - 1 nonzero field elements.

Thus a9 = 40 - 1 (or else the first q - 1 powers would

0 i 0
0 | 0 1 0 | 0 0 not be distinct), and multiplication is accoinplished by
1{1 O ] l 0 1 adding exponents mod q - 1. We have, if £ is any non-

zero element, ﬁq~l — (aa)q-l = (aq-l)a =12 =1, and

Fig. 7. Tables for GF(2). thus for any P, zero or not, ‘3q = B.
Thus all that remains to be specified is the proper-
ties of GF{q) to make the one-to-one identification between the addition and multiplication

representations. Though this is easily done by using polynomials with coefficients from

26




GF(p),4’ 21 it is not necessary to know precisely what this identification is to understand
the sequel. (In fact, avoiding this point is the essential simplification of our presenta-
tion.) We note only that the zero element must be represented by a sequence of m
Zeros.

As an example of the general finite field, we use GF(4) = GF(ZZ), for which an addi-
tion table, multiplication table, and representation table are displayed in Fig. 8.

Note that GF(4) contains two elements that
can be identified as the two elements of GF(2),

101 e b |01 > nameiy C and 1. In this case GF(2) is said to
019 1]lab 0jo0o0]j00O
111 0ib a 110 1la b be a subfield of GF'(4). In general, GF((q'))
o | : ? (‘) o g o f; l is a subfi‘eld of- GFi{q) if and onlly if g - q'?,
ADDITION MULTIPLICATION ~ “here a is an integer. In particular, if q =
p , the prime field GF(p) is a subfield of
|+,-|x,+ GF(q).
ot ool o We shall need some explanation to under-
; ?2) stand our later comments on shortened RS
bl 1 codes. For addition, we have expressed the
REPRESENTATIONS elements of GF(q) as a sequence of m ele-

ments from GF(p), and added place-by-place
Fig. 8. Tables for GF(4). according to the addition rules of GF(p), that
is, modulo p. Multiplication of an element
of GF(q) by some member b of the subfield GF(p) amounts to multiplication by an inte-
ger b modulo p, which amounts to b-fold addition of the element of GF(q) to itself,
which finally amounts to term-by-term multiplication of each of the m terms of the ele-
ment by b mod p. (It follows that multiplication of any element of GF(pm) by p gives
a sequence of zeros, that is, the zero element of GF(pm).) It is perhaps plausible that
the following facts are true, as they areZI: if g= q'a, elements from G¥(q) can always
be expressed as a sequence of b elements from GF(q'), so that addition of 2 elements
from GF(q) can be carried out place-by-place according to the rules of addition in
GF(q'), and multiplication of an element from GF(q) by an element B from GF(q') can
be carried out by term-by-term multiplication of each element in the sequence repre-
senting GF(q) by B according to the rules of multiplication in GF(q').

As an example, we can write the elements of GF(16) as

00 10 a0 a0
01 11 a1 a2
Oa la aa aza
Oa2 la2 aaz aza2

where a is a primitive element of GF(4). Then, by using Fig. 5, (la) + (ae) = (aZO), for
example, while e+ (al) = (aza).

27




We have observed that p - B = 0 for all elements in a field of characteristic p. In
particular, if p=2, B+ 8 =0, sothat = —f and addition is the same as f-'ubtractmn
in a field characteristic two. Furthermore, (B+y)° = 8P + (p) Pl g pl) gyP~!
¥, by the binomial theorem; but every term but the first and last are mu1t1phed by p,
therefore zero, and ([3+y)p = pp + yp , when B and Yy are elements of a field of charac-
teristic p.

3.2 LINEAR CODES

We kuow from the coding theorem that codes containing an exponentially large num-
ber of code words are required ‘to achieve an exponentially low probability of error.

4,22

Linear codes can contain such 2 great number of words, yet remain feasible to gen-
erate; they can facilitate minimum distance decoding, as we shall see. Finally, as a
class they can be shown to obey the coding theorem. They have therefore been over-
whelmingly the codes most studied.

Assume that we have a channel with q inputs, where q is a prime power, so that
we can identify the different inputs with the elements of a finite field GF(g). A code word
f of length n for such a channel consists of a sequence of n elements from GF(q) We
shall write f = (f1 fz,. .o ,- ), where f occuples the 1th _;ia_c_e. The weight w(f) of f is
defined as the number of nonzero elements in f

A linear combination of two words? and—f;_ is written ﬁ? + Yz;.’ where P and vy are
each elements of GF(q), and ordmary vectomal (that is, place-by place) addition in
GF(q) is implied. For example, if f1 t,,,f 13) and f = (f then
Ty =T, = @)y ) 575 ).

A linear ccde of length n is a subset of the q words of length n with the important

property that any linear combination of words in the code yields another word in the code.

11’127 21’ 22’ 23)’

A code is nondegenerate if all of its words are different we consider only such codes.

Saying that the distance between two words f and f is d is equivalent to saying that
the weight of their difference, w(f =+, ), is d, smce f1 f will have zeros in plaefs nl
which and only in which the 'gvo words do not differ, In a hnear code, moreover, f1 - f2
must be another code word f3» sothat if there are two code words separated by dis-
tance d there is a ccde word of weight d, and vice versa. Excluding the all-zerc, zero-
wweight word, which must appear in every linear code, since 0° f1 +0° fz, is a valid
linear combination of code words, and the minimum distance of a linear code is then the
r.inimum weight of any of its words.

We shall be interested in the properties of sets of j different places, or sets of
size j, which will be defined with reference to a given code. !f the j places are such
that there is no code word but the all-zero word with zeros in all j places, we say that
these j places form a non-null set of size j for that code;, otherwise they form a null
set.

If there is a set of k places such that there is one and only one code word corre-
sponding to each of the possibie qk assignments of elements from GF(qg) to those k places,
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then we call it an information set23 of size k, thus any code with an information set of
size k has exactly qk code words. The remaining n - k places form a check set. An
information set must be a non-null set; for, otherwise there would be two or more words
corresponding to the assignment of ail zeros to the information set.

We now show that all linear codes have an information set, by showing the equiva-
lence of the two statements: (i) there is an information set of size k for the code;
(ii) the smallest non-null set has size k. For an information set of size k implies qk
code words; to any set of size k ~ 1 or less there are no more than qk-1 different assign-
ments, and thus there must be at least two distinct code words that are the same in those
places; but then their difference, though not the all-zero word, is zero in those places,
so that any set of size k - 1 or less is a null set. Conversely, if the smallest non-null
set has size k, then its every subset of k - 1 places is a aull set; therefore there is a

code word ? that is zero in all but the pth

place, but is nonzero in the pth place; if f has
B in the pth place, then [5"1 T is a code word with a one in the pth place, and zeros in
the remaining information piaces. The k words with this property are called generators;
ciearly, their qk linear combinations yield qk code words that are distinct in the speci-
fied k places. (This is the property that makes linear codes <asy to generate.} But
there can be no more than qk words in the code, otherwise all sets of size k would be
null sets, by the arguments above. Thus the smallest non-null set must be an informa-
tion set. Since every linear code has a smallest non-null set, every linear code has an
information set and, for some Kk, qk code words. In fact, every non-null set of size k
is an information set, since to each of the qk code words must correspond a different
assignment of elements to those k places. We say such a code has k information sym-
bols, n - k check symbols, and dimensionless rate k/n, and call it an (n,k) code on
GF(q).

If the minimum distance of a code is d, then the minimum weight of any non-zero
code word is d, and the largest null set has size n — d. Therefore the smallest non-null
set must have size n-d + 1 or less, so that the number of information symbols is
n-d+ 1orless, and the number of check symbols d - 1 or greater. Clearly, we desire
that for a given minimum distance k be as large as possible; a code that has length n,
minimum distance d, and exactly the maximum number of information symbols, n-d+1,

will be called a maximum code.24

We now ghow that a code is maximum if and only if every set of sizen~d + 1 is an
information set. For then no set of size n - d + 1 is a null set, thus no code word has
weight d - 1 or less, and thus the minimum weight must be greater than or equal to d;
but it cannoi exceed d, since then there would have to be n - d or fewer information
symbols, so the minimum weight is d. Conversely, if the code is maximum, then the
minimum weight of a code word is d, so that no set of size n - d + 1 can be a null set,
but then all are infermation sets,

For example, let us investigate the code that consists of all words T satisfying the
n
equation f1 + fz e +fn = f

1

f. = 0. It is a linear code, since 1f;

G 1 and f2 satisfy this
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equation, ?3 = (ﬁf 1+y?2) also satisfies the equation. Let us assign elements from GF(q)
arbitrarily to all places but the pth. In order for there to be one and only one code word

with these elements in these places, fp must be the unique solution to

Zf.i—f =0, orf =-Zf..
i p p i

i#p i#p
Clearly, this specifies a unique fp that solves the equation. Since p is arbitrary, every

set of n — 1 places is thus an information set, so that this code is a maximum code with
lergth n, n - 1 information symbols, and minimum distance 2.

a. Weight Distribution of Maximum Codes

In general, the number of code words of given weight in a linear code is difficult or
ympossible to determine; for many coces even d, the minimum weight, is not accurately
known. Surprisingly, determination of the weight distrn.ution of a maximum code pre-
sents no problems.

Suppose a maximum code of length n and minimum distance d, with symbols from
GF(q); in such a code there are n - d + 1 information symbols, and, as we have seen,
every set of n -~ d + 1 places must be an information set, which can be used to generate
the complete set of code words.

Aside from the all-zero, zero-weight word, there are no code words of weight less
than d. To find the number of code words of weight d, we reason as follows. Take an
arbitrary set of d places, and consider the set of all code words that have all zeros in
the remaining n - d places. One of thege words will be the all-zero word; the rest must
have weight d, since no code word has weight less than d. Consider the information set
consisting of the n -~ d excluded places plus any place among the d chosen; by assigning
zeros to the n - d excluded places and arbitrary elements to the last place we can gen-
erate the entire set of code words that have zeros in all n - d excluded places. There
are thus q such code words, of which q - 1 have weight d. Since this argument obtains
for an arbitrary set of d places, the total number of code words of weight d is (g) {q—-1).

Similarly, let us define by M d+a the number of code words of weight d + a that are
nonzero only in an arbitrary set of d + a places. Taking as an information set the n-d-a
excluded places plus any a + 1 places of the d + a chosen, we can generate a total of an
code words with all zeros in the n - d - a excluded places. Not all of these will have
weight d + a, since for every subset of sized +1, 0 <1< a -1, there will be Md+i code
words of weight d + i, all of which will have all zeros in the n - d - a excluded places.
Subtracting also the all-zero word, we obtain

a~1
_oatl <g+a)
Myq = 4 ! Z +i) M
i=0

From tnis recursion relation, there follows explicitly
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a
My, = (0-1) z S Gt K
i=0

Finally, since there are Md+a words of weight d + a2 in an arbitrary set of d + a places,
we obtain for Ny, the total number of code words of weight d + a,

- n
Nd+a - (d+a) Md-!-a’

We note that the summation in the expression for M
d+a-1 q-(d—l)

is the first a + 1 terms of the
d+a a+l

binomial expansion of (g—-1) , sothat as g -, Md+a -~q . Also, we may

upperbound M d+a by observing that when we generate the qa+l code words that have all
zeros in an arbitrary n - d - a places, only those having no zeros in the remaining a +1
information places have a chance of having weight d + a, so that

a+l

3.3 REED-SOLOMON CODES

We can now introduce Reed-Solomon codes, whose properties follow directly from
those of van der Monde matrices.

a. Van der Monde Matrices

An (n+1) X (n+1) van der Monde matrix has the general form:

2 n
1 ao ao ao
1 a 2 n

where the a, are members of some field. The determinant of this matrix, D, also a
member of the field, is a polynomial in the a, in which no a, appears to a power greater
than n. Furthermore, since the determinant is zero if any two rows are the same, this
polynomial must contain as factors a; - aj, all i #j, so that

D=D' 1] (ai-a.).
i>]

But now the polynomial [] (a.-a.) contains each a, to the nth power, so that D! can only

i>j

be a constant. Since the coefficient of 1 ° a - ag tee ag in this polynomial must be one,
D'=1, and D = [] (a;=a, ).

i>j
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Now suppose that all the a, are distinct. Then 2, - a:i #0, 1 #]j, since the a, are
raembers of a field. For the same reason, a product of nonzero terms cannot be zero,
and therefore the determinant D is not zero if and only if the a; are distinct.

Similarly,

m m +1 m +n

o o o
a a a
o o (0]
mo mo-i—l m +n
a1 a, a, mo

=[Ta i1 (a.-2.).
i j
m m +1 m 4n
) o

a a a
n n n

Thus the determinant of such a matrix, when m o # 0, is not zero if and only if the a
are distinct and nonzero.

Ty

b. Reed-Soiomon Codes

A Reed-Solomon25 code on GF(q) consists of all words T of length n<qg-1 for
which the d - 1 equations

n

im: < < -
Zfia 0, m, <m mo+d 2

i=1

are satisfied, where m and d are arbitrary integers, and e is a primitive element of
GF(q).

Clearly, an RSAcode is a linear code, since if ?1 and ?2 are code words satisfying the
equations, fBf 1 Yfz =f 3 satisfies the equations. We shall now show that anyn-d + 1
places of an RS code can be taken to be an information set, and therefore that an RS code
is a maximum code with minimum distance d.

. . n
We define the locator Zi of the ilm place as al; then we have Z fi(zi)m =0, m_<

. 0
m < m +d ~ 2. We note that since a is primitive and n < q - ;, lthe locators are dis-
tinct nonzero elements of GF(q). Let us arbitrarily assign elements of GF(q) ton-d +1
places; the claim is that no matter what the places, there is a unique code word with
those elements in those places, and therefore any n - d + 1 places form an information
set S. To prove this, we show that it is possible to solve uniquely for the symbols in
the complementary check set S, given the symbols in the information set. Let the loca-
tors of the check set S be Yj' 1 £j<sd-1, and the correcponding symbols be d.. If

there i3 a set of d]. that with the given information symbols forms a code word, then

d-1
\ m _ Z m
ZJ dj(Yj) =~ fi(zi) , mosmSmo+d-—2.
i=1 ieS




By defining Sm =-Z fi(Zi)m, these d — 1 equations can be written

ieS
I- m m +1 m +d—2q ] ]
o o (s}

Y1 Y1 Yl dl Smo

m m +1 m +d-2
v.° v Y. ©° d S

2 2 °cc 2 2 - mo+l

m mo+l mo+d—2
Ya-1  Yaq e Yag dg-1 Sn%;d-z .

The coefficient matrix is of the van der Monde-like type that we examined above, and
has nonzero determinant, since each of the locators is nonzero and distinct. Therefore
there is a unique solution for the dj for any assignment to the information places, so that
an arbitrary set of n — d + 1 places can be taken as an information set. It follows that
Reed-Solomon codes are maximum and have minimum distance d. The complete dis-
tribution of their weights has already been determined.

As examples, RS codes on GF(4) have length 3 (or less). The code of all words sat-
isfying the single equation f 1t fz +f 3= 0 (mo=0) has minimum distance 2. Taking the
last symbol as the check symbol, we have i 3= f1 + f2 (we omit minus signs, since we
are in a field of characteristic two), so that the code words are

000 101 a0z a0d®
011 110 ale®  d%la
Oaa 1¢za2 aal azal
0(12(12 laza aazl azazo

The code of all words satisfying f1 + f2 + f3 = 0 and f1 + fza + f3a?‘ =0 (mo=0) has

minimum distance 3. Letting f2 = af ] and f 3= a?'f p: We get the code words

000 laa?‘ aazl a?‘la.

2

o 2 _ 4 _ _
The code of all words satisfying f1 +f2a + f3a = 0 and f1 + fza + f3a =0 (mo-l)

also has minimum distance 3; its code words are

000 111 aaa azazaz.

c. Shortened RS Codes

A Reed-Solomon code can have length no longer than q - 1, for that is the total num-
ber of nonzero distinct elements from GF(q) which can be used as locators. (If mo=0,
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we can also let 0 be a locator, with the convention 0°=1, to get a code length q.) I we
desire a code length n < g - 1, we can clearly use any subset of the nonzero elements
of GF{qg) as locators.

Frequently, in concaterating codes, we meet the ccondition that g is very large, while
n needs to be only moderateiy large. Under these conditions it is usually possible io
iind a subiield GF{q') of GF{(q) such that n < q'. A considerable practical simplification
then occurs when we choose the locators from the subfieid of GF({q'). Recall that if
g’ =g, we can represent a particular symb;ll z‘i by a sequence of b elements irom
GF(q*), (fil’fiz" .. ’fib" The conditions f fizi =90, m €£m< m +d ~ 2 then become
the conditions Z i'ijZ;n = 0, m f£m< m + d-2, 1<j<b, since when we add two fi
or multiply the;z by Z;n, we can do so term-by-term in GF{q'). In eifect, we are inter-
lacing b independent Reed-Solomon codes of length n < g' -~ 1. The practical advantage
is that rather than having to decode an RS code defined on GF(g), we need merely decode
RS codes defined on the much smaller field GF(qg'; b times. The performance of the
codes cannot be decreased by this particular choice of locators, and may be improved if
only a few constituent elements from GF(q') tend to be in error when there is an error
in the complete symbol from GF{(q).

As an example, if we choose m = 1 and use locators from GF(4) to get an RS code
on GF(16) of length 3 and minimum distance 3, by using the representation of GF(16) in
terms of GF(4), we get the 16 code words

(OOO) (000) (000) 090 (111) (lll\ (111 111
000/’ \111/’ \aae/’ 2.2 2" \000/" \111/* \aga/’ 222)"
a a a aaa

(aaa (aaa) (aaa) tzzaza2 azaza2 a2a2a2> <a2a2a2> a aa
000/° 111/° caa/’ 222/ 000/ 111/ aaal’ 222}

aa a aqa a a
or in effect two independent RS codes on GF(4).

3.4 BCH CODES

We shall now give a general method for finding a code with symbols from GF(q) of
length n and minimum distance at least d. If n < g~ 1, of course, an RS code will be
the best choice, since it is maximum. But often n is larger than g; for instance, if we
want a binary code, g = 2, and the longest RS code has length one. BCH code526’ 21 are
a satisfactory solution to this problem when n is not extravagantly large, and are the
only general solution known.

Let us find an integer a such that qa > n. Then there is an RS code on GF(qa) with
length n and minimum distance d. Since GF(q) is a subfield of GF(qa), there will be a
certain subsget of the code words in this code with all symbols in GF(q). The minimum
distance between any two words in this subset must be at least as great as the minimum
distance of the code, so that this subset can be taken as a code on GF(q) with length n
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and minimum distance at least d. Any such subset is a BCH code.

We shall call GF(q) the symbol field and GF{q") the locator field of the code.

For example, irom the three RS codes on GF(4) given as examples, we can derive
the three binary codes:

a) 000 b) 000 c) 000
011 111
101
110

Since the sum of any two elements irom GF(q) is another element in GF(q}, the sum
of any two words in the subset of code words with symbols irom GF(q) is another word
with symbols irom GF(g), so that the subset icrms a linear code. There must therefore
be qk words in the code, where k has yet to be determined. How useiul the code is
depends on how large k is; example b) shows that k can even be zero, and examples b)
and c) show that k depends in general ca the choice of m, . We now show how to find the
number of information symbols in a BCH code.

Since all code words are code words in the original RS code, all must satisfy the
equations

Zf.zl.n=0, m <€<m<m_+d-2.
i7i o o

Let the charactteﬁ'istic of the locator field GF(qa) be p; then qa = pam, qg= pm; and thus
raising to the q power is a linear operation, (ﬁ+y)q = ﬁq + Yq. Raising each side of

. th .
these equations to the q- power, we obtaiu

q

= 7m = q,mq = mq -
0 Zfi“'i Z fi Zi z fizi y My €£m< m +d-2.
i i i

Here. we have used f? = fi since fi is an element of GF(qg). Repeating this operation,
we obtain

. J
£.209 =0, o0<jsa-1, (40)
11
i

where the process terminates at j = a - 1, since Z;n is an element of GF(qa), and there-

a . .
fore (Z?)q = Z;n. Not all of these equations are different, since if qu = m'qJ'
X o

. . qu m'q] .
mod q - 1 for some m' # m, and j' #j, then Zi = Zi , for all i, Let us denote
by r the number of equations that are distinct — that is, the number of distinct integers

modulo g - 1 in the set
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m 2m a-lm
o TRy A s -ees G o

. . a-1 .
mO 1, Q(mofl), eeey @ (mo'l)

s d L3 a-1 s 3
m * d-2, q(movd 2)y .-.5 q (moﬁi 2).

Clearly, r < z(d-1). We label the distinct members cf this set m 'L 1sf=<r.

We now show that r is the number of check symbols in the code. Let 8 be any ele-
ment of GF(qa) with r distinct consecutive powers ﬁb, ﬁbﬂ, ey ﬁbﬂ—l. We claim that
the places whose locators are these r consecutive powers of P may be taken as a check
set, and the remaining n — r as an information set. Let the symbols in the information

set S be chosen arbitrarily. A coede word is uniquely determined by these information

m
symbols if there is a unique solution to the r equations Z fi(zi) ‘E, 1< ¢ <r, which
in matrix form is

bm1 ('b+l)m1 (b-!—r—l)ml
B g .ee B £ S,
ﬁbm2 6(b~l—l)m2 ﬁ[b-i-r--l)m2 ; <
°tc b+l 2
bmr (b+1)mr (b+r-1)rnr
f p eer B |foer-1|  Sr (41)
My
in which we have defined S I} = Z fizi . The coefficient matrix is van der Monde-like
i€S m
9

(for a different reason than before), and since B are all nonzero and distinct, ti:e

equations have the solution as claimed.

We must show that the fb + that solve Egs. 41 are elements of the symbol field GF(qg).

Supposz we raise Egs. 41 to the q power; we get a superficially new set of equations
of the form

gm
Z 1z, L.y (42)

But for i € S, fi € GF(q), so fiq = fi' Furthermore, Eqgs. 42 are exactly the r distinct
Egs. 2, since Egs. 2 are the distir~t equations in Egs. 1. Thus fg,fgﬂ,. .. ’fg+r—l solve
2 . . . . .

Egs. 41 for the same information symbols fi' ie$s, as did fb’fb+l’ e ’fb+r-l' which

were shown to be the unique solution to Eqs. 41. Therefore f§+i = fb+i;

of GF (qa) which satisfy Bq = B are precisely the elements of GF (q)?‘, so that the fb+i are

but the elements
elements of GF(q).

Thus the code has an information set of .1 - r symbols, and therefore there are qn—r
code words.
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We remark that any set of r places whose locators can be represented as r consec-
utive powers of some field element is thus a check set, and the remaining n - r an infor-
mation set. In general every information sei cannot be so specified, but this gives us 2
lower bound to their number.

For exampie, %o find the number of check symbcls in a binary code of length 15
(qa=l6) and minimum distance 7, with m chosen as 1, we write the set

i, 2, 4, 8
3, 6, 12, 9 (24=9 mod 15)
5, 10 (20=5 mod 15

~

where we have excluded 211 duplicates. There are thus 10 check symbols. This is the
(15, 5) binary Bose-Cha.v.xd’nuri26 code.

a. Asymptotic Properties of BCH Codes

We recall that for large n the Gilbert bound guarantees the existence of a code with

3 (5) _ In (q-1)

1o
g 6 nqg - With a BCH

code we are guaranieed to need no more than a{d-1) = andé check symbols to get a mini-

minimum distance n and dimensionless rate k/n=1 -

mum distance of at least d = nd, but since qa must be greaier than n, a must be greater
than Inn/In q, so that for any fixed nonzero &, anb exceeds n for very large n. Thus,
at least to the accuracy of this bound, BCH codes are useless for very large n. It is
well to point out, however, that cases are known in which the minimum distance of the
BCH code is considerably larger than that of the RS code from which it was derived, and
that it is suspected that their asymptotic performance is not nearly as bad as this result
would indicate. But nothing bearing on this question has been proved.
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iVv. DECODING BCH CODES

We shall present here a decoding a2lgorithm for BCH codes. Much of it is based on

the error-correcting algorithm of Gorenstein and Zierler2°; we have extended the algo-

rithm to do deletions-and-errors and hence generalized minimum-distance decoding
(ci. Sectior II}. We have also appreciably simplified the iinzl, erasure-correcting
step.27

Since we iniend to use 2 Reed-Solomon code as the outer code in 211 of our concatena-
tion schemes, and minimization of decoder cocmplexity is our purpose, w2 shall consider
in Section VI in some detail the implementation of this algorithm in a special- or
general-purpose computer.

Variations on this algorithm of lesser interest are reported in Appendix A.

4.1 INTRODUCTION

In Section III we observed that a BCH code is a subset of words from an RS code on
GF(q) whose symbols are all members of some subfield of GF(q). Therefore we may use
the same algorithm that decodes a certain RS code to decode all BCH codes derived from
that code, with the proviso that if the algorithm comes up with a code word of the RS code
which is not a code word in the BCH code being used, a decoding failure is detected.

Let us then consider the transmission of some code word { = (f 1° f vay fn) from a

2
BCH code whose words satisfy

Zf.zf’“: 0, m <m<m +d4d-2,
i7i o o
i
where the Zi' the locators, are nonzero distinct elements of GF{q). In examples we shall

use the RS code on GF{16) with n=15, m = 1, and d=9, and represent GF(16) as follows:

3 7 11

0 0000 o> 0001 <’ 1101 o
1 1000 «* 1100 & 1010 %1111
¢ 0100 ¢ 0110 a? 0101 '3 1011
% 0010 a® 0011 !9 1110 % 1001
We shall let Z, = a1zt
We suppose that in the received word T = (rl, Toyenny rn), s symbols have been

classed as unreliable, or erased. Let the locators of these symboils be Y
and if the k0
sibly zero. Also, of the symbols classed as reliable, let t actually be incorrect. Let

Iskss
k) *
deletion is in the ith place, .et dk =r; - fi be the value of the deletion, pos-

the locators of these errors be X., 1 € j £ t, and if the jth error is in the ith place, let
its value ej =T, - fi’ where now ej # 0. We define the parity checks, or syndromes,

Sm by
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then

. _ m . ..m
S, = z 127+ Z ejx,‘j“l : Z dy Ty
3

i 3

= b o d, Yo
Zel 3 +Z Tk
3 K

The decoding problem is to find the ej, Xj’ and dk irom the Sm and Yk' The following
algorithm soives this problem whenever 2t+s<d.

We shall find it convenient in the seguel to define the column vectors

2 _ T -
a(a’b)=(sa,sa_l,...,sb) , m <as<b<m +d-2

T
4 = [(+v2 ~2-l b)
Xj(a,b) = (Xj’ Xj g oeees Xj , and
T
2> _ [(+2a <2a-1 b
Vi b (Yk,&k AR
Evidently,

S
S(a, b) Z ®i%jta,b) * Z A Yi(a, by’
j=1 k=1

Finally, let us consider the polynomial ¢(Z) = 0 defined by

0(Z) = (2-Z\N(2-Z,) ... (Z-Z;),

where Z2 are members of a field. Clearly o(Z) = 0 if and only if Z equals one of the Z.
Expanding (Z), we get

L L-~1 L
o(Z)=Z" - (Zl+Zz+. .. +ZL)Z +... %+ (1) (ZIZZ' .. ZL)'
. L-¢9.2 . ) . . th ,
The coefficient of (~1) 2~ in this expansinn is defined as the L- ¢~ elementary sym-
metric function ) of Zl s 2‘2’ cee, ZL; note that c, is always one. We define @ as the

row vector

(cro, LR (—i)LcrL);

then the dot prcduct
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G = o(Z},

" 2L, 0)
where

T
= _{(,L ,L-l
z(L'O)_(z Z 1)

4.2 MODIFIED CYCLIC PARITY CHECXS3

The Sm are not the only parity checks that could be formed; in fact, any linear com-
bination of the Sm is also a valid parity check. We look for a setof d ~ s ~ 1 independ-
ent parity-check equations wkich, unlike the Sm, do not depend on the erased symbols,
yet retain the general properties of the Sm'

Leto d be the vector of the symmetric functions ¢ dk of the erasure locators Y,. We

k
define the mndified cyclic parity checks T 9 by

T =3,-8S

277d “(m_tfts,m +9) (40)

Since we must have mSm0+1 and m0+l+s~<.rr*o+d-2, the range of 1 is 0s€1<d-s-2.

case of n asures, 1T, = . Now, since
In the case of no erasures, ¢ Sm+Q , S

ot
N t m_+0_, S m 40,
Sim +04s,m +8) Z &% Xys, o0t 2 qe¥y ~ Yi(s, o) (41)
o (o) £
=1 k=1
we have
TN R mo+£ s S m i L.
T0=% " Sim_tors,m +0) = Z e %4 Xjs, 0) +>: 4¥ye " a7 Yis, 0)
j=1 k=1
i m 0 i m0+£
= erj <rd(Xj)Xj + dek ‘Td(Yk)
j=1 k=1
t
2
= E.X.
Z 5 (42)
=1
m,
in which we have defined EjEerj ovd(XJ.) and used o-d(Yk) = (0, since Yk is one of the

erasure locators upon which Tr'd is defined. The fact that the modified cyclic parity checks
can be expressed as the simple function of the error locators given by Eq. 42 allows us
to solve for the error locators in the same way as if there were no erasures and the

minimum distance were d - s.
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4.3 DETERMINING THE NUMBER OF ERRORS

If d-s is odd, the maximum number of errors that can be corrected is t0= (d-s-1)/2,
while if d - s is even, up to to = {(d-s-2)/2 errors are correctable, and to + 1 are
detectable.

We now show that the actual number of errors t is the rank of a certain to X to
matrix M, whose components are modified cyclic parity checks, as long as t € to‘ In
order to do this we use the theorem in algebra that the rank of a matrix is t if and only
if there is at least one t X t submatrix with nonzero determinant, and all {t+1) X (t+1)
submatrices have zero determinants. We also use the fact that the determinant of a
matrix which is the product of square matrices is the product of the determinants of the
square matrices.

THEOREM (after Gorenstein and Zierler26): Ifts to’ then M has rank t, where
T T,, 2 ... T, .
2t0~2 Zto 3 to—l
Tor 3 Tog g 0 Ty
o o o
M=
Tt -1 Tt -2 ce To
0 o

Since Zto ~-2<d-s-2, all the T!Z in this matrix are available.
PROOF: First consider the t Xt submatrix Mt formed by the first t rows and colum:s
of M. Using Eq. 42, we can write Mt as the product of three t X t matrices as follows:

= T - i —x"‘ -1 ,(z-l- hx-: o2 o o 1 th-l xt-2 :
2t -2 2t -3 2t ~t-1 ] 2 : <t 141 1 1
(o
2t -2t

t=¢ ta2 t-2 o t=-1 t-2

T, _ T, o ... T X X ..X 0 E,X . 0 X X 1
M, = 2t -3 2t -4 a-3 |, [T 2 t 272 2 2
2t =2t

1 (] t=-1 t-2

Tyttt Tz‘o_t_z .. TZlo-Zt 1 1 0 0 - EX, x| x! 1|

as may be checked by direct multiplication.

2t -2t
The center matrix is diagonal, and therefore has determinant J_—[ EjXJ ° ;
m J
EJ = eJ.XJ. OU'd(Xj), XJ # Yk’ and ej # 0, this determinant is nonzero. The first and third
matrices are van der Monde, with determinants ]__I (Xi-XJ.), which is nonzero since the
c>
error locators are distinct. The determinant 'Mtl is then the product of three nonzero

since

factors, and is therefore itself nonzero. Thus the rank of M is t or greater.
Now consider any of the (t+1) X (t+1) submatrices of M, which will have the general
form
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2 a
o o
T T X X
a +b° a +bl ao*b! 1 2
1 o
T T T X Xz
ai+b° a!{»bl 2;“’1 1
B 3
T T T X X,
2 -bo a!*b i 3t+bt.’ H

%o E, O ol lx° x!
X~ O % 0 1 1
a b ]
] o 1
%’ ojlo E e oli1x° x,
3 bo bl
x' ollo o E, O)ix%° X

Jio o o oflo o)

L J U

Again, this may be checked by direct multiplication with the use of £q. 42. Each of the
three fz:tor matiices has an all-zero row and hence zero éeterminant; therefore all
{t+1) X (t+1) submatrices of M have zero determinants. T.aus the rank of M can be no

greater then t; but then it is t.

4.4 LOCATING THE ERRORS

We now consider the vector Tr‘e of elementary symmetric functicns T of the Xj’ and

its associated polynomial

— -
Ue(x) =% X(t, o)’
where
> _ et i T
X(t,o) =4{X,X 7, ...,

J

if we could find the components of ?e’ we could determine thc error locators by finding
the t distinct roots of ¢ e(X). If we definc

Ta, b = (Ta’Ta-l’ SRR Y A

then from Eq. 42
t

T(a,p) _21 Ei%j(a, )
J:‘-‘

and we have

t

e i e

=1

0<b<a<d-s-~2,

-, - _ ll _ < _ _ _
o T(£l+t’2|) = Z EX o (XJ) =0, 0sfisd-s-1t-2,.

We know that the first component of ?r’e, o equals one, so that this gives us a set of

o

- a»:&" W N

-, wm———— -— . owe
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Zto - t equations in t unknowns. Since t < to by assumption, we can take the t equations
specified by 2to -2t 1' < Zto -t -1, which in matrix form are

(r.. | T T T 1 - ]
2t o—l Zto—Z 2t0—3 Zto-—t—l e 1
T T T T . g
Zto 2 Zto—3 Zto d Zto—t—£ 82
T T T T (-1)%e
2t ~t 2t ~t-1 2t ~t-2 e 2t -2t e
| o | o (o} o t
or, defining
- 1 \
¢! = [ -0 6 ,e.., (-1)o_ 1},
e ( el’ e, et)
—d =3
— = t
T(Zto--l ~t 1) = TeMy (43)

Since 0 € Zto ~ 2t and ?.to -1<d-s-2, all of the Tl needed to form these equations
are available.

We have alr 2ady shown that Mt has rank t, so that these equations are soluble for
?Za and hence 'o*e. Then since ae(Zi) is zero if and only if Zi is an error locator, calcula-
tion of cre(Zi) for each i will reveal in turn the positions of all t errors.

a. Remarks

The two steps of {inding the rank of M and then solving a set of t equations in t equa-
tions in t unknowns may be combined into one. For, consider the equations

Ty -1,¢) = %M (44)
(o] (o]
where
= (-(re VT s (—1)t¢e,o, ..., 0).
€ 1 2 t

An efficient way of solving (44) is by a Gauss-JordaLn28

reduction to upper triangular
form. Since the rank of M is t, this will leave t nontrivial equations, the last to—t equa-
tions being simply 0 = 0. But now Mt ie the upper left-hand corner of M, so that the upper
left-hand corner of the reduced M will_i)e the reduced Mt' Therefore, we can at this
point set the last to -1 componen_tf of cr:e' to zero, and get a set of equations equivalent
to (44), which can be solved for aé. Thus we need only one reduction, not two; since
Gauss-Jordan recudtions tend to be tedious, this may be a significant saving.

This procedure works whenever t < to-that is, whenever the received word lies
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within distance to of some code word, not counting places in which there are erasurcs.
It will generally be possible to receive words greater than distance to from any code

£

word, and upon such words the procedure discussed above must fail. This failure, cor-
responding to a detectable error, will turn up either in the failure of Eq. 44 to be reduc-
ikble to the form described above or in ce(X), which has an insufficient number of nonzero

W - i

roots.

Finally, if d - £ is even, the preceding algorithm will locate all errors whent < to =
(d-s-2j/2. Also, if t = to + 1, an uncorrectable error can be detected by the ncnvanishing
of the determinant of the t X t matrix with T d-s—2 in the upper left, To in the lower right.
Such an error would be detected anyway at some later stage in the correction process.

. Example 1

Consider the (15, 7) distance 9 RS code that has been introduced. Suppose there occur
errors of value «:z4 in the first position and e in the fourth position, and erasures of

value 1 in the second position and o:z7 in the third position.

‘ 4 o _ 14 1, _ 13 7 12)
| (el-a,Xl—a L e,=a,X,=a 0, d;=1,Y=c'>,d «1?).

In this case the parity checks S will turn out to be

; S;,=a ,S8S,=a¢7,8,=¢,8,=e¢,8S =a,86=a , S =a10,and88=a4.

With these eight parity checks and two erasure locators, the decoder must find the

number and position of the errors. First it forms
- \
g, = (0' P N .
d \ do d1 dz)

(Since we are working in afield of characteristic two, where addition and subtraction

are identical, we omit minus signs.)

T4 =1
o}
¢, =Y, +Y, =a'> 4 a'? = (1011) + (1111) = (0100) = «
a, =1+ ¥z
) 13 12 10
cdz—Yle—a =

TO=S3+UdISZ+0dZS =g +ta-a " +a -a =a 4+a " +a

= (0110) + (1001} + (0101) = (1010) = a®
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T1=S4+0'dIS3+ o‘dZS =a

a3=a,130' +a3o—
€y €2
13— a o +a cre
€ 3
3
a = a o +ao_ .
€2 €3

By reducing these equations to upper triangular form, the decoder gets

a5=0' +a50'e
€1 2
10- c +0
€2 3
0=20

From the vanishing of the third equation, it learns that only two errors actually occurred.

Therefore it sets R to zero and solves for R and T s obtaining
3 1 2

Finally, it evaluates the polynomial

_ 2 _ 2 10
u-e(X)-X +o~eX+o'e =X"+e¢ X+a

1 2

10

?

for X equal to each of the nonzero elements of GF(16); cre(X) = 0 when X = al4 and X= all
so that these are the two error locators.

4.5 SOLVING FOR THE VALUES OF THE ERASED SYMBOLS

Once the errors have been located, they can be treated as erasures. We are then
interested in the problem of determining the values of s + t erased symbols, given that
there are no errors in the remaining symbols. To simplify notation, we consider the
problem of finding the dk’ given the Yk’ 1<€k<g, andt=0.

Since the parity-check equations are linear in the erasure values, we cculd solve s
of them for the d. There is another approach, however, which is more efficient.

As an aid to understanding the derivation of the next equation, imagine the following
situation. To find dk , suppose we continued to treat the remaining s ~ 1 erasures as

o
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erasures, but made a stab at guessing dk . This would give us a word with s-1 erasures
o
and either one or (on the chance of a correct guess) zero errors. The rank of the

matrix M1 would therefore be either zero or one; but M1 would be simply a single modi-
fied cyclic parity check, formed from the elementary symmetric functions of the s - 1
remnaining erasure locators. Its vanishing would therefore tell us when we had guessed

dk correctly.
(e}
To derive an explicit formula, let Kk T d be the vector of elementary symmetric func-
o

tions of the s -~ 1 erasure locators, exciuding Yk . Since t = 0, we have from (41)
o

m +d-s~1

-—

- (o}
(m_td-2,m td-s-1) = /, “k¥k Yi(s-1,0)

k=1

-—

S

and therefore

—_ -

T =, 0,8
-5~ - Aeg—
k "d-s<1 "k d (m +d Z,ml+_s 1)

m o-!-d—s—l mo+d—s—1
=dp ¥y k "d(Yk ) + Z dy Yy x “a(¥y
[o] [o] (o] [o] (o]
k;eko

m0+d-s—1

=d, Y cr(Y)
k Yk k a\Yi_

since ko(rd(Yk) =0, k# ko. Thus

k on-s-l
d =

k m +d-s-1
(o) o)

Y o(Y )
k, k "k

This gives us our explicit formula for dk , valid for any s:
0

St +d-2 "k _%d.5m +d-3 Tk "d.5m +d-4 "
d = [o] o] 1 o] [o] 2 (o] (45)
k‘o mo+d-2 mo+d-3 mo+d—4 ‘
Y - A 4 + o, Y - ...
ko ko d1 ko ko d?. ko

Evidently we can find all erasure values in this way; each requires the calculation
of the symmetric functions of a different s = 1 locators. Alternatively, after finding dl’
we could modify all parity checks to account for this information as follows:

S =8 _ -d.Y _ ]
[ (m0+d»-2,mo) (mo+d Z,mo) 1 l(mo+d Z,mo)
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and solve for ci2 in terms of these new parity checks and the remzining s -2 erasure loca-
tors, and so forth.
A similar argument leads to the formula for error values,

joo-e ’ T(d-s—z,d-s-t-l)
ejo " m td-s—t-1 ’
X, a(x)a(x)
Jo io eVl A\,

in terms of the modified cyclic parity checks. We could therefore find all error values
by this formula, modify the parity checks Sm accordingly, and then solve for the era-
sure values by Eq. 45.

a. Example 2

As a continuation of Example 1, let the decoder solve for e 1 The elementary sym-
metric functions of XZ’ Yl’ and Yz are

= -0 - _ 3 _
c,=XY.Y, =«a, 02-Y2Y1+X2Y2+X2Y1-a, 0-1+X2+Y1+Y2-a.

a4+a6'a10+a3'a13+a6-¢z9 a 4

e, = =d .
S S S B I S TR ¥

e, can be found similarly, or the decoder can calculate

_ 4,8 13 _ ot 4,7 _ 3 _ 4.6 _
Sé—88+aX1-a , S.'7-S7aXl-a, Sa—S6+aX1-0.
Since
cl=Y.Y =a10 c! =Y +Y, =a
2 172 ! 1 1 2 !
e = a13+a-a3 =a11_a
2 a13+a a‘)‘+ 10-a6 10
Also S"=a2 Sr =0
] 8 » 7 H
aZ
sod, = =1,
1 a+a12 13
13
. 13 7
and,w1thS§‘=a , d2=aa6=a.

4.6 IMPLEMENTATION

We now consider how a BCH decoder might be realized as a special-purpose com-
puter. We shall assume the availability of an arithmetic unit able to realize, in
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approximate order of complexity, the following functions of finite field elements: addition
(X=X, +X,), squaring (X-X"), multiplication by ™, m_ < m < m_ +d- 2 (X=a"X,).
Furthermore, because of the bistability of common computer elements, we shall assume
p = 2, so that subtraction is equivalent to addition and squaring is Jinear. We let the

n-1 Finally, we shall assume that all elements of the symbol field are

locators Zi =a
converted to their representations in the locator field GF(q) = GF(ZM), and that all oper-
ations are carried out in the larger field.

Peterson29

and Bartee and Schneider30 have considered the implementation of such
an arithmetic unit; they have shown that multiplication and inversion, the two most dif-
ficult operations, can be accomplished serially in a number of elementary operations
proportional to M. All registers will be M bits long. Thus the hardware complexity is
proportional to some small power of the logarithm of q, which exceeds the block length.

We attempt to estimate the approximate complexity of the algorithms described above
by estimating the number of multiplications required by each and the number of memory
registers.

During the computation, the received sequence of symbols must be stored in some
buffer, awaiting correction. Once the Sm and Yk have been determined, no further
access to this sequence is required, until the sequence is read out and corrected.

The calculation of the parity checks

m(n-1) +r am(n—?.) + +r

S Er(zm)=r 2 n

m

la

is accomplished by the iteration
- m m m
Sm— ((rla +r2>a +r3)a try -

which involves n - 1 multiplications by o,

d ~ 1 such parity checks must be formed,
requiring d - 1 registers.

T g can be calculated at the same time. We note that

+Y

g ’
Tk k Td(ke1)

T 4 can be calculated by this recursion relation as each new Yk is determined. Adding

a new Yk requires s' multiplications when s' are already determined, so that the total
number of multiplications, given s erasures, is

s-1l+s-2+... =(§)<d2/2.
A

S memory registers are required (¢gq = 1).

The modified cyclic parity checksoTR are then calculated by Egs. 40. Each requires
s multiplications, and there arz d - s ~ 1 of them, so that their calculation requires
g(d-s-1) < d2/4 multiplications and d - s - 1 memory registers.

Equations 44 are then set up in to(to+1) < d2/4 memory registers. In the worst case,
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t= to, the reduction to upper triangular form of these equations will require to inversions

] (Zt +2) (to+1) (toﬂ)3
- 1 —
t AN+ (-t ... +1.2=7 - t\ 5, <3

7

and

multiplications. As d becomes large, this step turns out to be the most lengthy,
requiring as it does ~d3/24 multiplications.

Determination of ¥_ from these reduced equations involves, in the worst case, a
to
2/31
As Chien has shown, finding the roots of o (X) is facilitated by use of the special

multipliers by @™ in the arithmetic unit. If

z Ue(t—j) = 0:

further <d / 8 multiplications, and t memory registers.

j=0
) mo+t-j
then 1 is a root of o'e(X). Let Ge(t J) Ue(t—j)' Now
t m & .
z o, n=a ° z o .
. e(t-j) e(t-j)
=0 =0

which will be zero when am1 = an-l is a root of cre(X). All error locators can therefore
be found with n multiplications by am, and stored in t memory registers.

Finally, we have only the problem of solving for s + t erasures. We use (45), which
requires the elementary symmetric functions of all erasure locators but one. Since

-1
o, = Y . ,
k0 dk (d(k+1) ko d(k+1)>

kocd(s-l) = Yklcrci and find all ko dk from the o-dk
cations and an inversion. Then the calculation of (45) requires 2(s+t-1) multiplications
and an inversion. Dcing this s + t times, to find all erasure values, therefore requires
3(s+t)(s+t~1) multiplications and s + t inversions. Or we can alter s + t -~ 1 parity checks

after finding the value of the first erasure, and repeat with s* = s+ t -1 and so forth;

we can begin with with 8 -~ 1 multipli-

under the assumption that all Ykm are readily available, this alternative requires only
2{s+t)(s+t-1) multiplications and s + t inversions.
a. Summary

To summarize, there are {or any kind of decoding two steps in which the number of
computations is proportional to n. If we restrict ourselves to correcting deletions only,
then there is no step in which the number of computations is proportional to more than

2

d”. Otherwise, reduction of the matrix M requires some computations that may be as
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large as a3, I we are doing general minimum-distance decoding, then we may have to
repeat the computation d/2 times, which leads to a total number of computations propor-
tional to d4. As for memory, we also have two kinds: a buffer with length proportional
to n, and a number of live registers proportional to dz. In sum, if d = én, the total com-
plixity of the decoder is proportional to nb, where b is some number of the crder of 3.
A1l this suggests that if we are willing to use such a special-purpcse computer as our
decoder, or a specially programmed general-purpose machine, we can do qu:ite powerful
decoding without making the demands on this computer unreasonable.

Bartee and Schneider32

built such a computer for a (127,92) 5-error-correcting

binary BCH code, using the Peterson33 algorithm. More recently, Zierlez‘34 has studied
the implementation of his algorithm for the (255, 225) 15-error-correcting Reed-Solomon
code on GF(256),both in a special-purpose and in a specially programmed small general-

purpose computer, with results that verify the feasibility of such decoders.

b. Modified Deletions-and-Errors Decoding

If a code has minimum distance d, upto s 0~ d - i deletions may be corrected, or
up to to < (d-1)/2 errors. We have seen that while the number of conipulations in the
decoder was proportional to the cube of t o’ it is proportional only to the square of S
It may then be practical to make the probability of symbol error so much lower than that
of symbol deletion that the probability of decoding error is negligibly affected when the
decoder is set to correct only up to tl < to errors. Such a tactic we call modified

deletions-and-errors decoding, and we use it wherever we can in the computaticnal

program of Section VI.
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V. EFFICIENCY AND COMPLEXITY

We shall now collect our major theoretical results on concatenated codes. We find
that by concatenating we can achieve exponential decrease of probability of error with
over-all block length, with only an algebraic increase in decoding complexity, for all
rates below capzcity; on an ideal superchannel vith a great many inputs, Reed-Solomon
codes can match the performance specified by the coding theorem; and with two stages
oi concatenation we can get a nonzero error exponent at all rates below capacity,
although this expcnent will be less than the unconcatenated exponent.

5.1 ASYWPTOTIC COMPLEXITY AND PERFORMANCE

We have previously pointed out that the main difficulty with the coding theorem is the
complexity of the decoding schemes required tc achieve the performance that it predicts.

The coding theorem establishes precise bounds on the probability of error for block
codes in terms of the iength N of the code and its rate R. Informative as this theorem
is, it is not precisely what an engineer would prefer, namely, the relationship petween
rate, probability of error, and complexity. Now complexity is a vague term, subsuming
such incommensurable quantities as cost, reliability, and delay, and often depending on
details of implementation. Therefore we should not expect to be able to discover more
than rough relationsghips in this area. We shall investigate such relationships in the
limit of very complex schemes and very low probabilities of error.

We are interested in schemes that have at least two adjustable parameters, the
rate R and some characteristic length L, which for block codes will be proportional to
the block length. We shall assume that the complexity of a scheme depends primarily
on L.. As L becomes large, a single term will always dominate the complexity. In the
case in which the complexity is proportional to some algebraic function of L, or in which
different parts of the complexity are proportional to algebraic functions of L, that part
of the complexity which is proportional to the largest power of L, say L%, will be the
dominant contributor to the complexity when L is large, and we shall say the complexity
is algebraic ia L, or oroportional to L. In the case in which some part of the complexity
is proportional to the exponential of an algebraic function of L, this part becomes pre-
dominant when L is large (since ez 1 +x+ xz/?.! +...> xa, X - ), and we say the
complexity is exponential in L.

Similarly, the probability of error might be either algebraic or exponential in L,
though normally 1t is exponentially small. Since what we are really interested in is the
relationship between probability of error and complexity for a given rate, we can elim-
inate L from these two relationships in this way: if complexity is algebraic in L, while
Pr(e) is exponential in L, Pr(e) is exponential in complexity, while if both complexity
and Pr(e) are exponential in L., Pr(e) is only algebrzaic in complexity.

For example, the coding theorem uses maximum-likelihood decoding of block codes

-NE(R)

of length N to achieve error probability Pr(e) < e Maximum-likelihood deccding
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involves eNR comparisons, so that the complexity is also exponential in N. Therefore,

Pr(e) is only algebraic in the complexity; in fact, if we let G be proportional to the com-
—(In G) E(R} E(R)
"R _ c R

plexity, G = DR, (In G}/R = N, Pr(e) < e
noted, this relatively weak dependence of Pr(e) on the complexity has retarded praciical

. As we have previously

application of the coding theorem.

Sequential decoding of convolutional codes has attracted interest because it can be
shown that for rates lesa than a critical rate Rcomp < C, the average number of com-
putations is bounded, while the probability of error approaches zero. The critical lia-
bility of this approach is that the number of computations needed io0 decode a given
symbol is a random variable, and that therefore a buffer of length L. must be provided
to store incoming signals while the occasional long computation proceeds. Recent work3
has shown that the probability of overflow of this buffer, for a given speed of computa-
tion, is proportional to L™%, where ¢ is not large. In the absence of a feedback channel,
buffer overflow is equivalent to system failure; thus the probability of such failure is
only algebraically dependent upon the length of the buffer and hence on complexity.

Threshold decoding is 2nother simple scheme for decoding short convolutional codes,
but it has no asymptotic performance. As we have seen, BCH codes are subject to the
same asymptotic deficiency. The only purely algebraic code discovered thus far that
achieves arbitrarily low probability of error at a finite rate is Eliag' scheme of iterating

codes36; but this rate is low.

Ziv37 has shown that by a three-stage concatenated code over a memoryless channel,
a probability of error bounded by
5.5

Pr(e) s K~

can be achieved, where L is the total block length, while the number of computations
required is proportional to L% His result holds for all rates less than the capacity of
the original channel, althoughas R - C, a - o,

In the sequel we shall show that by concatenating an arbitrarily large number of
stages of RS codes with suitably chosen parameters on a memoryless channel, the over-
all probability of error can be bounded by

(1-4)
Pr(e) < pi" s

where I, is proportional to the total block length, and A is as small as desired, but posi-
tive. At the same time, if the complexity of the decoder for an RS code of length n is
proportional to nb, say, the complexity of the entire decoder is proportional to Lb. From
the discussion in Section IV, we know that b is approximately 3. This result will obtain
for all rates less than capacity.

We need a few lemmas to start. First, we observe chat since a Reed-Solomon code
of length n and dimensionless rate (1-28) can correct up to np errors, on a superchannel
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with probability of error p,

Pr(e) < (:ﬁ) pnp < e"n[' p log P "R(p)]_ (46)

Here, we have used a union bounu and

(3) <.

This is a very weak bound, but enough to show that the prcbability of error could be made
to decrease exponentially with n for any p such that -p log p - ¥(B) > 0 if it were pos-
sible to construct an arbitrarily long Reed-Solomon code. In fact, however, if there are
q inputs to the superchannel, with q u prime power, n € q-1. We shall ignore the
prime power requirement and the 'minus one' as trivial.

It is easily verified that for g < 1/2,

- 1Inp 2 -(1-p) In (1-p).

Therefore

-2plnp=X(p) =2-~plnp, Bs<1/2. (47)

-

Now we can show that when (-ln B) s (Za)a'l,

%(8%) < x2(p) (48)
For, by (47),

%(p?) < -2p2 In p2 = p? - 2a(-Inp)

x2(@ = p2(-np)%;
but

1

a when x > (2a)%"!

2ax €x
which proves Eq. 48. We note that when B « l/ez. a > 4, this condition is always satis-
fied. {In fact, by changing the base of the logarithm, we can prove a similar lemma for
any <1, a>1l.)
Finally, when x>y >0, anda > 1,

a’
y
bey)” = xa(l '(3?)> g "a( "i')> xa( '%7 =xt -y (49)

We are now ready to construct our many-stage concatenated code. Suppose by some
block-coding scheme or otherwise we have achieved a superchannel with N, inputs and
outputs and a probability of error
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! ¥ Pr(e) <p =e E>1 , (50)

We now apply to this superchannel an RS code of dimensionless rate (1-2g) and length Nl’
ac_hieving a probability of error, from (46), of

Prife) <e =e . ' (s1)
o - Assume BE - () > 0, and define a to satisfy
1 N, [BE-%(p)] = E, = E%
thus =~ .
¥ InN, In [BE-5p)]
£ % **mE * In E . (52)
3 2;2 )
E I We assume that
E 7 '
. B < 1/ez ~ (53)
ﬁ 4 <a <N (1-2p),
: L
- and we shall prove the theorem only for these conditions.
BN N, (1-2p)
2 < ) This first concatenation creates a new superchannel with Nll inputs and
Y outputs and Pr(e) < exp -El. Apply a second RS code to this new superchannel of
;3 length N2 = N‘;‘ and dimensionless rate (I—Zﬁa). {That a code of this length exists is
®, guaranteed by the condition of Eq. 53 that a < N, (1-2p).) For this code,
-N,[8°E, -%¢(s%]  -E,
i Pr(e) <e =Ee . (54)
. ‘But now
i E, = N,[p°E, ~5¢(s%)] = NJ[8*E" - 3¢(6*)]
A > N [B°E® -%c%(p)]
E > Nj[pE-%e(8)]*
- g
L = E. (55)
f_ : ‘% Here, we have used the inequalities of (48) and (49).
Thus by this second concatenation we achieve a code which, in terms of trans-
. ' a+tl

migsions over the original superchannel, has length NlN2 = N1 , dimensionless
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2
rate (1-2p)(1-28%), and Pr(e) < exp-E® .

Obviously, if B < 1/e2, then ﬁa < l/ez, and if a < Nl(l-zp), then a < Nz(l-Zpa).
Therefore if we continue with any number of concatenations in this way, (53) remains
satisfied, and relations like Eq. 55 obtain between any two successive exponents. After

n-}
n such concatenations, we have a code of dimensionless rate (l-zp)(l-aﬂa) e I-Zpa
an-l .
length L = Nla"1 , and Pr(e) < exp-E> . Now, for a =2, B < 1/2,
an—l 2 2n-—l
(1-2p)(1-2p%) ...\ 1-28 > (1-2p)(1-2B%) ... \1-28
=1-2p-2p% +4p3 -2t + ...
>1-2p-4p° -8p> - 16p% - ...
/1 1-4p
= 1'25\1-25)21-23' (561
Also,
n-1
a _ n_ In L
ST N =InL, a"=1+(-1)1oyt N, (57)
so that
n ey S ey
-E* _E.E 1 1 ;(1-a)
Pr(e) <e =e = P, = P, , (58)

by substitution for a, where A is defined by
( scm))
A=~ .liE_-__-E_:_-.
B In N1

Since BE - J((B) is assumed positive, but p <1, A is positive,
We now construct a concatenated code of rate R' = C(1-€) for a memoryless channel

_ 1-2p
with error exponent E(R), Choose R = (1-6)C > R' and 8 =8-€ so that -1-—_—_—4—R =
2(1+6-¢) B

C(l-€). We know there is some block code of length N and rate R such that Pr(e) <
exp -NE(R). Now we can apply the concatenation scheme already described with

N1 = expNR, E = NE(R), as long as

In[BNE(R) -3¢(p) ]
. Pl NR

4 <ac=
1n NE(R) InNE(R)

(1-2p).

It is obvious that there is an N large enough so that this is true. Using this N, we
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achieve 2 scheme with rate greater thas, ar eguat t»-—-;-;-.-gﬁ = Cli-€} and with probabil-

ity of exror

YIS A At

Priey < =P, R
| ) {
.x.n tp A —
i NE{R}] ;
A= -~ .
NR

Clzarly, =8 long as E(R) > 0, A can be made ag amall as desired by letting ™ be suf-
ficiently large. It remains positive, however, go that the error exponent E desined by

= lim -k i log Pr{e}

,L‘v-.w

appexars fo ge io zero, if this bound is tight.

That E must be zers when 2n arbitrarily large numher of minimum-~distance codes
are couacal 0"in¢ 2an be shown by the following simple lower bound. Suppose a code of
length N can correct up tw &g «:rers; since the miniarim digstance caanot exceed N,

< 1/2. Then on a channel with symbol probabiiiiy ¢ »rror p, a decoding error will

certamly be made if the first Np symbols are in error, so that

Pr(e) = pNﬁ.

Concatenating a large number of such codes, we obtain

(N;\N,...)(B;B,...)
Pr(e) > p, 172 1727

Now NINZ' .. = L, the total block length, so that

= lim -——log Pr(e) < (-logp ) llm(p [3.,...) =0,

L»oo

because By S 1/2. Since E cannot be less than zero, it must actually be zero, In other
words, by concatenating an infinite number of RS codes, we can approach as close to a
nonzero error exponent as we wish, for any rate less than capacity, but we can never
actually get one.

As was shown in Section III, decoding up to t errors with an RS code requires a num-
ber of computations proportional to t3. We require only that the complexity of a decoder
which can correct up to N§ errors be algebraic in N, or proportional to Nb, although in
fact it appears that b ~ 3. After going to n stages of concatenation according to the

n-1 '
scheme above, the outermost decoder must correct (Nlﬁ)a errors, the next outer-
n-2
most (NI(S)a , and so forth. But in each complete block, the outermost decoder ne=d
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-1
N3V compite oice, #hile the Devt outermnat decoder must compute N‘; times. the
i 2

-, _%
13-
-

w4t outermost N? hy times, and so forth, Hence ihe total moraber of comjutiations

iz proportionsi to

f' an~i'§ a R r _.1:1-2"! 24*—1 2, 72, n-?;'}b
G~junp® | +N] |42.8) j 2 U E N A A T
[P ! - - ‘ PI -
5 Sl n-l.,. a-2 r-1_ -2 . 0n~3
sEE 4N Tha Ty gan e oo

~

Sine2 ba> b +a, a 22, b > 2. the fir,. term ir this geries iz Jominant. Finally, since
-1
N ] IJ,

1
LY

/Y4

G

Thus the numsber of computations can increase only as & smsll power of L. The com=-
plexity of the hardware required te ‘mplement these computaiions ig also inz reasing, but
genexally only in proportion to = power of log L.

This recul! is not to be taken as a guide to design; in practicz one rinds it unnecces-
sary to concatenate a large number of codeg, as iwo gtages generally guffice. It does
indicate that concatrnation is a powerful tool for getting exponentially srall probabilifies
of error without an expenentially large deccder.,

5.2 CODING TIEFDREM FOR IDEAL SUPERCHANNELS

We recall that an ideal superchannel 1s Wil -2, g-oticul mermoryless oiaonel
which is symmetric from the input and the output and has equip: C22™le crrors, i ilg
total probability of error is p, its transition probability matrix is

(I’P): i=J
pji= p (59)
Py i#]

We shall now calculate the unexpurgated part of the coding theorem bound for this
channel, in the limit as q becomes very large. The result will tell us how well we can
hope to do with any code when we assume we are dealing with an ideal superchannel.
Then we shall find that over an interesting range Reed+Solomon codes are capable of
achieving this standard. Finally, we shall use these results to compute performance

; bounds for concatenated codes.

Specialized to a symmetric discrete memoryless channel, the coding theorem asserts
that there exists a code of length n and rate R which with maximum-likelihood decoding
will yield a probability of error bounded by

Pr(e) < ¢~ DE(R) ,
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where
E(R} = max {E_{p}~pR)} (60)
g<p<y ©
3 %]
q [ R
d; , e
= -1a \ i Lo lEr
Byl =) | ) Th | - (61)
=t i=1

Substituting Eq. 52 in Eq. €. we obtain for the ideal superchannel

| "_1_]

R {p) = «in QP l{1-p)!*" + (g1l P pltP
[+ [

1+p
(62)

7o faciiitzie handling Ea. 62 when q becomes large, we substitute p' = p In q and
the dimensicnless rate r = &/In q; then

Pr(e) < ¢ PEC), (63)
Ei{r} = max {Eg((.’)—p'r}
O<p'<ing
b}
14—
B ph) = - "'Iu ,s‘l“q*" + (-1 R a¥ P plaatet

We congider [irst the cr =2 in which p is fixed, while q becomes very large. For p' >0
&‘o(p*) becnmes
!

™
At

.-t 1
o 2 IR § S 3_(1‘-p)+peP ]

o' - In [(1-p)+peP ],

In the maximization of E(r), p' can now be as large as desired, so that the curved,
unexpurgated part of the coding theorem bound is the entire bound; by setting the deriv-
ative of E(r) to zero, we obtain

5
r =-8—p,—Eo(p')
1]
pef 1-p
=] - . = ;
(1-p) + pe?  (1-p) + peP
or
2P 1-r
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Thus,

1-p 1-p
l1-r
P - -1Ia T

E(r)

{1-1r) In

-rln (1-p) - (1-1) In p - 3(r). (64)

This bound will be recognized as equal to the Chernoff bound — to the probability of
getting greater than n(l~-r) errors in n transmissions, when the probability of error on
any transmission is p. Ii suggests that a maximum-likelihcod decoder for a good code
corrects all patterns of n(l1-r) or fewer errors.

On the other hand, a code capable of correcting all patterns of n(l-r) or fewer errors
must have minimum distance 2n(1-r), thus at least 2n(l-r) check symbols, and dimen-
sionless rate r' = 1 - 2(1-r) < r. No code of dimensionless rate r can correct all pat-
terns of n{l-r) or fewer errors. What must happen is that a good code corrects the great
majority of error patterns beyond its minimum distance, out to n(1-r) errors.

We shall show that on an ideal superchannel with q very large, Reed-Solomon codes
do just about this, and come arbitrarily close to matching the performance of the coding
theorem.

One way of approximating an ideal superchannel is to use a block code and decoder of
length N and rate R over a raw channel with error exponent E(R); then with eNR inputs

we have Pr{e) < e-NE(R). We are thus interested in the case in which
q= eNR

and (65)
p= e'NE.

Substituting Eqs. 65 in Eqs. 63, and using p' = p In q = pNR, we obtain

Pr(e) < e—nE(r )
E(r) = max {Eo(p)-pNRr} (66)
0<p=sl

1+p

1 p
- — NE
_ _ 1+p I+p =550
E (p) = -In e PNR| (1o T4 €NBoy) e ”"]
When N becomes large, one or the other of the two terms within the brackets in this last

equation dominates, and Eo(p) becomes

pNR, pNR < NE
E (p) =
NE, NE < pNR,
or
Eylp) = N min{pR, E}. (67)
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The maximization of E(r) in (66} is achieved by setting p=E/R if E/R <1, and p=1
otherwise, Thus

NE(1-r) E<R
NR({1-r) E=R

E{r) =

or
E(r) = N(1-r) min {E, R}. (68)

In the next section we shall only be interested in the case E < R, which corresponds to
the curved portion of the bound, for which we have

nNE(1-r)

Prie) < e~ (69)

5.3 PERFORMANCE OF RS CODES ON THE IDEAL SUPERCHANNEL

We shall show that on an ideal superchannel (which suits RS codes perfectly), RS
codes are capable of matching arbitrarily closely the coding theorem bounds, Egs. 51
and 69, as long as q is sufficiently large. From these results we infer that RS codes
are as good as any whenever we are content to treat the superchannel as ideal.

a. Maximum-Likelihood Decoding
We shall first investigate the performance of RS codes on a superchannel with large
q and fixed p, for which we have shown (Eq. 51) that there exists a code with

Pr(e) < e-n[-(l-r) iap-rin(l-p) —3C(r)].

It will be stated precisely in the following theorem.

THEOREM: For any r >1/2, any & such that 1/4> 6 >0, and any p such that
1/4 > p > 0, there exists a number Q such that for all ideal superchannels with proba-
bility of error p and q = Q inputs, use of a Reed-Solomon code of length n < q - 1 and
dimensionless rate r with maximum-1likelihood decoding will result in a probability of
error bounded by

Pr(¢) < 3¢~P[~ (1-1) Inp-rin (1-p) ~Je(r) - 8]

PROOF": Let Pi be the probability that a decoding error is made, given i symbol
errors. Then

n
Prie) = Z Pi(‘i‘) pi(1-p)™3,
i=0

The idea of the proof is to find a bound for Pi which is less than one for i <t, and then
to splii this series into two parts,
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n
Pi(?) pl1-p™ 7 + Z (’;) pH1-p™Y, (70)

t
Pr(e) =
i=0 i=t+1

in which, because Pi falls off rapidly with decreasing i, tne dominating term in the first
series is the last, while that in the second series is the first.

We first bound Pi for i <d -1, Consider a single code word of weighi w. By
changing any k of its nonzero elements to zeros, any m of its nonzero elements to any
of the other (g-2) nonzero field elements, and any 1 of its zero elements to any of the
(q-1) nonzero field elements, we create a word of weight i = w +1 -k, and at distance
j=k +1+m from the code word. The total number of words that can be so formed is

w n-w m )
() (*57) 2™ g,
Here, the notation (kv;n) indicates the irinomial coefficient

wi
kim! (w-m-k)!

which is the total number of ways a set containing w elements can be separated into sub-
sets of k, m, and (w-m-k) elements. The total number, N, of words of weight i and
distance j from some code word is then upperbounded by

Ny < Z (k‘,”m) (nEw) @-2™ (@-n* Y, (71)

w,k,4,m
i=w+l-k
j=k+l-m

where Nw is the total number of code words of weight w., The reason that this is an

upper bound is that some words of weight i may be distance j from two or more code
words.
We have shown (see Section III) that for a Reed-Solomon code,

n w-d+1
| NW < (W) (Q"l) .

Substituting this expression in (71) and letting k=j-1l-m, w=i+j-m-21, we

obtain
itj-m-24) (n-i-j+m+24 n oy itjeme-f-d+]
Nij < z z (j-l-m,m) ( ] ) (i+j—m-2£) (q-2)"" {(q-1)
5 m=20 £20
i ni (q_z)m (q_l)l'*':]"m-l"'d‘*‘l
) E 2 : (72)
ma0 5o m! L (-L-m)! (i-f-m)! (n-i-j+m+l)!
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A more precise specification of the ranges of m and 1 is not necessary for our
purposes.
The ratio of the (1+1)th to the lth term in this series, for a given m,

(q-1)"! (j-2-m) (i-2-m)
(£+1) (n-i-j+m+L+1)

A wlh o RSN FORRTT O SR PTIRE. LIeY

is upperbounded by

@-1% (@-17! R R e

(241) [n-2(d-1)]  (£+1) ig-1) n(2r-1)  (£+1) (2r-1)
Here, we have used r>1/2, jsi<d-1=n(l-r), 120, m>0, and n<q-1. Defining

(l-r)2
C=3r 1

we have

z al (q_z)m (q_1)1+3-m-d+1 C‘f
N.. €
ij 21

m>p m! (j-m) ! (i-m) ! (n-i~j+m) ! 0>0

itj-m-d+l
(73)

_ .G Z n! (q-2)" (g-1)

mao m! (-m)! (i-m)! (n-i-j+m)!

th

Similarly, the ratio of the (m+1)th to the m™" term in the series of (73),

(q-2) (j-m) (i~m)
(q-1) (m+1) (n~i~j+m+1) ’

is upperbounded by

(d-1)2 nC,

(m+1) [n-2(d-1}] ) (m+1)

so that

C, nf (q-1)iti-dtl (nC)™

Njj<e ml
jt it (n-i-j)! m=>0

i+j-d+1

(74)

) eCl(n+l) (

1?;‘) (a-1)

Since the total number of i-weight words is
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n i
(i) (Q"l) ’
the probability that a randomly chosen word of weight i will be distance j from some
code word is bounded by

C, (n+1) . .
e 1 (n;1> (q_l)]+1-d,

and the total probability Pi that a word of weight i will be distance j < i from some code
word is bounded by
yiti-d

Pis

C,(n+l1) (n-i}! (g-1
e 1) i
& e

or, if we substitute j' =i - j,

C, (+1) (n-i) 1 (q-1)i3'H1-d
P <e ) (75)
So = -2ieg

The ratio of the (j*+1) % to the '

(i-i"
(g~1) (n-2i+j'+1)’

term in the series of (75),

is uprerbounded by

- (1-r)
CZ. = d 1 = .
{q-1) [n-2(d-1)] (q-1) (2r-1)
so that
C, (nt1) (n-i) ! (q-1yit1-d "
Pi <e C2 .
itm-2it i,
If
(1-x}
q-122%-7 (76)
so that C, < 1/2,
C, {n+1) . ,
1 n-i itl-d
F <e ( i ) (q-1)
C,(ntl) , . 1y
<2e ] (ni 1) (q_l)ri-l d (17)
Substituting (77) in (70), we obtain
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prio <221 ) (°7) @it (3) sl e ) (3) s
i=0 i=t+1

Sl + Sz. (78)

We let

~d-1-1
€=——1-1—>0'

so that t = n(l-r-€). The second series of (78) is just the probability that more than t
errors occur, which is Chernoff-bounded by

s, < o~ B[~{1-r-€) Inp - (r+€) In (1-p) - K (r+e) ], (1-r-€) > p. (79)

(If €<6,1-r-€>1/4>p.) Setting i’ = t - i, we write the first series of (78) as
-3t 1] it
C. (n+1) < nt (q_l)t+1-d i pt i (l-p)n t+1

= 2e 1 ’

) (80}
1 L (t-i') 1 (t-i") | (n-2t+2i') 1

S

i'=>0
The ratio of the (i'i-l)th to tne i'th term in the series of Eq. 80,
(1-p) (t-i")2
plg-1) (n-2t+2i'+1) (n-2t+2i'+2) ’
is upperbounded by
2
(1-p)  (d-1)° (1-p)(1-1)
Cs= z = Z?
p(g-1) [n-2(a-1)]° p(q-1)(2r-1)
so that
-d ¢ -
C,+1) nt (-0 pfap™t
S1 < 2e C3
t1t! (n-2t)1 <o
if
1-p (l-r)2
g-1>2 7 (81)
(2r-1)

so that C; < 1/2,

C, (n+1) 51 (g~ ~yttl-d gty -t

S1 < 4e . (82)
t!t1 (n-2%)1

Substituting Pt from (77) in (82), we obtain




5, < zpt(’;) pta-p2t. (83)

Substituting (83) in (78), with the use of

(x:) < enZC(t/n),

we have

Prie) < (2P 1) e [~ (1-r-€i Inp-(r+e) In (1-p) ~3e(r+e)]

Choose

]
€=

= (84)
In(l-p) -Inp ;
since p<1/4, € <6, and Eq. 79 is valid. Since
H(r+e) S¥(r), r=>1/2,

Pr(e) < (ZPt+1) e"'n[“ {1-r)Inp~rin(1-p) -X(r) ]‘ (85)

Finally, for this choice of €, from (77),

P, = 2e

C, (n+l) _ _
. 1 (né t) (q-l)t“ d

n[Cl +1 --eln(q~1)]+[cl +1n2]

<e

5 in which we have used d -1 ~t = ne and

(n;t) < e,;;;c(.&%i) <el

Thus Pt <1 if

1[ C1+1nz]
In (q-1) 2¢|C + 1 +—

In (1-p) -Inp
5

v

[zc1+ 1+1n2], (86)

in which we have used n=1 and substituted for € by Eq. 84. Defining C 4= ZCl +1-1In2,

(84) can be written

l-p 4/6
q-12 o . (87)

When this is satisfied,

-n[- (1-r) Inp-riln(l-p) -¥(r) - 6] (88)

Pr(e) < 3e
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as was to be proved. Equation 88 holds if (76), (81), and (87) are simultaneously satis-
fied, whichis tosay if q -1 > Q, with

I'd
C,/8

(1-r)  1-p (1-r)2 [1 - ]
Q =max {2 , 2 , . (89)
2r -1 p (Zr__i)z p

Q.E.D.
From this result we can derive a corollary that applies to the case in which q = eNR,

P= e-NE, for which we have found the coding theorem bound, whea £ < R (Eq. 69),

Pr(e) < e ONE(l-1)

COROLLARY: For E <R, r > 1/2, and any §' > 0, there exists an N such that for
alN>N o use of a Reed-Solomon code of dimensionless rate 1 and length n <q-~1
with maximum-likelihood decoding on an ideal superchannel with probability of error

p= e'NE and q = eNR inputs will yield an over-all probability of error bounded by

Pr(e) < 3e"nN[E(l-r)_5|].

Proof: The proof follows immediately from the previous theorem if we let 6 =
Né* ~ X(r), which will be positive for

XAr}
N> 5 - (90)

For then, since ~-r In (1-p) = 0,

-nf1-r)NE+nN&'

Pr{e) < 3e (91)

which was to be proved. Equatior 91 holds if Eq. 90 holds and if, by substituting in
Eq. 89, )

_C
-NE (1-r)2 -NR [V5' Xir)
NR 1-r l1-e l-e
e >max425—7, 27 —\g z' | -NE . (92)
e (2r-1) e
The first condition of (92) is satisfied if
N>Ltin2l-L, (93)

R 2r -1’

the second, if

2
(1-r)
NR > EJEi-an————z- (94)
{2r-1)

-NE

in which we have used 1 - e < 1. Equation 94 car. be rewritten
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(1-r)2 ]
S ;
(2r-1) :

N B———R_—E—-—. (95)

Here, we agssume R > E.
The third condition of (92) is satisfied if

Cq
NR = NE |—————|, (96)
INS* - X(r)

which can be rewritien

EC4/R + X(r)

N> & . (97)
Equations 99, 93, 95, and 97 will be simultaneously satisfied if N > No’ where
5 {scm N T R . (1-n)2 EC , + RXUD)
= rnax » oln 2 s 2 » .
o 'R 2r-1" R~ E (Zr-l)z R&*
Qo E. Do

This result then provides something for communication theory which was lacking pre-
viously: a limited variety of combinations of very long codes and channels which approx-

imate the performance promised by the coding thecrem.
For our present interest, this result tells us that cnce we have decided tc concatenate

and to treat errors in the superchannel as equiprobable, a2 Reed-Solomon code is entirely
satisfactory as an outer code. If we fail to meet coding-theorem standards of perform-
ance, it is because we choose to use minimum-distance rather than maximum-likelihood

decoding.
b. Minimum-Distance Decoding

If we use minimum-distance decoding, decoding errors occur when there are d/2 =

n(1-r)/2 or more symbol errors, so by the Chernoff bound
- + 1-r\]
- (A5 mp- (L4 inp - fL55) .

One way of interpreting this is that we need twice as much redundancy for minimum-
distance decoding as for maximum-likelihood decoding. Or, for a particular dimension-
less rate r, we suffer a loss of a factor K in the error exponen:, where K goes to 2 when

p is very small, and is greater than 2 otherwise. Irdeed, whengq = eNR, p= e"NE, and

Pr(e) < e

E < R, the loss in the exponent is exactly a factor of two, for (98) becomes

-nNE(1-r)/2
Pr(e) se (1-r)/ .
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5.4 EFFICIENCY OF TWO-STAGE CONCATENATION

By the coding theorem, we know that for any memoryless channel there is a code of

- N ]
length N' and rate R' such that Pr(e} <e N'E(R')
the channel. We shall now show that over this same channel there exists an inner code

of length N and rate R and an outer code of length n and dimensionless rate r, with
-N'E_(R")
nN = N' and rR = R!, which when cencatenated yield Pr(e) < e C . We define the

efficiency n(R') = EC(R')/E(R'); then, to the accuracy of the bound, the reciprocal of the
efficiency indicates how much greater the over-ail length of the concatenated code must
be than that of a single code to achieve the same performance, and thereby measures

» where E(R') is the error exponent of

the sacrifice involved in going to concatenaticn.

For the moment, we consider only the unexpurgated part of the coding-theorem
bound, both for the raw channel and for the superchannel, and we assume that the inner
decoder forwards noc reliability information with its choice. Then there exists a code
of length N and rate R for the raw channel such that the superchannel will have eNR

inputs, eNR outputs, and a transition probability matrix pji for which
Pr(e)= e R Z Y b, < NER), (99)
AT
i j=i

Applying the unexpurgated part of the coding theorem bound5 to this superchannel,
we can assert the existence of a code of length n and dimensionless rate r (thus
rate r ln (eNR) = rNR) which satisfies

"DE(I‘,p.i)
Pr(e) <e n,
where
max NR
E(r,p..)= P E-lg, ..)=pr
(v p35) 0<psl{ o(Pipyl-pr}
and
1 1+p
> = _ = l4p
Ep(P’pji)_ lnz L_,Pipji
j i

We cannot proceed with the computation, since we know no more about the matrix pji
than is implied by Eq. 99. We shall now show, however, that of all transition probabil-
ity matrices satisfying (99), none has smaller E(r, pji) than the matrix Sji defined by

1~ e-NE(R),

Bi; =  ~NE(R)

- i#j
eNR-l

i=j
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which is the transition probability matrix of the ideal superchannel with eNR inpute, and

Pr(e) = e’NE(R). In this sense, the ideal superchannel is quite the opposite of ideal. {In
a sense, for a fixed over-all probability of symbol error, the ideal superchannel is the
minimax strategy of nature. while the assumption of an ideal superchannel is the corre-

sponding minimax strategy for the engineer.)

First, we need the following lemma, which proves the convexity of EP(-I-;’ ) over the
convex space of all transition probability matrices.

LEMMA: If pji and qji are two probability matrices of the same dimensionality, for

0=sa=1,

—_ - -
E (P,p..)+ (1\)E (P,q..} 2 E (P, Ap..+{1\)g..).
XE, (P, pyj) + (1-X) E (P, q;;) > E, (P, ap;;H1-M)ay;)

PROOF: The left-hand side of the inequality is

1 Jite l1+p
AE (P,p;.) + (1-A) E (P,q..) = -A1n Z Z P. pm -={l1-A)In z [Z “'P
P i P 31 rn
j L Li
l4p A 1 14p B
- 1+p T4p
- Z Z PiPii 2 (2=
j i
=-InL,
while the right is
14p
Ep(ﬁ, Ap;;+(1-A)g;;) = ~In z ZP (hpy;+(1-M)g; ) = -In R.
But
B l' 14p
Ii-o 1+p
L=< [ + (1-)\) Z z P, q
l+p 1 ite
=ZZP("‘” + ZP((l-x)q jHHP
i Li i J

i 1+p

< ) | Piowgra-na™
Bk

where th~ first inequality is that between the arithmetic and geometric means, and the

1
®
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second is Minkowski's inequality, which is valid because 0 < 1/14p < 1. Butif L <R,
-ln L 2 -In R, so the lemma is vroved.

From this lemma one can deduce by induction that Ep(?, pji) = Ep(—P;, p_ji)’ where the

bar indicates an average over any ensemble of transition probability matrices. The
desired theorem follows.
THEOREM: If e "R E 2 p =K < e NER) inen
i j#i J
? E(r,p..) 2 E(r,D..),
: (v, py;) > E(r, ;)
£
r where
3 3“ =1 ~NE{R) all i z
i |
-NE(R) o i
L pji = —e—ﬁﬁ—:"l—. i#j.
¥
-NR -NR

PROOF: Let e , all i, which
because of its symmmetry is clearly the optimum assignment for the ideal superchannel.

be the particular assignment P in which Pi =e

7 Then !
E E(r,pjl) = max E (P.p ) - prNR ;
E p’ P ;;
-, . |
’22 > Ep(e‘NR, pji) - prNR, 0<p <1 '?
3

Suppose we permute the inputs and outputs so that the one-to-one correspondence between

S~ s

—
them is maintained, thereby getting a new matrix P', for which evidently E ( NR, P; j 1)

( NR ji)‘ Averaging over the ensemble of all (eNR)! such permutations, and noting f
; that ;
1 1
p.=1- 11 i :
p11 K’ a 1 i
!
_— K <y g

P = o » i#j,

| i JNR _,
we have

NR )< (-NR ~NR ) :
( Pii Epe ’Jl/ p( ' Pji ‘

Obviously, EP e—NR,'ﬁ'ji) <E ( NR 11)' since K < e-NE(R), so that finally

E(r,p.i) > max E ( NR 1) - prNR = E(r, D..). §
I o<psl Pi i
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In Section II we computed the error exponent for this case, and found that

*
Pr(e) < e ™NE (1, R),

¢ Nonmiend BEE

where

E*(r, R) = (1-r) min {R, E(R)}. . (100)

To get the tightest bound for a fixed over-all rate R', we maximize E*(r, R) subject
to the constraint rR = R'. Let us define RE to be the R satisfying RE = E(RE); clearly,
we never want R < RE, so that EC(R') can be expressed -

Eq(R) = max E(R)(1-r). (101)
rR=R?
R?RE

The computational results of Section VI suggest that the r and R maximizing this
expression are good approximations to the rates that are best used in the concatenation
of BCH codes.

Geometrically, we can visualize how EC(R') is related to E(R) in the following way
(see Fig. 9). Consider Eq. 100 in terms of R for a fixed R:

[NV

Eg(R) = (1 - ) min {r, B(R)}.

This is a linear function of R’ which equals zero at R*' = R and equals min {R. E(R)} at
R' = 0. In Fig. 9 we have sketched this function for R = Rl' Rz’ and R3 greater than
RE, for RE’ and for R 4 less than RE. EC(R') may be visualized as the upper envelope

of all these functions.
As R! goes to zero, the maximization of (101) is achieved by R = RE, r - 0, so that

E(0) = E(R) = Ry, ;

Since the E(R) curve lies between the two straight lines L1 = E(0) and LZ = E(0) - R, we

have
E(0) ZE(RE) = E(0) - RE
or

E(0) > E(Ry) 2 3 E(©).

The efficiency n(0) = C(O)/E(O) is therefore between one-half and one at R' = 0.

As R' goes to the capacity C, E (R') remains greater than zero for all R' < C, but
the efficiency approaches zero. For, let E(R) = K(C- R) near capacity, which is the =
normal case (and is not essential to the argunent). Let R' = C(l-€), ¢ > 0; the maxi- é
mum of (101) occurs at R = C(1-2€/3), where E-(R) = 4€3KC2/27 > 0. Hence n(R') = é.
4€/217, so that the efficiency goes to zero as R' goes to C. The efficiency is propor- ¢
tional to (1-R'/C), however, which indicates that the drop-off is not precipitous. Most
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Fig. 9. Derivation of EC(R') from ECR’'.

important, this makes the coding theorem so provocative that exponential decrease in
Pr(e) at all rates below capacity is preserved.

We know from the previous discussion that over that part of the curved segment of
EC(R') for which r > 1/2, which will normally be [when E(RE) is on the straight-line seg-
ment of E(R)] the entire curved segment, Reed-Solomon codes are capable of achieving
the error exponent EC(R') if we use maximum-likelihood decoding. If we use minimum-
distance decoding, then we can achieve only

-nNE_(R')
Pr(e) e m ,

where
Em(R')= max E(R)/1-r)/2.

rR=R

Over the curved segment of EC(R), therefore, Em(R') is one-half of EC(R'); below
this segment Em(R') will be grezater than EC(R')/Z. and, in fact, for R' = 0

Em(O) = E(0)/2
which will normally equal EC(O). Thus minimum-distance decoding costs us a further
1acior of one-half or better in efficiency, but, given the large sacrifice in efficiency

already made in going to concatenated codes. this further sacrifice seems a small

enough price to pay for the great simplicity of minimum-distance decoding.
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RATE ( IN BITS )
0.5 0.42 0.51 0.22 0.15 0.10 0.063 0.043 0.022
EFFICIENCY (E~(K) /E(R)

Fig. 10. E(R) curve for original channel.

In Fig. 10 we plot the concatenated exponent EC(R'), the minimum-distance expo-
nent Em(R'), and the originul error exponent E(R') of a binary symmetric channel with
crossover probability .01. The efficiency ranges from 1/2 to approximately . 02 at 9/10
of capacity, which indicates that concatenated codes must be from 2 to 50 times longer
than unconcatenated. We shall find that these efficiencies are roughly those obtained in
the concatenation of BCH codes.

It is clear that 1n going to a great number of stages, the error exponent approaches
zero everywhere, as we would expect.

We have not considered the expurgated part of the coding-theorem bound for two
reasons: first, we are usually not interested in concatenating unless we want to signal
at high rates, for which complex schemes are required; second, a lemma for the expur-
gated bounu similar to our earlier lemma is lacking, so that we are not sure the ideal
superchannel is the worst of all possible channels for this range. Assuming such a
lemma, we then find nothing essentially new 1in this range; in particular, n(0) remains
equal to 1/2.

Finally, let us suppose that the inner decoder has the option of making deletions.
Since all deletions are equivalent, we lump them into a single output, so that now

NR inputs ard 1 + eNR outputs. Let the error probability

NE

the superchannel has e

for the superchannel be e and the deletion probability e_ND; assuming the 1deal
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superchannel with deletions again the worst, we have

Pr(e) < e RE(r),

where

E(r) = max EP(?) - pNRr
P, P

= max E_(e MRy - orNR
0<ps<1 P

and

1+p
— 1 P _NE
Ep ( e-NR) = -1n {eNR e_NR(l- e NE_ e-ND)Hp + e-NR(eNR_l)l+p e 14P + e ND

. _—

As- N -~ o, Ep(e_NR) =~ min (E, D, pR). But, by adding deletion capability, we can only
increase the probability of getting either a deletion or an error, so that

e-NE(R)‘S e-NE + e-ND
and thus min (D, E) = E(R), so that
min (D, E, pR) =2 min (E(R), pR).

Thus a deletion capability cannot improve the concatenation exponent EC(R'), although
it can, of course, bring the minimum-distance exponent Em(R') closer to EC(R'), and
thereby lessen the necessary block length by a factor less than two.
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VI. COMPUTATIONAL PROGRAM

The theoretical results that we have obtained are suggestive; however, what we
really want to know is how best to design a communic¢ation system to meet a specified
standard of performance. The difficulty of establishing meaningful measures of com-
plexity forces us to the computationai prog’fam described here.

6.1 CODING FOR DISCRETE MEMORYLESS CHANNELS

We first investigate the problem of coding-for a memoryless channel for which the
modulation and demodulation have already been specified, so-that what we see is a chan-
nel with q inputs, q outputs, and probability of error p. If we are given-a desired over-
all rate R' and over-all probability of decoding error Pr(e), we set ourselves the task
of constructing-a list of different coding schemes-with rate R' and probability of decoding
error upperbounded by Pr(e).

The types of coding schemes which we conteniplate are the following. We could use
a single BCH code on GF(q) with errors-only minimum-distance decoding. Or, we could
concatenate an RS outer code in any convenient field with an inner BCH code. In the latter
case, the RS decoder could be set for errors-only or modified deletions-and-errors
decoding (cf. sec. 4. 6b); we do not consider generalized minimum-distance decoding,
because of the difficulty of getting the appropriate probability bounds. If the outer decoder
is set for errors-only decoding, the inner decoder is set to correct as many errors as it
can, and any uncorrected word is treated by the outer decoder as an error. If the outer
decoder can correct deletions, however, the inner decoder is set t6 correct only up to.

t
rected words are treated by the outer decoder as deletions.

errors, where ’c1 may be less than the maximum correctable number to’ and uncor-

Formulas for computing the various probabilities involved are derived.znd discussed
in Appendix B. In general, we are successful in finding formulas that are both valid upper
bounds and good approximations to the exact probabilities required. The only exception
is the formula for computing the probability of undetected error in the:inner decoder,
when the inner decoder has-the option of deletions, where the lack of good bounds on the
distribution of weights in BCH codes causes us to settle for a valid upper 'bound," but not
a good approximation:.

Within this class of possible schemes, we restrict our attention to a set of 'good!
codes. Tables 1-6 are representative of such lists. Tables 1-4 concern a binary sym-
metric channel with p = .01; the specifications considered are Pr(e) = 10"12 for
Tables 1-3, Pr(e) = 10"6 for Table 4, R' = . 5 for Table 1, .7 for Tables 2 and 4, and
. 8 for Table 3. (For this channel C = .92 bits and R = .74.) Table 5 concerns a

comp
binary symmetric channel with p = .1 {so that.C = . 53 and Rcomp = . 32); the specifica-
tions are R!' = .15 and Pr(e) = 10-6. Table.6 concerns a 32-ary channel with p = .01 (so
that C = 4. 86 and Rcomp = 4, 11); the specifications are R! = 4, and Pr{e) = 10"12

Since the value of a particular scheme depends strongly upon details of implementation
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Table 1. Codes of rate .5 that achieve Pr(e) € 10 12 on 2 binary symmetric channel
with crossover probability p = . O1. .

( NNK ) D T ( n,k ) d t ‘Nn Cotament
{414,207) 51 25 .- 414 one stage
(15,11 ) 3 1 (76,52) 25 12 1140 e-o
{ 31,21) 5 2 (63,51) 19 9 2139 e-o
( 63,36 ) 11 5 (48, 42) 7 3 3024 "best’ e-o
{ 63,39) 9 4 (52,42) 11 5 3276 e-o
( 63,45 ) 7 3 (54,38) 17 8 3402 e-o
(127,71 ) 19 9 (38, 34) 5 2 4826 e-o
(127,78 ) 15 7 (33,27) 7 3 4191 e-o
(127,85 ) 13 6 (32,24) 9 - 4 4064 e-o
(127,92 ) 1k 5 (46,32) 15 7 5842 e-o
(127,99 3 9 4 (62,40) 23 11 7874 e-o
( 31,20 ) 6 2 (45, 35) 11 5 1364 die
( 31,21) 5 1 (77,57) 21 4 2387 d&e
{ 63,36 ) 11 4 (40, 35) 6 2 2520 d&e
( 63,36 ) 11 3 (72, 63) 10 1 4536 d&e
( 63,38 ) 10 4 (41,34) 8 3 2583 d&e
{ 63,38 ) 10 3 (47,39) 9 2 4536 d&e
3 (42,34) 9 4

( 63,39) 9

Notes — Tables 1-6

2645 d&e

N(n) = length of inner {outer) code

K(k) = number of information digits

D(d) = minimum distance (d~1 is the number of deletions corrected)

T(t) = maximum number: of errors corrected

nN = over-all block length

Comment: e-o = errors-only, d&e = deletions-and-errors decoding in the
outer decoder.
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Takle 2. Codes of rate .7 thai achieve Priej < 10717

on a binary symmetric channel

e ——— g

with crossover probability p=.01.

( NK ) D T {( =k ) d t aN Comment
(2740, 1918) 143 71 v-- 2740 one stage
( 127,99 ) 9 4 ( 530,476 ) 55 27 67310 e-o
( 255,207 ) 13 6 ( 455,491 ) &5 32 118575 e-o
£ 255,199 ) 15 7 ( 292,262 ) 31 15 74460 e-o
( 255,191 ) 17 8 { 306,285 ) 21 10 73030 e-o
{ 255,187 ) 19 9 ( 308,294 ) 15 7 78540 "best® e-0
( 127,98 ) 10 4 { 324,294 ) 31 12 43142 d&e
( 127,92 ) 11 4 (1277, 1234) 43 5 162179 d&e
{ 127,91 ) 12 5 (1634, 1059) 25 10 137662 d&e
{ 255,199 ) 15 . 6 ( 254,192 ) 23 s 54570 d&e
( 255,193 ) 16 6 ( 234,211) 24 3 59670 d&ke
( 255,192 ) 16 7 (224,193 ) 22 9 54570 dke
( 255,191 ) 17 7 ( 214,200 ) 15 3. 5457C d&ke
( 255,190 ) 18 7 { 232,218 ) 15 3 59169 d&e
( 255,190 ) 18 8 ( 232,218 ) 15 7 59160 d&e
( 255,187 19 8 ( 198,189 ) 10 3 50490 d&ke
{ 255,186 ) 20 8 ( 224,215 ) 10 2 57120 d&e

Table 3. Codes of rate .8 that achieve Pr{e) < 10 "2 on a binary symmetric charnel

with crossover probabiiity p = . 01.

{ NK )

D T ( nk ) t nN Comment
no single-stage code
(2047, 1655) 67 33 (1945, 1883} 67 33 3989603 e-o
(2047, 1684) 69 34 (1670, 1624) 47 23 3418490 'best* e-o
(2047, 1673) 71 35 (1702, 15656) 37 18 3483994 e-o
(2047, 1662) 73 36 (2044,2014) 31 15 4184068 e-o
(2047, 1655) 67 31 (1477, 1427) 51 3 3023419 d&e
{2047, 1695) 67 32 ( 866,856 ) 31 6 1813642 d&e
(2047, 1684) 69 32 (1234, 1200) 35 3 2525998 d&e
(2047, 1624) 69 33 ( 763,742 ) 22 5 1561861 d&e
(2047, 1673) 71 34 ( 804,787 ) 18 5 1645788 d&e

77




" B ah
%
A YPrIP TN

Table 4. Ccdes of rate .7 that achieve Prie) < 10 © on 2 binary symmetric channel
with crossover probability p = . OL.

( XK ) D T ( 2,k ) d t nN Comment
(784,549) 49 24 .- 784 one stage

] (127,99 ) 9 4 (236,212) 25 12 29972 e-o0

127,93 ) 11 5 (475,459) 17 2 69325 e-0

- (255,207) 13 6 (204, 276) 29 14 52020 e-o

. (255, 199) 15 7 (136, 122) 15 7 34530 e-o
(255, 191) 17 g (123,115) 9 4 3136= "best’ e-0
{255, 187) 19 9 (132, 126} 7 3 33660 e-o
(127,98 ) 19 4 (564,545) 26 2 71628 dke

C (127,92 ) 21 4 (140, 127) 14 5 317730 dke

4 (127,91 ) 12 5 (477,465) 12 4 €0579 dke
(255,206) 14 6 (122,111) 18 8 32640 d&ke
(255, 199) 15 6 ( 93,83 ) 11 2 24990 d&e
(255, 198} 16 6 (102,92 ) 11 1 2601G dke
(255, 198) 16 7 { 92,83 ) 10 4 23460 d&e
(255, 191) 17 7 ( 92,86 ) 7 1 23460 d&e
(255, 190) 18 7 (100,94 ) 7 1 25500 d&e
(255, 190) 18 8 (109,94 ) 7 3 25500 dke
(255, 187) 19 8 { 58,84 ) 5 1 22449 d&e
(255, 186) 8 5 1 25500 dke

20

(1€0,96 )

Table 5. Codes of rafe . 15 that achieve Prie) < 10~ °

1 on a binary symmetric channei
N with crossover probability p=.1.

[T

P —

{ K,X) D T { nk) d % nN Comment
(511, 76) 171 85 .eu 511 one stage
( 31,11) 11 5 (59,2 35 17 1&29 e-o
(31,6) 15 ( 54,42) 13 6 1674 e-o
( 63,18) 21 16 ( 51,27) 25 12 3213 e-o
{ 63,16) 23 i1 ( 35,21) 15 7 2205 e-o
( 31,11) 11 4 ( 40,17) 24 5 1240 d&e
( 31,10) 12 4 ( 43,20) 24 4 1333 d&e
( 31,10) 12 5 ( 47,22) 26 10 1457 d&e
. ( 31,6 ) 15 5 (116, 90) 27 2 3596 d&e
( 31,6) > 6 ( 45, 35) 11 3 1395 d&e
78
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Table 6. Codes of rate 4 that achieve Prie) < 10 12 on a 32-input symmetric cisnnel
with probability of error p = . 0l

{ K,X ) D T { nk ) d t nN Com:ment
(540,432) 57 23 --- 540 oue stage
{ 51,27.) 5 2 (393,361 ) 33 16 12183  e-o {both codes RS)
( 31,25 ) 7 3 (3250,3224) 27 13 100750 e-o
(148, 125) 13 & (34,323) 19 9 50468 e-o
(148, 121) 15 7 ( 652,638) 15 7 96496 e-o
(223, 196) 15 7 ( 245,223 ) 23 1% 54635 e-o0
(223,192) 17 S (193,184) 15 7 44154 e-o
(223, 188) 19 9 ( 196,186 ) 11 5 43708 e-o
(298,267) 17 8 (243,217) 27 13 72414 e-o
(298, 263) 19 9 (172,156 ) 17 8 51255 e-o
{298,259) 21 10 (151,139 13 6 44998 e-o
(298, 255) 23 11 ( 123,115 ) 9 4 36654 e-o
(298, 251) 25 12 (120,114 ) 7 3 35760 e-o
( 31,26 ) 6 2 (434,414 21 7 13454  dke
(148, 125) 13 5 { 266,252 ) 15 2 39368 d&e
{143, 123) 14 6 £ 375,361) 15 6 55500  d&e
(148, 121) 15 6 (466,456 ) 11 2 68968 d&e
(223, 196) 15 6 (168,153 ) 16 2 37464  d&ke
(223,192) 17 7 (128,119 10 2 28544  d&ke
{298, 263) 19 8 ( 107,97 ) 11 2 31886 d&ke
(298, 259) 21 9 ( 89,8 ) 8 2 26522  dke
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and the reguiremenis of 2 pazticular system, we cannot say ihat a particular eniry on
any of these lists is best.' E minimum over -2l block lengih is the overriding criierion,
then a single siege of coding is tke best soluticl; however, we sece ibat uwsing only a
single siage to achieve ceriain speciEications may reguire the correctien of 2 greati num-
ber of errors, so that 2lmosi cerizinly =t some poini the number or decoding compu-
iations becomes prohibitive. Then the savings in mumber of computztions which
conczieraiion afiords may be guile siriing.

Among the conczienzied codes with errors-oxly decoding in the ouier decoder, the
‘best' code is not too dEficnli io idertify epproximaiely, since the codes ihat cerrect the
fewest errors over 20 iend 2lso to ke those wiith comperatively cshori block lengins.
Tzbles 7 and 8 display such *besi* codes for a range of raies and Pr(e) = 10 22 znd 10 2,
oxn 2 BSC wiih p = . 01; the besi sinrgle-sizge codes are also shown for comparissn.

T e

2. Discussion

mws

Frem ihese iables we may draw 2 nmumber of conclusiozs, which we sbail row
discuss.

From Tzbles 1-6 we can evalezte the eifects of using delefiors-and-errors rather
thar errors-only céecoding in the cuier decoder. These are

1. mneglicible effect on the inmer code;

2. reduciion of the lengih of fhe cuier code and henrce the over-2ll block length by 2
facior less thzn two; and

3. apprecizble savings in ihe nuzrber of computaiions required in the outer decoder.

From comparison of Tables 2 and £ and of 7 and 8 we ficd thai the effecis of sguaring
ihe required probzbilify of error, at moderziely high rates, are

1. pegligible effeci on the inner code; and

2. increase of the lengih of the ouier code and hence the over-2il block length by a2
factor greater than two.

We conclude that, ai the moderately high rates where concatenation is most useful,
ithe complexity of the inner code is aifected only by the raie required, ior a given
channel.

These conclusions may be understood in the light of the following considerations.
Observe the columns in Tables 7 and 8 which iabulate the probability of decodirz error
for the inner decoder, which is the probability of error in the superchannel seen by the
outer decoder. This probability remains within a narrow range, approximately 10_3-
10-4, largely independent of the rate or over-all probability of error required. It seems
that the only function of the inner ccde is to bring the probability of error to this level,
at a rate slightly above the over-all rate required.

Thus the only relevant question for the design of the inner coder is: How long a block
length is required to bring the prcbability of decoding error down to 1073 or so, at a rate
somewhat in excess of the desired rate? If the outer decoder can handle deletions, then
we substitute the probability of decoding fzilure for that of decoding error in this
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question, but without greatly affecting the answer, since getting suificient minimum dis-
tance at the desired rate is the crux of {he prodlem.

Once the immer code has achieved this moderzte probabiliiy of error, ihe function of
the outer code is {o drive the over-2M1 probabiiily of error cown o the desired value, at
a dimensionless rate near one.

The arguments of sectign 5.4 are 2 useful guide to understanding these resulis.
Recail that when the probabily of error in the superchanrel was small, the over-a213
provebility of error was bounded by =r expression of the form

-nNEl (Rl)
el < e -

Once we have made the superchaprel probazbiiity of error 'small! {apparently ~10-3), we
ihen achieve the desired over-zil probability of errcr by increasing n. To square the
Pr(e), we would expect {0 have fo Jouble n. Aciually, n increases by more than 2 factor
of two, which i5 due to our keeping the inner and oufer decoders of comparzble
complexity.

‘That the length of the outer code decreases by somewhat less than a factor of two
wiien deletions-and-errors decoding is permitied is entirely in accord wiih the resulis
of section 5.4. Basically, the reason is that to correct a certain pumber of deletions
Tequires one-hzalf the mmmber of check digits in the ouier code as to correct the same
nmumber of errors, so that for a2 fixed rate and egual probabilities of deletion or error,
the deletion corrector will be approximately half as long.

Finaily, we observe thai, surprisingly, the ratios of the over-all lengih of 2 con-
catenaied code of a given rate to that of a single-stage code of the same rate are given
qualitatively by the efficiencies compuied in section 5. 4 — surprisingly, since the bounds
oi that section were derived by random-coding arguments whereas here we consider
BCH codes, 2nd since those bounds are probably not tight. The dimensionless rate of
the outer code 2lso agrees approximately with that specified in section 5.4 as optimum
for a given over-all rate.

In summary, the considerations of section 5.4 seem to be adequate for qualitative
understanding of the performance of concatenated codes on discrete memoryless chan-
nels.

6.2 CODING FOR A GAUSSIAN CHANNEL

We shall now take up the problem of coding for a white additive Gaussian noise chan-
nel with no bandwidth restricticns, as an example of a situation in which we have some
freedom in choosing how to modulate the channel. R

One feasible and near-optimum modulation scheme is to send one of M = 2 % bior-
thogonal waveforms every T seconds over the channel. (Two waveforms are orthogonal
if th=ir crosscorrelation is zere; a set of waveiorms is biorthogonal if it consists of

M/2 orthogonal waveforms and their negatives.} If every waveform has energy S, and
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the Gaussian noise has two-sided spectral density N o/z, then we say the power signai-
to-noise ratio is 5/N_T. Since the information in any transmission is R  bits, the infor-
mation rate is ROIT bits per second; firally, we have the fact that the dimensionless
quantity signal-{o-noise ratio per information bit is S/(\ R ).

S/(.N R ) is comronly taken as the criterion of dnclency for signaling over unlimited
bandindthwhxte Gaussian noise chanrnels. Coding theorem arguments39 show that for
reliable communicaticn it must exceed In 2 ~.7. Our cbjective will be to achieve a
given over-all probzbiiity of error for fixed S/(NORO), with minimum complexity of
instrvmentation.

The general optimal method>° of demodulating and detecting such waveforms is fo
set up a bank of M/2 matched filters. For example, the signals might be orthogonal
sinusoids, and the filters narrow-bandpass filters. In some sense, the complexity of
the receiver is therefore prcportional to the number of métc!wd filters tkat are
required — that is, to M. The bandwidth occupied is also proport.onal to AL

Anotber method of generating a set of biorthogonal waveforms, especially interesting
for its relevance to the question of the distinction between modulation and coding, is to
break the T-second interval into (2T/M)-sec subintervals, in each of which either the
positive or the negative of a single basic waveform: is transmitted. If we make ke cor-
respondences (positive-s—e1} and (negative-s—e0), we can let the M sequences be the
code words of the (M/2, R ) binary code that results from adding an over-all parity
check to an (M/2-1, Ro) BCH code; it can then be shown that the M waveforms so gen-

erated are biorthogonal. If they are detected by matched filters, then we would say that
we were dealing with an M-ary modulation scheme. On the other hand, this (M/2, Ro)
code can be shown to have minimum distance M/4, and is thus suitable for a decoding
scheme in which a hard decision on the polarity of each (2T/M)-sec pulse is followed by
a2 minimum-distance decoder. In this last case we would say that we were dealing with
binary modulation with coding, rather than M-ary modulation as before, though the irans-
mitted signals were identical. The same sequences could be decoded {or detected) by
many methods intermediate between these extremes, so finely graded that to distinguish
where modulation ends and coding begins could only be an academic- exercise.

We use maximum-likelinood decoding for the biorthogonal waveforms; the corre-
sponding decision rule for a matched filter detector is to choose the waveform corre-
sponding to the matched filter whose output at the appropriate sample time is the greatest
in magnitude, with the sign of that output. Approximations to the probability of incorrect
decision with this rule are discussed in Appendix B. In some cases, we permit the
detector not to make a decision — that is, to signal a deletion — when there is no matched
filter output having magnitude greater by a threshold D or more than all other outputs;
in Appendix B we also discuss the probabilities of deletion and of incorrect decision in

this case.
We consider the following possibilities of concatenating coding with M-ary modulation

to achieve a specified probability of error and signal-to-noise ratio per information bit.
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First, we consider modulation alone, with R ° chosen large enough so the specifications
are satisfied. Next, we coasider a single stage of coding, with a number of values of
R and with both errors-only or deletions-and-errors decoding. (K r is the dimension-
leas rate of the code, the signal-to-noise ratio per information bit is now S/(N R r).)
Finally, we cosisider two stages of codirg, or really three-siage concatenation.

Tables 9-11 are representative of the lists that were obtained. Table 9 gives the
results for S/(N R r) = 5, Pr(e) = 10712, 'I‘abxe 10 for S/(N_R _r) = 2, Pr{e) = 10 ~12. and
Table 11 for S/(N R of) = 2, Pr(e) = 1073 . Again, one cannot plck unambiguously the
best* scheme; howeyer, the schemes in which M is large enough so that a single Reed-
Solomon code of length less than M can meet the required specifications would seem to be
very much the simplest, unless some considerations other than those that we have con-
templated heretofore were significant.

To organize our information about these codes, we choose to ask the question: For
a fixed M and specified Pr(e), which RS code of length M~1 requires the minimum signal-
to-noise ratio per information bit? Tables 12-15 answer this question for R € 9 (after
which the computer overflowed), and for Pr{e) = 10 3, 107 6 10 9 10 12’ Except in-
Table 15, we have considered only errors-only decoding, since Table 15 shows that, even
for Pr(e) = 10712, allowing deletions-and-errors decoding improves things very little,.
to the accuracy of our bounds, and does not affect the character of the results. The
S/(NORO) rieeded to achieve the required probability of error without coding, for R <20,
is also indicated.

a. Discussion

Let us first turn out attention to Table 9, which has the richest selection of diverse
schemes, as well as being entirely representative of all of the lists that we generated.
Certain similarities to the lists for discrete memoryless channels are immediately evi-
dent. For instance, the use of deletions allows some shortening and simplification of
the outer decoder, though not as much as before. Also, for fixed M, going to two stages
of coding rather than one lessens the computational demands on the decoders, at the
price.of much increased block length.

It seems clear that it is more efficient to let M become large enough so that iwe
stages of coding are unnecessary, and in fact large enough that a single RS code ¢an be
used. As M falls below this size, the needed complexity of the codes would seem to
increase much more rapidly than that of the modulation.decreases, while for larger M
the reverse is true. ‘The explanation is that a certain M is required to drive the proba-
bility of detection error down to the point where coding techniques become powerful, for
s/ (N R ) somewhat less than the final signal-to-noise ratio per information bit. Once
this moderate probability has been achieved, it would seem to be wasteful to use modu-
lation techniques to drive it much lower by increasing M. Tables 10 and 11 illustrate this
point by showing that this critical M is not greatly affected by an enormous change in
required Pr(e).
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Table 9. Modulation and coding that achizve Pr(e) € 10

-12

per information bit of 5, cn a Gaussian chammel.

with a signal-to-noise ratio

‘( n,k )

Comment

M (NNK) D T a t KR d/b
16334 it 71.4 nc coding
64 { 21,15} 7 2 can 90 7. 47 e-o0
64 { 20,12 ) 9 4 .ai 72 8.89 e-o0
32 (26,18) 9 4 90 4.62 e-o0
32 (2616) 11 5 80 5.20 e-o
16 (155,136) 11 5 eai 544 2.28 e-o
16 (90,67) 13 6 268 2.69 e-o
16 (8558) 15 7 232 2.93 e-o
16 (80,50) 17 3 200 3.20 e-o
16 (7543) 19 9 12 3.49 e-o0
& (236,184} 21 10 .- 552 1.71  e-o
8 (201,138) 25 12 .et 414 1.94 e-o
8 (197,124) 29 14 ces 3712 2.12  .e-0
2 (511,358) 37 18 .- 358 1.43  e-o
2 (481,310) 41 20 .- 310 1.55 e-o
2 (461,254) 51 25 ... 254 1.81 e-o
64 (43,37 7 1 222 6.20 dke
64 (41,33 9 1 198 6.63 dke
64 (26,22) 5 2 132 6.30 dke
64 (. 19,13) 7 2 78 7.79  dke
64 (22,14 9 2 84 ‘8.38  dke
64 ( 18,12) 7 3 72 8.00 d&e
32 (29,23) 7 2 115 4.03 d&e
32 (30,22) 9 2 110 4.36 dke
32 (2519) 7 3 95 4.21 d&e
32 (22,14 ) 9 3 70 5,03 d&e.
16 (127,108) 11 3 ... 432 2.35 d&e
16 (117,94 ) 13 3 376 2.49  d&e
16 (81,62) 11 4 248 2.61 d&e
16 (79,56) 13 £ 224 2.82 d&e
i6 (73,50) 13 & 200 2.92  d&e
16 ( 15;11) 5 2 (25,21) 5 2 924 3.25 e-o
8 (43,36) 5 2 (77,69) 9 4 7452 1.78  €-0
8 (48,37) 7 3 (48,42) 7 3 4662 1.98 e-o
8 (63,49) 9 4 (31,27) 5 2 3969 .97 e-o
z ( 63,45") Y2 3 (92,80) 13 6 3600 1.61 e-o
2 (63,39) 9 4 (92,82) 11 5 3198 1.81 e-o0
2 (63,36) 1 5  (63,55) 9 4 1980 2.00 e-o
Notes: Tables 9-11,
N, K, D, T, n, k, d, t have been defined in Section I
M = number of biorthogonal signals transmitted
kKR o= total bits of information in a block
d/b = dimensions required (nNM/(ZkKRo)) per information bit.
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Table 10. Modulation and coding that achieve Pr(e) € 10~

12

with a signal-to-noise ratio

T

per information bit of 2, on a Gaussian channel.

Comment

{
]

‘ g
SECE—

M { NK ) D ¢ nk ) d t :
- < o
512 (211,167) 45 22 .. e-o0 -
512 (261, 209) 43 21 .o e-o0
512 (311,271) 41 20 e e-o0
256 (255, 195) 61 30 cee e-o ,
128 - (127,97 ) 31 15 (127,119) 9 4 €~0
128 (127,99 ). 29 14 (127,117) 11 5 e-o ]
128 (127, 101) 27 13 (127, 124) 4 0 d&e
128 (127, 104) 24 11 (127, 122): 6 0 d&e
128 (127, 104) 24 10 (127, 120) 8 - 0 d&e
Note: The spgcial RS bound on weights in section 3. 3a has been used to compute prob-
abilities for the last three codes. With the general bound of Appendix B, it
appears that deletions are no help.
Table 11. Modulation:and coding that achieve Pr(e) < 10> with a signal-to-noise ratio
per information bit of 2, on a Gaussian channel.
M { NNK ) D T ( nk ) d t Comment i
16384 cee no coding
256 ( 37,27) 11 5 e-0
256 ( 45,37) 9 4 e-o
128 ( 48,34 ) 15 7 e-o '
128 ( 50,38 ) 13 6 e-o s
64 (895, 719) 91 45 e-o
Note: Deletions are no help. i’
E!
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Tables 12-15. ‘Minimum S/(Noﬁor) achievable on a Gaussian channel.

Table 12. Table 13. Table 14.
Pr(e) = 1073, - Pr(e) = 107, Pr(e) = 107,
R, nocode RS code ‘'t nocode RScode t nocode RScode t
1 4.78 11.30 17.98
2 5. 42 11.96 18. 66
3 4.25 4.23 1 8.68 7.34 1 13.16 10. 42 1
4 357 .1 3 692  4.59 3 10,28 6.01 3
5 312 2.41 5  5.83 3.19 5 8.52 3.8 6
6 2.81 2.02 9 509  2.44 10 7.34 2.80 11
7 2.59 1.77 18 4.56 2.0l 19 .6.49 2.21 19
8 2.41 1. 6i 33 4.16 1. 76 34 5.8 1.88 35
9 2.28 1.50 62  3.85 1. 60 64  5.35 1.67 65
10 216 3.60 4,95
n*  2.is 3.40 4.63
12 2n 3.23 4.35
14 2.00 2.96 3.93
16  1.92 2.76 3. 61
185 188 2. 60 3.36
20% 180 2. 48 3,16
Table 15. Pr{e) = 10 2,
R no code RS code t Pe RS code (d&e)
1 24. 74,
z 25.42
3 17. 67 13.53 1 . 6000002 13. 60
4 13. 67 7.45 3 . 0001 6.86
5 11.23 4.54 6 002 4.25
6 9..60 3,13 11 . 009 3. 02
7 8. 43 2.40 20 .02 2.38
8 7.55 1. 98 36 . 036
9 6. 86 1.73 67 .05
10 6. 31
n* 5.86
12* 5.49
14* 4.90
16* 4.46
18* 4.11
20" 3. 84

Notes: Tables 12-15,

R _=log, M
o 2
no code = minimum signal-to-noige ratio per information bit achievable without coding

RS code = minimum signal-to-noise ratio per information bit achievable with an RS code

RS code {d&e) = minimum signal-to-noise ratio per information bit achievable by an
RS code correcting t errors and 2t deletions.

of length M -1
t = number of errors which the RS code must correct

*For these values of Ro a weaker probability bound was used (see Appendix B).
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Since the RS codes are the most efficient of the BCH class with respect to the num-
ber of check digits required to achieve a certain minimum distance and hence error-
correction capability, another important effect of increasing M is to make the symbol
field GF(M) large encugh that RS codes of the necessary block lengths can be realized.
Once M is large enough to do this, further increases result in no further increase of
efficiency in tkis respect.

Tables 12-15 are presented as much for reference as for a source of further insight.
It is interesting io note that for a given M, the same RS code is approximately optimum
over 2 wide range of required Pr(e). No satisfactory explanation for this constancy has
been obtained, lest tixe reader conjecture that there might be some universal optimality
o these codes, however, it might be mentioned that the same tables for a different type
ck probability distribution than the Gaussian show markedly different codes as optimum.
Table 15 includes the superchannel probabilities of error seen by the outer coder; they

are somewhat higher than the comparable probabilities for the discrete memoryless

chanrel, 10.2-10-3, but remain in the same-approximate range.

6.3 SUMMARY

" A most interesting conclusion emerges from.these calculations. A distinct division
of function between the outer code and the inner stages — of modulation, or inner coding,
or perhaps both — is quite apparent. The task of the inner stages, while somewhat
exceeding the specxf ed rate or S/(N R ), is to turn the raw charnei into a superchannel
with moderate (10~ -10 ) probabmty oi error, and encugh inputs so that an RS code
may be used as the outer code. The function of the outer code is then to drive the over- .
all probability of error as low as desired, at a dimensionless rate close enough to one
not to hurt the over-all rate or S/ (NORO) badly.

For future work, two separate problems of design are suggested. The first is the
most efficient realization of RS encoders and decoders, with which we were concerned

- in Section IY¥. The second, which has beer less explored, is the problem of efficient

realization of a moderate probability of error for given specifications. Communication
theory has previously focused largely on the problem of achieving negligibly  small proba-
bilities of error, but the existence of RS codes solves this-problem whenever the problem
of achieving a probability of error less than 10-3, say, can be solved. This last prob-
lem is probably better considered from the.point-of view of modulation theory or signal
design than coding theory, whenever the former techniques can be applied to the channel
at hand.
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APPENDIX A

Variations on the BCH Decoding Algorithm

A.1 ALTERNATIVE DETERMINATION OF ERROR VALUES

The point of view which led us to the erasure correction procedure of section 4.5
leads us also to another method of determining the values of the errors. Suppose the
number of errors t has been discovered; then the t X t matrix M has rank t and there-

fore nonzerc determinant. Let the decoder now determine the locator Xj cf any error.
c
If we were to guess the corresponding error value ej and modify the T ¢ 2ccordingly, the
(¢
guessed word wouid still h 7e either t .or (on the chance of a correct guess) t—-1 errors;

thus the t X t matrix M formed from the new Ti would have zero determinant if and only
if the guess were correct. In general ore would expect this argument to yield a polyno-
mial in e:i of degree t as the equation of condition, but because of the special form of

o )
Mt this equatior is only of first degree, and an explicit formula for ej can be obtained.

In symbols, let . o
St = § -e. f ; .
(mo+n+s,mo+n) (m°+n§s, m°+n) io )b(mo+n+s,mo+n)
Then
TL=7, -8 . =3,-8 -e. 7, -X.
f d (mo+n+s,mo+n) d (mo+n+s,mb+n) io d ]0(m0+n+s,mo+n)
m_+n n
=T,~-e. X. o.(X. \=T,-E. X_".
LIS A d( Jo) L I P
B 2t -2 2t -3 2t o—t-l'
T -E. X. T -E. X. ... T -E. X.
2t0-2 3o Jo 2t0-3 o 1o Zto-t-i o o
2t -3 2t -4 2t ~t-2
T -E. X. T E. X. - . T -E. X.
M = 26,73 Ty g 2t~ Vo o Utz o do
2t ~t-1 2t ~t-2 2t -2t
T -E. X, T -E. X. T -E. X,
i Zto-t-l o 3o 2to—t—2 Is 1o Zto-Zt I o A

Let us expand this determinant into 2t determinants, using the fact that the deter-
minant of the matrix which has the vector (§+'13) as a row is the sum of the determinants
of the two matrices which have a and b in that row, respectively. We classify the

as a factor.
o
There is one determinant with no row containing Ej » which is simply IMtI.
o

resulting determinants by the number of rows which have. Ej
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There are t determinaﬂsvithanero'havingEj as a factor. For example, the

B 2t -2 2t -3 2t_-+-1
-E, X. ° -E. X, ° ... -E.X.°
j() JO JO "0 JO ‘]0
T T .- T ]
2t -3 2t 4 2t ~t-2
T T,, .. .- T, _
] 2t ~t-1 2t -2 2t -2t |
There are (;) determinants with two rows having Ej as a factor. The first is
(¢}
B 2t -2 2t -3 2t _-t-1]
-E. X ° -E. X. @ ... -E.X.°
J() JO jo J0 J() JO
2t -3 2t -4 2t -t-2
-E. X -E. X. ... =E.X.
]0 jO ]0 JO JO JO
T T .. T
2t -4 2t -5 2t -t-3
T T cen T
2t ~t-1 2t ~t-2 2t -2t

But in this determinant the first row is simply Xj times the second, so that the deter-

(P
minant is zero. Furthermore, in 211 such determinants with two or more r_ ws having

E. as a factor, these rows will be some power of Xj times each other,. so that all such
(] (]
determinants are zero.

The t determinants with one row having Ej as a factor are all linear in—Ej » and

) (o] o
contain explicit powers of Xj between Zto-Zt ananto-Z; their sum is then
o
2t -2t
-E, X. ° P(X,
Jo Jo Jo
where P(Xj ) is a pclynomial of degree 2t - 2, whose coefficients are functions of the
o
original Tn’ m
Finally, we recall that E, =e. X, °cd(x. and that |M!| = 0if and only if e, is
b b do Jo t Jo

chosen correctly. from which we get the equation of condition

2t -2t
= ' = -E. X, .
0=|m| = |Mm,] EJOXJO P(Xlo)
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I, |
e. = -
m -

3 2t 28 -
° x ©° © G(X_)P(X-)
(+] 4 J0 JO
!Mtlmwﬁyb&o&ﬁaimdaszby-m&cftbemcﬁmofm. The oxly termm in
the denominzior of (A. 1) thzt is not readily calcuizble is PIX. {. kb general, ii.-'z\.&is

‘o
immamdkmwm:mare streck

(2.1

the delermirant of the mstirix remaining ofier the
from M,, then

P(X. )= ; _x. 2+t Z A
Io = 2o .
=2 k=g

A simplificztion occurs when we are in 2 field of characteristic two. For note that
because of the dizgonal symmetry of Mt' By = Aki Lay sum i-f:z ‘A’ik will comsist
en‘dre!yofpairs.—‘éikéﬁki= 0, unless : is even, wbeniheenﬁr; sumequalsAii. where
j=1/2. Then

Evaluation of the coeificients of P(X) in a field of characteristic two therefore involves
calculating t (t-1) X (t—-1) determinants.
A.11 Example

Let the decoder have solved Eqgs. 50 as before, obiaining as a2 by-product IMtl = a6.
Trivially,

_ _ 13 _ -
Bpp=Ty=a", Ay =T,=0.

The first error locator that it will discover is X, = '*. Thea, from Eq. A.1,

e. = IMZI _ a6 _ (:4
1° =73z, 13 4. 10, 13- ¢ -
3/(2 2 a (e 4a-a¢ "+e )a
Xl(X1+”d1X1+°dz)(A11X1*Azz)
Similarly, when it discovers X2 = au,
3
€= 7 11 10, 13 %

a3(a +a-a +a )a
Then it can solve for d1 and d2 as before.
A.12 Remarks

The procedure just described for determining error values is clearly applicable in
principle to the determination of erasure values. In the last case, however, EZ must be
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ax

replzced by L @ T 2 ihe vecior of elemerisry syrmmetric fonciions of the s — 1 erasures
0
oitber than ihe one Deing cozsidered, and (b origiral modified cyelic parily checks '.F.“z

by the modified cyclic parity checks defined e ike ofber s ~ 1 erasure loczlors. This
mezzs that the Gelerminents appeering in Eq. A.2, 2s wel as [3,], most be recomputed
to solve for each erusure. Iz cozirast o the solriion for the error vainss, this promises
to be tedions and to militafe ogainst this method in praeclice. We mexniion this possibility
oty beczrmse it éoes 2llow czlcolziion of the correct valme of an erasure, given only the
somber of errors and ihe positions of the otber erasures, withort knowledge of the loca-
tion or valoe of ine errors, 2 capebility which might be wseivl in some applicziion.

The erzsure-correction scheme with no errors (seciion £.5) can be seen o b2 2 spe-
cial case of this 2lzorithr.

A_13 Implemerntztion

Afier we have located the errcrs, we have the option of soiving for the error salves
éirectiy by (A. 1), or indirecily, by treating the errors as eracures and using Eq. 50.

If we choose ibe former mrethod, we need tke © (£-1) X (1) ceterminanis Aﬁ cf (A.2).
In generz] this recnires

1% £

4£°\3 3

multiplicabions, which is rapidly tco many as t becomes large. There is a method of
caiculating all Ajj at once which seems feasible for moderzie values of £. We asseme
a field of characteristic two.

Le‘tBa 2, a be tke determinant of the iX j mairix which remains wien 211 the
11 E R j
Tows and columns but the alth, azth. ees a.jﬁl are struck from Mt. In fhis notation

[2,]=8 and Ag;=B

1,2,...,t 1,2,..., 7L #L...,t

The reader, by expandirg B in terms of the minrors of its last row and cancelling those
terms which because of symmetry appear twice, may verify the fact that

2

B
Zto Zaj+l al, az. ce. aj__2

B =T B +7T
al,az,.. .a:i Zto Zaj al,az,.. .aj__1

2

* T2t 224252 P
CR

l' 32.. o aj-3' aj-l

The use of this recursion relation allows calculation of all Ajj with Nt multiplications
(not counting squares), where, for small t, Nt is N2 = 0 (see section A. 11), N, = 3,
N, =15, N5 = 38, N6 = 86, N7 =172, NS = 333, N9 = 616.

4
Once the Aj j are obtained, the denominator of (A. 1) can be expressed as a single

3

polynomial E(X) by st multiplications; E(X) has terms in Xm, m + 2.to -2t €£m <
mo+2t+s, or a total of 2t +s+ 1 terms. The value of E(X) can therefore be obtained for
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X=1, p—.ﬁ . o-- mturnbyﬁ‘:eC’h.en memodo;solvmg{ormerocisofam.
.nzacttkese‘mwcuhﬁonsmaybedmszmnﬁaﬁﬂms‘y Wben“verﬁn' is 2 root of
ee(X). E{g~ 2)'ar-.llagv;_.zaea.. 25 the corrent value of B{X). Since IMtI will have been
obt2ined &s 2 by-prodzct of solving for ae{X). 2n inversion and 2 meltiplicetion will give
the error value corresponding fo X.

(3
involved bere, and s+ 2 memory registers.

In order to compere the altermztive meihods of finding error valzes, we simply com-
pere the momber of multiplications need:d im e2-n case, leaving aside all anzalysis of aoy
oiber eguipmernt or opsrations peeded to realize either 2igoriliem. We recall that the
values of 5 erasures cam b2 determined with zpproximaiely 2s{s-1) makliiplications. For
tbe first metihod, we nsed approximately Nt mux#iplications to find the error values, znd
and 2s(s-1) to find the erasures; for the secoxnd, 2(s+t)(s:t-1) to find both ihe erasures
and the errors. Using the values of V given earlier, we find that the former method
regrires fewer mmtiiplicztions when t s 7. which suggests thai it ought {0 be coasidered
whenever the minimum distance of the code is 15 or less.

= 51::- i. Ciher n{s<2f) muliiplications by ﬁm cre

A.2 ALTERNATIVE DETERMINATION OF ERROR LOTATIONS

Continued develepment of the point of view expressed above gives us an aliernative
method of Iccziing the errors. If we tentzlively consider a received symbol 2s an era-

errors, then the resulfing word has t errors if the trial

symbol was in error. The vanishing of the t X t determinant 31* formed from the Ti

defined now by s + 1 erasure locators then indicates the error locations. The reader

sure, in 2 received word with ¢

may verify the fact that if X; is the locator of the trial symbol,

)
B —
T8~ Toa — % Tgr
(o)
and
T, ,-X.T, _ T,, ,-X.T, _ cee T, -X. T, . o |
2t -1~ %5 T2t -2 2t 2~ % M2t -3 2t -t~ % 2t ~t-1
T -X. T T ~X. T ... T -X. T
o | Ho2 o 2573 2t -37 %5 Yot 4 2t -1~ %y Mot ~t-2
t - - - -
T, ,-X.T T “X. T, o -er Top =X, T, _
R R R T R 2t -2t+1 ” 7 Tt -2t ]

If we expand IM{'l by columns, many of the resulting determinants will have one column

equal to -XJ. times another. The only ones that will not will be
D sl"f N VP, l
o (Zto l,Zto t) (?.to 2,Zto t-1) (Zto t,Zto 2t+1)
_X- D = l A - EPAY IR '-']-? - - » —X ;f b -
JO (Zt 1, Zt t) (Zt0 'c+l,2to 2t+2) iy (Zt0 t l,2t0 2t)

R —— e sme—
—
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..x -) .;.

-

?
X;oDz Tt 1,2t 4o (Zto-téZ.Zto-Z 31 5 Tiet -t,2¢ 21y

X, Ty o _ I
3, (2t ~t-1,2t -21)

and so ferth. Thusiij is 2 root of the polynomial
o

o) L)

iMft"l is zero and Xj is an error locator. K can be checked by the expansion of Dj irto
(]
three meztrices, as was done earlier in the proof thai the rank of X1 is ¢, that

5= Ce(e-n"t
so that
D(X) = Dtc' e(x)l

and this method is entirely equivalent to the former one. Furthermore, it is clear #iat

x Ty 1 Ty 2 - Ty
[o] [
t-1
< Ty 2 Ty 3 --- TZto—t—l
DX)=¢ - . : :
X Tor ¢ Top 41 --- Tz: —2:11
o) [o)
Voo Ty 41 Tpp 42 oo Ty 2t
0 [s) [}

The condition of the vanishing of this matrix determinant is the generaiization to the non-
binary case of the 'direct method’ of Chien.31 It appears to offer no advantages in prac-
tice, for to get the coefficients of D(X) one must find the determinanis of t+1 t Xt
matrices, whereas the coefficients of the equivalent ore(X) can be obtained as a by-product
of the determination of t.
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APPENDIX B

Formulas for Computation

We shail now derive and discuss ihe formulas used for the computations of Section V.

B.1 OUTER DECODER

Let us consider first the probability of the outer decoder decoding incorrectly, or
failing to decode. We shall let P D2 ihe prcbability that any symbol is in error, and
Pg be the probability that it is erased.

If the outer decoder does errors-only decoding, p 4= 0- Let the maximum correct-
able number of errors be to; then the probability of decoding error is the probability of
to + 1 or more symbol errors:

n

Prig= ) () pha-pa™ . | (8.1

. t:to'l-l

If the outer decoder does deietions-and-errors decoding, the minimum distance is
d, and the maximum number of errors corrected is t , then tlie probability of decoding
error is the orobabxhty that the number of errors t and the number of deletions s sat-
isfy 2t+s>d or t>t0+ 1:

Pr{e) = Z (s“ t) p';p;(l-pe-p d)“'s't 2t+s>dort>t +1
t,s
£
o] n n
S t \ n\ t a-t
Z z (6 ) PLpii-pe-p )™ Z (%) rta-p i (B.2)
=0 g=d-2t t=t_+1

Equation B, 2 is also valid for modified deletions-and-errors decoding, when to is the
reduced maximum correctable number of errors.
For fixed t, we can lower-bound an expression of the form

z (s ) Pe Pail-Pe~Pg)" mst (B.3)
by
t2+1
Z (srt) PePall-Pe P - (B. 4)
'
}
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To upperbound (B. 3), we write it as ]

t,
2 (s?t)'l’:"z“'l’e‘?d’n-s-t* 5; (sn,) popg(1-p,pg" . . (B.5)
s=t 1

Since the ratio of the (s‘l-l)slt 1o the sth term in the iatter series is

(n's"ﬂPd (n't’tz)Pd

——d =a,
(s+1)(1-p-py)  1,(1-p,—Py)
Eq. B..5 can be upperbour:ded by
t
t,+1
-t -t-t,-1 s _
i (,n,) PPl1-P )" "+ (, 1, t)p (1-p-py)"" z a® =
s=t 320

1
i (sn,) 1 n-s-t ( 41 1 n-t-t,-1 B. 6)
P pd( ~Pe~Py) T-a \t;+1, t) PPq (1-Y.-py) (B.

By choosing t Iarge enough, the lower and upper bonnds of Egs. B.4 and B. 6 may be
made as close as desired. In the program of Section V we let t be large enough so
that the bounds were within 1 per cent of each other. Both (B. i) and (B. 2) can then be

upperbounded and approximated by (B. 6).

B.2 INNER DECODER

If the outer decoder is set to do errors-only decoding, the inner decoder corrects
as many errors as it can (to), Whenever the actual number of errors exceed to’ the
inner cecoder will either fail to decode or decode in error, but either of these events
constitutes a symbol error to the outer decoder., H the probability of symbol error for
the inner decoder is P, then

n .
D, (@) hu-py™. (B.7)

t=t 0-!-1

Equation B. 7 can be upperbounded and approximated by Eq. A. 6.

If the outer decoder is set for deletions-and-errors decoding, the inner decoder is
set to correct whenever there are apparently ’t1 or fewer errors, where tl < to; other-
wise it signals a deletion., If there are more than ’c1 actual errors, the decoder will

either delete or decode incorrectly, so that
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n

Pe ¥ Pg= Z (l'l) pi(l-p o)n.t'

t:-'tl'!-l iy

o
IS Ny

iy,

S

Ordinarily t, is set so that Py Pgs SO that p d is upperbounded and approximated by

-

: . n
g Py < z (':) o, (1-p )" Y, ‘ ~ (B.8)

1=t l‘l’ ) |

which in turn is upperbounded and approximated by Eq. A. 6.
; Estimating P turns out to be a knottier problem. Of course, -if the minimum dis-
" tance of the irner code is d', no error can occur unless-the number of symbol errors

is at least d -t, so that

. ' t n-t
‘: P, < i (’;) p(1-p)

) 1:=d-t1

This is a valid upper bound but a very weak estimate of Per since in general many fewer

than the total of (f) t-error patterns will cause errors; most will cause deletions. A

; tighter bound for p_ depends, however, cn knowledge of the distribution of weights in

; the inner-code, which is in general difficult to calculate.

? We can get a weak beund on the number Nw of code words of weight w in any code

:i on GF(q) of length n and minimum distance d as follows. Let t, be the greatest integer
?f such that 2t _<d. The total number of code words of weight w-t distance t o from a code
4 word of weight w is (tw ), siiice-to get such a word we.may change any‘to of the w non-

4 zero symbols in the word to zeros, The total number of words of weight w-toﬂdistance

to from all code words of weight w is then

1 w
'~ ’ (t ) Nw’
o

and all of these are distinct, since no word can be distance t, from two different code
words., But this number cannot exceed the total number of words of weight w-tO:

n w-t,,
(W%) (@-1) °.

Therefore

PSS I

w-t
n!t !(q-1) 0
< . (B.9)

N
w

w! (n-w-t )!

4 Now a decoding error will occur, when the inner code is linear, when the error
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pattern is distance tl or-less from some code word. The total number of words dis-

tance k from some code word of weight w is )

b bl X e O .
™ ® e 1

Z ( 1')(:1-1)1 ("))(q 2); i4j+L=k
i;j, 2 ;
since ail code words can be cbtained by changing any £ of the n-w zeros to any of the f
(g-1)-nonzero elements, any i of the w nonzero elements to any of the other (q-2) non- 3
zero elements, and any j of the remaining nonzero elements to zeros, where i+j+1=k. ' ;
The weight of the resulting word for a particular i,j,1,will be w+1-j, 30 that the prob- }
ability of getting a word digiance k from a particular code word of weight w is f
:
wt -] P ;
Z (et (M2 ( ) (-py" ", :
i,j,1 :
1"’]"’1:]( ;
. {
- 2
Suriming over all words of all weights w>d and all- k€t,, and substituting j=k-i-120, {
we obtain
¢ .
k- k- ~w-240-i
i 2 i iN (n-w)!w! (a- 1) wHk—i~ l(q 2)1 w+22+1 k( pO)n w-28~-itk ;
Interchanging sums, substituting the upper bound of (B. 9) for Nw, and writing the ranges
of w,k,i and 1 .more suggestively, we have
k-g~i-t : :
. 2 w20
) Z 2 2 2 n!tol(n-w)! (q-1) 0 (- 2)1 w+ £+i- k( po)n w-2f£-itk
P, -
K< t >0 20 w>d 2! (n-w-)! i} (k-g-i)! (w-k-l)! (n-w+to)!
We now show that the dominant term in this expression is that specified by k-.:tl, i=0, 1=0,
and w=d, and inifact that the whole series is bounded by
t,-t  d-t n-d+t
Pe €C CZC3C4 - (B. 10) 1
tll (d-tl)l (n-d+t )! )
o
where
c = 1 _ p. n-d+ to
1-T-3" ) =F1-p.d-t, +1
2
c 1 [ Pg p  (n-dit !
= . a, = = = — 3
27 1-a, 2 \lpo g-ld-t +1
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4" T-ay “4 = I'-p a-1d-t -U

and-it is asgumed that the constantsv’am are less than one. This result follows froim
repeated bounding of the series by:the first term times a series of the form

'Z a.;; =9 V-l‘a.
n>0 oom

) For example, the ratio of the (W-%-,l)‘St to the: Wth term.is

Pe n-w-g R-V¥W-1,

1-p, B=W wr k+£+l %

since w=2d, kstl, 120, ]
The ratio of the (1+1) term to the lth term is

2
Py ! n-w-0 k-#-i .
l-p/ja-1 241 w-k+{+1 2 .

of the (i+1)St to.the i_ﬂ'1 :

% ~q-2k'.-l-i<a;
l—poq-l i+1 3

and: of the (k~1)°% to the k™

Po 1 k-0-i
1-p g-1lw=k+ £+1

< a2y

The bound on p efOf Eq. B.10 is a valid upper bound, but not a good approximation,
since (B. 9) is a weak bound for Nw. A tighter bound would follow from better knowledge
of Nw‘ In Table 5 we use the actual values of Nw for RS codes,. which markedly affects
the character of our results.

B.3 MODULATION ON A GAUSSIAN CHANNEL

We contemplate sending one of M = 2 ° biorthogonal signals over an infinite band-
width additive white Gaussian noise channel, A well-known model’ 9 for such a trans-
mission is this, The M signals are represented by the M (M/2)-dimensional vectors
X; 1 €£1i<M/2or-12i2>-M/2, which are the vectors with zeros in all places but the
]ilth, and in that place have L according to whether i = :i;]il. (These vectors corre-
spond to what would be observed at the outputs of the bank of M/2 matched filters if the
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waveforms that they represent,uncorrupted by noise, were the input.)

‘The actual, noisy outputs of the bank of matched filters are represented by the (M/2)-
dimensional vector y = (yl,yz, cees Yy /2) If we assume a noise energy per dimension
of }4 then

Mz, 2
1 . (yj xij)
Pr(ilxd) = ——exp = z——z—N—
@M = 7
Interpreting
/2

Z(y-X)

as the Euclidean distance between the vectors y and x;, we see ‘that the maximum-
likelihood decision rule is to choose that input closest in Euclidean distance to the
received signal.

The case M =4 is illustrated in Fig. B-1, where.we -have drawn in the lines marking
the boundaries of tbke decision regions. There is perfect symmetry between the four
inputs. If one of them, say (L, 0), is selected, the probability of error is the Zbrobability
that the received signal wiil lie outside the decision region that contains (L, 0). I we
let E1 be the event that the received signal falls on the other side of the line AB from
(L, 0), and Ez that it falls on the other side-of:CD, then it can readily be shown by a 45°
coordinate rotation that E1 and Ez are independent, :and that each has probability

o 2
p=‘1 S’ ‘e—y/ZNdy
L/NZ

. %™ 2 2
=1 ez/zdzsﬁ(-l"-—)’

L/@ 2N

The probability that neither occurs is (l—p)z, so that the probability that at least one
occurs, which is the probability of error, is

2
q=2p—-p -
When M >4, the symmetry between the inputs still obtains, so let us suppose the
transmission of

??1 =(L,0,...,0).

Let Ej’ 2<j<M/2 be defined as the event in which the received signal is closer

to one of the three vectors X_1» xj, x_j , than to xj. Then the event € of an error is the
union of these events
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But the probability of any one of these events is q. Thus, by the union bound,
M/2 _
p, = Prie) < Z Pr(E;) = (%-1) q (B. 11)
=2
When the signal-to-noise ratio LZ/N is large, the bound of Eqs. B. 7-B. 9 becomes
quite tight. To calculate ®, we use an approximation of Hast:i'ngs.40 Vitt:i'bi41 has czl-
culated the exact value of p for 3 € R<'10; we have fitted curves to his data in the lovr

signal-to-noise-range, and used the bound above elsewhere, so that over the whole range 4
p is given correctly within one per cent. When Rozll, the union bound is used for all

T

e b s e das

Fig. B-1, Illustrating the case M =4, Fig, B-2. Decision and deletion regions (Miz4).

signal-to-noise ratios.

Finclly, we have the problem of bounding the deletion and error probabilities, when
the detector deletes whenever the magnitude of the output of some matched filter is not
at least D greater than that of any other., Figure B-2 illustrates the decision and dele-
tion regions, again for M=4, It is clear that the probability of not decoding correctly
is computed exactly as before, with L. replaced by L ~D; this probability overbounds )
and approximates the deletion probability. The probability of error is overbounded, not
tightly, by the probability of falling outside the shaded line DEF, which probability is
computed as before with L, replaced by L+ D,

When M >4, the union bound arguments presented above are still valid, again with L
replaced by L ~D for deletion probability and by L+ D for error probability.

The case in which M= 2 is trivial, g
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