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ABSTRACT 

Earlier experimental work has been extended to evaluate the effect of 

moisture on the Hugoniot of playa.   For engineering applications the Hugoniot 

of moist playa can be predicted with sufficient accuracy from the Hugoniot of 

dry playa and water and the assumption of pressure equilibrium. 

Isentropic release data were obtained for moist and dry playa.   The steep 

release curve (in the P-V plane) from high pressure implies an irreversible 

phase change.   Some low pressure data in the elastic-plastic region are 

presented. 

A theoretical discussion of various forms of the Mie-Grüneisen equation 

and the physical basis of asymptotic statistical models is presented. 

Shock stability is reviewed.   Phase transitions in which  AV <   0 are 

classified according to the signs of the slopes of the coexistence curves. 

Relative slopes of Hugoniots and isentropes in the mixed phase region are 

calculated.   The results of the theoretical discussion are applied to transitions 

in bismuth, iron, and quartz.   Agreement of values of dP/dT deduced from 

shock data and measured directly are good for bismuth and poor for quartz 

and iron. 

Calculations of spherical shock propagation in a hypothetical medium that 

undergoes a phase change are presented. The calculations show qualitatively 

some types of pulse shapes that may be expected in a transforming medium. 

It is concluded that the proper treatment of phase changes is an outstanding 

problem in predicting equations of state for earth materials. 
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l-INTRODUCTION 

The goal of this program is to measure in some detail the equation of 

state of Nevada Test Site playa, to extrapolate the results to pressure and 

temperature regimes beyond the experimental range using existing theoretical 

methods, and to examine the sensitivity of shock propagation in spherical 

geometry to reasonable variations and uncertainties in the equation of state. 

Li the previous year 's work Hugoniot measurements were obtained on dry 

samples of playa of two different porosities, of initialdensitities 1.55 and 1. 95 
3 3 g/cm   (crystal density, 2. 66 g/cm ) in the pressure range 40 to 500 kbar. 

These results showed several interesting features :(1) the differences in thermal 

pressure due to differences in initial porosity are small and imply a small 

value   ( < 1)  of the effective Gruneisen parameter, (2) the pressure-volume 

curve appears to be multivalued in the 200- to 400-kbar range.   This result 

shows that a simple Mie-Griineisen equation of state with T a function of 

volume only is inadequate and probably implies the existence of polymorphism— 

presumably the quartz-stishovite transition, which is known to occur in this 

pressure range. 

During the current effort these results were extended in three directions: 

1. The effects of moisture were examined by measuring Hugoniot states 

of samples of the same initial (dry) density as before, viz. ,1.55 and 1.95 
3 

g/cm  , but with approximately 10 percent by weight of water added.   In addi- 

tion, samples containing as large a fraction of moisture as possible consistent 

with controllable sample quality were tested. 

2. The experiments also determined several points on the release isen- 

tropes from shocked states. For earth materials particularly, experimental 

determination of these curves is just as important as determination of 

Hugomots because of the possibility of irreversible phase transitions and be- 

cause of uncertainties in the proper theoretical treatment of the effects of 
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moisture.   Both of these problems severely complicate the derivation of 

isentropes from Hugoniots so that customary procedures used, for example, 

for metals and simple ionic solids are of questionable validity.   Some un- 

expected peculiarities were in fact observed at higher pressures. 

3.    Preliminary experiments were also performed in the very low pres- 

sure range to investigate the pressure region in which compaction to crystal 

density occurs.    Unfortunately, Insufficient effort could be devoted to this 

problem to give clearly reliable results.   Some measurements were obtained, 

but the results should be regarded as tentative. 

The experimental methods and results are described in Section 3. 

In Section 4 a general discussion of various approaches to predicting 

equations of state is given.   Also in that section is a comprehensive review of 

the thermodynamics of the Mie-Grlineisen equation of state and a discussion 

of the different forms in which it is used by various authors. 

The physical bases for theories of high pressure asymptotic forms of 

equation of state are reviewed in the appendix in elementary form to assist 

the nonspecialist to understand the assumptions underlying these theories and 

to assist him in appreciating the difficulties in assessing their validity. 

Clearly one of the most difficult and potentially important problems in 

constructing an equation of state is that of phase changes, including poly- 

morphism, melting, and vaporization.   The existence of polymorphism, the 

location of phase boundaries, and the relevant thermodynamic parameters 

describing transitions must at present be determined experimentally, and 

measurements in most cases are lacking.   Moreover, the effects of phase 

changes on Hugoniot and isentropic forms of equation of state and on shock 

propagation has so far received little attention. 

The work reported in Section 5 is a fundamental and general treatment 

of the thermodynamics of phase changes with particular reference to their 

effects on the Hugoniot.   Application of this theory to existing shock measure- 

ments in iron and quartz shows substantial discrepancies between theory and 

experiment—possibly due to nonequilibrium effects. 
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In Section 6 the results of spherical shock calculations for an equation- 

of-state model containing the major elements of a phase transition are pre- 

sented .   These show the qualitative shock structure to be expected for a 

reversible phase change.   A summary of the results of parameter variation 

studies, including the previous year's effort, is also given in that section. 

H 
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2-SUMMARY 

This report describes an extension of work reported previously on the 

equation of state of playa from Area 5 of the Nevada Test Site.   As in the 

previous effort the work was concerned with (1) experimental determination 

of the equation of state, (2) theoretical interpretation of the experimental 

data, and extrapolation by semitheoretical means to pressure and temperature 

regimes beyond the experimental range, and (3) shock calculations to indicate 

the sensitivity of spherical shock propagation to reasonable variations in the 

equation of state. 

The experimental work was extended to include the determination of 

release isentropes from shocked states in both dry and moist playa.   These 

curves appear relatively uncomplicated where the peak pressure is less than 

100 kbar, indicating only some degree of compaction by the fact that the free- 

surface velocity is less than twice the shock particle velocity. 

The release curves from a shock pressure of about 270 kbar, however, 

shows two interesting features.   For dry playa the initial slope (high pressure) 

of the isentrope is very steep in both the P-u and P-V planes.   The fact that 

it is steeper than the Hugoniot in the P-V plane is clear evidence of some 

form of change of state since such behavior for a simple fluid would violate 

the shock stability condition.   The most reasonable explanation, consistent 

with other independent observations,   is that the quartz component of the playa 

is converting irreversibly to stishovite.   At lower pressures the isentrope 

from 270 kbar becomes shallow, possibly due to reconversion of stishovite to 
quartz. 

The isentropes for moist playa also appear to be uncomplicated from 

shock pressures of about 100 kbar.   For the higher shock pressiires the free- 

surface velocity is appreciably higher than twice the shock particle velocity. 

■*▼*» 



It seems likely that this is due to vaporization of the water on release of 

pressure, and resulting rapid expansion of steam ahead of the surface of the 

solid.   The experiments also determined the Hugoniot curves for moist playa. 

These results show that the effect of water on the Hugoniot can be predicted 

accurately enough for engineering applications by assuming that the solid and 

the liquid are shocked along their respective Hugoniots and that pressure 

equilibrium is obtained.   The question of thermal equilibrium is thereby ignored, 

and the model is clearly oversimplified.   Nevertheless, it is found empirically 

that satisfactory agreement is obtained. 

A few shock experiments at very low pressures were performed to investi- 

gate the region in which compaction to crystal density occurs.   The results 

should be regarded as tentative, but indicate a precursor wave of about 0.1 

kbar amplitude traveling at a velocity of 0.5 km/sec.   More thorough investi- 

gation of this pressure range should be conducted before definite conclusions are 

drawn. 

The theoretical work during this period presents a general review of 

approaches to the problem of predicting an equation of state.   It also presents 

a thorough treatment of the thermodynamics of the general Mie-Gruneisen 

formulation and shows the differences in the forms used by different authors. 

Finally, an elementary description is given of the assumptions upon which 

asymptotic high pressure and temperature forms are based. 

Because of the evidence for polymorphism in the solid constituents and 

vaporization of moisture in the playa, and because these effects cannot now 

be easily treated theoretically, a considerable effort was devoted to the effects 

of a phase change on both the equation of state and on shock propagation. 

Comparison of the predicted Hugoniots in the coexistence region for iron and 

quartz with experimental measurements shows substantial discrepancies. 

These may be due to incorrect interpretation of the data, or to nonequilibrium 

effects.   The results for bismuth agree reasonably with theory. 

Shock propagation calculations were extended to include in a qualitative 

way the major features of a phase transition, and typical pressure profiles 

and decay curves are shown. 
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In general, the two-year program has established the Hugoniot equation 

of state from 40 to 500 kbar including the effects of variable porosity and 

moisture content.   Some release isentropes were measured and preliminary 

measurements in the very low pressure region obtained.   A relatively simple 

theoretical equation of state was developed that, in the absence of phase changes, 

appears adequate for playa and perhaps other earth materials.   A major 

remaining difficulty, however, is the prediction and proper treatment of phase 

changes; progress was made in the application of thermodynamics to this 

problem.   Shock calculations for a simple energy source and spherical 

geometry showed that peak pressures as a function of radial distance are not 

highly dependent on uncertainties or variations in the equation of state and 

some insight into reasons for this insensitivity was gained.   Of potential 

importance to interpretation of field measurements   are the pulse shapes 

associated with phase changes because it is often tacitly assumed that the 

peak pressure is closely associated with the first shock arrival. 

Possible directions for extension of this work include: 

1) More thorough investigation of the very low pressure range where 
the material is not completely compacted. 

2) Further investigation of phase changes, due to polymorphism and to 
vaporization, theoretically and experimentally. 

3) Model tests in which shock propagation and decay can be compared 
with predictions based on the equation of state as established thus far. 

. ,J i,. 
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3-EXPERIMENTS 

G. D. Anderson, J. T. Rosenberg, and A. L. Fahrenbruch 

A,    INTRODUCTION 

The purpose of the experimental program to be discussed is to gather 

shock wave data on Nevada Test Site playa which can be combined with existing 

theory to yield an equation of state suitable for machine flow calculations.   The 

current experimental phase is a continuation of a program which was begun in 

mid 1963.   The explosive systems and streak camera techniques used in ob- 

taining Hugoniot data were described in an earlier report   which summarized 

the work at the end of the first year.   During the first year the effort was di- 

rected toward gathering Hugoniot data on dry playa.   It was found that it was 

necessary to reconstitute samples by pressing sifted soil in order to obtain sat- 

isfactory streak camera records. The native material contained inhomogenei- 

ties in density which were large on the scale of the experiments. These inhomo- 

geneities lead to irregular or "ragged" shock fronts passing through the samples 

which destroyed the necessary precision. Samples which were pressed from 

soil which had been sifted proved to be quite satisfactory.  X-ray analysis and 

streak camera records both indicated a uniform density.  The initial densities 
3 3 of the dry material were 1.95 g/cm   and 1.55 g/cm .   The fully completed 

3 crystal density was measured to be 2. 65 g/cm .   The densities of the pressed 
o 

samples studied wore greater than the native dry density of the soil (1.39g/cm ) 

as it was found to be necessary to press to higher densities in order to obtain 

samples which were mechanically strong enough to be used in experiments. 

The two densities were chosen so as to generate two Hugoniots for the purpose 

of estimating the role of thermal pressure.   No large difference between 

9 
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Hugoniots was observed.   In the course of the present work the measurement 

of the Hugoniot of dry material has been repeated with good agreement with 

earlier data. 

The work of the first year, which has just been briefly summarized, was 

expanded in three directions during the second year.   Each of the three new 

phases brought new problems which required technique development.   The 

three phases were the measurement of the Hugoniot of moist playa and evalua- 

tion of the effect of water, the study of release isentropes including free-surface 

velocity, and the study of the low pressure behavior of dry playa in the 1 kbar 

region where compaction may not be complete and nonhydrostatic behavior is 

expected.   The Hugoniot measurements of moist playa presented the fewest 

experimental problems as the tests relied heavily upon techniques developed 

during the first year's effort.   The isentrope measurements and the low pres- 

sure studies involved new types of experiments.   As the work on these phases 

progressed it became clear that extensive studies would require an effort much 

larger than the present one.   However, significant progress was made toward 

the perfection of the new techniques and some preliminary data were obtained. 

B.    SAMPLE PREPARATION 

During the current phase of this program an effort has been made to im- 

prove the existing techniques of dry sample preparation and to develop a method 

of constructing high quality samples of uniform moisture content E>nd density. 

For reasons already discussed, the playa as it is received from the field is 

unsuitable for small scale shock wave tests. 

The initial step in preparing a soil stock from which to construct test 

samples is to shake the soil through a series of sieves.   All that passes through 

a No. 50 sieve (297 micron openings) is recovered.   The material at this 

stage contains 5 to 6 percent moisture by weight.   A portion of this soil is dried 

in an oven at 105oC to be used at a later time as a diluent to a high moisture 

content stock in the preparation of specimens of various intermediate moisture 

contents. 

10 
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(1) Control of Moisture Content 

To prepare homogeneous high moisture soil, a weighed amount of the 

ambient soil is placed in a 400- to 600-ml beaker, leveled, and covered with 

four or five layers of filter paper cut to fit snugly in the beaker.   It is 

important that the height to diameter ratio of the soil does not exceed one.   The 

filter papers are then covered with several layers of paper towel.   Water is 

added to the paper towel which absorbs the moisture and allows it to slowly 

diffuse down through the filter paper into the soil.   No more than 8 to 10 g of 

water should be added at one time and not more than 1/8 of the total water 

should be added in any 12 to 24 hour period.   After addition of the water the 

beaker is sealed and allowed to stand for at least one day.   Before more 

water is added, the soil is poured into a larger beaker and thoroughly stirred. 

It is then replaced in the smaller beaker and covered with the filter paper and 

towels prior to adding more water.   This slow process of water addition is 

repeated until the desired moisture content is achieved.   Upon completion of 

this process the moist soil is stored in stoppered flasks.   Soil samples of 

intermediate moisture content arc made by mixing the moist material just 

described with the oven dried soil in the appropriate proportions and storing 

for one day in a stoppered flask. 

(2) Sample Pressing 

Since the low density samples are fragile and require some external sup- 

port after removal from the pressing die, they are pressed in steel rings of 

l/8-inch wall thickness.   Prior to pressing, one face of the ring is covered 

with 0.0007-inch Mylar which is aluminized on one side.   The Mylar is bonded 

to the ring to form a seal and then the assembly is weighed.   The Mylar covered 

ring is bolted in the pressing die so that the ring and die axes are parallel.   A 

predetermined quantity of soil is then poured into the die and spread uniformly 

with a leveling tool.  At the time of pressing, all soil contains some moisture 

since it has been found that samples pressed from dry material crack upon 

pressure release.   Dry samples are pressed from soil initially containing a 

small amount of moisture and then dried in an oven at 105° C for several hours 

after pressing.   The density is controlled by pressing a weighed amount of soil 

into a given volume fixed by a series of stops on the pressing die. 

11 
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All samples are weighed immediately after pressing and those to be diied 

are then placed in an oven.   Moist samples are sealed in the rings by 

0.0003-inch Mylar to prevent moisture loss, reweighed, and mounted on the 

driver plate.   Moist samples are not made until just prior to shooting in order 

to minimize moisture loss which would occur during long periods of storage. 
3 

Samples of density less than 1. 9 g/cm   are pressed in steel rings which 

serve a dual purpose.   They provide lateral support for the samples which at 

low densities are relatively fragile.   Also they are a convenient support point 

at which to glue the aluminized Mylar which covers the playa to hermetically 

seal it and to record the arrival of the shock wave.   The pressing process 

assures that the playa will be in intimate contact with this aluminized Mylar 

top.   Similarly, care is taken that there will be good surface to surface contact 

between the bottom of the sample and the lapped 2024 aluminum driver plate 

by pressing the sample to a thickness several mils greater than that of the 

support ring.   In the case of dry samples, which may be kept free of moisture 

during delays between pressing and mounting on the shot assembly by storage 

either in an oven or a desiccator, the playa could be mounted in direct contact 

with the aluminum driver surface. 
3 

Samples of density greater than 1. 9 g/cm   require no lateral support and 

are pressed free standing.   In the shot assembly a plastic ring, again thinner 

than the sample, is used as an anchor to which to attach the aluminized Mylar. 

These samples are not stored between pressing and mounting, hence both dry 

and moist specimens are attached directly to the driver plate surface with no 

intermediate layer of Mylar. 
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C.    HIGH PRESSURE SHOCK WAVE EXPERIMENTS 

(1)   Hugoniot Experiments 

The Hugoniot data for all samples were obtained by the impedance match 
2 method   which is described quite completely in Section 3.B (2) of Reference 1. 

This method permits determination of a point on the Hugoniot of an unknown 

material from knowledge of the shock velocity alone, if the shock is introduced 

into the unknown through a standard material whose Hugoniot and relief cross 

curves are well known.   2024 Aluminum was used as a standard; its Hugoniot 

and calculated isentropic relief curves were obtained by private communication 

from Dr. R. G. McQueen at Los Alamos Scientific Laboratory. 

The 2024 aluminum driver plate used as a standard on the Hugoniot experi- 

ments is nominally 8 inches in diameter and 3/8 inches thick, the dimensions 

varying somewhat from shot to shot.   A plane shock wave is induced into the 

driver either by detonation of an explosive train in contact or by impact of an 

explosively driven flying plate as described In Section 3.B. (1) of Reference 1. 

The measurements necessary to apply the impedance mismatch method — (free- 

surface velocity of the aluminum driver plate and shock velocity in the playa 

sample) — are made in the manner described in Reference 1.   Some detail re- 

finements have been made in order to attain a higher degree of precision in 

these measurements.   For example, each experiment includes two independent 

measurements of the free-surface velocity of the driver.   The thickness of 

shims used to protect gapped mirrors from air shock has been reduced from 

0. 006 to 0. 004 inches with the result that pertubations upon the values of 

velocities measured by these mirrors is negligibly small after corrections. 

No samples or arrival mirrors are located at the center of the aluminum 

driver in experiments involving flying plates since it has been noted that in 

some cases the shock wave arriving at the front surface of the driver plate 

has a small radially symmetric dimple, in both pressure and shape.   The 

precision of the playa pressing process has been increased during the course of 

13 
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the project.   The results of the Hugoniot measurements, in the form of graphs 

and tables, are presented and discussed in a later section of this report. 

(2)   Release Isentrope Experiments 

The problem of determining release isentropes for playa necessitated the 

development of new techniques.   The method chosen is again based on the im- 

pedance mismatch principle.   A shock of known strength in a standard aluminum 

driver plate is used to introduce a shock into the playa sample in the same 

manner as in the Hugoniot experiments.   However in the adiabat shots a ma- 

terial of lower  shock impedance than soil is mounted in contact with the front 

surface of the soil.   As porous playa is of relatively low shock impedance, the 

only suitable materials of lower shock impedance are liquids.   The initial 

shock propagates through the driver and playa as before until it reaches the 

playa-liquid interface.   There a rarefaction is reflected back into the soil, and 

a shock is transmitted into the liquid.   If the Hugoniot of the liquid is known, 

a measurement of the shock velocity is sufficient to specify the state in the 

liquid behind the shock.   As the boundary conditions require continuity of 

pressure and particle velocity at the playa-liquid interface, this state in the 

liquid must be a pressure and particle velocity state on the release isentrope 

of soil.   The zero pressure point on the release isentrope is determined by 

observing the free-surface velocity of the playa which is constrained to remain 

at essentially zero pressure. 

Experimentally it is much more difficult to obtain the measurements 

necessary to determine adiabats than Hugoniots.   All adiabat measurements 

are made after the shock has passed through the playa specimen thereby 

increasing the number of uncertainties which may enter the problem.   In the 

Hugoniot experiments an aluminum driver is used, whereas in the adiabat 

shots one can think of the shock being introduced into the liquid by a playa 

driver. 

The final experimental design chosen for the release isentrope experi- 

ments is shown in Fig. 3-1 and will be described below.   Each assembly yields 

a Hugoniot point and three points on the release isentrope from that Hugoniot 

point.   For shots in which the explosive is in contact with the driver plate, the 
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driver thickness is 3/4 inch.   For shots in which a flyer plate with a free run 

is used to initiate the shock, the driver thickness is 1/8 inch.   The reasons 

for this difference in driver thickness and the explosive systems used in each 

case will be discussed later in this section.   The smear camera trace from 

slit 1 gives two independent records of the free-surface velocity in the driver 

at approximately the same radial distance from the center of the driver plate 

ar the observations on the state in the playa and liquids are taken.   For each 

of these measurements the shock arrival at the free surface is recorded, and 

the transit time of the free surface across a l/8-inch air gap is measured.   The 

recording surface of the gapped   mirror, the side toward the driver plate, is 

protected from premature arrivals such as air shock by a 0.004-inch iron 

shim.   Since the Hugoniot of iron is known, it is possible through application 

of the impedance mismatch method in an iterative manner, to correct the 

observed transit time for the presence of the shim.   In actual calculations the 

correction is small, less than 2 percent, as the shim thickness is small com- 

pared to the gap. 

The points defining the release isentrope are taken from slits 2 and 3. 

The playa sample of diameter 2-5/8 inches is covered with aluminized Mylar 

to record shock arrival and planarity at the front surface of the specimen.   On 

the upper two quadrants of the cell are 1/8-inch gapped free-surface arrival 

mirrors, protected by 0.004-inch iron shims as before, to measure the playa 

free-surface velocity.   The lower two quadrants of the cell are covered by 

water and ethyl ether, both transparent liquids, to a depth of 1/8 inch.   The 

transparent covers of the liquid cells have a 1/4-inch-wide reflecting stripe, 

protected by the customary 0. 004-inch iron shim, to record the arrival of the 

shock at the liquid free surface.   On the middle slit two shock arrival mirrors 

are mounted on tne driver surface in order to be able to monitor the shock 

velocity in the playa.   This measurement is used as a consistency check only 

since knowledge of the playa Hugoniot, determined in the earlier research 

period, and measurement of the state in the aluminum driver are sufficient 

information to specify the state in the playa by the impedance match method. 
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The gapped mirrors above the aluminum driver surface are supported by 

means of 1/8-inch hardened steel dowel pins whose diameters are held to 

tolerances of 0.0001 inch.   The dowel pin-shim-mirror assembly, which is 

glued directly to the driver surface, is shown in Fig. 3-4 of reference 1. 

The final uncertainty in gap thickness with such an assembly is less than 

0.0002 inch and hence is negligible. 

The playa specimens are supported by a steel ring of 1/8-inch height and 

wall thickness.   Lucite rings of the same diameter and wall thickness are 

mounted concentrically on top of the playa support ring.   The Lucite rings 

are divided into quadrants by Lucite cross members.   This assembly is hand 

lapped, checked for parallelism of top and bottom, and held to maximum 

deviations in thickness of 0.0005 inch.   The entire assembly is covered on 

top by a circular piece of slide glass with l/4-inch-wide aluminized stripes 

oriented as shown in Fig. 3-1 and mounted facing the playa specimen.   Each 

of the two liquid cells is checked for leaks between quadrants or to the outside 

by filling with air at a pressure of at least 10 psi.   Using air rather than liquids 

to check for leaks prevents contamination of the cells and reduces the possibility 

that either of the liquids used may attack any component of the cell assembly. 

It is thought that water may cause the aluminized Mylar to relax or deteriorate 

at a very slow rate, and similarly that ethyl ether may attack Lucite at an 

^quaily slow rate.   It has been determined that neither of these processes 

occurs during the time intervals involved in the course of firing these experi- 

ments. 

It has been observed that on some previous experiments the aluminized 

Mylar covering the playa has pulled away from the playa surface.   This is 

thought to be caused by the fact that the experiments are constructed in 

temperature controlled environment and fired at the test site where the ambient 

temperature may typically be 20oF higher.   Hence the gases filling the pores 

of the sample and trapped there may expand and lift the Mylar from the surface 

of the playa.   To avoid such situations a system of applying an overpressure 

of approximately one pound per square inch to the top surface of the aluminized 

Mylar has been developed.   This is accomplished by filling the two liquid 

cells, opening passages to the upper two quadrants, and applying the over- 

pressure by means of a balloon to the entire Lucite assembly which is still 
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hermetically sealed from the outside.   It is apparent from visual observations 

when the Mylar has been pressed into contact with the playa surface, and hence 

it is possible to apply only the minimum overpressure required.   This over- 

pressure is in all cases taken to be so small as not to effect the initial densities 

of either liquid. 

A typical smear camera record from such an experiment is shown in 

Fig. 3-2.   Fig. 3-2(a) is a still photograph of the shot face with the image of 

the streak camera slits exposed over it.   The streak camera record is shown 

in Fig. 3-2(b).   The record from slit 1 yields the transit time of the aluminum 

driver free surface across a 1/8-inch gap.   The record from slits 2 and 3 

yield the release isentrope data.   The measurement of shock velocity through 

the playa from slit 2 is not as precise as the shock velocity measurements 

from shots designed to determined playa Hugoniot points.   This loss of preci- 

sion occurs because the samples used for isentrope measurement are of large 

diameter to permit all measurements for a single isentrope to be taken from 

the same sample raised to a uniform Hugoniot state by the initial shock.   Due 

to the large diameter of the samples, shape and arrival time of the shock at 

the driver playa interface on slit 2 are not well known.   However, the accuracy 

of the measurement is sufficient for a consistency check on the state in the 

playa. 

The measurement of playa free-surface velocity is complicated by the fact 

that playa, being a porous r aterial, is subject to jetting as the shock arrives 

at the free surface.   The effect of such jetting is to cause the free-surface 

arrival recording mirrors to yield jagged free-surface arrivals with a 

corresponding high degree of uncertainty in interpretation.   In order to smooth 

the jagged arrivals a shim is mounted directly on the surface of the playa. 

If the shock impedance of the shim material is greater than that of playa and 

if the release isentrope of playa from a doubly shocked state is not significantly 

different from that for the singly shocked playa, then it can be shown that the 

shim will achieve the playa free-surface velocity, through a series of wave 

reflections at the playa-shim and shim-air interfaces.   If the time in which the 

shim accelerates to the playa free-surface velocity through the wave reflections 

is small, then its presence will have a negligible effect upon the value measured 

18 
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for the playa free-surface velocity.   On silt 2 of Fig. 3-2(a), a 0.003-mch 

aluminum shim was used and on slit 3 no shim was used on the playa free 

surface.   Aluminum is a more suitable material for such a shim than iron or 

steel since it is of lower impedance thereby introducing a smaller pertubation 

on the state of the playa.   Since the shock and rarefaction velocities of alumi- 

num are higher than in iron, it will reach equilibrium in shorter time.   Also, 

fewer wave reflections are required to achieve equilibrium because of the 

closer impedance match to playa.   The free-surface record from slit 2 provides 

direct experimental examination of the shim effect.   The shim was purposely 

cut wider than the free-surface arrival mirror number 5.   The shim, labeled 7, 

can be seen protruding from either side of mirror 5 on Fig. 3-2(a).   Along the 

free-surface quadrant there is a distinct line at approximately the same point 

in time at which the free surface impacts its arrival mirror.   This is due to 

air trapped between the playa free surface and the glass cover of the Lucite 

cell luminescing as shocks reflect back and forth raising its temperature. 

The record shows quite clearly a time interval,   t   ,   between the luminescence 

due to the arrival of the accelerated shim and due to the unobstructed free 

surface.   The shim arrives later.   When the total transit time of the shim on 

the free surface is corrected by this factor there is very satisfactory agree- 

ment between the two free-surface cells.   This effect will be discussed further 

when the data are presented.   The designations A and B are used on mirrors 

number 4 in Fig. 3-2 (a) to point out that the aluminized Mylar on the playa is 

being observed through an air gap and a liquid cell respectively. 

(3)   Explosive Assemblies for Hugoniot Release Isentrope Experiments 

The explosive assemblies used to initiate the shock in the driver for the 

Hugoniot experiments are discussed in section 3.B. (1) of reference 1.   The 

only change made during the experimental period is that the free run distance 

of the 1/8-inch stainless steel flying plates is reduced from 1-1/2 inches to 

1 inch.   For the adiabat shots, however, the problem of attenuation of the 

shock amplitude with distance as the wave progresses through the experiment 

is more severe since measurer tents are made over twice as long an interval 

from the driver surface as in Hugoniot experiments.   For shots in which the 

explosive is in contact with the back surface of the driver plate one would like 
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to use a configuration which gives a long, relatively flat, pressure pulse at the 
3 front of the driver.   It has been shown in this laboratory   that a slowly decaying 

pressure pulse can be obtained in an aluminum plate from an explosive train of 

plane-wave lens, Comp B, and Baratol, if the ratio of the thickness of Baratol 

to that of Comp B is 2 to 1 and the aluminum plate is at least l/2 Inch thick. 

Such a system is used and produces a shock of approximately 180 kbar in alumi- 

num with planarity of breakout at the front surface on the order of 0.01 pisec 

variation along a 3-inch slit length.   Shock attenuation, which is inevitable due 

to the inherent characteristics of an explosive detonation, is not monitored 

directly, but by Gregson's report should not be a source of difficulty. 

Wave initiation by flying plates seems desirable for two reasons.   Higher 

shock amplitudes are possible than for in-contact shots since the flyer plate 

receives momentum gradually over its free run and then gives it up rapidly on 

impact thereby delivering an impulse in a short time resulting in high pressures. 

In addition to higher pressures, it is in principle possible to achieve flatter 

topped pressure profiles via the impact mechanism of a flying plate.   According 

to hydrodynamic theory the wave should be perfectly flat until the trailing 

rarefaction from the rear of the flying plate overtakes the original shock, as 

discussed in reference 1.   The difficulty in designing flying plate assemblies 

is that not enough information is known to accurately compute the point at which 

the overtaking will occur.   On the basis of early results in the adiabat program 

it is felt that such attenuation was taking place in the region in which measure- 

ments were being made.   Hence a new system designed to minimize the 

possibility of attenuation has been designed.   This Involves Increasing the ratio 

of flyer to driver plate thickness from 1/3 to 2 and changing the flyer material 

to be identical with that of the driver.   Earlier experiments to obtain Hugoniot 

data made use of a steel flyer with an aluminum driver plate.   Increasing the 

flyer-to-driver-thickness ratio creates two problems.   As the driver is made 

thinner it becomes more difficult to machine to the necessary degree of flatness 

and planarity, and as the flyer is made thicker it becomes more massive and 

hence achieves lower velocities.   The first problem is really one of economics 

and has been met simply by increasing the care taken in the machining process 
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and rejecting all unsatisfactory plates.   The second problem is partially solved 

by changing the flyer material to aluminum which is approximately 1/3 the 

density of steel.   However, since the shock impedance of aluminum is less 

than that of steel, aluminum must be accelerated to a greater velocity than 

steel to produce the same target pressure upon impact.   The maximum pres- 

sure attained with the new system is 500 kbar in the driver whereas 700 kbar 

is easily attained using l/8-inch steel flyer plates, however,  500 kbar is 

adequate for the purposes of the current release isentrope program.   Previous 

work has shown that shock attenuation occurs in aluminum flying plate experi- 

ments earlier than is predicted on the basis of hydrodynamic calculations. 

The premature attenuation is attributed to elastic relaxation due to elastic 

relief waves propagating at velocities approximately 20 percent higher than 

hydrodynamic values.   Taking this 20 percent, velocity increase into considera- 

tion, time-distance analysis of the wave propagation in flyer and driver indi- 

cates that the present systems should be free of attenuation within the driver- 

playa-liquid assembly.   The fact that the flyer and driver are of the same 

material means that there is no impedance mismatch at this interface and 

hence the driver may be made as thin as is desired without new disturbances 

originating when reflected waves from the playa-driver interface reach driver- 

flyer interface.   The advantages of this are reflected in the above mentioned 

calculation placing the attenuation region well beyond the time interval in which 

adiabat measurements are made. 

Two explosive trains are used with the new flyer plates.   For intermediate 

pressures the Composition B-Baratol system is used, and for high pressures 

a plane-wave generator and an HMX pad are used.   With the first system 

driver pressures of 265 kbar are reached with maximum deviation from planar- 

ity at the front of the driver being 0.03 ^xsec over a 3 inch diameter.   Because 

of the flatness of the pulse produced by this particular explosive system at the 

back of the flyer, spalling of the flyer, which could introduce premature 

attenuation, is unlikely.   The HMX system gives driver pressures of 500 kbar 

and planarities of 0. 01 fisec over a 3 inch diameter at the front of the driver. 

The observed high degree of planarity is very satisfactory. 
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D.    DATA AND RESULTS 

(1)   Hugoniot Experiments 

Hugoniots for NTS playa in five different initial states have been experi- 

mentally determined.   Two porosities of dry playa,    P   =   1.55 g/cm    and 
3 o " 

P    =   1. 95 g/cm   ,   were selected for study during the first year of the pro- 

gram in order to ascertain the effects of thermal pressure on the equation of 

state.   Some Hugoniot work for dry playa of these densities has been repeated 

in this experimental period to serve as a consistency check.   As playa in situ 

is moist, two new densities of playa containing approximately 10 percent mois- 
3 3 ture,   p    =  1.71 g/cm   and   p    =  2.14 g/cm    , were studied.   These two 

densities were obtained by requiring that the samples, in addition to containing 

approximately 10 percent moisture by weight, have the same pore volume as 

the corresponding dry samples.   Thus if a moist sample of density 2.14 g/cm 
3 

were to be dried, the resulting sample would have a density of 1.95 g/cm   . 

Finally, playa of moisture content 19 percent and initial (wet) density 1.55 g/cm 

was examined in order to observe the effect on the Hugoniot of having the pores 

filled to a high degree with water.   This represents the highest moisture content 
3 it was possible to introduce in samples of wet density 1. 55 g/cm .   It corre- 

sponds to 56 percent of saturation.   It should be remembered when comparing 

Hugoniots of dry and moist samples of the same density that there is necessarily 

a variation in pore volume between the two. 

The results of the Hugoniot experiments are presented in Tables 3-1 to 

V and, as pressure-particle velocity plots, in Figs. 3-3 to 7.   The tables 

are divided into direct-contact and flyer-plate shots on the basis of the manner 

in which the shock is introduced into the driver.   It should be noted that for 

some of the very low pressure shots it was necessary to replace the standard 

aluminum driver plate with one of brass.   As the Hugoniot of brass is steeper 

than that of aluminum, application of the impedance match method will show 

that the pressure achieved in some specimen material through use of a given 

explosive material and a brass driver is lower than that achieved using the 

same explosive material and the standard aluminum driver.   Also some shots 

were fired in vacuum in order to determine if air in the pores of the playa 

3 
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iable :?-l 

Hl'GONlOT DATA R)R NTS Pl.AYA 

1.55 ± 0.02 g/cm 3 

Moisture  Content,   (M.C.)      =     0   percent   +   0.2 

SHOT 
|      NO. 

DRIVEB  DATA I'l.AYA DATA                                                             j 

Explosive 
System 

2024 
A 1 u in l ll ll ill 

Dr i ver 
Pressure 

Spec 1 nie n 
No. 

Shock 
Ve1oc i ly 

( m m / /-^ s e c ) 

Free-Sur face 
Ve loc ity 
(mm/Msec 1 

Part ic le 
Velocity 

( mm //isec ) 

Pressure 
(kbar) 

Final   Vo1ume 

((•m:i/g)         j 
(kbar) 

Direct  contact 
I'-hO   + 

10, 584 2" Corap B 28 5 10 4.01 3.21 2.08 120 0.310 
Al 5 3.02 -- 2.00 128 0.300 

10,Q<)7 2" Comp B 27 5 56 3.8 5 3.10 2.05 122 0.302        j 

10,605 •- 138 32 2.58 1.37 1.23 40 0.338 

10,00(1 -- 137 57 2.40 1.46 1.23 47. 5 0.327        j 

10,606 -- 16 5 31 1.0( 0.852 0.82 24. 1 0.367 

10, M 8 

1''B     stainless   steel 
fiver i)l ates 

P-fiO + 

* 
1()() 7 1.8( 0.849 0.810 24 0.350 

10,5.10 3" mix hMI 12 6.38 6.13 3.64 357 0.281         j 

11,053 3" I1MX (,02 68 6.35 -- 3.40 334 0.301         j 

u, ui 3" IIMX 612 71 5.85 m m 3.52 318 0.257 
liO 5.8. •- 3.52 318 0.256 

11. 173 \" liMX^ 550 7 4 5. 54 -• 3.28 282 0.26 3 

ii, n J     Uimp   B •UM 7 5 5.38 3.02 252 0.283 
7 3 5.34 -- 3.04 251 0.270        j 

10,0 4,", 2" Comp B 178 36 5.25 4.70 2.00 244 0.277        1 

lO.hOO* 2" Comp B 476 8 5.14 5.24          ' 2.07 230 0.271 
16 5.12 " 

2.08 238 0.270 

10,5Hh 2" Comp  B 445 A0 5.0L 4.00         ! 2.85 220 0.282       j 

Bnss «Iriver. 

Vacuum  shot. 

'"    i   16    stainless   steel   liver   [ilate. 
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Table   3-11 

IIUGONIOT DATA FOR NTS Pl.AYA 

/'o 1.95 ± 0.02  g/cm3 

Mo is lure   Content   (M.C.)     =     0  percent   +   0,2 

DRIVER DATA PLAYA DATA 

2024 
SHOT 

N ). KxpIns i vc 
Sy s t em 

A 1 u m i n u tn 
Dr i ver 

Pressure 
vkl.ar) 

Specimen 
No. 

Shock 
Ve lucily 

(mm Msec) 

Free-Surface 
Ve 1 nc i t y 
(mm/Msec ) 

Part ic le 
Ve1DC i ly 

( mm'/Xsec ) 

Pre s 5 ii re 
(kbar) 

Fina1   Vo 1 ume 

(cm3/g 

l)i rert rout art 
I'-hl)  + 

110,467 2   C'omp H 288 E5 4.55 3.13 1.93 172 0.296         ! 
Dl 4.68 -- 1.92 176 0.304       | 

10,468 .. 158 El 3.35 1.66 1.26 82 0.321 
D2 3.34 -- 1.26 82 0.323 

10, r,.w .. 16 3.4* D18 2.57 0.895 0.772 39 0.355       1 
D12 2.52 -- 0.775 38 0.354       j 

1/8     stainless steel 
f 1 yer |)1 ates 

P-80 + 

10,S85 3" IIMX 610 A3 6.27 4.76 3.22 394 0.250       | 

10,460 2" C.omp B SO 3 E7 5.65 -- 2.84 314 0.255       j, 

10,601 ♦ 2    (,nmp B 476 4 5.18 2.74 295 0.256 

* Brass  driver. 
t Vacuum   shot. 
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Table   5-111 

HUGONIOT DATA FX)R NTS PLAY A 

f- o 1 .7(1   ±  0.01   g/cm3 

Moisture  Content   (M.C.)      =     9.6  perrent   1   0.4 

SHOT 
NO. 

DRIVER DATA [                                                             PLAYA DATA                                                            j 

Explosive 
Sy s tem 

2Ü2\ 
Aluminum 
Driver 

Prfssure 
Ikbar) 

Spec imen 
No. 

Sliock 
Velocity 
(mm/Msec) 

Free-Surface 
Velocity 
(rm/Msec ) 

Part ic le 
1 Veloc i ty 

( mm/Msec ) 

Pressure 
(kbar 1 

Fina I   V <> I ume 

(cm     /)? )        j 

Ih rect  tont act 
P.60  + 

0,584 2" Comp  H 285 . 4 r, .44 
4.43 

3.39 
* - 

1.98 
1,99 

1 50 
14'» 

0.3.5         I 
0.325 

1   0.605 -- 38 u 2.99 1.56 1.17 59.5 0.358         j 

0,698 • - 166* 3 2. 36 1. 9 0.795 32 0.390 

0,606 "" 

1/8     stainless   steel 
flyer plates 

P.80 + 

165* 1 2. 36 0.950 0.7^7 32 0.3i(i 

0,549 3" 11MX ( 60 0 6.58 6.46 3. 50 :Q3 0.274 

0,586 2    Comp B 445 .■5 5.40 — 2.7 2 250 0,201         i 

Brass driver. 
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Table   3-IV 

UllGONIOT DATA  FOR NTS I'l.AYA 

2. 14 +  0.01   K/cm3 

Moisture  Content   (M.C.)     =      9.4   percent   1   0.2 

SHOT 
NO. 

DRIVER DATA PLAYA DATA                                                             j 

F.X|i 1 us 1 ve 
Sys tem 

2024 
Aluminum 
Driver 

Pressu re 

Spec)me n 
No. 

Shock 
Ve1oc i t y 
(mm/Msec) 

Free-Sur face 
Velocity 
(mm/Msec) 

Part ic le 
Velocity 
(mm/Msec ) 

Pressure 
(kbar) 

Final   Volume 

(cm /g)       j 
(kbar) 

Direct   contact 
I'-M)  + 

10,467 2" Conip  B 288 G8 5.00 3.18 1.82 196 0.295 
G3 4.72 -- 1.86 187 0.282         j 

10,468 .. 153 G10 3.86 1.67 1.18 97 0.325 
02 3.78 -- 1.18 95.5 0.321         ! 

10,548 .. 163* a)7 3.52 _ — 0.7 27 55 0.370         j 
w3 3.60 1.36 0.724 55.9 0.372 

1 '8     stain 1 ess   steel 
flyer  (dates 

l'-80 + 

lo.ssr, 3" IIMX 610 OJIO 6.81 6.26 3.04 444 0.260         I 

lo, m 2" Comp   B SO 3 G6 6.20 5.01 2.68 359 0.264         j 

Brass ilriver. 
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Table   S-V 

miWNlOT DATA FOR MS I'i.AYA 

p       =      1.55 ± 0.0 1   g/cm3 

Moisture  Content    (M.C.)     =     18.9  percent   ±0.2 

SHOT 
NO. 

DHIVEH DATA PLAYA  DATA                                                             j 

Explosive 
Sy s t.em 

2024 
A1 urn i n um 

I) r i v p r 
Pressure 
(kbar ) 

Spec i men 
No. 

Shock 
Velocity 

( mm/Msec ) 

Free-Surface 
Velocity 
(mm/Msec ) 

Particle 
Velocity 

( m m //x s e c ) 

Pressu re 
(kbar) 

Final   Volime 

(cm      R)          j 

10.007 

lü,8h0 

10.00h 

11,130 

11, 153 

10,861 

10,015 

Direct  contact 
I'-hO  + 

2" Comp » 

• * 

1/8     stainless  steel 
flyer  plates 

P-80 + 

3" mix 

3" MMX 

2" Comp   B 

2" Comp   H 

27 5 

130 

137 

(.30 

(.02 

17 5 

178 

70 A 

15 

8 5 

70 A 
8 3A.1 

81A-1 

32 

8 2 

1.55 

3.22 

3.00 

h.hi 
6.51 

6.08 

5.70 

5.h( 

2.53 

1.05 

1.67 

5.86 

6. 50 

6.20 

l.Oh 

1.17 

1.18 

3. 52 
3. 51 

3.11 

2.01 

2.03 

138 

58. 5 

57 

360 
357 

321 

257 

257 

0,366           | 

0.110 

0.300 

0,301 
0,205 

0.280           i 

0.315 

0.311           j 
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40 

M-90ft«-l4 

FIG. 3-3    PRESSURE  vs.   PARTICLE   VELOCITY  IN  NTS  PLAYA 
(PQ   =   1.55 g/cm3, moisture content  =  0 percent) 

affects the Hugoniot.   These shots are appropriately marked in the tables.   On 

the basis of the results it appears that any effects due to air in the pores is 

smaller than experimental error. 

The densities and moisture contents which specify the initial conditions of 

the playa are recorded at the top of each of the tables.   The quoted tolerances 

in densities refer to the maximum deviations that were actually observed.   The 

value of the average density of any given sample is measured to within 1/4 per- 

cent.   The tolerances in moisture content are estimates based upon observations 
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4.0 

OB-9099-19 

FIG. 3-4    PRESSURE   vs.   PARTICLE   VELOCITY   IN  NTS  PLAYA 
(pQ   -   1.95   gem, moisture content        Opercent) 

of the rates at which dry and moist playa gain and lose moisture, and upon 

known variations in the moisture content of the stocks from which nominally 

similar samples were pressed. 

Playa free-surface velocities have been measured in many of the Hugoniot 

experiments.   The purpose of these measurements is to give insight into the 

qualitative behavior of the free-surface velocity as a function of pressure. 

Inclined mirrors rather than gapped mirrors are used since inclined mirrors 

monitor free-surface velocity continuously, and are able to observe any struc- 

ture which the shock might have such as a double wave induced by a phase 

transition.   Iron shims are used on the free surface whereas in the more 
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30 

mm/fistc 
oe-sos9-is 

FIG. 3-5   PRESSURE  vs.   PARTICLE  VELOCITY  IN  NTS  PLAYA 
(PQ        1.70 g/cm  , moisture content  =  9.6 percent) 

sophisticated adiabat experiments aluminum shims were used as described in 

a previous section.   Free-surface velocities measured using aluminum shims 

indicate that the free-surface velocities measured earlier using iron shims 

were systematically low.   The variation is on the order of 10 percent at 100 kbar, 

and less than 2 percent above 300 kbar.   This variation is probably due to shock 

attenuation as the wave passes through the experiment and to the nonnegligible 

time required for the shim to accelerate to the playa free-surface velocity.   In 

addition, the random error is greater for measurements made with inclined 

mirrors than gapped mirrors since the inclined are more sensitive to shock tilt 

and curvature.   The resulting free-surface velocity measurements are useful for 
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500 

1,0                      2 0 30 
PARTICLE VELOCITY, u  mmZ/isec 

OB-50S»-I7 

FIG. 3-6  PRESSURE  vs.   PARTICLE   VELOCITY   IN  NTS  PLAYA 
(PQ        2.14  g, cm  , moisture content       9.4 percent) 

giving the general nature of free-surface velocity dependence on parameters 

such as shock velocity or pressure, and for showing the relative changes in 

free-surface velocity with the variation of the density and moisture content. 

Figures 3-3 to 3-9 show the experimental results in the form of five pres- 

sure, particle-velocity plots, and two pressure specific volume plots for playa 
3 

in the various initial states.   Figure 3-3, P0  =   1.55 g/cm   ,   moisture con- 

tent  =    0 percent,   has error brackets on two typical points.   These are 

representative of the errors to be associated with points in the high and low 

pressure ranges of each of the Hugoniots.   They are probable random error, 

rather than maximum error, calculated from estimates of the uncertainty in 
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40 

0B-»0S9-ie 

FIG. 3-7   PRESSURE   vs.   PARTICLE  VELOCITY   IN   NTS  PLAYA 
ip o 1.55 ö/cm, moisture content   =   18.9 percent) 

sample density, shock path length, shock curvature, and shock transit time 

as recorded by the smear camera.   The error estimate is lower than in the 

previous year partially because of technique refinements, but primarily because 

of the availability of a new film reader having considerably better resolution 

than that which was previously attainable. 

The five Hugoniots are distinct in the pressure, particle-velocity plane 

mostly because of the variation in initial densities.   The data presented in 

the thermodynamic plane, pressure-specific volume, are less sensitive to the 

initial density and the various Hugoniots arc much closer.   In fact, after initial 
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400 

0.44 0.52 0.60 
SPECIFIC VOLUME — cmVg 

FIG. 3-8    HUGONIOT  AND   RELEASE   ISENTROPES  FOR  NTS  PLAYA 
it'n        1.55g cm  , moisture content   -   Opercent) 

porosity has been removed, the only significant difference between the various 

samples is due to the moisture content and is relatively small.   It is interesting 

to note that in the P-V plane it is possible to generate the Hugoniot of moist 

playa,   P    =  1.55g/cm   , moisture content 19 percent, in the intermediate 

pressure region quite closely from the Hugoniots of water and of dry playa of 

the same density.   This is done by making the simple assumption that the water 

and playa making up a moist sample act independently and are at the same 

pressure behind the shock.   Differences in temperature are neglected.   Since 

both Hugoniots are known, one can add together the specific volumes of playa 

and water at various pressures, in the relative proportions which each are 

present in the sample, to obtain specific volumes of moist playa at those 

pressures.   In this way a Hugoniot may be generated which agrees quite closely 

with the measured one.   This model for moist playa is certainly a gross over- 

simplification of the actual material, hence it is interesting that calculations 
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FIG. 3-9   HUGONIOT  AND  RELEASE  ISENTROPES  FOR  NTS PLAYA 
(PQ       1.55 g/cm3, moisture content  =   18.9 percent) 

based upon it are not greatly different from actual measurements.   A similar 

result was reported last year (1) based on Sandia data for dry and saturated 

sandstone. 

(2)   Adiabat Experiments 

The results of the adiabat measurements are presented in Table 3-VI and 

Figs. 3-10 and 3-11.   The table is again divided into two categories according 

to whether the wave was initiated in the driver by a flying plate or by explosive 

in contact.   Release isentropes are measured for only two of the five initial 

playa states which were examined during the Hugoniot experiments.   It is felt 

that the other initial states would not yield significantly different results and 

hence did not warrant the additional effort.   The two states examined are both 

of density 1.55 g/cm , one dry, the other of moisture content 19 percent.   The 

tolerances on the soil sample parameters are as quoted in the previous section 

on Hugoniot experiments. 
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Table   3-V1 

HKl.KASK  1 SF.NTROPK DATA FOR NTS 1M.AVA 

A' 1.55 ±  0.01  g 'cm3 

SHOT 
NO. 

mUVKU  DATA ADIAHAT DATA 

Kxp1 OS 1 vc 
Sv stem 

2 0 2 4 
A1uninurn 
Driver 

I'res so re 

(kliarl 

Maie ria 1 
I n i t i n 1 
De n s 1 t v 

( ^    c in    ) 

j      Shock 
Wlocit y 

(rum  ßsv v ) 

Kree-Su r(ave 
Velnritv 

( mm  I' set- 1 

Part irle 
Ve 1nr l t \ 

( mm i.' se( 1 

1 re ssu   e      ! 
j     (kharl 

Alumiinim   flyer* 
plate 
P.80 + 

11, 447 1" IIMX ''12 PI ay a 
M.C. - 0r; 

1.55 -- 5. h 5 3.11 2(i2 

K.tliyl   Ktlier 0.708 6.54 •- 3.2'* 1 52 

i 11,0 0.^7 h.h5 -- 3.20 212        | 

11,456 l" Comp B + 

2    Baratol 
Jhl 1. 55 -- 3.37 1. cl(t 11(, 

ii.n (),')o: 5.01 -- 1.Q3 %         j 
11,0 O.QQ? l.il -- 1.88 1'2 

11. 158 l" IIMX 517 Play; 
M.C-   I9.,V.: 

1.55 -- 7. 11 3.(17 281 

Kthyl Ktlier 0.708 6.8 5 -- 3.52 171 

II2O (1. IH)7 h.B6 -- 3. 3h 230 

11, 150 l" Cbnip H + 
2    Raratol 

Jh,' PI ay a 
v.(',= ]'>.r; 

1.55 -- 1.(.5 l.l)3 130 

Kthyl  Klher 0.708 4.91 -- 2.3(1 80        { 

11,0 O.QM? 5.03 -- 1.Q5 f,R 

Vh rer t  con t art 
P-HO   + 

11, 157 l" ( -tnp  K + 
2"  our.to 1 

IH1 Playa 
M.c..= r».r; 

1.55 2.8(1 1. It 80  5 

Kthyl  Kther 0.708 1.1» -- 1.80 53        j 

11,0 0." )7 4. 3 i -- 1.53 Mt  5 

11, 146 l"  Cmy  H* 
2    Ifaratol 

183 Playa 
M.C.   -     d'V 

1.55 — 2.3(. 1.52 71   5 

Kthyl   Kther 0.708 4.08 -- 1.74 50 

11,0 l).<) »7 4. 3) 1.51 ()5  0 
1 

l/'h     lucit^  buffer,    l/l"  A!   fiver   and   1/8     Al   driver. 
♦  Plava  pressures   and  particle  velnnties   are   inferred   from measurement  of Al   driver   free-surface  velncit^   and 

known   playa  Hugumol. 
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Each shot yields four points defining one release isentrope as described in 

an earlier section.   In the release isentrope experiments, the Hugoniot state 

from which the release occurs is not directly measured.   Since the Hugoniot 

in the pressure, particle-velocity plane is quite well defined from all previous 

data, in the present experiments it is inferred from a mcasurementof the state in 

the aluminum driver.   The three release states are determined by measurement 

of the shock velocity through the liquid reflectors and the free-surface velocity 

of the playa.   Typical tolerances are shown in Fig. 3-10 for points on the high 

and low release isentrope.   These tolerances are calculated by a similar method 

to that used in the Hugoniot program.   Rectangular tolerance bars are not used 

since in this case one wants to know the variation possible in a curve centered 

on the Hugoniot rather than at the origin, and the projection of rectangular bars 

in that direction does not cover the entire error region.   The tolerances shown 

for the free-surface velocities are the deviations from the average of the two 

values measured on each shot. 

It should be noted that the intermediate pressure release isentropes for 

both moist and dry playa contain fewer points than the other isentropes.   For 

the dry playa both liquid cells were filled with water as the seal between them 

was ruptured after the leak testing procedure.   Hence there were three water 

cells fired with the intermediate pressure driver system.   All of these cells 

recorded the same shock velocity within experimental error.   This shock 

velocity is anomalously low in the sense that the resulting release isentrope 

points are not credible on physical grounds.   On a pressure-particle velocity 

plot the isentrope points fall at lower pressure and lower particle velocity than 

the Hugoniot points from which they originate.   This phenomenon could be 

explained by postulating that there exists a double wave in water, and that the 

velocity which is being measured is that associated with the first wave.   In 
4 

support of this explanation it should be noted that the Russians   have reported 

a phase transition in water with the velocity of the first wave being within 
10 percent of the velocity we have observed.   These three points are recorded 

on the graph but are not taken into account in sketching the shapes of the 
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release isentropes.   As four points are not sufficient to determine the structure, 

if any, of the isentropes, they are assumed to be smooth curves. 

An interesting difference exists between the free-surface velocities for the 

two moisture content play as.   For dry playa the free-surface velocity is always 

less than twice the particle velocity behind the initial shock.   For moist playa of 

the same density the free-surface velocity is greater than twice the particle 

velocity except for the lowest pressure in which case it is almost exactly twice 

the particle velocity.   Free-surface velocity data for the moist playa may in- 

dicate either an expansion to a volume considerably greater than the initial 

volume or, upon release, the water may be vaporized and thus produce a free- 

surface velocity much greater than that of dry playa.   Some of the early shots 

using inclined mirrors to record free-surface velocities, indicated that the 

mirror was sustaining two impulses such as could be delivered by the moist 

playa if wuter vapor and then playa struck it successively.   As the scope of 

the project did not permit further examination of this hypothesis, it should 

be borne in mind that the free-surface velocities recorded here refer to the first 

material to arrive at the recording mirror.   The velocity is characteristic of 

moist playa and is reproducible to the accuracy shown by the tolerance bars 

on the graph. 

Since the impedance match technique, making use of thecontinuity of pressure, 

and particle velocity across an interface between two media, is used to measure 

both release adiabats and Hugoniots, the data are naturally obtained in the form 

of pressure, particle-velocity states.   The conversion of a Hugoniot pressure- 

particle velocity state to a pressure-volume state is quite readily achieved 

through the application of the Rankine-Hugoniot jump conditions.   Pressure- 

particle velocity adiabat points cannot be as readily converted to pressure- 

volume points.   This is because the transition from the initial Hugoniot state 

to a state of lower pressure and higher particle velocity and volume is 

achieved by a continuous process through a rarefaction wave rather than an 

essentially discontinuous jump as In a shock.   Consequently, the jump condi- 

tions relating the two states In tlie case of a shock must be replaced by an 

integration between the two states which involves all intermediate states. 
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Applying the equations for isentropic flow the volume at some state in a rarefac- 

tion wave relieving the material from a shocked state is given by 

V  =  V, 
-/ 

u 
du 

(dP/du)s 

ul 

where  V    and   u    are the volume and particle velocity state behind the initial 

shock.   If the isentropic pressure, particle-velocity cun'es are known, the 

derivative   (dP/du)     can be calculated and the integral evaluated. s 

Smooth curves have been drawn through the experimental adiabats in the 

P-u plane in order to map them into the P-V plane.   If slightly different 

curves were drawn through the data different P-V adiabats would result so 

that the curves shown in Figs. 3-8 and 3-9 are somewhat arbitrary.   However, 

some quantitative conclusions can be drawn from the general shapes of the 

curves.   The adiabats coming from the higher pressure Hugoniot points indicate 

the adiabat is quite steep in the P-u plane compared to the Hugoniot.   This 

behavior is also apparent in the P-V plane.   Such a phenomenon has been 
5 

observed also in tuff.     This small increase in volume or particle velocity 

with decreasing pressure upon release can be explained by assuming a poly- 

morphic phase change occurring at the higher pressures.   As approximately 

50 percent of the playa is silica it is reasonable to suspect a transition to 

stishovite.   The adiabats releasing the material from the lower pressure states 

behave in a more normal manner.   The calculated adiabat for the moist playa 

(p   ~  1. 55, moisture 18. 9 percent by weight) releasing from the highest 
0 3 pressure point indicates an extremely large specific volume,1.65 cm /g, upon 

release to zero pressure.   This value of the volume is again dependent upon 

the assumed curve in the pressure, particle-velocity phase for the isentrope. 

However, the high free-surface velocities observed for this moist material at 

high pressures imply a zero pressure volume larger than the initial specific 
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volume.   The effect of moisture in the soil appears significant in releasing 

from the higher pressures.   This behavior may be due to vaporization of the 

water as the pressure is released. 

Values of  F ,   Grunt-isen's ratio, have been estimated from the slopes of 

the Hugoniots and iscntropes of dry playa at their point of intersection.   The 

value for the lower pressure iscntropc is    F =   1.3.   At the higher pressure 

point   F =   - 16 .     This anomalous value results from the possible phase 

change. 

E.    LOW PRESSURE SHOCK WAVE EXPERIMENTS 

The extremely low stress levels, less than 1 kbar, may well be the most 

Important stress region for study from the point of view of application.   In the 

case of a blast occurring in or near the earth the majority of the medium 

affected by the ensuing wave motion will be subjected to stresses in this regime. 

Some preliminary dynamic data on the behavior of dry playa of initial density 

1.55 g/cm   were obtained.   Since the techniques of inducing very low ampli- 

tude waves into soil samples and recording the amplitudes and velocities were 

unlike any techniques used in otliei phases of this program, the largest part of 

the effort went into technique development.   The low amplitude waves were 

induced by a low velocity gas gun projectile and the stress-time recording 

was done with a quartz pressure transducer. 

(1)   The Gas Gun 

The gun consists of a smooth bore 2-l/2-inch-inside-diameter barrel which 

is evacuated ahead of the projectile.   The projectile is accelerated down the 

barrel by gas introduced from a high pressure reservoir.   Carefully spaced 

electrical pins measure the projectile velocity near the target assembly as 

shown in Fig. 3-12.   The mass and length of the 2-1/2-inch-diameter pro- 

jectile are variable and may be chosen to accommodate each experiment.   At 

the present lime the maximum projectile velocity is approximately 0.7 mm/ 

fAsec.   In the present study a low velocity of about 0.3 mm/|isec or 100 ft/sec 

is necessary.   The main problems encountered using slow projectiles are 

velocity control and tilt.   The tilt, a measure of the deviation from parallel 
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of the target and projectile surfaces at impact, is measured by four arrival 

pins in the target assembly.   These pins are shorted, giving rise to electrical 

pulses, by the projectile as it strikes the target.   The pulses, which are 

binary coded to assure later identification, are displayed in sequence on an 

oscilloscope.   The time interval between the first and last closure measures 

the total tilt. 

(2) The Quartz Pressure Transducer 

The quartz gage consists of an x-cut quartz disk which has a conducting 

layer evaporated on both flat surfaces.   A circular groove, which is con- 

centric with the disk and is called the guard ring, is machined into one face 

and divides the disk electrically into two regions.   Only the portion of the 

quartz gage within the guard ring is used for recording.   The outer portion 

is to minimize edge effects and maintain a uniform electric field in the 

recording area. 

When a pressure pulse traverses the quartz, a voltage proportional to the 

difference in stresses at the two faces is generated.   The gage is calibrated 

to a pressure of 25 kbar and records for a time interval equal to the transit 

time of a wave through the crystal.   The sensitivity of the gage is about 

0.8 volts/kbar.   A more comprehensive treatment of the behavior of the quartz 

gage is given by Graham et al. 

(3) Shot Assembly and Data 

Dry playa samples of initial density 1.55 g/cm   prepared in the manner 

described earlier were used in the low pressure studies.   The samples were 

2-1/2 inches in diameter and approximately 1/8 inch thick.   The shot assembly 

which is mounted over the end of the gun barrel is shown in Fig. 3-13.   The 

projectile strikes an aluminum driver plate inducing a pressure pulse into it. 

The driver plate transmits the pulse to the sample.   Upon reaching the soil- 
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quartz interface the pressure pulse is reflected back into the soil and trans- 

mitted to the quartz.   During the time of passage of the initial pulse through 

the quartz, the pressure at the quartz-soil interface is recorded by the 

transducer. 

An aluminum driver plate was used rather than impacting the projectile 

directly into the sample.   Since the gun barrel is evacuated this arrangement 

is much simpler experimentally.   Very low projectile velocities were used 

so as not to exceed the Hugoniot elastic limit of the driver plate.   If a double 

wave system emerges from the aluminum the interpretation of the gage 

record becomes more confused in looking for a double wave system in the 

soil.   The aluminum driver is equipped with pins to measure projectile tilt 

upon impact.   A layer of aluminum foil is placed on top of the soil to provide 

an electrical connection to ground for the gage.   The gage is placed on the 

soil sample and the entire assembly is potted in C-7 epoxy which has been 

doped with glass beads 50 - 150^ in diameter.   This potting is done to more 

closely match the impedance of the surroundings to that of the soil and gage, 

thereby minimizing edge effects.   An appropriate resistor is added from the 

guard ring to ground to equalize the electric field in the quartz betweeif the 

guard ring and center electrode. 

Working at low projectile velocities introduces experimental problems 

which are not serious at high velocities.   The most serious of these problems 

is tilt.   Since the projectile velocity Is much lower than the induced pressure 

pulse velocity, large refraction effects  in the wave front arise due to the 

nonsimultaneity of impact.   The low velocities also require extreme precision 

in flatness of the colliding surfaces.   An effort was made to maintain all 

impacting surfaces flat and parallel within ±0.0001 inches.   It was found that 

bowing of the target assembly due to the pressure difference when the gun 

barrel is evacuated produces a nonplanarity much larger than the tolerance 

specified above.   To eliminate this effect an auxiliary vacuum system was 

added to the back of the target.   The other difficulty in working at low projectile 

velocity is the reproducibillty of the velocity itself.   Frictional forces between 

the barrel and projectile become quite important and lead to wide scatter in 

velocity for the same initial accelerating gas pressure in the reservoir.   A 
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series of thirteen shots with no targets was fired to study this problem, it was 

found that using a massive projectile and argon rather than helium as an accel- 

erating gas considerably increased the reproducibility. 

The pressure-time profiles recorded by the quartz gages for two shots 

(11,467 and 11,468) are shown in Fig. 3-14.  Time is increasing to the right. 

Both records were subiect to considerable tilt despite the precautions taken to 

minimize it.   These       shots were exploratory and were the only experiments 

of this type perforir       Consequently, in the absence of any other data for direct 

comparison, these results must be regarded as tentative.   The oscilloscope rec- 

ord for Shot 11,467 shows no definite double wave structure. * The abrupt change 

in slope in the rise of this pulse corresponds to a pressure of about 0.09 kbar in 

the quartz.  The peak is at about 0.45 kbar in the quartz.   If an elastic precursor 

in the soil is present, but obscured by the slow rise time due to tilt, it would 
have an amplitude of 0.04 to 0. 09 kbar.   The record from Shot 11,468, given by 

the upper trace, clearly shows a rise, followed by a plateau and then a second 

rise.   The signal on the lower trace is from the guard ring.   The first and sec- 

ond amplitudes from this record correspond to pressures of 0.12 and 0.42 kbar 
in quart2., respectively.   Interpreting the record as indicating a double wave 

structure in the soil, the first wave amplitude would be 0.06 to 0.12 kbar. 

Estimates of the wave velocities may be obtained from the time interval 

between impact of the projectile on the driver and the arrival of the wave at 

the soil-quartz interface as indicated on the gage record.   The transit time of 

the input wave through the aluminum driver must be subtracted out.   This 

transit time can be computed from the known Hugoniot of aluminum.   The pres- 

sure behind the second wave can then be estimated, ignoring the initial wave 

which is small, from the wave velocity and the fact that the pressure, particle- 

velocity state behind the second wave must lie on a relief cross curve of 
aluminum.   The pressures and particle velocities behind the main wave in the 

soil calculated in this manner are presented in Table 3-vn.   The pressures 

obtained from the quartz gages for the main wave, which must be the pressure 

behind the reflected shock in the soil at the quartz interface, are lower than 

would be expected.   As the impedance of x-cut quartz and aluminum are quite 

close at these low pressures it would seem that the pressure in the quartz 

♦The amplitude of the first wave was taken as half of the initial pressure rise. 
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would be at least double the initial pressure in the soil if the soil impedance 

remained the same behind the shock.   If the main wave crushed or compacted 

the soil, one would expect the impedance to increase and the pressure to more 

than double upon reflection from quartz.   The results from the quartz gage 

indicate a pressure less than twice the estimated initial pressure, implying 

that the reflected shock Hugoniot of the soil is of smaller slope than the initial 

Hugoniot in the pressure, particle-velocity plane.   These results do not con- 

form to any other data and since they are preliminary they must be regarded 

as quite tentative pending further investigation. 

Table   3-Vn 

LOW PRESSURE DATA FOR DRY NTS PLAYA 

SHOT 
NO. 

SAMPLE 
DENSITY 

I »J    i m    ) 

PROJECTILE 
VELOCITY 
( ft   sec) 

PROJECTILE 
TILT 

(Msec) 

WAVE VELOCITIES 
(mm usec) 

APPROXIMATE 
PRESSURE   IN  SOIL 

(kbar) 

APPROXIMATE 
PARTICLE 

VELOCITY  BEHIND 
SECONO  WAVE 

( mm, Usec )             | First Se cond First Second 

Il,4h7 

11. K.R 

1. 54 

1.55 

163 

143 

2.6 

3.1 

0.57   ♦ 0.04 

0.42  i  0.04 

0.54 ± 0.04 

0.3Q  ± 0.04 

0.04-0.09 

0,06-0.12 

O.SQ 

0.25 

0.047             | 

0.041             | 
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4-THEORY 

Christian Peltzer 

A.    INTRODUCTION 

When attempting to obtain equations of state for porous earth media one 

faces several problems in addition to those encountered with simple solids, 

namely: 

a. Already in its initial state, the medium is generally a three- 

component system consisting of a solid phase, a gas phase 

(air) and a liquid phase (water). 

b. The solid phase itself is an essentially Isotropie mixture of 

many different compounds and/or mineralogic species. 

c. The individual constituents of the solid phase are often com- 

plex compounds rather than simple monatomic crystallites. 

It is customary to treat the three phases as noninteracting systems so that all 

thermodynamic extensive variables are obtained additively from those of each 

phase and also to assume that pressure equilibrium is attained behind the 

shock front and maintained during pressure release.   A unique specification of 

the thermodynamic state of the system requires of course further assumptions, 

either that of complete thermodynamic equilibrium or specific assumptions on 

the behavior of each phase under the shock transition and during pressure 

release. 

Similarly, the solid phase is often treated as a mixture of independent 

phases and its thermodynamic state functions are then calculated additively 

from those of the simpler individual constituents, usually under the assumption 

of complete thermodynamic equilibrium. 

i 

i 

; 

Note:  See List of Symbols at end of section,page 69. 
• - 9 t™ 
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A meaningful evaluation of the validity of such assumptions would require 

a better understanding of the structure of a shock front in dense mixtures and 

little can be added presently to the elementary discussion given in the previous 

report. 

Hugoniots for wet playas obtained as described there from the Hugoniots of 

solid quartz and water are in reasonable agreement with the experimental wet 

playa data.   Also an estimate of the effect of a decreased Hugoniot temperature 

in wet playa (as compared to dry playa) can be gained by taking successively for 

the solid phase Hugoniot the experimental data of solid quartz and of dry porous 

playa. 

Calculated Hugoniots of solid mixtures are relatively insensitive to the 
7 

averaging procedure used   to obtain them trom the individual constituent 

Hugoniots and in the absence of a better understanding of the physical mechan- 

isms underlying the propagation of shock waves in solid mixtures, there are 

little real grounds for selecting any one of the several averaging schemes 

proposed (per weight fraction, per molar fraction, ) in preference to the 

others, the difference between the resulting Hugoniots being of the order of 

the experimental uncertainty. The lack of sufficient adiabatic release data 

precludes at the present any analysis of the same problem there. 

A further complicating factor in analyzing playa data is the existence of 

polymorphic phase transitions for Si02, in particular that to stishovite.   In 

view of the particularly large volume change and the change in coordination 

number associated with this transition, the absence of conclusive experimental 

evidence for or against its occurrence in dynamic compression of playa makes 

any comparison of the experimertal data with postulated equations of state 

rather academic for the time being. 

Nevertheless, one may conclude from a comparison of the experimental 

data on playas and quartz and from the limited parameter variations performed 

with the equation of state used here, that porous silica is a satisfactory 

tentative model for the description of the thermooynamic behavior of the 

Nevada playas considered in this program. 
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The effects of small variations in the chemical and mineralogical composi- 

tion appear of little significance in view of the other uncertainties affecting 

both the experimental and theoretical situations, although such variations 

could conceivably be of more importance in the (little studied) low pressure 

region (< 20 kbars) and in the dynamics of eventual phase transitions. 

For these reasons, the theoretical work has been based on  SiO, data 

only, considered as a single thermodynamic system (see reference 1). 

B.    DERIVATTON OF EQUATIONS OF STATE (EOS) 

Presently, a direct first principles derivation of a complete EOS for 

sufficiently realistic models for most physical systems is an almost impossible 

task and if one requires an EOS to be valid over a relatively wide range of the 

thermodynamic variables it is still necessary to resort to semiempirical for- 

mulations.   Most equations of state proposed so far can be grouped into four 

types. 

a. Purely empirical EOS:  these are obtained simply by fitting 

largely arbitrary analytical expressions to some experimental 

data such as a Hugoniot; if such EOS may be of interest in some 

calculations, they ar,- but an economical way of presenting 

specific experimental data; they are totally inadequate for any 

extrapolation and prediction purposes and generally of no 

theoretical value or particular significance. 

b. Semiempirical EOS: these are in principle obtained by choosing 

a thermodynamically consistent functional form for some EOS 

and by determining its parameters from experimental data and/ 

or theoretical predictions (see c.) 

c. Theoretical EOS:  These are obtained from first principles 

according to the laws of statistical mechanics; they are 

presently limited to a few simple systems (classical and 

quantum) such as a free electron gas, a harmonic lattice solid, 

etc., and are exact within the well defined limits of the model 

and its underlying physical laws. 
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d.    Semitheoretical EOS:  In this disparate group, one can include 

many EOS which although partly derived from first principles, 

can only be obtained by additional assumptions of an heuristic 

nature whose degree of validity is difficult to assess; e.g., 

Thomas-Fermi, (TF) Thomas-Fermi-Dirac (TFD), etc. 

In view of the many loose statements implying the contrary, it may not be 

superfluous to repeat that semitheoretical EOS such as the T-F, T-F-D, etc., 

are in no way exact EOS of a well defined model and that at the present there 

exists no true estimate, in a proper mathematical sense, of their degree of 

validity in any particular range of the thermodynamic variables, but only 

more or less optimistic guesses as to their applicability (see later). 

We shall limit ourselves here to a consideration of some semiempirical 

EOS and we shall also discuss a few questions concerning the use of the T-F, 

T-F-D EOS and the nature of certain corrections proposed by various authors 

(see also Appendix.) 

C.    SOME THERMODYNAMICS OF EOS^ 

For the reasons given earlier (see also Ref. 1), we consider here only 

single thermodynamical systems (homogeneous, Isotropie) describable in 

terms of two independent variables, taken mostly to be V and  T  or  E*   and 

T,   where  E*   is the thermal energy. 

(1)    The General Mie-Griineisen EOS 

The general Mie-Grüneisen EOS is defined by the relation 

r=r(V,T) (4-1) 

F being the Mie-Grüneisen ratio defined as 

r = v im = v(^)v (4"2, 

For notation sec reference 1. 
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This EOS was discussed in reference 1 and we only recall its main features: 

(i)   it is an incomplete EOS that leaves the cold energy £ (V) 
■ c 

unspecified 

(ii)   it uniquely det rmines all other adiabats of the system in 

the V-T plane, these are the characteristics of the partial 

differential equations, 

^MUl-vQ •o <*-») 

S(V, 0)  = constant (= 0) (4-3a) 

and so are given by 

z = 0r(V, T)  = constant (4-4) 

where ^>p(V,T)  is a function of V,T uniquely determined by r(V,T) 

(iii)    The entropy is a function of z only, arbitrary up to general 

thermodynamic restrictions on admissible  SfV.Tl's  (positive 

definite, etc.) 

S = a(z) (4-4') 

(iv)   A complete specification of the system requires besides 

r(V, T) the knowledge of  EW) and that of o{z) or its 

equivalent, e. g., one isobar Vp    = VP0(T)  or one 

isotherm PT   = PT (V) (T0 ^ 0) or a specific heat 

C v   = Cy (T) ,  etc. vo o 
Two useful equivalent forms of the general Mie-Griineisen EOS are: 

P.PC(V)-. rc^i^.^ (4.5) 
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Pc  =  -# Ec  ^  Ec(V,0) (4-5a) 

and 

P(V,T)   =     ^T) E(V,T) + R(V,T) (4-6) 

Hc<V)  = -^-^.(|f)v  =  -|(ll)v 

It is important to note that R  is a function of  V  alone if and only if  F  does 

not depend explicitly on  T . 

(2)   Special Cases of the General Mie-Grüneisen EOS 

Two special cases of the general Mie-Grüneisen EOS have been 

frequently used, namely 

(i)    The usual Mie-Grüneisen EOS 

T =   F (V) (4-7) 

usually written in one of the two equivalent forms: 

P-Pc(V)  - ip|E - Ec(V)j (4-8) 

dE 
Pc  =   - "df Ec  =  Ec(V) (4-8a) 

or 

P   = —^ E + R(V) (4-9) 
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--W  = ^^c + W) (4-9a) 

The explicit form of ths principal thermodynamic state functions for this case 

were given in reference 1, as well as further details on its use for Hugoniot and 

adiabat calculations. 

(ii)    The Hildebrandt EOS 

In any domain   (T    # 0, T)    where   E*  is a function of  T  only, the general 

Mie-Grüneisen EOS can be put in the form 

p . pc(v)   =  IC^Ii T-^ 

T  ^ 0 (4-10) 

dE ♦ ♦ 
P     = -nr E     =   E (V) E     =   E  (T) c        dV c cw y  ' 

or equivalently 

dEc(V)       Vo PV + —   = -IST 
^V       din V K 

1 

* * 
E     =  E  (T) 

T  ^ 0 (4-10') 

These two special cases are not mutually exclusive and it can be shown that: 

The utual Mie-Gruneisen EOS and the Hildebrandt one are equivalent in a 

domain  (T    ^  0, T)  if and only if  Cv  = const and  E*   is of the form 

E*   =  C^ + const ,   F being then necessarily a function of  V  alone, given 

by 

VS'T (V) 

F   =       r.0 (4-11) 

" Since this special case is incompatible with the 3d  law,   T    must be > 0 . 
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In particular, one can note that a perfect gas and a Dulong-Petit solid both 

satisfy this equivalence criterion. 

(iii)    More generally, if   HV, T)   is of the form   rc(V)rt(T),   explicit 

forms for all thermodynamic state functions can be obtained 

just as for a usual Mie-Griineisen system   F - F (V) .    For 

other forms of F ,  the characteristic equation of (4-3) cannot, 

in general, be integrated in closed form and particular attention 

should be given to the consistency of separate assumptions on 

the forms of F (V, T)   and other thermal entities such as 

E*   or   Cv . 

(3)   Modified Mie-Grüneisen EOS 

Several other related EOS's have been considered in the literature, in 

particular the following ones. 

a.     As already remarked, an EOS of the form 

P(V,T)   =  r^T)E(V,T) + X(V) (4-12) 

cannot be a Mie-Griineisen EOS, i.e., the function F(V,T)   cannot—if it 

depends explicitly on T—be identical to the Mie-Gruneisen ratio   F defined 

by (4-2).   The two functions  F(V,T)   and r(Vf T)  are actually related by: 

|r-r|(|f)v=f(||)v (4-i3) 

It is possible to choose   F such that    F0(V)   = F(V)  but then one must also 

have 

F (V) E (V) 
Rc(V)   =  X(V)   =   Pc(V)  -    C     V

C  (4-14) 
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i.e., only two of the three functions  X(V) (or  R (V)),   E (V) and P (V) 
/       _      \ \ c    /      c c 
(or   r.(V) j can be rhosen arbitrarily, the third one being given by Eq. (4-14) 

A detailed study of this modified Mie-Grüneisen EOS, (4-12), can easily 

be carried out, but will be omitted here since this form does not appear to 

offer any particular advantages over the general Mie-Grüneisen EOS. 

b.     Some authors have made use of the following EOS: 

P(V,E)   -  -^^E + X(V) (4-15) 

The function  G(V, E)   is also distinct from the Mie-Grüneisen ratio   F if it 

depends explicitly on   E ,  the two being related by 

r - G   -   E(||)v (4-16, 

If (4-15) is to hold along the cold isotherm, one obtains the equation 

dE G(V,E (V)) 

" "dV    = VC       Ec(V) + X(V) <4-17) 

relating  G(V, E) ,   E (V) ,   and  X(V) . 
Q 

If the forms of G(V, E)   and X(V)   have been chosen a priori  (with adjust- 

able parameters determined empirically), Eq. (4-17) must be used to obtain 

the cold energy   E (V) .     Such a procedure is perfectly legitimate for semi- 

empirical EOS purposes, although it may be preferable to choose first the 

forms of   E (V)  and   G(V, E)  and then use Eq. (4-17) to determine X(V) . 

E (V)  is a relatively accessible quantity both theoretically and experimentally 

and this procedure would make easier a comparison with other formulations 

and a verification of the necessary stability requirements for  E (V) .     The c       ^, 
more serious drawback of this formulation is that the dependence of G on 

E    and   E*   (and so on T)   is the same and already determined by the relation 

(4-17) along the cold isotherm.   This rather artificial feature renders any 

interpretation of the thermal dependence of  G  difficult and precludes any 
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nonpurely numerical comparison of this EOS with other formulation and 

models. 

c.     For these reasons, the following EOS appears preferable: 

* 

P(V,E*)  - Pc(V)   =   G(V^E ) E* 

(4-18) 

dE 
P     =   - -jn E     =   E (V) c dv c cv 

The ratio  G(V, E*)   is again identical to the Mie-Griineisen ratio   F if and 

only if it does not depend explicitly on   E* ,   in which case Eq. (4-18) reduces 

to the usual Mie-Grüneisen EOS. 

In contrast to Eq. (4-15), it does not impose any a priori coupling between 

the cold and thermal components of the thermodynamic state functions and 

although it does not appear to offer any advantages theoretically over the general 

Mie-Grimeisen EOS, it can be of interest in semiempirical EOS work and shock 

calculations. 

The use of so many similar but distinct EOS (and a host of other semi- 

empirical and semitheoretical ones) is unfortunate inasmuch as it makes a 

comparison of various authors' results a tedious and difficult process while 

contributing very little but added confusion in understanding and solving the 

many remaining problems in this are?     The general Mie-Grlineisen EOS (or 

eventually the modified Mie-Griineisen EOS (4-18)) could provide a sufficiently 

general formulation for the present needs,   A systematic, unified presenta- 

tion of the existing experimental and theoretical data for the many systems 

inve       ited up to now would provide one with a much better picture of the 

present situation and help considerably in identifying those areas where further 

work is most needed, 

D.    DERIVATION OF A SEMIEMPIRICAL EOS 

When seeking a semi-empirical EOS for a specific system, it appears 

best to proceed in successive steps as follows: 
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a. First choose a suitable form for the cold energy   E (V) 

b. Select then an appropriate thermodynamic type of EOS, e.g., 

the general Mie-Grüneisen EOS 

c. Starting from the simplest ones, make further consistent 

assumptions on the specific form of the thermodynamic state 

functions determining the thermal components of the system, 

e.g., r(V,T)  and  (yT) . 

With guidance from both experimental data (static compression, Hugoniots, 

etc.) and theoretical considerations, considerable progress can be achieved in 

an orderly and systematic way towards the understanding and semiempirical 

representation of the principal factors determining the EOS of many materials 

over a fairly wide range of the variables.   This Is well Illustrated, e.g. , by 

the work of the Russian school (Kormer, Al'tshuler et al.) on metals (solid and 

porous), recently extended to the alkali halides, which, If still unsatisfactory 

in several aspects, appears nevertheless to have led to the most successful 

EOS for those materials presently available. 

Most purely theoretical results are limited so far to a few very simple 

systems which provide in this context mainly very high density and or very 

high temperature asymptotic models.   The cold isotherms corresponding to 

these models are reviewed in the appendix and although a similar study of the 

corresponding temperature dependent ones would be of interest, its need is 

diminished by the recent appearance of a comprehensive survev of the thermo- 

dynamic properties of matter at high pressures and temperatures by 
g 

S. G. Brush.     Extensions of the theory to more complex systems is the ob- 

ject of considerable activity but we cannot go here into these recent develop- 

ments of the many-body theory. 

There also exists many more or less successful theories and calculations 

of the ground state energy and first excited states of crystals near normal 

densities, but little use has been made of these results in semiempirical EOS 

work, this region being generally treated empirically. 

-. 
i 
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On the other hand, considerable use is made ot the semi-classical statisti- 

cal theories' (T-F, T-F-D, etc.) in bridging the gap between the experi- 

mentally accessible region and the simpler asymptotic models.   But 

"Although the T-F method is known to be approximate, the necessary 
analysis of the applicability oi these results has not been carried out. 
In the literature there are only qualitative considerations of the non- 
applicability of the method for small compressions (in the region ol 
low temperatures) and on the improvement of its applieability with 
increase in temperature.    However, the quantitative problems of the 
limits of the regions of density and temperature in which the method 
is applicable with a given accuracy, and on the size of the correc- 
tions to the quasi-classical equations of state, remain essentially 
unresolved, "tt 

This paper and several others by the same author as well as similar investi- 

gations by S. Golden, N. L. Balazs, Alfred, etc, present attempts at a solu 

tion of this problem.   In view of the formal nature of the developments used, 

the conclusions reached are still tentative and the proper limits of applicability 

of the statistical models remain unknown.   The main result reached in these 

studies is that inclusion of exchange effects exactly within the framework of 

the semiclassical model (T-F-D) is inconsistent and that it would be more 

valid to keep exchange corrections to the lowest order since higher order 

times are of the same order as neglected quantum corrections.   If this is the 

case,  it is questionable whether these statistical models have greater range of 

validity than their leading terms in an asymptotic expansion in inverse powers of 

the volume, which can be obtained directly from an electron gas model in a suit- 

able background.   It should also be pointed out that calculations on solvable 

models along the statistical approach with quantum corrections (harmenic oscil- 

lator, etc.) have been notably unsuccessful.   Furthermore the conclusions 

reached in the studies mentioned above are basically for isolated atoms or at 

most for simple monatomic crystals and even less is known about the applica- 

bility of the statistical models to polyatomic structures. 

Finally, many of the semiempirical EOS for solids are not single phase 

EOS but rather those of a two-component system:   a lattice part and an 

.TExtensive reviews of this approach are available (see appendix and reference 9) 
"^b.A. Kirzhnits, Soviet, Physic 8, 1081 (1959) 
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electronic component, the total thermodynamic state functions being obtained 

additively under the assumption of complete thermodynamic equilibrium. 

Such a separation corresponds to the usual adiabatic (or the static) approxi- 

mation in quantum mechanics; in semiempirical EOS work, the two components 

are generally taken to be noninteracting, although the Kormer et al. EOS with 

variable lattice specific heat    does couple them empirically.   One should note 

that in the high density asymptotic models, the separation is that  into a system 

of bare nuclei and one containing all the electrons while near normal densities 

it is usually one into ionic cores—(nuclei and tightly bound electrons) and a 

system of conduction electrons.   At the present it is still an open question 

\vhether a smooth transition between these two regions is possible or whether 

electronic phase transitions (with or without polymorphic lattice ones) must 

necessarily occur. 

E.    SEMIEMPIRICAL EOS FOR SiOg. 

(1)   In the previous report (reference 1), semiempirical EOS for quartz 

and stishovite were given which agree reasonably well with the experimental 

Hugoniot data obtained in this program and elsewhere for quartz and dry 

playas, if the quartz one is used in the low pressure region and the stishovite 

one in the high pressure region.   Detailed calculations for the probable mixed 

phase region were not made in view of the too great uncertainties affecting the 

quartz-stishovite transition (see section 3) 

The procedure adopted was the one described in reference 1: 

(a)   The cold isotherm  E (V)  was obtained in the form of a single 

analytical expression for the whole range of  V ,  the interpolation terms being 

chosen to be compatible with the functional form of the cold energy as given by 

the standard T-F asymptotic model.   The use of an approximate analytical 

expression for this asymptotic (T-F)   E (V)   entails a negligible error as 

compared to the other uncertainties of the model; the largest one of these 

results' from the necessity of introducing an effective monatomic model* for 

tsee reference 1 and the appendix. 
♦The averaging procedure adapted here differs from that used by L. Knopoff 
and G, MacDonald (Geophys. Joum. 1, 284, 1958). 
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the   Si02  complex if use is to be made ot the existing T-F calculations. 

(Direct T-F calculations for molecules are difficult and few are available). 

(b)   The usual Mie-Grüneisen EOS with constant   F was adopted as a 

thermal description of the system.   If no phase transition occurred, a value of 

F   =   2/3  can be taken as giving a crude behavior of   Si09  over the whole   V-T 

r^nge since   T  -  0.65  at the reference state and   =   2/3  in the very high 

density and/or very high temperature asymptotic models.   A higher value of 

F  =   1.4  for stishovite gives closer agreement with high pressure data for 

quartz although any value from 2/3 to 1. G leads to calculated Hugoniots within 

the experimental error at these pressures ^-500 kbar). 

The effect of a variable chemical composition (exclusive of water content) 

expressed as a variation in effective   Z   and  V     is less than that of a change 

in the foim of the interpolation terms and of no significance in view of the over- 

all limitations of the model.    The low pressure cold isotherm is of course 

sensitive to the bulk modulus at the reference state but playas cannot easily 

be compacted to solid density and no conclusive experimental data is avail- 

able on the effect of small changes in the chemical and mineralogic composi- 

tion on the bulk modulus of the soild phase. 

(2)   Other possible semiempirical EOS. 

The form of  E (V)   used here appears adequate for the present and re- 

quires only three parameters determined from the initial density, initial 

compressibility and sublimation energy of the solid (in addition to its chemical 

composition) while converging to the high density models* at high pressure. 

A simpler form could be derived in the same way by replacing the   E 

T-F term by the cold energy expression of an electron gas in a positive lattice 
13  14 background.     '       This procedure would avoid the use of an effective monatomic 

model and allow a distinction between polymorphs.   The correlation pressure 

term of this model is known for a few lattices, but the probably more important 

inhomogeneity correction is still in doubt.       Further development of such a 

high density model for polyatomic substances would be worthwhile.   The use of 

*Nonrelativistic ones. 

64 



-—"• "wy 

a simple constant   F Mie-Grüneisen EOS is of course only a crude first 

approximation.   Several more complex EOS can be used with the same cold 

isotherm. 

(a)   An EOS of the form (4-18), in preference to (4-15) for the reasons 

given in  §111 with, e.g. * 

G(V,E*)   =  a + ^-5- 
cE*p   +1 

where  p = V/V    and a, b, c are adjustable parameters.   The parameters 

would be determined as follows: 

a + b =   r0(rat V  = Vo, T = 0, P  = 0) 

"a" chosen a priori to be either 2/3 (perfect gas asymptotic limit) or deter- 

mined with c  by a least square fit to experimental data and temperature 

dependent T-F calculations corresponding to the parameters of the effective 

monatomic  SiO«  model.   This empirical form would serve mainly to bring 

the semiempirical EOS thermal components closer to the T-F values at high 

temperatures.   If there is no particular problem using it for stishovite with 

F« % 1,4, it may be troublesome for  a   -quartz in view of the low initial T 

value (0.65) resulting from the loose structure of this crystalline form of 

Si09 .    This procedure would require a small computer program and in view of 

the relative insensitivity of the experimental Hugoniot to  F ,  it should be 

based on a minimum of release adiabat points if a greater range of pressures 

and/or porosity than those examined are beyond the experimental possibilities. 

(b)   A Hildebrandt EOS of the form (4-10) 

Assuming a purely temperature dependent E* and  Cv from room tern • 

perature up, one could make use of an EOS of the form (4-10).    CV(T)  would 

be taken from experimental data at the lower temperature, and extrapolated 

with the eventual addition of a purely temperature dependent electronic com- 

ponent.   Such a model could not raasonably be used over a very extended 

1 Similar to Tillotson's formulation based on (4-15). 
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range of compression if only because of f.he volume dependence of the electronic 

energy band gap aid electron effective mass, but may be of limited interest 

for Hugoniots up to a few megabars. 

(c)   Two components EOS of the general form 

dE 
E    =  E (V)       P     =   - -777- c cy   ' c dV 

E (V,T)   =  E . ^ + E    , P (V,T)   =  P , ,   + P    . 1  '   ' latt cl v  •   / jatt ej 

offer more flexibility in handling the thermal components in semi-empirical 

EOS work.   The cold isotherm can be handled as previously and separate 

assumptions can be made on the lattice and the electronic thermal components 

of the state functions. 

The lattice part can be treated in any of the ways described earlier (usual 

Mie-Grüneisen, Hildebrandt EOS, etc.).   In particular one can use the simple 

Dulong-Petit solid model (constant specific heat  Cv  =  3R)   from some non- 
' t- V 

on 'i.e.. 
o zero reference temperature  T    on 'i.e.. 

E (T)   =  CVT + const 

P*(V,T)   =   ^3R(T - To)   =  glatt(V)T + const 

For materials with a relatively high Debye temperature, such a model is 

rather unsatisfactory at lower temperature and it would be preferable to use 

a temperature dependent  CV(T) ,  dete"mined from static experimental data 

t As done by Altshuler, ct al lor metals ref.   12, 9. 
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and a better theoretical model (Debye solid, Debye-Einstein solid, etc.).   The 

Hildebrandt EOS is well adapted for not too low temperatures, giving, if T 

is the reference state (room temperature e. g.) 

VS^ (V)       gT (V) 
o o nv, 1) CV(T)          CV(T) 

E*iatt<T) 

T 

= /     Cv(T)dt + const 
To 

n*iatt<T) 

gT (V) 

- ■    v      ii  const 

The form of  CV(T)  can bo chosen to decrease at high temperatures from the 

3R Dulong-Petit value to the  3R/2  perfect liquid lattice value*.   Since such a 

model is not extendable to  T    =  0 ,   it is in our opinion best to avoid the use 

of Slater or McDugall type of relations and treat gT (V)  empirically. 

The electronic thermal component can similarly be treated in several ways, 

although the quasi-free electron gas model as used by Altschuler, et. al., for 

metals is of course not applicable directly to the semi-conductors or insulators 

which constitute the playas.   Up to a few ev, one can use the various  E*ei, 

P*el   expressionr. developed for semi-conductors e.g., as Korrner et al, *1 

or at higher temperatures the approximate analytical expressions resulting from 

a fit to the T-F temperature calculations of Latter and others, or combine both. 

The degree of validity of such assumptions is considerably more difficult to 

assess than the still unsolved one of the cold models, but there is little doubt, 

in view in particular of the extensive Russian work on porous metals and ionic 

crystals, that reasonable EOS must include an electronic component along the 

above lines already at medium pressures (a few megabars), specially for 

porous media. 

*Sec e.g., Kormer et al, ref.  11. 

67 



•*•*  ..■■*■- 

If a wide range of porosity and pressure exceeds the present experimental 

possibilities, it is necessary to include in any semiempirical determination of 

the thermal components of the EOS a minimum of release adiabat points, be- 

cause the Hugoniot itself for a solid or a low porosity medium is relatively too 

insensitive to, e.g., the F chosen (such data were not available in time to be 

included in the theoretical work of this program). 

F.   CONCLUSIONS AND RECOMMENDATIONS 

1. Almost any semiempirical EOS formulation can be used to represent 

the Hugoniot data in the experimentally accessible region and such Hugoniot 

points can be reasonably well predicted in the absence of phase changes, from 

a limited number of parameters determined at the reference state. 

2. Such low and medium pressure EOS can be extended in a compatible 

way to high and very high pressures by introducing various asymptotic models. 

But, at the present there is no immediate way of asserting the degree of validity 

of the resulting EOS in any given range of the parameters (outside the experi- 

mental region) and this prevents one from selecting on sound grounds a particu- 

lar EOS as superior to others and of making more than qualitative estimates 

(guesses) on their respective validity. 

3. Although many so-called "corrections" have been introduced with an 

aim at refining the original semiclassical statistical T-F model, these are 

often inconsistent and have not increased the degree of reliability of the re- 

sulting modified statistical models. 

4. Recent Developments in many-body quantum (and classical) statistical 

mechanics give hope that significant progress could be achieved now in obtain- 

ing, through bona-fide estimates, quantitative reliability and unambiguous pre- 

dictions at least for the high density models.   Such theoretical work, in con- 

junction with a more systematic use of existing, near normal density theories 

and experimental work could allow significant progress to be made in resolving 

some of the many existing problems in EOS work. 

Before any quantitative reliability can be given to proposed EOS of playas, 

it is definitively necessary to conduct a considerably more intensive investiga- 

tion of the eventual phase transformations of SiO_ and other constituent minerals 
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in dynamic compression and upon pressure release.   In particular, any elec- 

tronic thermal component of the thermodynamic state functions can in no way 

be extrapolated across such phase transitions from reference state data on the 

basis of present knowledge. 

LIST OF SYMBOLS 

r Gruneisen ratio 

V Volume 

T Temperature 

P Pressure 

E Internal energy 

S Entropy 

Cv Specific Heat at constant volume 

PC(V) 0oK isotherm 

E (V) 00K compressional energy 

E* Thermal component of energy 

p Density 

T (V) Temperature dependent Grlineisen ratio at 0° K 
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5-EFFECTS OF A PHASE TRANSITION ON THE PROPAGATION 
OF FINITE AMPLITUDE WAVES 

O.E.  Duvall and Y. Horio* 

A.    INTRODUCTION 

Many materials have been found to undergo a phase transition on com- 

pression.   Under some conditions the transition has important effects on the 

structure and propagation history of a finite amplitude stress wave.   One such 

effect is to produce an instability in the compressive shock wave; another is 

to introduce the possibility of rarefaction shocks.   In Section B below the theory 

of shock wave -tahility is reviewed ami extended to a (orm appropriate for 

discussion ol effects due lo phase transitions.   In Sections C and D polymorphic 

transitions in which the density increases upon the increase of compression 

are classified, their phase boundaries are described, and some adiabats and 

R-H curves in the coexistence region are calculated.   The theory is used to 

discuss transitions in iron, bismuth and quartz, all of which have been studied 

experimentally. 

Notation 

P = pressure 

V = specific volume 

T = temperature in degrees Kelvin 

S = specific entropy 

E - specific internal energy 

G = specific Gibbs energy 

H = specific enthalpy 

p - mass density    =     1/V 

F = Grüneisen constant 

U - shock propagation velocity 

u - particle velocity 

cDept. of Physics,  Washington State University 
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The locus of states in the P-V plane which can be reached by a single 

shock from a given initial state is called the Hugoniot or R-H curve for that 

initial state. 

The jump conditions for a single shock running into material in the state 

P0 ,   V0 ,   E0 ,  u0  =  0  and compressing it to the state   P   ,   V   ,   E   ,   u 

are 

P0U1   = p^Dj - Uj) (5-1) 

pi " po = 'oVi <5-2) 

El  " E0   =   2(P1 + P0)(V0 - Vl) (5-3) 

A number in parentheses in the text indicates one of the numbered references 

at the end of the report. 

B.    STABILITY OF SHOCK WAVES 

(1)   Thermodynamic Criteria 

The stability of a single shock transition was first discussed by Rayleigh 

Ref. (15), who concluded that only compressive shock waves were stable in 

gases,    ""his conclusion resulted from an analysis which showed entropy change 

to be positive for a compression shock and negative for one of rarefaction.   A 

negative entropy change violates the second law, so he concluded that only 

compression shocks are stable.    Bethe Ref. (16) investigated the stability 

condition for a more general equation of state and found the entropy condition 

to be satisfied if the curvature of the adiabat is everywhere positive, i. e. 

(5-4) 

He concluded that il this condition were violated at any point, that point would 

be one of instability for break-up of the compression shock into multiple 
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waves.   He also demonstrated that Condition (5-4) can be violated at a phase 

boundary, which then emerges as a point of instability. 

Minshall (17) reported the observation of multiple compression shocks in 

iron in 1954, and attributed them to plastic yielding and to a polymorphic phase 

transition.   Drummond (18) showed that violation of Condition (5-4) leads to the 

existence of rarefaction shocks and made calculations in iron. 

Rice, McQueen and Walsh (19) suggested a stability criterion which differ 

from Cond. (5-4).   Suppose OAB in Fig. 5-1 is an R-H curve—derived, per- 

haps, from experimental data—and we wish to test whether or not a single 

compression shock from O to B is stable against breakup into two shocks:   one 

from O to A and a second from A to B.   In order to do this we suppose the 

single shock to be unstable, having a compression profile like that shown in 

Fig. 5-1(b).   Then the velocity of the first shock with respect to the material 

following is 

(5-5) 

p 

(a) 

ASSUMED   R-H   CURVE 

(b) 
•«■S0SI-4t 

COMPRESSION  PROFILE   FOR 
ASSUMED  INSTABILITY  AT A 

FIG. 5-1 

| 
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The velocity of the second shock with respect to the material ahead of it is 

p - p V/2 
u2 - ui = MvT^y <5-6) 

Then if  LL - u    > U    - u, .  the assumption of instability at  A  is untenable, 

since the second shock must overtake the first, in violation of the assumption. 

Repetition of this test for every point  A  leads to the following statement:   if, 

for every  p0
< P

A
<  PB » 

p     _ p       p     _ p 
B      AA /A      P0 

vA - vn 
>v   - vA 

(ö n 
A        B       o A 

then a single shock from   O  to  B  is stable.   Cond. (5-7) does not appear to 

be particularly useful.    It is not particularly appropriate for a priori construc- 

tion of a Hugoniot from the equation of state; and in normal practice it is not 

required for testing of experimental data, since the conditions of the experi- 

ment reveal multiple shock structures.   If double shock data were reduced by 

single shock theory, Cond.  (5-7) would be useful in principle.   In practice a 

point of possible instability would be revealed by inspection of the P-V or 

U„ - u    data. S       p 

(2)   Hydrodynamic Criterion 

In Reference (20) it is shown that if 

8(u + a)/aP s > 0 (5-8) 

at any point on the path of an accelerating piston, then that point may produce 

a shock discontinuity in the flow.   Moreover this condition is found to be equiv- 

alent to Cond. (5-4) at each point on the adiabat of the material. 
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Except in very simple cases the construction of a Hugoniot requires 

numerical computations.   This suggests the combined procedure for con- 

structing the U-H curve and testing lor instability to be described in the next 

two sections. 

(3)    Differential Equation ol the R-H Curve 

We assume all required equation of state information to be known and we 

seek a procedure whereby the R-H curve can be constructed step-by-step, 

starting at the initial pressure and proceeding to higher values, testing at 

each step to determine whether or not a single shock from the initial state to 

the next higher pressure will be stable.   The procedure for constructing the 

R-H curve in this way is available if we have its differential equation and a 

suitable test.   The differential equation can be obtained as follows: 

Suppose the R-H curve is known up to a pressure  P.   and that a single 

shock from   (P.. ,   V )  to  (P. ,  V )   is stable.   Then the internal energy at 

(P   ,   V )   is given by the R-H equation: 

Ei-Eo 'l<pi-po><vo-vi> (5-9> 

If a single shock to the higher pressure   P. + 8P.   is stable, the change in 

internal energy will be, to first order in small quantities, 

SE1   -   |8P1(V0 - Vj)  - ^(Pj + P0)SV1 (5-10) 

A thermodynamic path can be found which connects   (P1 + 5P.. , 

V   + 5V )   and   (P    ,   V ) .    This will require the addition of heat and wo 

The First and Second laws of Thermodynamics are to be satisfied, so that 

dE1  =  T^IS6 - P^Vj , (5-11) 
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where any entropy change due to irreversible internal processes is included 

in  PjdV   .    Equating Eqs. (5-10) and (5-11) yields a relation for the rate of 

increase of entropy along the R-H curve, relative to that which exists in the 

adiabat: 

dSe/Dv   =   (V0   -   V1)(dP/dV)R_H/2T1   +   (P1   -   P0)/2T1 (5-12) 

if we suppose pressure to be a function of volume and entropy, we can express 

the rate of change of pressure with respect to volume in any direction in terms 

of its partial derivatives.   In particular, for the R-H curve, 

dp\ =/dP\ dP 
dV 

8P 

'R-H BVl adiab.     \dS dV (5-13) 

V 'R-H 

Eliminating  dS /dV  between Eqs. (5-12) and (5-13) yields the differential 

equation of the R-H curve: 

\dV 
R-H 

/_ap)    + Jl/p   . p \ 
\av/ .    2V, \ i     o; ad 1 -s^K - vi) 

-i 
(5-14) 

In obtaining Eq. (5-14), the following identities have been used: 

/_a_p\   _zap\ /ar\    = XI 
\9s/v    \aT/v\as/v      v (5-15) 

For a material in which compression is reversible,   (9P/9V)   .  =  (9P/8V) 
e and   S    is the total entropy. 

Integration of Eq. (5-14) yields the R-H curve, provided a single shock 

is stable everywhere. 
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(4)    Point Stability Criterion 

Wc wish now to answer the following question:   if > single shock is stable 

at the pressure   P1 ,  will a single shock be stable to  P- + SP, ?    The 

Rayleigh line connecting  (Pn .   V )   and   (P, t  V.)   intersects the R-H curve 

only at these two points (6); accordingly 

-(—) \dV/ 

P    - P ^ ll ja 
>  v   - V RH, P 0 1 

(5-16) 

If   P.   is a point of discontinuity in   (dP/dV) ,  the value on the lower side 

of  P.   is to be taken.   If the point   P. + 5P-   is also to be attained through a 

single shock, Cond. (5-16) must hold above   P. ; i.e. 

7. \dV 
R-H,P 

P    - P ^  jj _0 
V    - V 8P        o       i 

(5-17) 

Substitution of Eq. (5-14) into this inequality yields the condition for stability: 

(U1-  u^ 
2V, 

1 - 4(Vo - Vi) 

^1 (5-18) 

P  - P1 + 5P1 

If 

r(v0 - v^v^i (5-19) 

then Cond. (5-1«) reduces to a simpler one:   P. ,   V.   is a stable point if 

lim 
SPf-H) 

a 

(I»!-   Uj)' 

> 1 (5-20) 

P1 + SPj 
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Since Cond. (5-19) is normally satisfied, Cond. (5-20) is a useful one which 

corresponds to the hydrodynamic Condition that the flow be subsonic behind the 

shock.* 

A situation in which P1  is a state of instability is illustrated in Fig. 5-2. 

C.    THERMODYNAMIC FUNCTIONS IN THE COEXISTENCE REGION 

We are concerned here with instabilities which may arise when the 

Hugoniot curve intersects a phase boundary and the compressed material is 

forced into the coexistence region or on into a second phase.   Bethe (16) has 

shown that such a point may be a point of shock instability. 

We restrict consideration to materials which transform isothermally to a 

higher density form when pressure is applied.   Transitions will be classified 

according to the sign of dP/dT  in the coexistence or mixed phase region and 

the sign of  dS/dT   on the phase boundary; procedures for constructing 

\ 

TANGENT TO'^^\ 
ADIABAT ABOVE  R    \. 

TANGENT TO 
R-H CURVE AT P    \ 

TANGENT TO ADIABAT 
BELOW   P. 

RAYLEIGH LINE 

R-H CURVE 

0*-S0S9-43 

FIG. 5-2   COMPARISON  OF   SLOPES  AT  A  POINT  OF   INSTABILITY 

vice- *When Cond. (5-19) is satisfied, Cond. (5-18) implies Cond. (5-20) and vi^c 
versa. When Cond. (5-19) is violated, a more detailed investigation based 
on hydrodynamics will be required to establish the proper criteria for stability. 
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adiabats and R-H curves in the mixed-phase region are described, some 

general properties are derived, and some examples are treated. 

Although interest here is centered primarily in polymorphic transitions of 

solids, there is no difference thermodynamically between these and the trans- 

formations of melting and vaporization; all are governed by the Clausius - 

Clapeyron equation in the coexistence region.   This will henceforth be 

designated "C-region" or "C-R", and thermodynamic quantities in the C-region 

will be denoted by a subscript "M".   It is also assumed that isothermal changes 

satisfy the Gibbs condition at constant  P  and   T . 

In Section 5-1, a classification of transitions is made according to the 

sign of   dP/dT  and dS./dT ,  where the subscript   "1"  denotes changes along 

the boundary between the less dense phase, denoted as phase one or 01 ,   and 

the C-region; and relations between the phase boundary, the adiabat in 01 

and the isotherm in 01   are derived.   In Section 5-2 the slopes of adiabat and 

Hugoniot in the C-region are derived and some relations at the boundary are 

established.   The slopes of adiabats and R-H curves are compared and the 

curvature of the adiabat is discussed. 

For simplicity we assume the region of interest to be far from a triple- 

point. 

(1)   Phase Boundaries 

The basis for conventional thermodynamic treatment of phase transitions 

is the assumption that extensive thermodynamic properties are mass-weighted 

averages of properties of the two components, i.e., phases.   Examples of 

such are entropy, specific volume, and Gibbs free energy, all of which 

depend on amount of material, and so vary throughout the C-region.   Pressure 

and temperature can be simultaneously constant during a phase change because 

they are intensive variables; their values do not depend on the amount of ma- 

terial present. 

The mass-weighted relation for extensive variables comes directly from 

the condition that  P  and   T  are constant in the C-region and that surface 

energies can be neglected.   Since  dP  = dT   =  0 ,   then  dG  =  0  = gjdMj + 

g./lM., .   where (IM.   is the fraction of unit mass which goes into phase 1 and 
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dM2 is the fraction which goes into phase 2 in the contemplated change. But 

-dM. = dM2 = dX , so gj = g2 . Here X denotes the fraction of mass 

that has transformed from phase 1 to phase 2 (Fig. 5-3):   X   H (V - V..)/ 

(v2 - V^ . 

With this definition of  X , the specific volume at point  Q  of Fig. 5-3 is 

V  = xv2 + (1 - X)V1 

= V   + XAV,   0  t X  y< 1 

(5-21) 

where V.   is specific volume at point  B  of Fig. 5-3,   V2   is its value at 

point  E ,  and 

AV  =  V2 - Vi   < o (5-22) 

Then for constant   T  we have 

dV   = AV dX ; dT   =   0 (5-23) 

FIG. 5-3    DEFINITION  OF   THE   TRANSITION 
PARAMETER   X 
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Other extensive variables such as   H ,  S ,   E ,   are given by similar 

expressions: 

H   =   Hj - X Ä   H (5-24) 

S   =   Sj + X A   S (5-25) 

E   =   E1 + X A   E    . (5-26) 

Temperature on the phase boundary ABC of Fig. (5-.'}) will be found from the 

Clausius-Clapeyron equation: 

dP/dT  = AH/TAV  = AS/AV (5-27) 

T   -   Tj   =   J(AV/AS)dP   =  ^(dT/dP)dP (5-28) 

Phase changes art' commonly studied under static or quasi-static condi- 

tions in which cither   P   or   T   is held nominally constant and the other quantity 

is slowly varied through the phase transition.   The results of such studies are 

complete when a curve   P(T)   representing the phase transition is obtained, 

along with AV(T) .     Dynamic processes are usually other than isothermal, 

and this fact leads to the necessity for investigating the geometry of phase 

boundaries, coexistence regions, adiabats and R-H curves in the  S-T  and 

P-V planes il the relations between phase transitions and wave propagation 

are to be understood. 

We first consider phase bourdarics in the   S-T  plane and restrict dis- 

cussion explicitly to those materials for which 

AV < 0 (5-29) 

OV/aT)       >   0 (5-30) 
1 
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Here the subscript  "P "  denotes a coefficient at constant pressure in 01 

evaluated at the boundary between 01  and the C-region.   A derivative written 

with a block   "d" ,  having subscript  "1"  on the variable in the numerator, 

denotes a derivative along the phase boundary between 01 and C-R.   Sub- 

scripts   "2" have analogous meanings for 02  and its boundary with the C- 

region. 

The rate of change of entropy along the phase boundary can be expressed 

as 

clS1 

"CTT 
(5-31) 

c^ (5-32) 

The transformation from Eq. (5-31) to (5-32) is made using a Maxwell rela- 

tion and the definition of specific heat at constant pressure.   We assume that 

Cp    > 0 ; (5-33) 
1 

then, with Cond.  (5-30) we see that, if  dP/dT < 0 , then  dS /dT > 0 .    We 

label this a transition of Type 1.   If  dP/dT > 0 ,  then   dS^dT  may be 

either positive or negative, depending on the magnitude of dP/dT .     We label 

these transitions Type 2 and Type 3, respectively.   These classifications and 

their properties are summarized in Table 5-1. 
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Table 5-1 

CLASSIFICATION OF POLYMORPHIC TRANSITIONS 

AV < 0 , OV/8T)pi > 0 , Cpi > 0 

TYPE OF 
TRANSITION 

dP/dT As dS^dT 

1 

2 

3 

<0 

>0 

>0 

>o 
<0 

<0 

>o               1 

<o              1 
The slope ol the second phase boundary comes from the identity 

dS^ 

dT 

dS , 
-^^(AH/T). 

if AH/T   increases with  T ,  then  dS2/dT > dSj/dT and vice-versa.   It is 

unfortunate that knowledge of most phase transitions does not include the sign 

and magnitude of this derivative.    It will be neglected in most of what follows. 

From Table 5-1 it is possible to construct schematic representations of 

the geometry of the phase boundaries in the S-T plane.   These are shown in 

Fig. 5-4.   For Type 1, Fig. 5-4(a) 02  lies above and to the left of 01  since 

AS > 0 ;   consequently temperature decreases along an adiabat AC traversed 

from 01  to 02 .    Type 2, shown in Fig. 5-4(b) has the relative locations of 

01  and 02  interchanged,   AS < 0  and T increases from 01 to 02  along 

an adiabat.   Type 3,  Fig. 5-4(c) has phase boundaries of negative slope, 01 

is above and to the right of 02 ,   and  T decreases from 01 to 02 along an 

adiabat. 

Bridgman (21) has noted that  dP/dT for polymorphic transitions is 

commonly the order of 50 oars per degree Centigrade; i.e. transistions of 

Types 2 and 3 are more common than those of Type 1.   Slater (22) points out 

that this is to be expected since increases in entropy are normally associated 

with increases in volume.   He goes farther to show that, if AS/AV is 

identified with  (as/8V)T  for a single phase, we have 

os/8V)T = rcv/v (5-34) 
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(a) 

A 
PHASE 2 

PHASE   l 

(b) 

A 
PHASE 

PHASE 2 

(O 

A 

PHASE   2 

PHASE 

0A-SOS9- 45 

FIG. 5*4    RELATIVE   POSITIONS  OF  PHASE 
BOUNDARIES  IN   S-T  PLANE,   W   --   0 
(a) Type 1 
(b) Type 2 
(c) Type 3 

dP dT < 0, \S • 0 dS dT > 0 
dP dT ■ 0, \S 0 dS dT > 0 
dP dT    ■   0, \S       0 dS dT       0 
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where   Y is the Grüneisen constant and  Cv  is specific heat at constant volume. 

For   Cv  =  3R  per mol ,     T =  2 and  V   =   10 cc/mol , 

AS/AV   =   OS/8V)T ^ 50 bars/0C (5-35) 

Using Eq. (5-34) in Eq.  (5-32) and equating   C-  to   Cv ,  we arrive at the 

expression 

fiSl  .   CP 
dT 

rx /av 
V    [dT (5-36) 

Taking     T-  2  and   (l/V)OV/aT)p t: 3 x 10     ,  we conclude that 

dSj/dT 5- (C /T)|l - 0.6 x lO-3 T I (5-37) 

for most solids. Thus, except for very high temperature transitions, we will 

normally expect Type 2 to prevail. In fact no transition of Type 3 is known to 

the authors. 

Incidentally, the above classification suggests a fourth Type in which 

dS/dT  is negative with 02   above 01 ; this corresponds to AV > 0 ,  which 

is a case of no interest at present. 

A procedure for determining the relative dispositions of the pure phase 

regions and their boundaries in the P-V  plane is suggested by a calculation 

in Reference (16).   Considering specific volume to be a function of P and T, 

we nave 

3 V 
ap si = tel+felii) Tl PlVVSl 

(5-38) 
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dP 18P/T1 
+^8TL1dP (5"39) 

For   (aT/8P)sl , 

{m 
^Ir-i^-^rfe/0 

The inequality follows from Conds. (5-30) and (5-33) and implies that 

Ov/ap)sl > (av/ap)T1 (5-41) 

Conversely, this inequality implies that of Eq. (5-40). Eqs. (5-38), (5-39) 

and (5-40) then imply the following relations among dV./dP , (SV/dP)-. , 

and   (9V/dP)T1  for the three types of phase transitions described in Table 5-1; 

Type 1 

f«'.5<(-iL<(IIL- ? Tl SI 

Type 2 

ÜP >0    ^!l   >0    ^£1   >f9Y]     ÜP 
IT      J '   dT       J '    T \aT/pidT 

dT/dP  > (aT/aP)sl and (5-43) 

dp >^ap^r/\ OP SI     \ "   /Tl 
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Type 3 

dP > 0  i
si < 0    Si <   /JY\  _dP 

dT      "' dT ^   "•   T     ^    UT/pjdT 

• dl< lip L,and <5-44) SI 

V
8P

/SI    
dp    WTI 

These relations are described in Fig. 5-5. For Type 2, dV../dP may be 

positive; for the others it must be negative if (8V/8P)C and (8V/8P)_, are 

both negative. 

The slope ol the second phase boundary is obtained from the definition 

V9 - V    = AV  =  f(P) < 0 .    Then 
^        1 

dV2/dP  =  dVj/dP + d(AV)/dP 

r 

dp2 dPj/dV 

dV 
1, 

dPi dim 
1     dV     dP 

(5-45) 

if rl(AV)/dP > 0  and   (dP^dV)   |d(AV)/dp|   >- 1 ,  then dP2/dV < 0 and 

|dP2/dV| >  IdP./dVl   .    This follows from the previous result that 

dP^dV < 0  when  dP/dT < 0 .    However, if  (dPj/dV)   |d(AV)/dp| < -    1 , 

then the denominator of Eq. (5-45) is negative and dP2/dV > 0 .   This be- 

havior would be expected near a critical point where AV—>0  as   P—>PC . 

For purposes of illustration we consider a region where  dP2/dV  = 

dP /dV .    Then, for example, for Type 1 there may be a situation like that 

shown in Fig. 5-6.    Here part of the region contained between the two phase 

boundaries is triplymapped:  first by the isotherm  GB  of phase 1, then by 

87 



■\ 

TYPE   I 

o 

Ov/aP)sl 

ov/aP)TI 

dV^dP 

PHASE \    1^,TANGENT TO 
BOUNDARYV   v j   ADIABATOF^), 

TYPE 2 —   OV/dP) 

0 

dV^dP 

OV/dP)s| 

'TI 

4 ADIABAT OF 
PHASE   I        N^ 

POSSIBLE PHASE 
BOUNDARY 

\ 

ISOTHERM OF^^ 
PHASE   I 

TYPE 3 

--    (dV/8P)S) 

--   d^/dP 

(9V/9P)T| 

PHASE 
BOUNDARY ADIABAT OF PHASE  I 

\ 

ISOTHERM OF 
PHASE  I 

O. 

\ 

CA-S0S9-46 

FIG. 5-5    RELATIVE   SCOPES  OF   ISOTHERM,   PHASE   BOUNDARY 
AND  ADIABAT   IN   P-V   PLANE 
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. 

the isotherms   BE   of the 

mixed phase, and lastly by the 

isotherms   EH  of Phase 2. 

EH must lie above  DEF  if 

OV/aT)p2  > 0  and   Cp2 > 0 

by virtue of the equation 

corresponding to Eq. (5-39) 

for the second phase boun- 

dary when   dP/dT < 0 . 

G4-S0S9-4• 

FIG. 5-6   TRIPLY-MAPPED  REGION IN  THE 
P-V PLANE  FOR  TYPE  1 

Any apparent anomaly in 

such a multiple mapping of the 

P-V plane is immediately 

resolved by recalling that 

behavior in the   F-V plane simply reflects a projection of relations on the 

P-V-T  surface.   Fig. 5-7 represents a  P-V-T  surface for a material with 

a phase change of Type 1.    AB  is the phase line in the  P-T  plane, 

dP/dT < 0 ;   it is the projection of the cylindrical surface of the coexistence 

region, DFB'B", onto the P-T plane, B"D' is the projection of BMD onto th*1 

P-V plane, etc. 

The three types are summarized graphically in the P-V and S-T planes 

in Fig. 5-8. 
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an   1:    •.■■»   4 • 

FIG. 5-7    EQUATION  OF   STATE  SURFACE  IN   P-V-T   SPACE 
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TYPE   I 

i ISOTHERM 

MULTIPLY 
MAPPED REGION 

i 
TYPE 2 

ISOTHERM 

i 
TYPE 3 

A 
AOIABAT 

\\N ISOTHERM 

>  \ 

V 

FIG. 5-8   PHASE  BOUNDARIES IN  S-T  AND  P-V PLANES 
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(2)   Adiabats and R-H Curve 1 
(2. 1)   Adiabat.   We first obtain nn 

expression for the adiabat traversing the 

coexistence region in the  P-V  plane.   Re- 

ferring to Fig. 5-9, we wish to calculate the 

volume at point C, pressure P, which has 

the same entropy as point A on the phase 

boundar>.   In order to do this we compute 

the entropy at C by integrating along ABC 

and setting  S     - S.   =  0 .     The resulting 

equation can be differentiated and solved for the adiabatic slope at C ; i.e. 

rA.5099-50 

FIG. 5-9   ADIABAT   IN  THE 
COEXISTENCE  REGION 

SC " SA   =   0   = /   (ds
1
/dp)dp + X^8 (5-4G) 

where AS = S0 - S.. evaluated at P = PD . Henceforth the quantities at 

B and B1 are denoted by subscripts "1" and "2"; quantities at the boundary 

point A will be denoted by subscript "A". 

From Eq.  (5-21) 

=  X(P)   =   (V - yi)/{y2 - Vj) (5-47) 

Combining Eqs.  (5-16) and (5-47): 

j     (dS1/dP)dP +  (AS/AV)(V - V1)   =  0 (5-48) 

Differentiate this to obtain 

dS. 

"dp 
1     AS  /8V\ 
5      fiV '8P/ SM I+ <v - vi>^(ll) = 0 • f5-49' flMV 
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Here, as before, total derivatives refer to variations along the phase boundary 

adjacent to phase 1.   All quantities are functions of the pressure P, and the 

subscript  SM  means entropy is constant and the quantity is evaluated in the 

mixed phase region.   Recall that AS/AV  = dP/dT  and solve for the adiabatic 

derivative: 

This is the required adiabatic slope.   The derivatives  dV./dP and dS /dP 

are given by Eqs. (5-39) and (5-51) following 

dS 

ip= (■8p;T1 
+ (-aT)P1dP <5-51) s 

--mi+>§. 
Substitution of Eqs. (5-39) and (5-52) into Eq. (5-50) yields 

(M\ - /iY\      + o(M\     dT     Si /dT\2      .v      Vvjl/lndP\ 
' aP/cv/t   ~ UPL,      ^UTL.dP "    T   IdP/    - ^v  - vl'dP\indT/• SM Tl PI 

(5-53) 

Eq. (5-53) applies to an arbitrary point in the coexistence region.   At the 

boundary of phase 1,   V  =  V   , and it is seen that a discontinuity in the 

adiabatic slope exists, as shown by Bethe (16); i.e, at the phase boundary 
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,8P Tl + '8T'p/ÖP^Sl  = ^P^T1   +   CPl'aT'pi 
(5-55) 

where the subscript  SMI  refers to the mixed phase side at the phase boundary. 

Subtracting the first of these from the second yields 

(M)       /jv\        _ _T /av\ 2      /av\    dr    Si/cm 
\ap/sl    UP/ SM1     cpi\3T;pi ■ M8T;pldP      T Wl 

(5-56) 

/_£   /iv\ 
:
PI 

l8T/Pi 

PI   dT 
T     dP >  0 

Consequently there is always a di ii ontinuity in the adiabatic slope at the phase 

boundary, except when  (dT/dP)„.   =  dT/dP ;  and the slope of the adiabat in 

the pure phase is always steeper than that in the mixed phase, i. e. 

|ap/8v|sl > laP/avlSM1 (5-57) 

The relation of  OV/9P)t,M1   to other slopes at the phase boundary can be 

determined for the three Types of transition as follows: 

Type 1 

According to Eqs. (5-39) and (5-54), 

dV 

( apL„ ' dp   " ( arL, dp "   T IdP/'   < 0 •        (5-58) ap/SM1    dP      ,^,pi 

94 



Type 2 

Eq. (5-54) can be written 

a? SMI Tl 

Öl 
dP, 

dS 

"dT 
'21 
T (5-59) 

By the argument leading to Eq. (5-37), we may expect that the right hand side 

of Eq. (5-59) is normally negative, though it may have either sign. 

Type 3 

WsMl      dP (5-60) 

The relations between various slopes at the phase boundary are displayed in 

Fig. 5-10. 

The curvature of the adiabat can be obtained by differentiating Eq. (5-50) 

directly: 

a?5 

_d 
dP 

SM 

^1      fld_T 
dP    ' dP dP 

kA   . d2i I 9P/SM       dP 

Alln^]  - (V-V,)   d 
dp r* dTy dP 

fin §) 

(5-60.1) 

At the phase boundary where  V  = V- ,  this reduces to 

vap' 

_d 
dP 

SMI 

dV,       dS 

dP 
1 dT 

dP dP %) SMI 

dV^ 

dP dP fnd^ 
(5-60.2) 
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TYPE   I 

o 

(9v/ap)si 

OV/9P)T| 

dV, /dP 

OV/3P)SM1 

P{So,V) PHASE 
BOUNDARY 

P(To,V) 
P(So,V) 

TYPE  2 

-- 0 

-- dVj/dP 

ov/ap) 

(f?) 0*+-(^V/9P, 
5Ml\ 

SI 

Tl 

PA P(So,V)   or 

PHASE 
BOUNDARY 

P(So,V) 

TYPE   3 

-- 0 

-- OV/3P)sl 

-- OV/SP) SMI 

-- dV/dP 

-- (dV/9P)T| 

A   PHASE 
BOUNDARY V 

^POo.V) 

^PlTo.V) 

POo.V)^ 
^ 

V 
0* -5059   SI 

FIG. 5-10   RELATIVE   SL'JPES AT  THE   PHASE   BOUNDARY 
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1 

(2. 2)  R-H Curve.   The R-H curve and adiabat in a normal material 

of single phase have a second-order contact at the origin of the Hugoniot (9); 

the entropy difference between Hugoniot and adiabat is then third order in the 

compression.   If the intersection of phase boundary and Hugoniot is a point of 

instability for a single shock with final amplitude in the C-region or phase 2, 

then this intersection, A in Fig. 5-11, may be expected to serve as initial 

state lor a second shock following the first (X in Fig. 5-11).   Accordingly the 

relation between that portion of the Hugoniot originating at point A and the 

adiabat in the C-region originating at A may be expected to be the same as 

that existing between adiabat and Hugoniot in a single phase.   A careful review 

of the premises on which the single-phase result is based reveals no reason 

for doubting that it holds for the C-region, and a direct calculation, based on 

the following analysis, verifies it. 

In order to determine the locus of the R-H curve in the C-region, consider 

the situation depicted in Fig. 5-12.   Point B represents the final state of a 

second shock originating at point A on the phase boundary.   The enthalpies at 

A and B are connected by the R-H equation; they can also be calculated by an 

integration along the path ADB.   Equating the two yields the equation of the 

i 

-4 
A 

\ 

OA-5059-5! 

i 
B__\D 

OA-505S-55 

FIG. 5-11    SECOND  SHOCK   ORIGINATING 
AT   A  PHASE   BOUNDARY 

FIG. 5-12   CALCULATION  OF 
HUGONIOT   IN 
C-REGION 
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R-H curve in the C-region: 

HB-HA  =-(P-PA'<
V+V

A>  = /dP)dP + XAH .      (5-61) 

where  H (P)  is enthalpy on the phase boundary and 

V - V 1 HP 
XAH   =  v    : ^   AH   =  T(V  - V^ . V    - V v2      vl 

(5-62) 

The right hand side of Eq. (5-62) is a function of  P  alone.   Substituting 

Eq. (5-62) into Eq. (5-61) and differentiating with respect to P  yields an 

equation for the slope of the Hugoniot in the C-region. 

fi) RH 

dP      1 m dV.      dH, 
TdP 1       1 

dT dP    "   dP 

T^ - Vl)Hl> HT) + 2 <VA - v) + vi • 

Divide Eq. (5-63) by  T dP/dT and substitute into it the identity 

(5-63) 

dH^dP  = Vj + T dS^dP (5-64) 

to obtain 

¥) RH 
— ^ (P  - P  ) 
2TdPl *' 

% 
dV,       dS 

A'VdP/ RH dP 
_ldT 
dP dP 

v. ,   rt /,    (1P\  .   VA      V dT (V . v^^In^   +—^-gp. 

(5-65) 
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The slope at the phase boundary, (dV/dP)RH1 , is given by Eq. (5-54) or by 

setting V = V- = V. in Eq. (5-65); the curvature at the phase boundary is 

given by Eq.  (5-60.2). 

(2.3)   Relative Slopes of Adiabats and R-H Curve.   For material in 

a single phase, the slope of the Hugoniot and the slope of an adiabat crossing 

the Hugoniot are related by Eq. (5-14), which can be cast in the following form: 

2        2 r 
e   "a    -  ^(Vn-V) 2 2V v   0 c 

i ■ (u - u)2 
1 2 

c 
(5-66) 

Here 

c2  =   -V2(dP/dV)RH 

a2  =   -V2OP/8V)s 

r =  (V/Cv)OP/8T)v . 

A relation identical in form can be derived for the C-region.    Eq. (5-65) can 

be written: 

/dA (dA 1 ~ 2T dP (P ' PA) 

VVREU ' VVsu , +1A11*T/E      ' (    ^ 
2T      dPt3V/SM 

where   (P. ,   V.)  represents the intersection of the 01  phase boundary and 

the Hugoniot. 
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2 2 
Define  c    and  a    as in Eq. (5-66), then Eq. (5-67) becomes 

2        2 c    - a rM 
2V (VA  - V) 1  - 

P-PA 
vA-v 

-( 
dP\ 
dV/ RHM 

(5-68) 

where 

M 

\ 

VM 

V    dP 
CVM dT 

dT 
dP    VM dTl VM 

(5-69) 

_dP 
dT 

The specific heat in the C-region can also be expressed in the form: 

dSl d2P ^l/dP^2 

CVM   '   T'dT   + T<v " Vl)'^2 ' T"dP (dTj (5-70) 

This is obtained by differentiating Eq. (5-46). 

2    2 In order to determine the sign of   c -a    in Eq. (5-68), note that the sign 

of the bracket, is positive if the slope of the R-H curve at  P  is greater than 
2 2 

that ol the Rayleigh line from  P..   This is certainly true if (d P/dV )RHM >0; 

this condition is unnecessarily restrictive, but we shall use it for simplicity. 
9 2 Similarly if  (d"P/dV )RHM < 0  everywhere between  P.   and  P , the 

bracket is negative.   In order to determine the sign of  -(9V/dP)SM i   refer 

to Eq. (5-50); it can be written 

SMI 
- (V  - V^-  (inf (5-71) 
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Here   (9v/9p)SM1  
is evaluated at  V^P) ;  it is not the slope of the adiabat of 

Eq. (5-71) where it intersects the phase boundary.   Then if  (8V/8P)01 < 0 
öl 

at all points of the phase boundary, so is  OV/dP)oM1  according to Fig. 5-10. 

Then if the second term on the right-hand side of Eq. (5-71) does not override 

the first,   Ov/9p)SM < 0;   VA " V  is Positive» so that 

sgn (c2-a2)  =  sgn (dT/dP) sgn (d2P/dV2)n„-, . (5-72) 'RHM * 

where 

sgn x  =+  lifx >0 

sgn x=-lifx<0. 

For   (d2P/dV2)RHM > 0 : 

Type 1, 

2        2 c    - a    <0 

Types 2 and 3, 

2        2 c    - a   > 0 

2 2 The relation between c     and a    is normal for Types 2 and 3, i.e. the same 
2 2 as for a single phase with  (8 P/8V )„ > 0 .    Type 1 is abnormal, but 

corresponds to the inversion of the order of adiabats in the C-Region.   This 

is illustrated in Fig. 5-13.   A single shock from point A into the C-region is 

stable.   Type 2 exhibits the same structure as a normal single phase material. 

Type 3 is interesting because the phase boundary splits the isotherms and 

adiabats (Cf. Fig. 5-10).   However, the geometric structure is not violated 

by the assumption of positive curvature and Cond. (5-72).   This is illustrated 

in Fig. 5-14. 

101 



R-H CURVE 
IASE BOUNDARY 

04-5059-S« 

FIG. 5-13   ANOMALOUS  R-H  CURVE   FOR  TYPE   1   TRANSITION 

2 2 "^        2 
The assumption that  (d P/dV )RHM  < 0 reverses the sign of  c- - a 

in Cond. (5-72); this leads to instability in the shock for ail Types. 

This calculation can be verified in the neighborhood of the boundary by 

expanding   V(S,   P)   in a series about the boundary point A: 

v(s. P) = V0 + (-||)S(P-PA) 
'32v\   (P 

WP
2
/S 

ZA)2 + (jh\' 
!; V«P

3
/S 

(p - P
A)

; 

3: 

•"   +{Wp^-SA)+'-'   - VAd   +   (i)p (S  -   SA) 

(5-73) 
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AOIABATS 

iR-H CURVE 

ISOTHERMS 

G«   5059-55 

FIG. 5-14   ADIABATS AND HUGONIOT   FOR  TYPE  3 
TRANSITION 

S - S.   can be expanded in powers of  (P - P.)  along the Hugoniot in the 

manner described by Courant - Friedrichs (23) with the result: 

S - S 1     ^(P-PJ3.... 
12TA dP2 

(5-74) 

Entropy increases along this segment of the Hugoniot as  P   increases, for 

d2V/dP2 > 0. 

From Maxwell's relations, 

OV/aS)p  =  OT/aP)s =  dT/dP (5-75) 
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in the C-region.   Consequently  Eq. (5-73) becomes 

V       - V VRH      vAd 

rdT d2V 
12TA \ÖP dp2 P  - PAJ    + 0 (p - P

A)' (5-76) 

Differentiating Eq. (5-76) yields 

/iY\ ^/-iX\       -   -L /dTd V 
.dP/ RHM vap/. SM 4T dPdP2 ).'■ / A 

P
A)2 + 

(5-77) 

2 2 
For  (d V/dP K > 0 •   the right hand side of Eq. (5-77) has the sign of 

dT/dP .    This is in accord with Coud. (5-72) since  (dV/dP)DUlv. - 

(8V/dP)SM  has the same sign as  c    - a   . 

(2.4)   Curvature of Adiabats.   The curvature of the adiabat in the 

C-region depends upon second order thermodynamic coefficients, and it is, 

accordingly, difficult to make any general statements about its sign.   Eq. (5-56) 

can be written 

/iv\       = /iv\      jr rjfi)  ; (5-78) 

so we can say that if  (9V/9P)G1   increases with increasing pressure along the 
2 

phase boundary, and if  TfdS./dP) /Cp.   does not. increase more rapidly than 

(dV/dP)sl ,   then   OV/aP)SM1   increases with  P   so 02V/aP2)SM1 > 0 . 

Eq. (5-60.1) provides an explicit statement of the curvature.   It is of little 
2 2 help, however, for the same reason that affects Eq. '5-78):   d S./dP    is not 

normally known.   An expression for the curvature in terms of more directly 
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observable quantities can be written as follows: 

aT;pidP2 H dp\T 

(5-79) 

C 
- 2 

PldTd^T  _/jY\     _d. 

+   H    Ä  lnS    - (V " vi) d    dP \    dTi .. S (^) 

dPdP2      \8P/sMdP  \    dT/ 

This equation, too, contains too many undetermined coefficients, although 

they are in principle known.   Bethe (16) has examined the separate terms of 

Eq. (5-79) for some known phase transitions, and he speculates that the 

curvature is always positive.   However, no such firm conclusion is justified 

without more exhaustive study. 

D.    EXAMPLES 

Some data pertaining to phase transitions in bismuth  (BiI-*BiII) ,   iron 

(a-*h. c.p.)  and quartz  (a — stishovite)  are given in Table 5-II.   Subscript 

"A" refers to the intersection of the phase boundary and the Hugoniot with 

origin at room temperature and atmospheric pressure.   Values of specific 

heat and thermal expansion coefficient are taken at atmospheric pressure. 

Values of dV./dP are determined from Eq. (5-39); values of  (dP/dT)    . 

are obtained from measured values of the R-H curve above the phase boundary 
24 in the manner described by Duff and Minshall.      The procedure is to extrapo- 

late the R-H data to the phase boundary and from this determine  OV/8P)gMl = 

(dV/dP)D„. .    Substitution of this into Eq. (5-54) along with the other thermo- 
rvnl 

dynamic data makes it possible to calculate  (dP/dT)   s  (dP/dT)calc .   A L 

105 



useful form of Eq. (5-54) is that given by Duff and Minshall: 

2 2al dP C
PI 

XHI " ^i dT " TV
ORHI -'V   =0 (5~80) 

where the following abbreviations have been used: 

By substituting directly measured values of dP/dT  into ] v \.~>-54) it is 

possible to calculate 3ADM1  
=  (l/V)OV/9P)s      .    ^/^Q       represents 

equilibrium, then it should be true that ßpui   = ßADMl *    ^^e ^a^ure 0^ 

this inequality to hold reflects the difference between dP/dT   and  (dP/dT)    .   . 

These differences may result from nonequilibrium effects in shock compression, 

from errors in extrapolation of the shock data back to the phase boundary, or 

from nonhydrostatic stress distribution in shocked material.   Construction of 

the equilibrium R-H curve in the C-region can be accomplished by substituting 

the appropriate thermodynamic coefficients into Eq. (5-61); an alternative 

procedure is to examine Eq. (5-65) for deviations from constant slope. 
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TABLE 5-II 

PHYSICAL DATA ON PHASE TRANSITIONS 

Bismuth Iron Otz-Stishovite 1 

V0, cc/g .1020 .128 .3775               1 

Cp^ kb cc/g0C 1.21x 10"3  (10) 4.15 x 10~3 9.2 x 10"3 

"v oc 40. 2 x 10"6 (10) 36.3 x 10~6 38.4 x 10"6 

ßv kb"1 2.46 x 10"3 (10) 0.51 x 10"3 (11) 0.76 x 10"3 

PA. kb 25.3* 132 (11) 144 (14)             | 

VA, cc/g . 0929 (13) . 1197 (11) .3145 (14) 

TA.   °K 315 (10) 310 (11) 476 (14) 

dP/dT, kb/0C -.0500, -.0508 -. 075 (12) +. 0177 (15) 

AV, cc/g -. 0047 -.0041 (11) 

(-1/V) dV^dP 2.86 x  10"3 .99 x 10"3 -1. 5 x 10"3   j 

/3RH1. kb"1 13 x 10 "3 2. 18 x 10"3 1.59 x 10"3   1 
i 

^ADMl' ^ 
21 x 10"3 23 x 10"3 194 x 10"3 

\ <dP/dTWc'kb/oc' -. 007 -.29 +. 225 

♦Adjusted to static value. 

Numbers in parentheses indicate references at end of paper. 

If no reference is indicated, numbers are from Smithsonian tables or 

calculated here. 

1 

^1   = 

ß ADM1 

^RHl 

isobaric volume expansion coefficient, 

isothermal compressibility of pure phase, 

adiabatic compressibility of mixed phase. 

(-l/V)(dV/dP)RH1 
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(1)   Bismuth 

24 
Measurements reported by Duff and Minshall     were assumed to represent 

the Bil-Bill transition and were of two kinds.   They varied initial temperature 

of the bismuth specimen and measured the pressure amplitude of the first 

wave.   From their data they inferred a value of -0. 0508 kbar/0C for the 

dP/dT.   This compares very favorably with Bridgman's value of -0.0500.   The 

amplitude of the first wave was about 3. 5 kbar greater than the pressure re- 

ported by Bridgman for the same temperature.   This difference might be due to 

a rate effect in the transition or to nonhydrostatic stress or to both.   A limited 

attempt revealed no decay of the transition pressure with travel distance, 

which would indicate the absence of any but slow rate effects. 

Second, they measured the amplitude of the second shock for different 

shots with the same initial temperature and extrapolated the results to obtain 

^RHl '   6iven in Table 5-II.   Extrapolation errors are estimated at 60 percent 

by Duff and Minshall. 

With the data of Table 5-II the change of  (dV/dP)RH  within the C-region 

can be estimated.   From the given value of /3AnM1   we find at the boundary 

of phase 1: 

(35) =   "   i-95 x 10"3 cc/gkb 
ydP/RHl 

Assume that   Cp.   =  CV1 ,   dP/dT  =  const.,   dV./dP   =   const,   and that 
a-\ > ß-i >   Cp,   are constant.   Since  dP/dT  =  const., 

(T  - T.)   =   -   20 (P  - P.) . 

Integration of Eq. (5-65) with the above assumptions yields the solid curve of 

Fig. 5-15.   The difference between this and the measured R-H curve is notable 

because of its magnitude and because the curvature of the computed curve is 

negative.   The latter result may well be due to neglect of variations of thermo- 

dynamic coefficients.   The former is so large that one is almost forced to con- 

clude that kinetic effects are entering into the shock compression, particularly 
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when it is recalled that the pressure of the phase boundary measured in shock 

compression exceeds that reported by Bridgman. 

A comparison of static and dynamic data near the transition pressure is 

shown on an expanded scale in Fig. 5-16. 

(2)  Iron 

Minshall described a double shock structure in iron in 1954 (17) and suggested 

it might be due to a phase transition at 130 kb.  These and other measurements 
were later reported in detail by Bancroft and others (25) and analyzed in more de- 

tail.  Johnson, Stein, and Davis reported an extensive setof measurements in 1961 

(26) in which initial temperature was varied from liquid nitrogen to nearly the 

a-y temperature.  They suggested on this basis that the 130-kb transition was a 
transition to a new phase, and this has since been verified by x-ray diffraction 
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measurements at static high pressure and the new phase is found to be h. c. p. 

From their data,   dP/dT  =  -0.075kb/oC.   Substitution of this value into 

Eq. (5-80) gives   /3ADM1   shown in Table 5-II. 

Minshall's data include measurements of the second shock amplitude. 

These can be extrapolated to obtain   3RH1  as reported in Table 5-11.   This 

is only 10 percent of   ^ArjATj  !   toe difference is much greater than was 

found for Bi .   The value of  (dp/dT)caic  derived from   ßRm  differs 
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correspondingly from the directly measured value. Remarkably enough it is 

the same as dP/dT for the a - y transition as determined by Claussen and 

others (26).   The phase diagram for iron is shown in Fig. 5-17. 

It is difficult to attribute such differences to rate effects in shock, since 

the first-wave amplitudes agree very well with the static values.   Moreover 

there is little evidence for decay of the 130-kb wave, which further indicates 

the absence of rate effects.   The resolution of this puzzle must await additional 

measurements - preferably near the transition point. 
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(3)   Quartz 

The two known high ciensity forms of quartz are coesite and stishovitc. 

The former is produced at relatively low pressures but is a slow transition 

and is believed to be produced to only a limited extent by shock compression 

(28).   Stishovite is believed to be produced in shock (28,29) under the condi- 

tions shown in Table II; this is believed not to be an equilibrium point (30). 

Nonetheless the Wackerle compression data have been used in Eq. (5-54) to 

determine   (dP/dT)    ,    .    The result, shown in the last row and column of 

Table 5-II is about twelve times greater than the static value quoted by Ahrens 

(29).   This can be regarded as confirmation of the nonequilibrium character of 

the transition.   The work by Ahrens and Gregson suggests that shock recovery 

experiments can be used to study the kinetics of the transition, but this re- 

mains to be done. 

E.    DISCUSSION 

The ordering of slopes in the P-V plane for transitions of Types 1 and 2 

appears to be a useful minor tool in the evaluation of shock data.   Transitions 

of Type 3, though curious, are of no importance.   Of greater importance is 

the relation between adiabatic slope in the mixed phase region and  dP/dT ; 

this allows cross-comparisons to be made between different kinds of measure- 

ments.   The discrepancies found between direct and inferred values of  dP/dT 

are so large that needs for better thermodynamic data at high pressures and 

for more critical study of shock data and their interpretation are evidently 

pressing; this clearly points the way for further productive research. 

The discrepancies in the iron data are particularly disturbing.   The 

magnitude of the transition pressure agrees reasonably well with the static 

value.   The static transition is reported to be sluggish (31); but, on the basis 

of experience with stress relaxation effacts (32) one would predict that in- 

complete transition in shock would lead to a first wave amplitude above the 

static transition pressure and to a decay of the first wave amplitude with time. 

We might assume that the shock data are equilibrium values and that the 

specific heat and thermal expansion coefficients are in error by a large 

amount.   Still another possibility is that the Hugoniot points are at equilibrium 
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and beyond the mixed phase region.   The discontinuity at the second phase 

boundary would then lead to differences in the observed direction between 

^„„^   and Z?.^,,, .   Finally it is not inconceivable that the phase line re- RH1 ADM1 J * 
ported by Johnson et al. is seriously in error.   It was obtained by a clever but 

unusual technique which is not thoroughly understoc 1, verification by more 

conventional measurements would not be out of order.   Minshall made a 

limited effort to determine  dP/dT  with pin techniques, but not all of his data 

have been made available and his conclusions and their certainty are not 

known to the authors.   Static measurements would be important if the pressure 

of transition can be accurately determined. 
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6- FLOW CALCULATIONS 

J. O. Erkman and G. R. Fowles 

A.    INTRODUCTION 

The work on this phase of the program is intended to serve as a guide for 

assessing the sensitivity of predictions of shock propagation from underground 

explosions to uncertainties in the constitutive relation (equation of state) of the 

medium.  In a previous report on this program comparisons were shown of the 

pressure and particle velocity profiles predicted assuming various models for 

the equation of state.   For these calculations spherical symmetry was assumed 

and the energy source was taken to be an adiabatically expanding gas of pre- 

scribed mass and energy.   Variations of the zero-degree isotherm (computed 

for quartz and its high-pressure polymorph, stishovite), Grüneisen's ratio and 

the initial porosity were examined.   Perhaps surprisingly, the differences in 

the shock profiles showed no drastic effects of these fairly pronounced varia- 

tions in the equation of state.   The largest differences observed in the peak 

pressure at a given radius, due to combinations of parameter variations, 

amounted to factors of 2 to 3.   Evidently, some variations in the equation of 

state tend to be self-compensating in their effects on shock propagation.   Thus, 

in the case of variable porosity the energy dissipation is known to be highly de- 

pendent on porosity, for smaller values of porosity, and one might expect faster 

decay of peak pressure in more porous material.   However, the high energy 

loss per unit mass in distended material compared with that in initially compact 

material tends to be offset by the correspondingly smaller total mass between 

the source and a given radius.   Hence, the pressure is comparable.   A similar 

argument applies to variations in the zero-degree isotherm in that higher Initial 

densities arc (usually) associated with lower compressibilities;  again greater 

total mass is associated wi th less energy dissipation per unit mass.   To these 

effects must be added the other obvious normalizing effect, namely geometrical 

divergence. 
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Some of the results obtained from the use of the above models are sum- 

marized in Figs. 6-10 to 6-13. 

In view of the previous results, an extensive and detailed study of the pa- 

rameters mentioned above was not pursued during the past year.   Instead effort 

was concentrated on an area that has so far received little attention and which 

could cause peculiarities in experimentally observed pulse shapes and which 

might significantly influence shock decay.   This problem was suggested by the 

experimental equation of state measurements and is the problem of the effects 

of a phase transition on shock propagation.   See also Sec. 5.   Polymorphic 

phase transitions are common for rocks and minerals because they are gener- 

ally composed of open silicate structures that are unstable at high presures. 

Moreover, some at least are known to be irreversible.     The high pressure 

polymorphs of quartz, coesite and stishovite have both been recovered in the 

vicinity of underground nuclear explosions and near the Barringer meteor 
33 

crater.     Where a phase change is irreversible, large energy dissipation occurs 

that could cause appreciable attenuation of the shock pulse.   Perhaps more 

importantly, phase changes can cause the shock to propagate as two distinct 

fronts of different velocity.   The peak pressure can thereby be considerably 

delayed with respect to the first shock arrival.   Failure to recognize the exist- 

ence of such shock structure could cause erroneous interpretation of experi- 

mental field observations, such as may be obtained with short duration peak 

pressure gages, or simple time-of-arrival gages. 

Initial attempts to include the phase transition in the flow calculations led 

to difficulties in the form of instabilities.   These instabilities are thought to 

arise from discontinuities in slope of the P-V relation, although the precise 

reasons for the trouble are not understood.   Consequently, some effort was 

devoted to generating functions that would smoothly represent both reversible 

and irreversible phase changes.   The results of flow calculations based on 

these functions show qualitatively the kinds of pulse shapes that would be ex- 

pected in the case of a material that undergoes a phase transformation.   Even 

with these smooth functions, however, oscillations in the flow parameters were 

not entirely eliminated.   For the most part, the phase change has been con- 

sidered to be reversible.   This case is of interest because the model implies 
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oe   :tc   on 
that rarefactions in the flow should interact to form a rarefaction shock.   * *   ' 
Such a discontinuity is as difficult to treat with a finite difference method as the 
more usual compression shock.   Hence, for a reversible phase change, it is 
necessary to use the artificial viscosity, Q, in the flow calculations for rare- 
factions as well as for shocks. 

One of the models     scribed below represents a reversible phase change 
only.   Another model w    devised which could be used to represent both irre- 
versible and reverslK   phase changes.   No provision was made for the phase 
change of only a portion of the material.   That is, the material must be shocked 
to a critical volume before it is allowed to expand as irreversibly.   This model 
reproduces the 0oK isotherm of stishovite at high pressure.   Hence, it is rea- 
sonable to compare the results of the flow calculation using this model with 
results reported previously for distended quartz and stishovite. 

■ 

• 

B.    EQUATIONS OF STATE 

As noted in the Introduction, several relations have been used for the equa- 
tions of state in the computation experiments.   In all cases, a form of the Mie- 
Grüneisen equation of state has been used.   This equation relates pressure  P, 
volume V, and energy E for one state, say on an adiabat, to a state at the 
same volume on the 0oK isotherm, so that 

P - Pk = r(E-Ek)/V (6-1) 

where subscript k refers to the 0oK isotherm and V is the Grüneisen ratio. 
In the following, an equation of state consists of a definition of a 0*K isotherm, 
which is specified by a relation between P. and V. For porous materials the 
initial state is not a true thermodynamic state of the solid.   For these cases, 

therefore,   Pk is required to be zero for volumes greater than the initial 
volume V  .   The value of V    for quartz and stishovite are their respective o o 
crystal specific volumes, 0.37 and 0.23 cc/g.   For dry playa (as reconsti- 
tuted for the Hugoniot experiments the value of V0 is 0.513 cc/g. ^ 
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Because of the phase change in quartz, theoretical isotherms were derived 

for both quartz and the high pressure material, stishovite, see Fig. 6-1.   The 

phase change is represented by a transition curve connecting the quartz to the 

stishovite curve at a pressure of about 0.2 Mbar.   During the first year's 

work,   a straight line was used for the transition curve.   This, and perhaps 

other causes, led to instabilities in the computed results.   This trouble made it 

desirable to use as simple a relation as possible for the isotherm so that the 

cause of the instability could be investigated. 

1.    Single Function Representation of a Phase Change 

The function 

Pk = 0.2 - 609.4(V - 0.27)3 + 4114(V - 0.27)4 (6-2) 

-04 
0 0 10       0 20       0 30        0 40        0 50       0 60       0 70       0 80       0 90       100 

SPECIFIC VOLUME emVg 04447545 

FIG. 6-1   COLD  ISOTHERM  FOR QUARTZ  AND STISHOVITE 
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is used to relate the pressure,   P, , along the 0oK isotherm to the volume V. 
Units of Pk are megabars and of volume are cc/g.   The interesting feature of 
this function is shown in Fig. 6-2.   The function is flat for V = 0.27 cc/g , 
where the pressure is 0.2 Mbar.   The energy for the 0oK isotherm is obtained 
by evaluating the expression 

Ek = 'ftk™ ' <6-3) 

Sound speed is evaluated by use of the expression 

M- (6-4) 

The initial volume,   V   , is 0.371 cc/g for this model.   Because the same rela- 
tion is used for compressions as for rarefactions, this model represents a 
reversible phase change. 

2.    Multifunction Representation of the Phase Change 

A better representation of the theoretical curves for quartz and stishovite 
can be obtained if three functions are used.   This also permits the flow calcu- 
lations to proceed as if the phase change were either reversible or irreversible. 
For the interval 0.376 <  VIM where M = 0.25,   the relation 

Pk  -  0.2 + (V-0.25)3 1-977.1 + (V-M) |12397.0 - 43129.0(V-M)]]   (6-5) 

is used.   Equation (6-5) represents the quartz curve fairly well up to about 0.06 
Mbar, see Fig. 6-3.   Above 0.06 Mbar, the effect of the phase change causes 
Eq. (6-5) to give results above the quartz curve.   At V = 0.25,  the value of 
P.   is 0.2 as desired. 

For greater pressures the cold isotherm is given by 

P.    =  0.2 + (V-M)3 1-3483.0 + (V-M) [-21681.0 - 168022.0(V-M)|] (6-6) 
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This function joins the stishovite curve rather smoothly at V = 0.193 , see 

Fig. 6-3.   Finally, for  V < 0.193 , the stishovite curve is represented by 

pk=n -8.913 + r) [374.23 + rj (5058.0 + 63476 «7 l] (6-7) 

where 

I =   V - 0.2304. 

Equation (6-7) gives the same results for pressures up to 10 Mbar as does the 

more complicated expression used previously for stishovite. 

The energy for the cold isotherm is evaluated by the use of Eq. (6-3), using 

the proper constants of integrations where functions are joined.   If the phase 

change is assumed to be reversible, the path ABCD in Fig. 6-4 is used for the 

relief process as well as for the compression process.   If the phase change is 

considered to be irreversible, the compression path is still ABCD.   For the 

relief process, however, the path DCE must be followed, so that E.   = 0  at 

V = V2.   Hence part of the energy gained by the material in compression is 

lost in the phase change. 

It must be understood that the above scheme is not intended to describe the 

behavior of any real material.   The scheme is intended to be used in flow cal- 

culations in order to see what effects a possible phase change has on the com- 

puted results.   This model makes no provision for a change in phase of a part 

of the material.   In order to expand as stishovite, the material must have been 

compressed to a volume of 0.193 cc/g or less, for which the corresponding 

pressure is 0.72 Mbar. 

C.    SPHERICAL PISTON 

The code simulates a situation in which a disturbance in the playa is driven 

by an event in a cavity 1 meter in radius.   Thus the cavity has about the same 
38 

volume as the cavity for the Rainier event.     The cavity is assumed to be filled 

with an ideal gas whose density is 0,14 g/cc and whose energy is 73.5 megabars 
12 cc/g (or 73.5 x 10     ergs/g) so that the pressure is about 6.9 megabars.   The 

adiabatic exponent is assumed to be 5/3.   The advantage of using this model is 
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FIG. 6-4   SCHEMATIC OF  REVERSIBLE AND IRREVERSIBLE 
PHASE CHANGE 

that the maximum pressure induced in a medium surrounding the cavity depends 

on the P,V,E relation of the media.   In some of the earlier work, an arbitrary 

relation was assumed between the pressure in the cavity and the time, so that 

the same maximum pressure was induced in a "soft" material as in a "hard" 

material. 

The assumption that the bomb fills the cavity uniformly with an ideal gas 

which expands adiabatically precludes the formation and interaction of shock 

waves in the cavity.   In tho calculations the cavity is not zoned, and no details 

of the flow of the gas in the cavity are calculated. 
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D.    RESULTS OF CALCULATIONS 

Results of flow calculations will be presented here for each of the equations 

of states described in Section B.   Results are presented graphically, largely by 

showing the dependence of both the pressure and the particle velocity on distance 

at fixed times for a particular equation of state.   Time of arrival curves and 

plots of peak pressure vs distance are aleo used to show some of the results of 

the changes in the equations of state. 

1.    Results Using Single Function Representation of a Phase Change 

Equation (6-2) is combined with the Mie-Griineisen equation of state, Eq. 

(6-1), the value of F being 2/3.   Calculations were performed for initial vol- 

umes of 0.371 cc/g and for 0.504 cc/g.   For these calculations, the bomb energy 

was reduced from 73.5 to 7.35 Mbar cc/g so that the maximum pressure in the 

cavity is 0.7 Mbar. 

Results obtained from the flow calculations for an initial volume of 0.371 

cc/g on are presented in Figs. 6-5(a) and 6-5(b).   Figure 6-5(a) shows the 

pressure as a function of distance from the center of the cavity.   The interesting 

features of the pressure profiles are that the fronts of many of them are no 

steeper than portions of the back sides of the waves.   For these calculations, 

the artificial viscosity term was employed in both compression and in rarefac- 

tion waves.   This is consistent with the original formulation of the artificial 
34 

viscosity method (except that a small linear term has been Introduced). 

Further complications result when the material Is distended, I.e., the 

quartz Is assumed to be filled with small holes.   It is also assumed that when 

the temperature Is 0oK, the material crushes under little or no pressure. 

Figures 6-6(a) and 6-6(b) represent the results of computations for which the 

original volume Is 0.50 cc/g or about 1.36 times the volume used In obtaining 

the results discussed Immediately above.   The results are very different In that 

the pressure drop In the Initial rarefaction Is very steep.   When the time Is 

200 fisec, the rarefaction has almost overtaken the shock front.   When the time 

is 250 fisec, the entire wave has been drastically attenuated.   Following this 

Initial attenuation, the wave Is oscillatory back of the shock front.   From the 

calculations themselves, there Is no way of determining If the oscillatory 
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behavior is due to wave interaction, or if it results from deficiencies in the 

method of obtaining the solution.   The undershoot on the early profiles  (T = 

100, 150 and 200 fisec)  is likewise not understood. 

The results presented in Figs. 6-6(a) and 6-6(b) were obtained by using 

Q  in the conventional manner, i.e., in the "cut-off"   form so that Q is non- 

zero only in compression.   If Q is used as originally proposed by von Neumann 
34 and Richtmyer    the results shown in Figs. 6-7(a) and 6-7(b) are obtained.   For 

these results, there are no oscillations following the initial large rarefaction. 

Neither are there undershoots of pressure or of particle velocity immediately 

following this rarefaction.   The profiles are still oscillatory, however, after 

the pressure has been attenuated below 100 kbar.   Hence the significance of 

these oscillations is still undetermined. 

The use of a linear artificial viscosity should have a significant damping 

effect on oscillations.   The term 

Q = -0.5(u(J + l) - u(J)) 

was used alone, and only in compression in obtaining the results shown in Figs. 

6-8(a) and 6-8(B).   These results have all the peculiarities first noted in Figs. 

6-6(a) and 6-6(b).   That is, the solution undershoots following the first large 

rarefaction and then oscillates.   Also, after attenuation to below 100 kbar the 

profiles are oscillatory. 

From the three sets of results as shown in Figs. 6-5(a) through 6-8(b), it 

appears that interactions between the form of the equation of state and the numer- 

ical computation scheme may be causing serious convergence problems.   The 

oscillation and undershooting mentioned above are also observed when the bomb 

energy is increased to 73.5 Mbar cc/g.   Thus these features of the calculated 

results are not dependent on the pressure in the cavity.   If any Judgment is to be 
made, the results shown in Fig. 6-7 are preferable.   That is, permitting the 
artificial viscosity to operate throughout compressions and rarefactions give 

the preferred results. 
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2.    Multifunction Representation of a Phase Change 

As described in Section B, this representation of the P. , V relation rep- 

resents quartz at low pressure and stishovite at high pressure. In this formu- 

lation the phase change can be treated as if it were completely reversible, or 

stishovite may be allowed to expand entirely as stishovite, but no mixed phases 

are possible in expansion. The critical compression for which alternate relief 

paths may be chosen corresponds to V = 0.193 cc/g. 

These equations of state relations have been used in calculations for which 

the original volume is 0. 51 cc/g (that is, the material is distended from the 

solid specific volume of 0.371 cc/g), and for which the cell size is 5 cm.   The 

energy in the cavity is 73. 5 Mbar cc/g, giving a maximum pressure of about 7 

Mbar in the material near the cavity.   The artificial viscosity term is used in 

both compression and in rarefaction.   Results are shown in Figs. 6-9(a) and 

6-9(b) for which all elements of the compressed inaterial expand reversibly 

with respect to the cold isotherm.   This model also shows the steep rarefaction 

(see profiles for 200 and 300 /usec) discussed above.   The particle velocity pro- 

files are perhaps more interesting for this case than are the pressure profiles. 

As stated above, there is no intent to imply that playa (or any other material) is 

described by the models discussed here.   However, the response of some rea 

material may have features in common with a model such as the one used here. 

The results obtained when stishovite is require-! to expand entirely as 

stishovite differ very little from the results shown in Fig. 6-9.   For this 

reason, the profiles are not given.   The explanation of this small difference is 

that very little of the material is ever compressed to a volume of 0.193 cc/g 

or less.   Out to about 150 cm from the center of the cavity, some of the mate- 

rial is compressed so that the volume is less than 0.193 cc/g.   Slightly further 

out the wave has attenuated to such an extent that the volume is never reduced 

to the critical volume.   Thus a spherical shell 50 cm thick surrounding the 100- 

cm radius cavity conUiL.s stishovite.   Forcing this small amount of material to 

expand as stishovite, changes the propagation of the wave very little.   Using a 

greater pressure in the cavity would undoubtedly make the results obtained 

from the use of the two models differ more dramatically in range of distances 

examined. 
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FIG. 6-9(o)  PRESSURE vs. DISTANCE  FROM CENTER OF CAVITY 
Multifunction phase change (reversible) VQ  «  0.51 cc/g, AR  ■ 5 cm, 
Q in compression and rarefaction. 

E.    CONCLUSIONS 

In this phase of the program, including the previous years effort, some 

effects due to variations in equation of state on spherical shock propagation have 

been examined.   For this study a particular energy source was chosen to give a 

rough approximation to a representative nuclear explosion.   Pressure and par- 

ticle velocity pulse shapes and the rates of decay of their peak amplitudes with 

distance are shown for different models of the elation of state based on differ- 

ent assumptions for the zero-degree isotherm, Grlineisen's ratio, the degree of 

porosity, and including a reversible phase change.   These variations represent 

reasonable bounds to the uncertainties in knowledge of the equation of state of 

playa.   Because of the particular source function chosen, no claim of generality 
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0.700 

0.600 - 

FIG. 6.9(b)   PARTICLE VELOCITY  vs.  DISTANCE  FROM CENTER OF  CAVITY 
Multifunction phase change (reversible) Vg   =  0.51 cc/g, AR   -   5 cm, 
Q in compression and rarefaction. 

of the results can be made.   Nevertheless, the results should be useful in indi- 

cating the sensitivity of shock propagation to uncertainties in the equation of 

state. 

The effects of changes in chemical composition within the limits of observed 

variations in the playa were not studied explicitly by shock calculations.   Exam- 

ination of the effects on the equation of state showed that the variation (theoreti- 

cally) is small and lies within the range of variation already examined by means 

of other parameters, such as Gruneisen'f ratio.   It is concluded, therefore, 

that variations in chemical composition are of lesser importance than the uncer- 

tainties to be expected in other parameters. 
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Unfortunately, experimental data on the effects of moisture on the equation 

of state (particularly release adiabats) did not become available in time to in- 

clude such cases in the shock calculations.   Moreover, a strictly theoretical ap- 

proach did not appear likely to be very meaningful.   Consequently, the effects of 

moisture on shock propagation remains an unstudied problem. 

The observed differences in the arrival time of the peak pressure are shown 

in Figs. 6-10 and 6-11.   The differences In peak pressure as function of the 

radial distance amount to a factor of three or iess, and art» shown in Figs. 6-12 

and 6-13.   In general the peak pressures assuming a cold isotherm correspond- 

ing to stishovite lie below those assuming a quartz isotherm.   The direction of 

this result is clearly proper since there is greater energy dissipation (waste 

heat) where the release adiabats (and cold isotherm) are steeper. 

The effects of varying Grüneisen's ratio are also in the expected direction. 

Higher values of Grüneisen's ratio correspond to shallower adiabats and, hence, 

less energy dissipation. 

The effects of varying porosity are surprisingly small because porosity 

drastically effects energy dissipation.   The only plausible explanation Is that 

there are two effects that tend to be self-compensating.   Higher porosity, and 

higher dissipation are associated with less mass between the source and a given 

radius.   These two effects cancel to such a degree that the peak pressure at a 

given radius Is not seriously affected.   This result Is perhaps the most signifi- 

cant one of this phase of the program. 

The effect of a phase change Is mostly to alter the pulse shape and to cause 

abrupt changes In the rate of decay of peak pressure.   Recognition of such pos- 

sibilities may be Important In understanding field results obtained by short 

duration pressure gages, or simple tlme-of-arrlval gages. 

It was also found that where reversible phase changes occur, the artificial 

viscosity term In the numerical differencing scheme should be allowed to oper- 

ate In rarefaction as well as compression In order to accommodate rarefaction 

shocks. 
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APPENDIX 

HIGH DENSITY MODELS FOR 
SEMIEMPIRICAL COLD EQUATIONS OF STATE FOR SOLIDS 

Christian Peltzer 
: 

I. INTRODUCTION 

Various high density models for solids have been introduced to 

calculate equations of state of materials valid in the pressure range 

attainable through explosions,  high velocity impacts,  etc.    It is impor- 

tant to realize that the resulting equations of state are "asymptotic 

model equations of state, " not proper mathematical asymptotic forms 

(in the limit of very high densities) of the exact equation of state of the 

system.    Because of their ad hoc nature it is difficult,  if at all possible, 

to establish their range of validity and to give estimates of the error 

involved in their use in various density ranges.    An answer to such 

questions can only be obtained within a more general framework that 

would allow a precise mathematical formulation of the physical 

assumptions made and a bona fide estimate of the resulting error. 

The basic physical assumptions underlying all high density models 

are that,  in the limit of very high densities,   all shell structure of in- 

dividual atoms disappears and that the energy of the electron system 

tends towards that of a uniform density system. 

Here we discuss briefly various high density models* and the 

corresponding cold equation of state. 

*   Only nonrelativistic models will be considered. 
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A general and powerful method for handling the basic,   many-body 

problem of solid state physics has been developed by several authors. 

An outline of this method,   the generalized density operator theory,   will 

be given elsewhere;      there,   we will try to show how it allows a unification 

of various cohesive energy theories and a better understanding of the 

approximations involved,   and why it could lead to new and better compu- 

tational techniques for obtaining equations of state.    Any serious discussion 

of the validity of the various models used below is best deferred until this 

formalism has been introduced. 

II. SIMPLEST HIGH DENSITY MODELS 

A.       Perfect Free-Electron Gas 

The simplest high density model (Model I) is that of a 

perfect,  free (i.e. ,   noninteracting),  electron gas of uniform density in 

a uniform positive background (necessary for charge neutrality).    Such 

a system possesses only kinetic energy,   the constant potential being 

taken as zero; this energy is a function of the electron density and so, 

for a fixed number of electrons,  of the volume.    (The electrons being 

fermions cannot all lie in the same lowest one-electron energy level 

even at T = 0. ) 

*   Forthcoming ISR report (184531-110). 
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Let  V   be the specific volume of the System,   M       the molecular 
m 

weight,    Z = Sn.Z.   the total number of electrons per molecule,   p   the 
i     i    i 

electron density.    Then 

,.       NaZ NaZ      ,-.        Z     ,-1 

m m   oo a 

where   N     is Avoeadro's number,   £   = — 
a V 

the relative specific volume 
oo 

(V = V        at the reference state   P = 0,    T = 0),   and v     the effective 
oo a 

atomic volume at the reference state. 

The electron kinetic energy density  C.    of a perfect free electron 

gas is well known and is 
5/3 

k       kH (2) 

with 

a.  = 
k        10 

3ff 
2/3   fi 2 -27 2 

—   =   2.87le  a    = 3. 505 x  10       erg cm       (3) 
m o 

n -8 
where        a    =  r- = Bohr radius   =   0, 5292 x 10     cm. 

o c 
me 

The internal energy per gram  E   =V€      is given by 
C 1\ 

with 

I -2/3 ^2/3 

A,  = a 
N  Z 

a 
5/3 ZV 5/3 

k       k      M 
= a oo 

k      v 
m 

-2/3 
B    = V A.    = a, V      . 

k oo k k   oo 1 v 

5/3 

(4) 

(5) 

The corresponding cold pressure and bulk modulus are obtained from 

the the rmodynamic: relations: 
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dE .        dE dP dP 
pc  =  " "dv1" = ■ v      dT       Bc =: " V~dv£ = " 4 "dT   (6) 

oo       ^ * 

and so 

pi   =   4AkV-5/3   =   i-V1   BkC-5/3 
c 3      k 3      oo      k 

B1   =   4AkV-5/3   ^V-'B,«"5'3 

c 9      k 9      oo     k 

(7) 

is obtained. 

The following relations should be noted 

I 2       I 
P V   =   — E (Virial theorem) 

c 3       c * ' 

B^i-P1   . 
c 3       c 

This model obviously does not exhibit any binding as  E     is a monotonic 

increasing function of p =   1/V  in the whole domain (O,5»).    The energy 

zero chosen here corresponds to an infinitely dilute system,   i. e. ,  to 

the limit p —^ 0   or V —^oo . 

B.        Uniform Electron Gas w ith Exchange 

Apparently,  a better model could be that of a uniform 

density,  imperfect,  free electron gas in a uniform positive background. 

By imperfect we mean that the electrons are allowed to interact among 

themselves;   the system will then have,  besides its kinetic energy,  a 

volume dependent potential energy. 

The total energy density can be written as a sunn of three terms 

€=€,+€+€ (8) 
k ex corr 

where the first term is the kinetic energy of the corresponding free 

electron gas (also often written   €       and called the mean Fermi 
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energy*),   the second term is the exchange energy,and the third one the 

correlation energy. 

The exchange effect is of a repulsive nature;   its origin lies in the 

Pauli exclusion principle that prevents t\vo electrons with parallel 

spins from occupying the same cell in phase space.    (The Fermi statis- 

tics only limit the number of electrons per cell to two regardless of 

their spins. )    It follows that an electron effectively will strongly repel 

all other electrons having parallel spins, and one says that each electron 

is accompanied by a "Fermi hole." 

The exchange energy of a free electron gas has often been calcu- 

lated and is given by: 

with 

e4/3 
€       =   - a pe (9) 
ex x 

3    /3  \1/3   2 2 -19 
a    5   4-   If e     =0-7386e    =1.704x10       erg cm . 

Neglecting the Coulomb correlation effects,  the equation of state of 

Model II is given by 

E11   =   AwV-2/3-AV-1/3   =   Bvr
2/3-B«-1/3 (10) 

c k x k x 

with 

(H) 

B     =   V A     =  a V     |— 
x oo x x   oo I v 

'    a 

4/3 

*    One must not    confuse the energy at the Fermi level €      and the 
_3 F 

mean Fermi energy  f     ,   here equal to -r- C„       The same remark »7     P -i 5      F 

holds for the correlation energies. 
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From Eqs.   (10) and (6) we obtain 

p"   =^Au-5/^      1A  v-*/3=2    \       -S/3     1     \      -4/3 
c 3      k 3     x 3    V 3    V 

GO OO 

and (12) 

B11   .   i°   A   v-5/3     ±A   V"473- J±^-r5/3     4      Rx   f-4/3 öc 9     AkV 9   AxV "     9    v        ^ '   9    V       ^ 
GO OO 

It is easily verified that the Virial theorem also holds for this model. 

p"v=i-E,.    +J-E 
c 3       kin       3      pot 

where  E. .     =  E      and   E =   _£     =   exchange energy, kin c pot x 6 6/ 

Model II corresponds to the Hartree-Fock approximation for a 

uniform density electron gas; the kinetic energy of the system is the 

same as that of a perfect electron gas, but this model exhibits some 

binding because of the repulsive nature of the exchange interaction 

which is included now.    Its equilibrium volume  V       ,   i. e. ,   the volume 
II eqU 

minimizing  E    ,   is obtained as the solution of 

and one has 

V" : 
equ 

or (13) 

^II      =   41-95T7-T1    ^   69  622  Z   ?,        • ^equ V     M lr.24 
oo    m v    x  10 

a 

One sees that ^ is,   in general,   much larger than   1;   the binding is 
equ 

too weak.    At the reference state.   Model II gives a pressure of the 

order of the megabar instead of zero. 

148 

P11   =   0 , 
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ZV 
^   69.622 

v    x  10 
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Using Eqs (10) and (12) as semiempirical equations of state, 

treating A as an adjustable parameter to be determined from the 

relation TT i      /  2A1     \ 
2 

Sequ V A 
GO      \ X       / 

is essentially McMillan's empirical procedure applied to the uniform 

electron gas model instead of the T-F model. 

C.        Uniform Electron Gas with Exchange and Correlation 

The origin of the correlation energy lies in the Coulomb 

interaction of the electrons;   this is a classical two-body interaction 
2 

given by terms of the form   e   /r..   where   r..   is the distance between 
th th j 1J 

the   i      and j      electrons.    It depends on the simultaneous positions of 

the two electrons,  hence the name   "correlation effects."   The Coulomb 

interaction between like sign charges being of a repulsive nature and 

this repulsive energy becoming infinite for   r. . =0,   one can say that 

each electron is surrounded by a "Coulomb hole" with respect to a^l 

other electrons.    As the exchange effect gives rise to a similar effect 

for each electron with respect to all other electrons with parallel spins, 

the main part of the Coulomb correlation energy of an electron gas will 

arise from the interaction between electrons with opposite spins if the 

exchange effect has already been taken into account.    The Coulomb 

correlations give rise to a change in both the kinetic energy of the 

electrons (with respect to that of a perfect free electron gas) and their 

potential energy,   the net  effect being a lowering of the total energy of 

the system,   i.e.,   an increase in the binding. 

A clear distinction must be kept between a uniform density elec- 

tron gas and a uniform continuous charge distribution.    If we replace 

the electron gas by such an equivalent (charge wise) continuous distri- 

bution,   the electrostatic potential energy of the total system (electron 

and nuclei)would be zero here,   each volume element being neutral. 
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The electrostatic  potential energy of the continuous charge distribution 

equivalent to the electrons can be called the "classical electrostatic 

potential energy" of the electrons.    But in such a replacement the 

localized nature of the electrons  is neglected,   and the direct electron- 

electron interaction is only partly taken into account,   appearing as a 

classical screening effect.    The (Coulomb) correlation energy will be 

defined here* as the difference between the energy calculated on the 

basis of the Hartree-Fock approximation and the exact one for a given 

Hamiltonian. 

The evaluation of the average Coulomb correlation energy density 

T is a considerably more difficult problem than that of the exchange 
corr 

energy,   and explicit expressions valid for all densities have not yet 

been obtained.     Wiener derived expressions for T in the low den- 
corr 

sity limit,   and more recently Macke,   Böhm and Pines,   and others 

have given high density limit expressions.    Various interpolation for- 

mulas have also been used by several authors.    Here we shall only 

consider the high density limit expression in view of the asymptotic 

nature of the model and its general shortcomings. 

One has for  7 
c 

_ e.      .   e. 1/3 e .,,,. 
€     =   - a p ina(p )       - a o (14) 

c c d 

with 
2 2 

OL     =   —L_ (l.XnZ)—   =  0.0311—   =    1.356x  10"   2erg 
c 2 a a 

TT o o 

/4_   il/3 
Q   =   P— a     =    0.853 x 10     cm 

|  3     ) 

2 12 
aj   =    0.048-^—   =   2.092 x  10       erg 

d a 
o 

*    Several other definitions of the correlation energy are used in the 
literature. 
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Model III is that of a uniform density,   imperfect electron gas in 

a uniform positive background,   exchange and correlation effects being 

taken into account in an approximate way (essentially through a high 

density perturbation expansion). 

One obtains for the cold internal energy per gram  E      : 

E1"^  V-2/3-A  V-1/3
+A   feV-A, 

c k x c d 

or (15) 

.III V 
•2/3 

V 
1/3 + B   int  - B^ 

c d 

with 

inOL 
N  Z 

a 

B 

1/3 

M 
+ a 

N Z 
a 

m 
d\  M 

m * 

(16) 

B,   =   AJ - A   ^nV d d        c oo 

The cold pressure and cold bulk modulus are given here by 

c 3       k 3      x 3 

2       Bk      -5/3     _L JjL. .-4/3     1     Bc    .-1 
3V'§ "  3    V        ^ "3V       K 
J oo oo oo 

(H) 

and 

BI"   .-   J^Av-5/3      4  A  v.4/3     \   v-l 
c 9       k 9      x 3 

(18) 

10     Bk       -5/3     j4_ 
B 

9     V 9    V 
x       -4/3     1 
— P 

B 

3     V        P 

oo oo oo 
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The inclusion of the correlation increases the binding,   but one can 

verify that the pressure at the reference state is still of the order of the 

megabar in general.    The equilibrium volume  V is given by the 
III eC1U 

positive root of the equation   P        =   0,  i.e. , 
c 

rIII 
equ 

4A. 

^   Ax+V A    + 8A, A   J 
x k   c 

(19) 

and,  in general,  the corresponding     ^ is >> ^ • 

Because of the {^n Vj-term,  Eq (17) cannot be used over the whole 

range (O,00) of V.    To obtain an expression valid in this whole range one 

could simply replace the  € of Eq (14) by an interpolation formula 
corr 

having (14) as high density asymptotic limit and going over into Wigner's 

expression,   e. g. ,   in the limit of low densities.    The validity of such an 

interpolation formula is,  of course,   always open to question at inter- 

mediate densities.    (See II). 

13,14 
D.        Uniform Electron Gas with a Positive Lattice Background 

In the previous models,   charge neutrality of the system was 

obtained   by assuming the existence of a uniform,  continuous,  positive 

charge distribution;   such a background differs markedly from that of 

real matter,   and it seems more natural to represent the nuclei system 

by a positive point charge distribution.    The model to be considered now 

is that of a uniform electron gas with such a positive lattice background. 

The essential assumptions made are that the kinetic energy of the 

nuclei is negligible,   that the static approximation is valid (allowing the 

separation of the electrons and nuclei motions),   and that the nuclei 

form a regular lattice.    For simplicity we will consider here only one 

kind of nuclei and a simple lattice (no basis). 
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The assumption of a regular lattice is made plausible (for all 

elements except He and possibly Li) by the fact that the energy associated 
14 with the formation of the lattice is negative and by Abrikosov's     estimate 

of the zero point nuclear vibration amplitudes for this model.    As Z, 

the atomic number,   factors out in the expression for the lattice binding 

energy,  the geometry of the energetically most favorable lattice is in- 

dependent of Z   (universal for all elements).    In principle it should be 

obtained by strict maximization of this lattice energy,  but the energy 

differences for different lattices are small and within the limits of 

accuracy of the model one can limit oneself to a cubic one.    On the 

other hand,   for polyatomic materials energy differences between vari- 

ous nuclei geometries could be greater,  and further study of this point 

seems worthwhile. 

The total energy of the system can be written as a sum of three 

terms,   and in the high density limit the leading one is the kinetic energy 

of the corresponding perfect free electron gas   €. .    In the approximation 

considered the exchange and correlation energies will be the same as 

before,   up to an additional electron-nuclei correlation energy.    But the 

"classical" electrostatic energy of the electrons,   C     ,  will no longer 

be zero (as with a uniform positive background).    There are three con- 

tributions to €     •    the nuclei-nuclei,  the electron-nuclei,  and the 
cl 

electron-electron Coulomb interaction energies;  but the three must be 

handled together as each separately would diverge for an infinite solid. 

We emphasize again that in calculating c      the electrons are replaced 

by continuous charge distribution of density (-ep )  and that the electron- 

electron interaction taken into account is only the classical screening 

effect of such a charge distribution,  i.e.,   onlv a partial,  average, 

electron-electron Coulomb interaction. 
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One obtains*  for  C 
cl 

4/3 

cl cl 
with a ,   a:   1.44e2Z2/'3.      (20) 

cl 

This energy results from the formation of the lattice and is sometimes 

called the   "lattice binding energy. " 

Neglecting correlation terms    we obtain the Model IV equation of 

state 

or 

EIV    =    A   V-2/3-(A     +A     )V-1/3 

c k x cl 

E
IV = Bkr

2/3-(B .B,)«-173 

c k x cl 

(21) 

with A, ,   A   ,   B. ,  B      given as before,   and 
k       x       k      x 

A       =    1.44e2Z2/3   -i- =    1.44e2Z2/3   —^ cl I M / l   v 
m 

and 

4/3 

(22) 

B        =   A    V     -1/3    =    1.44e2V     Z2/3'   Z 

cl cl    OO OO IV 

i4/3 

Comparing (21) and (10) (uniform electron gas with exchange in uniform 

positive  background),   one sees  that: 

1) The lattice binding energy   E   .    is of the same order 

in   V   as the exchange energy (in the high density limit). 
2 

2) E       is proportional to   Z      while   E      is proportional 
4/3 X 

to   Z only;   one has 

E     vz-2/^.°ai-z-2/3~o.5uz-2/3 

cl 
a 
cl 

1.44 
(23) 

14 *    Abrikosov gives   tt     = 1.3;   we obtained 1.41 for a   sc   lattice and 
cl 

1.44 for a fee and a bec, 
154 



3) The binding is considerably greater in this model and 

the equilibrium volume is now; 

V 
equ 

/     2A1 

A  +A   , 
x     cl   j 

3 
16.90 

2 M    3 
[ 0.74 +  1.44Z  /3] M 

in 

or (24) 

i IV 
equ 

41.73 

[1+0.514Z        j oo    m 

.IV .III One can verify that,   in general,   £   '        is less than 1    (while  £'lJi   >> 1), 
equ ^equ 

At the reference state Model IV gives a negative pressure,   i.e. ,   a 

tension state rather than a compression state of the order of the megabar. 

We can also consider a Model V by introducing here the correlation 

energy;  these corrective terms are of the same  form,   in the high den- 

sity limit,   as in the case of the uniform background,   and their effect 

is similar (see II). 

As we have seen,   Models II and III exhibit considerably too weak 

a binding,   while Model IV exhibits too strong a one at normal densities. 

Although these two models could be used as bounds for the exact cold 

isotherm E   ,   such a property has in no way been proved here.    The 
c 

rigorous derivation of sharp enough upper and lower bounds for E   ,   P  , 

B    over an extended range of densities appears to be an almost impos- 

sible problem in the frame of the standard approaches to the study of 

the ground state of most quantum mechanical systems; but we believe 

that significant progress in obtaining such results can reasonabl/ be 

expected by rephrasing the problem in the generalized density operator 

fDrmalism and making better use of the available tools of modern 

functional analysis.    Preliminary studies along this line are presently 

being conducted here at Stanford Research Institute (ISR-18453 1-110). 
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III. THE T-F AND THE J-F-D STATISTICAL MODELS FOR MONO- 
ATOMIC CRYSTALS 

A. Introduction 

The semiclassical statistical approach,  introduced by 

Thomas and Fermi in 1927 and developed since by many others,   is 

very simple conceptually but its range of validity and proper estimates 

of the errors involved (as compared to the Hartree,  Hartree-Fock, 

and/or   the exact solution for a given Hamiltonian) have not yet been 

established,  although significant progresses have recently been made 

in answering such questions,   in particular by March,  Kirzhnits and 

others.    A discussion of the foundations of the statistical method is best 

conducted within the frame of the generalized density operator theory 

and will be given elsewhere.    Here we shall give only an heuristic and 

a variational derivation of the basic equation of the T-F and T-F-D 

models and shall compare the resulting equations of state for solids 

with those already obtained. 

B.        Description of the Models and Heuristic Derivation of the 
Basic Relation 

In the simplest statistical models a solid,   represented by 

a system of electrons in a positive lattice background,   is treated in the 

following manner.    The kinetic energy of the nuclei is neglected,   and 

the validity of the static approximation is assumed^  furthermore,   one 

argues heuristically that: 

1) The electron system can be treated locally as a free 

electron gas--with exchange in the  T-F-D  model-- 

raised at some position dependent electrostatic 

potential   V(r). 
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2) 

3) 

The electron system is in a bound state and in statis- 

tical equilibrium,   i. e. ,   no energy can be gained by 

transferring an electron from one point to another in 

the solid. 

The electrostatic potential of the electrons can be 

taken as that of an equivalent (charge wise) continuous 

charge distribution    -ep(r)  satisfying the classical 

Poisson equation with the usual continuity conditions 

for   V(r)   and  C 
n 

dV 
dn 

across any boundary 

surface 

Ave{?)   =   4irepe(T) 

4) 

(1) 
+   b.c. 

The total energy of the electron-nuclei system can 

be obtained,   in the   T-F  model,   as the sum of the free 

electron kinetic energy   E     and the "classical" elec- 

trostatic potential energy of the system  E   j. In the 

T-F-D   model the Pauli correlation effects are 

approximately taken into account by adding the free 

electron gas exchange energy   E 

From these assumptions,   one derives the basic relation of the 
e •* 

model,   namely,   the relation between   p (r) and the total electrostatic 

potential   V(r) 

V(r)   =   V   (?) + V   (T) + V      (?) 
n e ext 

where   V      is the potential due to the nuclei,  V     that due to the eiec- 
n e 

trons and V any external one. 
ext 

V is assumed null in the sequel, 
ext 
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From   1)  and 2)  it follows that the energy of an electron at a point   r 

is given by 
2 -» 2 

P   (r) •*        e -* P   l   ;    -   eV(r)   -  i-   p{r) 
;m ffh 

Since one is considering bound states,   one must also have the relation 

cm ff Ti o 
(2) 

where   -eV   ,   the maximum potential energy of an electron at   r,   is 

position independent (from condition c) ). 

The maximum momentum   p (r)   of a free electron gas is re 
max 

lated to the electron density by 

-* 2  1/3 e 1/3 

Combining these two relations, one obtains the basic relation of the 

T-F  and  T-F-D models: 

1       2       -» e2 * 
P        (r) - 4^   P......{r)   =   e(V-Vj 2m     max It-fi      max 

or 

e(V-V   '-   (3ff  ) 2m 
2^/3^       e2/3   | 3   (^  2   el/3 

— e   p 

(3) 

5 e 
3     kM 

2/3 1/3 

TV 
or 

with 

pe(7)   =   A^a + [ a2 + (V-Vo)] (4) 

A = 
(2em) 

3/2 
Je 

3/2 

2    3 
3Tr   ti 

5a. 
a = (2em)2 — - 

2a 

(15eak)' 
(4') 

(For the   T-F   model,   one sets   a = 0.) 
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This relation,   of course,   holds only in regions  Ahere 

I 
a    +    V-V      * 0 

o 

and in regions of isero electron density,   the Poisson equation is  replaced 

by Laplace's equation.     Kno 

the system is obtained from: 

e -» •*■ 
by Laplace's equation       Knowing    p  (r)  and   V(r)>    the total energy of 

re*        *♦        /    e -*        ■+   + 
E    =    /p  (r)€k(r)dr   + j pe(r)Cx(r)dr 

(5) 

J       n 

\   e "*    -* 
+ V     p (r)dr + E 

e n-n 

C. Vanational Derivation of the Basic Relation 

It is of interest to note that the basic relations (3) or (4) can 

also be obtained from a variational principle,   namely by minimizing the 

total energy E--as given by (5)--under variation of the electron density 
e *» 

p  (r)   for fixed bo 

sidiary condition 

e *» 
p  (r)  for fixed boundaries (and so fixed nuclei) and subject to the sub 

/ 
p  (r)dr    =   fi =  const (6) 

(Jvf =    fixed total number of electrons.) 

Introducing a Lagrange multiplier  V   ,   the extremum condition is 

is 

6[ E + ejvfvj •:   0 . (7) 

Using the expressions given previously for   €     and   €     and the relation 
K. X 

V 
e 

(?)   =   f-£i^ (8) 

(i.e. ,   Poisson's equation) one can write  the energy in the form: 

E    =j[akP (r)-axp(r)       Idr + ^JJdrdit-^-^-p 

- e    / V   (r)p  (r)dr + E 
J     n n-n 
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J 

and Eq (7) gives 

J[\— P (r)-—V (r)]dr - eJ(Vn-Vo)dr 
/3-       . 1/3 

/fÄd?d?. + 4lf[^(£i.d?d?Lo 

or 

e(V-V  )   -   -r-  Ol,p - -r a p 
o 3       k 3     x 

2/3      4 e1/3 * 
- — a p - e(V-V  )) dr   =   0 . 

3     x o[ 

In view of the bound state condition (2),   it follows that the Lagrange 

multiplier,   V   ,   is the maximum electron potential and that 
o r 

,2/3      4 e1'3 

Q.E.D. 

D.        Some General Remarks on the   T-F and T-F-D Models 

The basic quantitites in the statistical models are the elec- 
e ^ •* + ■+ 

tron density   p  (r)   and the electrostatic potential  V(r)   =   V   (r) + V  (r) 

+   eventually an external potential.    An heuristic argument or an equiva- 

lent variational procedure leads to the basic nonlinear relations Eqs (3) 

or (4)  of the  T-F  and T-F-D  theories;   the assumption of the validity 

of Poisson's equation and the usual electrostatic boundary conditions 

complete the description of the models. 

In discussing this approach,   one can distinguish two groups of 

specific assumptions,   besides those leading to the corresponding 

Hamiltonian of the proper quantum mechanical approach: 

1) The exact energy expression for the given Hamiltonian 

is  replaced by a simpler one where not only the cor- 

relation terms are omitted,   but also the kinetic energy 

is simplified by neglecting the effect of density gradi- 

ents (off diagonal part of   I^x'.x  ),  the  1st order 

generalized density matrix). 
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2) The description of the system in terms of the wave 

function  ^(Xj, . . .)or the reduced density matrices 

-(x^ , Xj),    ^(x.x.)  is replaced by a description in 

terms of   p(r) alone,   i.e.,   essentially in terms of the 

diagonal part only of the first order density matrix, 

r(x1, Xj). 
e ~* 

3) The electron density   p (r)  is calculated on the basis 

of heuristically derived,   dssentially classical equations, 

rather than by solving the proper Schrodinger equation. 

The difficulties in assessing the exact significance of this approach 

lie essentially in the last two assumptions.    A proper foundation of the 

statistical method would require not only an estimate of the neglected 

term« in the energy expression,  but also a derivation of Eqs (1),   (3),   or 

(4)  as a meaningful approximation to the quantum mechanical ones. 

Although several authors have recently made significant progress in 

this direction,   no complete solution of the problem is yet available.    It 

should also be noted that the statistical approach (T-F,  T-F-D suitably 

modified) is not necessarily limited to the accuracy of the Hartree-Fock 

approximation but could very well offer in specific problems,  a better 

approximation to the exact solution,  especially in view of the difficulties 

in obtaining any degree of self-consistency in  H-F  calculations for 

solids. 

E.        The  T-F  and  T-F-D Models for Simple Monoatomic 
Crystals 

1. General Equations 

For a crystal of lattice given by 

R,   .    =   En.a. n. =±,0 integers 
(n) ill i 
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and such that all lattice sites are occupied by identical atoms of atomic 

number   Z,   the energy per atom in the   T-F-D method can be written 

as: 

U        N-^oo     N       ]   J    •        ■   k- 
NO 

Q 
hm 

N {/ P (r)Ck(r)d 
->       f     er*      ->   ■* r +   j     P (r)ex{r)dr 

-L, Iw^S-tLt: 
2  2 

Z  e 

(m)   NO1^ 
(m)(n)   \t.    .~t.      ' 

+   .   //    PV)pe(r)    d?d?ll 

NO   l^' - * | j 

where   O is the primitive cell of volume   =  (a   ,a   , a   ).    (For the  T-F 

expression one should take  €     =  0. ) 
x 

Using the translational invariance of the crystal 

P (r + R(m)) = P (0 v^?(n)=v(?) 

to simplify this energy expression one obtains: 

,= / 
ft 

e5/3-» e4/3^ 
\P (r) - ^p (r) 

/e-* 2rre-*e^ 
p (r)     *     e     I j p (r)p (r')    ->    -> 
?-—!- dr+ -r- //    ,}    1,—^-dr'dr 

a m 0 
It'-?/ 

(10) 

J   it.      -rl J-;   |R,    . + ?'- r)| 
o 

0   I   (m) 
o 

and the boundary value problem giving the electron density reduces to a 

boundary value problem in a single cell  0   . 

e -* 
For the simple monoatomic  solid considered here   p (r)   is to be 

obtained as a solution of the system of equations: 
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e[v{r) - Vo]    =   ^-^p6       (r) - ±- ^p (^ 

A[V(r) - V  ]    =   47r ep (r)    , 

with the boundary conditions 

(H) 

Urn     rV(r)   =     lim     rfV-V   1    =   eZ 
r—♦o r—♦o oJ 

n 
dV 
dn 

(12) 

=   0 S«  =   surface of the cell 

'0 

The first boundary condition states that the total potential converges to 

that of the nuclei + Ze   an   r—^o ;   the second follows from the lattice 

translational invariance,  the continuity requirement on   €     and the 
n 

inversion symmetry of   0 and V.    One should note that the translational 

invariance automatically insures the continuity of  V(r)  across  S (if V 

is bounded on  S). 

2 .        The Sphere Approximation 

The "sphere approximation" consists: 

a)        in replacing the W-S polyhedron cell 0 by a sphere 

of equal volume,  the so-called Wigner-Seitz sphere of radius  r     given 
s 

by 

1 4ff      o 
1/3 

3v   \ 1/3 
a 

4ff 
(13) 

where    v      =   atomic volume ; 
a 

b)        in assuming that the electron density and elec- 

trostatic potential are spherically symmetric 

Pe   =   pe(r)        and      V   =   V(r) r   =    I r I   ;     and 
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c)        in neglecting the overlap of the "equivalent 

spheres"  in calculating the energy of the system. 

With these supplementary assumptions the equations for   p    take 

the form 

e[V(r) - Vo]    =   \- V^1-)^3 " f Ve(r)1/3 

— -^-(rV(r))   =    4ffpe(r) 
r     dr 

with the boundary conditions 

(14) 

riJJo    r[ V(r) - V   J    =   eZ 

dV 
dr 

0 (and V(r  ) = 0) 
9 

rrr 

(15) 

and the energy expression reduces to 
r 

,5/3 
En = ** I 

o     ^ 

a
kpe    (r) - ve 

4/3 2, r  dr 

-    4tre 
s      e. 

/   f - - / -^ dr 
p  (r)r  dr, 

(16) 

i.e. ,   to that of an "equivalent spherical atom. "    The only difference be- 

tween a free atom problem and that of a solid in the sphere approximation 

is that in the later case   p  (r   )   is not   equal to zero in general,  so the 

pressure at the atom boundary due to the electrons is also different 

from zero (compressed atoms). 

Note that the overlap correction terms neglected are of the form 

r 

lim 
1 

2   2 
e   Z 

s       e, 

N-*00   N       (m)    2 IS 
(m)| 

.   4ffeZ   f       ?J^  dl 
o      '    {m) o 
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W j-ffVr2   f^fy        dr'dr) (16) 
;J r'  - r + R,       I 

o (m)| 

and were included in the calculation of the energy of the uniform elec- 

tron gas in a positive lattice background. 

F.        Some Remarks on the Sphere Approximation and on the 
Inclusion of Correlation Effects in the   T-F-D Model 

Clearly the sphere approximation is in no way justified for 

solids and is made solely for convenience to reduce the 3-dimensional 
e 

boundary value problem giving   p     to a 1-dimensional one.    Some of 

the physical consequences of this approximation are that: 

1) The crystallographic structure of the solid is almost com- 

pletely washed away,   the volume of the cell being the only remaining 

geometrical parameter. 

2) Since the solid is replaced by a collection of neutral spheres 

with spherical symmetric charge distributions,   no energy is involved 

in forming the solid--only in compressing the individual atoms,  and 

this model cannot offer any resistance to shear stresses. 

3) The extension of such a model to nonsimple crystals,   in 

particular to polyatomic ones,  can be done only in a very artificial way 

(such as the smoothing technique) or by introducing "effective mono- 

atomic models, " i.e. ,   through largely artificial and arbitrary averag- 

ing procedures. 

4) Calculation of the electronic structure of the solid in this 

approximation is almost meaningless. 

If,   at the time of the development of the  T-F,  T-F-D models, 

the available mathematical tools seemed to leave little hope of dealing 

successfully with the 3-dimensional problem,   the recent developments 
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in mathematical techniques for handling such nonlinear problems--in 

particular variational ones--have completely altered the picfure,  and 

it appears that approximate solutions and proper error estimates could 

be obtained for the actual problem. 

This is one direction along which further research at this time 

is possible.    Within the limits of the statistical approach it would allow 

one to obtain a more complete and realistic model for monoatomic and 

polyatomic solids at high pressures including the pressure dependence 

of the elastic coefficients,   dielectric tensor and degree of anisotropy; 

possible high pressure phase transformations could be better handled 

and eventually the electronic structure of different types of materials 

could also be studied over an extended density range by solving the 

Bloch problem with the 3-dimensional statistical crystal potential. 

Correlation effects can be introduced in the   T-F-D   model in the 

same approximate way as the exchange effect in the  T-F model,  namely, 

by adding to the energy expression a term arising from the correlation 

energy of the locally free electron gas: 

corr   j ^ *  '   corr       J r 

This has been done by Gombas,  Lewis,  and Erma.    The resulting basic 

relation between p    and  V(r)  becomes quite involved,  and a straight- 

forward numerical treatment in the line of those applied to the  T-F-D 

model is almost prohibitive.    Also the value of this extension of the 

statistical method is very doubtful for it still leaves out completely 

the inhonnogeneity corrections* which can be at least of the same 

order as the Coulomb correlation one. 

A second direction along which profitable work on the statistical 

approach could be done presently is in obtaining meaningful extensions 

*     These are essentially kinetic energy correction terms that take 
partly into account the effect of potential (or electron density) gradients 
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of the T-F-D models; these should incorporate both inhomogeneity 

corrections and correlation effects in a consistent fashion--at least to 

the same order in a perturbation expansion--and should include a 
10 

practical computational scheme.    Various formal extensions   have been 

proposed in the last few years by several authors,   but little numerical 

work is available outside free atom calculations. 

These different schemes are being presently evaluated,   partly 

in conjunction with basic work on the statistical and generalized density 

operator theory,  and we shall eventually report later on their possible 

use in deriving improved equations of state for solids. 

! * 
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