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U. S. BOARD ON GEOGRAPHIC NAMES TRANSLITERATION SYSTEM

Block Italic Transliteration Block Italic Transliteration
Aa A a A, a P p P p R, r

£; 6 6I B, b Cc C c S, s
Ba Be V, v T T m T,t t
rr rF G, g Y y Y y U, u

A 7a D, d 0 4 0 46 F, f
E e E • Ye, ye; E, e* X x X x Kh, kh
)K K W A* Zh, zh Ul U V Ts, ts
3 3 3 Z, z 4 'i' V Ch, ch
14 I,Hi 1U11W 1 Sh, sh

YA R 2 y, y IL W xl lu Shch, shch
K K K r K,k k• "
J1 7 A L, 1 M h W Y, y
MM M A M,m Mb b . '
H MH N, n - .9 1 E, c

Oo 00 0, o 1)0 10 Yu, yu
rl n 17 , P, p 57 j ri Ya, ya

R e initially, after vowels, and after -, b; e elsewhere.
¶en written as L in Russian, transliterate a' yl or 1.

The use of diacritical marks is preferred, but such marks
may e omi-t-ed w-en expediency ..ctates.
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FOLLQWING ARE THE CORRESPONDING RUSSIAN AND ENGLISH
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Russian English

sin sin
00 COS

tg tan
ctg cot
s6e leC

cosec dCo

sh minh
ch cosh
th tanh
cth coth
sch sech
coch cach

arc sin sin-I
arc coe co0-1
arc tg tan-1

arc ctg cot"1

arc sac Bec-1

arc coeso CoC-I

are ah sinh"I
aru 'h cosh-I1

arc th tank-I
arc cth coth- 1

arc sch sech- 1

arc cach cch-,

rot curl
Ig log
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ANALYSIS OF HEIGHT CHARACTERISTICS OF FUEL
TANKS OF FLIGHT VEHICLES WITH LIQUID-

PROPELLANT ENGINES

V. N. Novikov

Definitions of Cyrillic Items

mar bend - bending

6 tank - fuel tank

aHB eq - equivalent
T t (arbitrary designation)

p r (arbitrary designation)

Hp wcrit w critical

6o tc w tank compartment

Sw cy - cylindrical

T -f w fuel
m6o -it - intertank compartment

3H in - internal

m ex - extenial
-H bot - bottom

06 sh shell

CO av average

B- h - high

H m low - low pressure

ma - fv- flight vehicle

FM cm

norxp - reinf = reinforced
CTp - str - stringer

np - red - reduced

0oM - sk- skin



The ideal design weight of flight vehicles with liquid-propellant

rocket engines in many respects is detrrmined by the perfection of the

propulsion syatemq, whose weight can constitute up to 50-80% oT the

total design weight of the vehicle.

Therefore, in the designing of assemblies of propulsion systems,

including fuel tanks, it is necessary to correctly select their main

parameters, which affect the flight, weight, and economic character-

istics of the flight vehicle.

Fuel tanks serve for distribution of components of liquid fuelj

they are usually a structural part of flight vehicle bodies, and are

subjected to the influence of external forces, and also forces caused

by the pressure feed of the tanks, whose magnitude is determined by

the operating conditions of the system of fuel feed from the tanks to

the engine.

I. Analysis of the State of Strain of
Cylindrical Tank Shells

The complex influence of all forces on tanks can lead to a differ-

ent character of loss of the carrying capacity of tank shells (walls).

Tnese cases are characterized either by conditions of strength of the

shell, or by losses in stability, which leads to an essential dis-

tinction in the methods of strength analysis of a tank and the methods

which ensure it.

We shall determine the stresses existing in the shell of a cylin-

drical tank which is loaded simultaneously by axial forces (N),

bending moment (Mbend). and internal pressure (Ptank), using the

membrane theory of shells.

Meridional stresses with small relative thickness of shell are
p6 D0 4,V N

2
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and annular stressesi are
' iU- -^

Annular stresses in a shell, which is loaded by excess internal

pressure, are always positive, i±e., a > 0, and the merldional

stresses, depending upon the magnitude and sign of bending moment,

axial force, and internal pressure, can be both positive and negative.

A. If am < 0, the main stresses will be

Then the equivalent stress, according to the theory of the largest

tangentiLl stresses, is determineds

4O- 4 + + p*D (3)
SD% a 44

Equating this rated stress to a limited value, equal to at

Ct
(ca0 2 or aO. 3 ), or to a permissible value t-- (where f is the safety

factor), which is selected according to certain considerations, and

designating it conditionally as ar, we find the relative thickness of

the shell:
• i--' > ' • +" AM (4

at (T +yso 4,)

Introducing the parameter of loading, which characterizes the

necessary relative thickness of the shell, and is determined by the

external loads,

' f,.-ND (5)

we obtain:

. •>1+ •. P&(6)
4s.P

The maximum permissible pressure in the tanks with the selected

relative shell thickness and given loads, is



p- -(-..- --.V(6 -

The conditions of shell stability are determined by the limritinr

critical compression stre",ses (acrit)

,a. < kit:-, (8)

where k is the critical comnvression stress factor;

E is the elastic modulus [ km]-

cmý

Then, by equating (8) to meridlonal stress (i), we obtain

F 4M_ N p6 b

,-_ DD- 0 (9)

whence the necessary relative thickness of the tank shell, from the

conditions of stability, is determined by the following expression:

I A-I- L-) .(to)

We shall introduce a stability parameter which expresses the relation

of ultimate strength of the design material to the characteristic of

stability of the shell:

4-" (ii)
hE

Without calculation of the iiflurn'cc of internal pressure in the

tank on the critical stability factor k,: the stability parameter

undergoes a relatively small change (L2 . 0.006-0.008). By putting

(il) in (iC), we obtain:

By replacing the values of permissible tank pressure here with the

given shell thickness, according to (7), and solving the quadratic

equation, we find the minimum-permissible relative shell thickness,

which satisfies the conditions of strength and stabilityr

.- 4



__ - - - -- - - - -.. +- - ~ -- '.~ +" , , ' . .

V, + 13
Optimum pressure in the tank Pratnk' which ensures minimum shell

thickness, may be found after substitution of (1.3) into (7):

B. If cm > O, the main stresses will be

*I I-of, 43 g. 1-- , 0a- .

Equivalent stress is

whence, the necessary relative thickness will be:

1>.'- (15)

Between the calculated cases of A and B there exists a boundary which

corresponds to the equality to zero of meridional stresses:

From this condition we may find the limiting pressure in the tank,

above which the tank shell analysis is conducted from the conditions

of tensile strength:

p.'.. - ,,A,. (1.6)

Analysis of the obtained expressions for determination of rela-

tive shell thickness, depending upon the magnitude of loading by

eXtemral forces -nd the inter-ial pressure, makes it possible to divide

all tanks into three groups (Fig. 1.).

1) The first group (zone I) includes tanks whose shell analysis

is conducted from conditions of stability, while the necessary rela-

tive shell thickneas is determined by expression (1.2). Such tanks,

which are conditionally called tanks of "low" pressure, have the

relationships of parameters of loading and stability < 1., and

2
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pressure in the tank is les

__ T

- ~ than Ptarik' Since for the

majority of tanks of maneuvering

flight vehicles, the relation-

CA CO ship of parameters of loading

SZ4 and stability is within the

limits of O.1i < <- 0.5, thenX 30 0 30 , •2

WO practically all tanks of power

plants with turbo-pump supply

systems, for which the pressure

feed is Ptank < 5 atm(aba),

45V" pertain to tanks of "low"

ODD? pressure,
I

2) At tank pressures Ptank <

Fig. 1. < tak
< <P the relative

shell thickness is determined by expression (6) from conditions of

tensile strength. Tanks pertaining to zone II will be conditionally

called tanks of "medium" pressure.

3) For all tanks whose pressure exceeds Ptank (zone III), the

calculation of relative shell thickness is produced with equation (15)

from conditions of tensile strength. This group includes tanks of

"high" pressures, which usually operate with gas-displacement supply

systems with a pressure feed of Pt&nk > 25 atm(abs).

I l 6



2. Determination of Weight Dependences for
Cylindrical Fuel TanRs

The weight of fuel tanks depends on the volume of the fuel

placed in them, the external and internal loads, and also on the

geometric and design features of the tank.

For liquid-propellant rocket engines,

* operating on bi-propellants, they usually

employ cylindrical tanks, which are arranged

according to one of the diagrams represented

The volume of a tank compartment with
Fig. 2.i

elliptic bottoms, for which the values

of the semiaxes of an ellipsoid are taken a --- b M c - , will

be equal to
v,. (I1 + Aft17

where Xtc -c(iy is the elongation of the cylindrical part of the

tank compartment (or tankW)

We shall express the volume of the tank compartment by the weight

of the fuel placed in it

v.. -p.. o__..(i8)
71

wher-f is p. gxavty of fuel;
Vt0

1t we Vt is the coefficient which considers the free volumes
in the tanks and the volume of the intertank
compartment;

C(9)

V ank
Vtank kcharacterizes the volume of the air cushion in the
tf tank (tnk i.03-i.O8)i

i | 7



Pitc ý te expresses the volume of the tanký compartment with

tank respect to the volume of the ten-ks (FVi. 2).

For diagram I we haves •±tc " i +

For diagram II and IIIs Pitc "i°.

The surface area of a tank compartment with elliptic bottoms is

determined by the surfaces of the shells, the bottoms, and the inter-

tank compartment

Sa - C&(O,86 + 16, (20)

where jtt is the coefficient which considers the number of bottoms

and the diagram of the tank compartment.

For a single tank: tc , i 0.

For tank compartments of diagrams I and IIz ttc 2.0.

For diagram IIl: Jto + d (I + Xt),

where d is the diameter of the internal tank

, d--(..*TDu)

,yf(in) and 'yf(ex) are the specific gravities of components in
% -1 the internal and external tanks;

K Gf (ex) is the weight ratio of fuel components.

" Gf(in)

The weight of the fittings of tank compartment may be taken as pro-

portional to the weights of the bottoms and shells

Sa.o0. + a,, 0o , (21)

where abot and ash are the design factors of tank fittings, abot

1.6-2.0 and ash ' .15-1.25.

By expressing the surface of the tank compartment by its volume,

and substituting the specific gravity of the tank material (Ttank),

we shall determine the weight of the tank compartment according to the

S



following expressions

O~m - 12O0,Pm -o% 01 m+ oS6(2T "Il' (22)

The relative weight of the tank compartment Ctc, which is defined as

the ratio of the weight of the tank compartment to the weight of the

fuel in it, can be found from this expresssiont

12P, L6 o.•,.j. + ,162 -- 6(23)

Tanks that are used in vehicles with liquid-fuel rocket engines

ueually can carry either tanks of "low" pressure, for which the rela-

tive shell thickness is determined from (12), or tanks of "high"

pressure, for which the relative shell thickness is found through

expression (-5).

Total pressure in the tank Ptank is determined by the pressure

feed ptc and by the additional pressure Aptank that is created by the

liquid column in the tank in the presence of longitudinal overloads

nxP

where

Lx is the distance from the free surface of liquid in the tank.

The mean value of additional pressure in the tank, considering

that one cf the bottoms is subjecte-d to he inf÷0luence of the liquid

column, will be:

Ap6 1c 0,5 OT, 1T D.

The relative thickness of the elliptic bottoms, depending upon the

magnitude of internal pressure Ptank' is found by the formula:

"PS (25)

For determination of the relative weight of taxnks of "high"

9 1



pressure, upon substitution of the characteristic values of coeffi-

cients and thicknessen, we shall obtain the following expression:

V _ I~ l +O.4 (26)

The relative weight of tanks of "low" pressure, when the magnitudes

of bending moments and axial forces are unknown, may be found by the

approximate dependences which are used in design calculations.

Disregarding the influence uf irternal pressure on the magnitude

of meridional stresses of tanks of "low" pressure, for highly

maneuverable vehicles it is possible to consider that the parameter of

external loading (5) basically depends on the magnitude of bending

moment Mbendp which in turn depends on the lateral overload Mbend

f(n y). Then the approximate value of the loading parameter will be

A ! r (27)

where coefficient k 2 , with central location of tanks and with body

elongation of \k .. 10-14, it is possible to take k2 - 0.35-0.45, and

the relative shell thickness is

STYz . (28)
hI/ IE

For tanks of "low" pressure of rarely maneuvering vehicles, the

parameter of external loading basically depends on the axial compres-

sing force N, which is character•Ized bythtd of longitudinal

overload N - f(nx), i.e.,

a,- (29)

where coefficient k 3 depends on the body length Lk to the location

of tanks in the body and the average specific gravity of the vehicle

7fv:

k0 - T4 Los

10
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-A by .umtu..

Fig. 3a, b.

With the middle location of tanks in the body', body elongetion

of Xk iOoQi4, and average specific gravity of the vehicle f -

- i°5.0- -- we may take k 3  .O°Oi D, while the relative shell
cm

thickness will bet

T• ,L- (30)V Ae"£

The relative thickness of bottoms of tanks of "low" pressure is

usually determined not by strength _Se-Cjfj-fct4onz,, but by design and

fabrication factors, which allows uz to take the following dependence:

V -j 1,.O 3-. (31)

Then it is possible to write approximate formulas for determination of

relative weights of tank compartments of "low" pressure:

a) for high-maneuvering aircraft -

0.000. -C . (32)

b) for low-maneuvering aircraft -

= ,45 - + 1 (32')

The dependences represented in Fig. 3 show that the relative weights

- I1



of tank compartments weakly depend on elongations, whereby the most

profitable in the weight respect are tank diagrams I and II.

3. Analyels of the Application of Reinforced'SIheIIsIn a-F• i• F[ -s ' 7eh~ici1.es -

The operating conditions of tanks of "low" pressure show that the

stability of shells may be increased either by the corresponding

excess pressure in the tank, by reinforcing the shell with special

profiles of the longitudinal structural assembly.

In the investigation of the stability of a cylindrical shell

with a sufficientl.y closely-spaced structural assembly, it is possible

to replace the reinforced shell with a smooth orthotropic shell whose

relative thickness is

(33)

The thickness of the unreinforced shell, in the presence of internal

pressure, will be determined by formula (13). By equating the expres-

sions of necessary shell thicknesses, we shall find the boundary

condition which characterizes the equivalence of reinforced (ortho-

tropic) and unreinforced shellsi

t =(34)

Tnus, if 1- K I, in the weight respect it would be more profitable
2

to use the reinfoi-ced shell; if > i, the unreinforced shell. For

determination of the expediency of application of reinforced and

unreinforced shells with respect to the magnitude of necessary areas

of body sections, for each of them we shall find the destroying

moments ,Mnd in given sections of the body in the presence of axial"%bend

forces (N).

I I I'I I I I I I I I2



During the calculation of reinforced shells we can consider two

cases: the first one corresponds to the limiting moment at which

stability is lost by the most extreme stringer, and all others work

within the limits of elasticityl the second case occurs when in the

extreme stringer the stresses reach their limiting-permissible values.

If one considers that the skin is reinforced by stringers in

the calculations it is Joined to n stringers, then the total area of

the reinforced shell will be

P,O- •(Fn + Ops) - nP,, ( 35 )

where bred is the reduced skin width

IE--

For the first calculating case we shall obtain the expression which

characterizes the limit moment:

Af_ -- 0,25D (a., nF, -- N). ( 36 )

If we introduce the relative parameters Ai and A2 and take the

irDdistance between stringers b 0 - and also .,tr - ar, we shall

obtain the condition of existence of a stable reinforced design within

the limits of elastic deformations

J•" •+ •,(37)

from which we can find the required ti"ckness of the reinforced shell.

For the second case of calculation of a tank according to limiting

carrying capacity, we shall determine the expression for total limit

moment perceived by the reinforced skin

At.-0,25D n((Fv +b.P 8) + ib0 -. b)aopj-NJ (38)

or, by expressing through the relative parameters, we shall obtain the

13



condition of existence of a reinforced design according to limiting

carrying capacity:

p 4EM ~+ b p+ I bo - bI)(39)

As can be seen from these equations, the total carrying capacity

of a reinforced cylindrical shell depends not only on the relation

of parameters, but also on the distribution of the shell material

between the skin and the stringer assembly.

Gravimetric analysis of reinforced shells shows:

a) that a gain in weight from the application of reinforced

cylindrical shells, as opposed to unreinforced shells, may be only

when =< i. Thus, for small-loaded designs of tanks < 0.25),

22

the maximum gain will constitute 25-30%. Figures 4 and 5 show the

relation of the necessary thickness

of a reinforced shell to an unrein-

forced one, according to limiting

carrying capacity, whereby with the

........ decrease of the specific load

the portion of the stringer assembly,

Wd which together with the skin makes up

Fig. 4 the necessary area of cross

section of the shell, should be increased;

b) that a gain in weight of the reinforced shell can also be

obtained in the presence of excess pressures in the tanks. For

Ai

instance, when - 0.25 (Fig. 5), theoretically up to pressures of

2II I14



Ptnk 40 [i- n there is a gain in weight of reinforced designs.

However, It is practically Im,•sIjbIt

to ensure uniform loading of vrtfilft

-S ["-" of the structural assembly and 1iki,.

A 3- 0 Moreover, during intonsu wayr rul-mat1,iji,

0 _ _the skin itself additionally Julat tlo,

0 profiles of the structural ametumbly

and promotes their destructitl, wli1.li

- -causes a premature local 104@ Li
473 im dI

Fig. 5. stability.

The obtained concluaouniu u( t(it

application of different diagrams and designs of tank compartnit-nW

are not final, since exact recommendations can be made only with Ilia

calculation of the design, fabrication, and economic factors. Pu' thlis

analysis allows .he designer to conduct a weight appraisal of tank

compartments taking into account the conditions of their work oti a

vehicle, to outline the means by which it would be expedient tu

investigate the designs of tanks, and to made a number of pra(tival

recommendations for the designing of tank compartments and the deter-

mination of weight dependences for them.
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111 4e. l- 1I, I Jl 1 i* I WP IA1.M OF IPI'FNDING OF
Illi ., l 104!:11 -I 1 AIE:4 ANI SH11LIL$S PY

M144 ;1 0) A I 1,AiIAIiPMENI' FUNCTION

A, M, J A I vditi ltuizl

i - U' fI.'ller

',,l W o *lt ww# fIAt li, (ii-. I.ii thi'ce-layered (sandwich-type)

PLi eiliiU•.i i I I 1 * tiuI f w Iti I w ý ýt ur c layers and filler it is

l. ' I-• �,�p 1 m ,l vtivtiiJit V'uyi,'tlon cp, with whose help the

•. i • I, ' , -ii •' (10'), (1.4) &rQ automatically satisfied.

I. el ;,'1 ¶ i •' , ii , r,,ItIi ul' h,.nd 1ra of three-layered

I1 I t is, 1,ite i I i , , a of a lhtcral load, we obtain a

* L, *%'~ "¶I 1 ,,I I LA Im ti IP./ q8  ] disr'cgarding the flexural rigidity

.- r- i's I ylie¥ , th'. sIsving tuquation of bending of a three-

i .vKrt- I is.'- w1.11 light 1lbr (ioincides in form with the equation

,4 L-,-iJt,•I ut a Pflp, Iii-iky'Zr slate. We shall show the analogy of

. ji, 9' in th,.- m•ving uquation of three-layered plates with

J.L. e.-t, on w In the' theory of mingle-layer plates, as a consequence

of whii1, 0 the formulas for calculation of shearing stresses and moments

of three-lay#ered plates have the same form as the respective formulas

for Jtingle-layer plates.

wý 16



Thus, the introduction of function q' reduces the calculation of

a threerlayer plate to the calculation of a single-layer plate. The I
solution for deflection w of a three-layer plate is obtained in the

form of the sum of two parts, one of which expresses bending of the

carrying layers, and the second one expresses bending of the filler.

The following problems are solved as examples: bending of a freely

supported rectangular plate with light filler and a circular plate with
4

stiffener under the action of a transverse load. The proposed method

allows us to solve those problems whose boundary conditions can be

satisfied by the introduction of function q. When the problem is not 4
symmetric, usually its solution is difficult. Function q will make

it possible to significantly decrease the volume of calculations and

reduce the solution to calculating formulas. Finally, we shall note

that if the total thickness of a three-layer pl&te with carrier

layers of constant thickness changes according to the law H = kq,

where k is the proportionality factor, then in this case it is also

possible to automatically satisfy the equation of moments, express

deflection through p, and obtain a solving equation for q.

Designations

a, • - curvilinear coordinates of the middle
surface of the filler,

A A --
A T-. para-eterej

Ri, R2 -- main radii of curvature of middle
surface of filler,

UIP, vI u", v"9- movement of point of middle surface
correspondingly of the upper and
lower carrier layers,

w - deflection, not depending on
coordinate z,

S 7.. = 
.. ±

.Ai-"17 4L0~~)'0A



h, t - thicknesses of filler and carrier
laye r,

A7+ - A +I"A+a ~

Tj, To, Tj 2 , T", T" T 2 - membrane forces correspondingly for
the upper and lower carrier layers,

mi, m2 , mi 2 - bending and twisting moments with
respect to the middle surface of
filler,

E, E' - elastic x.,duli of filler and carrier
laye r,

V, vi - Poisson coefficients for filler and
carrier layer,

G", G3 - shear moduli of carrier layer and
filler,

81- _' D= go . +=
- 1- "•2 (1 - ,,)

"D= -f2 -,E -( + 9Y(

BI=O=A. G 1,-0,

6
1.2 signifies cyclic permutation.

i. Introduction of the Disp'>.cement
Function for a Three-Iaye-r -

Shel---- LWM igt Fi lr

The system of differential equations of equilibrium of a three-

layer shell with light filler of symmetric structure has the following

form [i], [2], [3]s

' o AA4w'± + T,+ T2 - G3 [A;-.,)( +
*2 ~

7. + A,)(I-'] - pAA 1 (1.2)

" ~ ~ (n " 0-. 0+1o(-., o (1.3)
AA3

S. -2 + G,)-. ( 3+•' 0'(•-uJ-o, (1.,4)

T,-T+Tr, Tr- 2 -r + r, T12 -- + T,
where

. L,(T) ((TA,)-,' TA+ +1 ) .,,-1, (1.2).

18



(1.1) is the equation of equilibrium for membrane forces, (1.2) is

the equation of bending, (1.3) and (1.4) are the equations of moments.

Assuming that the deflection w does not depend on z, accordinng -

to Hooke's law, we obtain
RIO +tP + , +_ I # i ---

2 ITLaA s4 A.0 OF, AA.A &
"- ' ,- - A +4,• A.,A, A,A, "

consequently,

is (A)- (I • ),4 W)- L, . 4)

We shall try to satisfy the equations of moments with the help of

function 9, considering that
,-,• .,-' •.(1.5)

A~ As 0*

After transformations, equations (1.3) and (1.4) are reduced to the

form of

It I !!A
- S 0. (1.6)

i -- i -- I

According to [M], the expression in the brackets constitutes a

Gaussian curvature of surface; therefore, equations (1.6) and (1.7)

will contain the main curvatures

-20 A . - AZ ((1.8)

where f -•W .
21 , RARS

Thus, if the main curvatures of the shell is constant, then, by

integrating (1.8), for deflection w, we shall obtain:
W -V- D T~p --9(1.9)

'9



Formula (1.9) will be valid for cylindrical, conical, and spherical

Let us consider the general case of a sloping shell, for which

) 2 - e << i, where L is a characteristic dimension of the shell,

R is the smallest radius of curvature, and e is the error allowed,

as compared to unity.

Formula (1.9) will also take place in this case, if f << 1.

2. Bending of Three-Layer Plates with Light Filler

Let us consider small deflections of three-layer plates with a

light filler. If we disregard the flexural rigidity of the carrier

layers D', then with the help of (1.9) the equation of bending (1.2)

is biharmonic with the right side:

V, -- (2.1)
B' (k + t)y

The formulas for shear stresses and moments of a three-layer plate

coincide in form with the corresponding formulas of a single-layer

plate:

N~mmL o'y) 12.

We shall write the boundary conditions which should be satisfied by

function T:

a) if edge x a is secured, then

b) a freely supported edge will be

E'A +2,0,0

c) a free edge will be

Z0 -v x

20



V

As an example we shall consider the bending of a freely supported T

rectangular plate under the action of a lateral load. The boundary

conditions will be satisfied if function T is taken in the form of

q- asin .x. sin Py,
m,*m3* , &

where -

Let us assume that the load p is constant. Then, expanding one In

a double Fourier series

.L6 Oin a's sin PO,

I.&$|

and using equation (2.1), we finds
a,,m

•',r (A + *)'ms (a. + •=-)"

According to formula (i.9), deflectior w will be written as

- A, sin -xx. sin ly,

where 5.
(2.2)As. CF,,S,,(as... ,.%,rlp *(X + ,,w.).

Equation (2.2) and the correspondi-ig formula of [5] was performed for

X = 0.5. The results of calculations turned out to be very close.

3.Bendln of Three-La er Plates ofS...Variable- Thilckne's's

Let us consider a three-layer plate with carrier layers of

constant thickness t. If the equation of moments (1.3), which was

written for such a plate, is differentiated with respect to y, and

equation (1.4), with respect to x, and it is subtracted, we will

obtain:

•'~ ~ ~~B (Ie) () -;--- VI Oy "a"

If the total thickness of the plate changes according to the law

11 - ktp, where k is the proportionality factor, equation (3A) will be

21



satisfied with the help of function T, by considering that

UT•

Instead of (1.9), for deflection w we will have:

For simplicity we shall consider cylindrical bending of a plate, so

that T - 9(x). The equation of bending takes on the form of

y y,pxx + 39f + 5?iz jx + 39?2%, _ (.3

where

Let us assume that the edges of the plates are secured, i.e.,

w 0.,,- Elx=ia=O.

The boundary conditions will be satisfied if function T is taken in

the form of

Consequently, in this case the plate thickness changes according

to the following law:

ii aL - Jx21

By calculating coefficient a 0 according to Galerkin's method, we shall

determine the deflection from formula (3.2)

"=' ~ ~ 20hoG , 1- - yp-4=t :l

where h- is the mAx-Tnitm thickness of the p-lte. Consequently t"-

values of mpximum deflection will be:

w -P- + pas

22



4. Introduction of the Displacement

Plate with a Stiffener

In this case the dependence between the deflection and the

displacement function q is the following:

(av'-q,O - -- (a.V' + UP) W .+ C =O. (4.1)

Here Hereat + (A +t + ((+tt 4 +3 D.

In formula (4.1) C is an arbitrary constant. If the deflections are

small, the equation of bending [3], which is expressed by y and w,

will have the form of

ia? + asvx + Xl-o, (4.2)

where

y'X-p, (4.3)
104- + L--- A as -2D- D.

t A
From (4.2), we find

v' (a41 + SSW) + x (x-y, A(4.2)

where f(x, y) is a harmonic function.

Function X satisfies Poisson equation (4,1), and the boundary

conditions for it are established in the course of solution of the

problem.

Consequently, for the solution of problems of bending, we have

two equations (4.1) and (4.21) with respect to unknowns w and V, from

which we obtain:

_ 7,,r + _-A _ _ f-t/- + C, (4.4 )

Constant C characterizes rigid movement, and therefore it can be

rejected. Putting (4.4) in the equation of bending, we arrive at the

equation for determination of Ti

8' ,+go, v,, + ,a4 as)v, +p +y'p -O. (4.5)

I I I I I I I I I I I I I3



5. Bending of a Three-Layer Circular
Plate with a Stiffener

Below we shall solve the problem of bending of a circular plate

with a stiffener under action of constant external pressure with the

Lelp of equations (4,4) and (4.5). If the plate is secured all over

its contour, the boundary condition for T will be:

-'÷'°'+" I . "d3aJ+, , 2 ,o O ,

From formulas (L. 3 ) and (4.4) and the given boundary conditions,

we find.ý

f - 0. X -= r-a
4

introdu.iciig a system of substitutions,
= *,a + aea
31 ~s2 - a4 - 15

A-

we reduce (4.5) to a Bessel equation:

±L +1 L++ 0.(5.2)"a A dA S:

The solution for 9 will be obtained in the form of

---< 1. (, )_ _ - ,,__+ + c. (5.3)

w'Lere 10 is a Bessel function of the first kind,

I/, so--
C1 , C2 , C3 are arbitrary integration constants.

By determininrg CI. C2. C_ from condition.- 5 1j, we find the

value Df maximum plate deflection from equaion (4.4)

- s , (As), 1, I, (o).
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CALCULATION OF THE NONAXIALLY SYMMETRIC STATE OF
STRAIN OF CYLINDRICAL SHELLS TAKING INTO ACCOUNT

THE ELASTICITY OF THE REINFORCING FRAMES

Yu. I. Kaplan

Definitions of Cyrillic Items

gon = sec = necondarV-

m - f - frame

- crit - critical

In this article, by the methods of [I], we obtain analogous

results for nonaxially symmetric strain. All assumptions concerning

the work of frames and the approach to the solution of problems are

presented in the mentioned article. The basic designations are also

taken from it.
I

As a functional unknown in the solution of the problem, we take

the total moments In long ......rJ. ections by the energetic method:
-C

nr m4(x) Cos n?. WI

Then, under certain assumptions (EC - 0, Ex T O, ice., with

inextensibility of the outline of the cross section and the absence

of shear strain in the middle surface), all internal forces can be

expressed through the introduced ut.nknowns, The stresses in cross



sections are

o .X= a0m. -COS.,AT.,(2)

where

•D. R1 (H2--I

Df is the cylindrical rigidity of the shell wall. The remaining

internal forces are easily expressed through 4n and their derivatives,

but they do not make an essential contribution to strain energy, which

for a section of the shell has the following form:

2 +Ap]dsI dx,+ 1,.,. (4)
.JjJ 2DO 2

Intermediate frames are loadtd by the drop of teagent forces that;

are acting in a given section of the shell:

0) -
-am K (x, + 0)-• (x,- o)11 Sf,,. (s) ds.. 5

6

These forces produce bending of the frame by a load

AM.. In (x(+O)--P. (-,-O~l.m. (, (6)

where the moments from the tanigent flow

I. (8)-fd. (s) ds M E sin (7)

will be:

,. (S)- cos iS "IF (8)

In (8) we designate:

Consequently, formula (4) take3 on the form:

f D(x) ce ip T +-k[ (x)f.(s)f+ A sx+

x,+ 0)- t-t,-Oj ) AjIdx
2 PJ-

-r%•. f!•, t ), ,, + F.l.:1,, -K (x . (10)

ZI ( +)Ix- I



Here Ifr is the moment of inertia of the frame with coordinate x - xr.

Since (10 in general notation c... Anc"d•e• withe natural

boundary conditions of the mixed variational problem will also be the

same as

-o .40 (X -x,). (il)

The Euler equation in this case reduces to a differential equation

+ .x, (.'--%+B . (12)

or

v + 0.4 :. + B,-. 0(.3)

The solution of the last equation is (12)*,

In case of rigid intermediate frames, the constants Dr are deter-

mined from these conditions:

,(x -- a,-,) -0-. (i14 )

With elastic frames, these constants are found from condition (ii).

6r
For determination of we express ?n" by analogy with [i], in the

n

formula for energy (10) through ?P from the equation of equilibrium

of moments in the longitudinal section of the shell in its additional

state (m. are balanced by the moments which appear due to the tangent

forces)

•o(X) Cos at + VV (X) M" (a) - 0 (15)
or, using (8), Vv + 04(X) _ 0 (15)•.: x) •. .(x-o.(16)
whenc e

#6(X)- W -y•*. (17)
a C

6r
Putting (17) in (10), and calculating - we have:

"n
w

')Asterisks note formulas of [1].

i ,1T .. ... i .. 1 i , 8



A

D- - ..'-.%. ,• 4 .,. (18)

The second term in (ii) will be

• --z-•.,X, 1. 0) -- " (X, -- ON .,SR. (49)
Of 10 LY

so that the boundary condition finally takes on the form:

,;" (X,, - 0) -. 1 0:•• ) + S."- 04 +. (X, _ .,,. (20) !

Using now (12)*, (ii)*, and (20), we obtain the sought constant

I LiD,- - -O,--•"<- "4'( (21) !

and the general solution of (12)*z

f.(x)- A0,0 (x) + B161 (x) + C,02 (x) + D*,e(x) + e'(x)I-

( 4k - ,,) , (x - a,,). (22)
"*� z=O)

Further solution depends on the cha-acter of the considered

problem, which is expressed by equation (13).

The system of equations for the determination of the constants

completely coincides with (21)* and ( 2 2 )*,L) only, naturally, formula

(23)* looks otherwiset

0 Z 4- S'4'--. • (23)

i. Transverme _Bending of Cylindrical Shells

In case of transverse binding, the energy of the unit of length

of the shell in its secondary state in

')In formula (22)* one term is left out and there is an error

within the limits of summation,. The corrected formula has the form:

A=M O (L) - E .,, (_,..) e, (.-.._+ £8 (..
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r vy (x) -A. (x)) cos n,?I + ýI71aLF.~~js4I2D, rLAY +-()f, s .d.(2

where An(x) are the coefficients of expansion in a series of the

moments acting in the base system, Therefore, in equation (13)

B, 4.e- 4kA,(x), (25)

and it takes on the form:

J." + 4k1. 4k04A. (x). (26)

%(jx) in this case constitute Krylov functions for the calculation

of beams on an elastic support. The particular solution will be:

S(x•) --- 4k. •A. (c) 103(x - --) d. (27)

Therefore, general solution (22) will be written:

13(x) - A1I' (x) + BT0 (x) + C10 2 (x) + D,03 (x) +
S~a

+ 4k. A.(z)O (x - -r) d-. -- 4k. !..I,3(x=a,_,)4 3 (x-- a,-,). (28)
D.

2. The Asymmetric Form of Stability Loss
Under th'eAct-ion o? Axial For'cees

In this case,

ArdV''Pk

r df, (-x- n)2'; . (29 )

where wn and vn correspondingly are the normal and tangent shifts

in the plane of cross section.

Then

(X' n ), (3o)

and equation (13) takes on the form of

f" +4. 2v. + 4k4+.0, (31)

30



where

, '-, (132)

It completely coincides in structure with (33)* and is therefore

solved in the same functions as the latter. These functions and

their properties are shown in formulas (34)* and (38)*, and Table I

[i], only, naturally, instead of -y and _Y2, there will appear -in and

2n

Tin 2- , -- Wk., (33)

' vl.+ /'v( (34),.- j/ f -: 21V ,. -+. (35)

As a result, general solution (22) is thus written:

(x) -A00 (x) + B1e, (x) + C,1 , (x) + D,14 3 (x) fj

0n4+- a,_3 (X -a,-,)- (36)

3. Stability Under the Action of
Uniform Transverse Pressure

In this case

A, --- 'p - (37)2'
where

A (W,, P. c, W ,"O n+. (38)

Here p crit is radial pressure, under whose action the shell loses its

stability.

Then

B, - (39)

and equation (13) can be represented as

s. - 4..-o, (40)

-3'



where

o..(*- P'P •l (41)

Equation (40) coincides in str~acture with the equation that

describes free oscillations of rods, and it is solved in Krylov

functions Di(X) of the first kind. The general expression of (22) w

will bet

f.(x)-A,3 00 (x) + B,1 ,O(x) + CP 2(x) + D!03 (x)I -

(X a-.)&3, (X-a,-.) (42)

4. Stability During the Joint Action of
Uniform Transverse Pressure and

Axial Compresslon

This problem essentially is a combination of the preceding

solutions. Here, besides (37), it is necessary to also add the

potential of external forces, which is expressed by (29). Thus,

B also will be represented by the sum of (39) and (30), as a result

of which equation (13) takes on the form of

where (43) TI

2ER(and

.R& pa ,;.2-11 I (45)

Function i(x) in this case will be written as

00' (X) (P•,. Cos ;w,: + PL ca ,%.x).

91W - Cos PUX - Ch PIX,

03(x T P,.sin Px - P. sh A1.x).

Here

32



lk,,v (47) -
*,-- __+. _+ , .

+ V 0.4+v y+ (48)
(W8

The derivatives from functions (46) are shown in the table,

where the following designations are introduced:

' s.h•,.x). (50)

W.I,-,sinF ;,x + ,h sb
I L

Tablie

%(x)) I -LX(X

_____________ _____ :i::) I (~X)
""(X) () I I 1 1 3 -h

The general expression of (22) will bet

Cr.) - A,,*(k) + B16, (x) + C,1* (x) + D13*(x)' +

+ - - (5.(X .- -). (91)

Conclusion

With any number of elastic intermediate frames, the problem is

educed to no more than four constants, and practically, to two

(since the extreme frames are almost always sufficiently powerful),

for which the system of equations is written in general form. In

-- 33 -w



the example of different problems we show the application of the

presented mv-ethod for obtaining a general solution.
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VIBRATIONS OF AN ANISOTROPIC PLATE UNDER A
CONTINUOUSLY MOVING DISTRIBUTED LOAD

A. P. Kovrevskiy

Definition of CZrillic Item

pawu - dim w dimensiorless

The problem of vibrations of elastic bodies during the
movement of a flow of mass through their surface arises in
the study of different radiator systems, and also in examin-
ing the vibrations of bodies of liquid-fuel rocket engines
taking into account the liquid coolant between walls.

Here we study the free vibrations of orthotropic plates
which carry a mass flow evenly distributed along their
surface. We consider that there are no frictional forces
between the flow and the plate. The trajectory of flow
repeats the bending mode of vibrations of the plate.

Structurally, such a system may be accomplished by passing
a fluid flow between the layers of a three-layer plate with
a corrugation filler. In a certain range of frequencies,
the three-layer plate may be replaced by a one-layer
orthotropic plate, which is equivalent to it in the sense
of flexural rigidity; however, questions of such reduction
are not considered here.

This work is an extension of the known problem of free
vibrations of pipelines to vibrations of plates.

A similar problem concerning the free vibrations of an
isotropic plate under the action of an evenly distributed
moving load was set up by I. I. Gol'denblat [i]; however,
the author did not give its solution, as he limited himself
to general instructions about the method of solution.



§ 1. The equation of free vibrations of an orthotropic rectan-

gular plate of constant thickness is written in the form [2]:

+ + 2 n" (i)

Here we designate:

t (e, no, T) is the defLection of the middle layer of the
plate,

, Tip T are the coordinates and measured time,

m. is the density of the pla .e material per unit of
surfacee,

10 Zs D,ý ýAaD. L"A•l + 2 -OAO, -12(11-%,jv,y) ' 2 12 (1 - "-v.) 12 (1 -"'sv) 1

G E, Ex, I i, the shear modulus in plane e and the elastic
moduli in the direction of axes ý and n,
correspondingly,

w, Vy are the Poisson ratios of the plate material,

Zx, ZI are the dimensions of the plate in the plan alongY axe s j and Tip

h is the thickness of the plate.

bet us assume that the flow moves in the direction of axis E with

consttant speed v (Fig. 1). Flow density per unit of surface is

designated as p.

-, During vibrations of the plate the

Strajectory of flow is distorted. In the

- direction of flow on the plate there

will act two additional inertial forces:
Fi g, i. .2 t

centrifugal pv2 and Cu2riou 2pv

Furthezinore, In the expression of the d'Alembert force of

fnertAa, the mass of the plate iu must be increased by p(m , m + p).

Ncw the e'juation of free vibrations of the plate; taki-rg Into
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account the flowing mass, will be written by the following form:

• •++ - w , . ý •2 a •

+ 2PV-1L + F.V•-- + M ° (

We shall introduce dimensionless magnitudes:
X-L'L Y. 'I

t., ,. . 1 = , M =2 .

ey -- *, j = -j!!- .

4p
In the shown designations, equation (2) takes on the formi

't the shown+ dsnai+ n e-a + ta - on + - . (3)

The system described by the given equation is nonconservative.

If the Corioli• force is small, as compared to the :=emaining terms,

then equation (.3) coincicdes with the equation of vibrations of a

plate that is compressed by a longitudinal force. In systems of siuch

type, unstable conditions. are pos-,ible.

Finding of an. exact solution of equation (3) is hampered--

therefore, we shall use Galerkints method. The problem consists of

finding the- function w(x, y, t), which satisfies the variational

equation:

The sought solution is presented in the form of a double series

&- P-1 .

where am(t) are variable parameters. In such a form, Gal-rkln's method

was applied in t"he solution of certain problems concerning the flutter

3?I_



of panels [5]. As the basic functions Xm(x) and Yn(y), it is

convenient to take beam functions, since they immediately atisfyr

the boundary conditions. Substitution of (5) in (4) gives:

±- d, , • ,- id 1 d0X._ v + A.-• m +
eIfj i ( INKY V d.%; dy' dyl dx. /
0 U 0-I a[-I __o

dxg, di dl-'
+Y.vt a. -. + dt . , , r ,dxdy •O. (6)

The property of orthogonality of beam functions with respect to

derivatives of the zero and fourth orders is well known. Subsequently,

we shall consider only plates that are freely supported on their

edges y - 0 and y - Z. For such cases, functions Yn(y) are orthogonal

also with respect to derivatives of the second order.

From the properties of the beam functions, it also follows that

d'XJE d' Y
=a4 X. Ti.=~

,. " - "dy'

where am' ,n are eigenvalues of the boundary value problem of vibra-

tions of beams with boundary conditions that correspcid to the condi-

tions of supporting the plate on its edges x 0, x - i and y = 0,

y Z.

Inasmuch as the edges y - 0 and y = I of the considered plates

are freely supported, functions Yn(y) must be taken in the form-

Considering the shown properties of beam functions, from (6) we

will have:

(± d X ) yx. x 2 dxdy i (d, j itr. Y.dy +

-a dy Xdx a dx'*d 4 I Yd.dy±+Jj dXi t EIX
e B•I. @ @U ni1

C
S' " (8)

a8



During free vibrations of a plate, along axis y exactly n hslf-

waves are a .1Threfore, insteadL of the entire sum Z Y , it isn�ln

possible to coneider only one n-th term. If we still consider that

bai are arbitrary, thea from (8) 've obtain finally a system of ordi-

nary differential equations with const-.nt coefficients for the

determination of am(t)l

A ,i" + BA -, f + I, 2,3,.. (9)3j

Here

I. " 41-. 1 fXdx, (10)A~j d)PXXýx + =-2 ~~Xdx_ -

C', +XaXjdX. '(12)

Obviously, in virtue of the orthogonality of beam functions,

Cmi. 0 when rn i. The solution of sytem (9) reduces to the deter-

inination of the roots of the deterninantý

All + rBtl + r'CI1  A21 + rA't!Ail + M1,, An• + rB., + rsCm, ... [ 01 CO( })

f I.. . S5.

The roots of the dete.mtnnnt iii general arxt complex, i.e.,

S- . + . .. Th..e immagf, . ry part of th e rooti corresponds to the

dimensionless frequency of vibrationtj the negative real part con-

stltutes the logarithmic damping decrement. If the real part of

ellther root io positive, the vibrations are unstable. The dimens.ional

frequencies n'ond the logarithmic danpinf decrement are connected with

corresponding aimcnsionless magriitudeu by means of the following

relationships:

I I I I I I i I I I I9



§ 2. We shall now define coefficients AMi, Bmi, and C i for

certain simple forms of edge fastenings.

A. A plate which is freely supported around its entire outline:

A. 4_ + Q.4 L -- (-d : ) --- M. (15)
1 ~'2u 4 ~ 4

1 0 a-rn,

a, .4 (- .. 1) - (•--m) cos (,, -+-a) -(i + m) cosQ(-m) :1. i#÷ m. (16 )

0, m, (17)

cm- ITVS .

B, The plate edges y w 0, y =L are freely supported,. edge

x 0 C is fixed, edge x = i is free:

A=.w ~+ dr.) C.W+ (a- d3a-ýJ' .Kx (18

- X= Xjdx@ (19)

C0 .X..Xdx. (20)

The values of the In egrals In expre+°on- - () nd()

given in [~.We shall write out some of thei~r values.

Table

It 22. 121 21

I k- .dA .I 1.12 6, 1,016

, -tC 1.50 j12 .815, 2.M 2 ,M
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The value of integral (20) when ri - i will be determined by the

value of function Xi on edge x - i, and will be:

X to. (21)

The last two values are taken from the book by V. Z. Vlasov [4].

§ 3. We shall perform certain calculations for an illustration

of the influence of the rate of flow on the natural frequencies of

a plate.

The calculations will be conducted in second approximation.

From determinant (13) we obtain in this case the following character-

istic equation:

C,,C,,r 4 + (C,"1 + CH8•) r + (Cf,,A1 + C,1A2 + e,•,, - Bt821) r' +
+ (A, + a2 " -- A, 2 ,, -A 2 18,2)r + A,,Av - AA,1A ý0. (22)

By examining the coefficients of equation (22), it is possible

to note that case A equation (22) will be biquadratic, and i:n. case

B it constitutes a full polynomial of the fourth degree.

A more attentive study of the following approximations allows

us to conclude that in cases when the edges of the plate x - 0, x = i

are secured from transverse shifts, the characteristic equation will

have only even powers of r. In the range of parameters I. ind k, which

present practical interest, the squares of the roots of this equation

are real numbers. The power of equation is equal to 2p, where p is

the selected number of approximations. If, however, the plate has a

free edge in a direction transverse to the flow, the characteristic

equation is a full polynomial of the powex 2p.

In the first case the roots of the equation are either purely

imaginary, or real, i.e., there occur vibrations without damping

or the plate will lose its stability by exponential law.
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-. In the second case the roots of the

characteristic equation are complex, i.e.,

0 I there will take place vibrator conditions

-... .. with damping (with a negative real part of

S- . - the roots) or with a growth of the amplitudes

4. . in time (with a positive real part).

0 -- - It is necessary to consider that in a

.... - 1 real system there always exists energy dissi-

--- @ t• RD-".• pation in the material and in the supports,

Yig. 2. which is not considered here.

Figures 2 and show the dependences of the lowest roots of

equation (22) on the parameter of speed k for cases A and B, corre-

spondingly. The calculations were conducted

S" --- with the following values of parametert:

d 2 u 0.0i, d3 " O.is, Z 0.5, k - 1.

Let us note that the results of calcu-

lations in third approximation insignifi-

cantly improve the results of second

6: 1approximation. For instance, for a plate

that is freely supported around its entire

0 outline, when n i and . - 5, from the

/?4t/ second approxii•ation we have: w 7.88.

2 The third approximation gives: w - 7.59.

% % The divergence constitutes a total of 3.9%

a •§ 4. On the basis of what has been

Fig. 3. said, we can ma1e the following conclusions.

1. The influence of a mass flow on the dimensionleEs natural

frequencies of a plate is determined by two parameters p. and k.
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Inasmuch as k depends on the mass ratio of the fluid and plate, i.e.,

for th giver" St'rcture it is a constant factor, then all further

conclusions will pertain only to the change of parameter i.

2. The natural frequency of plates, which do not have free

edges in a direction transverse to the flow, decreases with the

increase of parameter 4.

With respect to plates having a free edge, it is necessary to

note the following. Experiments in the s~udy of free vibrations of

pipelines allowed us to establish that the natural frequency of

cantilever pipelines do not change (within the limits of accuracy of

the experiment) upon increasing the speed of the fluid flowing from

them, in spite of the predicted drop of natural frequency as calcu-

lated. Therefore, also for plates with a free edge it is not necessary

to expect a noticeable change of natural frequency with the increase

of the speed of flow. In any case this conclusion needs an experi-

mental check,,

Let us note also that in pipelines with both secured edges, the

change of natural 1'requency found in the experiments, with the increase

of the speed of flow, well agreed wIth the calculation data.

3. The mass flow renders a damping action on the vibration of

plates with a free edge in a direction transverse to the flow. The

magnitude of damping incraases with the increase of perameter i.

Upon the achievement of a certain value ýL, the damping increases so

much that the free vibrationr. become impossible (the frequency becomes

equal to zero). As shown by experiments with cantilever-secured

pipelines, the transition from the periodic motion of a pipe to

aperiodic (motion at zero frequency) with the increase of speed of

flow occurs at a convtant natural frequency of vibrations of the

system. Evidently, an analogous phenomenon also occurs in platea.
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if there is no free edge in the plate, there will be no damping

of vibrations.

4. A constant mass flow may cause a loss in the stability of a

plate. Using the terminology of V. V. Bolotin [4], this type of loss

of stability for plates with a free edge pertains to the "vibratory"

type. In the remaining plates there will occur a loss of stability

of the "static" type. The boundaries of the regions of stability

are established by means of the application of the Hurwitz method to

a characteristic equation of the form (22).

In view of the limited volume of this article, this part of the

work is not represented.
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EDGE EFFECT DURING THE JOINT ACTION OF AXIAL AND RADIAL
PRESSURE FOR ANISOTROPIC CIRCULAR CYLINDRICAL SHELLS

D. Ye. Lipovskiy

Defiritions of Cyrillic Items

S- init - initial

P - r - radial

n - e - elastic

- crit - critical

- up - upper

OPT - ort - orthotropic

mN - fr - frame

Kr/CM - kg/cm

This article considers the case of axially symmetric loading

of anisotropic circular cylindrical shells by transverse pressure

and axial forces.

As it is known, the state of strain for such type of loading

carries the character of an edge effect, since it quickly becomes

momentless with the removal from the place of perturbation (sites

of transverse ribs, intermittent change of cross section of shell,

and others).
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The edge effect in the case of the action of radial pressure is

the subject of extensive literature (for instance, [i], [5], and

others). In [2] the edge effect is examined by taking into account

the axial forces, which, as will be shown, essentially affect the

character of the state of strain. This work is a development of [2].

I. Differential Equation of the Problem and its Solution

Let us consider an anisotropic shell that is loaded uniformly

on its perimeter by axial forces a x5 and transverse pressure p (Fig.

x1). We shall consider extension for ax and internal pressure for p

as positive.

Fig. i.

The character of anisotropy depenas on the angle ' between

directions of fibers, from which the shell is made, and its generatrices.

For multilayer shells with crossing layers, we assume the equality of

angles 7P with respect to absolute value for different layers and

symmetry with respect to the middle surface.

Angle * affects the magnitude of the constants aij in the

generalized equations of elasticity
•,- a3.3, + a12,, + a2r,,,

T - a~#% + ana, + a,..
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where e and a are the relative strain and normal stress in cross

x sections of the shell,

e and a are the same magnitudes for longitudinal sections,

y and T are the relative shear strain and tangential stress.

Inasmuch as under an axially symmetric load Tx- - 0, we shall

write out only the expression for a i" a 12. and a 2 2 [4];
•-- ÷ -• • sin, licos24+ siu'.

+ + _

an + 2 I)utn"+cos2. h + c

In equation (2) EI and L,, E2 and •2 correspondingly are the elastic

moduli and Poisson ratios in the direction of the fibers and

perpendicular to them, and G is the shear modulus.

A differential equation of the problem will be obtained by the

variational method. We shall use this relationship:

a +

RI

We shall write the expression for potential energy of a unit of

length of a shell that has initial deflection winit.0 and radial

displacement w0

r ) + z-'-,, W;-=-o)+ (3)
1 .

-f-41J PWG etj5.

where xx - - w" is the change of curvature of the shell in the
direction of axis x,C1103

Dx --f2-- is the cylindrical rigidity,

ell I•- IE , cos"+ + E s + I-E•, + -4-20(1 - plpji ,f" O'os2 #,

In (3), the first three terms represent the energy of internal

stresses, and the second two, the potential of the external load.
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In the brackets, the first term expresses the work of axial forccL.
iI

G5x6 on the change of curvature w0 in tic i•}-",ence of the initial

deflection.

Placing the expressions of the mEtgnit•2-: in (3) through w.,

and applying an Euler equation of a variatirmu,.l problem, we will

obtain:

JQ aSR'Dx D..La -. 2j()

The roots of the characteristic equation foý (4) are generally

c omp l ex
S= ± C• ± ,ri),

wl ere

,•.+ Y- '(5)

2 a..RODz 2,0),

The solution of equation (4) can be presented in the form of

Wr + W,

where TA is the radial displacement for shell which does not have
deflection,

w is the elastic radial displacement caused by the initial
m 0 deflection.

When p - const or with the linear dependence of p on x, we have:

S= c, sh ax-cos ýx + C2 ch ax.cos 3x + cch ax. sin Px +

C 4 sh ax-sinPx + !Lp ~(6)

In particular, if
'%,o= /a . sin

where f nit.m is the peak value of the initial deflection for the

m-th harmonic,

under bc'u-idary conditions

•%:;~ '- ýo 0,,. o
I*--



thern

- U,, +z . -.,,z* (7)
.- ~ L

where

6 (r 2 (8)

The minimum value of (8) is the upper critical stress during

axial compressiont

4-¥RS (9)

It takes place when

S-4 '~V i/2 -. '" R (1o)
.L/ V S V~ a'

In the particular case of an orthotropic shell, when 7p - 0, and

au, -. J and LD5 -
E, 12 ( -p)

jinstead of (9) and (10), we obtain

* / 1,F. a

and V 3 -(1 -- p. -R

2 (101)

where the x subscripts pertain to crors sections, and the T subscripts

refer to longitudinal sections.

Formula (9) can be reduced to the form of

e - e.F
where

F(t)- COS' 11+ I~l 4, 2 jp3 + 2:1 (1 - '2SP,) 810l'+.cos't!

CV + -+. 11 f+( 2r--,,,).SW +-coo

E,
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Fig,..c 2 shows the construction of a graph of F(s,) for certain

values of Tj and ", from which it. is clear that in a wide range o.'

values of elasticity parameters (E 2 , El, G), the values of F(VO) •r

.-'•ac' ,,t. ouc c, " and 900 Thus, the critical stresses

ot' tht- axLially symmetric form of stability loss in anisotropic shells

are always lower than in orthotropic shells. They approximate

rup with the jrowth of the ratios of elastic moduli -q and L.c rit or-c

After obtaining the dependence of the elastic radial displacement

on x, it is possible by known relationships to find the stresses in

the transverse and longitudinal sections.

2. Certain Solutions for Edge Effect near
Elastic and.Rigid Frames

The solutions of (4) are simplified for strain that is symmetric

with respect to the middle of a she.ll and for shells of compf-ratively

great length.

In the first case, after selecting the origin of coordinates in

the plane of symmetry of the shell, the solution can be written:

w- c, csh ax zons x +

In the second case, considering the shell as beinrg semi-Infinite,

we will obtain

O - (c, sif Px+c 2 cos Px)+ (12)
S( 

1,,

where wr is the particular solultion of equation (4).

The constants of integra.tion ci and c 2 are: determined from the

jboundary conditions. In the case of placing elastic frames, one of

the conditions is the equality of radial di.piaceiaents of the shell

and frame

.a*=.. •j
IL



R 2

where wfr :- - Q is the radial displacement of the frame,fr Ef frfr

-f I. , w 0 Is the transverse fo~rce in the region of the
d" +frame (its radial load),

ffr is the area ofP cross section of the frame.

Condition (13), after substitution of wfr, obtains the form of

where

The expressions for the constants of integration, which

correspond to solutions (l1) and (12) when wr, = const, are given in

Tables i and 2, where we designatei

S, 1 L/2 - ab o L, . sin LL!2, S, L/2 - sh a 1/2. cos L/2.
S23L/2 - chaL/2-cos LL/2, S21 L/21- chaL/2.sLn P L,2.

The case of support on rigid frames corresponds to

f..-.oo or wm--0.

As an example of edge effect, we shall consider the determination of

additional force factors near an elastic frame for a sufficiently

long closed snell that is loaded by manifold pressure p. After

mentally dismembering the shell (Fig. 3), it is possible, by dis-

regarding the torsional rigidity of the frame, to obtain, from the

conditions of compatibility of strains,

"[ we.u~ - was 9 -Azi R2.

expressions for linear bending moment mx and transverse forces

and in a section on the frame:

AL + !!I(

q,--Q2- 22•M. (15)
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Fig. .

With them, it is easy to express

the total stresses in the extreme

i. fibers of the shell

PR 6-1

, •2and

iI where

W" 30" 45- 6•" 75' 90" *2 1 I + 11,

Fig. 2.
+ 2 (-L2; + 2 (. 0 - j1F2)1) sin 2 ' C S2

Considering the shc'l as being semi-infinite with origin of

coordinates on the frame, it is possible to use solution (12).

Here

,-- (a22 + aL20)
PR

gig -

When x - 0 ".--*1 +
W- c2+ .i- ýa~ 2±

where, according to Table 2

C3 1 + P) J((3oY- j+ 2aQI

or taking into account (15)
C2

Figure 4 shows the construction of graphs of relative stresses

P: PR.
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and I
%~ PR/I

At two values of pressure: p I 2.962-i0% -i/2 •.u

p - - 1,962 . 10N'M2

In the caiculati&on we took:

E, --. 1,81 • 10I '.52, EiN -n 2,55. 1010 s,'.i,
~C -E,• ll,• G ,0, 135, -, ,0, 15, • 0,2 1.

E, E

The reometj'c dimensions of the shell are shown in Fig. 4.

As can be seer. from the graph, tne edge effect essentially

changes the state of strain, as compared to the momentless effect.

5,0.. .- This change is especial•y signif-

7 L. t -"• icant during the action of external

I \pressure for angles 7P in the range

I • •5 of 2 0 - 7 0 0. At these angles, the

lowering of annular stresses, due

~m~4fr~to the decrease of radial dis-

-"placements w0 in the frame, is

.P--291" overlapped by secondary stresses
-s--without &xia

f forc caused by the moment

____ me" SD.,

For the purpose of comparison,

_Fig. 4 shows graphs of " and

0* 30" A" 60. 755 10' x •

Fig. 4. W in the absence of axial force,(;z

i.e., when there is only radial pressure. From them it follows that

an axial fcrce, especially during compression, introduces an essential

change into the state of strain of cross sections of a shell and does

not have a great effect on the annular stresses.

Ink 5-7
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The conducted investigation shows that from the point of view

of the edge effect and the axially symmetric form of stability loss,

orthotropic shells are more appropriaue, where the directions of the

principal curvatures coinc..de with the principal axes of elasticity.

3. Damping of Edge Effect

Reference [5] gives the wavelength

I - 4,9VRk
for the case of axially symmetric transverse loading of a shell and

makes the conclusion that for suffi-iently thin shells the state cf

strain, caused by edge effect, quickly disappears with the removal

from places of perturbation. Analogous conclusions are made in [1]

on the basis of the analysis of roots of characteristic equations.

However, in the case of Joint action of transverse pressure and

axial forces, the above-indicated length Z does not characterize the

propagation distance of the edge effect. Here, both the wavelength

along the generatrices, and also the degree of damping, essentially

depend on the magnitudes and directions of the action of axial forces

and the character of anisotropy of the shell.

Actually, in accordance with (5), the wavelength is

2a__________ 2Z

For orthotropic shells-

2g (17)

imp

In a particular case of an isotropic shell, from (16) and (17)

it follows for 4 = 0.3:
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.- 4,9. - . (18)

As can be seen from the given formulas, the wavelength is

increased with the growth of positive values of a. and when ox -- ab
x x crit

it envelopes the entire shell.

Damping of perturbations, as may be seen from (12), depends on

coefficient a. For instance, length li.0, where w0 constitutej 0.01

of the value at the edge, can be determined from the condition

0,01,

from which we obtain:

for anisotropic shells -

4.6, (19)

for orthotropic-

4.6. - (20)

In a particular case of isotropic shells when L - 0.3,

,,- 3 ,+6 (21)

Length 11., grows with the increase of negative (i.e., compressing)

values of aand when a~ -9critb the perturbation from the edgevaue o x ndhe x - crit

effect practically does not attenuate.

Thus, during the action of slgxv'ficant tensile forces, strains

from edge effect are obtained with a great wavelength, but with

quickly attenuating amplitude. And, conversely, in the case of

essential compressing axial loads along the shell, there are obtained

_-5



short, but slowly attenuating waves of strain. The nlutna? rierLjng

of frames during the calculation of edge effect can be disre.garded,

if the distance between them is greater than C In this case

the edge effect at every frame can be conside 'ed as for a semi-i • 1

shell.
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APPLICATION OF THE METHOD OF ASYMPTOTIC INTEGRATION TO
PROBLEMS OF VIBRATIONS OF SHELLS OF REVOLUTION WHICH

ARE SIMILAR IN FORM TO SPHERICAL SHELLS

R. L. Malkina

The solution of certain problems of free vibrations of shells

of revolution of positive curvature is expoundedj the asymptotic

method of integration of dif'erential equations, developed by A. L.

Gol'denveyzer [1], [2], [31, is used.

§ Euations of Free Vibrations of an Arbitrary

Shell with a L•arge--'Idex of' Varie& ility

Experience shows that the free vibrations of shells correspond

to the multiwave character of strains. Due to this, the equation

of frequencies and the approximate form of vibrations can be found

by means of integration of the equations offered by V. Z. Vlasov [4]

for sloping shells:

A, -EAhp+DO, -- 0 + 0

A A d) ('91
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Here w is the radial displacement,

Si' the fLuuctioA- of stresses,

h is the thickness of the shell,

D is the cylindrical rigidity,

-y/g is the density of the material,

a and P are the curvilinear coordinates of the middle surface,

A and B are the Lam4 parameters,

R and R 2 are the main radii of curvature.

The equations (1.1) can, under certain circumstances, be

obtained from the general theory of shells without the assumption

that the shell is sloping. In [1], [2], and [3] it is shown that

with the help of equations (1.i) it is possible to approximately

construct the state of strain of shells when their variability is

sufficiently great. Therefore, following A. L. Golldenveyzer, we

shall subsequently call (1.1) equations with a large index of

variability.

In the case of an arbitrary shell of revolution, referred to

geographic coordinates (Fig. I), in equations (i.i) it is necessary

to put A = R1 , B - R2 sin a. They they will take on the form:

MA?-EhAhiz=0~, 4hyp+DAdw+-M~ ±!.=ýO,

A(~LSn jd R..i iiI -N Rn + % (1.2)
tt R.1 dl d US

AA [_!L 1!f- Wi) -0
RAR sin a d% 1 O dý R-Isins 0

Equations (1.2) are correct when the index of variability is

positive. I11 t - L., then they are correct with an accuracy up to

terms of the order h*, as compared to unity. h* designates the

small parameter:
2 3-(1
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The points that are close to a 0, where the equations have

ppo lj rj jdI u~~--*- Vc. ex lu e ±f4J-U (

Fig. 1.

§ 2. Vibrations of a Spherical Shell

We shall present the function of stresses y and radial displacea-

ment w in the form:

y (,. P, t)0 - (, P) cos.t. V(, W)= . (0, P) cos at. (2-.1)

Here w is the frequency of natural vibrations.

Considering R. - R2 - R in (1.2), and excluding function 9, we

will obtain the equation of vibrations of a spherical shell:

DUAwe + ( 'R -- P2) Aw - )

w.lere
2

"- Wn a . (2.2)

Let us consider a section of a spherical shell, which is limited

by parallels a - al and a - a 2 . In this case, all displacements will

be functions of angle P of period 2r. The solution of (2.2) will be

found in the form of

,(cp)- r", i.(M)COSrMP. (2.3)
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OR

Placing (2.3) in (2.2), we will obtain:

Aw'(a) - b'aw (2) 0', ( As di + ctgz (2. 4)

(ins-s0, 1, 2, ... ,

b1 W'-2 INV- -0, e. - ' (2.5)
k .gE ' 12(1--.s')R2

Here an:d subsequently we shall notisider b2 >> 1, i.e., we shall

exclude from consideration the vibrations whose frequency exactly or

approximately satisfies this equation:

!-' I-0. (2.6)
gE

We shall designate Aw - w*. Then (CA) will be reduced to the

following:
64w; (a) - b4ý (CL) =.

( do sin, a

For the given value of m equation (2.7) is broken up into two,

each which can be presented in the form of

S',+ucfga- + (n + 1ntr-O. (2.8)

In order to obtain the first or second equation, it is necessary

to put accordingly n - nI or n n 2:

a, (n1+I )=' nZ2(t2 +I1)=b (2.9)

Parameter b2 is great as compared to unity; therefore, with the

same degree of accuracy with which the ca!iulat.onnz arp nnndiucted,

it is possible to take:

+ b. x2 + ib (2.10)

The general solution of (2.8) is expressed by this formula:

w'C - e,. P.m (cos ) + c, Q'(COS. (2 .11)

Here Pn(COS c), Q(cos a) are generalized associated Legendre

functions of the first and second kind [51,
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SLm and C2m are integration constants.

Coneequently, the general solution of equation (2.6) for a

certain specifically given m has the form of

a.' (a) - cIP. (cos 4) + c...r-.. (cos a) +
+ C. 1 (col a) + C.4 (Cos eq. (2.12)

Let us consider vibrations of a shell, in which there will form

more waves along the meridian than along the parallel, i.e.,

a>M.
As it is known [5], functions Pm, K can be expanded in series

with respect to parameters m and n. Under the conditions

X>>M. I<a<(--,), o<,<-L. (2.13)
6

retaining the main terms in these series, we will obtain asymptotic

formulas:
I

(2AP.,~• .,. (o )- b-05r- sn + be - . (2.4)
Ig(b -0.)sina (

P , (coos ) - (b0o. u -)o.) .5 Cos(-! + b2 +.

2(s)hO (2.15)

We shall put (2.14) and (2.15) in (2.12). Taking into account

that w* is real, after certain troansformations we obtaini
I

w_-(sina) 3cb,,sin b+c,.coslb +ck.sh b+ c4ch nJ (2.16)
(M--O U. 1 .. 2 .

Let us consider the case of axially symmetric vibrations in

which waves are formed only along the meridians. Considering m - 0,

or in the operator of (2.2) .- 0, instead of (2.4) and (2.7) we

have following the initial equations
AW (a) -- b'A ().- O, (2.17)

" (a) - e*," ) - o, (2.18)

where A-L +-cig.' -±Aw
d,'- dz
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The asymptotic solution of equatIon (2.18) will be:

)--(sin.) "(csmin b2 + c2 cos 62 + c3 sh be + cch ba). (2.19)

In the following paragraph we shall show tut solu-tions (P.16) an

(2.19) can be obtained by the general method of asymptotic integration,

whose advantages consist in its comparative simplicity and universality.

§ 5. Application of the Method of Asymptotic Integration
to th.e Problem of Vibrations ofa SpTherical Shell

The essence of the method of asymptotic integration will be

considered in an example of integration of equation (2.2), which, if

we introduce the designation Aw - w*, can be presented in Uhe following

mannerr:

(0 - + hLr , 0,

where

ZT sins a'7 k / uindpj

The solution of (3.1) will be found in the form of

Wc'., p)=eh-l-" Wa ,)) ((0.2)

Here f(a, •), W*(a, P) are the sought fuinctions, whereb. y If(, P

is called the function of variability, and W*(a, P) is the function

of intensity: k is a constant which is connected with h* by the

relationship

Sk n v" -

where T is the index of variability of the sought integral selected

by us. We shall consider T > 0, and consequently, k is a large

number.

The function of intensity W*(a, P) and the sought frequency will

¶ be expanded in asymptotic series in diminishing powers of k. Then
the sought solution (3.2) will be presented in the form of

* h ( kWWI IpI(3I.4)



where W(J- 0 2...) are functions of a and P, and do not depend

on parmmeter k. 11 g r)n(, 1) and considering (.3), we

will obtains

I7

+k " 1W4I LA(%",)l+k IL 01"2+L (V) + (3-5)
+ 2(W'-l + - - o.

Here Lj(i - 1, 2,...) are linear differential operators, and

We shall assign the index of variability T. On the selection

of T depends the density of the nodal lines and the frequency of

natural vibrations.

Reference [3] shows that for shells of positive curvature the

frequency of natural vibrations with the growth of T is not increased,

while T < 0.5 and increases when T > 0.5.

We shall find the frequencies of vibrations corresponding to

the index of variability T - 0.5, which is called the characteristic

frequency in [3].

Considering T - 0.5 in (3.5), we will require that in the left

part of the equations the coefficients become equal to zero at all

powers of k. We shall obtain an infinite system of equations. Finding

of functions f(a, P), W*(a, P) (J - O, 1, 2,...) will be reduced to

a certain recurrent process. The function of variability f(a, t) is

always determined from the first equation, which is obtained by

equating the coefficients to zero at the highest power of k in the

given equation. From the remaining equations we shall consecutively

determine W*(j . O, 1. 2,...).

Preserving the degree of accuracy of the initial equations in

all calculations, we shall limit ourselves in series (3.4) to the
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first two terms and to the value of the frequency of free vibrations

in zero appYoXkination. Then, by equating the coefficients in equatiol;

(3.5) to zero at the highest powers of k(k0 and k-), we obtain:

+ ON s in ' C a o"

(dfW/ ( 0.7)

Integration of (3.7) makes it possible to express f(a, P)

through an unkiown frequency co. Putting f (a, P) and WO(a, P) in

(3.4), and satisfying the boundary conditions of the problem, we can

obtain the equation of frequencies.

We shall show the application of the method of asymptotic

integration in an example of vibrations of a section of a spherical

shell that is limited by parallels a - a., C CL2 (§ 2).

Let us first consider axially symmetric vibrations in which the

index of variability is great in the meridional direction and is equal

to zero in the direction of parallel circles.

The solution of equation (2.i8) will be found in the form of

w* (a) -Iekf)j1WO*(s) +ki --IW(a)], pý-p' (3.8)

Substitution of (3.8) in (2.18) under the conditicn of T - 0.5

leads to this equation:

(I -po) (W + ,'W)+k 0 I" W +k-'ff"W- +

+(6srr'+2f'c•w'_-f4+.., ,,I ,. (5.9)
0 -I)

Equating the coefficients to zero at k0 and k- , for determination

of functions f(a) and Wo(a), we have

I-i +-,,f +/ -=- , ( .•

or (6f 2"r+2f"•cga) •±+4f"'1o'•

f (a) -=f •I ,d, w, J' (sin a)-
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Taking into account that

M Kj 2 -k 2 b(u-a) 'f3  kh-A/ h-i(a- go),

we will obtaini ,W" -- (sin c)- 1" c, sin b (m - %)+ c2 coo ,( - a,, +

+ cS Sh b(a - %) + c4 chb(-)1. (1.11)

Solution U(3.11) coid~cs with (2.19), which was obtained earlier.

By substituting (3.1i) in formula Aw - w*, we find the general

solution to equation (2.18)

V - Wo (A, sin kf+ A2 cos kf+ A3 sh kf+ A4 ch If) + A5 2 + Ag, (13.12)

where AV(J - 1, 2,...) are integration constants. The last two terms

in (3.12) correspond to two multiple zero roots of the characteristic

equation. It is easy to show that one of the multiple zero roots

must be rejected, otherwise the obtained solution will not satisfy

the equations of aXially symmetric vibrations of a spherical shell:

•-(a' +I a C~ge +.2w) - (I1 V)W' -- O,

(I + v) (u" + actg a+ 2w)+ -2-•-- 'VIV- MIA,-I-O. (3.1-3)
12 R" SE

Equations (3.13) directly ensue from the general theory of shells

with an accuracy up to terms of the order h*, if we consider that

the index of variability is equal to half.

Excluding displacement u from (3.13), which is directed along

the meridian, we obtain an equation of the fifth order for w, Thus,

w will be expressed in five, and u in six constants of integration,

which corresponds to the nwamber of boundary conditions and is equal

to six with axially symmetric strain.

By comparing (3.13) and (2.2), in which it is necessary to take

0, we notice that inasmuch as in the considered case of Aq

Eh/R(i - v) X (u' + u cot a + 2w), the second equation of (2.2)

accurately coincides with the second equation of (3.13), and the

first equaLion of (2.2) is one order above the first equation of

(3.13). This explains the appearance of the extraneous root, and
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after rejecting it we will obtain1:

w(a)- (sin )- (csInba + c2cosb, x +c 3 shba-C C4 chb2)+ c,. (3,14)

We shall introduce a new variable e .1 - a. Then expression

(-1.14) can be presented in the form of

W(a)-(cosdt) 2(AlstnbO+ A2 cosb6-f AashbO+A~chbb)+ A. (;.15)

For tangential displacement we find the following asymptotic

solutiont

ua-- (cosa) (11 +V) [--AcosbO+Asinb54-

+ A3 chbM + A.sh b•] ++-- 12 -- p2 (• - v)I•l+ A6. (1.16)

Let us turn to consideration of the case when, during vibrations,

waves are formed both along the meridians, and also along the paralicl

circles. We shall find the solution of equation (2.7) in the form

of

,w. (i) = ehI (a)I W;O(z) + k-' W*•,()1- (1.1?)

After substitution of (3.15) in (2.7), and equating the

coefficients to zero with k0 and k- , we will obtain:
i -•+ (J" 0" ")A=-

2 m

+4fr(f' si (

From the first equation of (3.18) we find the expression for

the variability function

S+ d (3.19)

and from the second we determine the function of intensity of zero

approximation.

However, the expression for the f(a), calculated according to

(3.19), and the corresponding equation of frequencies, are excessively
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awkward. When b 2 >> m2 and angle a satisfies conditions (2.13),

solution (3.17) will bet
Af, ---- f2 -- b (a -- zo), kfa--- ko .-. ib (c ,o)

§ 4. Examples of Composition of a Frequency Equation
for a Sherical Shell -

Let us assume that a shell is bounded by angles 9 - ±eI and

both edges are secured equally. Let us consider the case of axially

symmetric vibrations. They are broken up into symmetric and anti-

symmetric with respect to e - o. In the case of symmetric vibrations,

in formulas (3.15) and (3.16) it is necessary to put A. = A3 - A6 = 0,

and in the case of antisymmetric, A2 - A4 = A5 s 0. Let us assume

that both edges of the shell are rigidly fixed, i.e., the following

conditions must be fulfilled:

a-wau--'--0 when S. + ±,.

Satisfying these conditions with the help of (3.15) and (3.16),

we will obtain a frequency equation for symmetric vibrations:

all o + tg el6cth evb) -2tg M, - tf- 1-,b,

S_ (4.1)

Inasmuch as b » i, argument O1 b in many cases can- be so large

that

cthuD i th ,b 2- I.

Then (4.1) will take on the form of

1 12•~ (1 + v) h* T + 1 (p- "P(I -, "--:ý2 4.;
-81'b - L] I- n a(4.2)

(X-o It2...,. _JR

The frequency of natural vibrations w is determined from

equation (4.2) by the method of series approximations. For
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sufficiently thin shells, the first term in the numerator is small

as compared to the second. In this case the frequency equation is

simplified:

or

12it - 11 RI N' 4(4.0)

In the case of hinged support on the edges, the radial dis-

placement w, bending moment M,1, and normal force N1I must become

equal to zero. With the same. degree of accuracy with which we

obtained the final formulas, these conditions can be represented in

the following ways

w-w*=a'w-o when 6=5, (4.4)

Satisfying conditions (4.4) with the help of (3.15) and (3.16).,

we will obtain the frequency equation:

§ 5. Free Vibrations of Shells that Differ Very Little

Let us consider free vibrations of an arbitrary shell of

revolution of positive curvature. Let us assume that the shell is

closed with respect to the axis of symmetry. Then all dispJl.cements

and forces will be functions of angle B of nprnr~i Pir and t-he

solution of equations (1.2) can be found in the form of

yV(u, I)==y(a)cosmPcosodt(.1

Under this condition, operators A~ a-,-d z,' which were determined

by expressions (1.2), will take on the form of



,- ,,___.-,R" ine paisn

Rk [A- (sine d\ (5.2)

Let us assume that radii Ri and R2 change so smoothly that in

formulas (5.2) it is possible to disregard the terms containing

factors p'/p and Rj/Rj. Then the formulas of (5.2) give:

a • • + ct9 a . ),l'•-
1-'( 4 ". ) (5.3))

449 ~ ~ ) do Fsn R1 )

Hence, in the case of axially symmetric vibrations, it follows

that

A - Rjl'a. (5.4)

When m X 0, condition (5.4) is fulfilled only approximately due

to the distinction of the last terms in the formulas of (5.3). Under

conditions (5.1) and (5.4), system (1.2) is reduced to an equation

for w . -'-2( _ - ,-

we ___ --2 2 (1--O. XPIP2-' MW- ''--- (5.5)

In comparing equations (2.4) and (5.5), let us note that the

latter differs only by the factor in front of Aw, which contains

2I

variable I/P2

Equation (5.5), just as (2.4), is easily solved by the method

of asymptotic integration, an account of which is contained in § 3.

We find the solution of equation (5.5) again in the form of (3.8).

In the case, for instance, of axially symmetric vibrations, i.e.,

when m 0, we obtain for the function of variability f:

-p ý - .2 10. (5.6)
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Rejecting o1>.t of the multiple zero roots of this equation, as

also for a spherical shell, we will obtain the following solutions

to (5.6):

9de. fu0 ==c., -const. (5-7)

For calculation of the obtained integral it is necessary to be

given the form of the shell, i.e., the functions R1 (c) and R2(a).

Let us assume that for a certain shell the problem may be approxi-

mately solved by replacement of R and R2 and angle a by certain of

their mean values. Let us assume that the subradical expression in

formula (5.7) is positive. Then for radial displacement w we will

find:

W) -- (sin a)- 1-C, sin kf+ c. cos kf+ c3 sh kf+
+ c,, c h k f) + c .,( 5 8+cI A, (5.8)

Wrnen R= R 2 = R, solution (5.8) coincides with the one earlier

obtained (3.11) for a spherical shell. Thus, we simply determine w

also when m / 0. After w(a) is found, by formula (5.8) we determine u:

A+ age + (5.9)

Formulas (5.8) and (5.9) EaIlaw us to formulate a frequency

equation by the same method as for a spherical shell.
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CALCULATION OF CLOSED CYLIhNDICAL AND SLIGHTLY CONICAL
SHELLS WITH ARBITRARY CONTOUR OF CROSS SECTION

N. A. Shelomov

Definitions of Cyrillic Items

M = f - frame

1n - if = frame

§ i. Formulation of Problem

Let us consider a structurally-orthotropic semimomentless shell

under the action of an arbitrary surface load. (In places of

application of concentrated forces the shell is reinforced by

additional structural frames .)

The problem concerning the state of strain of such a shell will

be solved by the method of forces in the form of Castigliano's

variational pr-inciple. In this case thi-e calculatting diagram of the,

shell may be based on the following assumptions [i], [4], [5], and

[6].

i. The Kirchhoff - Love hypothesis concerning straight normals

is valid.

2. Moments (Fig. i) are

- (i.i)
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3. The expression for specific strain energy of the shell is

t &A-e n i n t I ' - -o

W• rA +(1.2)

Here 6 and b2 &re the given skin thicknesses of a structurally-

orthotropic shell in transverse and longitudinal sections, according

to [I].

For a conical shell, we additionally take cos e I (Fig. 2).

?Y

ILI

Fig. 1.

Considering (1.1), the differential and integral conditions of

equilibrium of the shell can be presented in the form of

S8$ +A.AT, A - + ABY--O, (1.3)

SIa AP do
A.B-E*-+ A -I( 00) - [--- . AE,] +,ABZ-0

a -O , ' a. I

i(T, + S,)x rJed + M-0. (1.4)

Here a and a are the orthogonal curvilinear coordinates of the
middle surf&ce of the shell,

A - I, B - B,
are coefficients of first quadratic form and theRf,(,) R(P) curvature of the middle surface of the shell

(Fig. 2),

77



B1( - ) - (1.5)1n 01a,

f1 (a) - I - for a cylinder,

(i6)

f 1 (a) "- for a cone,

X, Y, Z are the component of the external surface of the
load,

T1 , T2 , Si, G2 are the forces in the semimomentless shell,

P, M and T., Si are the main vector and moment of external forces
and vectors of internal forces of the shell
in section U - couist,

r is the vector radius of points of the middle
surface of the shell in section a - const.

In virtue of (1.6); in equations (1.3) for a cylinder, the

members in brackets become equal to zero. They, being small, as

compared with the other terms of these equations, will be disregarded

subsequently also for the cone.

Following P. F. Papkovich, we shall break down the state of

strain of the shell into main (equilibrium) and seccndary (self-

balanc'ed).

The main state of strain of the shell will be considered found

by one of the methods presented in [l], [71, and [8]. Specifically,

it can be represented in the form of

1) forces in the shell

T1 = r1 + T1",
Y,= S + sT, (1.7)

where T,, S1 , T 2 is a particular solution of system (1.5) when G 2

-0 [5L,

-!L[ I B (Z) dm -L ~jd ~ a
r; B±(RZ) da B'Ydtl(18
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and forces T•l) and S(l) are found from (1.3) and (1.4) when G2 m 0

after substitution there of (1.7) and (1.8);

2) forces in the q-th structural frame

(Mf and Qqfare the bending and twisting moments, the axial and

transverse forces, respectively) are determined by methods of

structural mechanics in considering the frame as a sta~tic indefinite

frame under the action of external concentrated loads Pqx' Pqy' Pqz

and reactions, on the part of the shell

where aq is the coordinate of the q-th frame.

The secondary state of strain of the shell shou~ld be the

solution of uniform systems (1.3) and (1.4).

System (1.3) consists of three equations for four unknown

functions T1i, S~l, T2 , G2 . Thus, in every point of the middle surface

the semimomentless shell is statically indefinite one. We take the

functional ukni__o~wn as extrY1neous

I--.A

i

wher and= are the bending and twinstigmmnsh xa n

f ors rare determined by formulas (1.6),

fr(am play the role of given foncetions that satisfy uniform
a conditions (1.o) and the conditions of periodicity.

In §§ 2 and d we shall show the method of obtaining these functions.

After placing (o.f0) in (1.3) whfn X - Y s Z - 0, we will obtain:
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t, -- ." '

sai (()

I',(P) -¥T iL-E- (P=)Llr +l (a)

IIr , , ,> ) , , r.,<.1
"11(i]' (1.11.)

L B. Bi i , d.it. '

By considering the increase of forces AT and AS q as an external

influence, we will find the forces in the structural frames:

e"IN (1.12)
Q10 ilM .

Unknown functions ai(c) are found by means of solution of a mixed

variational problem.

Considering (1.2), we shall write expressions for potential

energy of the system:

(TO. + T+.l). Bd, + I2di,+ U, (1."15)

Here 12

.14
+AO, +4 Ad 11~U

$

Etltf and Eti~tFf are the flexural, torsional, longitudinal, and shear

rigidities of the frame, respectively.

In expanded form

2A, " (2, P) B[( +

4-84 J a(2) ak(2) Ido +

If At



I

+' V W'C j_____(a,_;_o

4"1 % J.-2 q_1,

The Euler -- Poisson equations

A- (FOl + Faa- 0

for unknown functions a,(a) will take on the form of

de (l do ~ fmBa
a 4+

+ E.• I,(u) y ,'P.toJD•,,+ +ad.) . rI, TiA,(r)',ar= (1.1•5)

The sought functions ai(a) have to satisfy also certain boundary

conditions

which are formulated depending upon the conditions of fastening of

the shell [1]. [2], [6].

With arbitrary selection of functions ji(P), the matrix of

system (1..5) is complete, in consequence of which, the solution of

boundary value problem (1.15) and (1.16) becomes awkward and very

time-consuming even for sharply cut-off series (1.10). Such functions

q,(P) can be obtained, however, which reduce the matrix of system

(1.15) to diagonal form. In this case the boundary value problem

(1.15), (1.16) for shells with arbitrary contour of cross section is

solved with the same ease as for shells with circular contour of

cross section. The way to do this is prompted by the conditi~ns of

conversion into zero of nondiagonal elements of the matrix of system

(1.15)
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0, i (1.17)

where is determined by formulas (1.11).

It turns out that if we construct a differential operator

j, + 2)I -1 , n ,2 ,4

where Vii are the conditions of periodicity of functions •i(P) and

their derivatives we find Ito solution (eigenfunctions),

then they automatically will satisfy the conditions of (1.17).

2. Certain Basic Pro erties of Solutions of Operator (1.18)

1. Operator (1.18), as an even seif-adjoint operator with

D 6 2 _ 4e 1 - 0 ([9], pp. 3-55 ), generates a denumerable set

of characteristic numbers Xi, which, starting from the seconc6, are

either single or double. To this set there corresponds a corplete

and orthogonal system of chains of eigenfunctions pr(P) (r is the

number of the eigenfuncti.on in the i-th chain) with weight B1 .

Therefore, with arbitrary r and t

(• F,, Q) -,Pu (P) - ,, 4 o , i tk.(2 )

2. The first chain, which corresponds to X. - 0, contains

three functions (Fig. 2)

, ae, (P). sin P--- z ( ,(2.2)

which obviously approximate the elementary state of strain of the

shell.

3. The remainir'g chains starting from the second one, contain

either one or two eigenrfun tions.
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4. Their orthogonalization inside the i-th chain may be
S........ ......... •g to the sybtem

? (a) (2.3)

where

after which, the following is valid at any it

f i,.n (0) - eaM a,• 11 o0. (2.4)

5. %r(•), when all i /- I and r - 1, 2, satisfy uniform

conditions (1.4) which are equivalent to six scalar conditions of

self-balance:

P it, (3).- pit(p)B,=dP - 0$ .-- .1, .2 3, (2.-5a)

- ,, r, -- -I, (P)]]+

S(2.5b)I m9r(~ 61 @) dPj -

[41 ,, j B,,(-q)- iYjdy + C, j 0(P - 0 (2. 5c)

(conditions (2.5a) and (2.5b) are satisfied in virtue of (2.1) and

the periodicity of functions Tir(P); conditions (2.5c) are satisfied

with the appropriate selection of arbitrary constant C,).

6. Trigonometric series with arbitrary constants ai and b

f (P) 2 a+Csi ,sni

is the solution of operator (1.18) when 1I B 1 - const. Eigenvalues

in this case are determined by the formula



2,0 0 1). i 1. 2, 3, .... n,• (2.6)

whereupon X1 - 0 is a triple root and the other X are double.

7. Due to the orthogonality of the eigenfunctions of operator

(1.18), the matrix of system (1.15) become diagonal:

"2 4 (11) "'(1ni) 12..(,

112

+ 0 o, i-2, 3, .... n, r=1. 2. (2.7)

§ 3, Algorithm for the Calculation of Eigenfunctions
of Operator (1.1b)

After the introduction of a new independent variable s (arc of

contour of cross section of shell a- a. - const) according to

formulas
P

ds - Blad, s= BAd, (3.1)

operator (1.18) takes on the fonrm of

d' [RI (s) . +y~, kv (s -0
dw ds ] s ds(3.2)

Vs. - () - yr'-1"(s + 2p) 0.
,I. 2.... a, = 1, 2, 3. 4.

Here 2p is the perimeter of cross section of the shell. For

determining the eigenfunctlons operator (3.2) it is possible to use

the method of series approximations [10]. In this case, the calcu-

lation of the n-th approximation of Xin and Tin is carried out

according to the system.

i. Determination of auxiliary function:

A•. 8) - 4(s, (3,3
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2. Calculation of Xi, I

.{ .(S) d, f-! IN8)(3.4)

6=,

3. Finding Ti, n(s)z

The eigenfunctions obtained will be standardized and mutually

orthogonal.

The iterative process, (3.3)-(3.5), starts from the calculation

of the second chain of eigenfunctions of operator (3.2), since for

the first chain (function (2.2)) they are already known. Function
I

fio(s) is designated in such a way, so that the zero approximation I
of eigenfunction Tio(s), calculated by formula (3.5), is different

than identical zero. As fio(s), it is convenient to take sin
jo/i posrsfor the first elgenfunction of the i-th chain, and cos- for the

p
second. In the course of the calculation of X and wi(s), all the

earlier found wk(s)(k 6 i - i) are used5  Transition to the calcu-

lation of the following eigenfunction is carried out automatically

upon achievement of the given approximation. As a criterion for

that, it is convcnient to take the inequality

I (5.6)

where e is a given small number.

The generalized Green function 7(s, e) of operator (3.2), which

is necessary for the calculation of fin(a), can be constructed by the

method given in [10] and [ii] in such a manner that

. -,,(a)da-O, r,-, 2, 3, (3.7)
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where •ir(s) is equal to y(s), z(s) and 1, respectively.

Therefore, the process (3.3)-(.3,5) can be begun directly from

the determination of X2 and the second chain of the eigenfunctions

(§ 2). Let us give the final form of F(s, ý), which we constructed

for a shell with arbitrary contour of cross sections:

4 4•(s ") - • (-'--- I•(S). (1). - _ (s,) + q. g •(E ) . . M- l ()-

4 4 4

+(-' ... , ' . s) - 4-, (0) -in (2p)+

OS<I, (.8)
.--9 0 It < s 2p.

Here

W1 i r ( S) - % (S) (S I . .. 
9)

.. ( s) Iy (S),
•(s) = z~s).
I (J) z S, .

dw=fz(s).y'(s) -y(s).z'(s)fds,
4

YOZ are the main central a_-:es of cross section of the shell.

As can be seen from (3.8) and (3.9), Green's function contains

only the functions y(s), z(s), 11, and w(s), which are known to the

calculator.

§ 4. Realization of Algorithm (3.3)-(3-5_)

By algorithm (3.3)-(3.5) we composed and set up a program for

the electronic computer (EC) Ural-2 which makes it possible to
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calculate Xi and qi(s) for shells with an arbitrary closed contour

of crobs section, which is given in tables.

We made up tables of Xi and @i(s) for different shells, including

one for a wing-type shell (RAF--34, 10% with rear wall 70.5%). The

tables contain 128 values of function 9l(S) through equal intervals

of As -

A check showed that the functions pj(s) are close to orthonormal

id ± (4.1)

1 j # (s) rh,(s) dsI 0.5. 10-9
and the relative error of calculation of XI does not exceed the

magnitude

S< 0,005. (4.2)

§ 5. Application of Functions ai(s) to the Strength

Analysis of Shells

Reference literature contains the vast experience of the

analysis of semimomentless circular shells [Ij, E2], and [3], for

which a closed solution was obtained in infinite trigonometric

series.

Due to the presence of the algorithm for calculating Ti(s) all

of this experience is carried over to the calculation of shells

with arbitrary contour of cross section, since the trigonometric

functions are a particular case of cj(s). The property of orthogonality

of Pi(s) allows us to construct a process for calculating the state

of strain of a shell with controlled error si, which is suitable for

a computer. This reduces to the c=onsecutive determination of inde-

pendent i-th states of strain of a shell with subsequent summation.

The latter remains on that stage, when the given accuracy [E] is

I I I II I I II I I 7



attained. A block-diagram of this process is represented in Fig. 3.

Block-diagram
Introduction of initial information on
shell geometry and rigidity, boundary
conditions, and loads

Y(s). x(s) 11. I•* , '--* pq and so forth

Adjustment to new i

4I Calculation of ,(),. s, I
4

Calculation of •(z)

Calculation of i-th component of state of
strain of shell

I

Calculation of total state. of strain of shell

no

4yes

Sof informati on the state of

strain of shell

-stop

Fig. 3.

Conclusions

1. By means of isolating function f,(a) (1.6) from the first

quadratic shell form, we found a single solution for cylindrical and

slightly conical shells.



2. We obtained and investigated a differential operator (1.18)

that generates eigenfunctions of a semimomentless closed shell.

3. We constructed a generalized Green function (3.8) which

makes it possible to organize an iterative process (3.3)-(5.5) for

calculating characteristic numbers Xi and functions Ii(s).
4. We composed and set up a program for calculating Xi and

Ti(s) fo2 any shell whose cross section can be given t-bularly.

5. Due to the orthogonality of functions yi(s), sistem (1.15)

for unknown ai(a) is divided, which significantly lowers the time

and effort of shell strength analysis and simultaneously increases

its accuracy.

6. The results allow us effectively to use electronic computers

for mechanization and automation of strength analysis of semimoment-

less shells with arbitrary contour of cross section.
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EXPERIMENTAL INVESTIGATION OF THE PROPAGATION OF FAN
AND PAIRED PLANE JETS IN A TRANSVERSE FLOW

Ye. V. Rzhevskiy and V. A. Kosterin j

Definitions of Cyrillic Items

- s= slot

The work indices of combustion chambers of aviation gas-turbine I

engines are determined not only by the regularities of the chemical I
reaction of fuel burning, but also to a significant extent by the

aerodynamic structure of fl(,w in the chamber. From this point of

view the value of the investigations of aerodynamics of combustion

chambers of gas-turbine engines can be placed on a level with the j
investigations of aerodynamics of compressors and turbines.

Of much value for an understanding of the operating process in

g.......ne en.gine combustion ch.amb.ers, an•d also for development of

new methods of organization of the process of fuel burning in an air

flow, is the investigation of complex jet streams. Such streams

include the propagation of fan and paired plane jets in a transverse

carrier flow.

Fan and paired plane jets, which form in the exhaust of gas from

a peripheral slot or two parallel, oppositely oriented, plane slots

(Fig. 1), differ from single jets by their extreme "continuity."

I I I I I i i , .



Therefore, in the interaction with a transverse carrier flow they 1'orm

"shLIdZs," behind which, just as behind poorly-streamlined bodies,

there appear zones of lowered pressure with intense reverse currents.

The reverse currents behind such "gas-dynamic shields" can be

effectively used for flame stabilization in the combustion chambers of'

air-breathing Jet engines [i].

-flow

Fig. I. Diagram of propagation fan and paired
plane jets in a transverse flow.

Available experimental and theoretical material on jets that

spread in a transverse flow, presented in the works of G. S. Shandorov

[2], Yu. V. Ivanov [5], [4], [5], [6], and G. N. Abramovich [7], has

been accumulated as a result of the investigation of single jets of

different form or their combination, the structure of flow behind

which essentially differs from the one under consideration.

In connection with the fact that the theoretical solution of

the problem [8] of calculating the trajectories and range of fan and

paired plane jets in a transverse flow contains certain, in general

unknown, constants which consider the peculiarities of turbulent flow

of a viscous gas, the decision was made to conduct an experimental

investigation of the propagation of fan and paired plane jets in a

transverse flow. This work gives certain regularities of the

propagation of fan and paired plane jets in free transverse flows and

those limited by walls.
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Statement of the investigation

For constructicn of a correct program for carrying out tests, it

is necessary in the first place to establish what parameters determine

the pattern of propagation of fan and paired plane jets in a transverse

flow.

During the interaction of viscous gas streams, one of the char-

acteristic criteria is the Re number. With sufficient foundation one

may assume that the considerec r. nomenon is self-similar with respect

to Re number, inasmuch as experiments with jets in a transverse flow

were conducted in a range of high Re numbers (1.50-2.3310 4) which

were calculated according to the speed and state of the gas at the

slot exit and according to its width.

In [8] we find the theoretical obtainment of an equation for the

calculation of trajectories of fan and paired plane jets in free and

limited transverse flow.

On the basis of the equations it is possible to establish that

the form of the axis of fan and paired plane jets in a transverse flow

depends on the hydrodynamic parameter which constitutes the ratio of

impact pressures of the jet and the transverse flow (Fig. i)

lue(I)

where p, is the density of gas of the Jet,

V0 is the jet velocity in mouth,

pw is the density of gas of a .transverse undisturbed flow,

W0 is the average velocity of transverse undisturbed flow with
respect to cross section;

and also the geometric characteristics of the installation:

a) width of slot boo

b) diameter of tube d0 or height of profile hO,
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c) diameter of pipe D0 or high of plane channel B0 ,

d) angle of incidence of jet a.

Thus, if the geometric characteristics of the installation are

given, the form of the jets in transverse flow will depend only on

one magnitude, i.e., hydrodyflamic parameter q v In spite of the fact

that the theoretical solution of the problem [81 is conducted with a

number simplifying assumptions and contains unknown magnitudes, this

gave us a basis, in the construction of a test program, to take Cv to

be decisive.

By means of simple transformations, equality (1) can be reduced

to the form of

- ,"
7w 112

where pv is the total pressure in front of the slot,

P is the static pressure of gas of the transverse flow,

X is the velocity coefficient of the jet at the slot exit,

w is the velocity coefficient of the transverse flow.

Velocity coefficient Xv depends o)n the ratio of pressures

--- and the form of the slot channel. This article investigates
P w
con ergent peri.pheral and plane slots with compression coefficient

5.0. With a supercritical drop of pressures the gas in the convergent

slots is no4. completely expanded. At the slot exit, the velocity in

the Jet will be eaual to the local speed of s.•unid (), I), and static

pressure will be greater than static pressure in the transverse flow

(Pc > I,1 ). However, we know that in such cases further expansion of

gas in the jet up to Pc = Pw occurs beyond the limits of the nozzle,

where the jet velocity becomes supersonic, (k > i).

A question arises. How do we calculate the hydrodynamic

S34



parameter 'q-V witn a supercritical drop of pressures in the convergent

slots? Do we calculate it according to the parameters of the not yet

expanded gas at the slot exit, or according to the parameters of the

completely expanded gas of jets in the flow? Examples show tbiat qv

for these two cases of calculation will be different.

For an answer to this question, on an installation, whose diagram

and description are given below, we photographed colored fan jets in

a free transverse flow, which were obtained at identical values of

hydrodynamic parameter q'v . but with a different drop of pressures in

the slot (and correspondingly different velocity coefficients X ).

For some jets the pressure drops in the slots were subcritical and

for others, supercritical. The external boundaries of the fan jets

in dimensionless coordinates -- and -- are represented in Fig. 2.

The jet boundaries completely
7 coincide if ;v is calculated

3 I1"1 according to the parameters of

•- ---- completely expanded gas with any

-) -- -drop of pressures in the slots.

The coincidence of jet boundaries

gives us a basis to consider

Sl__l I that the jet axes also coincide.*

tmu Therefore, subsequently in
Fig. 2. External boundaries
subsonic and supersonic fan jets formula (2) we determined X
at identical -" Pv
KEY: (a) designation, for magnitude T- on the assumption

of full adiabatic expansion of gas in the Jett

*Additional experiments confirmed that the trajectories of jet
axes measured by four-channel rotary tubes at identical "v, but

oifIerent t- coincide.
pwI



Thus, •v is a function o.' two magnitudes: t(•v) and >w
w

Investigations were conducted with a change of hydrodynamic parameter

q . in a range from 8 to 420.

The basic experiments were set up with values of q that are the

most characteristic for combustion chambers with gas-dynamic flame

stabilization (in a range from 14 to 68). The limits of change o0

the ratios of' velocities, temperatures, and pressures in the jet and

in 'he transverse flow were selected taking into account the technical

Po-ssibilities of the experimental installation:

V0
1) WO 3-6 (In separate exj eriments up to 13),

0

T
2)T = 0.65-1.0,

W
T*

S= i.2.-5.1.
"WD

-w

The absolute values of velocities varied within the following

Iivtlts: V0 = 124-406 in/sec, W, = ,0 mr/sec. The angle of incidence

o: Jets was assumed to be constant and equal to 90Q.

Descrip)tion of Experimental Installation

and Method of Measurements

A diagram of thE experimental installation is shown in Fig. 3.

The installation consists of two ducts -- high and low pressure - and

the nozzle to be investigated with slot 6. Air as low pressure, whimh

forms the transverse carrier flow, was moved by compressor I through

heat exchanger 2, in which it was heated by gases after combustion

chamber f. The flow rate of air through the low-pressure duct was

measured by standard nozzle iS. Change of flow rate of air and

correspondingly, the velocity of the transverse flow, was attained



_4"

by flups 3 and 4. Air

of high pressure, which

forms the investigated

rjet, proceeded to the

nozzle from receiver

7 through reducer 9

and throttle cock 10.

The flow rate air was

measured by diaphragm

Fig. 3. Diagram of experimental instal- 19. Heating of the
lation.

high-pressure air was

carried out in electric heater 8. Air pressure through the ducts

high and low pressure was measured by piezometers and manometers.

Air temperature was determined with the help of thermocouples.

Measurement of velocities and pressures in the zone of interaction of

jets with transverse flow was produced by a four-channel rotary tube

16 with a diameter of 3.8 mum and fixed on coordinator 17.

Temperature of gas in the zone of interaction was measured by a

chromel-drop thermocouple attached to the tube in such a way that the

joint of the thermocouple was near the tube spout. Thicknezs of wire

of the thermocouple was 0.4 mm and diameter of the joint was 0.8 mnr.

For coloring the jet during the photographing there was a device.

consisting of an atomizer iJ, ejector 12, and pneumatic cutoff valve

13. Coloring of jets was produced by aluminum dust. The Jets were

photographed onr tie background of the sieve-like shield which made it

i.'ssible to obtain a quantitative dependence between coordinates of

the Jet boundaries.

We investigated two types of slots, i.e., peripheral convergint i



slots having a width of b 10 = 0.6, 0.8, and 1.12 mm which were made on

tubes with diameters of' d0 - 21 and 30 mm, and paired plane slots with

a width of b 0  0.5 mm which were made on a streamlined profile with

a height of h 0 - 9 mm. For decreasing air leakage, on the ends of the

plane nozzle we placed limiting washers. During tests in a limited

transverse flow, the nozzle with a peripheral slot was placed in a

cylindrical pipe with a diameter of 200 mm. Correspondingly, the

plane nozzle was placed in a 175 x 178 mm rectangular pipe. The walls
v: thý pipes had windows for introduction of' the measuring instrument.

For photographing the colored jets in the limited flow we made a set

of pipes with transparent walls.

Results of Experiments

Trajectories of jets. One of the basic problems of this inves-

tigation was finding experimental equations of the trajectories of

fan and paired plane jets in free and limited transverse flows. As

the 4et trajectories we conditionally selected the geometric places

o. zoints of maximum velocities i the Fs igurcs 4 and 5, in

dimensionless coordinates, we have constructed the trajectories of

!'an and paired plane jets in a free transverse flow with different

":alues of hydrodynamic parameter qv" Introduction of dimensionless

coordinates all.-.ed us to generalize, at constant v', the trajectories

o:' the jets flowing from slots of different width b 0 (curves 4.5).

On the other hand, from the curves it is clear that bending of the

axis of the Jets essentially depends on q " The smaller 7v i, tne

greater the bending of the jets.
However, the same magnitude of qv may be obtained at different

temperatures of the JeL and transverse flow. In order to connpare



the propagation of hot and cold jets in the free transverse flow, we

photographed the external boundaries of fan jets with different ratios

o)f -7 (Fig. 6).

Fig. 4. Trajectories of fan jets
when a 900. Solid lines signify
the trajectories obtained with
enuatior '4)

k~i(c.'curve number; (b) designa-
t ion.

OIW.00

KEY: (a) curve number; (b) designation.



From the curves of Fig.

"I", it is clear that the

external boundaries, and

s 2"consequently also the axes oi'

the fan jets, plotted at

- V -0- MI_,A-different--, but at constant
S73.1,Aý," i III RM T2

LtAJL T~ w

sopr 4 ,Lcoincide. Yu. V. Ivanov

S% W ac a 4W x [3], [6] end G. S. Shandrov

Fig. U. Comparison of external [2] conducted a similar
boundaries of isothermal and non-
isothermal fan jets at identical . experiment on single circular
K<EY: (a) curve number; (b) desig-
nation. arid plant jets in a wider

raange of' crIwnge of temperatures. They established that bending of

tll• .-" ' the jets does not depend on the tem-Zratu>' of the gan

in the jet and in the flow if treatment of the results of experiments

is r)duced according to hydrodynamic parameter -v which considers the

change in density of the gas of the jet and flow depending upon

tem:p ,'ature.

Earlier it was shown (Fig. 2) that the boundaries and trajector es

o:' the Jets also coincide at. identical ZI calculated with respect to

ar~meters o! a comt letely adiabatically expanded gas in a jet,

inii-: n-fent.v o)f' tho n tual conditions 'of' expansion of the Was in the

slot and on the fact that at any pressure ratios Pv and velocity
Pw

coef'icients ) , this magnitude of qv is obtained.
w

Consequently, the basic parameter that determines the form of

the axis oft the fan and paired plane jets in free transverse flows

and those limited by walls with the given geometric characteristics of

the installation is hydrodynamic barameter q"

:, 1.v



As a result of treatment of experimental data, in logarithmic

coordinates we obtained the following experimental equation of

trajectories of fan jets spreading in a free transverse flow at an

angle of attack a - 900 in the range of change of qv M 14-65:

Op2 (4)

Correspondingly, the trajectory equation of paired plane jets

developed in a free transverse flow at a - 90 and with a change of

qV = 10.5-66 has the form of

Analysis of the trajectories of fan and paired plane jets in a

limited transverse flow, constructed in dimensionless coordinates

- and , shows that the form of the jet axis, just as in a free

transverse flow, essentially depends on the magnitude of q-v

A comparison of the trajectories of jets at identical values

of determining parameter qv in free and limited flows shows that

bending of jets in flows limited by wallk is greater (Fig. 7). The

distinction in jet trajectories is explained by the fact that fan

and paired plane jets in a limited transverse flow, in forming a

"shield," they cover part of the passage section of the channel.

As a result, the velocity of the carrier flow in this place is

increased. In turn the increase of velocity, and consequently also

impact pressure, increases bending of the fan or paired plane jet in

the transverse flow. From Fig. 7 it is also clear that the distinction

in trajectories of fan jets decreases with the decrease of v , which

can be explained-by the decrease of the degree of' covering the channel

by the "dome" of the fan jet. With the degree of covering the

channel b - 0.18 the distinction in trajectories of fan jets in free '1



and limited flow ceases to be noticeable. Here arid subsequently the
-I .. ......... 0 is- .. ....c a; 1 ratio 04 h a e cc p e

by the jet in the channel in transverse direction and taken on the

center line of the jet to the entire area of cross section of' the

Exrcriments with f'an jets in a limited transverse flow v.sore

c-An>Jucted with a change of the degree of covering of the channel from

0.18 to 0.70 (in the range

1-11of qv= 1 J4 .6-io3. 6 ) and with

40 'P ,, paired plane jets from

30 •. 0.22 to 0.56 (with qv

As a result of11 treatment

P wI• l~, of experimental data we

I ~obtained an equation for

Comparison of ti'ajectori-s calculation of the trajectories
.an ets in 'iree and limited flows.

KE Y: (a) ree fl-w; (b) limited flow; of fan jets in a limited f'low

when a. 9 90

---b-- (6)

J! e' :o plane jets in a limited transverse :'low the trajectory

equa!ti-n has the form o,':

S0.) . -. (7)

"R'-inge of jets. We shall introduce, for estimating the range of

a :an jet in a transverse, the concept of the hydraulic dome diameter,

D (Fig. 1) which may be expressed as

"D - do + 2D,

or- In relative magnitudes

D-WO+ 2D1-, (8)
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do
- is the relative diameter of the tube on which a peripheral ±
S 0  slot is made,

I is the range of a branch of the fan jet, referred to the width
I b of the slot b 0 .

The range of a branch of the fan jet D1 is defined as the distance

from the mouth of the jet in the direction of axis y to a point on the

axis in which the projection of the axial velocity on axis y (Vmcose)

is equal to zero, i.e., when the jet axis becomes parallel to axis x.

Figure 8 gives graphs of the change of the projection of axial

ve'ocity of the fan jet in a free transverse flow on axis y depending

upon relative coordinate -- at different values of determiningbo

parameter qv" After treatment of experimental data taken from the

graph, in logarithmic coordinates, and substitution in (8), we obtain

the following equation for determination of the hydraulic dome diameter

of the fan jet in a free transverse flow when a - 900:
_VP• 

14,0.. 

. .I 

'D O " ' l " (9 )

OA .We analogously obtain an

equation for calculation of

IT - hydraulic dome diameter of a fan

jet in a limited flow in a range

from 0.18 to 0.50 (with qv

s. 4 30 - 14.2-65.8) in the form of:

Fig. 8. Change of projections of D-d+18,7,'. (00)
axial velocities of fan jets in a
frre transverse flow. The range of paired plane jets inKEY: (a) designations.

a transverse flow will be condi-

tionally estimated as the "height of the hydraulic profile" H - n0 + 2Di

(Fig. 1) or in relative magnitudes

TR-4h+251, (11)

103



ho0where h0 - h 0 is the relative height of the profile on which plane

b () slots are made,

D,
D I , b is the relative rango of' one branch of a paired plane

jet, coDunled off from the mouth of the slot in the direction .of axis-

y t- t point on the axis in which the jet is parallel to axis x.

Magnitudes D1 were measured on the graph in Fig. 9 as segments on the

axis of abscissas. Treatment of the results obtained in logarithmic

cooridinates depenaing upon q. and substitution in (i)led to the follow-

iti, equation Vor calculation of" the height of" the hydraulic profile ol a

pall ed plane jet in a free trans, erse flow when a - 900.

H ho + 24,8-q". (12)

We analogously obtain an equation for calculation of H of a paired

1]ane jet in a limited transverse flow in the range of 5 = 0.27-0.4-)

Il-h + 2,8. (17 ))

It is simple to establish (for iný"tance with Fig. 7) that the range of

fan and paired p:lane jets in a limitLed il'ow is less than in a free

:'!,w. The difference in ranges increases with the increase of the

degree o: covering of the channel t.

0
-.- 3 40 U 60 70 go 0 G i

Fig. 9. Change o!' projections of axial
-:elocities o!' naired plane jets in a
"+ee t-anz erse flow.
KEY: (a) designation.
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Change of axial velocity. Thus, just as for circular and rectan-

gular ( ....... a trans ve s f , 61...... .. ta, change of mayi.u um axial

velocities of fan and paired plane jets in a transverse flow depends

on thE relation of velocities (or relation of impact pressures) of the
Vm

jet and flow. Figure 10 represents a graph of the change of T- along
V0

the axis of a fan jet in a free flow.

V.

OA

'M 40 T o s

Fig. 10. Change of relative velocity
along the axis of fan jets in a free
transverse flow.
KEY: (a) designation.

Here Vm is the maximum jet velocity in a given section,

V0 is the jet velocity at the slot exit,

Analogous curves are obtained for paired plane jets. From the graph

it is clear that a change in axial velocity occurs faster the smaller
V0

the ratio of velocities W- (i.e., the greater the relative velocity
wo 0 WO

of the carrier flow -) With larger there occurs more intense
0

washout and ablation of gas from the external boundaries of the fan

jet due to the turbulent pulsations of the transverse flow, which

also leads to a more intense drop in gas velocity on the axis of the

jet. Each of the curves on the graph tends to a definite limit which

is equal to WO
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Analysis of Results and Comparison with

As already noted, fan and paired plane Jets in a transverse flow

,'hIfer from single circular ans plane Jets by the fact that behind

them there will form a zone of rarefaction with intense reverse

currents. Furthermore, during expiration of Jets into a flow limited

by wa.ils, as a result of cove•rIng the ch mnel we observe acceleration

o" the external flow. Along with the relation of impact prerssures

and geometric characteri stics of the installation, the rarefaction and

re-erse current,.s behind the jets, and also the local acceleration of

the exterial flow, render an additional influence on the trajectories

and ranges of fan and paired plane jets in a transverse flow. There-

!ore,, it is of practical interest to establish the distinction of

tra, ecto!-ies of fan and plare jets from the trajectories, for instance,

.f sin-le plane jets, which was investigated in detail by Yu. V. Ivanov

As a result of treatment of experiments with subsonic plane

in .1 •. sui2,-nic transverse flow in the range o) qv = 12.5-400.0,

Yu. V. Jivano.. recommends the following equation for calculation of

t -. trajectory of Flaoe jets at c = 900.

-- 'K (±ý2,

we w]l obtain:

Fig. 1.1 compares the trajectories of fan, paired, and single

,i'ene .Jcts in a f'ree trans,.-?rse flow at identical q From the greph

It is c]far that zhe trajectory of the fan jet is more distorted and

tch toaj.,ct-,ry o'f the sing.e IIanos jet, less than tric others. The
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large distortion of the fan Jet may be explained by the large degree

of rarefaction behind the jet and by the corresponding large drop in

pressures acting on the elements of the jet. From what has been said

it follows that the relative range (range referred to width of slot)

of fan jets will be less than the range of paired plane jets and all

the more so of single plane jets.

or a M a a o3 c10 ac8 0 0 O..

Fig. Ii. Comparison of trajectories of fan,
paired, and single plane jets in a free
transverse flow at identical values of
determining parameter Iv - 39.0. Curve i is

constructed according to Yu. V. Ivanov is
equation for single plane jets. Curve 2 is
the paired plane jet. Curve 3 is the fan jet.

Conclusions

1. This work experimentally proves that the trajectories and

ranges of both subsonic and supersonic fan and paired plane jets in

a subsonic transverse flow with given geometric characteristics of the

installation are completely determined by the hydrodynamic parameter

2
- pvVo

q_ - ., which is calculated according to the parameters of apwWo

12'



completed expanded gas of high pressure.

2. It was determined that for Jets flowing at an angle of 900

to the transverse flow with a small supercritical drop in pressures

Pv
in the slot (up to -v 3.1) it is not necessary that the gas bePw
completely expanded in the slot (that is, it is possible to limit

ourselves to a convergent peripheral or plane slot). Additional

expansion of gas beyond the limits of the slot will increase the

breakthrough ability of the jet in a transverse flow to a magnitude

that is close to the rated valve with full adiabatic expansion.

2. [3 sic] experimental equations (4), (5), (6), and (7) were

obtained for calculation of trajectories of fan and paired plane iso-

thermal and nonisothermal turbulent jets spreading in free and limited

transverse flows.

3. [4 sic] for calculation of the jet range, experimentsl equa-

tions (9), (10), (12), and (13) are recommended.
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METHOD OF SUPERSONIC ANALOGY FOR CALCULATION

OF ONE-DIMENSIONAL NON-STATIONARY GAS FLOWS

A. P. Pudoveyev

Definitions of Cyrillic Items

p = p = piston

Hp = crit = critical

Designations

X, Xo, xk - coordinates of points of flow,

Xp, Xpt - piston coordinates,

y - coordinate,

t, to,1 ti -- time,

V, Vmax - velocity of flow,

Vp, Vpt - velocity of piston,

c, cO, ccrit - local speeds of sound,

c - speed scale,

p, pO - pressure in flow and stagnation pressure,

k - isentropic index,

n - exponent,

f - designation of function,

T, T -- temperature in flow and stagnation temperature,
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X, X -- dimensionless coordinates of points of
flow and piston,

U, U -- dimensionless velocities of points of flow

and piston,

5 - angle of revolution of supersonic flow,

0, ecrit, emax - angles tangent to the graph of piston
trajectory,

X - velocity coefficient,

- variable,

P, PO - density in flow and stagnation density,

S- angle of inclination of characteristic in
supersonic flow,

V, ' 0 ' Ik' ý'crit' *max - angles of inclination of characteristic in
non-stationary flow,

7r - T number,

a - coefficient.

The general solution for a one-dimensional transient flow of

an ideal gas [1] contains an arbitrary function of velocity f(v) which

can be comparatively easily determined only for simple boundary and

initial conditions. Here we shall consider the methods of solving

the boundary value problem with the use of a supersonic analogy •hich

makes it possible to conduct calculations of non-stationary flows

under more complicated boundary conditions than permitted by the known

methods, and also a generalized form of the solution in dimensionless

magnitudes.

The analogy between transient flow in a plane x, t (time

coordinate) and supersonic flow in a physical plane x, y consists in

that the potential equations for these two forms of motion are

equations of the hyperbolic type [2] and consequently, both flows have

characteristics.
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This analogy recently has been frequently used for a qualitative

analysis and graphic representation of various cases of interaction of

waves (both shock and rarefaction waves) [31.

But on this analogy there may also be based the determination of

the quantitative aspects, and also the development of a method for

calculation of non-stationary flows.

We shall compare a simple case of transient motion-- self-similar

- the so-called centered flow with a supersonic flow around the

a) b). exterior of a corner (Prandtl-Meyer

flow) (Fig. 1).

NJ. In the Prandtl-Me~yer flow a

-*-~ change in the state of the gas

occurs on the expansion fan. The

Fig. 1. a) Supersonic flow parameters of the gas on each of
around a corner; b) centered the fan characteristics depend on
"flow.

the angle of its inclination p, in

particular, and the velocity coefficient X is determined by the

relationship:

It.( ~~•- V )"-I+2sn

The parameters of the gas can be determined with the help of

gas-dynamic functions:

,- 1

PO k+1

The angle of inclination of characteristic T is simply connected

with the local flow angle of rotation 5.
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The centered flow [4] constitutes a wave of rarefaction which

appears in the gas during motion of a piston with constant velocity

VP - const. On each of the characteristic lines • - - const the

parameters of the gas are constant. The basic relationships for a

self-similar flow are

2 - (I)
2&-I. (c-c*), (2)

where c0 is the speed of sound for a motionless gas.

By analogy with the Prandtl-Meyer flow we will establish a

connection for the centered flow between the angle of inclination of

characteristic 7p and the parameters of the state of the gas on it.

For determination of angle ?p we will introduce into consideration

the distance, which proportional to time, while the proportionality

factor - speed "- remains indefinite. Then (Fig. i)

ia- - (3)
e C

whence, c - and from (I)

C -I -, - - V.

Placing the obtained expression of c in (2), after transformations

we have:
h ,~-).

Selecting

c-c* (4~)

we will finally obtain the expression of velocity:

rý2 fI,A+ j(etjI).(5

The limits of change of angle 7':
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2) v tg% c., tg+n7-,oo, +.P--
2) 2 -

gcoi tg4lO,, 2K-

3) • = • ' 2b- " - T "-

Using (5) and the expression for critical speed, we shall establish

a relationship between the velocity coefficient X and the angle of

inclination of the characteristic V/:

9UP tg .

Converting dependence (2) and using the isentropic relationship,

we will obtain the expressions of gas-dynamic functions for calculation

of non-stationary gas flows:

2k

To k- !t+ pO=

Relationship (5) is a differential equation of the trajectories

of particles of flow in plane x, t

dX _V 2 f 1  2 CO \
dt -I (+I o t

by integrating which, we will obtain

2 --
-C X (t. for t> t,

-:.:ere x0 is the coordinate of a particle in undisturbed gas,

x
x0 is the moment of the beginning of its motion.
0 0

Considering that tan*o = I, we have

to 4

then

7- Li T .I (4, + ,gT)
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The equation of trajectories (8) also determines the position of

a particle in the moment of passage of the rear boundary of the front

of the rarefaction wave. The particle in this moment attains a

velocity equal to the velocity of the piston v v p; then from (5):

I = &+1I w

and -2 e,
1+)

-WK m X.+ +(9)

Expressions (5) and (6) constitute the general solution. The

boundary conditions are given the law of motion of the piston x P(t)

or, the very same, by angle e which is the analog of the angle of

rotation of supersonic flow in the Prandtl-Meyer flow.

We shall establish a connection between angle e and the angle

of inclination of characteristic 7p.

From Fig. i, as earlier, we have

" tI . 'I

or, considering (4),

Igo. (10)

The limits of change of angle e:

i)•.=O, tg6==O, 20,
2)Ua.="p. tgS,,p=

3) v .- ,M , t9 1. .2 2

Inasmuch as the velocity on the final characteristic is equal to

the velocity of the piston (v - Vp), by using dependence (5) we will

obtain the sought relationship:

2- - 0 - (1i)

Tne coefficient of velocity X can be directly expressed through
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2(12)

Let us note that with the selected reference system angle 0

and tan e are negative magnitudes.

These relationships at a constant velocity of piston motion

(e =const) make it possible to determine the parameters of gas flow

as functions of the magnitude of the angle of inclination of the

characteristic in plane x, t, and in particular, to determine the

distribution of parameters on the wave of rarefaction (*, < ý'< *,)

in an arbitrary moment of time t1 . The position of the point of flow

which has definite values of parameters (4 - const) in this moment of

time is determined by the following dependence:

X.MI (13)

The analogy between a flat supersonic flow around a convex wall

and the pattern of non-stationary motion of a gas with the accelerated

law of motion of a piston (Fig. 2) allows us to use the relationships

obtained for determination of gas parameters under arbitrary boundary

2onditions up to the appearance of a shock wave in the flow (during

deceleration of the piston).

Every point of curve x p(t) generates a characteristic whose

angle of inclination is determined by the value of the piston velocity

in the corresponding moment of time:

tgI~
k+1

On each of the characteristics the values of the parameters of

flow are determined by dependences (5), (6), and (7).

A practically important problem is the determination of the

distribution parameters along the length of flow in the considered

general case. This makes it necessary to know through what point

,14



of flow in a given moment of time tI passes

that or another characteristic which carries

definite values of parameters.

From Fig. 3 it follows:
Fig. 2. 4_4-$-

X i-+ xe. (1J4)

Here xpt and t correspond to an arbitrary moment in time 0 < t < ti

where x is negative.

Thus, in the arbitrary law of piston motion the determination

of distribution of parameters along the length of flow is produced in

the following order:

i) for consecutive moments t we determine vpt, Xpt, and the

ccrresponding values of the angle of inclination of the characteristic

2) in the needed moment of time ti, according to (14) we find

the coordinate of the point of flow which has a velocity vpt, and

we determine the regularity of v -

= f(x)t - const,

3) with the help of (6) and (7) we

7 find the regularities of distribution of

the remaining parameters.

The relationship between the coordinate

Fig. 3. of an element of flow, its velocity, and

time may be obtained in clear form. From (5) and (I4) we have:
III kt I. vW

_s s. v.Zt)

~1i7
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Equatin- the right siaes, we wiil obtain"

I+ ....
2 (9 e

Thus, the solution may be represented a a systerm of equations• [1:

+ - + i)+ ((5)

Wc shall convert the system of equations (15) t.- dimensionless form:

--o--t,' cot,Xn t! "- 1 1--'-2 es

Here otI is the distance passed by the forward boun:-ary of the wave

f-ront during the time t 1 .

We shall designate

-L-x, --'-u, (16)Xo, (J

then

t+ ) (17)

In the analytic assignment of the law of piston motion from

dePendenct (17) we may exclude time, and the solution obtains the

rnist generalized form.

Let us assume, for instance, that the piston velocity may be

represented by an exponential function

then

or in dimensionless magnitiudes:

3+1 5, +1 g

We shall blace the obtained expression in (17):

I11 - -!l- I -- AJ -+ 1)]X,- +t-+,_ U- I 1...2 A+,1,



Considerlng that

we wili finally obtain:

The form of solution which is represented by dependence (18) is

very convenient, since for obtaining a dimensionless law of velocity

distribution through the flow It is sufficient to assign only the

dimensionless value of piston velocity.

Figure 4 represents the results of calculations (k - 1.4) of

velocity distribution through a flow under different laws for

accelerating 'he piston up to a velocity of v ax, i.e., until

separation of flow from the piston. Direction and speed of the wave

are considered positive.

Inasmuch as in most cases vp < CO, this part of the graph is

represented in Fig. 5 in a bigger scale.

V..1in:::;.� '• - I.J -G , at 0t,.2_,.

Fig. 4. Fig. 5.
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OPTIMUM COMPRESSION IN THE COMPRESSOR OF A DUCTED-FAN

TURBOJET ENGINE WITH AN AFTERBURNER

Ye. D. Sten'kin

Definitions of Cyrillic Items

•TP - DTJEA - Ducted-Fan Turbojet Engine with Afterburner.

ci - dh - dynamic head.
C - n - nozzle.

x - c = compressor.

BCB = ees - effect of exhaust system.

_ i' - i'light.

- e - external medium.

BX - in - inlet.

T - t = turbine.

EC - cc combustion chamber.

S- af afterburner.

C -, mix = mixing.

B a - air.

r - g gas.

M -m - mechanical.

TF - fu- fuel.

= ,ounci - boundary.
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1 oJI Cn - compi•It'.

Hi ii ic-com -- in omplete.

OXJX cool - cjo.iig.

CY= cony C \ve2gelLt.

T .JEA Turi Jet LnglIne with A[tter'burner.

Deqignati on:-

DTjEA - ducted-fan turbojet engine with additional heat feed (with
af terburner),

7 - degree on inc'ease in pressure in compressor or degree of
decrease in pressure in turbine (depending upon lower Index),

y - degree of double flow: ratio of flow rate of air through
external duct to flow rate through main duct,

-- 6 eyficienl of recovery of full pressure,

Idh- deg'ree of isoentropic increase of pressure from dynamic head,

- efficiency,

k- aiabalic index,

- enthaly, r•.

-{ -- iwcs-_ ..... •• -.alue of fuel, •

G - mass flow rate of air or gas, -i-,

T - temperature, °K,

P - pressure, -H

m

- specific output pulse per second, kg/sec,'

-- reduced speed,

mrn - velocity coefficient of jet nozzle,

R - gas constant, k ,

kg~d122



al

C1  1.075 (see formulas (21) and (25)),F

XiI parameter of influence of external duct on T C I opt is

determined by formula (18),

B - parameter, determined by formulas (31) and (152)

S - parameter determined by one of formulas (depending upon
exhaust system) (16), (37), or (38),

ICeeS - parameter of effect of exhaust system on Trcjopt is determined
~'by formula (40),

M4. - flight Mach number,

Indices

Subscripts:

e - extornal medium,

in - inlet,

I - main duct (where this subscript is obviously
omitted),

II - external duct,

c - compressor,

t - turbine,

cc -- combustion chamber,

z - coefficient of completeness of fuel combustion,

af - afterburner,

1, 2, 3, 4, 5 sections through gas-air duct (Fig. 1),

mix - mixing parameter,

a - air,

g - gas,

I I I I I I I I IU



Y-I -- tiitan±,a1

b,.und - boundary,

t,-- di !'user be1hind turbine,

c A-, c .oimplne e:pansl din jet nozzle,

Incm .. inc omyplete expansIon in Jet nozzle (in main
cr external, indicated by second index),

cool -- cooling,

opt - optimum,

ees - elf,'ect of exhaust syrstem,

c ony - parame 2erl w th c onv e0'-ent jet nozzle.

Superscrip, :

- parameter of isentr.opic stagnation.

Introduction

In the designing of a ducted-fan turbojet engine with af'terburner-

(DTWEA), oC essential lo9"- I e the degree of increase of pressure in

the main duct -cl which determines Its effectiveness to a significan1i

extent. Presently, the optimum values of r c I ot are found by mearns

of conducting a number of thermodynamic calculations with different

7c . whose analysis, from the point of view of the influence of 71c T

on the main engine parameters, leads to Tc I opt* This method is

awkward; therefore it is desirable to have analytic dependences of

or I opt on parameters of the DTJEA cycle similar to the ones that a

TJEA has ([I], p. 181), for example.

Here, of course, one should remember that the selection of

optimum parameters of a specific engine will demand a number of

calculations with •c I near Tic iopt, on the basis of which, 7T, cIa
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is de:'initized. The selection of 77 I s also influenced by the

wcight. requirements for the engigne in unrated conditions. At the

same time, analytic values of wc lopt allow us to conduct the most

ei'fective comparison of different types of engines. 7I opt will be

determined in accordance with the DTJEA diagram shown in Fig. 1. The

distinction between this diagram and the possible structural DTJEA

diagrams is not essential from the point of view of" the determination

00 1
c I opt'

As it is known, DTJEA's are possible with mixing and without

mixing of gss flows inside the engine.

irn accordance with this division, 7; Iopt will be determined

belowv. Ict us assume that the adiabatic exponent is constant and

equel to:

a) in the process of compression- k

b) in the process of expansion-- .

DTJEA with. Mixing of Flows

We shall show that 7 cI opt' 'which co;.-respond to maximum specific

thrust and minimum specific expenditure of fuel., practically coincide.

We shall consider the formula for determination of total fuel

consumption G fuy.
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In accordance with [1] (pp. 116-121) and [2] (formula (1-31))) we

h1ave, for GfuZ, the expre.sion

'ii P a (+)

eakiha into account the as t we have these exressions:

)r enthalpy of mixture

. ~ ~~ G.___ If__2_ 11

G a l + 40 8 1

for }'owcr balance of turboc:ompressor -

i•o 7 , -1 •;- , + - 0-. 11, -, (4)

Determining the difference i*-1* from (4) and putting it, and also

im xM, from (3) into (1), we obtain:

This formula shows that G is determined by Ga., temperatures T1 and

T*I, and practically, in connection with the fact that in the

conclusion we made assumptions (2), does not depend on the parameters

of' the main duct, TC I, aia y.

Thus, for given T* in the determination of optimum parameters
af

of the cycle, including c I opt' Gfuz will remain practically constant,

and consequently, to maximum specific thrust will correspond minimum

specific fuel consumption.
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For determination of 1 ...... we shall consider known expressions

of specl.fic pulse output per second.

a) with ,omplete expansion in jet nozzle [Ij]-

2*- ) (6.1)

b) with convergent jet nozzle (Jf output section has a critical

regime) [_5-

, (14 q,, Rf - (6.2)

From (6.1) and (6.2) it follows that with given T* the minimum
af

Pe
value of --l - corresponds to the maximum value of J. Under the given

f

conditions of flight, the p-maxima and specific thrust coincide, and

maximuir p:,ssure Paf will correspond to them, Pressure Paf depends

on the pressures in the miscible gas flux and on the degree of

preheating in the afterbarner or the afterburner-mixing chamber.

At given T* and T* p* does not depend very much on the degree
e Taf' af

of preheating and we shall disregard this dependence. We shall also

consider that the losses in pressures, which are connected with the

heat feed, are limited.

In [2] it is shown that mixing is the most effective with close

magnitudes of full pressures of initial flows. In ac( •rdance with

this conclusion we shall assume that in § 5 (Fig. i) we have an

equality:

POO ,-p'. (7)



Pressure r can be expressed through p in the following manner:
4 -G,f,' (8)

On the inlet to the afterburner-mixing Lip-LCVOJ as gen?12ally in

afterburners, the X numbers are usually small (X - 0.2-0.3), which will

determine small losses of pressure due to mixing, the change of which

in the determination of r7 iopt can be completely disregarded. Thus,

whnen T conbt we will also have o a = const. Consequently,

instead of the maximnum of paf, It is possible to consider the maximum

--f p% which is miore convenient. For p* we obtain an expression

through the parameters of the main duct:

,, -.;- 1 (9)

From (9) it follows that for the determination of 7* Iopt it is

necessary to consider the extreme values of function

(10
"Xa' ( iO)

*

We shall differentiate c with respect to 7r01 ; we shall equate the

result to zero, and after transformations, by considering the

limitation of 7*t and r t t , we will obtain a differential equation:

S( '" )=O. ( 1ii)

From the condition of equality of effective performance of compressor

and turbine I, and also fan and turbine !I, after transformations,

we obtain formulas for 7t* and IrI

hrTo, (e, (12)

I T r(,j -- I)

-- - wI _" t - I
111 T*3..r £7.,j (if)

43•' "
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where

Proceeding from (7) and (9), for I we obtain:

C

uf. .,,,, .
i. a~l(15)

3(AT[ I

We shall determine derivative - which will be demanded
T•

subsequently. On the basis of (14), (15), and also (10) and (Ii),

we have:

['B,,J - . (16)

We shall convert (ii), using (12) and (1i), and considering (16),

", 4- -L4 j (+ Z7)

where

3 A

11-I7-.eU4'-1)] F;'-• (18)

In accordance with the structure of formula (18) Z I should be called

the parameter of the influence of the external duct on rc Iopt*

When y - 0, we have Z - 0 (this follows from (14) and (18)t in this

case formula (17) determines Tc opt for TJEA).

_ I



II' we additionally take

Then (17) coincides with the known expression, in [1] (page J"81, (.17))

for in TJEA. T.hus, even f TJEA, formula (17) is more ner•Ye c opt nTE Thse\e f, ',7a

than the one existing for de-teirmliiq.tion of T7 o t since it makes it

possible to calculate the distinction n7 k in processes of compression

ani expansion.

For contemporary turbojet engines (single-and double-flow),

and also for engines now being developed, the following magnitudes

are characteristic:

g, = 0,2 -- 0. , 0,8 - 1, 0,- 0,88 - 0, 75,

We shall show, by considering (20), that the magnitude of Lli is

significantly less than the denominator of formula (17). This will

prove the validity of the transformation of the formula for determi-

nation of Te Topt to the form of' (17). For that it is necessary to

determine Rc II In DTJEA with mixing, as follows from (15), 1)I

and T, I are interconnected. We shall find the expression for

S tby using (12)-(15) and introducing the following designation:
KmI - m- u

,--__-_-_____,_ -'_ (21)
T I TI- I)" %' ~~~~I -- 1 *(3 -I

After transformations, we obtain:

+ 130
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Analysis shows that C4 changes insignificantly,, ie.; for conditions

(20) and when

k. -11,4, k,,- 1,33, y - 0,5-- 6.0, % -. "0,7 -- 0,75,

*10 1, 0,85 -- 0,9, all - 0,97 -- 0,99, , ,-0,92 -- 0,97, (23),

-- 0,98 .-- 1,0,

we have:

C-, 1,05 i1,1o. (24 )

Proceeding from the structure of formula (22), it is possible to

take parameter Ci as being constant (with maximum error of determi-

nation of 7c ! opt less than 3%) and equal to

C, - m 1.o'/. (25)

We shall determine ZII )y proceeding from (14), (17), (18), and (25)

for conditions (20) and (2-). After the calculations, we obtain;

En - - 0,1 (26)

Thus, Zil comprises less than 8% of the denominator of formula

(17) and consequently, this proves the validity of conversion of

the formula for 7
Tc opt to the form of (17).

We simultaneously arrive at this important conclusion. With

identical corresponding parameters of cycles, the *c I opt of DTJEA

with mixing is always smaller than the Wc opt of TJEA.

DTJEA Without Mixing of Flows (with Forcing in Externral Duct)

Let us consider the formula for total fuel consumption GfuZ.

In accordance with (1), considering (4), and also that secondary heat

feed is carried out only in the external duct, and making assumptions

(2), we obtain the formula for Gfuz:

I -W+ ,( -- ,;) . (27)

+.y MN,,
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From (27) it follows that at T*. const and T- const, a change in

7 will lead to a change In G due to the dependence of i4 on

c I'

Consequently, 12 we consider optimum 71 at T const and T

= const, which correspond to maximum specific thrust and minimum

specific fuel expenditure, then they will not coincide. At the same

time, the condition of Tf , con=t for cruising conditions, in which

one should determine the optimum parameters, is not determining since

uwder these conditions there is limitation with respect to Taf, and

consequently, a change in Taf is allowed. It is necessary also to

consider that DTJEAts without nixing correspond to high y; therefore

the influence of w*c on G (at T", - const) or on T* (when G =
Tc Ionst) af fuz

= const) will be insignificant.

These considerations allow us to more fully satisfy the require-

ments presented to parameteis of the working process of the Jet

engine, i.e., the thermal machine and propelling agent of a flight

v ehicle.

Optimum parameters, including 7c I opt' should ensure;

i) maximum possible thrust with the given fuel consumption,

2) minimum possible fuel consumption for obtaining the given

thrust.
*

It is not difficult to be convinced that in both cases 7c I opt

is determined by the following system of equations:

-0, (28)

Under condition (28) the optimum 7T T for specific thrust and specific

fuel consumption will coincide.
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Let us consider the expressions of specific pulse outputr per

s econd:

a) with complete expansion in the Jet nozzle, in accordance with

(6.1), we havej

s 1- ,, / rP -[I + B 1 (29.1)

b) with a convergent Jet nozzle in the main duct (if' in the

outlet section there is a critical regime) in accordance with (6.2)

we have:

~ +Y'~Jh r( TT

X• I + I + I(29.2)

Expressions (29.1) and (29.2) are obtained under assumptions for

cruising augmented ratings which are close to reality:

_. (30)
aft! astoT., "PC

We introduce a designation:

!- • ' -B. (31)

Expressions (20.1) and (29.2) are applicable for typical DTJEA systems

without mixing of flows.

The DTJEA syste with convergent Jet nozzle in both ducts for the

given analysis is described by formula (29.2) in which magnitude B

will enter in the form of
&W

+ (S 1. (32)

I I I I I I I I I I2



Subsequent analysis will be conducted with 17 II - const, in

distinction from the preceding variant in which from the point of

view of optimumness of mixing Tc i changed according to (M5). The

condition of R const does not disturb the community of anaiy-:js

and is in full conformity with the methods of analysis of functions

of many variables. Magnitude D, when 77 I const, practically will

not change due to the weak dependence of Ta on Tc (when Gf const)

and consequently, a small change in the thermal losses of full

pressure in the afterburner (it is also necessary to consider the

small magnitude of X numbers at the chamber inlet). Let us consider

dependences T* and P%, which are necessary for further analysis,

through the initial parameters of the cycle. Procaeding from (9)

\rejecting o~t), (12), and (13), as a result of transformations we

obtain:

T3  T3

P4

* A

Differentiating (29.1) and (29.2) with respect to w*c I and equating

the result to zero, aftr transformations, by considering condition

G fu = const we obtain one (instead of two) generalized differential

equation

h(in h_ + (I-- _ o. (35)
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W he •re

a) with complete expansion in Jet nozzles-

sms"aSS[(') '--,] (156)

b) with convergent nozzle in the main duct -

Atrh

itr- If 2. 0hl-

ISM 2 &+1 T P ___a___ 2_

,+•[,-,--P, r'+ ,1.-vA>T 1 (357)

c) with convergent nozzle in both ducts (it is possible to trace

by using (32) that equation ( i5) ls also valid for this case) -
S= So + If)=,

2• "F7 +• 4 k, +I rp ,+'i•- kr: ( ,r -i -) - '' + ,,).-t -]-}{ ,

)lrI,,+,[ W(._ • k -,.2
I[(" hr• ~ ' hlr ; (158)

kL , +I + - - 1P

"',L 2 1i l F4

Proceeding from (35), using (33) and (34), as a result of transfor-
*7

mations we have the formula for I * I
c I opt

",i0 (39).00 , 1 ""I l"" l, )"

sea



where

z I . ,3 Is. (40)

Parameter Z ees considers the effect of the type of exhaust system and

therefore it is naturally called the unrameter of the exhaust system

effect. In DTJEA with mixing of flows S - 0, and consequently, 7 ees

= 3. Thus, (39) is a generalized formula that includes, as a particular

case, formula (17) and the formula for the determination of 7r* inc opt

TJEA.

Further we shall consider the order of magnitudes Z ees and YII

to prove the validity of conversion of the formula for -c to thec I opt

form of (39). 7ees contains parameter S. Figures 2-4 give graphs

of S for different types of exhaust systems. The order of magnitude

S can be determined according to the following considerations. For

augmented cruising conditions, which correspond to supersonic flight,

the following magnitudes are characteristic (see also [4]):

- -=I - 1,5,

AT40 (41)
"1 ,5-2,.0.

0.p%

'N&

Fig. 2. Fig. 3.

u lll • 1 36 ,



Rt oPaf
_ Ratios of - are given for DTJEA without

-- P4 * -T*

1 _mixing. Usually in (41), larger Taf/T4a 4

u F correspond to larger pf.*/ For DTJEA, justa 4
@ . -as for other types of turbojet engines, the

0.- turbocompressor leads to an essential improve-

* ment in the main engine parameters and at theeA

S - contemporary level of gas temperature in front

of the turbine up to Mach flight numbers equal

to M - 2.5-3.0 [4]. In this case, originating

from (34) and (39), we obtain:
Fig. 4._

S(42)

Convergent jet nozzles usually are applied up to magnitudes of the

pressure ratio:

A (.43)
Pm.-

Thus, proceeding from Figures 2-4, and also from formulas (41)-(43),

we obtain the range of change of S:

S- 0,05 -0,10. (44)

For the purpose of obtaining a small specific gravity of DTJEA,

the fan is usually made no more than three-stage (see, for instance,

[41] and [5)), i.e., we have:
1.5 - 3A (45)

The degrees of two-flow ability vary within the limits [5] of

Y- 05 -- 2,0.m (46)

Here, a larger y corresponds to a smaller r*c I, and conversely.

Thus, we can determine the magnitude of Zees' Proceeding from (39)I

(110), and (44), we obtain:

Z. 0 -- o,7-o,1. (47)

- -. 3



In a similar manner, using (18) and (15), we can determine Z

,-10-0,20. .(48)

Thus, the sum of -•.(Zii + z ees) can constitute from 5 to 15% of the

denominator of formula (39). This percent is small, and consequently,
* Fo

formula (39) will be valid for determination of w p From a

comparison of (17) and (39), considering (26), (47), and (48), there

follows a conclusion.

With identical parameters of the main duct the optimum value of

the degree of increase in pressure in the main duct of a DTJEA with

mi-xing of flows is always greater than in a DTJEA without mixing of

:lows. The difference can reach up to 20% (for high supersonic speeds

of flight).
* *foth

Figures 5 and 6 give graphs of Wclopt and rc o for the

most characteristic magnitudes of efficiency and adiabatic exponents.

From these figures it follows that the double-flow parameters render
*T!

an essential influence on I For example, when 3 - 3.8
c I opt'

(corresponds flight with T* - 1500° abs.in conditions of H > 1i km,
3

M, = 2) the TJEA has c opt = 11.1; when y - I the DTJEA with mixing

of' gas flows has c I opt 9.5 (c I opt 1.95), ani the DTJEA

forced in the external duct r * I 2.3 and S - 0.1 (this magnitude

corresponds to high degrees of forcing) has 77c I opt 7.6. Figure

6 shows the influence of parameter S, which 2onsiders the degree Co'

forcing, and the exhaust diagram. It is clear that an increase of

S (for instar.2e, an increase of the degree of forcing) leads to a

decrease of -T*c I opt'

SATtI
When '3. 3.8 and - 0.075, with an increase of S from S - 0

T T*
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- DJA E ;ith mixlng oft I
gin flowsr,•, ,r0 3  ?..0.t1 7•;-'05%

. .. , " -I C1

r. 4

-il apop

toin ad 4wt m ig of fw Fo. w,10°' -00 /IOO/ I T
0 0 0 ' 0 0 ,• 0 0 "

4*

the~ f Ormua fr deeriin-rcj opt is0 siutnosl band

:i~ ~ ~r 53_;/ ,-

ii T. T

Fig. o Fig. 6. DTJEA Dforced in
external duct.

t S i 0.1, we havee of formase orc I opt from 7rc I opt = a to

c I opt=76

Conclusions

1. Formulas are obtained for determining 7 Iopt of DTJEA with

mix1ng and DTJEA without mixing of flows. For DTJEA with mixing,

the "ý'ormula for determining r c II opt is simultaneously obtained.

The formulas can be used in the selection of optimum DTJEA parameters

es-pecially if this selection is produced with an electronic computer,

since the presence of formulas for determining wc op sharply reduces

the necessary number of variants, and consequently subsequent analysis

:"results of calculation.
Th frml fr etrinng7 of a DTJEA without

2. Te :ormla or eteminng c I opt

IL39



mixing has a universal character and includes, as particular cases,
* of*

the formulas for r I optf a DTJEA with mixing and for 7 01 a

TJEA.

3. Analysis shows that with identical corresponding parameter?

D' cycle *c opt are arranged by magnitude in decreasing order in the

.'.ilowing way: 7 c opt of TJEA, 7 c I opt of DTJEA with mixing, and

tnen I opt of DTJEA without mixing of flows.

The difference between c of' a TJEA and r of a DTJEA
c opt c I opt

with mixing can reach up to 25%. The difference between Wc I opt of a

DT"JEA with mixing and 7c T opt of" a DTJEA without mixing can reach up

t: 20%. For instance, in conditions of flight H > 11 km, Mf = 2 with

= 00 abs, a TJEA has Trc opt = 11.1, and when y = I the DTJEA

with mixing of' gas flows has w I opt = 9.5 ( o 1.95), and
c IC II opt=.5,a

the DTJEA forced in the external duct, with r*c I = 2.3, depending
*

ulon the degree of augmentation, has wc I opt = 7.6-9 (with an increase

in the degree of augmentation, c I opt decreases).

4. In a DTJEA with mixing, the effect of the external duct on

r I~leads to a change of Tc i opt within the limits of 25%.

In a DTJEA without mixing of flows, *c I will be affected

b~zh by the external duct (chis influence changes Ic I opt within

the limits of 20%) and also the exhaust system, which can lead to

a crnge o:" within the limits of 15%.
'c Iopt
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AN APPROXIMATE METHOD OF ESTIMATING GAS-DYNAMIC
INFLUENCE ON, A SUPERSONIC FLOW

Z. G. Shaykhutdinov

Definitions of Cyrillic Items

Hl = crit critical

np = nor = normal

BIU = unidentified designation

in analyzing uh2 ,.%ailable exyerinental works on questions of

L<as-dynamic influence on a supersonic flow [1], [2], it may be

",o,!c.uded1 that a l form an obstacle on the

surface of an airfoil or nozzle wall in its main flow. At its

f'lowing around, as in the case of the flow around solid obstacles,

in the main flow th.re 22rears -. ..... .ated system of shock waves

rout>' .> 7.........AtZ plicated con-

o-uration of d'e s,; of shochs in 'front of a slot is explained

0... ara1-- H ::...... . This dez•:-nds on the relation-

. . , .. .. zoloan:k the thickness of

or......i i . ot.. u ot' the trobl ern we shall

,'.-, : >oa.Ly layer effect. As
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I

the results of [2] show, which under an analogous assumption considers

a theoretical method of estimating the action of a solid obstacle

(spoiler), the latter is full.y permissible. Furthermore, we shall

assume that the flow is plane-parallel and that the blast is produced

from a slot of infinite length.

The slot may be convergent or

Supersonic region divergent and the direction of the

blast may be perpendicular to the

main flow or close to perpendicular.

Then it is possible to present such

• a model of the interaction of flows
(Fig 1).

Fig. 1. The gas blast will form an

obstacle of rather complicated

profile: at first the secondary

stream is separated from the wall, and in this zone there is signif-

icant rarefaction; further, downwards through the flow it turns

around and again "adheres" to the wall.

Around this airfoil in the main flow in front of the blast site

there will form a detached curved shock wave, and at the point of

adhesion, a completing shock wave.

Behind the leading shock wave at the wall the flow is subsonic

and its parameters are calculated from the usual gas-dynamic

relationships for a normal shock. The intensity of the wave upon

removal from the wall weakens, and in a certain point B the flow

behind it already becomes sonic. By using the assumptions presented

in the work of B. S. Vinogradov and this author [4] it is possible

to draw the line of transition through the speed of sound BA. Point

A corresponds to such a revolution of the secondary stream in which

:143



the angle of inc-.ira-ion of The, tangent to its profile in this poii".

is equal to the critical angle of flow deviation:

Af-- sins aer - 1M I . ,,o,.,), -.. 11 ° sin

Here M is the Mach nu:,ber of forward flow,

a crit is the angle of the wave front, behind which the speed of
flow becomes equal to the speted of sound,

k is the adiabatic exponent,

~ arcsinf 4+

S)9 k 3- T 4

+,(k + l)(9+4-tk

Subsequently, the region lying before line BA will be called

"subsonic," and the region behind it, "supersonic," inasmuch as

arolud the profile of the stream obstacle the main flow in this

place again obtains supersonic speed.

Thus, we can consider that the pressure at point D is equal to

The static ,_-22...C LuIii a nor ,, and at point C, to

stagnation pressure P2 nor' The r.uressure in the interval between

!oints D and C may be assumed varisble according to linear law,

which is confirmed by experilmeiLc [P2].

For the adopted model the pressure on the leading. boundary oi

the secondary stream in the "subsonic" region will vary from Po Sno-,-

to P2 .II--I' ,whereupon

As the experiments show, at blast angles %Q which do not differ

much from 900, the leading boundary of' the profile of the secondary

stream or the initial section is close to the circumference.
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Therefore, it is possible to use the law of change of pressure in

the interval between A and C the same as in the transverse flow

arowmd a cylinder, the experimental data for which [2j, [6], up to

S= 0 crit (Fig. 2), are well approximated by the dependence

,PS ,_(P , P'_ ' ) ,, . ' (4)

where 0 is the polar angle of the current point on the surface of

the cylinder (Fig. 1, 2) and 0 crit is the polar angle of point A.

Expression (4) is valid for the case of 6 j.IJ however, during

a blast with angles that do not differ much from normal, it is

obviously possible to use a similar relationship. Angle 0 is

kt conveniently expressed through the character-

s istic parameter of the secondary stream,

0 ,i.e., the angle of inclination of the

. tangent to its leading boundary, 61

.. coo.I- -cou6 . la I-p (5)
a' --- s-mgMav NJ(b I IW% cnta- cog% Olnt

l - - at a 1

o a a• a a u a r The last relationship, which was

Fig. 2. derived taking into account the possible

KEY: (a) according to
Belotserkovskiy; (b) distinction of 5 from-1, is found from

according to Uchida

and Yasukharaj (c) analysis of Fig. 3. It is abs •lutely clear
according to VanDyke;
(a) according to that here 60 in no case should be less than
formula.

6crit* When 60 < 5 crit the entire flow

changes, inasmuch as the shock in this case is oblique and attached.

Considering what has been said, we obtain for the subsonic

region:

C" cS-Co,. s.sing; (6)
cogtqcIss. g o 1 in;I
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The dependence of pressure P2 on the angle of revolution of the

secondary stream in the "supersonic" region will be written by using

the relationships for the supersonic

flow around a curved wall. In fii-.

_.A.di. 9 bouna Y•r- approximation it is possible to take

the relationships for the flow
;E

around an external obtuse angle,

S7z, namely:

J*Fig. 3.
-. A.-•(7)

P,=,,, P. k+1l 2

Here X2 is the coefficient of speed, which is equal to the relation

of true speed to critical, is found on the appropriate table or is

determined by the solution of the known equation

A ' . k+ 1 a-rct-g-• -J
AS t I !+~g & I )! -l 

i-I

where Ac is the angle of rotation of flow from its direction in

the zone of transition through the sonic line to the current line.

It is defined as
44' = ag -8.

The rear boundary of the secondary stream is acted upon by

static pressure P4 which is equal to the pressure in the separation

zone. Its value is calculated by the empirical relationship

4

-TI 3,(8)A• V i--l )

which is obtained on the hasis of analysis of experimental data of

this author, and also the data in [1]. Here is the coefficient
103

of" speed which may be attained during isentropic expansion of the

secondar.y, stream to a certain average pressure on the slot cutofft

TAMl



PC 2 , (9)

Pressure P0 is an approximation to average pressure in an

isobaric section of the secondary stream

S,2P+P (io)

which is obtained from the condition of parabolic change of static

pressure in the secondary stream.

As can be seen from Fig. 4, the points corresponding to values

of P 4 for different blast conditions lie quite well on one curve

that is constructed depending upon Xt , which allows us to describe
1-0

the law of its change with a simple empirical equation (8).

Knowing the dependences that determine P2 and P4P and considering

the average speed in the secondary stream to be constant in length,

we can obtain relationships that

Sdetermine its profile. Let us note

M •. that, in virtue of the selected law

'N I distribution of static pressures

oA I - L -through a section of the stream, itsOh e -M,22IP,-.W:6g•. IC[II"-

" "-c....i~ S,~.w..,,,,] - parameters with the known equation

'- of the leading boundary are obtained
o @ G OhU 0A M IL is fa XA,, in the following way: distance to

Fig. 4. axis of stream in current section-

-; ., MP (ii)

and from axis of rear boundary -

-b- Q%-P4 (12)

Width of stream in initial isobaric section is determined from

conditions of conservation of mass and pulse by the relationship-
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where b is the widtn of the lateral nozzle on its cutoff,
a3

P a is the static pressure on the lateral nozzle cutoff.

The current value of the width of the secondary stream is

b3l.= A. •(14)

wlere P3 is the average static pressure in the stream which is

analogous to (10)1

2P9 + _ P (15)

For obtaining the form of the leading boundary of the secondary

s-cream (Fig. 5) we shall use the expression for eetermination of the

reaction of a fluid flowing in a curved channel [7] between sections

i - I and i. Disregarding magnitudes of the second order of small-

ness, we will have:

- mpw_,- sin (8•-- , +
(16)+ M; -- j sin @I - . -P241 +

+ P4A4 - PAb&,,.
Here

a, ,- S actg . - (17)

m. is the mass flow rate through a slot of unit length,

w is the average-mass speed of the secondary stream in current
section.

Considering that

A-iR"j, w =const, P2 - "6 + P2-1
• 2

taking +t,-- +

2

and also taking into account the smallness of A6 in the numerical

solution of the problem

sin (4* - --
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after simple transformations we find the expression for radius of

curvature in the i-th section:

The solution of equation (18) in final form is difficult, and

it is simpler to solve it numerically, for instance by Euler's

method. Considering that

or R"-'L when AB--O, (19)
£(19

where AZ i is an element of the arc of the leading boundary of the
secondary stream,

A i is the angle of elementary revolution of the stream which

corresponds to arc Alip

we have for the i-th section of the stream

(20)

::SA5i is the integration step which

will be designated according to the

necessary accuracy of calculations.

c 4 For the "subsonic" section, A6 is

conveniently assigned in the following
d way:

S. (21)
Fig. 5.

Here n is the number of partitions of

the "subsonic" part.

As the calculations show, sufficiently good results can be

obtained already when n - 10.

With known Ali we shall deterTnine:

It .- i,, -- all. (22)

x, -xy, + AI, .coSi,, (24)

etc.
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In the supersonic region the integration step is arbitrarily

selected and calculation is conducted up to the adhesion points.

After obtaining the profile of the secondary stream it is possible

to construct the pattern of its main flow: calculation of the position

and form of the leading shock wave is produced according to the

method presented in [4] and calculation

of the terminating oblique shock at

the known angle of rotation of flow

presents no difficulties.

7Y?77 ./r •In the presence of parameters of

.a) shock waves, according to the'usual

gas-dynamic relationships we determine

pressure and speed, and consequently,

the entire pattern of interaction of

'7777j u ffl,''117'777777 flows becomes known.

The experimental and calculating

Fig. 6. pattern of flows shown in Fig. 6 a and

6b agree well qualitatively. For checking the quantitative

coincidence of results of calculation with experiment, calculations

were conducted for determining the effectiveness of a blast of

secondary gas in a supersonic flow under conditions of the experiments

of [1]. With the help of the derived relationships we calculated

the pattern of flow and found the corresponding distribution of

pressures throughout wall. The total effect was estimated by the

magnitude of transverse force appearing on the wall during the blast

Nz -l,N+ NR,
where NU is the jet force taking place on a slot of unit length of

stream blast, which was calculated as

N, - iw+ (P.- Po,)b.

-ta



A . . .. . . .- -i u -. .. -

NR is force appearing on a wall of unit length as a result of

reconstruction of the pressure profile. The latter, taking into

account the fact that the pressure below point E is close to the

pressure in an undisturbed flow, was calculated as

No - (P2. - P,) + (P4 - P,) d

Figure 7 shows the relative magnitude

N,

which was constructed depending upon blast pressure (consequently,

with constant b and on flow rate m•. It shows how may times the

force appearing during the blast on the wall exceeds the jet force

of the secondary stream Nv during its flow into a vacuum. As can be

seen, coordination with the experiment in this case is also

sufficiently good.

151

Fig. 7.
KEY: (a) Lateral walli (b)
According to the proposed theory;
(c) Experiments without lateral
wall [i]; (d) Experiments with
lateral wall [I].

Hence, it may be concluded that the proposed method of

approximation of theoretical estimation of the gas-dynamic influence

on a supersonic flow, although it is based on rather rough assumptions

and proposals, nevertheless gives an accuracy sufficient for

practical calculations.
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THE INFLUENCE OF A SEQUENTIAL DECREASE IN THICKNESS
OF A METAL ON THE CURVATURE OF SHAPED COMPONENTS

M. N. Lysov and Yu. P. Katayev

Definitions of Cyrillic Items

P = h = height

H = cv - concave

B - cx - convex

r - g - geometric

In the design contemporary flight vehicles we find the wide

application cylindrical skins with variable outline thickness of the

guide and wafer type.

Obtainment of such skins from sheets of variable of thickness

can be complicated due to the unequal strength of the blank: it is

impossible to apply bending with extension, while the processes of

bending and rolling and free bending become difficult to control.

Therefore, in a number of cases it is expedient to prepare such

components from sheets of constant thickness with a sequential

change of it by the method of chemical etching (chemical milling).

As it is known [1], [2], [3], in a shaped component there are

residual stresses that are variable with respect to height of cross

section, in magnitude, and in sign (Fig. ic). With the stable form
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of a component these residual stresses are tmutuall balanced and

their moment with respect to the axis of rigidity of cross suction

is equal to zero.

If we subject such components to chtemical etchinCg, as a resul!

of' which a layer of metal of definite magnitude will be removed, and

the thickness of the material will decrease, the equilibrium of the

residual stresses will be disturbed. Tneir resultant Pz gives a

moment M with respect to the axis of rigidity of cr'oss section. Ax

new equilibrium state of residual stresses is attained as a result

of the change in shape of the component.

Determination of the magnitude of change and the final form of

the component, in which the residual stresses change in cross section,

arrive in equilibrium state which is necessary in the designing of

structures and equipment that ensure the given accuracy of manufacture

of components.

Obtaining Components with Variable Thickness
along the- Guide Outline

The section of a component which remains after chemical millind,

de-ending upon the relationship of removed layers with convex and

concave sides, can consist of the following combination of defor-

mations created during shaping of elastic and plastic zones:

i) the elastic zone and sections of plastic zones asymmetric

in magnitude and located with convex anc concave sides of component

(Fig. i, hl),

2) the elastic zone located on the convex side and the plastic

located on the concave side of the component (Fig. 1, h9,

,5) the elastic zone located on the concave side and the plastic

located on the convex side (Fig. I, h3)'
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4) the plastic zone on the concave side of the original

component shape (Fig. 1, h 4 ),

5) the plastic zone on the convex side of the original

component shape (Fig. i, h 5 ).

(a) (a) (a) (a) (a) (a)

Ii ___

a• - - - - -

"b -

Fig. i. Diagram of percentage elongations and residual
stresses. I) in original component; II) in component
after chemical milling.
KEY: (a) Diagram.

The diagram of plastic unit strain in a cross section of a

component after chemical milling will be linear (hypothesis of flat

sections). It is possible to divide it into components from pure

bending E and from extension or compression c0 (Fig. Ic, d, e).

Expressing component e from pure bending through curvature

3x of a layer that is neutral during pure bending, we will have

)+ ,

where -,_ - -

Y- -% -& -ye

y is the distance of the fiber from neutral during pure bending of a

layer that has curvaturexx

YO is the distance between the neutral layer of the complete diagram
of permanent deformations and the neutral layer during pure
bending.



Taking the middle layer of a compondit before chemical millini-g,,

as the beginning of reading of ordinates of fibers with respect to

height of cross section, we have the following expression for pel'-

centage elongation

.'y x•.y. (2)

wI. ee r-

y is the distance of the fiber from the middle layer of the
component before chemical milling,

YO is the distance between the middle layer of the initial section
and the layer of the section after chemical milling which is
neutral during pure bending.

In the active stage of shaping, the stresses in the elastic and

plastic zones are expressed accordingly as linear o = E'E and

exponential - Ke n elependences [2]. The residual stresses will be:

in the elastic zone -

a= Es,(4)

in the plastic zone -

W -+ (-.a),(5)

where K, n are constants of the strain hardening curve [2],

E is the elastic modulus,

E ana E are the unit elongations of the fiber correspondingly in
the active stage of bending And remaining In +th
component after chemical etching.

Putting the value of Z from (2) and E - xy in equations (4)

and (5), we obtain

. E= r'y- -E -x'y*, (6)

a, -Kx'y8 - E(z ~)y -E~x-y,. (7)

where x is the curvature of tne middle layer of the component before
chemical milling in the active stage of bending.

VG



Conditions of equilibrium of internal forces in a section of

the component after chemical milling are determined by the following

equations:

.Z-v-, EM,,-00. (8)

We shall expand these equations for Case 1, when the remaining

section of the component after chemical milling consists of an

elastic zone and sections of plastic zones that are asymmetric in

magnitude

Vz- 6,dy+ ;T.dy + f,.dy-O, (9)

M,-S . g-y.dy - *-..d+ ;,.y-dyrmO, (10)

where Yh is the ordinate of the boundary of zones of elastic and
plastic flow with respect to height of cross section,

Ycv" Ycx are correspondingly the ordinates of boundaries of removed
layers with concave and convex surfaces, counted off
from the middle layer of the component before chemical
milling.

Putting in the values of a and a from (6) and (7) equations

(9) and (10) we have:

_7 •Jr -I

E- J x'yndy E(I: - Sly*e~- Exxyedy+
,• "Exydy 

-

exyedy + Kaxydy - fEx')p-fi;%~dy - 0,

+Jiy'dy -- Bek,.. dy + -,Ktay+dy -

E(t-AL.-'dY-3 EX&YOY dy-0.I
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After solving this system we find:

from the first equilibrium equation-

from the second equilibrium equation-

(+- (+2) +- 2 +

+33 (12)

wh~iere I .=- " - ,

2

h is the thickness of the component before chemical milling,

Ep is the conditional limit of proportionality (approximated point
of transition of linear dependence a - 6 to exponential),
according to [3]

S I

By solving equations (11) and (12), after corresponding

transformations we finally obtain the basic formula for determination

of radius of curvature of the bent component after chemical milling:
-, T,5

To - Tit" + CP

Constants c1 , 1 'Y ^12 depend on the mechanical properties of the

material and the magnitudes of layers removed during chemical

milling and are determined by the following expressions:

-' IC Ispr+2_ 2 ( "
1 ict +2, + 3• (,)

2 4• ++ (.y)(j...+, ) (1.)
#s+2 2(, + 1)

-G +
3 4

For finding the position of the layer of the component after

chemical milling, which is neutral during pure bending, we will use

USs



equations (1) and (3) which are written in relative magnitudes:

1= - -1

y-y - j-e

By solving this system we obtain the expression for determination

of the ordinate of the indicated layer:

E-- "-•.(15)

s0 depends on component tensile force P.

PA.
,-• (a)

where F is the area of cross section of the component after chemical

milling.

As shown in [2], the residual stresses in the component after

unloading can be determined by the formulas

. ,(b)
@I Mey - ,- E (-;y. o

(c)

where x is the remaining curvature of the middle layer after unloading.

According to Fig. 1, the vector of resultant force of internal

stresses will be written as

"P-- "','-ady. (d)

Jointly solving equations (a) and (d), taking into account (b)

and (c), after a number of transformations we finally obtain the

formula for determination of the magnitude sought:

6 Pý401 (1-6)-.. -('.7T+ - •

Considering a particular case of bilateral uniform chemical

milling, i.e., considering y " Y7 cx •X, equation (13) will be

written in the form of
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where V = is the relative ordinate of the boundary of zones of
ela,04- an lstC 04tra4ýns W44th reSpect- to he4-ght2

of section. Expressing all relative magnitudes in
this equation through component thickness after
chemical milling, equal to 2yX, we have:

i - -I -- to + (I --') 1,-) "

i.e., we have obtained the known formula that determines the

residual radius of curvature in components obtained by the method

of elastic-plastic bending [2]. Consequently, the residual radius

of curvature of the component depends on the curvature created in

the active stage of deformation and does not depend when the bilateral

uniform decrease of thickness took place, i.e., before or after

shaping.

Thus, for the given case we have found analytic dependences

for determining the basic geometric parameters of a component after

chemical milling.

The solution of the questions under consideration for other

cases of chemical milling in principle is similar to the one presented.

Therefore, we shall give final formulas that determine the relative

radius of curvature ýx of a layer that is neutral during pure bending,

which remains after chemical milling, and parameters y0 and E0 uhich

characterize its position.

Case 2 (section after chemical milling consists of part of the

elastic zone which located on the convex side, and part of the

plastic zone which is located on the concave side of the component)t

•= m Ta!

73 - TI -

I -?•1+ ) ._ 2 ' (±7)
2 a nYON+

A _ V V - ' ' .,
41 " + " ;'>. - )

2, 3,f(. Y.
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where -'K 12-mb' . .
CS a Z( ) +, )

4
.7.m 7 (i=,~.d) .. (8

4. 
VmJ

la3 4

Ymnx arid Y correspondingly are the maximum and minimum ordinates

of boundaries of removed layers.

In the system of equations (17) and (18) the upper sign pertains

to the case when and Ymin are divided by the middle line of

cross section of the component before chemical milling, and the

lower sign, when Ymax and Ymin are located on one side of the middle

line of cross section of the component before chemical milling.

Case 3 (section after chemical milling consists of part of the

elastic zone which is located on the concave side. and part of the

plastic zone which is located on the convex side):

-- ' - WI +1a,

2

- 21-RK-• j+'-"+' -_ v2 YT. (19)
W.

- , + I)• I , ± 2•(, - 7) 2
- . K- +, ,+ , -_ --268( += 1) P 1 Y t

With respect to the double signs the above-mentioned remark is valid.

Case 4 (section after chemical milling consists of part of the

plastic zone which is located on the concave side of the original

component shape):



, 2"-X Ze'-: Y, + Y, Y + -
Yo (, + ,)E, Y•.- 5 .+ 2 2 (20)

- K +1 T.+go--- - V ",+J'.S -- 2"E (,, + 1)" E4_ 2 t 2-

w1here +_2, (Y. 1 + m n., - y,1+1 1

T;E- n+ 2 2 +.1) ' (2J.)

7.8 1L -7= 1" (Y..M + Ymin) (Y1.5a - 7omin)
3 4

Case • (section after chemical milling consists of part of the

plastic zone which is located on the convex side of the original

component shape):

,7;- ,;

- 2'+KE' ,:+_.- - Y,+ Y,+Yu. (22)

. i + . -. +-). ,re 2 ) + .+2
- -""+.

211 (n 2- + 1), V . ] ye JM

Thus, formulas are derived which make it possible to determine

the remaining curvature of neutral layer during pure bending and its

position after chemical milling for components with variable

thickness along the guide outline.
I I f

In these formulas, constants 72, Y2, 2' 7'yý which depend only

on thne magnitude of the removed layer for the case of one-sided

chemical milling, can be determined on graphs (Fig. 4, 6, 8).
1 it

Constants -y1, 7i', 7 , besides the geometry of the remaining section,

also depend on the mechanical properties of the material. For case

of one-sided chemical milling they can be determined on the graphs

shown in Fig. i3, 5, 7.

On the graphs of Fig. 3 - 8 and 10, along the axis of abscissas

the relative thickness of the removed layer , = is plotted.
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Obtaining Components of the Wafer Type

Chemical etching for obtaining components of the wafer type is

basically produced only on its concave surface, wherein the thickness

of the runner along the length of the guide remains constant.

The runner of the component after chemical milling can consist

of different combinations of elastic and plastic zones of defor-

mat ions :

1) plastic zone located on convex side of component, elastic

zone, and part of plastic zone,

2) plastic zone located on convex side of component and part

of elastic zone,

3) part of plastic zone located on convex side of component.

Equations of equilibrium of forces (8) for case I of wafer-type

components will be written (Fig. 2) as

_,-' .dy +L 6 eyd4 + ,,y*dy+ . -y1 dy-O.
A, - A - -

-Ty -, ',-.,.,,o

where , -

2.. '. -E .•-,•.

Fig. 2. Geometric parameters of wafer-type component.

Putting the values of a and a from (6) and (7) in these

equations and calculating the integrals, we obtain:

'Ga IIIIIIII I



Z- [~ E~( '

+1
+ T, K.,+ (--' 2 EX'Y(Y'- ýY,

-.L ,-Rof , + +I...(yi -)' -,÷ '-•= •()-

2

- Ei'y, - =oK '

()'+•+2 (k)3- - _,--_)

(h.+2 T +2(M,,-K:* x+2 _E(, -- •') 3 EYo+ .2

- + 2 + Y. 3) O Y-

J4+2 + 3U2y+

ER'Y2 22Kx n+ 2--2 -

-. () /___ -y h23 +2

After a series of transformxation• the equations are reduced to

the form of

Yo=•(,,+,)E..2_TQ-3fr) 2\--g- 2-L*(1-;-y)' (215)

" ' - " • ~2 -T 0 - .I )
2+ 3)• I •(-Y3Pl n-!

2)(aP+2)2)(A¥ 3' _ -E -. Y. -.2- 2

here t is ahe relative radius of curvatur e oqathe middle layer of
the component before chemical milling,

Sis the relative radius of cuzrvaturve of the layer that is
neutral during pure bending after chemical milling,

Y0= -2



By solving the system of equations (23) and (24) with respect

to •, after the corresponding transformations we will finally obtain

the formula for determination of the remp.nini curvature of the

component after chemical millings

?-. I -+ , (25)

Constants -i and 72 are determined by expressions

2 -- (1 -- 7 (l-'I

2 - (1 (26)
41 - T 4' - 3ý

and constant c. is determined by corresponding equation (14).

.1.6-

ig, 3. Gr.hn of the furct' .,

-- ,3 - :•\ N .-,

S•Mfo U mter.is D&61d (I . .

a .'. .vl, , , , , , , ,)



The position of the layer that is neutral during pure bending

of the component after chemical milling, with respect to the middle

layer of the component before chemical milling, will be determined by

equation (15); the magnitude of E0 for the case under consideration

is found with the expression

"%.EmI2[ (a +"1) ... 2 .T) l',-_. (?7)

For other cases of chemical milling of wafer-type components,

the solutions in principle are analogous. By omitting a detailed

description of the solution, we shall give the final results.

'U \ 7 7-.

109

6A56

Fig. 4. Graphs of function Y2= _Y=

= f(t., fcx).

Case 2 (section of runner consists of plastic zone located on

convex side of component, and part of elastic zone)

IGG



SO-(, 4-016 2-T,(1 -. ) 2! 2+

* 1-(28)
+

S K . " ' - - 1I - , - t +•

% +

where eta

t,- .. + ,1,--• T
P~r +2 2(-~-(:

2 -. " To _,0-V_) (29)

3

2-7.(1 F9) ____

I- 3 4p-To (1:F1y91

Constant c 2 is determined by corresponding equation (18).

The upper sign in equations of system (28) and (29) pertains

to the case when the thickness of the runner is more than half of

the thickness of the component before chemical milling and the lower

sign, when the thickness of the runner is less than half of the

thickness of the component before chemical milling,

Case 3 (section of runner consists of part of plastic zone

located on convex side of component)
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Fig. 6. Gra,,,±s of function 2- f(, x

Thus, for different forms of wafer-type components we found

analytical dependences which make it possible to determine their

asiC geometric parameters after ch- ca
11 v

Constants -y2' 2 y2, 3-y3, which depend only on the magnitude

of the removed layer, can be found on the graphs shown in Fig. 4, 6,
I i!

8, and constants "y, Y1 , 'Y1, which depend, besides the geometry cf

the remaining section, on the mechanical properties of the materials,

are found on the graphs of Fig. 3, 5, 7.

In the deternyix.ation of the curvature which must be given to

the component in the active stage of bending, in order to obtain the

given curvature after unloading and subsequent chemic&l milling, it

is necessary that the dependence - f(T , T )for different

materials be presented in the form of graphs similar to the ones

shown in Fig. 9 for material D16AT.



015

S- It

as\ 
N

Fig. 7. Graphs of function 1 f(t, zcx)
for materials DI6AM (----) and D16AT

Residual stresses in1 componenfts after chemical milling are

determined by equations (6) ana (',) which in dimensionless form

have the appearance:

U- y- in the elastic zone,

2zx 2r 0

K _n 1 1 1 I
•- n•• -;E (.- y i - n the elastic-plastic zone.

The diagram residual stresses which deipicts these equations is shown

in Fig. if.
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Fig. 8. Graphs of function ,2- V3-
- f(to Vcx).

As already was indicated, with the decrease of thickness of

material the instability of internal stresses with respect to moment

causes a change in curvature of the shaped component. Let us

consider the change of this moment during chemical milling of the

concave surface of a component.

With the removal of a layer within the limits of the extended

zone of the diagram of residual stresses (Fig. ib), a moment is

created which decreases the curvature. Upon further increase of the

removed layer the magnitude of additional unloading moment will

decrease.
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At a specific thickness of removed layer a moment is created

which increases the initial curvature whose maximum value at the

thickness of the removed layer will be equal to half of the thickness

of the component before chemical milling. A further increase in

thickness of the removed layer leads to a decrease of this moment.

This pattern of change of moment is confirmed by experimental

check of the change of curvature which was conducted for material

D16AT with a thickn ess of 1.5 and 2.5 mm (Fig. 10, 11, 12).

Fig. I-. Photograph of samples made
1- ~ from D16AT after chemical milling of

••'¶ ' the entire concave surface at a
different magnitude (t <t 2 <t3,

C) <n <n,!

3 -3

Fig. 12. Photograph of samples of the
wafer type made from D116AT after chemical
milling of the concave surface at a
different magnitude (t <t 2 <t3<t 4 , p4 <P

,I 7IL
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TECHNICAL NOTES

APPROXIMATE CALCULATION OF SPEED OF FLIGHT IN A SLANTED
DIVE AND DETERMINATION OF LOSS IN ALTITUDE AND

RANGE ON TIE DIVE ENTRY SECTION ON A
PROGRAM FOR A PILOTLESS AIRCRAFT

WITH TURBOJET ENGINE (TJE)

Ye. A. Kmklev

Definitions of Cyrillic Items

np= rect = rectilinear

MIV{FCC = MKGFS = Meter - Kilogram - Force - Second

BIm = inc = inclusion

nx = en = entry

The method of calculating the speed of an aircraft with TJE on

a section of slanted and rectilinear diving on the assumption of

constancy of air density and drag coefficient, and disregard of

engine thrust, is given in [I]. In the same place there are inves-

tigations of motion of an aircraft during dive entry and pullout with

constant overloads n = const and nx = const.

In this article we obtain a precise expression for calculating

the speed of flight in a slanted dive with large thrust weight

ratios: I. V. Ostoslavskiy's formula considers engine thrust as a

con:-.tant.

S.. .. .. .... .. I..



Fu.rthermore, the article gives expressions for determination

loss of altitude and flying range in the dive entry of a pilotless

aircraft based on one of the two proposed automatic pilot prograrms,

and gives recommendation on the selection of these programs under L;1

condition that the speed of flight can be considered constant. The

concept of overload n is introduced here as the designation of aY

certain limit of maneuverability or strength which should not be

exceeded in the process of motion of the aircraft, but whose assign-

ment is a basic criterion in the selection of a permissible program.

Inasmuch as programned motions of the aircraft which are investigated

in the article are riot flight conditions with ny = const, the results

obtained can be assessed as a certain supplement to that which is

already known in literature about programmed motions [2], and have an

independent interest in this sense.

1. Determination of Speed During a Slanted Dive
Taking into Account Engine

Thrust as a Constant

Equations of motion of an aircraft with TJE during a slanted

dive on the assumption of constancy of mass (m), thrust (P), and

drag coefficient (c.), which are equal to certain mean values for a

given small drop in altitudes, can be written as

,l 2 )sinO.,

y = VsinOB, x• Vcos o, 80= const.

Following the designations of [I], we will take

V IV I - dv Vsin0O=--1-DV_ stneo, (1.2)
d, de dy 2 dy

V2 _ 16 0 sinS
P ' (1.3)

pOs,,o0  (1.4)
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where P and G are in newtons, m in kg, r. I is conditionally considered

as the thrust weight ratio of an aircraft with WE in a dive,' and a 0

is the dive angle.

We shall place (1.2)-(1.4) in the first equation of '1.1); then

for determination of speed we will obtain a differential eauation

with dividing variables:

dva V32 k(! + (1-5)dy M. - - (I + RI)

Dividing the variables in (1-5) and integrating in given limits

from 2 to V 2 and from yo to y, we will finally findV6

Vol exp 2 (1.6)
V.1P(1 + V12

RP

where VO and yo are the values of speed and altitude of flight in the

iaoment of the beginning of a rectilinear slanted dive. If we put

n 0 and-2 = g in (1.6) for a check in the 14KGFS system, we willm

obtain exactly the saine formula as in [i].

Calculations show that the values of speed which were calculated

for a small drop in altitudes (< 10 km) according to the precise form-

ula (1.6), almost completely coincide with the results of numerical

integration.

2. Determination of Loss in Altitude and Horizontal
Range on the Section of Entry of an Aircraft

with TJE into a Slanted Dive
According to a Program

Among the possible programs for entry of an aircraft into a

slanted dive we shall consider those which transfer the aircraft from

horizontal flight into conditions of a slanted dive in a longitudinal

plane with constant pitch angle. A dive with constant pitch angle

ILI"



may be easily carried out by means of shifting the initial conditions

of stabilization of horizontal flight to slanted conditions by feeding

a constant programmed signal to the pitch control track. It is

obvious that from considerations for the guarantee of stability and

limitation of normal overload, a signal that is proportional to the

pitch angle during diving cannot be fed to the control track immedi-

ately and suddenly but should be sent out gradually with a certain

regularity, i.e., according to a program. The program of dive entry

with constant pitch angle may be either proportional to the sweep of

the control signal in time with a limitation upon achievement of a

specific value which is car'ried out by a time mechanism, or by a grad-

ual influence, quantized in level and supplied by a relay system

(Fig. la, b).

VG(tJ It is required to determine the

obt)W- )losses in altitude and horizontal

SL•-11~41!I4. range for the considered programmed

motions and to find correspondingly

Fig. i. the permissible angular velocity of

rotation of the programmer w or magnitude ki and the duration Lti of

pulses under the conditions that are assigned by the pitch angle

during diving (programmed signal $*) and the limiting permissible

normal overload n- ma

For a solution to the problem on hand we shall use the system. of

equations of motion of an aircraft in a longitudinal plane in varia-

tions with respect to horizontal flight [i], [2]. We shall assume

that at small angles of inclination of trajectory (< 450) the speed

of flight on the dive entry section changes insignificantly, i.e.,

V = V0  const, the mass of the aircraft is constant, and cos 9

cos V i, sin e 0 &. Furthermore, we shall assume that the
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automatic pilot is ideal and the motion of the aircraft with respect

to the center of gravity will be considered only as a balancing rela-

tionship, taking the angular pitch velocity to be approximately equal

to the angular turn velocity of the aircraft on the trajectory, i.e.,

Where by, in the automatic pilot equation it is possible to take

As calculations show, these assumptions are fully acceptable.

For instance, an increase in speed, found with relationships [1] for

the case of dive entry with ny = const, does not exceed 10%. The

short-periodic motion of the aircraft with respect to angle of attack,

in comnarison with the slowly changing program of dive entry, attenu-

ates extraordinarily quickly and almost does not render an influence

on the trajectory.

Taking into .ccount the remarks made, the initial system of equa-

tions of motions may be written as

o i- a. *- o+e..a•.

- -as (2.1)

+-4 +ij + 4*.( ivs.

where i•, i. are the transmission numbers of the automatic pilotz for the pitch channel,

S(t) is the dimensionless program of dive entry which
varies from 0 to 1,

ya +p
a = mV is the dynamic coefficient.

V0
We shall find an equation for the determination of angle e, by

excluding a, 5, and $ from the first four equations of [2.i]

(2.2)
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whe+re T N + is the time constar1ofwhere T- m

of the dynamic system "aircraft-automatic pilot." If we consider thl.

initial conditions as zero (horizontal flight), the solution in

expressions according to [3] will be

o(p)--s a (2.5)
IT' + 1)

where p is the transformation parameter in a Laplace integral.

The sought solution in originals is found for every program

separately.

A. Program for Diving is Worked Out with Constant

Angular Velocity (Fig. 1a)

Since in this case the representation for 0(p) according to [3]

is equal to

o~ p ) t , p ,( 2 .4 )

then in (2.3) going on to variable t by means of inverse Laplace trans-

formation, we will obtain the following expressions for determination

of angle e:
,

if the current time is less than the time of work of the programmer,

i.e.,

I~ 4 jand$ (1) I+ (e*- 1)1 (2.6)

for any moment of time after programmer stops, i.e., for t > tinc*
t.

Here k - inc and Lt = t - t. is the current time counted offT inc

from tha moment of achievement of limitation of the program.

180



For determination of the loss in altitude on the dive entry sec-

tion it is necessary to integrate the equation for vertical velocity

taking into account (2.5) and (2.6), and as a result, when t < tKinc

AY Y- -J,- T V. , 1 27
hk L2TI r

when t > tinc,

,A-V TV e4-
At (2.8)

-. TV. -kU- T(e--- 1) 0 - e- T ).

As can be seen from (2.5) and (2.6), angle 0 asymptotically

tends to its own limit, i.e., the programmed pitch signal ,*. There-

fore, for determining the moment of termination of dive entry of an

aircraft it is necessary to have some specific values of this angle

which are less than limiting. Let us assume that the angle of trajec-

tory inclination at moment At - At after stop of the programmer must

be equal to:

• = - •*. (2.9)

We shall place (2.9) in (2.6), and then we will see that

AliTin ], J (2.10)

and the total time of dive entry of the aircraft is

t_ -- t., + a:e. (2.11)

The horizontal range of the maneuver is also found here:

"Ax--x--xo__V0 1t. (2.12)

Now we shall determine the permissible angular velocity of rota-
t.inc

tion of the programmer t =i- and the "time of inclusion" k = Tnc
t inc Tn

at the given pitch angle of the dive and limitation on normal overload. ]I
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Let us note that when an aircraft follows a program for dive entry the

maximum angular velocity for a turn by angle 0 is attained at the

moment the programming stops, i.e., when t = tinc, after which the

angular turn velocity will only attenuate. Therefore, by differen-

tiating (2.5) and putting t = tinc, we will find that

= k-T(i - ek), (2.13)

and from the condition of the limitation of permissible overload

G (n - 1)Omax <_ V 02$4

If we now place (2.14) in (2.13), then there will be obtained an

equation for determination of permissible values of k depending upon

$*, ny, VO, T, G, m

-k bk, (2.15)

(n _-i)T
where b m is positive in virtue of the negativity of

the overload during dive entry of the aircraft. Equation (2.15) was

solved graphically; a dependence of the form k = k(b) is represented

R in Fig. 2.

1 •- -&?m (a) Thus, by finding k with respect to b,

3Na4 K we will always be able to determine the

angular velocity of rotation of the program-

S- mer, and according to (2.5)-(2.12) we can

-- - - find the change of the angle of inclination
025 0.5

Fig. 2. of the trajectory and the loss in altitude
KEY: (a) region f
permissible values of and range at any moment of time.

B. Step Program (Fig. Ib)

In the assignment of an automatic pilot program in the form of

a certain step curve it is necessary to know how to calculate, on the
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basis of the given criteria the permissible magnitude and duration of

steps, and also the trajectory elements of the programmed motion. We

shall first find the elements of the trajectory. As earlier, we shall

start from the determination of angle 9. Considering the program

depicted in Fig. ib as a step influence composed of a series of equal-

duration Lt pulses, of magnitude k1 $*, and fed consecutively in moments

of time iAt, and a single influence applied in moment of time t

= tinc * (n - i) Lt, for a representation of the influence according

to the superposition principle [4] we will be able to write the fol-

lowing expression:

-+ +• . P'
,+,w _+'•' -k, (2 .16 )

p p

Further, by making an inverse Laplace transform of expression

(2.3), with the help of Tables [31, where (2.16) is placed instead of

G(p), we will obtain a dependence for angle e:

I(U)_ _OO kcl K:Le -ne (2.17)
c-I

where i = 1, 2, ... , n and when t < i~t t -- CLt = 0 for all • -

= i, ... , n.

The expression for calculation of the loss in altitude during

dive entry will be found after integration of the equation for ver-

tical velocity in the calculation of (2.17)

AY -Y e OV.I[i- (C-- 1) Ail -
P 7.-I

' -KtC")- (I-'- -e (.8

where i =1, 2, .. , n and when t < iht t- Ct =0 for all

4 _ . ., n.

The horizontal range can then be calculated by analogy with (2.12).



The magnitudes of pulses, their duration, and quantity will be

found from the condition that at the moment of supply of each control

pulse the maximum angular velocity of turn of a pilotless aircraft

with respect to angle of trajectory inclination must not exceed the

permissible value determined depending upon the available overload,

i.e., from the condition of

ei(t) <_ 8max (permissible), (2.19)

where the right side is determined according to (2.14).

The expression for angular velocity of turn of an aircraft in

any moment of time will be obtained if we differentiate (2.17), i.e.,

t-•- I)A'

= __.. (k, - k,_,) e T (2.20)

where i = 1, 2, ... , n and when t < iLt t -- CLt = 0 for all C

= i, ... , n, and for maximum angular velocity, if in (2.20) we place

the value of current time t i max (i -- 1) At at the moment of supply

of the next pulse

(t Ik,-,,_ (2.21)
C.-3

where i = 1, 2, ... , n and when t < iAt t -- Lt = 0 for all C

... , n.

In the calculation of (2.21) from (2.19) there follows a rela-

tions;hip that connects the limitations on each of the pulses with the

magnitudes of all preceding pulses

(k -: kC ,. (2.22)
C-1

where 1 = 1, 2, ... , n, Lt = 0 when i = 1, and b is found according
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On the basis of (2.22) the magnitude of any pulse may be found

as a function of only its number, duration and parameter b; namely,

k, < b,

kI Kb - (i - 1)e ]. (2.23)

The quantity of pulses required for the automatic pilot to gradu-

ally process a given programmed pitch signal $*, is simply connected

with pulse duration and may be easily found from (2.23) if we consider

that the last signal of the program is characterized by the value of

k n 1.kn

We will then be able to write

-T
1 = b~n - (n - l)e tI, (2.24)

whence it follows that permissible n should satisfy the relationship

> (2.25)

b(--*-* ,bi(I--.- )I

and, conversely, on the basis of given n from (2.25) we will be able

to determine the permissible pulse duration:

At>Tl bn - 1 (2.26)

It is obvious that due to the arbitrariness in the assignment of

one of the magnitudes At or n the time of processing of the program

tinc = (n - I)At, which is necessary for the achievement of the same

value of the programmed signal, will be different. However, as one

may see in (2.25) and (2.26), with the increase of quantity of pulses

it will decrease and asymptotically approximate its own limit according

tco logarithmic law. By using this property it is possible to find,

in a certain sense, an optimum (with respect to high-speed opera-

tion) program by selecting n and At which respond to tinc, close
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to limiting. For that it is possible to assign a gradient of decrease

in operating time of the program depending upon the amount of pulses

7w!xe jinc (2.27)

-ere T , -ý - are the dimensionless time of inclusion

inc T T

and pulse duration, c = is the gradient), and either, by solving

(2.27), to determine optimum n = n(b, c), or on the graphs of tin =

7 inc (n, b) to find n - n(b), for given c. Practically, when

c = 0.05-0.1 t. will be limiting. Optimum n = n(b, c), which is
inc

found by the second method, is given in Fig. 3. The method of eval-

uating a programmed maneuver entry may be the following: depending

upon b, on the graphs in Fig. 3 we find the optimum (with respect to

time of inclusion) n = n(b, c), then with (2.26) we calculate the

pulse duration Lt; according to (2.23) we construct the program itself

ki = ki(b, Ltn); finally, with (2.18) and (2.12) we calculate the

losses in altitude and range.

n Further correction of programs construc-
206.= ted according to the proposed system as first

approximations should consist mainly in the
0.0

-0 -selection of automatic pilot transmission

ratios, that ensure the given quality of

s t stability of short-periodic motion, and can

Fig. 3. be carried out with the help of known methods.
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SPEEL OF P'ROPAGATION OF A F1Alj IN AN OPEN AND
LIMITED FLOW OF UNIFORjI4 7XUIf 'ru

V. M. Yermolayev and A. V. Tlaiantov

Definitions of Cyrillic Items

T = f1 = flnMe

H n = normal

M i
ceH see

The process of bilrnin- in engine combustion chambers occurs in

a flow limited by the walls, The majority of experimental research

i_: burning till now was carrieu out in an epen flow. The question of

the possibility of using the results of an experiment which were

obtained in an open flow, in examiining the processes of burning in a

flow limiited by walls, has not been considered by anyone.

Tnis w01'1k analyzes this question and gives the results of a

si ecially set up experiment.

Burning in a free flow attracts attention by the simplicity of

the conditions of' the experiment. The torch is open; therefore, it

is possible to observe it and to easily fix the position of the flame

front and the burning zone. However, the possibilities of studying

burning ii) a free flow are restricted by tlhe limits in which the flow
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II
p:roserves its characteristics and composition. Usually these limits

c~jin5itut.u severai gauges of burner pipe. The advantages of studying

burning in a, flow that is limited by walls, with the extreme complexity

of the experiment, are the invariability of composition of mixtures,

the unlimited possibilities of studying the process through the length

of a pipe, and the proximity of the experiment to conditions of the

process in chambers.

Burning in an open and a limited flow has certain inherent gas-

dynamic peculiarities. In the case of an open flow the gases have the

possiblility of expanding in transverse direction, since they are not_

limited by walls. There is no drop in pressure in the direction of

flow in the surrounding space; therefore, the speeds of the combustion

products and the fresh mixture in axial direction are kept practically

unchanged and equal.

The presence of limiting walls in a closed flow excludes the

possibility of expansion of gases in transverse direction. Due to the

continuous feed of heat there occurs expansion of gases, a drop in

pressure along the length of the chamber, and an increase in the rate

of flow of combustion products and the fresh mixture.

These peculiarities of flow can render an influence on the pro-

cess of burning.

First, the change of the rate of flow in the course of burning

in a limited flow may cause a change in the form of the flame front

and the entire torch, as compared to a torch in an open flow, even

with the preservation of constancy of the speed of flame propagation.

However, the dimensions of the surface of the flame front, in accord-

ance with Michelson's law, will then remain constant. Actually., the

volume flow rate of mixture (V) is the product of the speed of flame

propagation (ufl) on the surface of the flame front (F);



v-u,P.. (1)

With the equality of floiw rates and the spIeed of fl.8ie propagation fI".'

bot}i. cases F = const is inevitable.

In Fig, I the sol.d line depicts the position of the flamtie for a

flat torch in an open flow with ignition on the periphery; the dotted

line indicates position of the flame in a limited flow in a channel

of constant size. The point of closing of flame fronts shifts due to

the change in form of the generator (front), with its constant length.

As calculations showed [1], the shift is usually insignificant (< 501).

Consequently, even for a turbulent chamber that is variable in length,

uucli a shift will render no perceptible influence on the speed of

flame propagation.

Fig. 1. Position of' flame in an open
flow (-- and in a chamber ( -
KEY: (a)ignition points; (b) fresh
mixture; (c) flame fronts; (d) bu-ning
zone.

Secondly, a change in the rate of flow can render a direct influ-

ence on the speed of flame propagation.

in general, the speed of flame propagation ion a turbulent flow

of uniform mixture is a function of the pulsatio-.nel rate of flow (w'),

the normal speed of flame propagation (u,,), and the degree of expan-

sion (0):

"a. -f-Wa,$). (2)

The normal speed and the expansion ratio are phyie•`al-chemical charac-

terisctics of the mixture and upon transition from an open flow to a
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cloovd one with other parameters being constant do not change. Thus,

the single parameter that determines the speed of f-lame propagation

and can be changed depending upon the conditions of expansion is the

pulsational speed.

In a flow that is limited by walls the speed of the mixture

increases with burning out. If we consider that the pulsationai speed

follows the change of the rate of flow, then various sections of the

flame front will correspond to different magnitudes of pulsational

speed and the considered section is located even further away from the

ignition point. The biggest increase cfn be expected in the section

that is close to the point cf closing of the flame front. In this

section, burning out for the most commonly used parameters of flow

and mixture constitutes 0.05-0.1. The increase in the rate of flow

of fresh mixture will be equal to 0.1-0.2. If the pulsational speed

also increases by this magnitude, then the speed of flame propagation

at the point of encounter of fronts will constitute 1.1-1.16 of the

initial speed, since uf l  [ (wI)0.812]. The average (with respect to

the torch) velocity of flame propagation increases even less and will

constitute- 1.08 of the initial velocity, since burning out and growth

of the rate of flow along the length of the chamber occur in an

S-shaped curve. In reality, the pulsational speed in a convergent

flow will lag behind the chan-e of the rate of flow. This. in partic-

ular is confirmed by experiments with geometric compression of flow.

Consequently, the change in the pulsational rate of flow anid the rate

of propagation of the flame will constitute an even smaller magnitude.

For a cor.mparison of the magnitudes and dependences of the rates

of flame propagation in an open and a closed flow we set up special

experiments with a uniform gasoline-air mixture. The set up is
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selected in such a manner that a further increase of it did not change

tlhe recorded position of the flame. Consequently, in the experiment

we dete.rmined the front boundary of the burning zone - the flame

front - the ignition front. With the dimensions of the flame surface

and volwume flow rate know from processing of the photorecordings, with

Ia rci~ationship similar to (1), we determined the rate of flame propa-

gation.

The experiment was conducted at atmospheric pressure and temper-

ature of the mixture 4230 abs, and the composition of the mixture

varied from a = 1.0 to a = 1.5, while the rate of flow varied from 20

to 80 nVsec (see Fig. 3 for results).

U,

NI

LI I I I II • ]
Fig. 3. Dependence of rate of flame
propagation in an open turbulenL flow
on mixture composition for different
rates of flow.

On the graphs in Figures 4 and 5 we have plotted the valt.es of

the rate of flame propagation in a turbulent flow as a function of
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]lij:ture compositioln: the 1-,o1w cup Ict L- vr alues ofu wi ii e we it

obtained in an experiment with an opcen lc wi th removed combustioni

chamber; the curves -- accordl. 1 to th" results ox expet'iments ii0 a

flow limited by walls - in E combu:sti-.on ceiumbcr.

From a consideration of the ,raphs a conclusion can be made aboelL

the insignIficant disuln tion of the mccaiii udes of rate of flamec

propagation Ini an open and limited flow (< ,,) The character of thjc

dependences of speed Ufl :n dilfore-,n paramiiieters for a chiamber ancd

a free flow is absolutely identical. As should have been expected,

the ,'ate of f'lame propagation in the chauiwcer is somewhat greater tuhan

in an open flow. However, this distinction is less than on the assuiip-

tien of the proportionalit.y of the pulsation rate and thc rate of flow.

con.sequently, the pulsation rate in an accoDerawldU flow changes sloer'

than the rate of flow.

An indlýitct judgemeit about thte insignificant change in the r'ate

of flamle propagaation by means of accelcra-Lion of flow iii a chamber may

be als'o made from an analysis of the results of the experiment of

V. P. Solntsev [3]. In [3] Soliitsev investigated the process of

comoustion of a uniform gasoline-air mixture beh]lind linear stabilizers

in conditions of a closed flow. Thie investigation was produced in

20-e x 175 at nor'mal pressure and temperature of 400 abs . The rate

of flame propagation was determined by the angle between the surface

of the flane front and the direction of flow in a nunber of points on

thc cone length. It was determined that the local speed of flame piroj-

a-at ion on the length of the chantiber changes in proportion to the

pulsational speed determined in a cold flow before burning. This means

that the process of burning does not cause a noticeable change of

pulsational speed of the forward flow on the cone length of the closed

flame fronts.
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The dependences of speed of flame propagation in a free turbulent :

flow were experimentally studied in the works of L. S. Kozachenko [4],3

A. V. Talantov [5], and other authors.

The results of the experiment of [5] for a wide range of initial

conditions during burning in an open flow can be described by the

dependence
a,

where A = 1.

As a result of treatment of experiments of our work (2], for a

chamber we obtained the dependence

where A = 1.

"The distinction in dependences was very small.

For a comparison of the results of the experiment in a closed and

open flow the data of different authors are depicted in coordinates

uf
of the form u- e = f (Mg. 6). These coordinates ensue fromUn u-n/
the theory of burning in a turbulent flow. It is not difficult to

see that all data are grouped in one region, practically near one curve.

Thus, on the basis of a consideration of the peculiarities of the I-

process of burning in an open and limited flow of uniform mixture and

an analysis of the results of experiments described in literature and

specially set up by us, the following conclusions can be made.

The magnitudes and the character of the dependences of rati of

flame propagation in a free and limited flow of uniform mixture differ

insignificantly; in first approximation this d.istinction can be disre-

garded. Consequently, in calculations of combustion chambers of the

,CI
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Fig. 6. Rate of flame propagation in a
turbulent flow of uniform mixture according
to various authors in dimensionless coor-
dinates.
KEY: (a) plane et on pipe cutoff; (b) A. V.
Talantov [5); (c) L. S. Kozachenko [+4; (d
closed chamber; (e V. P. Solntsev 3); Mf
closed chamber; (g) our experiment.

straight-through flow type, which operate on a uniform mixture, it is

possible to use the dependences of rate flame propagation which were

obtained in the experiment with a free flow.
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INVESTIGATION OF AN ULTRASONIC GENERATOR OF A

LIQUID FUEL

N. S. Lamekin

Definitions of Cyrillic Items

CT = j = jet

p = r = resonator

C = n = nozzle

rpag = deg = degree

nc = cs = constant section

BT = W watt

H-- = kc = kilocycles

TeR = cur = current

MaSe = max = maximum

References [1], [2], and [31 give descriptions, theoretical

prerequ.isites, and results of an investigation of' an ultrasonic

burner.

The energy source of this burner for splitting the liquid into

drops is an annular gas-current generator mounted in body 3 (,ig. I)
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and differing from the usual type by tie fact that -(he resonator

cavity has a rcund rod - ...uid whi.ch.. an annrular cavit....
B IT

The nozzle works with excess pressure in a jcf equal to 0.43.I0 -0-,

the degree of noncalculation n = . 4 ano M = 1. Under the actionPa

of ultrasonic oscillations that appear in resonator 5, the jet of

liquid at the radial clearance outlet 4 is broken up into drops.

In distinction from the generators of Bergman [4] and V. P. Kurkin,

tLe investigated generator is significantly less in weight and is

noiseless, which excludes the necessity of protective means.

IUp to now the physical nature

of oscillations excited by an annular

generator has not been studied and

there are no theories, and methods for

calculating the parameters of con-

Fi g. 1. Diagram of burner structions. Assuming that displace-
with generator. 1 - body,
2 -- entry of liquid into ment of air particles from the posi-
burner chamber, 3 - body of
burner, 4 - radial clear- tion of equilibrium C is proportional
ancQ. for outlet of liquid,
5 - Cenerator chamber, G - to cos (nt + c), it is possible on
anmular nozzle of generator,
7I -- generator rod, 8 - inlet the basis of the theory of plane waves
channels for air.

[5] to write the differential oscil-

lation equation in the form of

PC + -o. (1)

where a is the speed of sound.

The solution of equation (1), taking into account forced oscilla-

tions of given frequency u/2r, when the axis of the resonator at point

0 supports an oscillation of < A (cos wt + c), and the opposite

enId of this resonator at a distance of x = Z is closed, will have the

'foll~owin form:

I I I I I I I I I A.



- - .sin -Y ) -Cos (a/ + C).

Howevcr, equation (1) does not consider the losses in the resonator,

which are connected with radiation of spherical waves at the open end.

Therefore, it follows to find the section *, where the transition from

plane wave to spherical is carried out. On the section before this

trcansition we shall write the velocL t, potential

A cos k( X), (3)

where k is the wave number k 1 = .

Using an electrical analogy we shall find the magnitude of flow as the

product of the rate of flow and the inlet area of the resonator

q= F, (4)

the velocity potential at the point where x 0, will be

Then A cos kI. (5)

Acoehf--.k.FA scno Mi.

Fin-•ly we have: (6)

The transcendental equation (6) is solved graphically (Fig. 2).

The points of intersection of lines y = x = Vk with the curve

y = cot x cot kZ will give the roots of equation (6). Considering

that 4+ is m-•all. wC Shall obtain a second solution of equation (6)

k ( I + @)=m + ½.Tr, (7)

where m is an integer.

The solutions of equation (6) and (7) allowed us to calculate the

length of the resonator Zr" The resonator is designed in such a

manner so that it is possible to change its length in accordance with
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the required frequency. The powers

- and frequencies are measured

- - - depending upon the wedge angle of

_ 1 Yi X the resonator y, the distance of

- - - - - the resonator from the nozzle

-.. -'lax cutoff A, the material of the

I -N resonator walls, and the drop in
' e

- -air pressure in the generator.

- -- An investigation of a gen-

- - -erator model, and then a generator,

1727I lIl UUI 1f'll' I' l, was conducted on an installation
1-1k 1 0 W ~in~ -1-1151I0 1*- t

whose diagram is shown in Fig. 3.

Fig. 2. Graph for the solution We obtained the dependence 0
of the equation cot k1 = 7Pk.

= f(p), i.e., we found the deflec-

tion of the jet with the change of ambient pressure, and we also

studied the boundary layer effect x0 = f(p). Separation of the

tion of a generator model in pipe T-2. 1 -

metallic insert, 2 - attachment, 3 - model of
generator, 4 -- branch pipe for attaching model,
5 -- butterfly valve.
KEY: (a) shadow installation TE-2o; (b) model

of generator, 3; (c) T-2 section; (d) to vacuum
pump.



Fig. 4i. Deflection of gas jet flowing from
nozzle of generator model depending upon pres-
sure in pipe e =f(p).

05 10 is

Fig. 5. Separation of boundary layer
dependiný upon deflection of gas jet

boundary layer occurs at length x 0 from the nozzle cutoff. A picture

of the process is represented in Fig. 4t.

Figure 5 shows the dependence x 0 = f(e). On the basis of the

obtained results, the diameter of the resonator can be recommended
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dr

within the limits of i < d < 1.2. The experiment established that
dn

the power and frequency of the generator with the change of wedge angle

y remain constant..

Investigation of the generator was conducted on an installation

whosp diagram is given in Fig. 6. Before beginning the test the

generator was assembled in body 4 so that its clearance A was estab-

lished in the focus of parabolic reflector 6. The generator was

fastened to housing 6 and was joined to the compressor through filter

I and receiver 3 by a hose.

In the section that housed the mechanical drive of piezoelectric

transducer ii, we secured a paralon 9 for absorption of ultrasonic

waves from the parabolic reflector. This removes interference of the

face and lateral surfaces of housing 7.

The piezoelectric transducer was placed on frame 12. Its move-

ment along the radius was carried out by an electric motor 8 through

a transmission system which allowed us to fix the uniformity of the

sound field from periphery to center. Electric motor 10 ensured

rotation of frame 12 and, if necessary, moved it along guides A and C.

In one turn of frame 12 the piezoelectric transducer moved 10 mm along

the radius, thus exhibiting the uniformity of the sound field around

the circumference.

The experiment used the following equipment: amplifier, milli-

voltmeter, frequency-spectrum analyzer, and sonic pressure recorder.

Air pressure in the generator was controlled by manometer 5.

In the process of testing we investigated the influence of the

length of the resonator L r and its distance from the nozzle cutoff A

on the acoustic characteristics of the generator. We obtained the
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dependences W = f(A) and v = f(A) when I r = const, and also W =f(Ir),

v = f(Ir) when A = const, as represented in Fig. 7 and 8. As can be

seen from Fig. 7, maximum power is obtained for the generator with

Zr 2.5 and A 2.5 mm, and maximum frequency, for the one with Ir =

5.0 and A = 3 mm. From the graph it is clear that minimum power is

registered for the resonator with chamber Ir = 7 mm, and frequency,

r = 9 mm. The generator that operates with A = 1.5 mm and different

chamber lengths gave the lowest power, while the lowest frequencies

were given by the generator with A = mm.

Fig. 6. Diagram of installation for removal of the
acoustical characteristics of a generator.
KEY: (a) controlpanel; (b) motor; (c) reducer;
(d) air.

The measured frequencies with different • r differ from the

theoretical ones by no more than on 5% (see table). Coincidence of

data of the experiment with theory is obtained when the resonator is

located from the nozzle cutoff at a distance not less than * (6) and

(7).
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Fig. 7. Dependence of generator power
and frequency on the change of clearance
A W = f(A)i y = f(A) with constant

length of resonator chamber I = const.
r

St0

II. • • -•LO• a 34, -. V•db(KM)(a);

Fig. 8. Dependence of generator
power and frequency on the change
of chamber length W = 4(Z, r v

= f(Zr) with constant resonator
clearance A\ = const.
KEY: (a) wood (maple); (b) tex-
tolite; (c) organic glass.
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Table

a a

Amm Ir Vex Vfl = m dr VP= 2(lr +7 ) 6%
cm cps cps cps

2 0.8 33000 39100 31500 4.6

2 0.9 28000 348oo 29400 4.6
2 1.0 19000 31300 18200 k.2

By reconstructing the set of curves W = f(A) in dimensionless

coordinates, we can obtain a curve that is approximated by the equation

I - AC-- (8)

with coefficients A = I and n = 0.02.

By assigning the generator power, we find dimensionless parameter

= cur Mxmmi
W- Maximum power is selected for the corresponding ireW = = max

The generator ensured reliable work with a frequency from 10 to

50 kilocycles, and also a uniform sound field both around the radius

and also around the circumference. Its efficiency was 6%. The acous-

tic characteristics of resonators made from copper, textolite, organic

glass, and wood are analogous to the characteristics of resonators,_

made of steel. We have experimentally established that high-frequency

oscillations of the generator originate from oscillations of a column

of air in the annular cavity of the resonator.
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INVESTIGATION OF A PARTIAL TURBINE

V. N. Zanadvorova and V. A. Podgornov

Definitions of Cyrillic Items

cp = av = average

reom = geom = geometric

aA = ad = adiabatic

OnT = opt = optimum

B = w = windage

Mamc = max = maximum

In the designing of turbines with low gas flow rates there appears

the necessity of employing fractional or partial gas feed to the rotor

wheels.

The characteristics of turbines with partial feed have a number

of pecularities which are explained by the forming of additional losses

of energy which are known in literature under the name of windage

losses and knocK-out losses.

This classification of losses in a partial turbine, which is

formal to a certain extent, does not exclude the complexity of the

'as-dynamic phenomena that accompany the gas flow in it. Thus, upon

introduction of partialitity the internal turbine performance q. is
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lowered due to

i) the fan action of the moving blades that do not receive a jet

of working gas at a given moment,

2) the friction of surfaces of nonworking cascade parts against

the gas,

3) the irregularities of gas parameters along the active arc of

feed which causes the phenomenon of instability,

4) suction and leakage of gas from the active feed arc to the

inactive,

5) discontinuity of gas entry into the partial wheel, as a result

of which, in the extreme channels the gas on one side of the feed arc

is accelerated, and is braked on the other.

Total lowering of ni is not caused by the influence of each of

these factors separately, but by their interconnection.

For turbines with different geometric and regime parameters the

influence of partial feed on the characteristics is unequal. The

existing methods of estimating energy losses from partial feed are

based on an experiment with one or several types of turbines (stages)

and do not consider all factors that affect the losses; therefore, the

use of recommendations of different authors for calculation gives a

noncoincident result.

For accumulation of experimental

data that characterizes losses with

partial gas feed, we conducted an

Sinvestigation with a single-stage

turbine.

We tcsted an active turbine,

whose blading diagram is representedFig. i. Diagram of turbine
blading. in Fig. I. From the nozzles the air
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flow emerged at an angle of a = 240.

Moving blades of symmetric profile (Pi geom = 02 geom - 270) were

equipped with a tape band.

In the process of testing we changed the degree of partiality

from E = 0.1 to E = 0.5 by covering a group of nozzle channels from

the inlet and outlet sides.

The characteristics of the turbine were taken at a constant drop

that corresponds to Xad - 0.81. The degree of reactance on the average

diameter was equal to zero. The change in parameter u/cad was carried

out by changing the turbine speed by means of changing the shaft load.

Tests were conducted with different combinations of the magnitude

of axial 5 a and radial §r clearances.

As a result of the tests we obtained curves of change of effective

performance je from c u s, 5a§ 5r (Figs. 2, 3. and 4).
Cad

1 .0

NN r .

Fig. 2 Turbine characteristics when - 0.5.
1) 5 r = 1.2,0 6a =4., 2) 5 r = 3s 5a = 4s 3) Or=

S 1.2, 5a = 1O.*

*Here and in the following notations under the figures the
clearance values are given in mm.



The given characteristics show that a decrease in the degree of

partiality lowers the maximum value of Tie and leads to a decrease in

(Cd) opt that corresponds to it. An increase of both the radial,

and axial clearances significantly lowers Tie at all values of the

degree of partiality. In this case, the greatest lowering in perform-

ance is observed under optimum conditions.

Inasmuch as axial and radial clearances render such a significant

influence on the characteristics of a partial turbine, it. is important

to estimate the lowering of its performance with one of these clearance

sizes.

02

Fig. 3. Turbine characteristics when E = 0.3.
) r = 1.2, 6a 4 mm, 2) 6r = 2, 5 = 4 .mm,

3) 5r =3, a = 4 mm, 4) 5 r = 1.2, 5 = 7,

5) r = 1.2, 5a = iO.

Under optimum conditions the performance of a partial turbine is

2-12,
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Fig. 4. Turbine characteristics when s = 0.1.
1) 6r = 1.2, 5a 4, 2) Dr = 2, 6a = 4, 3) 6r

= 3, Da = 4, 4) 6r = 1.2, 6a = 7, 5) 6r = 1.2,
a =10.a

where 7e is the effective performance of this turbine at full
gas feed,

ew is the coefficient of windage losses of the partialturbine with 5r = 0 and 6 = O,

ýa' ýr are the loss factors, caused by the presence of corre-
spondingly axial 5a and radial 6r clearances.

This classification of losses in a partial turbine is conditional,

but from our point of view it is a convenience. Unconditionally, each

o' the three loss factors in turn depends on many factors, geometric

and regime, including the degree of partiality s.

Figure 5 shows the trend of curves '1e max (Oe tunder optimum

conditions) with a change in the degree of partiality at different

axial and radial clearances. Here the dotted line shows curves

Qe max = f(e) when ba = 0 and 6r = 0, which were obtained conditionally

by moans of linear extrapolation of experimental curves
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Te max = f(S aE) and ne max = f(Sr' e)"

The dependences shown in Fig. 5 make it possible to quantitatively

estimate the influence of axial and radial clearances on n e of the

test turbine. For every value of the degree of partiality E

where index i corresponds to the value of the axial and radial clear-

ances that take place in the experiment. A change in the degree of

partiality, as already indicated, causes a change in a and r . These
a r

dependences are shown graphically in Fig. 6, and from their considera-

tion it is clear that with a decrease in s the influence of clearances,

especially the radial, increases.

(21 ~2

'001, ."0

a)~~0 Lr=12 b

a al 01 43 44 as E 001 02 4)% 11 as E

In order to obtain the values of ý w it is necessary to know

ie max when E = 1. Because of its design, the test turbine did not



allow us to carry out full gas feed.

J- On the basis of available reference

0.2 1•- " - material it is possible with an

accuracy that is sufficient for0.1.

practical purposes to consider that
at 020. in the range of 0.3 < s < i the

a

turbine performance under optimumoJz

conditions changes in proportion to s.

If, by taking into account this
0A "assumption, we extrapolate curve

- a' o o.s a,, as -ie max = f(s) to the value of s = 1,

b then

Fig. 6. Values of coeffi-
cients a and er for dif-
ferent s. Such extrapolation of the

a) 1I)16-4, b) 1) 4,=2. experimental curve of ej was2) a- =7, 2)O=3, e max
3) Q to. 3) =.2. performed for 5 = 4 mm and 5 =

a r
= 1.2 mm, and Fig. 7 shows the depen-

dence ofaw on E.

It is interesting to compare the

results obtained in the, experiment

with the calculation data.

4A GA as Calculation with the formulas

Fig. 7. Values of given in different works was produced
coefficients w for by taking into account the actual
different E.

value of -C• for every degree
cad/opt

of partiality. Figure 8 graphically shows the results of the calcu-

lation. Here, for comparison, our empirical curve ew = f(E), is

plotted; the curve corresponds to performance loss when 5 = 0 and
r
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5 = 0. Unfortunately, most of the investigators whose recommendations

we used did not calculate the influence of clearances. Let us-assume

that in the experiments that were proposed on the basis of recommenda-

tions, the axial clearance, just as the radial, was reduced to minimum.

Comparison of results shows that in the range of 0.3 < c < 0.5

the recommendations of Stodola [7], Traupel [8], and Kerton [5] give

values of aw, which practically coincide with the ones obtainedby us.

When 6 < 0.3 the computed values lie lower than the experimental ones.

With calculation by the formulas of Terent'yev [3], Mezheritskiy [2],

Linnecken [6], and Chupirev [4] the values are 2-5 times lower than

ours and hardly differ from one another.

-m -a) The calculation of windage losses,

2 - ME(W on the recommendation MEI (Moscow Insti-

5*KEnw d tute of Energetics) [1], gives a result,
6-CTpoflA that exceeds the experimental data shown

OJ a-4"OOT d~1-1xeimna
2 in Fig. 8. If we assume that in the

5 - - -MEI experiments the axial clearance

S9Wconstituted a magnitude of the order of

5 mm, then the result of calculation byFig. 8. Dependence of
Sw on e (according to dif- the MEI formula will agree well with

ferent authors).
KEY: (a) Chupirev; (b) them in a range of 0.1 K s K 0.5.
Mezheritskiy; (c) In the process of carrying out the
Terent'yev; (d) Linnecken;
(e? Kerton; (f) Stodola; experiments we measured the static pres-
(g) Traupel; (h) our
experiments. sures on the disk diameter that passes

through the middle of the active and inactive arcs both on the gas inlet

side, and also on the gas outlet side. The experiments showed that

at all values of 6 the pressure on the inlet side is less than on the

outlet side. This can obviously be explained by the ejecting action

of the active jet which sucks gas from the cavity between the body
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and the disk. The larger the active arc, the bigger the mass of flow-

ing gas, and the more significant the evacuation on the inlet side of

the disk.

On the basis of distribution of static pressures we calculated

the axial force, which is increased in proportion to s and is directed

opposite the main flow.

The turbine flow coefficient, which usually, means the relation

of the actual flow rate to the theoretical, practically remained

constant.

Conclusions

Investigation of a partial active turbine showed that

i) the performance of a partial turbine depends not only on, the

degree of partiality, but also on the magnitude of the axial and

radial clearances, which agrees with the indications of A. D.

Mezheritskiy;

2) the maximum value of performance of je max at 5 a and 6r is

lowered with the decrease of s in the beginning slowly; then, starting

with s = 0.3, quite rapidly;

3) the optimum value of (cc) opt decreases with the decreasE' in

the degree of partiality;

4) the turbine flow coefficient with the change in the degree of

partiality practically does not change;

5) a comparison of the coefficient of windage losses found by us

with the magnitudes dete,ýM4-aned by formulas known from literature shows

that our experiments most of all correspond to the formulas of Stodola,

Traupel, and (in the region of e > 0.3) Kerton. Other formulas give

underestimated values of the loss coefficient, especially with small e.
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Obviously, the magnitude of the coefficient of windage losses is

influenced by a number of factors that are not considered by certain

formulas.
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HEATING OF A LIMITED VOLUME OF LIQUID
THROUGH PLATES

M. D. Mikhaylov

Designations

8- thickness of insulation,
x

x, = - current and dimensionless coordinate, respec-
tively,

a - coefficient of thermal diffusivity,

T - time,
aT

F - Fourier number,

t (x, T) - temperature at point with coordinate x for a
moment of time,

ta - adiabatic stagnation temperature,

t - initial temperature of thermal insulation and
fuel,

tf- temperature of fuel,

t - to0 t -t dimensionless temperature,
ta t0

: ~ti--tO
= - dimensionless temperature of fuel,

a 0

a, a-, a2 - coefficient of thermal conductivity, heat
exchange between fuel and insulation, and
between insulation and boundary layer,



2a

B1 = --X' B2 = - Blot numbers,

c, cf - specific heat capacities of insulation and fuel,

y: _Yf - specific gravity of insulation and fuel,

S - surface of insulation,

Vf - fuel volume,

K C')' $5 - criterion.
cf Yf Vf

During motion of aircraft with high speeds, as a result of the

sharp compression of air and the friction between the skin and the

air, a large quantity of heat is released. If flight continues for

several hours, the temperature of the fuel can become too high. Then

it is necessary to heat-insulate the fuel tanks which leads to an

increase in the dry weight of the vehicle. A question of determining

the relative thickness of insulation arises during the designing of

aircraft that are designed for a maximum flying range.

In connection with this we shall consiler the problem of heating

of fuel through an insulation with thickness 6. (Thermal rcsistance

of the skin can be disregarded.) Thermal insulation is taken as an

unlimited plate. On one side of the plate when x = 0 there is a

limited volume of fuel Vf. The initial temperature of thermal insula-

tion and fuel is identical and t0 = const. At the initial moment of

time v = 0 the temperature of' adiabatic stagnation in the boundary

layer is taken as t = const.

The temperature field of the plate is described by the equation

S(F>0, (1)

under the conditions



.(2)
Afte P.) + 3 Ilk (O, F) -- I,(F)I -- 0. (3)

PM ? - + AJ.-(!-( _ . 4 )

Equation (4) is obtained from heat balance under the condition

that the temperature of the fuel is identical everywhere.

Here P is a dimensionless coordinate that is the relation of the I

current coordinate to the plate thickness,

t -t
t t is the dimen3ionless temperature,

t F is the Fourier number,

B1 and B2 are Biot numbers,

e f is the temperature of the fuel,

K c f is a criterion that is the relation between the accumu-
cf f -Yf V lation ability of the insulation and the accumulation

ability of the fuel,

c and cf is the specific heat capacity of the insulation and the
fuel,

y and yf is the specific gravity of the insulation and the fuel,

S is the insulation surface.

For a solution to the problem we shall use a Laplace transforma-

tion with respect to variable F. The solution of equation (i) can be

represented in the form of

Fit. ,)--Ch chV7 + C,.h'A.V(5)

The boundary conditions (2), (3), and (4) can be written in the

following way:

+ "7-0.(6)
". Ao, ,) + a, IT(O, ,) - (,)! -, o.(7)

-ONO. ,) + , 0,((8)0 (8)
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By substituting 9f (s) from (7) into (8), we have:

-+ K) P+ (0, s) s(, s) - 0. (9),

After determining constants CI and C2 from (6) and (9) we placc

the obtained expressions in (5):

(KB, + 4)ch "2 V7B sh) I I

a[(( + ,~sK8 .chv-;+ (+A.& ÷±V7-sh~ (10)R( + 8)1, + } - I+

Applying the expansion theorem, we find

nF)-I _ KB. Cos + A-sin:'8 .1  - (11)

where

+ - (, + _ + -!it s., (, + + )oa.

4n is an infinite number of roots of the characteristic equation:

Ci P gI + D~. P (13

2B, P

The expression for fuel temperature is obtained from (8):

F,(S)- C, -5-- . (14)

Putting C2 in (14)

(S) KB,
8[1(+A #KB~cY-i+1(1 K)ALl(15)

with the help of the expansion theorem we will find

+ AA exp( ~F), (6o,(•-m I + .-. ,- .,,(16)

where An and 4n are determined from (12) and (13).
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APPLICATION OF THE PRINCIPLE OF MINIMUM
DISSIPATION OF MECHANICAL ENERGY TO

THE EQUALIZING ACTION OF LATTICES

Yu. V. Stepanov

Definitions of Cyrillic Items

p = lat = lattice

cp = av = average

A single solution to the problem of steady-state motion of a

viscous fluid in a certain volume is possible only with known boundary

conditions on the surface that is limiting the given volume. Inasmuch

as the boundary conditions are stipulated by the actual form of motion,

the problem loses its definiteness. In a number of cases the boundary

conditions are incompletely given. Then inside the considered vclume

of fluid an infinite number of mathematically equal forms of motion

can be realized. For an approximation to an actually existing form

of motion it is necessary to either make additional assumptions, or

apply some criteria, which would allow us to select from all the

mathematically possible forms of motion one form that could be observed

and actually realized.

As criteria, for selecting the possible form of motion, in the

solution of certain problems variation principles of maximum flow



rate, maximum flow of mechanical energy, minimum dissipation, etc.

are applied. During the last few years we have conducted work on the

use of variation criteria of stability in application to turbomachines

I1]. We have proved the principle of maximum flow of mechanical

energy. Its application, and also the use of a particular case, i.e.,

minimum dissipation of mechanical energy, make possible a new approach

to the investigation of motion in the flow-through part of turboma-,

chines in all operating conditions (including unstable conditions).

However, the value of these principles is more general. Many problems

of aeromechanics require the introduction of additional, in most cases

not always evident, assumptions. The application of stability criteria

instead of these assumptions can give more reliable solutions.

As an example we shall consider the possibility of application

of the principle of minimum dissipation of mechanical energy to the

solution of.a problem about the equalizing action of a lattice that

is placed in a flow with regular nonuniformity.

The question of the equalizing action of a lattice was examined

by G. I. Taganov and is discussed in [2].

In the solution (Fig. I) it was assumed that there are no tan-

6ential stresses between the streams and between the streams and the

walls during the motion of a fluiu in a pipe with different speeds.

The following constants were taken:

. a) static pressures in sections of the pipe which are located

far in front of and behind the lattice,

b) the axial speeds on a section of every flow tube in view of

the small initial nonuniformity and smallness of transverse speeds

as compared to axial speeds,

c) the '-esistance factor of the lattice Clat - through a

P lat
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lattice

Fig. 1. Schematic picture of
spreading of flow in front of a
lattice and behind it.

section of the pipe. (It is also taken that the dimensions of the

lattice cells are extremely small as compared to a section of the

flow tube.)

By jointly solving a Bernoulli equation and equations of diiScon-

tinuity and momentum, G. I. Taganov obtained, with the adopted assump-

tions, the magnitude of speeds in two flow pipes at a distance behind

the lattice, thus determining the quantitative influence of the net

on nonuniformity of flow.

It is necessary, however, to indicate that With the application

of the momentum equation additional assumptions are introduced. Thus,

the force of the influence of the lattice on the flow is determihed

from this expression:

+ XX-zC 2 2

This means that the influence of elementary lattice sites oixthe

flow over an entire section Of the flow tube is equal and the differ-
ence of static pressures on both sides of the lattice is constani4 .for

each of the flow tubes.

The actual picture of flow, from all appearances, difftrs from

the accepted diagram. The rearrangement of the flow in front of the

lattice and the changes in the area of each flow tube and speeds with



respect to magnitude and direction lead to a different force interac-

tion of every elementary lattice site with the flow. Consequently,

the total force of action of the lattice on the flow depends on the

sought form of motion and cannot be described by equation (L).

Application of the principle of minimum dissipation of mechanical

energy will lead to the following solution of this problem.

Dissipation of mechanical energy on section I-lat may be written

in the following form:

C0 XP +(c, + *lCP )XPhc +:c,)]+S.2 2.

Here D' is the dissipation of mechanical energy per unit of volume

in a unit of time on a section of flow rearrangement.

As an assumption, in the future we will disregard the dissipa-

tion of mechanical energy behind the lattice (section lat-2).

In the case of the flow of an incompressible medium

+(|) + +)

where vt' is the coefficient of apparent kinematic viscosity (as an

assumption we take v' = const).

By considering the speeds of perturbation cx to be small and by

solving the problem in the plane xy(hZ) (cz = 0 and = ... we will

obtain:

By averaging the values of the derivatives for each of these vol-

umes, we will approximately consider:

& and St
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Then

+- ! e, x p A t + + - ,) +
+P 4Vh,' (h~h,

Considering the flow rate equation,

C.(I -z,)-cP(0 -4•xO)- (. -. 4. (2)

(e, + ,1 -, -- (c, 4 c, )X -- (e, + Ae,)1 (13)

after certain transformations we will obtain

+4VA (ý ai + (I,+ (1-X(1A - -s + 0)

+ • f L' " +(i-",) ~ ~')']

where

c h
Re = -.

With the help of equation (4) it is not difficult, for the given

Ac1
values of - x1 and Clat' to find Xlat, which corresponds to minimum

T1'
dissipation (Dmin).

Then by applying the Bernoulli equation for both flow tubes and

considering the constancy of static pressures in sections i-i and 2-2,

we will have:

-28el D,+,. +,,'()I

Here D and D are dissipations of mechanical energy during rearrange-ment of flow in every flow tube, expressed the
following dependences:

DA& -' V [2 -(ep 4Ihe-e.-& hcrX i 4- hi].+ e



fI ----

By solving equation (5) jointly with the flow rate equations (2)

and (3), we find c 2, Ac2 , and x 2 , i.e., we determine the form of motion

in section 2-2.

Application of the obtained relationships for a particular case

of flow in a pipe with given regular initial nonuniformity and with

different resistance factors of lattices Clat (see the experimental

data of I. Ye. Idel'chik [2]) indicates a fully satisfactory conver-

gence of calculation with experiment (Fig. 2). The equalizing action

of the lattice when Clat - 2 is clear in this instance.

In the solution of the indicated example we took:

1 V, -lan
R-e-- I and 0.35.

(a)UUft

'g4 r AQ I(c)

(d)

Fig. 2. Comparison of experimental and calcu-
lated distribution of speeds behind a lattice.
KEY: (a) samples of lattices; (b) initial
profile; (c) experiment; (d) calculation.

It should be notee that the question of selecting v- and

requires a special investigation and in the confines of this article

it is not considered. Preliminary calculations from the condition of

minimum dissipation show, however, that basically rearrangement of

flow in front of a lattice is carried out at a relative length of

0.35.

Nevertheless, the results testify to the expediency of application

of the principle of minimum dissipation of mechanical energy to flows
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of similar kind and they can be proposed on the basis of further inves-

tigations in this direction.

Literature

1. V. N. Yershov. Variational principle of maximum flow of
mechanical energy and its application to the design of axial turboma-
chines. IVUZ, "Aeronautical Engineering," No. 1, 1959.

19542. I. Ye. Idel'chik. Hydraulic resistances. Gosenergoizdat,

Submitted
9 December 1963

II

?29
-11 ---- wqav-, - 7r. 7 -

PViM77i T


