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U. S. BOARD ON GEOGRAPHIC NAMES TRANSLITERATION SYSTEM !

-9
Block Italic Transliteration Block Italic Transliteration !
A a A a A, a P p P p R, r i
B 6 B ¢ B, b cC ¢ C ¢ S, s t
B » B v, v T 71 T m T, ¢ !
rr r s G, g Yy Y vy U, u
o0 n n D, d ® ¢ ¢ ¢ F, i
E e E ¢ Ye, ye; E, e* X x X x Kh, kh :
K o X ™ Zh, zh U u u y Ts, ts :
3 s 3 s 2, 2z 4 4 ¥ v Ch, ch {
H ou H u I, i Ww w W w sh, sh B
A & A 4« Y, ¥ W w W Shch, shch :
K x K = (K b 3 P s "
O n J =z L, 1 W = b u Y, ¥
M M M M, m b » b '
H w H N N, n 2 » 3 ¢ E, ¢
O o 0 o C, O K © 0 » Yu, yu
n n i n P, p A = A =2 Ysa, ya

* ye initially, after vowels, and after 4, b; € elsewhere,
en written as ¥ in Russian, transliterate as y®& or B.
The use of diacritical marks is preferred, but such marks

morr A At ddad celmen ceean AL ca s JE P R
maY € Omiuvted Wit SXpcaiency aicuaves,
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FOLLOWING ARE THE CORRESPONDING RUSSIAN AND ENGLISH
DESIGNATIONS OF THE TRIGONOMETRIC FUNCTIONS

Russian English
sin sin
cos cos
g . tan
ctg cot
secC sec
cosec csc

sh sinh
ch cosh
th tanh
cth coth
ach sech
cach c8ch
arc sino sin-1
arc cos coa‘l
arc tg tan~
arc ctg cot~1
arc sec aec“1
arc cosec csc"l
arc sh ainh"l
arc ~h cosh~1
arc th tanh-1
arc cth coth-1
arc sch sech-1
arc csch csch-1
rot curl
1g log
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ANALYSIS OF WEIGHT CHARACTERISTICS OF FUEL
TANKS OF FLIGHT VEHICLES WITH LIQUID- '
PROPELLANT ENGINES !

V. N, Novikov

Definitions of Cyrillic Items

L e

usr = bend = bending
6 = tenk = fuel tank
BKB = ej = equlvalent
T = t (arbitrary designation)
P = r (arbitrary designation)
HD = crit = critical
60 = tc = tank corpartment
I = cy = cvlindricel
T = f = fuel
MO0 = itc = Iintertank compartment
BH = in = internal
H = ex = external 3
IH = bot = bottom
00 = sh = shell
Cp = &V = average
B = h = high
H = 1low = low pressure
o = fv = flight vehicle

kr _ kg i
CM cm !

nogKp = reinf = reinforced

CTp = str = stringer
np = red = reduced
00l = gk = skin




The idesl design welght of flight vehlcles with llquid-propellent
rocket engines in many respects 1s determined by the perfection of the
propulsion systems, ght can comstitute up to 50-80% ot the
total deslgn weight of the vehicle.

Therefore, in the designing of assemblies of propulslon systems,
including fuel tanks, 1t 1s necessary to correctly select thelr main
paerameters, which affect the flight, weight, and economic character-
istics of the flight vehicle,

Fuel tanks serve for distribution of components of liquid fuelj;
they are usually & structural paert of flight vehlcle bodles, and are
subJected to the influence of external forces, and alsoc forces ceaused
by the presaure feed of the tanks, whose magnitude 18 determined by
the operating condltlons of the system of fuel feed from the tanks to

the engine,

1. Analysis of the State of Strain of
Cyllndrlcal Tank Shells

The complex influence of all forces on tanks can lead to a differ-
ent character of loss of the carrying cepacity of tank shells (walls),
Tnege cases are characterized either by conditions of strength of the
chell, or by losses Iin stabllity, which leads to an essential dis-
tinction in the methods of strength analysls of a tank and the methods
which ensure 1t,
We shall determine the stresases exlsting in the shell of a cylin~ -
drical tank which is loaded simultaneously by axial forces (N),

bending moment (Mbend)’ and internal pressure (ptank)’ using the

membrane theory of shells,

Meridional stresses with small relative thickness of shell are

=" a DR — =08’




and annular stresses are

WD
o =2

(2)
Annular stresses in a szhell, which is losded by excess internal

pressure, are glwaye positive, 1.e,, T > 0, and the meridional

stressee, depending upon the magnitude and sign of bending moment,
axial force, ané internal pressure, can be both positive and negative,
A, Ir Om < 0, the main stressea will be
G, G0, sgm=0_.
Then the equivealent stress, according to the theory of the largest
tangentiel stresses, 1s determined;

WMy N ReD
e im+nﬂl+ﬂ. (3)

Equating this rated stress to a limited value, equal to o4

g
(9, 5 OT 0, 3), or to a permissible value 1;-(where f is the safety

factor), which is selected according to certain considerations, and

designating it conditionally as Ops We find the reletive thickness of
the shell:

iedsl(Metm 0y (4)

Introducing ths parameter of loading, which characterizes the

necessary relative thickness of the shell, and is determined by the
external loads,

) Mg+ ND
. =

A, !' .’ . (5)

we obtalin:

g 6
j}q+%. (6)
The maximum permissible pressure in the tank, with the selected

relative shell thilckness and given loads; 1s

3
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Pé(nu)“:“'(F"‘Ai ). (7)
The conditions of shell siabllity are determined by the limiting

critical compression stresses (0,,.44)
SRR |
where ki 1s the criticel comnression stress factor;

E 18 the elastic modulus [Jﬂ§ﬂ.
'm

Then, by equating (8) to meridionsl stress (1), we obtain

M, D
hEL S TE BT (9)

whence the necessary relative thickness of the tenk shell, from the
conditions of stability, 1s determined by the following expressions

-t _
‘>‘/E.B A, . . (10)

We shall introduce a stabllity parameter which expregses the relation

of ultimate strength of the deslgn material to the characterlstic of

stebllity of the shell:
A_.._z. 11
e (11)
Without calculatlion of the infiuence of internal pressure in the

tank on the critical stability factor k,. the stabllity perameter

undergoes a relatively smell change (A2 = 0,006-0,008). By putting

= 2
asl/a,(A,n-ﬁ— : (12)
: L 4

By replacing the values of permissible tank pressure here with the

(11) in (4C), we obtain:

given shell thickness, according to (7), and solving the quadratic
equation, we find the minimum-~permissible relative shell thickness,
which satlsfles the condlitions of strength and stabiliity:

- PR UTRY  TRPIE SP
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-t - e = P < dppmne - = o PR BRI g SR B - -« Pl £ = AP

i‘-n-‘%('/usi'--— ) (13) 1

Optimum pressure in the tank pgnnk’ which ensures nminimum shell ﬂ
thickness, may be found after substitution of (13) into (7)1

-Ptﬂ‘?’o[-\z (l/1+s‘if 1)——21,]. (14) ‘

B, Ir o > 0, the maln stresses will de

Gomb, G=a, d=0.
Equivalent stress 1is
L ’ °’v

whence, the necessary relative thickness will bes

| P (15)

%,
Between the celculated cases of A and B there exists & boundary which
corresponds to the equality to zero of meridional stresses:
PeD  yAM,. N
- "a —(un*}m)"&

From this condition we may find the limiting pressure in the tank,

above which the tank shell analysis 18 conducted from the cocnditions
of tensile strength:
p}'@h,dl. (16)
Analysis of the cbtained expressions for determination of rela-
tive shell thickness, depending upon the magnitude of loading by

all tenks into three groups (Fig. 1). 1.
1) The first group (zone I) includes tanks whose shell analysis

1s conducted from conditions of stabllity, while the necessary rela-
tive shell thickneas isx determined by expression (12), Such tanks,
which are conditionally called tanks of "low" pressure, have the -

By

relationships of parameters of loading and stability = <1, and
2
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3 A]”—ﬁ pressure in the tenk is less
'. . s : T
R B rama o than p;_ ... Since for the
'n'ﬁgf' _,;i+'£‘ ' majority of tanks of maneuvering
ap '/ /¢
2006 [ —r 1> flight vehicles, the relation-
o000t Jazs _d J£ ship of parameters of loading
o —F e 6 es0 & end stability is within the
0,002
By
limits of 0,4 < x= < 0.5, then
0 ® ®» wnw W N 0 AL 2
§
L7 practically all tanks of power
a0 - —F .
& ] ,,/‘/,// plants with turbo-pump supply
2 ,/’a) systems, for which the pressure
006 A
A(j‘ feed 18 proy < 5 atm(abs),
1A
0004 ¢ // “ﬁb—

pertain to tanks of "low"
Alwiinum alloy Cpn%

pressure.

) s ®© 6 » » %N /R 2) At tank pressures p%ank <

13
Fie. L. < Ptank < ptI;ink’

the relative
shell thickness is determined by expression (6) from conditions of
tensile strength., Tanks pertaining to zone II will be conditionally
called tanks of "medium" pressure,

3) For all tenks whose pressure exceeds p%ink (zone III), the

calculation of relative shell thickness 1s produced with equation (15)
from conditions of tensile strength, This group includes tanks of
"high" pressures, which uegually operate wilth ges-displecement supply

systems with a pressure feed of p, .. > 25 atm(abs).
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2, Determination of Welght Dependences for -
Cylindrical Fuel Tanks

The welght of fuel tanks depends on the volume of the fuel 3

placed in them, the external and internal loads, and also on the

-% A

\\‘

\

geometric and design features of the tank,

For liquid-propellant rocket engines,

operating on bl-propellants, they usually

RN SNPRRT PRy S ERE

employ cylindrical tanks, which are arranged

4//////#/////////////////////

MBI AR e according to one of the diagrams represented
NN £ &
/////////////////1{///////4’//

in Fig., 2. i

The volume of a tank compeartment with
Fig. 2.

elliptic bottoms, for which the values

BT e R YRR

of the semlaxes of an ellipsoid are taken & = %%3 D=c = %}3 will
be equal to

Vu-—-(l+3k..,). (17)
where Xtc = Eﬁﬁé&ll.ig the elongation of the cylindrical part of the

tank compartment (or tank).

We shall express the volume of the tank compartment by the weight
of phe fuel placed in it

G.-
Ad
Vee =be— (18)
T .
where 7f ia the average specific gravity of fuelj
\

Bio = 7— 18 the coefficlent which considers the free volumes X
r in the tanks and the volume of the ilntertank

compartment;
b
Baa == BsPuse (19) '
g = Vtank characterizes the volume of the air cushion 1n the t
tank v ;

tank (B, . = 1.03~1.08);

7




vtc

ﬂitc = y——— €Xxpresses the volume of the tan~z compartment with
tenk respect to the volume of the tanks (Fig, 6 2},

For dlagram I we have: ﬁitc -1 + Bf;—u
tec

For diagram IX and IIIs B = 1,0,

ite
The surface area of a tank compartment with elliptic bottoms is
determined by the surfaces of the ghells, the bottoms, and the inter-
tank compartment
S= 2D’ (0,8, + 1) (20)
where &tc is the coefficient which considers the number of bottoms
end the dlagram of the tank compartment,

For a single tank: = 1,0,

etc

For tank compartments of dlagrams I and II: = 2,0,

etc

For diagrem III: gtc = 1 + %?-(1 + xtc)’

where d is the diameter of the internal tank

d=D e
Tr () + K¢ ‘Tym

Y and vy are the specific gravities of components in
£(1n) f(ex) the internal and external tanks;

G
Ko = —21351-18 the weight ratio of fuel components,
£ Gf(in)

The welght of the fittinge of tank compartment may be taken &as pro-

portional to the weights of the bottoms and shells
Op=0,,0,.+8,0,. (21)

where 80t end 8., are the deslgn factors of tank fittings, 8ot =

= 1,6-2,0 and 8oy = 1.,15-1,25,

h
By expressing the surface of the tenk compartment by 1its volume,

and substituting the specific gravity of the tank material (ytank),

we shall determine the welght of the tank compartment according to the

8



following expressions

: 8F [IES
a,, —120,9“% . “‘"l;';““‘“‘;“ . (22)

The relastive weight of the tank compartment «a

tor which 1s defined as

the ratlo of the welght of the tank compartment to the weight of the

fuel in 1t, cen be found from this expresssiont

(23)

0“ 7. 0.35“ .ll_‘llﬂ + ‘“ l“““
C“ B ——— g lzp“ —
g, T 1431,

Tanks that are used in vehlcles with liquid-~fuel rocket englnes
usually can carry elther tanks of "low" pressure, for which the rele-
tive shell thickness is determined from (12), or tanks of "high"
pressure, for which the relative shell thickness is found through
expression (15),

Total pressure in the tank Ptank is determined by the pressure
feed Pio and by the additional pressure Aptank that is created by the
1iquid column in the tank in the presence of longltudinel overloads

n
x?

n
£z
p -

Pe= Py, 8P, . (
where
dp,=ny L,

L, is the dlastance from the free surface of ligquid in the tank,

The mean value of additional pressure in the tank, considering

o)

to the 1in

4
Vaa o Bde

that one cf the bottoms is subjecte
column, will bdbes

3P4 e == 0.94,7,2, D.
The relative thickness of the elliptic bottoms, depending upon the

magnitude of internal pressure Ptank’ is8 found by the formula:

Y -{'-. (25)

For determination of the relative weight of tanks of "high" 1

I S—




pressure, upon substitution of the characteristic values of coeffl-

clents and thicknesses, we shall obtain the following expression:

1 &, +0842
o —9p, L fe T T (26)

T % LR P

The relative weight of tanks of "low" pressure, when the magnitudes

of bending moments and axial forces are unknown, may be found by the

approximate dependences which are used in design calculations,
Disregarding the influence of 1nternal pressure on the magnitude

of meridional stresses of tanks of "low" pressure, for highly

maneuverable vehicles 1t is possible to consider that the parameter of

external loading (5) baslcally depends on the magnitude of bending

moment Mbend’ which in turn depends on the laterel overload Mbend =

= f(n

y). Then the spproximate value of the loading parameter will be

A =k72, (27)
?
where coefficlent kz, with central location of tanks and with body
elongation of Xk = 10-14, it 18 possible to take k2 = 0,35-0,45, and

the relative shell thickness is

ri ;_5 2. (28)

For tanks of "low" pressure of rarely maneuvering vehicles, the
parameter of external loading hasicelly depends on the axial compres-
sing force N, which 1s charecterized by the magnitiude of longitudinsal
overload N = f(nx), il.e.,

Al-klef' (29)

where coefficient k3 depends on the body length Lk to the location
1

of tanks 1n the body and the average specific gravity of the vehicle

Tey?
tj-’“L“.

i0
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With the middle location of ternks in the body, body elongstion
of X = 10~-14, and average specific gravity of the vehicle Yoy =

- 1.501077 i‘-ﬁ;, we may take ky = 0,01 D, while the relative shell

thickness wlll tes

W=y /2, (30)

Ay E
The relative thickness of bottoms of tanks of "low" pressure is
usually determined not by strength epscificmtions, but by design and
fabrication factors, which allows um to take the following dependences
I =15.10-, (31)
Then 1t 18 possible to write approximate formulas for determinatlion of
relative weights of tank compartments of "low" pressure:

a) for high-maneuvering sircraft —

u 4 064 10 l/«l
0 )
& =007, - " W (32)
b) for low-maneuvering eircraft —
& + 100,
-ro o0
2= 0t 2 ,M.’ (321)

The dependencee represented in Fig. 3 show that the relative welghts

- 1




of tank compartments weskly depend on elongatlions, whereby the most

profitable in the welght respect ere tank dleagrams I and II,

3. Anelysis of the Applicatlion of Relnforced
SﬁeiIs Tn Tanks of Flight vehicles

The operating ccnditicns of tanks of "luw" pressure show that the
gtabllity of shells mey be increased elther by the corresponding
excess pressure in the tank, by reinforcing the shell with sgpecial
profiles of the longitudinel structural sssembly,

In the investigation of the stability of & ¢ylindricel shell
with a sufflclentl;r closely-epaced structural assembly, 1t is possible
to replace the reinforced shell with a smooth orthotroplic shell whose

relative thickness 1s

"E_,up = 3,. (33)
The thickness of the unreinforced shell, in the presence of internel
presaure, will be determined by formule (13). By equating the expres-
sions of necessary shell thicknesses; we shall find the boundary
condition which characterizes the equivalence of reinforced (ortho-

troplc) and unreinforced shellis;

LI (34)
A,
B4
Tnus, 1f x—= < 1, in the welghrt respect it would be more profitable
La2
By

to use the reinforced chiell;y i7 T= > 1, the unrelnforced shell, For
~

determinetion of the expediency of spplicatlon of relnforced and
unreinforczed shells with reaspect to the magnitude of necessary areas
of body sectiong, for eacth of them we ghall find the destroying

moment.s (Mbend) in given gections of the body in the presence of axial

forces (N).

12




During the calculation of reinforced shells we can conslder two
caBes; the first one corresponds to the limiting moment at which
8tebility 1s lost by the most extreme stringer, and all others work
within the limits of elastlicity; the second case occurs when in the
extreme stringer the stresses reach their limiting-permissible values,

If one considers that the skin 1s reinforced by stringers in
the celculations 1t 1s Jjolned to n stringers, then the total area of

the reinforced shell will be
Fogm=n(F,, + b,8) = nF,, (35)

where br 18 the reduced skin width

ed

) 'g (cBmm) Boﬁn: .

op oy Eerp

For the first calculating cese we shell obtain the expression which
characterizes the limit moment:
M, = 025D (s, nF, — N). (36)

If we introduce the relative parameters A1 and A2 and take the

dlstance between stringers by ™ %?3 end algo o_, = 0. We shall

obtain the conditlion of existernce of & stable reinforced design within

the limits of elastic deformations

oL (L4 ,7), (37)
from which we can find the required thickness of the reinforced shell,
For the second case of calculation cf a tank according to limiting
carrying capacity, we shall determine the expression for total limit

moment percelved by the reinforced skin
M, =025D{n((F + b, 8o, +b—b )b }—N} (38) l

or, by expressing through the relative parameters, we shall obtein the #

13




condition of exlstence of & reinforced design according to limiting
carrying capacity:

A,n%[—fbﬂ+bw'5+-§-(bu—b”)]. (39)
As can be seen from these eguations, the total carrying capeclty
of & reinforced cylindrical shell depends not only on the relation
of parameters, but also on the distribution of the shell material
between the skin and the stringer assembly.
Gravimetrlc analysls of reinforced shells shows:

a) that a gain in weight from the application of reinforced

cylindricel shells, as opposed to unreinforced shells, mey be only

A A
when Zl'< 1, Thus, for smell-loaded designs of tanks (Zé < 0.2%),
2 2

the maximum gain will constitute 25-30%4, Figures 4 and 5 show the

relation of the necessary thickness

-

'%F“ . ' : of a reinforced shell to an unrein-
L .L»%; forced one, according to limiting
: S U
‘,—(""”ﬂ carrylng cepacity, whereby with the
L a5 A
T— ‘-\\\05 decrease of the speclflc load (32)’
‘a8 - <05 2
the portion of the stringer assembly,
0 f,
azs 0% né uneﬁf which together with the skin mekes up
Fig, &4,

the necessary ares of cross
section of the shell, should be increased;
b) that & gain in weight of the reinforced shell can also be

cbteined in the presence of excess pressures in the tanks, For

A .
inatance, when E%" 0.25 (Fig., 5), theoretically up to pressures of
&

. 14




k
Prank = 40 [;:%a there 18 a gain in weight of reinforced demigns,

However, 1t 1s prectically !mpossible

ibhr’ % to ensure uniform losgding of profilce
¢ fumnz qf"' of the structural assembly and askin,
© e tl:;ﬁw Moreover, during intense wave furmation,
ol ,’:’/:’/”" the skin itself additionally Joauts !l
» == < /“:‘\_—‘: profiles of the structural! assembiy
@ | and promotes their deatruction, whi-h
aFe causes a premature lockl loas (f
0T aw am  w e
Fig, 5. stebility.

The obtained concluajuna un the
application of different dlagrams and designs of tank comjpertmen's
are not final, since exact recommendations can be made only with the
cglculation of the design, fabrication, and economic factorm, Mt this
anelysis allows . he designer to conduct a welght appraisal of tanhk
compartments taking into account the conditions of their work on a
vehlcle, to outline the means by which 1t would Be expedlent tou
investigate the designs of tanks, and tc made a number of practical
recommendations for the designing of tank compartments and the deter-

mination of welght dependences for them,
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Pip o LN oF P RONLEMA OF BINDING OF
Tt - LA e 1 LAY AND SHELLS RY
MiAlGY OF A DIHPLACEMENT FUNCTION

A, M. U0 LVdennteln

Lof Ul bt of Cyrtllic Ttems
B = '« r'iller

Sodmow o th aleowe thn! for uio tny, three=layered (sandwich-type)

foia 4 memiast bl stpg ture with fwotrepic layers and filler 1t 1s

&

setice 0 Apit el e om o lap lecoment function ¢, with whose help the

st b 0 modanmn'm (1,%), (1,4) are automatically setisfled,

o omom diuttb oy ot problems of bendling of three-layered

“vmiioer Lo imtes unter the acttion of & luteral load, we obtaln a

iy ekt bon 0o functdon ¢,  Hy disrcgarding the flexural rigldity

S0 tue cmrrytng lagemew, the sBolving equation of bending of a three-
ik 2re | lwte with i1ght r'1ller colncides in form with the equation

o Lendtngy ut e mingle<layer jlate, We shall show the analogy of
a4 € (n the aolving cquation of three-leyered plates with
dofse .t on w in the theory of single-layer pletes, as & consequence

of which, the formules four calculation of shearing stresses and moments

of threc-=layared plates have the game form as the respective formulas

for single~layer pletes,

w16



Thus, the introduction of function ¢ reduces the calculation of
& threerlayer plate to the calculation of a single~layer plate, The
solution for deflection w of a three~layer plate 1s obtalned in the
form of the sum of two parts, one of which expresses bending of the
carrying layers, and the second one expresses bending of the filler,
The following problems are solved as examples: bending of a freely
supported rectangular plate with light filler and a circular plate with
stiffener under the action of a trensverse load, The proposed method
allows us to solve those problems whose boundary conditions can be
satlsfled by the lntroduction of function ¢, When the problem 1is not
symmetric, usually its solution is difficult, Function ¢ wlll make
1t possible to significantly decrease the volume of calculations and
reduce the solution to calculating formulas, Finally, we shall note
that 1f the total thickness of & threze-layer plate with caerrier
leyers of constant thickness changes according to the law H = ko,
where k 18 the proportionelity factor, then in this case it 18 also
possible to automatically satisfy the equation of moments, express

deflection through ¢, and obtain a solving equation for o,

Designations

a, B — curvilinear coordinates of the middle
surface of the filler,

Ld
Ai’ Az = Lame para

eters,

Ry» R2 — main radil of curvature of middle
surface of filler,

u', v', u", v"' — movement of point of middle surface
correspondingly of the upper and
lower carrier layers,

w — deflection, not depending on
coordinate z,

w ot [(Ade  di/A 0
U _""'A.A,[dn.(A. a:z.*a,a A 0 J

:)
bt AV P A S 0 % (gl o] SRR - S
.




- . L.
[ S e s e i mn o . e e e A TTELII, A T N, 2 3 —“‘*k-‘-&»«ﬁ‘-"

h, t — thicknesses of filler and carrier

leyer,
s —a v -0
l_ ¥ ‘= »
A+t YY)

Ti, Té, Tig’ T{Z Té; T{é — membrane forces correspondingly for
the upper and lower carrler layers,

My, Myy My, — bending and twisting moments with
respect to the middle surfeaece of
filler,

E, E' — elastic 12dull of filler and carrier
layer,

Vs Vg — Polseon coefficlients for filler and
carrier layer,

G’, G3 — shear modull of carrier layer and

filler,

- - e Btk
Bl-l—"' D— l2(l'—") . C]-— 2(1_‘1) L
oy B - -

= = ——— =@ P,
B T3 Jid T C,=Gih+1p

G, » : -
B,=G h o,.:—:-‘-—. (3)

i:? signifles cyclic permutation.

1. Introduction of the Disp.:cement
“Function for a Three-layer
Shell with LIght ¥iller

The system of differentiel equations of equilibrium of a three~
layer shell with light filler of symmetric structure has the following
form [1], [2], [3]s

LAT) -0, L(T=0, (1.2)
Ads g Adg o (Rtp (0
WA+ QT+ ST~ a, B LA G—e)l+
: +£|A,(q—-z)]]—pA,A,=0, (1.2)
sl - L3226 ¢ )=, (1.3)
;fxl,(u)-——“—'-:la,(n-.,_)-o, (1.4)
Ti=TN 4T, T=T 4T, Tp=T,+T,.
where . : : . .
. 2 oAy | 9,0 P -
: Ll(.r)";(rl/‘:)"T1;£+3(712A1)+T12‘§» (!:_2_)-

18
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(1.1) 1s the equation of equilibrium for membrane forces, (1.2) is .
the equation of bending, (1.3) and (1.4) are the equations of moments. ,§ -
Assuming that the deflection w does not depend on z, according P

to Hooke's law, we obtain

_BGEmrL e 1 A Loy, 1 4 "
" 2 [A.aa vt Gat u‘)]’ .2 :
o BB P~ [.‘.!J _‘.!__&4_1_..'.._3_9:10]

e 4 A 4% A8 A4 &

consequently,
Ly(m) = L.(‘: u), ‘a(‘) =L, )
We shall try to satisfy the egquations of moments with the help of

function ¢, considering that -
1y 14 1
e — - 5
e Y (1.5)
After transformations, equations (1.3) and (4i.4) ars reduced to the
form of
1 5 B[ 1 A l 04,
25 la-"””' A o-[as 2 )+ aGl-
» )-;0 . o "-_ A (1.6)
‘3 ) P a4y 871 M)
e {# LR ( +5G, oa)]} .

——(9-!~’-'!\-=o

- - R \@& &y -

I‘\
-
\J

According to [4], the expression in the dbrackets constitutes a
Gaussian curvature of surface; therefore, equations (1.6) and (1.7)

willl contain the mein curvatures

2 2
» "%, ;v‘v)+—(l =/ (1.8)
o :L! ﬁ - 7). *
where [ ""‘
. Rl«R:

Thus, i1f the main curvatures of the shell 1s constant, then, by
integrating (1.8), for deflection w, we shall obtain;

w-(l-fl)v-%v’?- ' (1.9)
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Formule (1.,9) will be valid for cylindrical, conical, and spherical

Let us conslder the general case of a sloping shell, for which
/1.\2
(%%) ~ g <K 1, where L 18 a characteristic dimension of the shell,

R 18 the smallest radius of curvature, and € 18 the error allowed,
ag compared to unity,

Formule (1.9) will also take place in this case, if f K 1,

2. Bending of Three-~layer Plates with Light Filler

Let us congider small deflections of three-layer plates with a
light filler, If we dlsregard the flexural rigldity of the carrier
layers D', then with the help of (1.9) the equation of bending (1.2)
i1s biharmonic with the right side: -

by . 2.
v'e ——-&—-B,(.H),. (2.1)

The formulas for shear stresses and moments of a three-layer plate
coincide in form with the corresponding formulas of a single-layer

plate:

-C" (‘x"i’ "d ) ﬁl,,—C, d_-.l'a)
N:"'q“;(v ’)' L._Q-
We shall write the boundary conditions which should be satisfied by
function @
a) if edge x = a 18 secured, then
P - L2 2 - a—’ = ?- -
\E "E':VVL_‘ 0. Ix lreg 9' OJ’I'-G 0
b) a freely supported edge will be

A |
®- 56 v 'L., 0. + 1 a)”L-n 0, Oy,x-i 0.
c) a free edge will be
d ! @'
=0, 2 = L4 L
+ l o)’ e r 4 Ox (v ?) L-‘ 0, Oxay -

<0
M
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As an example we shall consider the bending of a freely supported
rectangular plate under the action of & lateral load, The boundeary
conditions will be satisfied 1f function ¢ is taken in the form of

= E G 8ine x-sind, y,
o, swt, b
where - -
= b=

Let us assume that the load p ie constant, Then, expanding one in

a double Fourler seriles
l__l_?_ 2 sinegsain oy
. ® MmR

Oy’
and using equation (2.,1), we finds
Gy ™ p .
w8 (4 P ma a4+ 2)

According to formula (41.9), deflection w will be written as

w=Y A, sins x-sind,y,

where LS ( )
22
- t16rat . -
A--_ o s apl! A+ a0,
o G, s’ Ao

Equation (2,2) and the correspondiig formula of [5] wae performed for

A= 0,5, The results of calculations turned out to be very close,

Se Bend# of '.I‘hree-Ll.%er Plates of
ariable ckness

Let us consider & three-layer plate with carrier layers of

constant thickness t, If the equation of moments (1.3), which was
written for such a plate, is differentiated with respect to y, and
equation (1.%), with respect to x, and it is subtracted, we will
obtain:

v’[;‘;(m—a{f(@]-w‘g_‘—;f[%-g]. (3.1)

if the total thickness of the plate changes according to the lew

H = k@, where k is the proportionality factor, equation (3.1) will be

21
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gatisfied with the help of function ¢, by considering that

»

- =5
bea Yo
Instead of (1,9), for deflection w we will have:
=y BET o L (RY
v=r | "t G () ) (3.2)

For simplicity we shall conslder cylindrical bending of a plate, so
that ¢ = ¢(x)., The equation of bending takes on the form of

P Raas + 08 + 500 0ue + I 0 = o (3.3)
where . &
?‘-ax.
Let us assume that the edges of the plates are secured, i.,e.,
w| _..=0 f, . ,=0

The boundary conditions will be satisfled if function ¢ 1s taken in
the form of

2
Qsan[l-(-f) T
Consequently, in tnls case the plate thickness changes eccording
to the following laws

X 2
Hzlzga{! - \;-)'} .

By calculating coefficlent a, according to Galerkin's method, we shall

determine the deflection from formula (3.2)

'_-408'0’ l-<~ T+
k o)

where hO is the maximum thic

2 .2
X — 4x2(1 — 23],
tmesa of

velues of meximum deflection will be:

G =— L 22
08K 204,G,
ot



4, Introduction of the Displacement

o T
Functlon for & Threc-layer

Tlete with & Stirfener

In thie case the dependence between the deflection and the

displacement function ¢ is the following:
(49’ —a,0) 2 — (a9 + 4,G)w + C =0. (4.1)
Here : - '
AR L)) LT (2 13
a‘ c‘+ ., Do a'.l N . . [} _8; ” D-
In formula (4,1) C 1s an sarbitrary constant, If the deflections are
smell, the equation of bending [3], which 1e expressed by ¢ and w,
will have the form of
v'law’s + ay'w + X| =0, (%.2)
where
"x—p' ().]..3)
a.-C;-l-ﬁ—"-"—'D. a.,-2D’—£—D. |

From (4.2), we find

v (ae + agw) + X == f(x, y), (4.2¢)
where f(x, y) 18 a harmonic function,

Function X satisfles Poisson equation (4.3), and the boundary
conditions for it are established in the course of golution of t
precblem,

Consequently, for the solution of problems of bending, we have
two equations (4.1) and (4.2') with respect to unknowns w and ¢, from

which we obtain:

.,--HMV:H%_.A(_J,C% (4 .4)
. . £ t ] ]

Constant C characterizes rigid movement, and therefore it can bde
rejected, Putting (4.4) in the equation of bending, we arrive at the
equation for determination of @i

-ﬂfi’%ﬁ’"—v'vﬂa‘—as)v‘v +P+vp=0. (4.5)
<3
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5, Bending of a Three-Layer Circular
Flate with a Stiffener

iow we shall solve the problem of bending of a clrcular plate
with a stlffener under action of constant externel pressure with the
nelp of equetions (4.4) and (4.5). If the plaete 1s secured all over
its contour, the boundery condition for ¢ will be:

g S8 taa, 2
?t am; G, ve

=0 = Sl G
From formulas (4.3) and (4.4) and the gilven boundary conditions,
we find:
f=0, XB%(r’-a’).

Introducing e system of substitutions,

o Bl + ‘l‘h
P G !

$=- ', Anp/—r

we reduce (%.5) to & Bessel equetion:

= a4 - as‘

LR W S .2
a4 AdA+ﬁ 0. (5.2)

The solution for ¢ wlll bz obtained in the form of
?“-;;-l(kop) f‘i—+c"*' + C, (5.3)

wiere IO 18 a Begsel function of the first kind,

- e—

“ta -'-—’-' P::.—.L‘
& a8

Ci’ C?, C3 are erbltrary Iintegratlon constants,
By determining C, s C.. C; from conditicns (5.1}, we find the

value of maximum plete deflection from equa:ion (4.4)

&oly
auﬁj. Iy= 1y (&), 1, =1, (ko).

o= (g 2 S E+) om
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CALCULATION OF THE NONAXIALLY SYMMETRIC STATE OF
STRAIN OF CYLINDRICAL SHELLS TAKING INTO ACCOUNT
THE ELASTICITY OF THE REINFORCING FRAMES

Yu, I. Kaplan

Definitions of Cyrlilllc Items

Ion = gec = gecondary
m = f = frame

Kp = crit = criticel

In this article, by the methods of [1], we obtain analogous
results for nonaxiglly symmetric strain, All assumptions concerning
the work of fremes and the approach to the solution of problems are
presented in the mentioned article, The basic deslgnetions are also

taken from 1it,

As a functional unknown in the solution of the problem, we take

the total moments in lon udinal sections by the energetlc method:

“r
m, = Y4, (x)cos ng. (1)
7%
Then, under certein assumptions (E¢ = 0, Eox ™ 0, 1,e., with
inextenglbility of the outline of the cross gectlon end the absence
of shear strain in the middle gurface), 8ll iInternsl forces can be

expressed through the introduced unknownaz, The stresses in cross

pad




sections are

o1 T &% () ‘L.
e ™ ...fb:-zll-;-'ﬁ,—:—ﬁ- COS N§ = — 2(’, (-‘)f..(s)- (2)

where _
ER cas ne .
Ia ® D. ) m@Ei—1) ° (3)
D

£ 1s the cylindrical rigidity of the shell wall., The remaining

Internal forces sre essily expressed through wn and their derivatives,

but they do not make an essential contribution to strain energy, which

for a section of the shell has the following form:

U= S‘g;[ .';28'- +A,]ds!d.r+l‘_,. (¥)

Intermediate frame,s ere loadsd by the drop of tangent forces that

are acting in & given section of the shell:

Aqwun_m" G.M(X,-—O)— quuu("r"* 0) =

. &
¥ (5, + 0 —¢ (x,~0) [ 81, (o) ds. (5)
e
These forces produce vending of the frame by a load
AM-. -“: (.!,-I- o)"": (X,-—G)]dn‘ {s). (6)
where the moments from the tengent flow
£
- - m
1o, @® !l,j;.(:)ds -___&_-o_-'(-'—-l) sinay (7)
wlll be:
o) e . ERR _ cosny
m, (3) Don TP Cos KBy -—: . (8)
In (8) we designate: '
Sy Be N = 1)
‘2"'-—;;;;"-"‘ (9)

Consequently, formula (4) takes on the forms

U= 545{—-[g¢.<x)cm,]’+ Ev (011, )] + A dsdx +

rww@{z}w (5, +0)~ ¥ 1, 0)1"“"’) ds =
-jr«.. ¥, 4.)dx+ T[] (x = x)L (20)

<7
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Here Ifx,is the moment of inertis of the frame with coordinate x = Xpe

Since (40) in general notation ccincides with (6)*,1) the natural
boundary conditions of the mixed varietionsal problem will aleo be the

same a8 {8)*;

ar ar
—— a0 (xm=ux,) (11)
L AR >
The Euler equation in thls case reduces to & differentisl equation
o A (R —1y
W+ =TT+ B0, (22)
or _
Y+ 4830, + B, =0, (13)

The solution of the last equation is (12)+,

In case of rigid intermediate frames, the constants Dr are deter-

mined from these conditions:

Pplx=a,_;))=0. (14)

With elastic fremes, these constants are found from condition (11).

For determlnation of négv-we express ¥_, by anelogy with [1], in the
;Y n
n

formula for energy (10) through Wiv from the equation of equilibrium

of moments Iin the longltudlinal section of the shell 1n its additlonal

state (mQ are baelanced by the moments which appear due to the tangent
forces)
¥, (%) cos e + $IY (x)m, (2) ~ O (15)
or, using (8),
: 92 (x) + 4k 4, (x) =0, (16)
wnence _ ‘
1
(%) == — ¥ (%) (17)
(]

Putting (17) in (10), end celculating Ségv, we have:
n

2)psterisks note formulas of [1].

<8



o 1
Fv---b;.-‘;—%(x) ‘xR, (18)

-8
The second term in (11) will be

ar, 1 1 \¢
- Er"(“;;—) 9 (x-+ 0)— ¢ (x,—O)-=R,  (19)

80 thet the boundary condition finally takes on the form:
¥ (x,—~0)==9; {5, +0) + "’4&‘1',(x—x,) (20)

Using now (42)%, (44)*, and (20), we obtain the sought constant

3
03 (c=0 D

Dy v 4k, (x = x,) (21)

end the general solution of (42)#*s
%, (%) = A,®, (x) + B,®, (x) + C;®,(x) + DO, (x) + ®*(x)i—

-
1 &l , .
- 0; (x=0) 4k: Z‘b- Ql (x == ar—-l’ O!i (“ - cr—l)- ( 22)

Further solution depends on the che.acter of the considered

problem, which is expressed by equation {13).
The system of equations for the determinstion of the constants

completely coincldes with (21)* and (22)*,1) only, naturally, formula

(23)* looks otherwise:

[ RPN ¥ T (23)

1. Transverse Bending of Cylindrical Shells

In case of transverse bending, the energy of the unit of length

of the shell in i1te secondary state is

*)1n formula (22)* one term is left cut and there is an error
within the limite of summation., The corrected formule has the form:

: [ 3 © L.l
M=0(1)— 3G, ¥y (s, ) ®,(L—6, )+ ¥ ().
r~3 : ]
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r=§ (s [g(é."(x) — Au(Ncosns [+ 5;[21 (), () [Jas. (24)

where An(x) are the coefficients of expansion in a series of the
moments acting in the base system, Therefore, in equaetion (13)

B, = — 4ka A, (), (25)
and 1t tekes on the form:

4’ + 4ka ¢, = 4k} A, (x). (26)
®i(x) in this case constitute Krylov functions for the celculastion
of beams on an elastic support. The particular soclution will be:

@ (x) = 4k, [ 4, @, (x — ) d. (27)
®
Therefore, general soluticn (22) will be writtens
$a (x) = A @, (x) + B,D, (x) + C,®,(x) + D,®;(x) +

X

+ 4k.5A.(=w,(x — %) “*l“‘**-Z'ii" Yulx =0, )0,(x—a,.). (28)

-
re=? -

2. The Asymmetric Form of Stabllity Loss
Under the Action of Axlal Forces

In thls case,

A ﬂﬁr'ﬂ+fr
v LA 2 x =

- K ( _1_) a4 (5) \?
I (1) (%9, e

where W and Vi correspondingly are the normal and tangent shifts

in the plane of ¢ross sectlon,

Then )
1) -
B,=q, ZEE) i (x), (30)
and equation (13) takes on the form of
$2' + 29 4. + 4k, ~=0, (31)

30



where

- EEELD

2= % grm (32)
It completely coincides in structure with (33)# and is therefore
solved in the same functlions as the latter, These functions and
their properties are shown in formulas (34)* and (38)%, and Table 1

[1], only, natursally, instead of Y4 and 72, there will appear Y1n and

Tont

=Y iV i, (33)
w=V v, (34) ‘

3 = YiaTee ™= 245 (35)

As a result, general solution (22) 1s thus written:

9§, (%)= A0, (x) + B,(’ (x) + C\®y(x) + D®y(x} ]| —

S e e as 0O

. rm2 ¢

3. Stability Under the Action of

Unlform Traneverse Pressure
In thls csase
' Apw,
where ; e
R
bp= — 2 (w,+ ;;')=p.,5;¢.(x)cos ng. (38)

Here Porit is radial pressure, under whose action the shell loses 1its

stebllity,
Then
Bym — = 5y () (39)
and equation (13) can be represented as }

?'.V—I:q‘.-*o. ()40)
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where

Do v — 1y [
- [p“’o =)

] (41)

Equation (40) coincides in structure with the equatlion that

describes free oscillations of rods, and it 1s solved in Krylov
functions &,(x) of the first kind, The general expression of (22)
willl be:

$(x) = A,0,(x) + BD, (x) + C,®,y(x) + D®y (%) —

. PR 7
—% E—‘?.(x-a,_.)%(x——a,_,). (42)

4, Stability During the Joint Action of
Unlform Transverse Pressure and
Axlael Compresslon

This problem essentlially 1s a combinatlon of the preceding
solutions, Here, besldes (37), it 1s necessary to also add the
potentlal of external forces, which is expressed by (29). Thus,

Bp also will be represented by the sum of (39) and (30), as a result

of which equation (43) takes on the form of

W Dhde — Xy, =0, (43)
where .
) u’sn’-{-l)
'2'"’:. 2ER: ] (44)
and D‘ -
(] ”l_
1:- ..n(nu H P N 4m2_ N\ _-l]' (45)
A A S A |

Function ¢i(x) in this case wlll be wrltten as

() - %,(P’.. 08 8, ¢ + 3, ch %),

o, (1) = ;!;(a;, 310 Byt + B, sh §,,x), (46 )
®, (x) = cos §,,x —ch B, x,
¢, (0= ;l, (3., 510 35X — 3, sh 2,,%).
Here
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o V_a:Vire, (47)
=V 2+ V i4%, (48)
Ll (49)

The derivatives from functions (46) are shown in the table,

where the following designations are introduced:
.(x)-l-(———cosﬁz.x—-— ch 81,x ),

"Pi.
&, (=1, (— ;- sin ?,.x—- shit) (50)
&, (x) - l..(—- ;!;: slp dax + E sh P,,x )
Teble
*o . . .
w\\ % *; (0 *
() —2,9; () -2 ¥y () -10® (1)
(5 Aoy (%), =20 9, (x) =R %)
1 (x) 3,®, 1) &0 - B F,ix)
—"‘J (<) A, @, (s} 123, () 2§, ()

The general expression of (22) will be:

%a{%) = A3y (x) + B, (x) + C®,(x) + D,®;(x)' +

) -
> —-‘“. = 1 LT P (X = a,_,)O_._(x —a. .k
25 (Fiy + 1) q Dy .

. P®mg

Pl ¥
‘N
| ol

St

Conclusion

With any number of elastic intermediate frames, the problen is
reduced tc no more than four constants, and practically, to two

(since the extreme frames ere almost always sufficiently powerful),

for which the syetem of equations is written in general form, In

t

st b0
1
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the example of different problems we show the application of the
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VIBRATIONS OF AN ANISOTROPIC PLATE UNDER A
CONTINUOUSLY MOVING DISTRIBUTED LOAD

A, P, Kovrevskly

Definition of Cyrillic Item

pesu = dim = dimensionless

The problem of vibretions of elastlc bodies durlng the
movement of a flow of mass through thelr surface arlses 1n
the study of different radiator systems; and slsc in examin~-
ing the vibrations of bodies of liquid-fuel rocket engines
taking into account the lliquld coolant between wells,

Here we study the free vibratlons of orthotroplc plates
which carry s mass flow evenly distributed along their
surface, We conslder that there are nc frictlonal forces
between the flow and the plate., The trajectory of flow
repeats the bending mode of vibrations of the plate.

Structurally, such a system may be accomplished by passing
a flulid flow between the layers of a three-layer plate with
a corrugation filler., 1In a certaln range of fregquencilesg,
the three-layer plate may be replaced by a one-layer
orthotropic plate, which 18 equivalent to it in the sense
of flexurel rlgldity; however, questions of guch reductilon
are not consldered here,

This work is en extension of the known probliem of free
vibrations of plipelines to vibrations of plates,

A similar problem concerning the free vibratlons of an
1sotropic plate under the action of an evenly distrilbuted
moving load wes set up by I, I, Gol'denblat [1]; however, -
the author did not glve 1ts solutlion, as he limlted himself .-
to general Instructions about the method of solutlon,
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§ 4. 1The equation of free vibratlons of an orthotropic rectan-
guler plate of constant thickness 1s written in the form [2]:

o L FLS L

Here we designate;

{ =t (€, n, ¥) 1e the defiectlon of the middle leyer of the
plate,

£, 1, T are the coordinates and measured time,

m, is the denglty of the pls.e material per unit of

surface,
- I - L o= LKy Gg¥
B, 122~y b, 12(1-‘.,._,)‘1)“ 12(1—‘,-,)+2 12
G,.» E, E 1. the shear modulus in plane é€n and the elastic
XY J modulil in the direction of axes £ and 1,
correspondingzly,
Vs Vy are the Polsson ratlos of the plete materiel,
Zx’ Iy are the dimensions of the rlete 1n the plan along

axes £ and 7,

h is the thickness of the plate,

et us assume that the flow moves in the direction of axls £ with
conatant speed v (Fig. 1). Flow density per unit of surface 1is
deslgnated as p.

During vibrations of the plate the

trejectory of flow is distorted., In the

= ‘ [ direction of flow on the plate there
IS 0 _l// Uy
- 4 will act iwo additional inertisl forces:

- 2 - - o)
centrifugal pv —gﬁ-and Coriolis 2pv IGER

Furthermore, in the expression of the d!'Alemkbert farce of

irerile, the mees of the plate u, must be increased by plm = m, + [

New the equeation of free vibrations of the plate;, tskirg Into
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account the flowing mass, will be written by the following form:

o o o,
2 Lop 25 L op 9%,
D, + 2z + Dy

‘ Kol 19, L 2
+ vt 0 b =0, (2)

We shall introduce dimensionlesgs magnitudes:

& 3 N S ‘
KX = — - = w—— l e’
i ¥ 4 et ‘.l"_ a‘: '

,ﬂu ‘_D'—_.. —..=2;D-l—, d 5&_’
. .‘V/‘mt‘ % D, A

x
Sevd, °==rwﬁ‘
Vom' D

’_

From the least two relationsnips, we find:
o == plk, nhere =2
4
In the shown designatiocns, equation (2) takes on the form:

b3

-L(wlu‘%f';';Jc daﬁ? + d,%‘%—- 93"% 4—=";‘; : ";: 0. (3)

The system described by the given equation is nonconservative,
If the Coriolis force is small, &8 comparec to the remelning terms,
then equation (%) coincldes with the equation of vibratlons of a
plate that i compressed by a longitudinel force, In systems of such
type, unstable cgnditione ere posslible.

Finding of en exact solution of equation (3) is hampered;
therefore, we shall use Galerkin's method, The problem consists of
finding the function w(x, y, t), which satisfles the varisational

equations:
1e
S}‘L[wlawdma’y::n.' (&) ;
1 3
The sought solutlon 1s presented in the form of & double serles

.y =5 BX (0 V.(s)anD), (5)

=i =i

where am(t) are variable parameters. In such & form, Galerkin's method

RTINS E s S B

wags applied in the sclutlon of certaln problems concerning the flutter

T SR "t
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of panels [5]. As the baslc functions Xm(x) and Yn(y), it 1is

convenlent to take beam functions, since they immediately satisfy

= v [l Iy~ Y

the boundary corditions. Substitution of (5) in (4) gives:

““13 (va\’ d, X Ty d)’,.+ v, d’\’,.,)am_*_
U m

dy a dys dy?

] -l

oy, e die  x y ] §)

xdy = 0. (6
dx dt min o XY Ollld‘f(ly ( ( )

tfﬂ’

=

LY
-

ez

The property of orthogonelity of veam functions with respect to
derlvetives of the zero and fourth orders 1s well known., Subsequently,
we shall consider only plates that are freely supported on thelr
edges y = O and y = |, For such cases, functions Yn(y) are orthogonal
also wlth respect to derivatives of the second order,

From the propertles of the beam functions, it also follows that

X _qix Ao gy

P T

where I Bn are elgenvalues of the boundary value problem of vibrea-
tions of beems with boundary conditions that correspcid to the condi-
tions of supporting the plate on 1lts edges x = O, x = 1 and y = O,
y =1,

Inesmuch as the edges y = O and y =« 1 of the congldered plates

are freely supported, functions Yn(y) must be taken in the form:

Y,(y):sinB,,y. ?.“'%- (7)
Considering the shown properties of beam functions, from (6) we

wlll have: . {

4 w0 ! oo

22{[@: H/g.)j‘x XJ’EY dxdy 4 (d é'zl“d;; Y, dy + ‘

amiiml "= : €
+ajzli’,dy)j .px,, \’dt]a f'i“—"'— %‘%"—X,u“g Y,,d\'dy+ 1
not . C
+ i::;' J!r ,,Xég Y: a'\dy} 8a1, = (). (8) .

Jd8

/



During free vibrations of a plate; slong axls y exactly n helf-

ev
waves are set, Therelfore;, insetead of the entire sum I Y , 1t is
Nwi

pogsible to conglder only one n-th term, If we gtlll consider that
ta, &re arbitrary, thea from (8) we obialn rinally & system of ordi-
nary differentliel eguatlons with const.nt coefflclents for the

determination of e, (t):

E(Aﬂiall + B '—'"E' '* C ‘d:;f ==U. d‘—'__' ‘e 2' 3. e (9)

sl

Here

RPN o asx, AT
A.,u;_;a..+a.é)lyx..x,qu;j—;-jx,d 3 F—”ﬂx- (10)

_ 3“;..!!2’_ ﬂax‘n (11)
1
-r:.m-;-SX..x,dx- (12)

Obviously, 1n virtue of the orthogonslity of beam functions,

Cpg = O when m ¥ 1. The soluilon of sytem (9) reduces to the deter-
mination of the roots of the determlnent:

A, + 18, +C, Ay, -+ 1By,
Ay, + 1B, Ay + 1By + FCy, ... | =0 (13)

The roots »f the determinunt 11 generasl are complex, i.e.,

r = b 2 o, The

naginery part of the rootp corregpconds to the

b

dimenslonless frequency of vibratione; the negative real part con-

stitutes the lcgarithuic damping decrement. If the reel part of

elther root iu positive, the vibratione are unstable, The dimensional

frequencies snd the logarithmic demping decrement are connected with
corresponding dimensionlens megnitudes by nicans of the following

relatlionships:
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§ 2, We shall now define coefficients Ami’

. Ia . -
Bmi’ and Cnt for

certain simple forms of edge fastenings,

A. A plete which 1s freely supported around its entire outline:

(4] ivvm,
A -
~ i"" +d,p4)——(c-d,af)—— i m, (15)

0 i=m,
qu um
T lm—a—mumwbuh—u+mnmummﬂ:+m.“6)
0, i¥m, : (17)
C = .
'z.lwm. .
B, The plate edges y = O, y = 1 are freely supported, edge

X = O 18 fixed, edge x = 1 is free:

1
Aoy = (% + d B8 ) Co + (0 — di32) 15 j X X dx, (18)
; .
B = ;‘s‘”‘- Xdx, (19)
’c‘-lz_% X X,dx. (20)

—
‘..L
0
p
o
=
a

The Values of th jn_egra1g in expressicns (18) and

given 1n [3]. We shall write out some of thelr values,

Table
i . || 2" 12 2
s ; )
j-‘-:—:-’—'x,u £.711 Lor | -6,364 1,06
[
"ﬂg Xdx t 1,58 —12.s|5‘ 2,962 2,962
3 dx
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The value of integral (20) when m = 1 will be determined by the
value of function Xm on edge x = 1, and will be:

L
éx;.::xs-;-;

A

!5&55! e re E. I
={05s, m s (21)

The last two values are taken from the book by V., Z. Vlasov [4].
§ 3. We shall perform certain calculationeg for an illustration
of the 1influence of the rate of flow on the natural frequencies of
g plate,
The calculatlons willl be conducted in second epproximatlon,
From determinant (13) we cbtalin 1n this case the follcocwing charascter-

1stic equation:
CaCo' + (CiByy + C, B) P + (CpA,, + Cy Ay + BB\ — BBy) r' +
+ (A8 + ApB, — A B, — AyB)r + A Ay — ApA,y, =0, (22)

By exemining the coefficients of equation (22), it 1s possible
to note that case A equation (22) will be biquadratic, and in case
B it constitutes & full polynomial of the fourth degree.

A more attentive study of the following approximations ellows
us to conclude thst in ceses when the edges of the plate x = 0, x = 1

are secured from transverse shifts, the characteristic eguetion willl

hsve only even powers of r, In the range of perameters (. tnd k, which

present practical interest, the squares of the roots of thir equatlon
are real numbers, The power of equation i1s equal to &p, where p is
the selected number of approximations, If, however, the plate her a
free edge in & direction treansverse to the flow, the characterlstic
equation is & full polynomiel of the power 2p.

In the first case the roots of the equation are either purely
Imaginary, or real, 1.e,, there occur vibrations without damping

or the plate will lose 1ts stabllity by exponential lsw,
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In the second case the roots of the
charscteristic equation are ccmplex, 1.e.,
there will take place vibrator conditlons
with damping (with a negative real pert of
the roots) or with a growth of the amplitudes
in time (with a positive real part).

It is necessary to conslder that in a
real system there always exlsts energy dissi-~
pation in the material and in the supports,

which 1s not consldered here,

Figures 2 and * show the dependences of the lowest roots of

equation (22) on the parameter of speed p for cases A and B, corre-

w .
-8 ﬁ\m \,)\{\ _
PN
{0 \a;\\
8 1
6
P
/‘:‘;:{
A (Y “L""lt:l‘5
\ 7z3 "
\
%\Mf’g\ N

spondingly. The calculations were conducted
with the following values of parameterc:

d, = 0,04, d

2 » 0.1, z = 005, k = :L‘

3

Let us note that the results of calcu-
lations in third epproximation insignifil-
cantly improve the results of second
epproximation, For 1lnstance, for a plate
that 1s freely supported around 1ts entire
outline, when n = 1 and p = 3, from the

matlon we have: w » 7,88,

©
13
3
o]
e
=
]
13
3
ry
Q
»s
.

The thlrd approximation gives: o = 7.59.
The divergence constitutes a total of 3.9%
§ 4, On the baeis of what has been

said, we can meke the follcwlng conclusions,

1, The influence of a mass flow on the dimensgionlees natural

frequencles of a plate 1s determined by two parameters | and K,
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Inasmuch as k depends on the mass ratlo of the fluid and plate, 1.e.,

o P
for the BELVETI

is a constant factor, then all further %

el

-k - dmaa e Fi
pLluCcuLuare L

-

concluslons willl pertain only to the change of parameter u,

2. The natural frequency of plates, which do not have free
edges in a direction transverse to the flow, decreases with the
Increase of parameter p,

With respect to plates having s free edge, it is necessary to
note the following, Experiments in the s‘udy of free vibrations of
pipelines sllowed us to establish thet the natural frequency of
cantilever pipelines do net change (withln the limits of accuracy of
the experiment) upon increasing the speed of the fluid flowing from 3
them, in spite of the predicted drop of natural frequency as calcu-
lated. Therefore, also for plates wlith a free edge it is not necessary A
to expect a noticeable change of natural frequency with the increease
of the speed of flow, In any case thls conclusion needs an experi-
mental check,

Tet us note also that in plpelines wlth both secured edges, the
change of natural frequency found in the experiments, with the increase
of the speed of flow, well agreed with the calculation data,

%, The mass flow renders a damping action on the vibration of
plates with a free edge in & direction transverse to the flow, The
magnitude of damping increeses with the increage of psrameter u, -
Upon the achievement of & certein vealue |, the damping increases so
much thet the free vibrations become impoesible (the frequency becomes
equal to zero), As shown by experiments with cantilever-secured
plpelines, the transition from the perlodic motion orf & pipe to
aperiodic (motion at zero frequency) with the incresse of speed of
flow cccurs at a constant netural frequency of vibrations of the | F

gsystem, Evldently, an snalogous phenonmenon also occurs in plates,

43

e e




If there 1s no free edge in the plate, there wlll be no damping
of vilibrations,

4, A constant mass flow may cause a loss in the stability of a
plate. Using the terminology of V. V, Bolotin [4], this type of lcss
of stabllity for plates with a free edge pertains to the "vibratory"
type. In the remalning plates there will occur a loss of stabllity
of the "static" type. The boundaries of the reglons of stabllity
are established by means of the application of the Hurwitz method to
a characteristic equation of the form (22).

In view of the limited volume of this article, this part of the

work 1s not represented,
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EDGE EFFECT DURING THE JOINT ACTION OF AXIAL AND RADIAL
PRESSURE FOR ANISOTROPIC CIRCULAR CYLINDRICAL SHELLS

D. Ye. Lipovskiy

Defiritions of Cyrillic ltems

H = init = initial
I' = r = radial
I = ¢ = elastic
KP = crit = critical
B = up = upper
OPT = ort = orthotropilc
Il = fr = frame

RI‘/OM = kg/cm

This article considers the case of axlally symmetric loading
of anisotroplc circular cylindrical shells by transverse pressure
and axlal forces,

As it 1s known, the state of strein for such type of loading
carries the character of an edge effect, since 1t quickly becomes
nomentless with the removal from the place of perturbation (sites
of transverse ribs, intermittent chenge of cross section of shell,

and others).
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The edge effect in the case of the action of redial pressure 1s
ihe subject of extensive literature {(for instaace, {1], [©9], and
others). In [2] the edge effect is examined by taking into account
the axial forces, which, as will be shown, essentially affect the

character of the state of strain. This work 1s a development of [2].

1. Differential Equation of the Problem and 1lts Solution

Let us consider an anisotropic shell that 1s loaded uniformly
on 1lts perlmeter by axlal forces oxﬁ end transverse pressure p (Fig.

1). We shall conslder extension for Oy and internal pressure for p

as posltive,

Fig. 1.

The character of anilsotrcpy depenas on the angle y between
directions of fibers, from which the shell is made, and its genereatrices,
For multilayer shells with crossing leayers, we assume the equality of
engles ¥ with respect to absolute value for different layers and
symmetry with respect to the middle surface,

Angle y affects the magnitude of the constants aij in the

generalized equations of elasticity
8 2= 8,% + 68,9 + a,7y,
&y =0,39, + Gy3, + ey, (1)
T =833, + a0 + ayt,y,
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where ¢ and o_ are the relative strain and normal stress Iin cross
X x sectione of tle shell,

a¢ and c@ are the same magnitudes for longitudinal sections,
v and Txo sre the relative shesar strain and tangential stress,
Inasmuch as under an axially symmetric load wa = O, we shall

write out only the expression for &, &,,, 8nd 8,, [4]:

8y~ m" (G ﬁ')sln#cos’i-{-m*

l +p, 2

&y = [E: . ( )sln’2¢ 1, (2)
’ sin¢§ 2.; s g €089
Oy = E +(G E:)s!ntcos b+ —= E -

In equation (2) E, and uy, E, and by correepondingly are the elastic
modull and Polsson retlios in the direction of the fibers and
perpendicular to them, and G is the shear modulus,

A differential equation of the problem will be obtained by the

varlational method. We shall use this relationship:

We shall write the expression for potential energy of a unit of
length of & shell that has initial deflection Yinit.0 and redlal
displacement L ‘
r-@(- '5}"""'")+2§"‘—'}[ﬁ;-(%%—vlo-w-..)+ (3)
i—aj-rwoiikw.

is the change of curveture of the shell in the
direction of axis x,

where - -
*x %o

o bt Y

Ci1p”
Dx - — 5 is the cylindrical rigidity,

"" [

— {€, cos'$ + E,s1n'¢ + 2[E,p, 4 20 (1 — p,py)] sin? 9. cos? %},
cﬂ as Wy + e

In (3), the firet three terms represent the energy of internal

stresses, and the second two, the potentiel of the external load.
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In the breckets, the first term expresses thie work of exial forces
"

0 in tie yprisence of the initial

oxb on the change of curvature w
deflection.

Placing the expressions of the megnitvcws in (3) through Wos
end applying an Euler equation of a variational problem, we will

ohbtaint

wo__ ad ., -3 1 4y it ah \
- —_— ), R — —r— . - s
w, wa°+ sk, = D P+ o 1 g o (4)

The roots of the characterlstic equation fuou (4) are generally

complex
A=+ (a3,

: 1 T a R
““’/“f(l/ iy ¥ 70,) (5)
.- ,/ /gy,
2 a;uR’D, 2D‘-
The solution of equation (4) can be presented in the form of

W, = w,; + w,

wl:ere

where wg ls the radlal displacement for shell which does not have
deflection,

wg is the elastic radleal cdisplacement caused by the initial
deflectlon.

When p = const or wlth the linear dependence ¢f p on x, we havel
wp = ¢, shax-cos 3x + ¢,chax-cos 3x + c;chax-sin jx +

+ ¢,shax: sme-{- ( +""“ (6)

In particular, if

2} n,nsux—v—n

where finit o 1s the peak value of the initiel derlection for the
m-th harmonic,

under be¢wndary conditions

=0,

K0
F T A

wuk_o =0, W;
-l




then

';;——Eln%:f,'_sm?x. (7)
where o == -EL.
=2 (%)+ + i \m) ©

The minimum value of (8) 1s the upper critical stress during

axlal compressiont

40__ tu
V———‘- P &,R. (9)
It takes p.ace when
(R IR 36 R 10
() TV em m et (10)

In the particular cese of an orthotropic shell, when y = O, and

1 B
w=—— and D, =-—
e E, l2“—p‘p.°)

instead of (9) and (10), we obtain

Cpon—y/ T2 3 (9%)
and V 30‘?:", ®

m 'l/"(‘-h": (—-) ) (101)

where the x subscripts pertain to cronss sectlons, and the ¢ subscripts
refer to longltudinal sections.
Formule (9) can be reduced to the form of

.:’ - ':!Q‘I'F(J?)p
where

F#) = \/ cost §+ veint§ 4 2t 20 (1 —papp)] sin fcos S

cost¢ + qsiatd 4 (-l-— 2mm, )lln'#-cos"!a
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Figure 2 shows thie construction of & graph of F(¥) for certain
values of 7 and {, from which it 1s clear that in a wide range o
values of elasticity parameters (E,, E,, G), the values of F(¥) arc
Sregser Lhal one whon ¢y U oand ¢ # 900. Thus, the critlical stresses
ot the axially symmetric form of stebility loss in anlsotropic shells

are always lower than in orthotropic shells. They approximate

up

) t ] Ldp-
Yarit ort with the growth ot the ratios of elastic modull n and [

After obtaining the dependence of the elastlc radlal displecement
on x, 1t 1lg possible by known relationships to find the stresses 1in

the transverse and longlitudinel sectlons,

I}

2. Certeln Solutiones for Edge Effect near
Elastic and Rigid Frames

The solutions of (4) are simplified for strain that is symmetric
with respect tc the middle of a sheil and for shells of comperatively
great length.

In the first case, after selecting the origlin of ccordinates in

the plane of symmetry of the shell, the solution can be written:
w, = ¢, shax sinfx + .
4+ ¢;chax-cosfx+ w,. (11)

In the second case, considering the shell apg being semi-infinite,

we wlll obteln
w, = { ** (¢, sin Bx4c, cos Bx)+ (12)
' +w,,
where w  1is the particular solution of equation (4) .

The constants of Integration Sq end ¢, are determined from the

Lcundery condlitions., In the case of placing elastic frames, one of

the ccnditione is the equallty of radial dlsplwmcements of the shell

end frame




r is the radlal displacement of the frame, -

am
er - g%t oy oW '0 18 the transverse force in the region of the
x frame (its radial load),

ffr 18 the area of cross section of the frame,

Condition (13), after substitutlon of Woos obtelns the form of
U.'f"a-n(ﬁo—h-";)"’O. (13!)
o,

where R,
(E))gn
The expressions for the constents of integratlon, which '
correspond to solutions (11) and (12) when w = const, are given in

Tables 1 and 2, where we designater :

Sy Lf2m=shalr2-sin3L/2, S;;L/2=mshal/3-cosBL/2,
Sy L/2=chal/2-co83L/2, Sy L/2==chal/2-sinBL/2.

The case of support on rigid frames corresponds to

fuw — 00 Or Wgy =0.
As an example of edge effect, we shall conslder the determination of
additional force factors near an elastlic frame for a sufflciently
long «losed shell that is loaded by manifold pressure p, After

mentally dismembering the shell (Fig. 3), it 1s possible, by dis-

regarding the torslonal rigidity of the frame, to obtein, from the

condlitions of compatibility of strains,

'llln-o-‘.l,.ga'nn-%‘_&‘R,

'li’uL_o-—wo,gL_.

expresslions for linear bending moment m, and trensverse forces Qi

and Q2 in a gection on the frame:

. A (4% .
- = — 0,3pR2 ‘/ - (14)

€ -
141,19 (°f).. l/—-‘- . E;

Q.-—Q,-—?lm (15)
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L] E— '\ 3 ] With them, lt 1s easy to express
\p\ ll L
~—}- /A. Re2s the total stresses in the extireme
W \ j ] fibers of the shell
\\?ﬂ p-<t
E
! PR |, bm,
\_‘ C,.._%_ R
2 and
o ( 2= 021 1
‘ °'] ‘:(R 0"3_,>+5—: Y
0 [ v where
SR €y = e p, {1 +
Flg. 2. '_"'{2 [

+ n—2(n; + 292 (1 — g} sin’ pcos?§.
Considering the she'l as being semi-infinite witn origin of
coordinates on the frame, it 1s possible to use gsolution (12).

Here
v, =R(an 58+ a2,).
PR

g &= —

When x = O

' -L':+ ‘—'—(an'f."

where, eccording to Teble 2

€3 = m,,)- ((3° — §) m + 2aQ|

or taking into account (15)
»n
c: T e e
Dy(e*+ 3 °
Figure 4 shows the construction of graphs of relative stresses

- ry
aq T ————
T PRA
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and

5
At two values of pressure: p = 1,502<107 N/me and

In the calculation we tookt

——

..t"

PR[}

{d

P = —1962-10" n/x2.

El =1.81 . lolo u’:‘f’. Emn -3 2,55' lo‘o N,’M?,
i .
n= e, cug = 0,135, g, = 0,15, p, =021,

The ccometric dimenslons of the shell are shown in Fig. 4,

As can be seen from the graph, tne edge effect essentlially

changes the state of strain, as compared to the momentless effect.

10 T
Sxing A~
&3 /1’
&0 / ‘X
33 7L et !
NI/ AN\
P \"; ,
43 ~ /,
/’f// — Pt 2"Vl
WK ——— PR -2t
/ T—Hitilout axial
‘f.l orce @ = 100
Biera® PR/ ! 8= Qlom
|n;;;3¥gzgiff fun 2ot
———'/T ’ ) E
a5
. , 4
o 6. ”. “- 60' ° R ”t
Fig. 4.

i.e,, when there 1is only radial pressure,

This change ig especlally signif-

icant during the &ction or externesl
pressure for angles ¥ in the range
of 20—700. At these &ngles, the

lowering of annular stresses, due

to the decreage of radial dis-
placements wo in the frame, is
overlapped by secondary stresses

caused by the moment

O,
m,-;f—mr

3
For the purpose of comparison,

Fig. 4 shows graphs of 3% and

<
< 1n the absence of axlal force, ;
s : ;

From them i1t follows that

an axlsl fcrce, especlally during compression, introduces an essential “,

change into the state of strealn of cross sectlions of & shell and does

not have a great effect on the annular stressges,




The conducted investigation shows that from the polnt of view
of the edge effect and the axially symmetric form of stsabllity loss,
orthotropic shells are more appropriate, where the directions of the

principal curvatures coinclde with the princlipal axer of elasticity.

3. Damping of Edge Effect

Reference [5] gives the wavelength
=49} Rs

lor the case of axlally symmetrlc transverse loading of & shell and
makes the conclucion that for suffi-iently thin shells the state ¢f
straln, ceused by edge effece, qulckly disappears wlth the removal
from placea of perturbation., Analogous conclusions are made in [1]
on the baslis of the analysis of roots of characteristlc equations.

However, in the c&se of Jolnt actlon of trensverse pressure and
axlel forces, the above-indicated length 1 does not characterize the
propagation distance of the edge effect. Here, both the wavelength
along the generatrices,; and salso the degree of damplng, essentially
depend on the magnitudes and directions of the action of exiai forces
he character of anisotropy of the shell.

Actually, in accordance with (5), the wavelength is

2% 2

[, =% = = = 2= ‘
) p— —

1 § 3,8 g : .

‘/-2- (l,/ apR'D, — 20, V—% l/ -“n’:’nx (l - 32» ) ( 16 )

For orthotropic shells —
I, 2x (17 )

———
-Ll/ 30—y 22 (1— )
3R Yale ) E, A

In & particular case of an lsotropic shell, from (16) and (17)

1t follows for pu = 0,31

o8
L----ﬁih-----------------------------------




=49, ) —5—. (18)

As can be Been from the given formulasg, the wavelength 1s

b

increased with the growth of posltive values of O and when Op = Topit

it envelopes the entlre shell,

Daemping of perturbations, as may be seen from (12), depends on
coefficient a, For instance, length 21‘0, where w5 constitutes Uv,01
of the velue at the edge, can be determlned from the condition

F il 001,
from which we obtaint

for anlsgotropic shells —
4.6 19
4o= ( )

Viy (1)

for orthotroplc ~—

Lo (20)

]/-'—VS(I—M%;E?(I +;:'—\

In a particular case of 1sotroplc shells when p = 0.3,

f,e=36 B_ (21)
14
%
Length lq o 8TOWE with the increase of negative (i.e., compressing)
b .
values of Oy and when Ox ™ Copit the perturbation from the edge
effect practicelly does not atienuate,
Thus, during the actlon of sign'ficent tenslle forces, streins
from edge effect are obtained with a great wavelength, but with
quickly attenueting amplitude. And, conversely, in the case of

essentlial compressing axial loads along the shell, there are cobtalned
.. o9




e

short, but slowly &ttenuating waves of streiln. The mutual nerging
of frames during the calculation of edge effect can be dicregarded,
if the distance between them is greater than 221 ~e In this case

the edge effect at every frame can be conslide.ed as tor & gemi-infiri-.

shell.
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APPLICATION OF THE METHOD CF ASYMPTOTIC INTEGRATION TO
PROBLEMS OF VIBRATIONS OF SHELLS OF REVOLUTION WHICH
ARE SIMIIAR IN FORM TO SPHERICAL SHELLS

R. L. Malkina

The sgolutlion of certain probleme of free vibrations of shells
of revolutlion of poslitive curvature 1a expounded; the asymptotic
method of integration of dif ‘erential equatlons, developed by A. L.

Goltdenveyzer [1], [2], [3], 1e used.

§ 1., Equations of Free Vibrations of an Arbitrary
Shell with a Large Index of Varlability

Experience shows that the free vibrations of shells correspond
to the multiwave cheracter of strailns. Due to this, the equation
of frequencies and the approximate form ¢of vibratlions can be found
by means of integration of the equatlions offered by V. Z. Viasov [4]
for sloping shells:

Mo — ERb @ =0, 37+ Ddiw + 2 %:; -0,

[ )+op (B 6.1] (1.1)

A____[ 1 a Ald].

A Ry 0 B R &
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Here w 1s the redial displacement,
@ 18 ilhe function of siresses,
h 18 the thlckness of the shell,
D is the cylindrical rigidity,
v/& is the density of the material,
@ and P are the curvilinear coordinates of the middle surface,
A and B ere the Lamé parameters,

R1 and R, are the main redii of curvature.

2

The equations (1.1) can, under certain circumstances, be
obtained from the general theory of shells without the assumption
that thz shell is sloping. In [1], [2], and [3] it 1is shown that
with the help of equations (1.1) it 1s possible to approximately
conetruct the atate of strain of shells when theilr variability is
sufficlentiy great, Therefcre, followlng A. L. Goltdenveyzer, we
shall subsequently call (1.,1) equations with a large index of
verliablllty.

In the case of an arbitrary shell of revolution, referred to
geographlc coordinates (Fig. 1), in equations (i.1) 1t 1s necessary
to put A = Ri’ B = R2 sin @, They they will teke on the form:

Ay —Endw ==0, A+ DAAw + 7_" f_";=0'

a!
1 n=! Rysina (1.2
A= —— -_— o
RiR; [ ( ) 0; (R. sine d:i)] )
A, = 4 'Ei:_if A
A R\R;sinea dx R, o 03 R,slna 03 _l

Equaticns (1.2) are correct when the index of variebility is
positive, I t = %3 then they are correct wilth an accuracy up to
terms of the order h*, as compared to unity. h¥* designates the

smell parameter:

I® =

o a
2V —V)R,
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The points that are close to @ = O, where the equations have

will be ecxcluded frowm consldermstion,

B
-t

Flg. 1.

§ 2. Vibratione of a Spherical Shell

We shall present the function of stresses ¢ and radlal displace-

ment w in the form:

ola, B, )=19(z, 8)coset, w(a, 3, {)=w(a, B)cos ot (2.1)
Here w is the frequency of natural vibrations.
Considering R1 - R2 = R ir: (1.2), and excluding function ¢, we

will obtain the equetion of vibrations of & spherical shells

DAy + (% -p’)éw == (),

wiere
a--———-’u:h
r P,
N ] a s 2 H 2 a
A‘R‘slne I_Sﬂ_ (smas;) sit e (O—P_)J (2'2)

Let us consider & section of a spherical shell, which is limited
by parallels G = a, and Q = a2. In this case, all dlsplacements will

be functions of angle P of period 2m. The solution of (2.2) will be

found in the form of

w(a, f) = i: v.(c)cosm'ﬂ'. (2.3)

o~ |, 2
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Placing (2.3) in (2.2), we will obtains

_ 883w, (2) ~ 4w (3) =0, <A=—+ctg1-—-;—“::l). (2.4)
(m—O. 1' 2, ...),
‘n *~ LE’R;.--— :_ﬁ_.___é’_,— (2'5)
b=h :(w ')‘ Sl Ty

Here &nd subsequently we ghall ~ongsider b? > 1, 1.,e., vwe shall
exclude from conslderation the vibrations whose frequency exactly or

epproximately satisfles this egquation:
—1‘:"&_’1-0. (2'6)

We shall deslignate Aw = w*, Then (2.4) will be reduced to the

following:
8Awg, (a) — b* w:,(u)-(].
? = 4L ‘e _m 2.
(A — +ctga m,a). (2.7)

For the given velue of m equation (2.7) 1s broken up into two,

each which can be presented in the form of

o , ?
w‘-+w‘cWa—-ﬂm.w‘+(n+-unwﬂ-0. (2.8
In order to obtaln the first or second equation, it 1s necessary

tc put accordingly n = n, or n = n,i

2

R+ 1) =8 ny(n,+ 1) =— % (2.9)
Parameter b2 1s great as compared 1o unity; therefore, with the
é seme degree of accuracy with which the calculations are conducted

E it 1s posslble to take:y

1 .
mt oo =b, Ryt o mib. (2.10)

Tne general solution of (2.8) ia expresged by this formula:

w,, ~¢,, P> (cos e} + c,, Q™ (cos a). (2.11)
J Here Pﬁ(cos a), Qﬂ(cos a) are generalized acsoclated Legendre
5 functions of the first and second kind [5],
643
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C4m and c¢ are integration constants.

2m
Consequently, the general solution of equation (2.6) for a
certein specifically glven m has the form of -
»; (8) = ¢, P2 (cos &) + ¢, Q% (cosa} +
+ g P (cos a) 4 C o Q2 (cO8 0). (2.12)
Let us consider vibrations of & shell, in which there will form

more waves along the meridian than along the parallel, 1l.e.,
) m.
As 1t 18 known [5], functions Pg, Qﬁ can be expanded 1in series

with respect to paremeters m &nd n. Under the conditions

AYm slel(x—as), o<-<§. (2.13) ,
retaining the main terms in these serles, we will obtain asymptotic
formulest
l
9= Oor((o—o.s) sine ) sin(G+ 40+ ), (2.14)
I
Q".(COSG) ( 05)' (2“_0.5)“ ) cos(‘+ba-r 2),
2
P- == » — iB)" -— -.;-“- 2'15
= (cos &) = (0,5 — ib) s(»-o,5)sm-) sln(4+ib¢+2>, ( )

k)

&% (cos a) = (0,5 — i6)™ (m " cos (—— + iba +

We shall put (2.14) and (2.15) in (2.12), Taking into account

that w* 1s real, after certain transformaticns we obtain:

1
- -7

Wa=(sing)  [cyqsinba + cpp cOs ba + ¢y, 5h b2+ Cym ch ba] (2.16)

s (m=0, 1, 2,...). ) )

Let us conslder the casge of axially symmetric vibrations in
which waves are formed only along the meridians. Consldering m = O, i
or in the operator of (2.2) é%-- 0, instead of (2.4) and (2.7) we

have following the initial equations

MAQ (a) — d'Aw (a) =0, (2.17) r
w*(a) — b'w (c)-=0 (2.18) :
where 4= -‘—’,-—f-clgc 7; . w0’ = Aw.
65
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The asymptotic solution of eguatlon (2.18) will be:

u.’-

®*(2) = (stne) (¢, s1n bz + ¢, cos b1 + rysh ba + c,chta). (2.19)

In the following paregraph we shall show that soluticns (2.16) and
(2.19) can be obtained by the general method of asymptotic integration,

whose advantages congist 1n its comperative gimplicity snd universality.

§ 3. Application of the Method of Asymptotic Integration
to _the Problem of Vibrations of & Spherical Shell

The essence cof the method of asymptotic integration will be
considered in an example of integreation of equsation (2.2), which, 1f

we introduce the designation Aw = w*, can be presgented in ilhe following

manner:
(1 =p)@° + h’L(w') =0,
where
o2 __ 1wR? 1 4 9 1 #
2R A A= L (sina L £ .
p ‘E - sina [da (Slﬂl d;)+ sin 1 d”_l. (} 1)
The solution of (3.1) will be found in the form of
w° (s, ) =N W (a, B). (3.2)
Here f(a, B), W*(a, B) are the sought functiore, whereby f(a, B)

is called the function of variability, and W*(a, B) 1is the function
of intensityt k ie & constant which is connected with h* by the

relationshlp

ot [ ] .
‘-h * * _a-»:'ll"“_""“o,. = ' (3‘3)
. e eil —v)

where 1 18 the 1index of varlability of the sought integral selected
by us. We shall consider 1t > 0, and consequently, k 1les a large
number,

The function of intensity W*(a, B) and the sought frequency will

be expanded in asymptotic serles in diminishing powers of k. Then

T T

the sought solution (3.2) will be presented in the form of

O = MENW +ETW S RTW L) p =i R (304)
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3
a2
1)
o}
m
i*:
—
C
|
(@]

, 1, 2...) are functions of a and B, and do not depend

ng (3.%) in {3.1) and considering (3.3), we

Tmn~d
-t o d A

n

will obteins

=@+ '5 + I+ Wt )+ b LW+

1
2 k3
T

- 2
+h T LW LW+ kT LWi+ L (WD+  (3.5)
+ Ly (WD) + ...~ 0.
Here LJ(J = 1, 2,...) are linear differential cperators, and

1—.—[(%)’+;;',—;(% ’J’. (3.6)

We shall assign the index of variability t. On the selection
of 1 depends the density of the nodal lines and the frequency of
natural vibrations,

Reference [3] shows that for shells of positive curvature the
frequency of natural vibrations with the growth of 7 1s not Increased,
while v < 0.5 and increases when 1 > 0,5,

We shall find the frequencles of wvibrations corresponding to
the index of variability 7t = 0.5, which is called the characteristic
frequency in [3].

Considering v = 0,5 in (3.5), we will require that in the left
part of the equations the coefficlents become equal to zero at all
powers of k. We shall obtaln an Iinfinite system of equations. Finding
of functions f(a, B), WE(G’ B) (5 =0, 1, 2,...) Will be reduced to
& certain recurrent process. The function of variability f(a, B) 1s
always determined from the first equation, which 1s obtained by
equating the coefficients to zero &t the highest power of k 1n the
given equation. From the remaining equations we shall consecutively
determine WH(J = 0, 1: 2,040).

Preserving the degree of accuracy of the initial equations in

all calculations, we shall limit ourselves in series (3.4) to the

N 2




tirst two terms and to the value of the trequency of free vibrations

|

ers approximetion. Then, by equating the coefficients in equatiown

. (3.5) to zero at the highest powers of k(kO and k_l), we obtain:

)+ ()T o

A (3.7)
[] l’l(w.l)l,-u' (pzc ‘R ).
gE

Integration of (3.7) makes it possible to express f(a, ()

through an unkuown frequency . Putting f(a@, B) and W,(a, B) in
(3.4), and satisfying the boundary conditions of the problem, we can
obtaln the equation of frequencies.

We shall show the application of the method of asymptectic
integration in an example of vibrations of a section of & spherical
shell that 1s limited by parallels a = a,, @ = o, (§ 2).

Let us first conslder axislly symmetric vibrations in which the
index of variabllity i1s great in the meridionel direction and 1s equal
to zero in the dlrection of parallel circles.

The solution of equation (2.18) will be found in the form of

o’ (a) = eI [W5(a) + k' Wi(a), p*=p}. (3.8)
Substitution of (3.8) in (2.18) under the conditicn of 1t = 0.5
leads to thls equation:

=P (W +&'W +

&°
+(6f'f’+2f’ clg 1) ‘!’5-%4,"'“‘-%”5.{*—0_ (3.9)

is

Equating the coefficlents to zero &t ) and k_i, for determination

v e

of functions f(a) and W,(a), we have

1—pi+f'=0, (3.10)
or 611 +2f° ciga) W, + 4/°W =0

J l

(u)—j'/p Tl ds, wy=y C(stna)

o

DR T
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Taking into account that
Rfy= —Rfgo=b(8—a), Rfy=— &), =ib(s— o)),

we wlll obtaini _1 .
w* = (sin a) ¥ fe;sinbd(a—a) + c;cosb(a—e) +
+ cyshd(a—a) + c,ch b(z — ay)]. (3.11)

Solution (3.11) coincldes with (2.13), which was obtalned earlier.
By substituting (3.41) in formula Aw = w*, we find the general
solution to equation (2,18)

w = w, (A, sin kf + A,cos kf + Ayshkf + A, chhf) + A2 + A, (3.12)
where AJ(J = 1, 2,...) are integration constants. The last two terms
in (3.12) correspond to two multiple zero roots of the characteristic
equation. It 1s easy to show that one of the multiple zero roots
must be rejected, otherwise the obtained solution will not satisrfy
the equations of axially symmetric vibrations of a spherical shell:

‘ i— (u'+uclgc+_2¢)——(l'——v)o'-=0.
(149 @ +ocget20)+ o o — 0D gm0 (2.13)

Equations (3.13) directly ensue from the general theory of shells
with an accuracy up to terme of the order h*, 1f we consider that
the index of variability is equal to half.

Excluding displacement u from (3.13), which is directed along
the meridian, we obtain an equation of the fifth order for w, Thus,
w will be expressed in five, and u in six constants of integrsation,
nhe number of boundary conditions and is equal
to slx with axlally symmetric atrain.

By comparing (3.13) and (2.2), in which 1t 1s necessary to take
0/ = O, we notice that inasmuch at in the congidered case of Ap =
= En/R(1 - v) X (ut + u cot @ + 2w), the second equation of (2.2)
accurately coincides with the second equation of (3.43), and the
first equation of (2.2) is one order above the first equation of

(3.13). This explains the appearsnce of the extraneous root, and
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after rejecting it we will obtaliut
1
w () = (sin a) T(c, sin b + c,cos b1 + cyshba 4 e chba) + ¢ (3.14)
We shall introduce a new vearlable 0 = % - &, Then expression

(3.14) caen be presented in the form of

]
w(a) =(cosa) (A, sinbb+ A,cosdt-+ A,shdd + A,chdb)+ A, (3.15)
For tangentiel displacement we find the following asymptotic

solutiong

4-' -

u==——(cos°) (l+v){- [— A,cos 0 + A,sin 6 +

+ Agch 58 + A sh o8] + —Ze— [2 —p’ (1—v)]a}+ As. (3,16)

Let us turn to consideration of the case when, during vibratilons,
waves are formed both along the meridians, and also along the paralicl
circles. We shall find the solution of equation (2.7) in the form

of

w, (a) = eV ® (W, (a) + &7 W, (a)]. (2.17)

After substitution of (3.15) in (2.7), and equating the

coefficients to zerc with ko and k'l, we will ohtain:

i——p3+/f ~—-;I-;:f;- =0, p.‘;“l'-",,—',,'ﬂ. =",
_ 27 f
(Sf’/" ”, "+ 9 ctga— <L cig )'wo (3.48)

+ A </ - sin'n) w” =0.
From the flrst equation of (3.18) we find the expression for

the variability function

1

j(a)s;‘:(;i—::-:i% da, Bk ("'"‘"—1) (3.19)

and from the second we determine the function of intensity of zero
approximation.
However, the expresslon for the f(a), calculated according to

(3.19), and the corresponding equation of frequencies, are excessively
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awkward. When b2 >> m2 and angle o satisfies conditions (2.13),
solution (3.17) will be:

'/l ———‘fz-b(d——lo’, kf-’-—‘f“'ib(u.—'go)-

§ 4. Examples of Composition of a Frequency Equation
for a Spherical Shell

Let ue assume that & shell is bounded by angles 6 = 191 and
both edges are secured equelly. Let us consider the case cf axially
symmetric vibrations., They are broken up iInto symmetric and anti-
symmetric with respect to 6 = O, In the case of symmetric vibrations,
in formulas (3.15) and (3.16) 1t is necessary to put A, = Ay = Ag =0,
end in the case of antisymmetric, A2 - A4 = A5 = 0, Let us assume
that both edges of the shell are rigidly fixed, i.e., the followling
conditione must be fulfilled:

Beswew =0 when 8= + 4§,
Satisfying these conditions with the help of (3.15) and (3.16),

we will obtaln & frequency equation for symmetric vibrations:

lv‘l

T4+ (1 4+ g8 5cthsb) — 2{g 8, 6th ¥5,
' 3
@ =12—p (1 =], b=k* T (p—1)") (4.1)

Inasmuch &8s b >> 1, argument aib in many cases can be s0 large

that
cth®,0 & th b1,
Then (4.4) will take on the form of

1 1
cighp— 2049874 =0t -9 (4.2)

R—p (1~ (- 18
- 2 9K
(n 0,1,2..,p pr ).

The frequency of natural vibrations w is determined from

equation (4.2) by the method of serles approximations. For
71
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sufficlently thin shells, the firat term in the numerator 1s small
as compared to the second. In this case the frequency equation is
simplifileds

clgdb=—1, e,b=(,-.—— x (=0, 1,2 ..}

or

12(:::')1?' (r»’R’ )04_( __)* =, (4.3)

In the case of hinged support on the edges, the radial dis-
placement w, tending moment Mi’ and normeal force N1 must become
equal to zero., With the same degree of accuracy with which we
obtained the final formules, these condltions can be represented in
the followlng way!

we=w"=4'=0 when 6=+49, (4.4)

Satisfylng conditions (4.4) with the help of (3.15) and (3.16),

we will obtaln the frequency equationi

MR =G emora (09)

§ 5. Free Vibrations of Shells

=
from Spherical

het Differ Very Little
hells

t
S

Let us consider free vibrations of &n arbltrary shell of
revolutlon of positive curvature. Let us assume that the shell is
closed with respect to the axls of symmetry. Then &all displacements
end forces will be functions of angle B of period 27, and the
solutlon of equations (1.2) can be found in the form of

o (a2, 3, t) = w(a)cosmd cos wt,
¢(a, 8, 1) =9 (a) cos m3cos of, (5.1)

Under thls condltion, operators A and A?, which were determined

by expressions (1.2), will teke on the form of




sm [ (e ) - 2],

A.f- R:':ln- [R'T‘; ’:: daj p;‘.nn-] (P’—) (5+2) -

Let us assume that radill Ri and R2 change sc smoothly that in

formulas (5.2) it is possible to disregard the terms containing

G YRR S

factors pt/p and Ri/Ri' Then the formulas of (5.2) gilve:

a0 G-2)
8~ (d-’ te El-—* :slniu) (P- R

Hence, 1n the case of axielly symmetric vibrations, it follows

that
A= RS, (5.4)
When m # 0, condition {5.4) is fulfilled only approximately due
to the distinction of the last terme in the formulas of (5.3). Under

conditione (5.1) and (5.4), system (1.2) 1s reduced to an equation

for wi AAAW — ht"(p’ - ':T) Aw = (),

P R0 5.5

In comparing equetions (2.4) and (5.5), let us note that the
latter differs only by the factor in front of Aw, which contains
variable 1/p2.

Equation (5.5), Jjust as (2.4), 1s easily solved by the method
of asymptotic integration, an account of which 1s contained in § 3.
We find the solution of equation (5.5) again in the form of (3.8).
In the case, for instance, of axially symmetric vidbrations, i,e.,

when m = O, we obtain for the function of vearlability f:

f"[l‘ (lﬁ—ﬁ)]-o. (5+6)

gt R
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- ReJecting one« of the multlple zero roots of this equation, as
also for a spherical shell, we will cobtaln the followling solutions

to (5.6)1 1

-

Rl R}
f_*_‘g( ! —:-) ds, f,=c;= const. (5.7)

it R
For csalculation oi the obtalned integral 1t 1s necessary to be
given the form of the shell, i.e,, the functions R () and Rz(a).
Let us assume that for & certain shell the problem may be approxi-
mately solved by replacement of Ri and R2 and angle @ by certain of
thelr mean values, Let us assume that the subradical expresgsion in

formula (5.7) is positive. Then for radilal displacement w we will

find!
w (a) = (sin a)— -;-(c, sin Rf + cgcos Rf + cyshkf +
+ ¢, ch &f) +‘;:-,. (5.8)
ot 1
/- (523 e
Wnen Ry = R, = R, solution (5.8) coincides with the one earlier

obtained (3.,11) for a spherical shell, Thus, we simply determine w

also when m # 0. After w(a) is found, by formula (5.8) we determine u:
w + -%ctgc—(l — %) aip’m — k¥ AAD) + (1+ %)w (5.9)
Formulas (5.8) and (5.9) &llow us to formulate a frequency
equation by the same method a8 for & spherical shell.
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CALCULATION OF CLOSED CYLINDRICGAL AND SLIGHTLY CONICAL
SHELLS WITH ARBITRARY CONTOUR OF CROSS SECTION

N. A. Shelomov

Definitions of Cyrillic Items

I = f = frame

Ul = £ = frame

§ 1. Formulation of Prcblem

Let us consider & structurally-orthotroplc semimomentless shell

under the actlion of an arbltrary surface

load. (In places of

application of concentrated forces the shell 1s reinforced by

additional structural frames .)
The problem councerning the state of
be solved by the method of forces in the

variational principle. 1In thils case

straln of such & shell wlll

form of Castigliano's

shell mey be based on the following assumptions [1], [4], [5], and

[cl.
1. The Kirchhoff — Love hypothesis
is valid.

. 2. Moments (Fig. 1) are

0]‘”‘:H2=0.
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Here 61 and 62 &re the given skin thicknesses of a structurally-
orthotropic shell in transverse and longitudinal sections, according
te [1].

For & conical shell, we additionally take cos 6 = 1 (Fig. 2).

H

Fig. 1.

| et BB Al 35

Considering (1.1), the differentisl and integral conditions of

G B e

equllibrium of the shell can be presented in the form of
o+ A=[S2- 1]+ a8 x =0,

e A WP 5

r o3
A 9S4 2 A 0, - (1.3)
rers + A » r + ABY == 0,
BTy AL (L %, \ [ 0B _, -
ABR-!-A”(B ) —[-2 &]+ABZ 0,
$izi+ sy-8a 1 p=0
$UT,+5)x r1Ba3 + M=o, (1.4) .

Here a and B are the orthogonal curvilinear coordinates of the
middle surface of the shell,
A - ‘I lB -=fl|(.) Bl (p)r

— s are coefficlents of firset quedratic form and the
R L) R® curvature of the middle surface of the shell
(Fig. 2),

-
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l .z '2 L
5 - B+ 27 ¢) —63)8, 3)
B=18i®+ @7, L= (1.5)

1

f,(a) = 1 — for a cylinder,
(1.6)

£y(a) = ?§¥- — for a cone,

X, Y, 2 are the component of the external surface of the
load,

Ti’ T2, Si’ G2 are the forces in the semlimomentless shell,

P, M and Ti’ S1 are the main vector and moment of cexternal forces
and vectors of internal forces of the shell
In section a = const,

r is the vector radius of points of the middle
surface of the shell in section a = const.

In virtue of (1.6), in equations (1.3) for a cylinder, the
members 1n brackets become equal to zero. They, belng small, as
compared with the other terms of these equationg, will ke dlsregarded
subsequently also for the cone,

Followling P. F. Pepkovich, we shall break down the state of

strain of the shelil into main (equilibrium) and seccndary (self-
balanced).

The maln state of straln of the shell will be considered found
by one of the methods presented in [1], [7], and [8]. Specifically,

it can be represented in the form of

1) forces in the shell

Ti=Ti 4 TP,
=S+, (1.7)
=T,

where Tl’ Sl’ T is & particular solution of system (1.3) when G
=0 [5],

2

an ] 1 ¢ 7 1
..j‘a_’ Bd— (R2) du—;jB’Ydasz——Ej 8Xda,
s,

qc—f-m[ja—(kzm.—ja rm] (1.8)

T:=—R2Z,
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and forces Tgl) and S§1> are found from (1.3) and (1.4) when G, = 0

after substitution there of (1.7) and (1.8);
2) forces in the g~th structural frame
ﬁ_izlln ﬁc‘ho Ai:kn

o Qeim. Qfra, Qf m (1.9)

(Mqif and Qgif are the bending and twisting moments, the axlal and

BT | e

transverse forces, respectively) are determined by methods of
structural mechanics in consldering the frame as a statlc indefinite
frame under the action of external concentrated loads qu, qu, qu
and reactions on the part of the shell
ATY=T}(3+0. B) — Ti(2,—0,8), 38, = Sy (s, + 0, }) — S(a,— G, 9).

where aq is the coordinate of the q-th frame,

The secondary state of strain of the shell should be the :
solution of uniform systems (1.3) and (1.4).

System (1.3) consists of three equations for four unknown

functlions Ti, Si, Tg, Gg. Thus, 1in every point of the middle surface

o ks Ak

the semimomentless shell is statically indefinite one. We take the

functional unknown asg extranecus:
3 a3 |
e, -Xv.(ﬁ)[f' (-5, (1.10)

where &, (@) are the sought functions,
f,(e) are determined by formulas (1.6),

@1(5) pley the role of given functions that satisfy uniform
conditions (1.4) and the conditions of periodicity.

y e L

In §§ 2 and 3 we shall show the method of obtalning these functions.

After placing (1.10) in (1.3) when X = ¥ = Z = 0O, we will obtain:




-

s ey e —

LA lcl

T ] —ev;tp;
w)—— (=25 n(?)H} *‘-5[‘51.7 e

- BTRLE vo] T+ o o) (2],

Tfsfgf:[— ;(P)]' “‘M .

)

(1.11)

U: = Y 0 () /1 (2)- 2L

=1
d 9

as an external

By considering the increase of forces Aqu and Asiq
influence, we will find the forces in the structural frames:t
M.
o (1.12)
Que

Unknown functions a,(a) are found by means of sclution of a mixed
variational problem,
Coneidering (1.2), we shall write expressions for potential

energy of the systems

-=T<6(r°+rd> Adbe, +T<ﬁ|0"l’ e +‘;‘u...n (1.13)

l ——— '

Here 12

3

' My + MO |
u...n=2 Wom + Mol (0)B,ds +

28,1,

+ S‘Cﬁ‘ﬂ'—%':’ﬂ'— £1(a,) B.a8,

i
=T 1

EtItf and Etuth are the flexural, torslional, longltudinal, and shear

riglditles of the frame, respectively.

In expanded form

‘U-]—"—‘i P B+ 2 ) T 9 & (s)
) am, {fr . w ( M,(pmaa] 26,
. " - ._‘
+ Y [fum-no-s ]*"““""'"“” .t
221 $e S = e
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The Euler ~ Polsson equations
F'-——(Fb1+ (Fh )=0

for unknown functions ai(a) will take on the form of

N o 1273 (a) a
Zf:;,'[ E:; . ‘::_‘) ]§?,(3) n(¥) 8,43 +

>
Y

Ll Eﬁ () 4:(3) B,d3 +

2 Bt § e HumBsm =0,

L]
Ei Sy (a)
i=2 3, .., n

(1.15)

The sought functions a,(a) have to satisfy also certain boundary
conditions

Upg=1e m=1,2,.., 1 (1.16)
which are formulated depending upon the conditions of fastening of
the shell [1], [2], [6].
selection of functions wi(p), the matrix of
system (1.15) is complete, in consequence of which, the solution of
boundary value problem (1.15) and (1.16) becomes awkward and very
time-consuming even for sharply cut-off series (1.10). Such functions
@i(ﬁ) can be obtained, however, which reduce the matrix of system
(1.15) to diagonal form. In this case the boundary velue problem
(1.15), (1.16) for shells with arbitrary contour of cross section is
solved with the same ease ag for shells with circular contour of
cross section. The way to do this 1s prompted by the conditicns of

conversion into zero of nondiagonal elements of the matrix of system

(1.15)
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C_f?.(?)'?. (0 B8,d3 =0,

1.1
(ﬁ@;(ﬁ)-i.(S)B.d?.:no,i,ek, ( 7)

where ¥,(B) 1s determined by formulas (1.11).

It turns out that if we construct a differential operator
‘ l Rl l ‘_"prn. i ' , . ) .
ﬁ‘&[E[&%Gq},'m[ﬂﬁﬂwq-ﬁmmho.

V= /"B~ V@ +20) =0, i=1, 2,..., & j=1,23, 4,

(1.18)

where ViJ ere the conditions of periodicity of functions wi(ﬁ) ard
thelr derivatives w(ini)(ﬁ)ﬂ we find its solution (eigenfunctions),

then they sutomatically will satisfy the conditions of (1.17).

§ 2. Certain Basic Properties of Solutions of Operator (1.18)

1. Operator (1.18), as an even self-adjoint operator with
D = eg - uei-eml = 0 ([9], pp.53-55), generates & denumersable set
of characterlstic numbers xi, which, starting from the second, are
elither single or double. To thie set there corresponds a corplete
and orthogonal system of chains of eigenfunctions ¢ir(5) (r is the
number of the eigenfunctiun in the 1-th chain) with weight By.
Therefore, wiith arbitrary r end t

$ o @ vue®r-Bidt =0, i k. (2.1)

~

2. The tirset chalin, which corresponds to ki = O, contalins

three functions (Fig. 2)

?u=8(B)-cosp=y(p),
912~ &, (B)-sin 8~ z (B), (2.2)
?l& el ]D

which obviously approximate the elementary state of strein of the

ghell.

5. The remainling chains sterting from the second one, contain

either one or two eigenfunctions.
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4, Their orthogonallzation inside the i-th chain may be

*u =2 (. (2.3)

fo=9,(8) + 2, (M),
where

@ 0 ()95 () Bidp

@ ok (9 B

'a‘—- N

after which, the following is valid at sny 1
P )9 2, ~o0. (2.4)
5. Qir(ﬁ), when 211 1 # 1 and r = 1, 2, satisfy uniform
conditions (1.4) which are equivalent to six scalar condltions of

self-balance:
@?ﬁ(?) ‘Pn(p)Bidp =0, t=1,223, (2.5&)

@{;‘T['&'[ ,,(B)]] + 9,,},,,@)@-
(5[] ]+ --—9,,@)].?" (p)l..

— 3 eﬁﬁu(&)-v.ﬁiﬂ.dﬁ-ﬂs (=1, 2, (2.5b)
oS5 o] [+ w5 rdjsi® A=

n@[%jh,(n)-ﬂsmdn+C,j°i(@"’?'° (2.5¢)

(conditions (2.5a) and (2.5b) are satisfiled in virtue of (2.1) and
the periodicity of functions ¢, .(B)} conditions (2.5¢c) are satisfied
with the appropriate selection of arbitrary constant Ci)'
6. Trigonometric series with arbitrary constants ay end bi
](3)"-;-?-+ .'ga,cos i) +gb,slni,‘l
is the solution of operator (1.18) when R, = B, = const. Eigenvalues

in thls cese are determined by the formula
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a,z-“;i’(i”-l). i=1,23.., n, (2.6)
1

whereupon xl = 0 is a triple root and the other A, are double,

i
7. Due to the orthogonality of the elgenfunctlions of operator

(1.18), the matrix of system (1.15) become diagonal:

4 E!: da? E‘;f:: (2)

———

12
@ TG 37, (3) Bdi N
+ {

43 (3 B3 Eni(s

o [y

=0, i=2 3.8 r=12 (2.7)

§ 3. Algorithm for the Calculation of Eilgenfunctions
of Operator (1.18)

After the introduction of a new independent varieble s (arc of
contour of cross section of shell a = a, = const) according to

formulas

dsaa,da.sa‘fe,dp, (3.1)

operator (1.18) takes on the form of

A

49 (s) L1 ! du()]_, -
[R‘ W= 1t e [R. @ 4 ] 19,(s) =0, 5.2)
V=9I (s) — (s + 2p) =0, )

i=12..,8 m=1,2 3 4.
Here 2p 18 the perimeter of cross section of the shell, For

determining the eigenfunctions operator (3.2) 1t is possible to use
the method of serles approximations [10]. In this case, the calcu-~
lation of the n-th approximation of xin and Pin 1s carried out
according to the system.

1, Determination of auxlliary function:

S (9) = gﬁf'(s. 0 9,01 () . (3.3)
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2. Calculation of xi nx

1...-{@!3,.(3)# —2[@&,‘.0)’-“(:}-«:‘]’}-"—. (3.4) -

3. Finding Py n(s)x
)

-1

L L T [ FACINCEY | B R
- 1

i Ak Wb B ie Ly
.

The eigenfunctlions obtained will be atandard;zed and mutually
orthogonal.

The iterative process, (3.3)~(3.5), starts from the calculation {
of the second chaln of eigenfunctions of operator (3.2), since for !

the first chain (function (2.2)) they are already known. Functicn

in(S) 1s designated in such a way, so that the zero approximation
of eigenfunction ¢,,(s), calculated by formula (3.5), ie different
than identical zero. As fio(s), it 1s convenient to take sinigl

for the first eigenfunction of the i-th chain, and cos-j—'%11 for the {

second. In the course of the calculation of Ay and ¢i(s), all the

earller found o, (s)(k £ 1 - 1) are used. Transition to the calcu-
lation of the following eigenfunction is carried out automatically
upon achievement of the given approximation. As a criterion for

that, 1t 1s convenlent to take the inequality

'x.--g*'—L—'}——l‘-'i<-. (3.6)
where ¢ is a given small number, "
The generalized Green function.?(s, ¢) of operator (3.2), which
is necessary for the cslculation of fin(s), can be constructed by the

method given in [10] and [11] in such a manner that

3’r(., 0.9, (8)ds =0, r=1,2, 3, (3.7)
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where ¢, (s8) 1s equal to y(s). z(s) and 1, respectively.

Therefore, the process (3.3)~(3.5) can be begun directly from
the determination of xe and the second chaln of the elgenfunctions
(§ 2). Let us gilve the final torm cf T'(s, £), which we constructed

for a shell with arbitrary contour of cross sectlons:

r(sv )‘ - EE l"n (S) "Zn(E) Qk )—u(‘) + "h (E) '%(3) Qk S5~n (E)'

Bl fma?

m@NE 2 (—1) Tembso g0 @ +
A= 2Pl Z Z} .

+{~“(—lrw) A5 (®) ﬂ0<s<!
<8< 2p.

(3.8)

Here

O = [ur, (& at,
e = 01, (1) d,

W, . b .=§Sv.,(s) 2 (5)-®, _(s)ds,

n(®) =e(s) (3.9)
L h(8) =y (s),
()= z(s),
n(s)=1,
do =[z(s)-y’ (8) — y(s)-2" {s)] ds,

u; (8) =, (s) ——2 ),

A=a?

YOZ are the main centrel axes of cross section of the ghell,
As can be seen from (3.8) and (3.9), Greents function contalns
only the functions y(s), z(s), 1, and w(s), which are known to the

calculator.

§ 4. Realirmation of Algorithm (3.3)~(3.5)

By algorithm (3.3)-(3.5) we composed and set up & program for

the electronic computer (EC) Ural-2 which makes it possible to
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celculate 2, and @i(s) for shells with an arbitrary closed contour i
of croes section, which is glven in tables,
We made up tables of X, and ¢i(s) for different shells, including
one for a wing-type shell (RAF-34, 10% with rear wall 70.5%). The
tables contain 128 values of function ¢i(s) through equal intervals

of A = é%%.

A check showed that the functions @i(s) are close to orthonormal

R (4.1)

|pr@nias| <os:107, e

and the relative error of calculation of Ki doces not exceed the ;
magnitude %
!

4 < 0,005. (4.2)

§$ 5. Application of Functions @i(ﬂ) to the Strength
Analysis of Shells

. AR W

Reference llterature contalns the vast experlence of the

enalysias of semimomentless circular shells (1], [2], and [3], for

A b e s i |

which a closed solutlon was obteined In infinlte trigonometric
series,
Due to the presence of the &lgorithm for calculatling @i(s) all
of thils experlence is carrled over to the calculation of shells
with arpvitrary contour of cross sectlon, since the trigonometric
functions are s particular case of @i(s). The property of orthogonality
of @i(s) alloweg us to construct a process for calculating the state
of strain of a ghell with controlled errcr By which 1s sultaple for
a computer. This reduces to the consecutive determinetion of inde-

pendent 1-th states of strein of a shell with subsequent summation. s -

The latter remaine on that stage, when the given accuracy [e] is
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attalned. A block-diagram of this process 1s represented in Fig. 3.

Block~-diagranm

Introduction of initial information on
shell geometry and rigidity, boundary
conditions, and losads

M), #(e), 8, ¥, Edy, . =734 pg and so forth

!

—| Adjustment to new i

|

Calculation of w9;(8). &

!

Calculation of e,(2)

!

Calcuwlation of i-th component of state of
strain of shell

|

Calculation of total stat:z of strain of shell

!

——r——

4Kl

no

‘ 1 yes

Delivery of information on the state of
- gtrain of shell -

)

I - .stop

Fig. 3.

Conzlusions

1. By means of isclating functlon f,(a) (1.6) from the first
quedratic shell form, we found a single solution for cylindrical and

slightlv conicel shells.
. B8R



2. We cbtalned and investigated a differential operator (1.18)

that generates elgenfunctions of & semimomentlesgs closed shell,

wfu‘ﬂ

3. We constructed & generalized Green function (3.8) which
makes 1t possible to organize an iterative process (3.3)-(3.5) for
calculating characteristic numbers X, and functions @,(s).

4, We composed and set up a program for calculating xi and
mi(s) for any shell whose cross sectlon can be given t-bularly.

5. Due to the orthogonallity of functions wi(s), g8ystem (1.15)
for unknown a,(a) is div'.ded, which significantly lowers the time
and effort of shell strength enalysls and simultaneously increases %
its accuracy.

6. The results allow us effectively to use electronic computers %
for mechanization and automation of strength analysis of semimoment-

less shells with arbltrary contour of cross section.
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EXPERIMENTAL INVESTIGATION OF THE PROPAGATION OF FAN
AND PATRED PLANE JETS IN A TRANSVERSE FLOW

Ye. V. Rzhevskly and V. A. Kosterin

Definltions of Cyrillic Items

m= s = slot
The work indices of combustion chambers of aviation gas-turbine
englnes are determined not only by the regularities of the chemical
reag2tion of fuel burning, but elso to a significant extent by the

aerodynamic structure of flow in the chamber, From this point of

e 85

view the value of the investigations of aerodynamics of combustion
chambers of gas-turbine engines can be placed on & level with the
investigations of aerodynamics of compressors and turbines,

0f much value for an understanding of the operating process in
gas-turbine engine combustion chambers, and also {or development of
new methods of organizatlion of the process of fuel burning in an sair
flow, 1s the investigation of complex Jet streams, Such streams
include the propagation of fan and pesired plane Jets in a transverse
carrier flow.

Fan and paired plane Jets, which form in the exhaust o gas from =

a peripheral slot cr two parallel, opposltely oriented, plane slots #

(Fig. 1), differ from single Jets by their extreme "continuity."

I S —
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Therefore, in the interaction with a transverse carrier flow they f'crm
1ields," bvehind which, just as behind poorly~streamlined bodles,
there appear zones of lowered pressure wlth Intense reverse currents,
The reverse currents behind such "gas-dynamic shields" cean be

eftfectively used for flame stablllization in the combustlon chambers cof

alr-breathing Jjet engines [1].

y Fan Jet
._..ur- from

——etlransverse f/

——
—
—
—afl0W " 13 —
——

—--. r- . ——t .
_--}rom 0 al

—

s

==/
Pa.irgd plane Jet

Fig. 1. Diagram of propagation fan and paired
plane Jets 1n & transverse flow.

Avallable experimental and theoretical materlal on Jets that
spread in & transverse flow, presented 1n the works of G, 5, Shandorov
[2], Yu. V. Ivanov (3], [4], [5], [%5], and G. N. Abramovich [7], has
beer: accumulated as a8 result of the investigation cof single Jets of
dirferent torm or their combination, the structure of flow behind
which essentially differs from the one under consideration,

In connection with the fact that the theoretical solution of
the problem [8] of calculating the trajectories and range of fan and
paired plane Jets in a transverse flow contalns certain, in general
unknown, constants which consider the peculiarltles of turbulent flow
of & viscous gas, the declslion was made to conduct an experimental
investigation of the propagation of fan and palred plane Jets in a
transverse flow. Thils work gives certain regularitles of the
propagation of fan and peired plane Jets in fiee transverse flcws and

those limited by walls.,



Statement of the Investigation

For constructicn of a correct program for carrying out tests, it

is necessary in the first place tc establish what parameters determine

the pattern of propagation of fan and paired plane Jets in a transverse

flow,

During the interaction of viscous gas streams, one of the char-

acteristic criteria is the Re numher, With sufficilent foundetion one

may assume that the considerec r.. nomenon 1s self-similar with respect

to Re number, lnasmuch as experiments with Jjets in a transverse flow

were conducted in a range of high Re numbers (1.50-2,33'104) which .

were calculated according to the speed and state of the gas at the
slot exlt and according to its width.
In [8] we find the theoretical obtainment of an equation for the

calculation of trajectories of fan and paired plene Jets in free and

limited transverse flow. !

On the basis of the equations 1t 12 possible to establish that

the form of the axis of fan and paired plsne Jets in a transverse flow

depends on the hydrodynamic parameter whlch constitutes the ratio of

impact pressures of the Jet and the transverse flow (Fig. 1)

where p

and also

a) width of slot b,

b) diameter of tube d, or helght of profile hg,,

is
1s
is

is

the geometric characteristics of the installation:

"5 () |

the density of gas of the Jet,
the Jet velocity in mouth,

the density of gas of a .transverse undisturbed flow,

the average veloclty of transverse undisturbed flow wlth
respect to cross section;
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¢) diameter of pipe DO or hligh of plane channel BOj

d) angle of incildence of Jet a.

Thus, if the geometric chaerscterlstics of the installatlon are
given, the form of the Jets in trensverse flow will depend only on
one magnitude, 1.,e,, hydrodynamic parameter a&. In spite of the fact
that the theoretical solution of the problem [8] 1s conducted with a
number simplifying essumptlons and contains unknown megnitudes, this
gave us & basls, In the construction of a test program, to take ﬁb to
e decislve.

By means of simple transtformatlons, equality (1) can be reduced

to the rorm of
ot
7o i‘l%-stl.)-r(kw). (2)
where pt 1s the total pressure in front of the sloi,
p.. 1s the static pressure of gas of the transverse flow,
A.. 1s the velocity coefficlient of the Jet at the slot exit,
A, 1s the velocity coefficient of the transverse flow.

Velocity coefficient kv depends on the ratlio of pressures

—~ and the form of the slot channel., This article investigates

convergent peri heral and plane slots wlth compresslon coefficient
5.0, With a supercritical drop of pressures the gas in the convergent
slots 1s n»o* completely expanded. At the sliot exit, the velocity in
the Jet willl be egual to the local speed of sound (XV = 1), and static
rressure will be greater than statlc pressure 1n the transverse flow
(pc > pr However, we know that in such cases further expansion of
gas 1n the Jet up to P, = p, occurs beyond the limits of the nozzle,
where the Jet veloclty becomes supersonic (XV > 1),

A questlon arlses. How do we calculate the hydrodynemic

p- 2}



parameter ﬁ& witn a supercritical drop of pressures in the convergent
slots? Do we celculate 1t according to the parameters of the not yet
expanded gas at the slot exit, or according to the parameters of the
completely expanded gass of Jets in the rlow? Examples show that q&
for these two cases of calculation will be different.

For an answer to this question, on an instealliation, whose diagram
and description are given below, we photogrephed colored rfan Jets in
a free transverse flow, which were obtained at ldentical vslues of
hydrodynamic parameter E&, but with a different drop of pressures in
the slot (and correspondingly different velocity coefficilents Xw).
For some Jjets the pressure drops in the slots were subceritical and
for others, supercritical., The external boundaries of the fan Jjets
in dimenslionless coordinates gﬁ-and fL-are represented in Fig, 2.

o) 0
The Jet boundaries completely

i » ~ colincide 1f’€v is calculated
3
® «® accordirng to the perameters of
Wy ‘gnﬁbr‘ completely expanded ges with any
r€
s 4ﬁ‘ drop of pressures in the slots,

The c¢oincidence of Jet boundaries

gives us a basls to consider

that the Jet axes also colncide.*®

4 ®8 ® w & e 6 £ Therefore, subsequently in

Fig. 2. External houndaries

subsonlc and supersonic fan Jets formule (2) we getermined Ay

at ldentical G . Py

KEY: (a) designation. for magnitude == on the assumption

W

of full adiabstic expansion of gas in the Jet: '
B0 o 1), {3 i
|

*Additional experiments conflirmed that the trejectories of Jet
axes measur;d by four-~channel rotary tubes at identical E}, but - H

St o

dliferent -I-)—‘L » colncide,

" "
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Thus, EV 1s a function o two magnitudes: —=(A_) and A

Investigations were conducted wlth a change ©f hydrodynamic parameter
Ev in a range from 8 to 420,

The basic experimente were set up with values of EV that are tLhe
moast characteristic tor combustion chambers with gas-dynamic flame
stabilization (in & range trrom 14 to €8). The limitcs of change orl
the ratios of veloclties, temperatures, and pressures in the Jet and
in *he transverse rlow were selected taking into account the technical
posclibilities o the experimental installation:

\Y

@]

1)

{

3-0 (in separate experiments up to 1i3),

=,
O

*

[AD)]
~—
-~
il

0.05-1,0,

£
¥ =¥

—
P

1.2-3,1.

N
bc’
st
U

w
The absolute values of velocities varled within the following
Mmits: Vg, = 124-4056 m/sec, W, = O m/sec, The angle of incidence

. 0
o0 Jete was assumed to be constant and equal to 907,

Description o1 Experimental Incstallstion
end Method of Measurements

A alagram of th:» experimental installation is shown in Filg. 3.
The installation consists of twdo ducts — hlgh and low pressure — and
the nozzle to be investigated with slot ¢, Air as low pressure, whi:zh
forms the trans.erse carrier t'low, was moved by compressor 1 through
heat exchanger 2, in which 1t was heated by gases after combustion
chamber 5. The flow rate of alr through the low-pressure duct was
measured by standard nozzle 18, Change of flow rate of air and

correspondingly, the veloclty of the transverse flow, was attained

IiIIIIIIIIIIIIIIIIIIIIIIIIIIlIIIIIIIIIIIIIIII::EillllllIlllllllllllllllllllllllllllllllll



by fleps 3 and 4. Air

of high pressure, which

forms the investlgated

Jet, proceeded to the

nozzle from recelver

7 through reducer 9

and throttle cock 10,

The flow rate air was

measured by dlaphragm
Fig. 3. Diagram of experimental instal- 19. Heating of the
lation,

high-pressure air was
carried out in electric heater 8. Alr pressure through the ducts
high and low pressure was measured by plezometers and manometers,
Alr temperatur: was determined with the help of thermocouples.
easurement of velocitles and pressures in the zone of interaction of
Jets with transverse flow was produced by a four-channel rotary tube
16 with a diameter of 3.8 mm and fixed on coordinateor 17.

Temperature of gas in the zone of interaction was measured by a
chromel-drop thermocouple attached to the tube in such a way that the
Joint of the thermocouple was near the tube spout. Thickness of wire
o' the thermocouple was O.4 mm and diameter of the Joint was 0.8 mr,
For coloring the Jet during the photegraphing there was a device,
consisting of an atomizer 11, eJector 12, and pneumatic cutoff vaive
1%. Coloring of Jets waas produced by aluminum dust., The Jets were
prhutographed op t.1e basckground of the sleve-like shield which mede it
1ssible to obtain a quantitative dependence between coordinates of

the Jjet boundarles,

We investigeted two types of slots, i,e., peripherel convergrnt

97
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slots having a width of bO = 0.6, 0.5, and 1.12 mm which were made on
tubes with dlameters of dO = 21 and >0 mm, and paired plane slots with
a wldth of bo = 0,5 mm whlich were made on a streamlined profile with

a helght of hO = 9 mm, For decreasing air leakage, on the ends of the
plane nozzle we placed limiting washers. During tests in a limited
transverse 'low, the nozzle with a perlpheral slot was placed in a
cylindrical pipe with a diameter of 200 mm., Correspondingly, the
plane nozzle was placed in a 175 X 178 mm rectangular pipe. The walls
0!" the pipes had windows f2r introduction of the measuring instrument,

For photographing the colored Jets in the limited flow we made a set

or plpes with transparent walls,

Results of Experiments

TrajJectories of Jets., One of the basic problems of thils inves-

tization was finding experimental equations of the trajJectorles of
an and paired plane Jets in free and limited transverse flows. As

the Jet trajectorlies we conditionally selected the gecmetrlc places

—

o points of meximum velocities in the jets, 1In Figurcs 4 and 5, in
dimensionless coordinates, we have constructed the trajectories of
Tan and palred plane Jets in a free transverse flow with different
values of hydrodynamic parameter a&. Introduction of dimensionless
coordinates all: ved us to generallize, at constant E&, the trajectories
0 the Jets flowlng from slets of different width b, (curves 4.5).

Cn the other hand, from the curves it is clear that bending of the
axis of the Jets essentially depends on E&. The smaller ﬁ& 1., tne
greater the bendlng of the Jjets,

However, the same megnltude of av may be obtalned at different

temperatures of the Jet and iransverse flow, In order to compare
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the propagation of hot and cold Jets in the free transverse flow, we

photographed the external boundarles of fan jets with different ratios

} ; IR

e o B M = O n..i

:
of '—T:;r (Fig. 6).
W ) -t . .
{ T =
o :
p'"
af- g0
. ]
% -
il (a w) 4o 'p)
K
.c~

-

Fig. 4, TrajJectories of fan Jets
when a = 90°, Solid lines signify
the trajectories obtained with
equatior ’4),

1 (&, curve number; (b) designa-
tion,
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Flg. 5. Trajectories of paired plane jets when

a = 900, So0lid lines signify the trajectories
obtained with equation (5).

KEY: (&) curve number; (b) designation.
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From the curves of Fig,.

’/4" ¢, i1 1is clear that the

/,T’ external boundaries, and
. 1] l ) —"

consequently also the axes or

. [/ et 3
& PR the tan Jets, plotted at
y =S R
. ] 4 ;H fl, ﬁu ']"_' t-n ':.,le *
¥ M [r<ali58] 10 CAEN
“ [ sl s Tk difrerent —%, but at constant
m 2 isdoserg Hisel o]
« .ﬂ*au Glu Tw
. o
= 3 [aoiafer] s Tats _
4 [t Ji L2 q, coincide, Yu. V, Ivanov
I
¢ 0 W 0 8 W 0 ¥ _lc [3], [©] end G. 8. Shandrov
¥ig. ¢. Comparison o external [2] conducted a similar
poundarles of isothermal and non-
Isothermal tan Jets at ldentical Ev. experiment on single circular
XEY: (a) curve number; (b) desig-
nation, and plant Jjets in a wilder

range 0! cienge o temperatures., They establiched that bending of
thie uxio 27 the Jets does not devend on the tempcraturco ¢f the gar

~

in the Jjet and in the rlow if treatment ot the results of experiments
is roduced according to hydrodynamic parameter qv which considers the
change in density of the gas of the Jjet and flow depending upon
tem:« rature,

Eariier 1t was shown (Fig. 2) that the boundaries and trajector’es
01 the Jets also colincide at identical qv calculated wlth respect to
parsmerers oi a comp letely adiabatically expanded gas in a Jet,
indejcndently of the a~tual conditions of expansion of the gas in the

*

slot and on the fact that at any pressure ratilos El anud velocity
coetricients X , this magnitude or E§ is obtained?

Consequently, the baslic parameter that determines the form of
the axis of the fan and palred plane Jjets in free transverse flows

and thoce limited by walls with the given geometrlc characteristics of

the installation is hydrodynamic :arameter Ev.
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As a result of treatment of experimental date, in logarithmic

coordinates we obtained the followlng experimental equation of
trajectories of fan Jets spreading in a free transverse flow at an

angle of attack a = 90° in the range of change of Ev = 14-65:
'3 . ” \ﬂ.l ]
= 0,024 (L) =1
L 00 (L) = (1)

Correspondingly, the trajectory equation of palred plane Jets
developed 1n a free transverse flow at o = 90O and with a change of

q. = 10,5-66 has the form of
\
P 18 ,
—.—o. i . 1 .
w02 () s (5)

Analysis of the trajectorles of fan and palred plane Jets in a

limited treansverse flow, constructed In dimensionless coordinates

%L and gL, shows that the form of the Jet axls, Just as in a free
0 0

transverse flow, essentlally depends on the magnitude of E&.

A comparison of the trajectorles of Jets at i1dentilcal values
o' determining parameter ﬁ& in free and 1imited flows shows that
bending of Jets in flows limited by walls 1c greater (Fig. 7). The
distinction in Jet trajectorles is explained by the fact that fan
ar.d palred plane Jets in a limited transverse flow, 1n forming a
"shield," they cover part of the passzge section of the channel.
As a result, the velcclty of the carrier flow in this place 1s
inereesed. In tu.sn the increase of veloclty, and consequently also
impact pressure, increases bending of the fan or paired plane Jet in
the transverse flow, From Fig, 7 1t is also clear that the distinction

in trajectories of fan Jjets decreases wlith the decrease of Ev, which

[

can be explained by the decrease of the degree of covering the channel ; E
by the "dome" of the fan Jet. With the degree of covering the ;f4i-

channel 6§ = 0,18 the distinction in traJjectories of fan Jets 1in free mﬂ%

i

i
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and limited flow  ceases to be notlceable. Here and subsequently the

+h arean ~Aessised a3
e arca OCCUupacu

(53

AaTran At oaAvardng 5 1e AnTlAansTatald ne tha vadd A AfF
N oD ~ 4 e o) o - 2 R N L L = S VI V') [# e (PR - LA = R P (Y

by the Jet in the channel in transverse dlrection and teken on the
center line or the Jjet to ithe entire area of cross section or the
charnel,

Exreriments with tan jets in a limlted transverse rlow wore

conducted wlth a change of the degree of covering of the channel rrom

ik r,,-—’“ﬂw— 0.15 to 0.70 (in the range
« A”“p;_ g or q_ = 14,6-103.6) and with
« ,,~"”‘ paired plane Jjets from
» % /’_b-’—!.—d—— . .22 to 0.56 (With qV =
a1 -
- — 1 | (v) = 14,3-109.6).
20 -] — T
L 14 0{21p4(63 1) 82064 As a result of treatment
/ Bl wizlasadet |y | |
c ( A PSR L AT ol experlmental data we
p LBANNEREKEENEE]
1 1 A ; 3 A
e ® 030 m = o ‘t: obtained an equation for
¥ir-, 7. Comparison of trajectorics calculatlion of the trajectorles
oovan Jdetes in f'ree and limited i'lows,
KEY: (a) ree 1'low; (b) limited f'low; of ran Jets in a limited ['low
(2, cecignations, . 5
when a = 907:
X 0,02 (i)"’- L (6)
. . \& o't

[

D

Vo

cairea plane Jets in a limitea transvercse 'low the trajectory

equation has the t'orn o'

PP AL
ICRNTY -2 Sl S
bo hi¢ (l’o) gy (7)

Range o7 jets, VWe shall introduce, tor estimating the range of

a ran Jet in & transverse, the concept of the hydraulic dome¢ dlameter,

i.¢., D (Fig. 1) which may be expressed as
D=d, + 2D,

or In roelatle magnitudes

D=4, + 2D, (8)
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d
Eb = 39 1s the relative diameter of the tube on which a peripheral
0 slot 1s made,
— Di
D1 ll is the range of a branch of the fan Jet, referred to the width

0 of the slot bo.
The range of & branch of the fan Jet D1 1s defined as the dilstance
rom the mouth of the Jet in the direction of axis y to a point on the

axls in which the proJection of the axisl veloclty on axls y (Vm cos Q)

is equal to zero, 1.e., when the Jet axis becomes parallel to axis x,.
Figure 8 gives graphs of the change of the projection of axial
ve oclty of the fan Jet in & free transverse flow on axls y depending
upon relative coordinate gL et different values of determining
parameter Ev. After treatgent of experimental data taken from the
graph, in logarithmic coordinates, and substitution in (8), we obtain

the following equation for determination of the hydraullc dome dlameter

of the fan Jet in a free transverse flow when c = 900:

I D=4, +140. 3%, (9)
. | T i[i TTE) We anaslogously obtaln an
. U equation for calculation of
. A
"é‘ Maigijeal e hydraulic dome diameter of a fan
N\ 1 Jet in a limited flow 1n & range
a2
-‘1\‘}\ » from 0.18 to 0.50 ( q
: .1 ‘ .5 wilth q =
e R W w I t = 14,2-65.8) in the form of:
Fig. 8. Change of projections of D=d,+ 18,73>%, (10)
axlel velocltles of fan Jets in a
Iree transverse flow, The range of paired plane Jets 1in

KEY: (a) designations.
a transverse flow will be condi-

tionally estimated as the "height of the hydraulic profile" H = ng + 2Dy
(Fig. 1) or in relative magnitudes

103

ISP T TS




o3

where HO = 69 is the relative height of the profile on which plane
0 slots are made,
D1 - 3; is the relative range of one branch of a palred plane
0

Jet, counted of't rrom the mouth of the slot in the direction »f axils
y to 4 point on the axis in which the Jet 1s parallel to axis x.
Magnitudes 51 vere measured on the graprh in Fig. 9 as segments on the
abscissas. Treatment of the results obtained in logarithmic

axis or

coordinates depenaing upon EV and substitution in (11)led to the roilow-
ings equation ror calculation ot the height ol’ the hydraulic profrile of a
vaired plane Jet in a free trans-erse I'low when a = 903:

H=hy + 24,8-4"% (12)

We analogously obtain an equation f'or calculation or H of a palred

1 lane

-
3

(when q. =

93

2-05.0)

T =y + 20,870

Jet in & limited transverse rlow 1in the range of b

0.27-0.43

(13)

It is

Tlow,

simple to establish (for instance with Fig. 7) that the range of

ran and paired plane Jets in a limited tlow i1s less than in a free

The difrerence in ranges increases with the increase of the

degree OI covering o! the channel §&.

Vm
M‘f.‘mfrL
AN
ab- . - o -. . L -
TN TR (@)
T N 12 [338] o
o DS
\ \. T ' et
@ \- \a;H GO
6 20 » & 0 66 W aoieo‘muo*
9
Fig. . Change o! projections of axial

velocities of paired plene Jjets in a
“ree tran: erse I'low.
KEY: (a) designation,
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Change oI axial velocity. Thus, Just as for circular and rectan-

gular jets In a transverse flow

=

&1, the change of marxlimum axial

velocitles of fan and paired plane Jjets 1n a transverse flow depends

on the relation of velocities (or relation of impact pressures) of the
v

Jet and flow. Figure 10 represents a graph of the change of vﬂ along

0

the axls of a fan Jet in & free flow.

¥m
Ve J
as
Gl (4)

a R e

A jee] «

SAILLE o
7 - =

=~ -

Nu\ .

?

nanm'nun-nt

Fig. 10. Change of relative veloclty
along the axls of fen Jets 1in a free

transverge flow.
KEY: ?a? designation.

Here Vm 1s the maximum Jet veloclty in a glven section,

VO 1s the Jet veloclty at the slot exit.

Analogous curves are obtalned for palred plane Jjets. From the graph

it 1s clear that a change 1n axial veloclty occurs faster the smaller
A

the ratio of velocltles Wg (1.e., the greater the relative veloclty
0]
of the carrier flow VQ)' With larger Vg there occurs more intense
0 0

washout and abletion of gas from the exzernal boundarles of the fan
Jet due to the turbulent pulsations of the transverse flow, which
also leads to a more intense drop in gas velocity on the axls of the
Jet, Each of the curves on the graph tends to a definite 1limlt which

o)
is equal to 7o
0
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Anslysis of Results and Comparlson with
Resulte of Works by Other Authors

As glready noted, ftan and palred plane Jets in a transverse rlow
diiter from single circulsr anc plane Jets by the fact that behind
them there will f'orm a zone of rarefaction with intense reverse
currents, Furthermore, durling expiration ot Jets into a flow limited
by walls, as a vesult of covering the ch el we observe acceleration
0! the external Tlow. Along with the relation of 1lmpact presnsures
anc geometric characteristics of i1he installetion, the rarefaction and
reverse currenty behind the Jets, and also> the local acceleration of
the external flow, render an adadaitional intluence on the trajectories
and ranges orf fen and palired plane Jets in a transverse flow. There-
ore, 1t 1s of praztlilical interest to establish the distinction of
trajfectories of fan and plare Jets f'rom the trajectories, for Iinstance,

7 sin-le plane Jjets, which was investlgated in detaill by Yu. V. Ivanov

Ac a result of treatment of experiments with subsoniec plane
Juiao dn s osubsonie trensverse ilcw in the renge of av = 12,5-400,0,

Yu. V., Ivanov recommends the following equation for calculation of

. - ; ~0
t - tradectory of plene Jets at a = 907
&x az \13
2w {_.,) c
% \ & 4o
With the mean wolue o Lthe ¢ocf'ficient of the jet structure g = 0.30

we will obrain:

Fig., 11 comnares the trajectorles of fen, palired, and singile
prene Jels In & “ree trans.erse {low at identical Ev“ From the graph
it 1s clear that the trajectory of the fan Jet is more distorted and

tne trajectory of the single plane Jet, less than ine others, The
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large distortion of the fan Jet may be explalned by the large degree
of rarefaction behlnd the Jet and by the corresponding large dfop in
pressures acting on the elements of the jet. From what has been saild
it follows that the relative range (range referred to wldth of slot)
of fan Jets will be less than the range of palred plene jets and all

the more so of single plane Jets.

!. ) !
’ )

H

{

. 1

LK
\
\.

/ /—’3
"]

' nasunw.nmnmﬁ

Fig. 11, Comparison of trajectories of fan,
paired, and single plane Jets in a free
transverse flow at 1dentical values of
determining parsmeter T, = 39,0, Curve 1 1s

constructed according to Yu. V. Ivanov is
equation for single plane Jets. Curve 2 is
the palred plane Jet. Curve 3 1s the fan Jet.

Conelusions

1. This work experimentally proves that the trajectories and
ranges of both subsonic and supersonic fan and paired plane Jets in
a subsonic transverse flow with given geometric characteristics of the o
installation are completely determined by the hydrodynamic parameter

V2

P
Y g, which 1s calculated according to the parameters of a

wao

3, =

1907




completed expanded gas of high pressure.
2, It was determined that for Jets flowing at an angle of 90O

to the transverse flow with a small supercritical drop in pressures
* .

in the slot (up to ;l— = 3,1) 1t 1s not necessary that the gas be
completely expanded-Yn the slot (that 1s, it is possible to limit
ourselves to a convergent perlpheral or plane slot). Additional
expansion of gas beyond the limlts of the slot will increase the
breakthrough abllity of the Jet in a transverse flow to a magnitude
that 1s close to the rated valve wilth full adlabatic expansion.

2. [3 sic] experimental equations (4), (5), (6), and (7) were
obtained for calculation of trajectories of fan and paired plane iso-
thermal and nonisothermal turbulent Jets spfeading in free and limited
transverse flows.

3. [4 sic] for calculation of the jet range, experimental equa-

tions (9), (10), (12), and (13) are recommended,
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METHOD OF SUPERSONIC ANALOGY FOR CALCULATION
OF ONE-DIMENSIONAL NON-STATIONARY GAS FLOWS

A, P. Pudoveyev

Definitions of Cyrillic Items

p’ “pt

y

t, to, t1
"> Vmax
Vp’ th
©s Cor Corit
c

P, Py

k

n

f

T, TO

n=p= pilston

Hp = crit critical

Designations

coordinates of points of flow,
piston coordinates,
cocrdinate,

time,

velocity of flow,

velocity of piston,

local speeds of sound,

speed scale,

pressure in flow and stagnation pressure,
isentropic index,

exponent,

designation of function,

temperature in flow and stagnation temperature,

110



X, X_ — dimensionless coordinates of points of
p flow and piston,

U, U, — dimensionless velocities of points of flow
p and piston,

5 — angle of revolution of supersonic flow,

6, 8 6, — angles tangent to the graph of piston
trajectory,

A — veloclty coefficient,
¢ — variable,
ps pg — density in flow end stagnation density,

¢ — angle of inclination of characteristic in
supersonic flow,

— angles of inclination of characteristic in
non~-stationary flow,

Us Yos Yo Yorit’ Vmax
T —~ T number,
a — coefficlent.
The general solution for a one-dimensional transient flow of
an ideal gas‘[l] contains an arbitrary function of velocity f(v) which
can be comparatively easily determined only for simple boundary and
initial conditions. Here we shall consider the methods of solving
the boundary value problem with the use of a supersonic analogy which
makes it possible to conduct calculatlons of non-stationary flows
under more complicated boundary conditlons than permitted by the known
methods, and also a generalized form of the solutlon in dimenslonless
magnitudes.
The analogy between transient flow in a plane x, t (time
coordinate) and supersonic flow in a physical plane x, y consists in
that the potential eguations for these two forms of motion are

equations of the hyperbolic type [2] and consequently, both flows have

characteristics,
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This analogy recently has been frequently used for a qualitative

analysis and graphic representation of various cases of interaction of
waves (both shock and rarefaction waves) [3].
But on thils analogy there may alsc be based the determinatlon of

the quantitative aspects, and alsoc the development of a method for

calculation of non-stationary flows.
We shall compare & simple case of transient motion — self-similar

— the so-called centered flow with a supersonic flow around the

exterior of a corner (Prandtl-Meyer
flow) (Fig. 1).
In the Prandtl-Meyer flow a

change in the state of the gas

oceurs on the expansion fan. The

Fig. 1. a) Supersonic flow parameters of the gas on each of

around a corner; b) centered

£1ow, the fan characteristics depend on

the angle of its inclination ¢, in

particular, and the velocity coefficient X is determined by the

l:"'(.5_:.:—),“:1 o (l/f% ,)-

The parameters of the gas can be determined with the help of

relationship:

gas-dynamic functions:

r k-1
— =] - 13
n l+l
l
__..(1 E=1,,\FT
Hl '

. l
-La(l - *_“.‘.gﬁ)m
»n k41 )
The angle of 1lnclinatlion of characteristic ¢ 1s simply connected

with the local flow angle of rotation 5.
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o e



A L e e v -

The centered flow [4] constitutes a wave of rarefaction which

appears in the gas during motion of a piston with constant velocity

vP = const. On each of the characteristic lines ¢ = % = const the
parameters of the gas are constant. The basic relationships for a

self-similar flow are

o=t—¢, _ (1)
n.—.—-:—;(c-c.). (2)

where s is the speed of sound for a motionless gas.

By analogy with the Prandtl-Meyer flow we will establish a
coﬁnection for the centered flow between the angle of inclination of
characteristic y and the parameters of the state of the gas on it,

For determination of angle ¥ we will introduce into consideration
the distance, which proportional to time, while the proportionality
factor — speed ¢ -~ remains indefinite. Then (Fig. 1)

o= =L, (3)

whence, £ = and from (1)

c
tan ¢

c-“—o-..‘__o.
: g
Placing the obtained expression of ¢ in (2), after transformations

we have:

v'-‘—:—_-ic.(‘.;# - l) .
Selecting
ime, (%)
we will finally obtain the expression of velocity:

2 (1
”'ﬁ-’i"(u 1) (5)

The limits of change of angle ¥
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1) =0, 'E*o‘l- Q'o“%.

2
2) omcg=—r0, Q= fo=.
A—1

2) ‘U"D-uz-——l-icn. tgq‘.n"""__?
Using (5) and the expression for criticael speed, we shall establish
a relationship between the velocity coefficient X and the angle of

inclinatlon of the characteristic y:

v 1
1_.‘._’__1_.“!_0. _ (6)

Converting dependence (2) and using the isentroplc relationship,
we will obtain the expressions of gas-dynamic functions for calculation

of non-statlionary gas flows:

- 2B 2 -y o

Relationship (5) 1s a differentlal equation of the trajectories

of particles of flow in plane x, t

dx 2

dt v"u»lc"(c; ) k+1° l)
by integrating which, we will obtain

‘=:—i‘: o("“)h'[ l:i-l L)m] for £> ¢,

where is the coordinate of a particle in undisturbed gas,

0
X0
o

t. =

0 is the moment of the beginning of its motion,

Considering that tan¢b = 1, we have

]
i 4/
then

_ A

=+ lg'#[k-i-l(h—-l n:,)] ?IT. (8)
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The equation of traJectorles (8) also determir.es the position of
a rarticle in the moment of passage of the rear boundary of the front
of the rarefaction wave, The particle in this moment attains a

veloclty equal to the veloclty of the piston v = vp; then from (5):

1 a+1 o,

and R —l+. 2 “T
.+‘
,(.-x.(1+'+' )(1 -—-——) = _ (9)

Expressions (5) and (6) constitute the general solution. The
boundary conditions are given the law of motion of the piston xp(t)
or, the very same, by angle 6 which 1s the énalog cf the angle of
rotation of supersonic flow in the Prandtl-Meyer flow,

We shall establish a connection between angle 6 and the angle
of inclination of characteristic y.

From Fig. 1, as earlier, we have

or, considering (4),
go—— (20)
The limlts of change of angle 6:

1) 0, =0, tg0=0, 6=0,

= Capy Mgl = ——2

2)Pa=cnp, gy 'YYR
] MAXy o-Cl 2

3) Oy= 0 tg - raatt

Inasmuch as the velocity on the final characteristic 1s equal to

the velocity of the piston (v = vp), by using dependence (5) we will

cbtailn the sought relationship:

I T
el B ol 1N (11)

The coefflclent of velocity X\ can be directly expressed through

15



L= —'—;'—'te'- (12)

Let us note that with the selected reference system angle 6
and tan @ are negative magnitudes.

These relationships at a constant veloclty of piston motion
(¢ = const) make 1t possible to determine the parameters of gas flow
as functions of the magnltude of the angle of 1inclination of the
characteristic in plane x, t, and in particular, to determine the
distribution of parameters on the wave of rarefaction (¢O ¥ < wK)
in an arbitrary moment of time ti. The position of the point of flow
which has definite values of parameters (¢ = const) in this moment of

time 1s determined by the following dependencé:
x=50 (13)
gl

The analogy between a flat supersonlic flow around a convex wall
encd the pattern of non-statlionary motion of a gas with the accelerated
law of motion of a plston (Fig. 2) allows us to use the relationships
obtalned for determination of gas parameters under arbitrary boundary
conditions up to the appearance of a shock wave in the flow (during
ceceleration of the piston).

Every polint of curve xp(t) generates a characteristic whose

angle of inclination 1s determined by the value of the piston velocity

in the corresponding moment of time:

' 1
g¢ A4+1 o,

14— —

2

On each of the characteristics the values of the parameters of
flow are determined by dependences (5), (6), and (7).

A practicelly important problem is the determlnation of the
distribution parameters along the length of flow in the considered

general case, This makes 1t necessary to know through what polnt
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cf flow in a given moment of time t1 passes

- 4
that or another characteristic which carries
x definite values of parameters.
= Sv From Fig. 3 it follows:
Fig. 2. Gh—1)
X s - Xy 14
=0 4 x (14)

Here X5t and y correspond to an arbitrary moment in time O { t g ti’
where xp is negetive,

Thus, in the arbitrary law of piston motion the detgrmination
of dlstribution of parameters along the length of flow is produced in
the following order:

1) for consecutive moments t we determine v £ xpt’ and the

p
ccrresponding values of the angle of inclination of the characteristic

Vs
2) in the needed moment of time t,, according to (14) we find
the coordinate of the point of flow which has a velocilty th’ and

o we determine the regularity of v =

= f(x)tl = const,

3) with the help of (6) and (7) we
find the regularities of distribution of

the remaining parameters.

The relationship between the coordinate

of an element of flow, 1ts velocity, and

time may be obtained in clear form, From (5) and (14) we have:

i e

Aesmasse? v 4 -

s
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Equating the right sides, we wiil obtalin:

3V )

£E+3 T P B
e
Thus, the soluticn may be represented “y a system of eguations {1]:
+ ¢
x=xst+ (t; — ) co+ T'”"")' (15)
U= gy

We shall convert the system of' equations (15) to dimensionless {orm:

xcx..«-|~c,t,(1___‘_)(|+‘_:"_'__"i.‘g'
2 & F
241 o
S o m (- (e

Here coti 1s the distance passed by the forwsrd bouniery of the wave

ront during the time tl.

We shall designate

X L4 &~
Cot ' g ot
then
X = X.;+(i——)(|+“'u) (17)
Ir the analytic assignment o the law of piston motion from

dependence (17) we may exclude time, and the solution obtains the
most generalized rorm,
Let us assume, for instancc, that the piston velocity may be

represented by an exponential function

0--'~'—al',
then
x. WA e —-—_.r+l‘.—~u '
nt1 adl
oy in dimensionless magnitudes:
! 0 ] U [
Xgwi — . = - v

P+l e & ama+l 4

We shall jlace the obtalned expression in (17):

j(..l.}_*"" {]__ _U__[l___ (k0 (n+1) ¢
A1 . 9 ]}7”
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Consicéering that

¢ /v
— .
4 U.

we will finally obtalin:

-l g2/ U Ul @t in+] |
Xmi4ttly l/v. [1-:40 Jerl ] (18)

The torm of solution which 1s represented by dependence (18) is

very convenlent, since for obtalning a dimensionless law of velocity
distribution through the flow 1t 1s sufficlient to assign only the
dimensionless value of piston veloclty.

Figure 4 represents the results of calculations (k = 1,.4) of
velocity distrivution through a flow under different laws for

acceleratling “he piston up to & veloclty of v i.e., until

max’
separation of flow from the piston, Direction and speed of the wave
are considered positive.

Inasmuch as in most cases vp < Sy this part of the graph is

represented in Fig., 5 1n a bilgger scale.

N

Vpn-a Vas-a
e-at \\ v,>-at
Vpm-agt Va=-at®
Von-at? \%\ / /,v..awnt'

)
-5 -4 @ ¢ 0 0
Fig. 4. Fig. 5.
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OPTIMUM COMPRESSION IN THE COMPRESSOR OF A DUCTED-FAN
TURBOJET ENGINE WITH AN AFTERBURNER

Ye. D, Sten'kin

Definitions of Cyrillic Items

JTPAD

CK = dh = dynamic head.
C = n = nozzle,

K = ¢ = COMPressor.
BCB = ees = effect of exhaust system,
n=1= 1"1ight.
H = e = external medium,
BX = In = inlet,
7= t = turbilne.
Kc = ¢ = combustion chamber.
¢ = af = afterburner.
cM = mix = mixing.
g=a = air,
T = g = gas,
M = m = mechanical.
Tn = fu = fuel.

rr = oound = boundary.

21

DTJEA = Ducted-Fan Turbojet Engine with Afterburner,

D e R 7 et



)]
1
1]

vt = benind the turvine,
NN = com = complcete.

HI

incom = incomplete,
0K = cool = cooling.
CYHM = zonv = convergent,

IT)I® « TIVEA = Turb o jet Engine with Atrterburner.

Designation:

DTIEA — ducted-tan turbojet engine with additional heat reed (with
srterburner),

T — degree 0t increase 1n precsure In compressor or degree of
decrease in pressure in turtine (depending upon lower 1ndex),

y — degree Oo: double rlow: ratic o r'low rate ot ailr through

external duct to low rate througn main duct,

o= 2ueitlicient OU recovery o tull pressure,
sy, dogree of iszoentropic increase o1 pressure f'rom dynamic head,
(9% &

1, — erticiency,

kK — adiabatic index,

i - enthalry, =
Hu — Lowcst caiurilic value of Tuel, Xg’
H
G — mass tlow rate 2f alr or gas, —=
sec
o)
T — temperature, “K,
H
P — pressure, —
m/

H
o 3 N o) 3 ) l‘ Trelr S on
. speciric output pulse rer second, kg/sec,’
A — reduced speed,

¢, — veloclty coefflicient of Jet nozzle,

o]
I

gas c¢constant, EE;EEE’
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C, = 1.075 (see formulas (21) and (25)),
211 — parameter of influence of external duct on ";Ic>t
determined by formula (18), P

B — parameter, determined by formulas (31) and (32),

S — parameter determined by one of formulas (depending upon
exhaust system) (36), (37), or (38),

*

% — parameter of effect of exhaust system on nw

is determlined
by formula (40), cIopt

(4]
[¢%)
W

M, — flight Mach number,

=Y

Indices
Subscripts:
e — external medium,
in — inlet,

I — main duct (where this subscript is obvicusly
omitted),

Il — external duct,

c — compressor,

t — turbine,

ce - combustion chamber,

7z — coefficlent of completeness of fuel combustion,
af — afterburner,

1, 2, 3, 4, 5 — sections through gas-air duct (Fig. 1),
mix — mixlng parameter,

a — air,

& — gas,




So=— toted,
n — mechanical,
u — Tuel,
bound — toundary,
i — altrruser behiind turbine,
com — complete expansion in Jet nozole,

incom - incomplete expansion in Jet nozozle (in main
or external, indicated by second index),

caol -~ cooling,

opt — opllimum,
ees — el''ect o exhasust syslem,
cony — paramecer with convergent Jetl nozzle,

Superscripui:

“

* — parameter oI isentroplc stagnaulon.

Introduction

In the designing o a ductaed-rsn turbojet engine with aterburner
(DTJEA), or essentlal —a'ma 1s the degree of increase of pressure in

X
the maln duct Tat which determines its eftectiveness to a signiricant

extent, Presently, the optimum values oi' are itour.d by means

»*
¢ Iopt

or conducting a number o thermodynamic celculations with dirferent

* *
To T whose anelysis, 1rom the polint of view otf the int'luence of T T
*
on the mainr engilne parameters, leads to T, T opt* Thils method 1is

awkward; therefore i1t 1s desirable to have analytic dependences or

x
Ta I opt on parameters of the DIJEA cycle simllar to the ones that a

TJEA has ([1], p. 181), for example,
Here, of course, one should remember that the selection of
optimum varameters o1 a speciric engine will demand s number of

loulatd 1th T . - *
calculations with =, ; near Ta Toptr O0 the basis of which, Tol o
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. *
i3 devinitlizced, The selectlon of =

-~ . is glso influenced by the
clopt 7 R oo

e

welght requirements for the engine in unrated conditions, At the

same time, analytic vaelues of &llow wus to conduct the most

»*
To Iopt

ei'tfective comparison of different types of engines,. will be

*
o1 opt
determined in accordance with the DTJEA diagram shown in Fig. 1, The

distinctlion between thils diagram and the possible structural DTJEA

diagrams 1s not essentlisl from the point of view oi' the determination
I *
Of Te I opt:
As it 1s known, DTJEA's are pcssible wilth mixing and without
mixing of gas flows inside the engine,

Ir. accordance with thils division, wlll be determined

#*

Ve I opt
beiow, Iet us assume that the adlabatic exponent 1s constant and
equel to:

eg) in the process of compression — ka'

b) in the process of expansion -- - _,
-3

' ®
" i # s
2 3‘; ~’ﬁ
) 2 —~
~. [T X 170U y--—- I >
/\ ] \\
N T ] i —
] ? 3 4 s ®
]
Fig. 4,

DTJEA with Mixing of Flows
*

We shall show that T opt*

which co.respond to maximum specific
thrust and minimum specific expenditure cf fuel, practicelly coincide,
We shall consider the formuia for determlnation of total fuel

consumption Gfuz‘
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In accordance with (1] (pp. 11¢-121) and [2] (formula (1.34H)) we

—————

have, tor Gfuﬁ’ the expression

g ﬁ..ﬁf"’;"";’ Gf_‘_(f;:_".::)_ (1)
™ ' -
l" lqn
where Glc —Gol + Gnl - oouv

Cy=~0G,,+G,,+ G z-

We shall make assumptions that sare close to reallty:

alt-oll'
Orz"o.: + Om.za.:‘
(2)
‘J'_h_q;'
y~1
Taking into account the as ::~tions, we have these expressions:

'or enthalpy of mixture -—

i _anl‘:"’auu i1y

- . ()
G, +Q,y
ror power balance of turbocompressor —
B fmitm it B e
h—hgmh— G+ —— i, - &) (%)

Gy

Determining the difference 1%*-i

-~

from (4) and putting it, and also

*
P
o
<

1g1xs Trom (3) into (1), we obiain:
T Gy — 1)
g ,oee 20 V7 .
™3 ”l!, (b)
This rormula shows that Gruz 1s determined by G.s, temperatures Ti and

T*f, and practically, in connection with the fact that in the
8

conclusion we made assumptlons (2), does not depend on the parameters
~ ¥ * )
©i the maln duct, T, &ndy.

Thus, for given T*f in the determination of optimum parameters
a

*

.

ol the cycle, including w G, « will remain practically constant,

cIopt! “ful
and consequently, to maximum specific thrust will correspond minimum

speciric :uel consumption,
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*

For determinaticn of = Topt we shall consider known expressions

[¢])

or specific pulse output per second,

a) with “omplete expansion in Jet nozzle [1]—

' ; 2e-!
P+ gt \/‘a?fTR' T;[l—(—f".) " ] (6.1)

b) with convergent Jet nozzle (if cutput sectlon has a critical

regime) [5]—

fepe = (1 4 e,.,)q/mn + ..'_[1 -(is.:”i.)*"i*! J} (6.2)

¢

From (6.,1) and (6.2) it follows that with given ’I‘*f the minimum
a

&
value ot f corresponds to the maximum velue of J. Under the given
b

ar

conditions of flight, the J-maxima and specific thrust coinclde, and

» * :
maximum p: a2ssure Par willl correspond tc them, Pressure Por depends :

on the pressures Iin the miscible gas flux asnd on the degree of

rreheating in the afterburner or the afterburner-mixing chamber,

*

At given T* and T;f, Par does not depend very much on the degree ?

1
o preheating end we shall disregard this dependence. We shall slso :
consider that the losses 1n pressures, which are connected with the
heat feed, are llimlted,

In [2] 1t is shown that mixing is the most effective with closel
magnitudes of full pressures of initial flews, In acc.rdance with
this conclusion we shall assume that in § 5 (Fig, 1) we have an

equality:

A 0

Pi=ou=r. (7)
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Pressure p;r can be expressed through p* in the following manner:
Po =%yl - (8)

On the inlet to the alterburner-mixing chuanmbers, as generally in

ar'terburners, the X\ numbers are usaally small (X = 0,2-0,3), which will

determine small losses of pressure dne to mixing, the change of' which

in the determination or 7

¢ Topt ¢an be completely disregarded. Thus,

N . -
when Tafm const we will also have o = const. Consequently,

nix aft
instead of the maximum ct p;f it 1is poselible to conslder the maximum
*

<t p", which is more convenlent. For p* we obtain an expression

through the parameters cof the main duct:

- . _e ]
’ -:F R 10— 9. 9
| 1 _ul [ &% 3r . ( )
From (9) it follows that for the determination of vZchm it is
necessary to consider the extreme values of function
‘.
P = . (10)

1%en-

We shall differentiate & with respect to v;]ﬁ we shall equate the

result to zero, and after transformetions, by consldering the

*

limitation of W;I ar.d Ty 1 s WE will obtaln & differentlal equation:
1—= I(ta =]y 7y )

. 5 = 0. (11)
O g

From the condltion of equallty of effective performance of compressor

Ve R X RN —
U

and turbine I, and &lso fan anda turvine II, after transtormations,

4]

o o * *
we obtalin formulas fox "tI and T 1T
a
". 1 ..—l'-_'
t"m - T; ' (12)
| I —
e
8
7 -1
- e, =)
2* . = b TS (15)
t 31} ) O) °
= T -y — e
wy 3 Y Iz
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where
a a ol
1 81,y = T:
wu T ‘“J’ T, (e, =1 (14)

Proceeding from (7) and (9), for v; 17 we obtain:

'un."‘. . . . (15)

a(ATft* 1 )
We shall determine derivative-jgjr——— which will be demanded
™
c I

subsequently. On the basis of (14), (15), and also (10) and (411),
we have;
[2@rT;
(=5, - (1)
R T
We shall convert (411), using (12) and (13), and considering (16),

. . T. =1
-+ -'-3-\, )
. rl

':lqt"' - . (17)
=t 04E)

where

}SI_‘£|5ﬂu ..
- — X
it %n T

7

X R o Tl. ~n L ]
‘“;m;‘:'(’lm*‘)] Iy o (g — 1) =~ g (18)

v S “u T3

In accordance with the structure of formula (18) Iy should be called

the parameter of the influence of the external duct on w; I opt*

When y = 0, we have Z;, = O (this follows from (14) and (18): 1n this

I

case formula (17) determines ™

¢ opt for TJEA).

. 1283
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It" we additionelly take

S A (1)
Then (417) coincides with the known expression in [4] (page 281, ((.17))
ror ﬂz opt in TJEA. Thus, even for TJEA, tormula (17) is more gencrs|

. . - * K} . -
than the one exlsting for determirstion ot = since it mekes 1t

c opt
possible to calculate the distinction ot k in processes of compression
an:l expansilon.
For contemporary turbojet englnes (single-and double-flow),
and also for engines now beuing developed, the rollowing magnitudes

are characteristic:

T
7}=Q%4m,m=am—na n, =07 - 0,75,
3 ‘ (20)

£ =097 10, 7, =088 091
Wwe chall show, by considering (20), that the magnitude cof ZII is
slgniricantly less than the denominator of formula (17). This will
prove the validity or the transformation oI the formula ror determi-
to the Torm of (47). For that it 1s necessary to

naticn of 7

*
¢c Tept
determine W:

In DIJEA with mixing, as follows from (15), 7. -

anad v: T are interconnected., We shall find the expression for

>

Te 1T opt by using (12)-(15) and introducing the following designation:

:—!—-:-l ;M . T. i
R R ot Aot
- u ‘3 . - T -1
1 L2 -4 21
(%) TTEmL o . (21)
3
After transformations, we obtein:
&y
Tt m e T} R
Lty — S ——n (1)
= W r3 M T; = (2,-
Clept r‘ ulopt* \ d)
. CI+J’-:"—!~"Iop(
W 3
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Analysls shows that Ci changes inslgnificantly, 1.e.; for condlticne

s - v ¥ e ANA A W raa

(20) and when

A=14, 4 =133, y~=056-60 w,~07--0,75,

n,=~085—09, @& =097—-099, o =092-—097, (23)
. - 8y, = 0,98 - 1,0,
we have:
C, = 1,05 = 1,10. (24)

Proceeding from the structure of formule (22), 1t 1s possible to
taeke parameter C1 as being constant (with maximum error of determl-

*
nation of Te II opt less than %) and equal to

C, = 1,075. (25)
We shall determine X,; Ty proceeding from (1%), (47), (18), and (25)
ror conditions (20) end (2%). After the calculations, we obtain;
zu-O—O.Q, (26)
Thus, ZII comprises less than 8% of the denominator of formula
(17) and consequently, thils proves the valldity of conversiocn of
he f la for m. to the f £ (1
the formula for m, ; ... to the form o (17).

We simultaneously arrive at this important conclusion. With

*

¢ I opt
of TJEA.

identical corresponding parameters of cycles, the w of DTJEA

*

with mixing 1s always smaller than the Te opt

DTJEA Without Mixing of Flows (with Forecing in External Duct

~—r

Let us consider the formula for total fuel consumption Gqu'
In accordance with (1), considering (4), and also that secondary heat
feed 1s carried out only in the external duct, and meking assumptions
(2), we obtain the formula for G, .1

O . O G—f4+yuy—-i)
P Heve
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From (27) it follows that at T, . = const and T; = const, e change in

&

i will lead to & change in Gqu due to the dependence or iz on

I
TT II

Q* O

Consequently, 17 we comnsider optimum ﬂ; T at Th = const and T;r -

= const, which correspond to maximum specific thrust and minimum
speciiic fuel expenditure, then they will not coincide, At the same
time, the condlition cof T;f : conct for crulsing conditions, in which
one should determine the optimum parameters, 1ls not determining since
under these conditlons there 1s limitation with respect to T;f, and
consequently, a change in T;f is allowed, It 1is necessary also to
consider that DTJEA's without mixing correspond to high y; therefore
the influence of v; 1 on Gao (at T;f = const) or on T;f (when Geys =
= const) will be insignificant.

These considerations allow us to more fully satisfy the requilre-
ments presented to paramete:s of the working process cf the Jet
engine, 1i.e,, the thermal machlne and propelling agent of a flight
vehicle,

Optimum parameters, includlng v; should ensure;

I opt’
i) maximum possible thrust with the gilven fuel consumption,

2) minimum possible fuel consumption for obtaining the given

thrust,

It is not difflcult to be convinced that in both cases W; I opt

is determined by the followlng system of equations:

9
=0 (28)
ml’lt
0—‘. =0-

Under condition (28) the optimum WZ + for specific thrust and specific

fuel consumption will colincide,



Let us consider the expressions of specific pulse outnut per
second:
u) with complete expansion in the Jet nczzle, in accordance with

(6.1), we havey

1+ BVT‘} (29.1)

=it/ Ew V(%)

b) with a convergent Jet nozzle in the mein duct (if in the
outlet section there 1s a critical regime) in accordance with (6.2)

we have:

I 4 ¢

e s maett

Jen ™ H.r " n-th A-H X
a,

1 AR LA _—
x{n;—;[r-—( - ) ;f]]+yBVT¢}. (29.2)
Expressions {£9.1) and (29.2) are obtained under assumptions for

crulsing augmented ratings which are close to reality:
‘0 - &l‘ - hr'

Gﬁ' g’iﬁi“
—s m--—"‘Q"- (30
Oy a,y - )

Ver = oy ™%

\/! - ( 8. (1)

Expressions (29.1) and (29.2) are applicable for typical DTJEA systems

We introduce a deslgnations

without mixing of flows,
The DTJEA system with convergent Jet nozzle in both ducts for the
given analysls 1is described by formula (29.2) in which magnitude B

will enter in the form of

-——_... .'_
-y e[ - ()T ) (32)

o BRI -

3
:
i
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Subsequent analysis will be conducted with n; 7™ const, 1n

1

distinction rrom the preceding variant in which from the polint or

view ot optimumness of mixling ﬂ; 11 changed according to (25). The

* -
condition of 7 1= ¢const does not disturb the community of analy:=is

c

and 1s in tull conformity with the methods of analysis of functions

of many variasbles. Magnitude B, when n; 17 = const, practically willi

not change due to the weak dependence or T

*
on m, 1 (when Gp o = const)

ar uw

and consequently, a small change in the thermal losses of' full

pressure in the afterburner (it is als? necessary to consider the

small magnitude of X numbers at the chamber inlet), Let us consider

dependences TZ and pz, which are necessary for further analysis,

through the initial parameters of the cycle. Proceeding from (9)

{rejecting o. , {(42), and (13), as a result of transformations we
\ 3t

cbtain:

T, m . AT,
—T;-l=l—"—l—"l :(el—l)— T;"' (33)
’s =q_0o_od_x' X
’ D
.“'_
. ] p — 1
[l-—."'_ _1.'.:.(¢|—l) J["—:—n :'—r?l‘"l L ELE ‘r:."]
. w I b 3 i Ta . (34%)
- e Ty
"‘l’l r; !

Differentiating (29.1) and (29.,2) with respect to wz 1+ and equating

the result to zero, after transformations, by considering condition

Gfuz

= const we obtain one (instead of two) generalized dirferential

equation

k, Sa(h 7Y d(lnp:)=0 (35)

& -1 "‘:l 3‘:; ’




whore
where

a) with complete expansion in jet nozzles —

& ~1
ke — i (")T

e

b) with convergent nozzle in the main duct —

i S L
4 —1{ 3 "'( r .[,: t,+l)""]“'
3= “5“(.,+|) T, 7-:“( 2 b=

!+l ‘ Py
Vi = —) (37)
SN NS ALY
l+it[l_( 2 ) ’:]

¢) with convergent nozzle in both ducts (1t 1is possible to trace

by using (32) that equation (35) 1s also valld for this case) —
s"s(um-"‘ )

= |+':?[“‘('2) ?‘J}_ ’ (38)
(*+)

Proceeding from (35), using (33) and (34), as & result of transfor-

mations we have the formula for ="

¢ I opt
.y
- s —}
i ™ . - (29)

1
4 ~+-‘T(l+3"+2m)




where

i—.!._rf.j.(e,w—l)
L - S. - (o)
“"-.""I. ‘IL('I _‘)__AT' 1
w ' - T;

Parameter Ze considers the effect of the type of exhaust system and

therefore it 1s naturally called the varameter of the exhaust system

effect. In DTJEA with mixing of flows § = O, and consequently, Zees

= 2, Thus, (39) is a generalized formule that includes, as a partlcular

case, formuls (17) and the formula for the determination of v; opt in
TJEA.

| Further we shall consider the order of magnitudes Zees and ZII
to prove the validity of converslion of the formula for 7; I opt to the
form of (39). Zees contains parameter S, Figures 2-4 give graphs
of S for different types of exhaust systems. The order of magnitude
S can be determined according to the following considerations., For

augmented crulsing conditions, which correspond to supersonic flight,

the following magnitudes are characteristlc (see also [4]):

Jo 4
A =1- 15,

. 41
Ly 1520 (%)
4.
Sea _ : - 5 I ,
*
S[ “"o“ “ S]- éf %t
(1) . &
P o i ]
a2 '/ /j/ o2 - W2 w -
v Z= iu__ /7 o[
A
0.4 w a f’i; u
0 L]
. 0
’%“l NN
20 ~ N
4.. & L
: R\ ;
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SaP'] p : -
asp 4 b )z% Ratlos of af are given for DTJEA without

/
% 4% ' mixing. Usﬁglly in (41), larger T:f/TZ -
Qs 7 1"’: correspond to larger p;f/bz. For DTJEA, Just
——

Lo 7/ 2 as for other types of turbojet engines, the
o turbocompressor leads to an essential improve-~
o 4 Y ment in the main engline parameters and at the

U

contemporary level of gas temperature in front

of the turblne up to Mach flight numbers equal

ﬁ to M = 2,5-3,0 [4]. In this case, originating

s e ‘
from (34) and (39), we obtain:
Fig. &4.

. .
LY o (%2)
Pa
Convergent Jjet nozzles usually are appllied up to magnitudes of the

pressure ratio:

L 4
P <.5. ( 3)
Thus, proceeding from Figures 2-4, and also from formulas (41)-(43),
we obtain the range of change of S:
S = —0,05—0,10. (44)
For the purpose of obtalning a small specific gravity of DTJEA,
the fan 1s usually made no more than three-stage (see, for instance,
[4] and [5]), i.e., we have:
<y =15-30 (45)
The degrees of two-flow ability vary within the limits [5] of

TP TR

y=05—20. (46)
Here, a larger y corresponds to a smaller v; I’ and conversely,

Thus, we can determine the magnitude of zees' Proceeding from (39),

(40), and (44), we obtaln:
L, = —0,07 —0,15. (47)

- . Y ot



In & similar manner, using (18) and (15), we can determine Z11t
2‘1-0010—0,20. - (48)

Thus, the sum of JL(E + = ) can constitute from 5 to 15% of the
8¢ II ees

denominator of formula (39). Tils percent 1s small, and consequently,

formula (39) will be valid for determination of v; I opt’ From &

‘comparison of (17) and (39), considering (295), (47), and (48), there
rollows a conclusion.

With identical parameters of the main duct the optimum value of
the degree of increase In pressure in the main duct of a DTJEA with
mixiﬁg of flows 1s always greater than in a DTJEA without mixing of
lows, The difference can reach up to 20% (for high supersonic speeds
of f£light).

and T for the

»*
Figures 5 and 6 give graphs of Te T opt ¢ II opt

most characteristic magnitudes of efficiency and adlabatic exponents.

From these figures 1t follows that the double-flow parameters render

T*
an essential Influence on v; I opt* For example, when —é = 3,8
T4

*

3
opt

(corresponds flight with T, = 1500° abs.in conditions of H 3 11 km,

M. = 2) the TJEA has wz = 11.1; when y = 1 the DTJEA with mixing

o7 gas T1lows has . * = 1.95), and the DTJEA

‘e I opt 9.5 (Wc IT opt
forced in the external duct w; 7 = 2.2 and Siu d.i (this magnitude
corresponds to high degrees of forcing) has nz I opt ™ 7.6. Figure
€ shows the influence of parameter S, which conslders the degree of
forcing, and the exhaust dlagram, It is clear that an increase of

S (for instar.ce, an increase of the degree of forcing) leads to a

decrease of w*

¢ I opt*
rr- *
When —2 8 A 11 78, \
S = J.C and —_— = 0.075, with an increase of S from S = O
T1 T}
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Fig. 5. Fig. 6. DTJEA forced in
external duct.
LY - v * * * =
t> 8 0,1, we have & decrease of LIS spt from 7, 1 opt 9 to
*
o I opt © 7.6

Conclusions

1. Formulas are obtained for determining n; I opt of DTJEA with

mixing and DTJEA without mixing of flows, For DTJEA with mixing,

the formula for determining v: IT opt 1s slimultaneously obtained.

The ‘ormulas can be used in the selection of optimum DTJEA parameters
ecpeclally if this selection is produced with an electronic computer,
since the presence of formulas for determining v; I opt sharply reduces
the necessary number of variants, and consequently subsequent analysis
37 results of calculation,

2. The 7ormula for determining w; I opt of a DTJEA without
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mixing has a universal character and includes, as particular cases,

* o

the tormulas for n* of a DTJEA with mixing and for e opt ©

¢ I opt &

TJEA,
z. Analysié shows that with ldentical corresponding parameter:

27 cycle at opt are arranged by magnitude in decreasing order in the

c
et . * * - .
Tzllowing way: o opt o? TJEA, To T opt of DTJEA with mixing, and
then r: T 5ot of DTJEA without mixing of flows,

Fayal * 4 3 *

The dirference between Ta opt of a TJEA and To T opt of a DTJEA

with mixing can reach up to 25%. The difference between_n; I opt 2 a
DTJEA with mixing and r; T opt 2f a DTJEA wilthout mixdlng can reach up
to #0%. For instance, in conditions cof flight H 3 11 km, Mp = 2 with
T% = 1500° abs, a TJIEA has w; opt = 1.1, and when y = 1 the DTJEA
ey 3 . P ) * = * - .
with mixing of gas flows has To I opt 9.5 (vc IT opt 1.95), and

the DTJSEA forced in the external duct, with n: = 2.5, depending

I1
uron the degree of augmentation, has v; T opt = 7.6-9 (with an increase
in the degree of augmentation, wz T opt decreases),

4. In a DTJEA with mixing, the erfect of the external duct on

- b 3 o
LT DEjt.eacs to a change of

* ) -
To I opt within the limits of 25%.

In a DTJEA without mixing oi flows, wlll be affected

TT*
¢ I opt
*

c I opt

ry

>th by the external duct {*his influence changes 7 within

the limits of 20%) and also the exhaust system, which can lead to

Iy

within the limits of 15%.

change o

_-l»
Te I opt
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AN APPROXIMATE METHOD OF ESTIMATING GAS-DYNAMIC
INFLUEKCE Ol A SUPERSONIC ILOW

Z. G, Shaykhutdinov

Definitions of Cyrillic Items

KP = erit = critical
P = nor = normal

Bl

I

unidentii’ied designation

In analyzing uhie availsble experimental works on questions of
cas-dynamic int'luence on a supersonic flow [1], [2], it may be
~onciuded that a ceconduarvy a3 blust will form an obstacle on the
surrace of an airfoil or nozzle wall in its main flow. At its
Ulowing around, as in the case of the 1rlow around solid obstacles,
in the main flow there anppears 2 complicated system of shock waves
T A D S A A o S R R . The complicated con-

Jicuration of the syctawm of shocks in front of a slot is explained

: vparation o oL e iares., Thic depends on the relation-
O hie ettt s e b ot T D aelde ant the thickness of
thie toundary lagasr,
For the Laruose o e iiricetion o the vroiblem we shall

™ ) N 1 \ ~ XN

Ao lder perlesy o on v diveeeoe i poundary layer effect.  As
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the results of [2] show, which under an analogous assumption considers

a theoretical method of estimating the action of a solid obstacle

ot atonyd

(spoiler), the latter is fully permissible. Furthermore, we shall
assume that the flow is planz-parallel and that the blast 1s produced
from a slot of infinite length.

The slot may be convergent or

A 2 A S i 1
.

 Supersonn:1egion divergent and the direction of the
blast may be perpendicular to the
main flow or close to perpendicular,
Then 1t is posslible to present such
a model of the interactlion of flows
- (Fig. 1). %
Fig. 1. | The gas blast will form an :
obstacle of rather complicated
profile: at first the secondary

stream 1ls separated from the wall, and 1n this zone there 1s signlf-

icant rarefaction; further, downwards through the flow 1t turns

around and again "adheres'" to the wall. i

Around thls airfoill in the main flow 1ln front of the blast s;te
there will form a detached curved shock wave, and at the point of
adhesion, a completing shock wave,

Behind the leadlng shock wave at the wall the flow is subsonic
and its paerameters are calculated from the usual ges-dynamic
relationships for a normal shock. The intensity of the wave upon
removel from the wall weakens, and 1n & certaln point B the flow
behind it already becomes scnic. By uslng the assumptlons presented ﬁ
in the work of B. S. Vinogradov and this author [#4#] it 1s possible i
t0 draw the line of transition through the speed of sound BA., Point

A corresponds to such a revolution of the secondary stream in which ]
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the angle of iInctiretion of the tangent Lo its profile in this polnt
1s equal to the critical angle or trlow deviation:
M sin? 3. —1

T iy o

Here M1 is the Mach nu:ber of forward flow,

3.' = arcig

(1)

ls the angle oY the wave rront, Lehind which the speed or

a
orit - \
flow becomes equal to the spewed of sound,

k 1s the adlabatic exponent,

a, ==arcsinl//———[":le~——;— +
— (2)

l/(k+l)(9+k ;kﬁﬁ‘}'k;“‘m}}

Subsequently, the region lying berfore line BA will be called

"subsonlc," and the region behind it, "supersonic," inasmuch as
around the protile of the stream obstacle the main tlow 1n this
place agalin ootalns supersonlc speed,

Thus, we can consider that the pressurc et polnt D is equal to

the statisc socosire Leitlend & noormal zihcok P » and at point C, to
: 2 nor

*
stagnation pressure P The rressure in the interval between

2 nor"
voints D and C may be assumed varisble according to linear law,
which 1s confirmed by experimertc [2].

For the adopted model the pressure cn the leading boundary of

*
the secondary stream in the "subsonic” region will vary from PE o
to P2 =1 whereupon
_a
2 \ \

As the experiments show, at blast angles 50 which do not differ
much rrom 900, the leading boundary of the proflle of the secondary

stream on the initial section 1s close to the circumference,
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Therefore, 1t 1s possible to use the law of change of pressure in
the intervel tetween A and C the same as in the transverse flow
around a cylinder, the experimental dets for which [2], [6], up to
6 = O .4t (Fig. 2), are well approximated by the dependence

4
Psu-l)';'._.;' (%)

Pt-Pzn_(P;-p
where 6 1s the polar angle of the current point on the surface or
the cylinder (Fig. 1, 2) and ecrit is the polar angle of point A.

Expression (%) is vallid for the case of b5, B-%j however, during
a blest with angles that do not differ much from normal, it is

obviously possible to use & similer relatlionship. Angle 6 1s

R
.at {‘{ ] convenlently expressed through the character-
10 —ta —t
o g - istic parameter of the secondary strean,
: i.e., the angle of inclination of the
“:f:&L_..‘ tangent to 1ts leading boundary, b1
::——{‘.K-:.ME&; S.‘ - cosl—cozldy ] sin &, (5)
== K- m e v Rowapay (b coat, — cooly < gnt
O [ M. m be-gadnv ) {o) ) - " #inl
Q'Jp-jtfga=ﬂ;’ gj
T ) iﬂ' The last relationship, which wes
Fig. 2. derived taking into account the possible
KEY: (a) according to -
Belotserkovekiy; (b) distinction of 64 from 3, 1s found from
according to Uchida
and Yasukharaj (c) analysis of Fig. 3. It is abs.lutely clear
according to VanDyke;
(d) according to that here 54 in no case should be less than
formula.
6crit' When 60 < acrit the entire flow

changes, 1nasmuch as the shock in this case 1s oblique and attached.
Considering what has been sald, we obtain for the subsonic

reglon:

cosi—cosly Snd,
conl,, —couly el (6)

P, = P} g — (F3m — P2u-1)-
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The dependence of pressure P, on the angle of revolution of the

2
secondary stream in the "supersonic" region will be written by using
the relationships for the supersonic
flow around a curved wall, In firs:

approximation it is possiblekto take

the relatlonships for the flow
around an external obtuse angle,

nanelys

1., N (7)

Here xe is the coefficient of speed, which is equal to the relation
of true speed to critical, is found on the appropriate table or is
determined by the solution of the known equation

. iF1 _ -1 21
a0 V= . =
o B et -3

A+1 & +1

1
where Ac 1is the angle of rotation of flow from its direction in
the zone of transition through the sonic line to the current line.

t is defined as
AB'-—.B”—-G.

The rear boundary of the secondary stream is acted upon by
statlic pressure fh whilch 1s equal to the pressure in the separation

zorne, Its value 1s calculated by the empirical relationship
4

P=2- (1o E) (8)
which is obtained on the hasis of analysis of experimental data of

this author, and elso the data in [1]. Here xé is the coefficient
3

oY speed which may be attalned during isentropic expansion of the

secondary stream to a certaln average pressure on the slot cutoffi
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. 2 p. (9)
P\-?P,.'. .
Pressure Pé is an epproximation to average pressure in an
3
isobaric section of the secondary stream
&
p=Limth (10)

. which is obtained from the conditicn of parabolic change of static
pressure in the secondary stream,
As can be seen from Fig. 4, the points corresponding to valﬁes
of ?ﬁ for different blast condlitlons lle quite well on one curve

?
that 1s constructed depending upon xo » Which allows us to describe
3

the law of its change with & simple empirical equation (8j.
Knowing the dependences that determine P2 and Ph’ and considering

the average speed in the secondary stream to be constant in length,

Ar . ih _ : we can obtain relationships that
0
a3 : ~*1%éEE£F_ determine its profile, Let us note
o that, in virtue of the selected law
a5 . distribution of static pressures
as
o ] | through a section of the stream, its
s BT
e :ﬂg, . parameters with the known equation
02 °'K'!57,9.".0.:h-mll el A S o
o ::I;ﬁﬁﬁ:ﬁ[* of the leading boundary are obtained
0 .
02 0k 06 O 10 12 W 18 1B g, in the following wayt distance to
Fig. 4.
€ axls of stream In current section —
. + P,
'a-‘s‘fz"’:;:""- (11)
and from axis of rear boundary — ;
- oiﬁ:ﬁ- g
Vb= (12)

oot

Width of stream in initial i1sobaric section 1s determined from

conditlons of conservation of mass and pulse by the relationship -
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P,

b, == b > 13
o L) p.' ( '>'
where ba 1s the wldtn of the lateral nozzle on 1ts cutoff,
3 .
Pa 1s the static pressure on the lateral nozzle cutoff,
3
The current value of the wldth of the secondary stream is
Pa,

wrere P3 1s the average static pressure in the stream which is

analogous to (10)1
pymIBtP (15)

For obtalning the form of the leading bbundary of the~secondary
stream (Flg. 5) we shall use the expresslon for determination of the
reaction of & fluld flowing in a curved channel [7] between sections
1 -1 and 1, Disregarding megnitudes of the second order of small-~
ness, we will have:

—miw_ sin (8 — ) +

. (16)
+ m; "U,'Sln (“—'l) = PzAl +
4 PAL— Pppn.
Here
v - . '.'_b' ) .’—b'-
w, 2§ —arclg L oy - (47)

‘ _
m3 is the mass flow rate through a slot of unit length,

Wy is the average-mess speed of the secondary stream in current
sectlon,

Considering that
. P.
Al = RAS,, w = const, P,.g._e-u_;;_l"_' .

.|+b

taking . ‘l‘ u_ ___2_&_ A”"

and also teaklng into account the smallness of A% in the numerical

solution of the problem
sin (o, ~3) ~ o, — 3,
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after simple transformations we find the expression for radius of
curvature in the i-th sections

2.;._(»,+b‘_l)P¢+(Pv+”y_-_1’_’i,£L-08 18
R~ PutPhy ,—2P 8 b (o

The solution of equation (18) in final form 1s difficult, and

it is simpler to solve 1t numerically, for Instance by Euler!s
method. Considering that
Al
-— ——-!- —-—
R, ‘-‘-:L‘ or R, » when A3, —0, (19)
where Azi is an element of the arc of the leading boundary of the
. secondary stream,

Aéi 18 the angle of elementary revolution of the stream which
corresponds to arc Ali,

we have for the 1-th section of the stream
8l - 0(1) A, (20)
AB 4 is the integration step which

will be designated according to the
necessary accuracy of calculatlons.
For the "subsonic" section, A% is
conveniently assigned in the following

way:

8- iﬁ" (1)

Here n 1s the number of partitions of
the "subsonic" part.
As the calculations show, sufficiently good results can be

obtained already when n = 10.

With known Ali we shall deterhine:

=3, -4, (22)
X=X,y + &l,-cosd, (23)
;== ¥, + Al -sind, (24)
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In the supersonic region the integration step i1s arbitrarily
selected and calculation is conducted up to the adhesion points.'

After obtalning the profile of the secondary stream it is possible
to construct the pattern of its main flow: calculation of the position
and form of the leading shock wave 1s produced according to the

method presented in [4] and calculation
of the terminating oblique shock at
= the known angle of rotation of flow
presents no difficulties.

In the presence of parameters of
shock waves, according to the usual
gas-dynamic relationships we determine
pressure and speed, and conseqﬁently,
the entire pattern of interaction of
flows becomes known.

The experimental and calculating

pattern of flows shown 1n Fig. 6a and

6b agree well qualitatively. For checking the quantitative
coincidence of results of calculation with experiment, calculations
were conducted for determining the effectlveness of a blast of
secondary gas in a supersonic flow under conditions of the experiments
of [1]. With the help of the derived relationships we calculated

the pattern of flow and found the corresponding distribution of
pressures throughout wall. The total effect was estimated by the

magnitude of transverse force appearing on the wall during the blast
N'-N/+N [}
where NJ 1s the Jet force taking place on a slot of unit length of

stream blast, which was calculated as

N,-m;‘v,+ (Pa,— Po,)< b, »

Y T —————— ——



NR is force appearing on a wall of unit length as a result of
reconstruction of the pressure profile., The latter, teking into
account the fact that the pressure below pelnt E is close to the

pressure in an undisturbed flow, was calculated as
Npy=(P;.,,— P)-DC + (P,— P)CE.

Figure 7 shows the relative magnitude

- Ni+ N
Ny

whicl. was constructed depending upon blast pressure (consequently,

A

’

t
with constant ba and on flow ratelng. It shows how may times the
3

{orce appearing durlng the blast on the wall exceeds the jet force
of the secondary strean Nv during its flow into a vacuum. As cen be
seen, coordination with the experiment in this case 1s also

sufficiently good.

AN

G (Y M“. 4
\Q's: ——— man:-em()

s c & & ¢ v&f

0 § © 6 W B N ¥ %f
Fig, 7.

KEY:t (ea) Lateral wall; (b)
According to the proposed theory;
(c% Experiments without lateral
wall [1]; (d) Experiments with
lateral wall [1].

Hence, it may be concluded that the proposed method of
approximation of theoretical estimatlon of the gas-dynamic influence

on & supersonic flow, although it is based on rather rough assumptions

R

-~

nd proposals, nevertheless gives an accuracy sufficlent for

el

prectlical calculations,
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THE INFLUENCE OF A SEQUENTIAL DECREASE IN THICKNESS
OF A METAL ON THE CURVATURE OF SHAPED COMPONENTS

M. N. Lysov and Yu, P, Katayev

Definltions of Cyrillic Items

P

H = ¢cv = concave

h = height

B = cX = convex 3

' m g = geometric

In the design contemporary flight vehicles we find the wide
application cylindrical skins with variable outline thickness of the ;
guide and wafer type.

Obtalnment of such skins from sheets of variable of thickness
can be complicated due to the unequa£ strength of the blank: 1t is
impossible to apply bending with extension, while the processes of
bending and rolling and free bending become difficult to control. !
Therefore, in a number of cases 1t 1s expedient to prepare such
components from sheets of constant thickness with a sequential

change of it by the method of chemlcal etching (chemical milling).

As i1t 1s known [1], [2], [3], in a shaped component there are
residual stresses that are variable with respect to height of cross

section, in magnitude, and in sign (Fig. 1c). With the stable form
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ot a component these residual stresses are mutually balanced and
thelr moment with respect 1o the axis o1 rigidity o1’ cross scction
1s equal to zero,

If we subject such comporients to chemical etlching, as a result
o1 which a layer of metal orf definite magnitude wiil be removed, and
the thickness of the material will decrease, the equilibrium ot the
residual stresses will be disturbed. Their resultant PZ glves &
moment Mx wlth respect to the axis of rigidity of cross section, A
new eguilibrium state of residual stresses 1s attained as a result
01 the change in shape of the component.

Determination or the magnitude of change and the final form ol
the component; 1n which the residual stresses change in cross section,
arrive in equillbrium state which 1s necessary in the designing of
structures and eqguipment that ensure the given accuracy of manuflacture

or components,

Obtaining Components with Varlable Thickness
along the Guide Outline

The secticn of a component which remains af'ter chemical milling,
aepending upon the relationship of removed layers with convex and
concave sices, can conslst of the following combination of defor-
mations createa durlng shaplng of elastic and plastic zones:

1) the elastic zone and sections of plastic zones asymmetric
in magnltude and located with convex ana concave sides of component
(Fig. 1, hy),

2) the elastic zone located on the convex side and the plastic
located on the concave side of the component {(Fig. 1, hg),

%) the elastic zone located on the concave side and the plastic
located on the convex side (Flg. 1, hj)’
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4) the plastic zone on the concave side of the original
component shape (Fig. 1, hu),
5) the plastic zone on the convex side of the original

component shape (Fig. 1, h5).
(a) (e) (8) (&)  (a) (s

Yy I, xmmd, voml . oneal et nomd

-——-

' =4
IIP »

s

l."- N
hy

~n

al

f!-:c ) - .

1 T
Fig. 1. Disgram of percentage elongations and residual
stresses, I) in original component; II) in component

after chemlcal milling.
KEY: (a) Diegram.

The diagram of plastic unit straln in a cross section of a
component after chemical milling will be linear (hypothesis of flat
sections).> It is possible to divide it into components from pure
bending';:'l and from extension or compression'zo (Fig. 1c, d, e).

Expressing component E' from pure bending through curvature

X of a layer that 1ls neutrel during pure bending, we will have

(1)

=y =T,

where

1"‘. ?

Y=y=Yo h=—

? is the distence of the fiber from neutral during pure bending of a
layer that has curvature ;x’

?O is the distance hetween the neutral layer of the complete diagram

of permanent deformations and the neutral layer during pure
bending.
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Taking the mlddle layer of & cowponent before chemlcel milling,
as the beginnling of reading of ordinates of filbers with respect to
helght of cross section, we have fthe foilowlng expression for per-

centage elongation

s "';:.J' ":‘.Vo- (2)
where
-Vo"yo".?;- (j)

Yy 1s the distance of the flber from the middle layer of the
component bafore chemical milling,

Yo is the dlstance between the middle lsyer of the inltlal section
and the layer of the section after chemlcel milling which is
neutral during pure bending.

In the active stage of shaplng, the stresses 1r. the elastic and
plastic zZones are expressed accordingly as linear o = E¢e and
exponential o = Ke'' dependences [2]. The resldual stresses will be:
in the elastic zZone —

o=be (%)

in the plastic zone —

-

o, == Ka* + E(:—l), (

u

where K, n are constants of the strain hardening curve [2],
E 1s the elastic modulus,

e and ¢ are the unit elongations of the fiber correspondingly in
the active stage of bending and remsining in the
component after chemical etching.

Putting the value of € from (2) and ¢ = xy in equations (4)
and (5), we obtain

.:;=£;3h-£§ﬁh, ' (6)

2y* — E(x —;‘)y-—[i:‘yo, (7)

where x 1s the curvature of tne middle layer of the component before
chemlical milling in the active stage of bending.
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Conditions of equilibrium of internal forces in a section of
the component after chemical milling are determined by the fo;lowing

equationsi
3z-p, LM, =~o0. (8)

We shall expand these equations for Case 1, when the remaining
section of the component after chemical milling consists of ‘an

elastic zone and sections of plastic zones that are asymmetric in

megnitude !
-y . R Y . ] 4

XZ-I o dy + S'a-dy + I o,-dy =0, (9) :

-ya % 0 0»n

. s ' . . SnaE50

M= (- ooydy+ j" o-y-dy+ ( o-y-dy =0, (10)

S T ) B T

where Yy is the ordinate of the boundary of zones of elastic and
plastic flow with respect to helght of cross section,

CIES et AR

are correspondingly the ordinates of boundaries of removed
layers with concave and convex surfaces, counted off
from the middle layer of the component before chemical :
milling. g

Yev? Yex

L

Putting in the values of 0 and 0, from (6) and (7) equations
(9) and (10) we haves

-7y Y . . .

YZ= | Ka'y*dy—~ ’f E(x—x")y-dy — ; EXyydy + ;Efy-dy-
) F Bl B 3,

2,

. 7 - o _ .
K'y'dy— ( EG—*)ydy— ( Bx'ydy =0,
. 7» 3

e 0 e R, O RN S 1 L L g

,' ~ . .
—J Ex'y,dy +
~7» - }’

S
3
K
B
H

Coee e -" . . —,’ v - - -, -
M, -J' Ke'y**'dy ~ ; E(x— ) y'dy— ( Ex'yydy +

) Iy . ~Js - - Ce( T '
N o -
B J’ £y — [ Eiy-dy + [ Ky sidy—

_ (I et 2 ’
Yy - oL .
- § E(a—t‘)y’dy—} Ex'y,y-dy=0.
In ’ ‘
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After solving this system we find:
from the first equilibrium equation —

. e e Al _Ta+l Y -_ .
Fom LK & no% _(_{_,)J. Yo (11)
g TR € 2

from the second equilibrium equation —

N S R+ [kttt 2250,
YT (yir?+ ¥ — "‘[ En+2) 3 ]5+

(12)

3
A N :
+ .flmyi— -~ (-"z—yi)"ov '

R x*
where 3 ot o p_® w1 F_
YO —.-'P ‘lE ., ~ 2 E ‘

2

h 1s the thickness of the component before chemical milling,

ep 1s the conditional 1limit of proportionality (approximated point
of trensition of linear dependence ¢ - e to exponential),

according to [3]
.. 1
-
“=(%)

By solving equations (11) and (12), after corresponding
transformations we finally obtain the basic formula for determination

of radlus of curvature of the bent component after chemical millings

P 1 . (13)

T — ‘h!.-. + e
Constants Ces Yqs Vo depend on the mechanical properties of the
material and the magnlitudes of layers removed during chemical

milling and are determined by the followlng expresslons:

?-ax +2__ 2 3’
‘S Eet+2 (2.")' 3 20

21--'([ Frig e _ (;'_;.)(‘;:-H_';:n)] (14)
[ At2 . 2m+1) ’
) 2+?. (;.-'-}l)(;l_;l),
A D T N '
For finding the position of the layer of the component after

chemical milling, which 1s neutral during pure bending, we will use
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equations (1) and (3) which are written in relative magnitudes:

L)
-~ o -

|~
. ’. -_ wl'
;. "';o "';': .

By solving this system we obtain the expression for determination

of the ordinate of the indicated layer:

Yo = — Bt —y,. (15)
EO depends on component tenslle force Pz
Y
. gy mm i
T2 ()

where F 1s the area of cross section of the component after chemical

As shown in [2], the residual stresses in the component after

unloading can be determined by the formulas

. o= Egy, (b)
o =K'y —E(x—1)y, . (c)
where X is the remaining curvature of the mlddle layer after unloading.
According to Fig. 1, the vector of resultant force of internal

stresses will be written as
’ - Iy R/ (O
g__;q+@—;e+@—Jq+@. (d)
~7u . ’ ’
Jointly solving equations (a) and (d), taking into account (b)

and (c), after a number of transformations we finally obtain the

formula for determination of the magnitude sought:
;_ X  2»_2n'_(
FER+NE Y+

toyash (16)

Considering a particular case of bilateral uniform chemical

= ¥*, equation (13) will be

milling, i.e., considering ¥ . = V.,

written in the form of

e R

o a+3 1—8
1_.___(1_._'_7&)”—
y

i1

e A A

L R s b1 ¢ i B R

e o

L%,
3 %‘r\
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“h is the relative ordinate of the boundary of zones of
l_.l ANa -t oA d Lo B NP Y ot vataa wrd N A A A A <+ ‘tﬁ Ymomd el
C-LCI:DUJ.b G-J.L hI.LGD l.a.l.\. DULQ’A.J.LD "J.bll LCDPCbU L lLC.LEs.lLU
of sectlion. Expressing all relative magnitudes in
thls equation through component thickness after

chemical mllling, egqual to 2v‘, we havet

where vV =

N

e ¢
- 43—’

i.e., we have obtalned the known formula that determines the
residual radius of curvature in components obtained by the method
of elastic-plastic bending [2]. Consequently, the residual radius
of curvature of the component depends on the curvature created in
the actlve stage of deformation and does not depend vhen the bilateral
uniform decrease of thickness took place, i.e., before or after
shaping,

Thus, for the given case we have found anelytic dependences
for determining the baslc geometric parameters of a component after
chemical milling.

The solution of the questlons under consideration for other
cases Of chemical milling In principle 1s similar to the one presented.
Theretore, we shall give final formulas that determlne the relative
radius of curvature gx of & layer that 1s neutral durlng pure bending,
which remains after chemical milling, and parameters §b and ZO walch
cheracterlze 1ts position,

Case 2 (section after chemlcal milling consists of part of the

elastic zone which located on the convex side, and part of the

plastic zone which 1s located on the concave side of the component)s

.é‘- 1.5
B-HE T -l el
I . S s e s A L X
AR TS Tty ¢ 23,73, 2 (7)
- . X ;:+|_ vI-+-l 1 ;:_ 1 _ _
S == T~ —————+ (¥, F ¥)
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where o 2""'K(2"_.‘a+l
T TEG+)
» L _?!.“_;:_:7-_"_ |
N f-z'—.x (:-f.::-—--:’l .;-nq:;.l-)
- € \a+2 a+l 2 . 5
3 Y ’

- ?-n i?-ln (;-uq:;-ll)(?lu -?ﬂll)
"“ ‘ N - ‘ .

- !(i.'):'

Ty -

«d

and v correspondingly are the maximum and minimum ordinates
min

me.x of boundaries of removed layers.

In the system of equations (17) and (18) the upper sign pertains
to the case when Ymax
cross section of the component before chemical milling, and the

and §hin are divided by the middle line of

lower sign, when Ymex and Ymin &Tre located on one side of the middle
line of cross section of the component before chemicsl milling.

Case 2 (section after chemical milling consists of pert of the
elastic zone which is located on the concave side, and part of the

plastic zone which 1s loceted on the convex side):

V- LI
1;-\:!""-—ws9+%c.9
5. 2TKE M- B R RF (19)
- E(n +1)8° ;'.:t;'. 13 2(}.:’:;.) v 2 '

:o K _’24»!_"'1-[ ' ' 2_‘2. .
PE(m+ N ;I t ;u « -jl i;’: 4

With respect to the double signs the above-mentioned remark is valid,
Case 4 (section after chemical milling consists of part of the
plastlic zone which is located on the concave side of the original

component shape)s

T e ————

WL

R |
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El- « ¢ . A—n "
} == 2|—"Kg' . }:+l-;:+‘ ; ;' . }l +yn _-;=+;=
0 — — = - B »
E(ﬂ""l)gﬂ Y= < 2 2 . (')O)
:______ K _2+1_}:+l_l(l_L) -;’I+}l
0 PE@+NE T 2\¢ ¢ 2
where . - —at2 = - - - -—
2 'K[ Yous = Yeuta _ Fmar  Yenied Vbt = Vata)
T E e+ 2 2(n+ 1) ! (23)
- _y-!-u‘?l-(n (}uu+}mln) (;ﬁll —Wnln)
WETT T « |

Case 5 (section after chemical milliing consists of part of the
plastic zone which 1s located on the convex side of the original

component shape)t

- 1€
¢ ‘;_ '; Fl—"
7e = 2 ke _5::'—2:“__?:_ Vst Ya + Yo+ Y : (22)
Ex+ne 3 5 ¢ 2 2
=" 3 (uK-L .l)E' '7::'—5:“ + %(L “_“L) '}L;i :
: Ve— 7 :

Thus, tormulas are derived which make it possible to determine
the remaining curvature of neutral layer during pure bending and its
position after chemical milling for components with variable
thickness along the gulde outline.

In these formulas, constants Yoo v;, 3;, V39 whlch depend only
on the magnitude of the removea layer for the case of one-~sided
chemical milling, can be determined on graphs {(Fig. 4, 6, 8).
Constants Y4 yl, 72_, besides the geometry or the remalning section,
elso depend on the mechanlcel properties of the materlal, For case
of one~sided chemical milling they can be determined on the graphs
shown in Flg. 3, 5, 7.

On the grephs of Fig. 3 - 8 and 10, along the axls of abscissas

the relative thickness or the removed layer . = %-is plotted.
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Obtaining Components of the Wafer Type

Chemlcal etching for obtaining components of the wafer type 1s
basically produced only on 1its concave surface, wherein the thickness
of the runner along the length of the gulde remains constant.

The runner of the component after chemicel milling can consist
of different combinations of elastic and plastic zones of defor-

mationst

1) plastic zone located on convex side of component, elastic
zone, and part of plastlic zone,

2) plastic zone located on convex side of component and part
of elastic zone,

?) part of plastic zone located on convex side of compcnent.

Equations of equilibrium of forces (8) for case 1 of wafer-type

components will be written (Fig. 2) as

A

—~ . . . T .
. 22-4,5 o-dy+1 { &dy+ 1‘ o-dy + f o,-dy =0,
-3 - = 7
q”n . ' —"—- ' 7 -~ -;--
M=l [ oydy+ 1 ( o ydy+ fc-.v-dy+ { uy-dy=o,
s - 2 n
where R - ' ’
e L=l L= & 2"" L=V
, 4
¢.|...__._ 4 & e faz !

ot Aot L

Fig. 2. Geometric parameters of wafer-type component.

Putting the values of ¢ and Gi from (6) and (7) in these

+

equations and calculaeting the integrals, we obtaint

e ‘A‘wﬂ ‘ool - Sl v ad
S F
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After a series of transformations the equatlons are reduced to
the form of
_ 3l-'KE‘7; 1 - ?I-H (z 1— ’,:
Yo = ; . — oy —~-2 — -1 — - " 2
07" E(n41)e® 2—-7,0—yn 2\ ¢ 2—-7,0-70 (22)

al=—8, '—alwr‘
Fagae B-L0=7"- e -Ta-5)-
—2osrlee T =T o
~[Em e - 2o ]es e-Ta-F- (o)

. .——s-.-(i ~¥)¥=0,

-

where € 1s the relatlve radius of curvature of the middle layer of
the compenent before chemical mllling,

Ex is the relative radius of curvature of the layer that 1s
neutral during pure bending after chemlcal milling,
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By solving the system of equatlons (23) and (2%) with respect
to Ex, after the corresponding transformatlions we wlll finelly obtain
the formule for determinatlon of the remsining curvature of the
component after chemlical mlillings

Y L
B e _ .
=t 4 o8 (25)

Conetants Y4 &nd Yo 8re determined by expressions

P {2 ~La-7 T 0-Fha-3")
=g ag2 2+ R-G0a~-ynd"

¢ 2T O-Y _ Ta=y" _ (26)

TR T e a

and constant Cq is determined by correspdnding equation (14).
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The position of the layer that 1s neutral during pure bending
of the component after chemical milling, with respect to the middle
layer of the component before chemical milling, will be determined by
equation (15); the magnitude of EO for the case under consideration

is found with the expression

~-T[ K . ?l+|.;1.f...;l. —1_—..1_ ;"—-l ] (27)
ThTerE 2-na-m 4\E T Jacra-d

For other cases of chemical milling of wafer~type components,
the solutions in principle are analogous. By omlitting a detailed
description of the solution, we shall give the final results.,

S
- i !
m - -
N
ase
45— -
00 K\\\\
NN
35 NS
) \%
“ ‘ \\\ Z
. \S Loy
o3 AN i.‘o
w

cx)'
Case 2 (section of runner consists of plastic zone located on

convex side of component, and part of elastic zone)
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' MR- | (28)
T igarm
A [ S LI e
CTHFEeTOE T aE % 1-naFm
—— 4%; -"':!:_'—I_ ] .
_ -LaF Y
where ,,-_Z_;L-_,‘ ' ) - ,
. ?“([é—t__” T0-7Y }
e Garr Taerup-gazml’
. .f’_z-—T. o ne-y) (29)
R T TE 52

_=%a¥¥ __Ta-7¥ -
by 3 e-LaFA
Te=6—T-

Constant ¢, 1s determined by corresponding equetion (18).

The upper sign in equations of system (28) and (29) pertains
to the case when the thickness of the runner 1s more than half of
the thickness of the component before chemical milling and the lower
slgn, when the thickness of the runner is less than half of the
thicknesgs of the component before chemical milling,

Case 3 (sectlon of runner conslsts of part of plastic zone

located on convex side of component)
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Thus, for different forms of wafer-type components we found

analytical dependences which make 1t possible to determine their

R Y W + |
caslc geometric parameters after chemlical milling,

1 n §
Constants Ypor Yoo Vo 73, which depend only on the magnitude '

[

of the removed layer, can be found on the graphs shown in Fig. 4, 6,
8, and constants Yq y;, 723 which depend, besides the geometry of
the remaining section, on the mechanicel preperties of the materials,
are found on the graphs of Fig, 3, 5, Te

In the determination of the curvature which must be given to

the component in the active stage of hending, in order to obtain the
glven curvature after unloading and subsequent chemicel milling, it
1s necessary that the dependence L. (T, T ,-%) for different

~X cx’ g
materlels be presented in the form of graphs similar to the ones

shown in Fig., 9 for material D16AT.

169 |



r'|0! ___—1'-1—“\
) | h\“hfg
[ R} 7 0)\
ui AN
085 N
aso T éx
- \(<b \\
035 2\\
050 E";OJ N
T T T 114
ass ~1
. ~]
L]
s [,
meu.:;rk 4
\
e \
25 7= N\
b\—,.-!:gsﬁ '-“'L"‘f"‘-r— — \
V) ‘ =
oss 5\
a0 ‘<‘
Qg3 .
0 b-0™ s e =10
&30 650 a0 0,80 090 3
1"
Fig. 7. Graphs of runcsion vy = £(F, T )
for materials DIOGAM (— — ~) and DI16AT
(——).

Residual stresses in comporents after chemical milling are
determined by equations (9) ana () which in dimensionless form

have the appearance:

~ E E —
J = —~—— ¢ — —=— — in the elastic zone,
éEX égx o

, K Tn_ 1., 1.-= E = .
9, = EHEH ¥t~ i (E— %;J y — S ¥y — in the elastlc-plastic zone.

The dlagram residual stresses which depicts these equations is shown

in Flg., 1if.
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As already was 1ndicated, with the decrease of thickness cf
material the instablllity of internal stresses with respect to moment
causes & change in curvature of the shaped component. Let us
consider the change of this moment during chemical milling of the
concave surfeace of a component.,

With the removal of a layer within the limits of the extended
zone of the diagram of residual stresses (Fig. 1b), a moment 1s :
created which decreases the curvature. Upon further increase of the
removed layer the magnitude of additional unloading moment will

decrease.
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At & gpecific thickness of removed layer a moment 1s created
which 1Increases the initial curvature whose maximum value at the
thickness of the removed layer will be equal to half of the thickness
of the component before chemicel milling. A further increase in
thickness of the removed layer leads to a decrease of this moment.

This pattern of change of moment is confirmed by experimental
check of the change of curvature which was conducted for material

D16AT with a thickness of 1.5 and 2.5 mm (Fig, 10, 11, 12).

"

Fig. 11. Photogreph of semples made

o 7 from DI6AT sfter chemical milling of
L BPEEREN the entire concave surface at a

Gl i different magnitude (t1<t2<t3,

g"‘\: 1 ; IO3 ‘lni(:‘ln:')e

r\.;.:; ) j

L~ Y% -

WAy :2

£ il

& =

Fig. 12. Photograph of samples of the
wafer type made from D16AT after chemical
milling of the concave surface at a
different magnitude (t1<t2<t3<t4, Pu<pq =

© pz<po) .
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TECHNICAL NWOTZES

APPROXIMATE CALCULATION OF SPEED CF FLIGHT IN A SLANTED
DIVE AND DETERMINATION OF LOSS IN ALTITUDE AND
RANGE ON THE DIVE ENTRY SECTION ON A
PROGRAM FOR A PILOTLESS AIRCRAFT

WITH TURBOJET ENGINE (TJE)
Ye, A, Kuklev

Definitions of Cyrillic Items

np = rect = rectilinear

MKGFS = Meter — Kilogram — Force — Second

%
Q
(@]
Il

inc = inclusion

BKJ
3% = en = entry

The method of calculating the speed of an aircraft with TJE on
2 section of slanﬁed and rectilinear diving on the assumption of
constancy of alr density and drag coefficient, and disregard of
engine thrust, is given in [1]. In the same place there are inves-
tigations of motion of an aircraft during dive entry and pullout with
constant overloads ny = const and n, = const,

In this article we obtain a precise expression for calculating
the speed of flight in a slanted dive with large thrust weight
ratios: I, V. Ostoslavskiy's formula considers engine thrust as a

con:tant,
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Furthermore, the article gives exprescions for determingtion
loss of altitude and flying range in the dive entry of a pilotless
aircraft based on one of the two proposed automatic pillot prograns,
and gives recommendation on the selection of these programs under ui
condition that the speed of flight can be considered constant., The
concept of overload ny is introduced here as the designation of a
certain limit of maneuverability or strength which should not be
exceeded in the process of motion of the aircraft, but whose assign-
ment 1s a basic criterion in the selection of a permicssible program.
Inasmuch as programmed motions of the aircraft which are investigated
in the article are not flight conditions with ny = const, the resulls
cbtained can be assessed as a certain supplement to that which is
alrecady known in literature about programmed motions [2], and have an
independent interest in this sense,

1. Determination of Speed During a Slanted Dive

Taking into Account kngine
Thrust as a Constant

Equations of motion of an ailrcraft with TJE during a slanted
dive on the assumption of constancy of mass (m), thrust (P), and
drag ccefficient (cK), which are equal to certain mean values for a

siven small drop in altitudes, can be written as

: dv . pSV2 e
m77=mV=P—,—7——Gng

. : : 4 (1.1)
y=Vsinb, x=Vcosf, 9 = const.
roilowing the cesignations of [1], we will take

: dV v dv 1 dv? .

Vo & =2y Veirh=y st (1.2)

V’.,=r—- 16Gsinf,
c-aS ' (1.3)
P
n, == —
! Gsinl, (1'14)



where P and G are in newtons, m in kg, Ly is conditionally considered
as the thrust weight ratio of an aircraft with TJE in a dive, and 90
1s the dive angle,

We shall place (1,2)-(1.4) in the first equation of {1.1); then
for determination of speed we will obtain a differential equation
with dividing variables: -

@5

G .., v Y

Vi + )

Dividing the variables in (1.5) and integrating in given limits

from Vg to V2 and from Yo to ¥y, we will finally find

V’--=V’.,(1+u,)[1-[l—V'2 v ]-eip(—zi&ﬁ)}, (1.6)

w(! +m) = Vi

where VO and Yo are the values of speed and altitude of flight in the
moment of the beginning of a rectilinear slanted dive, If we put

ny, =0 and % = g in (1.6) for a check in the MKGFS system, we will
obtain exactly the same formula as in [1].

Calculations show that the values of speed which were calculated
for a small drop in altitudes (< 10 km) according to the precise form-
ula (1.6), almost completely coincide with the results of numerical
integration.

2. Determination of Loss in Altitude and Horizontal
Range on the section of Entry oi an Aircralt

with TJE Into a Slanted Dive
According to a Program

Among the possible programs for entry of an aircraft into a
slanted dive we shall consider those which trensfer the aircraft from
horizontal flight into conditions of & slanted dive in a longitudinal

plane with constant pitch angle. A dive with constant pitch angle
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may be easily carried out by means of shifting the initial conditions
of stabilization of horizontal flight to slanted conditions by feeding
a constant programmed signal to the pitch control track, It is
obvious that from considerations for the guarantee of stability and
limitation of normal overload, a signal that is proportiohal to the
pitch angle during diving cannot be fed to the control track immedi-
ately end suddenly but should be sent out gradually with a certain
regularity, 1l.e.,, according to a program., The program 6f dive entry
with constant pitch angle may be either proportional to the sweep of
the control signal in time with 2 limitatlon upon achievement of a
specific value which is carrled out by a fime mechanism, or by a grad-
ual Influence, quantized in level and supplied by & relay system
(Fig. 1a, b).

It 1s required to determine the

rEit) ws—v—t; )
- losses in altitude and horizontal
t range for the consldered programmed
motions and to find correspondingly
Fig. 1. the permissible angular velocity of

rotation of the programmer @w or magnitude ki and the duration 2t, of

i
pulses under the conditions that ere assigned by the pitch angle
during diving (programmed signal $*) and the limlting permissible
normal overload ny max“
For a solution to the problem on hand we shall use the system. of
equations of motion of an alrcraft in s longitudinal plane in varia-
tions wilth respect to horizontal flight [1], [2]. We shall assume
that at small angles of inclination of trajectory (< 450) the speed

of flight on the dlve entry section changes insignificaently, 1l.e.,
V = VO = const, the mass of the aircraft is constant, and cos 6 =

2 COS ¥y = 1, sin 6 &, Furthermore, we shall assume that the
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automatic pilot is ideal and the motion of the aircraft with respect
to the center of gravity will be considered only as a balancing rela-
tionship, taking the angular piteh velocity to be approximately equal

to the angular turn veloclity of the aircraft on the trajectory, 1i.e.,
. 3, s . -- . . .c.-
nl:‘¢+n&3+m.. o,'zm;.c-{-u,' '+m“30 0.

Where by, in the automatic pilot equation it 1s possible to take

As calculations show, these assumptions are fully acceptable,
For instance, an increase in speed, found with relationships [1] for
the case of dive entry with ny = const, does not exceed 10%,., The
short-periodic motion of the aircraft with respect to angle of attack,
in commarison with the slowly changing program of dive entry, attenu-
ates extraordinarily quickly and almost does not render an influence
on the trajectory.

Taking into cccount the remarks made, the initial system of equa-

tions of motions may be written as
i-a,c, L] S
" ., . .
.-—i'—ﬁf‘.n j“v... (2.1)
. ;. :
'—‘.' +‘~. +M‘.'(‘).. -“zvp

where 13, iw are the transmission numbers of the automatic pilot
z for the pitch channel,

6 (t) is the dimensionless program of dive entry which
vaeries from O to 1,
_Y* +p
4 = mVO

We shall find an equation for the determination of angle 6, by

is the dynamic coefficient.

excluding a, b, and ¥ from the first four equations of.[2.1]

TV 40 —0%(0), (2.2)
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of the dynamic system "aircraft-automatic pilot." If we consider tiw
initial conditions as zero (horizontal flight), the solution in

expressions according to [3] will be

o= Sl (2.3)

where p is the transformation parameter in & Laplace integral,
.The sought solution in originals is found for every program

separately.

A, Program for Diving is Worked Out with Constant
Angular Velocity (Fig. la)

Since in this case the representation for o(p) according to [3]

is equal to

i l—e e
°(P)"’T—"—;——-, (2.4)

then in (2.3) going on tc variable t by means of inverse Laplace trans-
formation, we will obtain the following expressions for determination

of angle 6:

[

OI(Q-;—.-.;‘- [—;;- + (e—.'f— l)]. (2.5)

if the current time i1s less than the time of work of the programmer,

l.e.,
: o, -V
(< t,mndb(f)=——[k+e T (-1 (2.6)
for any moment of time after programmer stops, i.e,, for t > tine®
t.
Here k = —322 and Lt = t — tipn is the current time counted off -

Crom the moment of achievement of limitation of the program,
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For determination of the loss in altitude on the dive entry sec-
tion it is necessary to integrate the equation for vertical‘velocity

taking into account (2.5) and (2.6), and as a result, when t < t, .,

(4
Ay-y-x.-—r-TV.[—'——--'——(e ‘-‘-t)]. (2.7)
when t > tinc’

Ay——-::TV,[%—k—-(e"-—l)]—
, 2.8
—-'.l T“V.[W—T(é"—l)(l—e-g—)]. | (=
As can be seen from (2.5) and (2.6), angle € asymptotically
tends to its own limit, i.e., the programmed pitch signal ¥*, There-
fore, for determining the moment of termination of dive entry of an
aircraft it is necessary to have some specific values of this angle
which are less than limiting., Let us assume that the angle of trajec-
tory inclination at moment At = Atg after stop of the programmer must
be equal to:
6y = — £9x. (2.9)

We shali place (2.9) in (2.6), and then we will see that

Ati;;_i'ln[%‘:’-__'—_'z)—]. (2.10)

and the total time of dive entry of the aircraft is

ty =t +AL, (2.11)

The horizontal range of the maneuver is also found here:

Axemx—x, =Vl . (2.12)
Now we shall determine the permissible angular velocity of rota-
. § My s " tiI’lC
tion of the programmer ® = ¢ and the "time of inclusion” k = T
inc

al the given pitch angle of the dive and limitation on normal overlocad.
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Let us note that when an aircraft follows a program for dive entry the
maximum angular velocity for a turn by angle 6 is attained at the
moment the programming stops, i.e., when t = tinc’ after which the
angular turn velocity will only attenuate. ‘Therefore, by differen-

tiating (2.5) and putting t = t. , we will find that

inc

4% -
max = ET(L - ©

é k

)s (2.13)

and from the condition of the limitation of permissible overload

. G(n - 1)
0 < Al (2.14)
max = m VO

If we now place (2.i4%) in (2.13), then there will be obtained an

equation for determination of permissible values of k depending upon

%, ny’ VO’ T, G, m
e™® <1 - bk, (2.15)
g (ny -1)T o
where b = -5'_%&ﬁ§7__'ls positive in virtue of the negativity of

tne overload during dive entry of the aircraft. Equation (2.15) was

solved graphically; a dependence of the form k = k(b) is represented

K in Fig. 2.
0 0dacme (2) . Thus, by finding k with respect to b,
squen K - we wili always be able to determine the
Afi v 355» angular velocity of rotation of the pregram-
'531 mer, and according to (2.5)-(2.12) we can
A ] ‘ find the change of the angle of inclination
Fié. 2. 4 0 of the trajectory and the loss in altitude
KEY: (a) region °f
permissible values of and range at any moment of time.
K.

B. Step Program (Fig. 1b)
In the assignment of an automatic pilot program in the form of

a certain step curve 1t is necessary to know how to calculate, on the
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basis of the given criteria the permissible magnitude and duration of ;
steps, and also the trajectory elements of the programmed motion. We

shall first find the elements of the trajectory. As earlier, we shall
start from the determination of angle 8, Considering the program

depicted in Fig, 1b as a step influence composed of & series of equal- ;
duration At pulses, of magnitude kis*, and fed consecutively in moments

of time iAt, and a single influence applied in moment of time t =

=t = (n — 1) At, for a representation of the influence according

inc
to the superposition principle tu] we will be able to write the fol-

lowing expression:

e -Ap _ -ue
(P =k I — Ry

_ ~U-Dbp i - -t (2.16)
oo b4 e +...+.‘_’___.__

Further, by making an inverse Laplace transform of expression
(2.3), with the help of Tables [3], where (2.,1€) is placed instead of

o(p), we will obtain a dependence for angle 6:

? _'—G—MI _“w
O(t)-—ﬂ‘zizcl(l—'lc ! )—(1l—e ' )1 (2.17)
c.l - .

where 1 =1, 2, ..., n and when t < 1At t — {At = O for all { =
= 1, ..., N,
The expression for calculation of the loss in altitude during
dive entry will be found after integration of the equation for ver-
tical velocity in the calculation of (2.17)
by =y —y, = —-’"V.'E&[[t-(t— l)Atl—;ill -~ c-:s;&l—
- . Y - 7

(- - ) et -Cas

I e TR §

where i =1, 2, ,.., n and when t € 14t t— At = O for all { =

? +

(2.18)

IR XL PE T CE Lo

= -3 e 0y no ‘

The horizontal range can then be calculated by analogy with (2.12).

183 |




The magnitudes of pulses, their duration, and quantity will be
found from the condition that at the moment of supply of each control
pulse the maximum angular velocity of turn of a pilotless aircraft
with respect to angle of trajectory inclination must not exceed the
permissible value determined depending upon the available overload,

i.e.,, from the condition of

éi(t) <6 (permissible), (2.19)

max
where the right side is determined according to (2.14).
The expression for angular velocity of turn of an aircraft in

any moment of time will be obtained if we differentiate (2.417), i.e.,

. - _t=g-na¢
O,(Q:——}-Z(tz-—kc_,)c —, (2.20)

where i =1, 2, ..., n and when t < iZt t — &t = O for all £ =

=i, ..., n, and for maximum angular velocity, if in (2.20) we place

the value of current time té = (i — 1) At at the moment of supply

i max
of the next pulse
&
. P - -0
.,(i)z——;z(kc—kz_l)e T, (2.21)
C=1

whoere L =1, 2, ..., N and when t < 18t t — {4t = O for all { =
= 1, «essy N,

In the calculation of (2.,21) from (2.19) there follows a rela-
tionship that connects thé limitations on each of the pulses with the

magnitudes of all preceding pulses

2 ) -U -
S~k e T <o, (2.22)
=1 )

where ¢ =1, 2, ..., n, &6t = 0 when 1 = 1, and b is found according

to (2.19).
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On the basis of (2.22) the magnitude of any pulse may be found
as a function of only its number, duration and parameter b; namely,

k, < b,

At
klgbL-(i-lhmTi. (2.23)
The quantity of pulses required for the automatic pilot to gradu-
ally process a given programmed pitch signal $*, is simply econnected
with puilse duration and may be easily found from (2.23) if we consider
that the last signal of the prougram is characterized by the value of
k =1,

We will then be able to write

At
1=bln-(n-1) T], (2.24)
whence it follows that permissible n should satisfy the relationship

¥ |
a>iz 1 (2.25)

'_U
i b(l—e T) 7
and, conversely, on the basis of given n from (2.25) we will be able

to determine the permissible pulse duration:

bn - 1
At > T 1In o 17 (2.26)

It is obvious that due to the arbitrariness in the assignment of
one of the magnitudes At or n the time of processing of the program
tine = (n - 1)At, which i1s necessary for the achievement of the same
value of the programmed signal, will be different. However, as one

may see in (2.25) and (2.26), with the increase of quantity of pulses

it will decrease and asymptotically approximate its own 1limit according

-

=

to logarithmic law. By using this property it is possible to find,
in a certain sense, an optimum (with respect to high-speed opera-

close

tion) program by selecting n and At which respond to tinc’
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to limiting. For that it is possible to assign a gradient of decrease

in operating time of the program depending upon the amount of pulses

M., 3 m—1 -
Era Gt =ik (2.27)
- tinc - _ Ot ‘
(where Yine = T Lt = - are the dimensionless time of inclusion

and pulse duration, c = % is the gradient), and either, by solving

(2.27), to determine optimum n = n(b, c), or on the graphs of Einc =

= ginc(r“ b) to find n = n(b), for given ¢. Practically, when
¢ = 0.05-0.1 ginc will be limiting. Optimum n = n(b, c¢), which is
found by :the second method, 1s given in Fig. 3. The method of eval-
uating a programmed maneuver entry may be the following: depending
upon b, on the graphs in Fig. 3 we find the optimum (with respect to
time of inclusion) n = n(b, c), then with (2.26) we calculate the
pulse duration Lt; according to (2.23) we construct the program itself
k; = k,(b, 4tn); finally, with (2.18) and (2.12) we calculate the

lcsses in altitude and range.

zp _ Further correction of programs construc-
\//Cgﬁ:; ted according to the proposed system as first

V164H approximations should consist mainly in the
ot \\\ selection of automatic pilot transmission

\‘ ratios, that ensure the given quality of

ds lﬂs stablility of short-periodic motion, and can
Fig. 3. be carried out with the help of known methocdc,
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SPEED OI" I'ROPAGATION OF A FLAMI: IN AN OFEN AND
LIMITED FLOW OF UNIT'ORkM MIXTURE

v, M, Yermolayev and A, V, Tzlantov

Definitions of Cyrillic Xiams

T =1 = flame

H =n = normal
M m

cex  sec

The process of burning in cngine combustion chambers occurs in
a Tlow limited by the walls, The majority of experimental research
in burning till now was carrlied out in an cpen flow, The question cof
the possibility of using the results of an experiment which were
obtained in an open Tlow, in examining the processes of burning in a
flow limited by walils, has not been considered by anyone,

Tnis work analyzes thls question and gives the results of a
cpecially set up experiment.

Burning in a free flow attracts attention by the simplicity of
the conditions of the experiment. The torch is open; therefore, it
1s possible to observe it and to casily fix the position of the flame

Tfront and the burning zone. However, the possibilities of studying

burning in a frec flow are restricted by the limits in which the flow




preserves its characteristics and composition. Usually these limits
constiluie several gauges of burner pipe. The advantages of studying
burning in a flow that is limited by walls, with the extreme complexity
of' the experiment, are the invariability of composition of mixtures,
the unlimited pessibllities of studying the process through the length
of a pipe, and the proximity of the experiment to conditions of the

process in chambers,

Burning in an open and a limited flow has certain inherent jas-
dynamic peculiaritlies, In the case of an opern flow the gases have the
possiblility of expanding in transverse direction, since they are not
limited by walls, There is no drop in pressure in the direction of
flow in the surrounding space; therefore, the speeds of the combustion
products and the fresh mixture in axial direction are kept practically
unchanged and equal.

The prescnce of limiting walls in a closed flow excludes the
possibility of expansion of gases in trausverse direction. ITmue to the
continuous feed of heat there occurs expansion of gases, a drop.in
pressure along the length of the chamber, and an increase in the rate
of flow of combustion products ani the fresh mixture.

These peculiarities of flow can render an influence on the pro-
cess of burning,

First. the change of the rate of flow in the course of burning
in a limited flow may cause a change in the form of the flame f#ont
and the entire torch, as compared to a torch in an open flow, even

with the preservation of constanczy of the speed of flame propaggtion.

However, the dimensions of the surface of the flame front, in accord-
ance with Michelson's lsw, will then remain constant, Actually, the =

volume flow rate of mixture (V) is the product of the speed of flame

propagation (upy) on the surface of the flame front (F):
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Veu,.F. (1)
With the equelity of {low rates and the speed of flame propagation {or
both cases F = const is inevitable,

In Pig, 1 the solfd lince depicts the position of the flame for a
flat torch in an open flow with ignition on the periphery: the dotted
line indicates position of the flame in a limited flow in @ channel
ol constant size, The point of closing of flame fronts shifts duc to
the change in form of the generator (front), with its constant length,
As calculations showed [1], the shift is usually insignificant (< 5%).
Consequently, even for a turbulent chamrber that is variable in length,
such a shift will render no perceptible influence on the speed of

flame propagation.

Fig. 1, Position of flame in an open
Tlow {(—) and in a chamber (- = =)

-

KEY: (a) ignition pointz; (b) fresh
mixture; (c) flame fronts; (d) buvning
zone,

Secondly, a change in tiic rate of flow can render a direct influ-
ence on the speed of flame propagation.

In general, the speed of flame propagation in a turbulent flow
of uniform mixture Is a function of the pulsational rate of flow (w!'),
the normal speed of flame propagation (uﬂ), and the degree cof expan-
sion (v):

&, =f(w;&09). (2)

The normal speed and the expansion ratio are physical-chemical charac-

teristics of the mixture and upon transition frcrm an open flow to a
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closed one with other parameters veing constent do not change. Thus,
the single parameter that determines the speed of fiame propagatlon
and can be changed depending upon the condltions of expansion 1is the
pulsational gpeed.

In a flow that 1s limited by walls the speed of the mixture
increases with burning cut, If we consider that the pulsationali speed
follows the change of the rate of flow, then various sectlons of the
flame front will correspond to different magnitudes of pulsational
speed and the considered section 1s located even further away from the
ignition point. The biggest increase can be expected 1n the section“
that 1s close to the point cf closing of the flame front, In this
section, burning out for the most commonly used parameters of flow
and mixture constitutes 0.,05-0.,1. The increase in the rate of flow
of fresh mixture will be equal to 0,1-0,2, If the pulsational speed
also increases by this magnitude, then the speed of flame propagation
at the point of encounter of fronts will constitute 1.,1-1,16 of the
initial speed, since upq ~ (w')o'B[E]. The average (with respect to
the torch) velocity of flame propagatlon incresases even less and will
constitute ~ 1.08 of the initial velocity, siice burning out and growth
of the rate of flow along the length of the chamber occur in an
3-shaped curve. In reality, the pulsaticnal speed in a convergent
flow will lag behind the change of the rate of flow. This, in partic-
ular is confirmed by experiments with geometric compression cif flow,
Consequently, the change in the pulsationsal rate of flow and thé‘rate
of propagation of the flame will constitute an even smaller magnitude.

For a comparison of the magnitudes and dependences of the rétes
of flame propagation in an open and a closed flow we set up special

experiments with a uniform gasoline-air mixture, The set up is
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sclected 1n such a manner that a further increase of it did not change
the recordad pesition of the flame., Consequently, in ths experiment
we determinced the front boundary of the burning zone — the flame
front — the ignition front, With the dimensions of the flame surface
and voluue flow rate know from processing of the photorecordings, with
a relationship similar to (1), we determined the rate of flame propa-
gation.

The experiment was conducted at atmospheric pressure and temper-
ature of the mixture 4230 abs, and the composition of the mixture
varied from a = 1.0 to a = 1,5, while the rate of flow varied from 20

to 80 m/sec (see Fig. 3 for results).
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Fig. 3. Dependence of rate of flame
provagation in an open turbulent flow
on mixture composition for different
rates of flow,

On the graphs in Figures 4 and 5 we have plotted the values of

the rate of flame propagation in a turbulent filow as a function of
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mixture composition: 1he polinte geplot thee values of Up ) whiich were
obtalned in en experinent with an open 'low with removed combustion
chambur; the curves — according to the rvsults oif experiments in a
low limited by walls — in & combustlon chamber,

From a consideration of the graphs a conclusion can be made about
the insignivricant disvinction or the macnitudes of rate of flamc
propacsation in an cpen and limited flow (< '5). The character or thue
dependences ol speed Upq On difrfereny parametcers ror a chamber and
a free t'low is absolutcly identical, As should have been expected,
the wrate ol 1'lame propagation in the chamovcr is somewhal greater than
in an opzn r'low. However, this distinction ig less than on the assuunp-
ticn of the proportionality oir the pulsation rate and the rate of flow.
Cor.seguently, the pulsation rate in an accoleretea [1ow changes slower
than the rate of t'low.,

An indircct judgement about the insigniticant change in the rate
o' Tlame propagation by mean:z ol acccleration ol flow in a chamber may
be also made Trom an analysis of tho results oi the experiment of
V. P. Solntsev [3]. Iu [2] Solutlsev investirated the process of

comwustion of a uniitorm gasoline-alir wisturc behind linear stabilizers

~

in conditions of a closed 1low, The investliyavlion wag produced in

¢

20U x 175 at normal pressure ana Lewmperature of 400° abs., The rate

o' 1'lame propagation was determined by the angle between the surface

X o1 the {lame front and the direction of flow in a numver of points on
the cone length, Tt was determined that the local speed of flame prop-
azation on the length of the chamber changes in proportion to the
pulsational speed determlned in a cold flow before burning. This means
- that the process of burning does not cause & noticeable change of
pulsational speed of the forward flow on the cone length of the closed

fiame Irontsz,

154




T T o ewertoes T e T

The dependences of speed of flame propagation in a free turbulent
flow were experimentally studied in the works of L. S. Kozachenko [4],
A. V. Talantov [5], and other authors,

The results of the experiment of [5] for a wide range of initial

conditions during burning in an open flow can be described by the

dependence
& A— 4
e ()7

where A = 1,

As a result of treatment of experiments of our work [2], for a

chamber we obtalned the dependence

M

a ‘“(-'
——-A —l ——— ’
a5 ..“ .!5 ﬁ-)”
where A = 1,
The distinction in dependences was very small,

For a éomparison of the results of the experiment in a closed and

open flow the data of different authors are deplcted in coordinates

of the form ail-— 6 = (%l)(Em; 6). These coordinates ensue from
n n >

the theory of burning in a turbulent flow, It is not difficult %o
see that all data a*e grouped in one region, practically near one curve,
Thus, on the basis of a consideration of the peculiarities of the
process of burning in an open and limited flow of uniform mixture and
an analysis of the results of experiments described 1n literaturé and
specially set up by us, the following conclusions can be made,
The magnitudes and the character of the dependences of rat= of
flame propagation in a free and limited flow of uniform mixture éiffer
insignificantly; in first approximation this distinction can be disre-

garded., Consequently, in calculations of combustion chambers of the
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Flg. 6. Rate of flame propagation in a
turbulent flow of uniform mixture according
to various authors in dimensionless coor-
dinates.,

KEY: (a) Plane jet on pipe cutoff; (b) A :
Talantov [5]; (cg L. S. Kozachenko 4]
closed chamber; (e) V. P, Solntsev E} ; f
closed chamber; (g) our experiment,

2

straight-through flow type, which operate on a uniform mixture, it is
possible to use the dependences of rate flame propagation which were

obtained in the experiment with a free flow.
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INVESTIGATION OF AN ULTRASONIC GENERATOR OF A
. LIQUID FUEL !

N. S. Lamekin

Definitions of Cyrillic Items

cT = J = jet
p = r = resonator

nozzle

Il
o
i

rpall = deg = degree
nc = ¢s = constant section
BT = W = watt

Hr = ke = Kilocycles

TeK = cur = current

MaKC = max = maximum

References [1], [2], and [3] give descriptions, theoretical
prerequlsites, and results of an investigation of an ultrasonic
burner.

The energy source of this burner for splitting the liquid into

drops 1s an annular gas-current generator mounted in body 3 (7ig. 1)
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and differing from the usual type by the Tact thai the rcscnator

aroun A
GLOWiG Wil

s ~

ich an annular cavity 5 1is lormed,

H

cavity has a round rcd 7

The nozzle works with excess pressure in a jet cqual to 0.43. 10

N,
the dcgree of noncalculation n = §J~-= 4y and M = 1, Under the action
a

]H

of ultrasonic oscillations that appear in resonator bH, the jet of
liquid at the radial clearance outlet 4 is broken up into drops.
In distinction from the generators of Bergman [4] and V. P. Kurkin,
tl.c investigated generator is significantly iess in weight ana I1s
noiscless, which exciudes the necessity ol protective means,
s Up to now the physical naturc

of oscillations excited by an annular

generator has not been studied and

= ‘ ; ' there arc no theories and methods for
tlw

e 1 6 sl ® calculating ithe parameters of con-
Pir, 1, Diagram of burncr structions. Assuming that displace-
with generator, 1 — body,
2 — entry of liquid into ment of air particles from the posi-
burner chamber, 3 — body of
burner, 4 — radial clear- tion of equilibrium ¢ is proportional
ance for ocutlet of liguid,
5 — generator chamber, ( — to cos (nt + €), it is possible on
annular nozzle of generator, N
7 — generator rod, 8 — inlet the basis of the theory of plane waves

channels for air.
[5] to write the differential oscil-

lation equation in the form of
S+ St=o, (1)
where a is the speed of sound.

The solution of equation (1), taking inte account forced ogcilla-
tions of given frequency w/27, when the axis of the resonator at point
x = 0 supports an oscillation of { = A (cos wt + €), and the opposite
ond ot this reconator at a distance of X =1 is closed, will have the

rollowing form:
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.C— _“." sin «COS8 (w/ + ).
,llll-"’

o (l— x)
8

N
N
N

However, equation (1) does not consider the losses in the resonator,
which are connected with radiation of spherical waves al the open end.
Therefore, 1t follows to find the section ¥, where the transition from
plane wave to spherical is carried out., On the section before this

transition we shall write the velocii, potentisl

9 = A cos k(1L - x), (3)

R . - w
where k 1s the wave number (}: = g—,f = -a—) .

Using an electrical analogy we shall find the magnitude of flow as the

product of the rate of flow and the inlet area of the resonator

q:%%oF, ()4)

the velocity potential at the point where x = 0, will be

= i, 5
Then 9 = A cos k (5)

Acoskl=2 k-FAsd bt
Finelly we have: (6)

cig bl = k.
The transcendental equation (6) is solved graphically (Fig. 2).

The points of intersection of lines y = x = ¥k with the curve

M Ay P s

y = cot x = cot kIl will give the roots of equation (6). Considering

FIPCSIRTN

;tain & second solulion of eguation (6)
1 .

where m is an integer,

The solutions of equation (6) and (7) allowed us to calculate the

length of the resonator l,.. The resonator is designed in such a

manner so that it is possible to change its length in accordance with




the required frequency.

!_?_%u W K -'o‘-nn » &

The powers

| and frequencies are measured

depending upon the wedge angle of

_? 3 : X the resonator 7y, the distance of

the resonator from the nozzle

Y= X _— cutoff A, the material of the
resonator walls, and the drop in
alr pressure in the generator,

\\\ ' An investigation of a gen-

erator model, and thcen a generator,

z A D Bkl

s AT T o bRl [B[= 8] %] 0 Fhl-T |9 was conducted on an installation
whose diagram is shown in Fig. 3.

Filg. 2. Graph for the solution We obtained the dependence 6 =

of the equation cot kil = ¥k,

= f(p), 1.e., we found the deflec-

tion of the jet with the change of ambient pressure, and we also

studied the boundary layer effect x, = f(p).

- - —

\ (®) preen 1-

| Q§§§ | 2 oTeex T-2
{[ [1 ' Ve 446

, P = Q5 amd.

=
L
|

A
X amcvue
NROOCY
Fig. 3. Diagram of installation for investiga-
tion of a generator model in pipe T-2, 1 —
metalllc Insert, 2 — attachment, 3 — model of
generator, 4 — branch pipe for attaching model,
5 — butterfly valve,
KEY: (a) shadow installation TE-21; (b) model
of generator, 3; (c¢) T-2 section; (d) to vacuum

pump .
. R02

1
P

Separation of the
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Fig. 4, Deflection of gas jet flowing from
nozzle of generator model depending upon pres-
sure in pipe 6 = f(p).

X,

AN

V4l

Fig. 5. Separation of boundary layer
upon deflection of gas Jet

dependin
x5 = £(6).

L]

:9
-vsw

boundary layer occurs at length Xq from the nozzle cutoff. A pilcture

of the process is represented in Fig. 4.

Figure 5 shows the dependeﬁbe Xg = £f(8). On the basis of the

obtailned results, the dlameter of the resonator can be recommended
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d
within the limits of 1 < = < 1.2. The experiment established that

dp
the power and frequency of the generator with the change of wedge angle
Y remain constant, .

Investigation of the generator was conducted on an installaticn
whose diagram is given in Fig, 6. Before beginning the test the
generator was assembled in body U4 so that its clearance A was estab-
.lished in the focus of parabolic reflector 6. The generator was
fastened to housing 6 and was joined to the compressor through filter
1 and receiver 3 by a hose,

in the sectlon that housed the mechanlcal drive of pilezoelectric
transducer 11, we secured a paralon 9 for absorption of ultrasonic
waves from the parabolic reflector, Thls removes interference of the
face and lateral surfaces of housing 7.

The piezoelectric transducer was placed on frame 12, Itc move-
ment along the radius was carried out by an electric motor 8 through
a transmission system which allowed us to fix the uniformity of the
sound field from periphery to center, Electric motor 10 ensured
rotation of frame 12 and, if necessary, moved it along guldes A and C.
In one turn of frame 12 the pilezoelectric transducer moved 10 mm along .-
the radius, thus exhibiting the uniformity of the sound field around
the circumference, .

The experiment used the following equipment: amplifier, milli-
voltmeter, frequency-spectrum analyzer, and sonic pressure recorder,
Air pressure in the generator was controlled by manometer 5,

In the process of testing we investigated the influence of the
length of the resonator lr and its distance from the nozzle cutoff A

on the acoustic characteristics of the generator. We obtained the
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dependences W = f£(4) and v = £(4) when 1, = const, and also W = £(1.),
Vo= f(zr) when A = const, as represented in Fig. 7 and 8, As can be
seen from Flg, 7, maximum power 1s obtained for the generator with

1. =2,5and & = 2,5 mm, and maximum frequency, for the one with Zr =

r
=5,0 and A = 3 mm, From the graph it 1s clear that minimum power is

3 “”""‘“““’ EROTRL ¢ -+

registered for the resonator with chamber Zr = 7 mm, and frequency,
lr = 9 mm, The generator that operates with A = 1.5 mm and different 1
chamber lengths gave the lowe:t power, while the lowest frequencies

were given by the generator with A = 4 mm,

--mEf

} 6 ?
: ‘ W .. (9) N e N
= "’"-:J'"j: VAVLS
WHA 2& J
[}
l
_¢/\¢
A o (b
200 200 0

fig. 6. Diagram of installation for removal of the
acoustical characteristics of a generator,
KEY: (a) control panel; (b) motor; (¢) reducer;
(d) air,
The measured frequencies with different lr differ from the
theoretical ones by no more than on 5% (see table), Coincidernice of
data of the experiment with theory 1s obtained when the resonator is

located from the nozzle cutoff at a distance not less than ¥ (6) and

(7).
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Flg. 7. Dependence of generator power
and frequency on the change of clearance
AW =1(8); ¥y =1(4) with constant

length of resonator chamber lr = const,
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power and frequency on the change
of chamber length W = £(1.), v =

= (1) with constant resonator

clearance & = const.
KEY: (a) wood (maple); (b) tex-
tolite; (c) organic glass,
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Table

a i a
v =m VvV =
cm cps cps cps
2 0.8 33000 39100 31500 4,6
2 0.9 28000 24800 29400 4.6
2 1.0 19000 31300 18200 4,2

By reconstructing the set of curves W = £(A) in dimensionless

coordinates, we can obtain a curve that is approximated by the equation

y=Ae (8)
with coefficients A =1 and n = 0,02,

By assigning the generator power, we fird dimensionless parameter

W .
W=y= Wcur. Maximum power 1is selected for the corresponding lr.

max

The geherator ensured rellable work with a frequency from 10 to
50 kilocycles, and also & uniform sound field both around the rédius
and also around the circumference, Its efficiency was 6%. The acous-
tic characteristics of resonators made from copper, textolite, érganic
glass, and wood are analogous to the characteristics of resonatdrs,_
made of steel, We have experimentally established that high-fréquency
oscillations of the genérator originate from oscillations of a ébluﬁn

of air in the annular cavity of the resonator.
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INVESTIGATION OF A PARTIAL TURBINE
V. N. Zanadvorove and V. A, Podgornov

Definitions of Cyrillic Items

cp = av = average

reoM = geom = geometric
anx = ad = adlabatic
ont = opt = optimum
B = W = windage

MAaKC = max = maxlimum

In the desligning of turbines with low gas flow rates there appears
the necessity of employing fractional or partial gas feed to the rotor
wheels,

The characteristics of turbines wilth partial feed have a number
of pecularities which are explained by the forming of additlonal losses
of energy which are known in literature under the name of windagé
losses and knocx-but losses,

This classificatlon of losses in a partial turbine, which is
formal to a certain extent, does not exclude the complexity of the
gas-dynamic phenomena that accompany the gas flow in it, Thus, upon

introduction of partialitity the internal turbine performance Ny 1s
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lowered due to

1) the fan action of the moving blades that do not receive a jet
of working gas at a glven moment,

2) the friction of surfaces of nonworking cascade parts against
the gas, ‘

3) the irregularities of gas parameters along the active arc of
feed which causes the phenomenon of instability,

4) suction and leakage of gas from the active feed arc to the
inactive,

5) discontinuilty of gas entry into the partial wheel, as a result
of which, 1n the extreme channels the gas'on one side of the feed arc
is accelerated, and 1s braked on the other,

Total lowering of Ny 1s not caused by the influence of each of
these factors separately, but by their interconnection.

For turbines with different geometric and regime parameters the
influence of partial feed on the characteristics is unequal. The
existing methods of estimating energy losses from partial feed are
based on an experiment with one or several types of turbines (stages)
and do not consider all factors that affect the losses; therefore, the
use of recommendations of different authors for calculation gives a
noncoincident result,

For accumulation of experimental

data that characterizes losses with

<

\ partial gas feed, we conducted an
§ investigation with a single-stage'
]
a turbine,

4

g,=t4

N\

We tcsted an active turbine,

whose blading diagram is represented
Fig. 1. Diagram of turbine
blading. in Fig. 1. From the nozzles the air

210



flow emerged at an angle of o, = 24°,

Moving blades of symmetric profile ( = 270) were

By geom = P2 geom
equipped with a tape band.

In the process of testing we changed the degree of partlality
from € = 0,4 to € = 0.5 by covering a group of nozzle channels from
the inlet and outlet sides,

The characteristics of the turbine were taken at a constant drop
that corresponds to xad = 0,81, The degree of reactance on the average
diameter was equal to zero, The chagge in parameter u/cad was carried
out by changing the turbtine speed by means of éhanging the shaft load.

Tests were conducted wlth different combinations of the magnltude

of axlal ba and radial Br ¢clearances,

As a result of the tests we obtalned curves of change of effective

u
performance n, from E;E, €, 6&’ br (Figs. 2, 3, and 4),
e —
o
. 0
" ?
N
o0 N
- B 1 4
- 3
a%
m .
o
0%
o 7 ) .
wval L :
XS . ap T “ © Uhe

Fig. 2. Turblne characteristics when € = 0,5,
1) 8, =1.,2, 6, = 4, 2) 6, =3, &, =4, 3) 8 =

v r
= 1.2, ba = 10.* *

*Here and in the following notations under the figures the
clearance values are given in mm,
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The given characteristics show that a decrease in the degree of

partiality lowers the maximum value of e and leads to a decrease in

(EiL') that corresponds to it, An increase of both the radial,
ad J opt

and axial clearances significantly lowers 7n, at all values of the
degree of partiality. In this case, the greatest lowering in perform-
ance 1is observed under optimum conditions,

Inasmuch as axial and radial clearances render such a significant
influence on the characteristics of a partial turbine, it is important
terstimate the lowering of its performance with one of these clearance

sizes,

. .Y;—
066 —1- -
B .
:: . i MV, NN\
2| o] , + h
‘."‘9 L +
oy A N
0% N ¥ +
y /,}h & ‘\ ‘\
0% 5 Vo T, 4
as2 > 7 4
0% A y -
0M8 g
/b )/ A
DT _ -
.- i as (1] Ufced

m

Fig. 3. Turbine characterlistics when € =
1) 6, =1.2, 6, =4 mm, 2) 6, =2, 5 =4 mm,

3) 6r 3, b = 4 mnm, 4) 5r =1.,2, o}

a
5) 8, =1.2, 6, =10,

i
\]
-

a =

]

a

Under optimum conditions the performance of a partial turbine is

""‘r“"h“k"ﬂ.
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Fig. 4., Turbine characteristics when & = 0,1,
1) ®, =1.2, 8, =k, 2) 0, =2, 5, =4 3) 0, =

r
= 3, 68. = 4, 4) 61‘ = 1,2, 6& = 7, 5) 61‘ =1,2,
B = 10,
a
where ni =1 {5 the effective performance of this turbine at full
- gas feed,

ﬁw is the coefflcient of windage losses of the partiasl
turbine with br = 0 and éa = 0,

&a, Er are the loss factors, caused by the presence of corre-
spondingly axial Ga and readial Gr clearances,

This classification of losses in & peartiasl turbine is conditionsal,
but from our point of view it is a convenience., Unconditionally, each
of the three loss Tactors in turn depends on many factors, geometric

and regime, including the degree of partiality €.

Figure 5 shows the trend of curves n, .. (ne under optimum
conditions) with a change in the degree of partiality at different
axial and radial clearances. Here the dotted line shows curves
Me max = f(e) when ba = 0 and 6r = 0, which were obtained conditlonally

by mcans of linear extrapolation of experimental curves
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= £(5,, &) and 7 = £(6,., €).

Ne max e max
The dependences shown in Fig. 5 make it possible to qﬁantitativeky
estimate the influence of axial and radlal clearances on Mo of the

test turbine. For every value of the degree of partiality e

0 :
‘u"‘G:."i::o

E‘-{EI-!&L-
where index 1 corresponds to the value of the axial and radial clear-
ances that take place in the experiment. A change in the degree of
pgrtiality, as already indicated, causes a change In &a and &r. These
dependences are shown graphically in Fig. 6, and from their considera-

tion it is clear that with a decrease in £ the influence of clearances,

especially the radial, increases,

?nn,g - ?'-n-z
. 3
zL PN adha albuss e had '-
°|, " o ° 0'7 z\ \ - womme faoe
: rd
- T 5
“Ir1x =k 7
:
z /A
as ATY; w7
ok : /
'Il‘ ' “I
1 .
o.s&,ﬁ 03
02 02 .

0 02 83 G« asE 0 o 2 3 04 0S¢

a b

Fig. 5. Effective performance under optimum con-
ditions for different e,

1) 3, =0,
a) b, = 1.2 ‘;i::-::; ) 6, =

g"ﬂ"
pse

4
T ——
3 et
rree

In order to obtain the values of &w it is necessary to know

Te max when € = 1., Beceause of 1ts design, the test turbine did not
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E, allow us to carry out full gas feed.

o) s |2 ‘ On the basls of available reference
0,2 “‘], j. material 1t is possible with an
==
L; p o o oy g accuracy that is sufficlent for
0.4
practical purposes to conslder that
0
v e ': w w ¢ in the range of 0,3 < € < 1 the
Eq r™ turbine performance under optimum
o2
an conditions changes in proportion to €.
s
e ! ; If, by taking into account this
004
. P : : assumption, we extrapolate curve
I = =
0 YR B VR VR Th Ne max = f(€) to the value of e =1,
b then
Fig. 6. Values of coeffi- Rl — Yau,, -
cients ﬁa and &r for 4if- ! !
ferent e, Such extrapolatlon of the
a) égs:;; ~b) ;} :,:g experimental curve of Ne max Wes
) ba =10, N4 =12. performed for 6& = 4 mm and 51‘ =
= 1.2 mm, and Fig. 7 shows the depen-
& a dence of £ on e,
u It 1is interesting to compare the
results obtained in the experiment
s
with the calculation data,
e
@ o o o E Calculation with the formulas .

Fig, 7 Values of given in different works was produced

coefficients l=’w for by taking into account the actuél

different €.

value of (—E;-) for every degree
opt

Caq
of partiality. Figure 8 graphically shows the results of the calcu-

lation., Here, for comparison, our empirical curve &w = f(e), is

plotted; the curve corresponds to performance loss when Gr = 0 and
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5& =0,

we used did not calculate the influence of clearances,

Unfortunately, most of the investigators whose recommendations

Let us -assume

that in the experiments that were proposed on the basis of recommenda-

tions, the axial clearance, just as the radial, was reduced to minimum,

Comparison of results shows that in the range of 0.3 < € € 0.5

the recommendations of Stodola [7], Traupel [8], and Kerton [5] give

values of éw, which practically coincide with the ones obtained by us.

When € < 0,3 the computed values lie lower than the experimental ones.,.

With calculation by the formulas of Terent'yev [3], Mezheritskiy [2],

Linnecken [6], and Chupirev [4] the values are 2-5 times lower than

ours and hardly differ from one another.

Es -oom (a) |
5 s 2- Mexcepmpam( D)
020 3 713~ Terentoes ( C
' )/5 & ~ (HHEXEA
: 5- KEPP e
o p//: 6 -CTo00m
y | |2 Tomrem
0 8 - HAWM ONti T
/2 2
1
008 /a
0 @2 o4 G 08
Fig. 8. Dependence of

€, on € (according to dif-

ferent authors),
KEY: (a) Chupirev; (Db)
Mezheritskily; (c)
Terent'yev; (d) Linnecken;
éeg Kerton; (f) Stodola;

g) Traupel; (h) our
experiments,

The calculation of windage losses,
on the recommendation MEI (Moscow Insti-
tute of Energetics) [1], gives a result,
that exceeds the experimental data shown
in Fig. 8. If we assume that in the
MEI experiments the axial clearance
constituted a magnitude of the order of
5 mm, then the result of calculation by
the MEI formula will agree well with
them in a range of 0,1 < € € 0,5,

In the process of carrying out the
experiments we measured the static pres-

sures on the disk diameter that passes

through the middle of the active and inactive arcs both on the gas inlet

side, and also on the gas outlet side,.

The experiments showed that

at all values of & the pressure on the inlet side 1s less than on the

outlet side.

This can obviously be explained by the ejecting action

of the active jet which sucks gas from the cavity between the body
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and the disk, The larger the active arc, the bigger the mass of flow-
ing gas, and the more significant the evacuation on the inlet side of
the disk,

On the basls of distribution of static pressures we calculated
the axial force, which 1is increased in proportion to e and 1s directed
oppcsite the main flow,

The turbine flow coefficlent, which usually, means the relation
of the actual flow rate to the theoretical, practically remained

constant.

Conclusions -

Investigation of a partlal active turbine showed that

1) the performance of a partial turbine depends not only on,the.
degree of partlality, but also'on the magnitude of the axlal and
radial clearances, which agrees with the indications of A. D.
Mezheritskiy;

2) the maximum value of performance of Te max at éa and Br is

lowered with the decrease of e in the beginning slowly; then, starting

with € = 0.3, quite rapidly; ) : v
3) the optimum value of (—E—) decreases with the decrease in
ad / opt

the dégree of partielity; '

4) the turbine flow coefficient with the change in the degree of
partiality practically does not change;

5) a comparison of the coefficient of windage losses found by us
with the magnitudes determined by formulas known from literature shows
that our experiments most of all correspond to the formulas of Stodola,

Traupel, and (in the region of € > 0.3) Kerton., Other formulas glive

underestimated values of the loss coefficlent, especially with small €.
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Obviously, the magnitude of the coefficient of windage losses 1is

influenced by a number of factors that are not considered by certailn

formulas.,
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OF A LIMITED VOLUME OF LIQUID
THROUGH PLATES

M. D. Mikhaylov

Deslgnations

thickness of insulation,

current and dimensionless coordinate, respec-
tively,

coefflclent of thermal diffusivity,
time,
Fourler number,

temperature at point with coordinate x for a
moment of time,

adlabatic stagnation temperature,

initial temperature of thermal insulation and
fuel, -

temperature of fuel,

dimensionless temperature,

dimensionless temperature of fuel,

coefficient of thermal conductivity, heat
exchange between fuel and insulation, and
between insulation and bcundary layer,

. =19
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C, Cp — specific heat capacities of insulation and fuel,
Y: Yo — specific gravity of inculation and fuel,

S — surface of insulation,

Vf — fucl volume,
K = S cy %E-— criterion.
r 7 Ve

During motion of aircraft with high speeds, as a result of the
sharp compression of air and the friction between the skin and the
ailr, a large quantity of heat is released, If flight continues for
several hours, the temperature of the fuel can become too high. Then
it 1s necessary to heat-insulate the fuel tanks which leads to an
increase in the dry weight of the vehicle, A question of determining
the relative thickness of insulation arises during the designing of
alrcraft that are designed for a maximum flying range.

In connection with this we shall consider the problem of heating
of fuel through an insulation with thickness &, (Thermal rcsistance
of the skin can be disregarded.) Thermal insulation is taken as an
unlimited plate. On one side of the plate when x = O there is a
limited volume of fuel Vf. The 1initial temperature of thermal insula-
tion and fuel is identical and ty = const. At the initial moment of
time 1 = O the temperature of adiabatlc stagnation in the boundary
layer is taken as ta = coust.

The temperature field of the plate is described by the equation

NEH M H
= = (F>0,0<E<) (1)

under the conditions



Lo

2D 4 0. A= 11=0, @ _;
—.-‘l%-ﬂ-+a,|c(o.n-o,m|-0. (3) i
' peEn L &m 4

—K S 4 S -0, (4)

Equation (4) is obtained from heat balance under the condition
that the temperature of the fuel is identical everywhere,
Here £ 1s a dimensionless coordinate that is the relation of the

current coordinate to the plate thickness, '
- ' - 3
t to
6 = z——~ 1s the dimensionless temperature,

I' 1is the Fourier number,

PSS Sl 2

B1 and B2 are Blot numbers,
- Gf is the temperature of the fuel,
K = Ccv %2 is a criterion that is the relation between the accumu-
£ Yo Vg lation abllity of the insulation and the accumulation

ability of the fuel,

c and Cp is the specific heat capacity of the insulation and the
fuel,

Y and Ve 1s the specific gravity of the insulation and the fuel,

S 1s the insulation surface,
For a solution to the problem we shall use & Laplace transforma-
tion with respect to variable F. The solution of equation (1) can be

represented in the form of
§E ) =C,chtV7 + CshtVs. (5)

The boundary conditions (2), (3), and (4) can be written in the

following way:
P9+ 850, 9~ L]0, (6)
=®(0, ) +8,[500, ) - F(s)} =0, (7)
—KP(0, 2) + 2¥,(s) = 0. (8)
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By substituting T, (s) from (7) into (8), we have:
r) = .= .
(.! +K)¥ 0.9 + 580, =0. (9)
After detvermining constants C, and C, from (6) and (9) we placc

the obtained expressions in (5):

VE s) = (KB, +5)ch:Vs+ B VishtVs )
'[{(l + %':): +K?.'ch Vi+ {(1 + -:—;) B+ -;—,} Vish Y?]

Applying the expansion theorem, we find

0 F)=1 —-ZA. {(1 -

(10)

‘.")cospﬁ*‘ g'—sin:s‘.il exp(—i2P  (11)
ra 'Pa ’

where
1 < v

B _ KB, \8inpccosps+ra , g _ B | 12
(‘+B. " ) Tein e, + B’ﬂﬂl‘n 1+ B, co8 pg (12)

A=

Hh is an infinite number of roots of the characterlstic equation:

P K B,
00‘2!‘-‘-8' ( B,) B_ (13)
1y B KBy
B -

The expression for fuel temperature is obtained from (8):
K
b 6)=C 3 (14)

Putting C, in (14)
B ()= s — T (15)
() s xmfavi o f(e ) me gfyinve]

with the help of the expansion theorem we will find

0,(n—1+24.-§;ﬁup(-»:ﬂ. (16)

where A and u  are determined from (12) and (13).
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APPLICATION OF THE PRINCIPLE OF MINIMUM
DISSIPATION OF MECHANICAL ENERGY TO
THE EQUALIZING ACTION OF LATTICES

Yu, V., Stepanov -

Definitions of Cyrillic Items

p= lat = lattice

Cp = av = average

A singie solution to the problem of steady-state motion of a
viscous fluild in a certain volume is possible only with known boundary
conditions on the surface that is limiting the given volume, Inasmuch
as the boundary conditions are stipulated by the actual form of motion,
the problem loses its definiteness, 1In a number of cases the boundary
conditions are incompletely given. Then inside the considered vclume
of fluid an infinite number of mathematically equal forms of motion
can be realized. For an approximation to an actually existing form
of motion it is necessary to either make additional assumptions, or
apply some criteria, which would allow us to select from all the
mathematically possible forms of motion one form that could be observed

and actually realized,

As criteria, for selecting the possible form of motion, in the

solution of certain problems variation principles of maximum flow
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rate, maximum flow of mechanical energy, minimum dissipation, etc.

are applied. During the last few years we have conducted work on the
use of variation criteria of stability in application to turbomachines
[1]. We haye prbved the principle of maximum flow of mechanical
energy. Its application, and also the use of a particular case, i.e.,
minimum dissipation of mechanical energy, make possible a new approach
to the investigation of motion in the flow-through part of turboma~
chines in all operating conditions (including unstable conditions).
However, the value of these principles is more general. Many problems’
of -aeromechanics require the introduction of additional, in most cases
not always evident, assumptions. The application of stability criteria
instead of these assumptions can give more reliable solutions.

As an example we shall consider the possibility of application
of the principle of minimum dissipation of mechanical energy to the
sclution of .a problem about the equalizing action of a lattice that
ls placed in a flow with regular nonuniformity.

The question of the equalizing action of a lattice was examined
by G. I. Taganov and 1s discussed in [2],

In the solution (Fig. 1) it was assumed that there are no tan-
gential stresses between the streams and between the streams and the
walls during the motion of a fluiu in a pipe with different speeds,
The following constants were taken:

a) static pressures in sections of the pipe which are located
far in front of and behind the lattice,

b) the axial speeds on a section of every flow tube in view of
the small initial nonuniformity and smallness of transverse speeds
as compared to axial speeds,

c) the resistance factor of the lattice Clat = _é§§ through a

c
lat
P =
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Fig. 1. Schematic picture of
spreading of flow in front cof a
lattlice and behind it.

section of the pipe., (It is also taken that the dimensions of the

lattice cells are extremely small as éompared'to a section of the

flow tube.)

By Jointly solving a Bernoulli équation and equations of di%con-

tinuity and momentum, G, I, Taganov obtained, with the adopted assump-
tions, the magnitude of speeds in two flow plpes at a disﬁance béhind
the lattice, thus determining the quantitative influence of thelhet

on nonuniformity of flow. _

It is necessary, however, to indicate that with the applicafion
of the momentum equation additional assumptions are introduced. tThus,
the force of the influence of the lattice on the flow 1s determihedl
from this expression: | o lhi
1 T O

This means that the influence of elementary lattice siﬁés 6£«the
flow over an entire section of the flow tube is equal and the differ-
ence of static pressures on both sides of the lattice is constan% for
each of the flow tubes. - 9'33T7,£i

The actual picture of flow, from all appearances, différs frcm
the accepted dlagram., The rearrangement of the flow in front of the

lattice and the changes in the area of each flow tube and speeds'with
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respect to magnitude and direction lead to a different force interac-
tion of every elementary lattice site with the flow,. Consequently,
the total force of action of the lattice on the flow depends on the
sought form of motion and cannot be described by equation (1).
Application of the principle of minimum dissipation of mechanical
energy will lead to the following solution of this problem.
Dissipation of mechanical energy on section 1-lat may be written

in the following form:
[
Dop[ (1 - 520y B 4y 4 ) 2y 4, 2202 4 [y ]
: v ..

Here D' is the dissipation of mechanical energy per unit of volume
in a unit of time on a section of flow rearrangement,

As an assumption, in the future we will disregard the disslpa-
tion of mechanical energy behind the lattice (section lat-2).

In the case of the flow of an incompressible medium

() e () 2 () (5
+ (—:—; +%~)’+ (%‘i + :‘:)’] .

where v! is the coefficient of apparent kinematic viscosity (as an

assumption we take v' = const),.
By considering the speeds of perturbation Cy to be small and by

2 ) acot .
solving the problem in the plane xy(hl) (cz = 0 and 5 = O), we will

obtain:

ey’ de \? dc \?
d "[2(«1:)"' a)]'
By averaging the values of the derivatives for each of these vol-

umes, we will approximately consider:

(5, = (5),-%




Then

j'o'dmv,[z G 1—x)a + ‘ _

+2‘—"—+“—,.—"——"—"' ,u+1?—"'—‘ﬂ'-u]

Considering the flow rate equation, ‘
(1 = x) =y (1 = %) = c3 (1 — 3), (2)

(61 + A6y x, = (c5 + 8¢y ) 2y = (cy + Acy) 2y, (3)

after certain transformations we will obtain

o--'-bt.c'{f"—"L+(1 + “') % +

ma i g s e

A-x,)
4 :13_ (- Ay (i—5)
Tom .'1 = +('+ 5 == |
-y , o 1 (:.-x,)+ (l—:,)(x|+x,) (4) :
-F- — - , b
2% e
where ;
i
c.h :
Re=_1—'o ;
v
With the help of equation (4) it is not difficult, for the given :
Ac . !
1 . :
values of Ez—y X4 and Clat’ to find X1gt? which corresponds:to minimum
dissipation (D ,.).

Then by applying the Bernoullli equation for both flow tubes and :
considering the constancy of static pressures in sections 1-1 and 2-2, P

we will have: {
T 4 .9 (@tdeP (o +bep
IR T/ Mt R St it

: & - (5)
-?cpng:%'!!i“lhA- .
Here Di and D1A are dissipations of mechanical energy during rearrange-
ment of flow in every flow tube, expressed the H

following dependences:

L s
D[22 (1— g ms S ENE )
(C' + 8¢ -¢|—A¢'|)’

lxg=8rf[é L x,hl+-££%;:ﬂ£-kd.
227




By solving equation (5) jointly with the flow rate equations (2)
and (3), we find Cos Ac2, and Xns i.e., we determine the form of motion
in section 2-2,

Application of the obtained relationships for a particular case
of flow in a pipe with given regular initial nonuniformity and with
different resistance factors of lattices Clat (see the experimental
data of I, Ye, Idel'chik [2]) indicates a fully satisfactory conver-
gence of calculation with experiment (Fig. 2). The equalizing action
of the lattice when Clat =~ 2 1s clear in this instance.

"In the solution of the indicated example we took:

1
Re
e B B B B OB
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Fig. 2. Comparison of experimental and calcu-
lated distribution of speeds behind a lattice,
KEY: (a) samples of lattices; (b) initial
profile; (c) experiment; (d) calculation,

It should be notec¢ that the question of selecting %;-and %

requires a speclal investigation and in the confines of this article
it 1s not considered. Preliminary calculations from the condition of
minimum dissipation show, however, that basically rearrangement of

flow in front of a lattice is carried out at a relative length of
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Nevertheless, the results testify to the expediency of application

of the principle of minimum dissipation of mechanical energy to flows
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of similar kind and they can be proposed on the basis of further inves-

tigations in this direction,
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