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FOREWORD 

The concept of interior grating lobes arose from discussions with 
J.  L. Allen and W. P. Delaney,  Lincoln Laboratory, who introduced the 
author to the phased-array, gain-directivity paradox and to Hannan's ele- 
gant reduction of it (see Reference [4] ).   The author's colleagues, 
J. H. Phillips and A. L. Murphy, The MITRE Corporation, are tobe 
thanked for their encouragement and for the provision of experimental facil- 
ities.   That the experiment demonstrated the anticipated result is largely 
due to the perserverance of P. Blasi. 

REVIEW AND APPROVAL 

Publication of this technical report does not constitute Air Force approval 
of the report's findings or conclusions.   It is published only for the exchange 
and stimulation of ideas. 
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ABSTRACT 

Attention is concentrated on the radiating and evanescent modes 
which must appear, both in free space and in the receiving trans- 
mission lines, when an infinite array of radiators is illuminated by 
a plane wave.   If the radiators have a tendency to form a slow-wave 
structure (as all radiators must, even if to only a very slight degree), 
then for angles of incidence greater than a certain amount there can 
be propagating modes (surface waves capable of carrying power) sup- 
ported by the radiators. 

These propagating modes are dubbed "internal grating lobes" 
because they can appear even if the spacing of the radiators is close 
enough to prohibit the possibility of grating lobes in free space.   The 
main effect of the internal grating lobes is to cause mismatching of 
the array, thereby deteriorating its scanning performance. 

It was found possible to demonstrate the existence of internal 
grating lobes experimentally. The main conclusion is that the simp- 
lest types of radiators (slots in a flat sheet or dipoles above a ground 
plane) are probably best for phased arrays because, of all types con- 
sidered both practical and imaginable, they have the least slow-wave 
character. 
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SECTION I 

INTRODUCTION 

DEFINITION OF PROBLEM 

It is known that the gain of a phased array of radiators is given by the sum of 

the gains of the individual radiators, provided that their gains are properly mea- 
[ll* 

sured. The gain of each radiator must be measured in the presence of the 

other radiators.    The other radiators must be terminated in matched loads.    When 

the radiators are identical and uniformly spaced, the study of the radiating per- 

formance of large arrays can reduce to the study of an individual radiator.    This is 

a desirable simplification.    Nevertheless, consideration of the array as a whole 

highlights certain aspects which are not immediately apparent when the array is 

considered as the sum of a number of independent, identical radiators.    There is 
[2] 

good precedent for this approach in Carter's classic paper L J on dipole arrays 

around cylinders. 

APPROACH OUTLINE 

A plane wave is taken to be incident on an infinite planar array of identical, 

uniformly spaced radiators.    There is a reradiated field in space and a transmitted 

field in each of the transmission lines which connect the radiators to their receivers. 

The reradiated field consists of a specularly reflected wave together with higher 

modes whose wave numbers are governed by the spacing between the radiators. 

This representation is complete because an infinite structure is considered.  There 
[3] 

is no need for the complex waves of Tamir and Oliner. If the spacing between 

the radiators is less than half a wavelength, then the higher modes can never 

carry power. 

1 

* 
Numbers in brackets designate references listed at end of this report. 



SUMMARY OF CONCLUSIONS 

A refinement of the model consists of breaking the system into three regions: 

I, free space; II, region containing the radiators; and III, transmission lines con- 

necting the radiators to their receivers.    The mode theory approach leads to the 

following conclusions: 

(1) Even in the simplest case when the radiators consist of holes in 

a conducting screen, Region n will have a higher refractive index 

than Region I.    The more complicated the individual radiators, 

the more pronounced this effect.   Dipoles above a ground plane 

will form a slightly slow-wave structure.    Polyrods, Yagis or 

helices will form a significantly slow-wave structure, which will 

be, in general, anisotropic. 

(2) "Interior grating lobes" (higher order modes carrying power) 

can appear in Region n even if there are no grating lobes in free 

space.    This is a consequence of the higher refractive index of 

Region II.    When these interior grating lobes appear, the array 

will be very difficult to match.    Thus, the major effect of the 

interior grating lobes will be to reduce the scan angle of the 

array.    For this reason, it appears to be advantageous to use 

the simplest type of radiator.    Also, it may be advantageous to 

match the array in Region III rather than in Region II, even if 

manufacturing problems and cost indicate that Region II match- 

ing would be more convenient. 

(3) Mutual impedance can be a dangerous concept to apply to phased 

arrays.    The mutual coupling between radiators in an array can 

only be conveniently measured in Region III.    If a measurement 

in Region III indicates that little power is coupled from a driven 

radiator into any of the other radiators of the array, it cannot 



then be concluded that the radiators scarcely interfere with each 

other.    It is most probable that the radiators behave as forward 

directional couplers with respect to the power they pick up from 

other radiators.   This type of behavior is most likely if the radi- 

ators are end-fire antennas such as polyrods, Yagis, or helices. 

(4) An array cannot be matched for all scan angles unless the radia- 

tor matching networks can be varied with scan angle, or unless a 
T4   5~l* condition similar to super-gain can be achieved. L  '   J 

(5) For any given type of radiator, there appears to be an optimum 

size for maximizing the radiation efficiency of an array over a 

range of scan angles. 

OUTLINE OF REPORT 

The following sections contain the reasoning by which the above conclusions 

were reached.   A simple two-dimensional problem is analyzed because it demon- 

strates all the pertinent idiosyncrasies of arrays which can be deduced from a 

mode theory.    The two-dimensional problem is set up in Section II.   Conclusion 

(4) is deduced in Section III.    An approximate solution to the simple two- 

dimensional problem is given in Section IV, where conclusion (2) is deduced.    Ex- 

perimental evidence for the existence of internal grating lobes is given in Section V. 

A waveguide array covered with a dielectric sheet was used in the experiment. The 

results are compared with experiments by other workers.    Section VI contains the 

conditions for the appearance of grating lobes in an array of two-dimensional poly- 

rods.    This substantiates conclusion (1).    Conclusion (5) is illustrated in Section 

VII.   The pertinence of the conclusions to array measurements is discussed in 

Section VIII. 

* r T The author of Reference |_4J reached, and rigorously examined, the same con- 
clusion from a point of view that is different from that taken in this paper. The 
paradox is well defined in Reference [5]. 



SECTION II 

SIMPLE TWO-DIMENSIONAL PROBLEM 

Figure 1 shows the geometry of the simple problem.    A plane wave is incident 

at an angle 0 on a conducting sheet periodically punctured with parallel plate trans- 

mission lines.    The structure is infinite in the plane perpendicular to the paper.    In 

REGION I 

REGION m 

NOTE; 
THERE IS  NO REGION H IN THIS  SIMPLE  MODEL 

Figure I.     Simple Two-Dimensional Problem Geometry 

order to have a match at normal incidence, it is supposed that the dielectric 

constant e    of the medium between the parallel plates is not unity.    The dielec- 

tric constant of Region I is unity.    The incident wave is assumed to be magnet- 

ically polarized perpendicular     to the paper.    It follows that c    must be less 



than unity, which is impractical for very wide bandwidths but which can be 

achieved effectively over a useful bandwidth with the use of matching networks. 

The fields can be expressed in terms of a potential vector directed only per- 

pendicular to the paper.    Its component in this direction is V: 

a2v   L a2v       . 2__     . _   + _   + ^ v = 0   , 
ax       ay 

where 

k 

A 

n 

2rA, 

free-space wavelength of incident wave , 

1 in Region I,  and 

e    in Region III. 

It follows that (aV/ay) and 77 V are continuous across an interface normal to the 

coordinate direction x.   Also,   (8V/9y) is equal to zero along a perfectly conducting 

interface.    If 

E(x, <P) = 
ay 
ay y = o "  2<X<2   • 

then matching the fields at y = 0 gives 

a cos (p 1 + R 
1 - R == E1O(0)E*O(0) 

<i/2*> 

00        2 
j2ke        c^    Eft  ((f)) J        r     \        2n^ y -sii + Jj y E*ta(*)V*> 

n-l n = -oo 
n 

a) 

because of the periodicity of the geometry of Figure 1, where R is the current 

reflection coefficient of the specularly reflected wave in free space.   Thus, 



(b/2) 

y 
(-b/2) 

E
10(4>) =        \      E(x> 4>) exp(-jk x sin 0)dx ; (2) 

(b/2) 

y 
(-b/2) 

E20(*) =        ,f      E(x, 0)dx ; 

(b/2) 

Eln(0) =        C      E(x, 0) exp 

(-b/2) 

- jx    k sin 0 + — J  J dx  ; 

(3) 

(4) 

(b/2) 

E2n<*> = r E(x, 0) cos 
im 

(-b/2) 
H) dx  ; 

2    2 
•y    = k      — -  £ 
" l     4b2 r 

1/2 

s imaginary wave number of n     mode, of form 

cos 
m  ( b 
T lx + 2 

in a parallel plate line ; 

rn = k ■V sin (b + — I     - 1 
a / 

1/2 

th 
= imaginary wave number of n"' mode, of form 

/ .  2mrx\       .    r exp I   j    j   , in free space ; 

(5) 

(6) 

(7) 

C    = n K -C     . 
o 

For y    or r   imaginary, the positive sign must be used.    An asterisk denotes 
n        n M 

the complex conjugate.    Equation (1) was derived in a standard manner. L ■* 



SECTION m 

VARIATION OF MATCH WITH SCAN ANGLE 

The form of Equation (1) directly demonstrates the impossibility of a match at 

all scan angles, unless the array contains matching networks which vary with scan 

angle.    The condition for a match is R = 0, which cannot occur if the impedance of 

the space-array interface contains reactive terms such as in the infinite summa- 

tions in Equation (1).    Fixed matching networks in the parallel plate transmission 

lines could only cancel the reactance at a single scan angle because the reactance 

is seen to be a function of scan angle.    It is, perhaps, possible to conceive of 

radiators which would exhibit negligible reactance change over a large range of 

scan angles.    If this were so, then the condition for a match would be: 

.1/2 

cos <t>   , (8) 
E10(4»E*oM,)        aer 

E2<>> 

as can be seen from Equation (1).    All types of radiators will be governed by equa- 

tions similar in form to Equation (8), even though their reactance behavior will be 

widely different.    The reason is that Equation (8) ensures conservation of power. 

Equations (2) and (3) indicate that Equation (8) implies that 

(b/2) (b/2) 

\       E(x, <p) exp(- jk x sin 0)dx oc cos       <j>       \       E(x, 0) dx , (9) 

(-b/2) (-b/2) 

in the interval (-IT/2) < (p < (TT/2) .    This relation could only be exactly true for a 

range of values of 0  under exceptional circumstances, probably similar to super- 
f4 5~| 

gain, L ' J since the function E(x, 0) cannot be controlled.    The exact form of 

E(x, 0) is governed by the initial boundary value problem. 

It is instructive to consider the implications of the previous reasoning in terms 

of a transmitting array.    In general, if a single radiator is excited, power will be 



oupled into the transmission lines of the other radiators.    When all the radia- 

tors are excited, the mutually coupled signals may interfere completely and 

destructively at a certain scan angle.   However, when the scan angles changes, 

the relative phases of the mutually coupled signals will change, and there will be 

a net power flow into each of the radiator's generators.    Since the consideration 

of an array as a receiver virtually precludes the possibility of matching over a 

wide scan angle, it appears that it is extremely unlikely that radiators with, 

effectively,  zero mutual interaction can be found when they are spaced closely 

enough to avoid grating lobes.    This reasoning is in agreement with Hannan's 

rigorous argument. L J 



SECTION IV 

INTERNAL GRATING LOBES 

Equation (1) expresses the normalized admittance of the space-array interface 

in a form which is known       to be stable under small variations in E(x, 0).    Equa- 

tion (1) is, therefore, suitable for an approximate evaluation of the normalized 

admittance, without fully solving the initial boundary value problem.    Choose 

E(x, <t>) = 1 . (10) 

This choice of E(x, (p) becomes more valid with a decreasing ratio of b/a. It is 

worth noting that Equation (9) cannot hold for all values of 0 under Equation (10). 

When Equation (10) is applied to Equation (1), the result is: 

1/2 
ae 
-4-  -jk 

<*>         .     2 / kb sin d>      n7r b\ 
v^     sinc        ~—    +  / I —H=—~ n 

1 + R _  n = -oo  

1 " R .2 fkb sin <A sine    [ ^J 

COS (j) 

(11) 

where 

sin x 
sine x =    . 

x 

Suppose that an attempt is made to match the array with a dielectric layer, as 

in Figure 2.   The parallel plate lines are assumed to be in air, and c    is the 

relative dielectric constant of the matching layer.    Note that e    in Eauation (12) 
r      * 

is equivalent to l/e    in Equation (11).    The normalized admittance   of the dielec- 

tric-array interface is then given by 

* 
Note that R is the current (not voltage) reflection coefficient. 



Y = 
1 + R 
1 - R 

he 
1/2 - J 

oo .     2 / kb sin 0      mr b 
sinc    ^__J2 + 

1 
n = -oo sin $ + 

nX 
- e 

rj 

1/2 

sine 
2/kb sin <fi' 

cos <p 

(12) 

from Equations (7) and (11), realizing that r   is now the imaginary wave number 

of the n     mode in a medium of fundamental velocity c/e        rather than c.    If 

a/X = 0. 5, there will be no grating lobes in free space.    However, for 

01  > arc sin I 2 - e 
1/2 

(13) 

there will be at least one propagating higher order mode in the dielectric.   If 
1/2 

e        = 1. 6, which is typical for cheap and robust dielectrics of low loss, then there 

€ = RELATIVE DIELECTRIC CONSTANT 
r 

REGION I 

.REGION n 

REGION HI 

Figure 2.     Dielectric Matching Layer in Region II 

10 



will be "internal grating lobes" for scan angles greater than 24 degrees from broad- 

side.   At the scan angle at which the internal grating lobe appears, the susceptive 

part of Y becomes infinite, as can be seen from the numerator of the infinite sum 

in Equation (12), unless 

kb sin 0      n7rb ,  . „ M%  £-* + —  = rrnr , m £ 0  ,                                               (14) 

at the same time.   The coincidence of Equation (14) with the appearance of an in- 

ternal grating lobe requires that 

~TT =  € • (15) b r y    ' 

1/2 
Equation (15) is incompatible with a/X = 0. 5, unless e        > 2, which itself means 

that there will be at least two internal grating lobes for 0 < $ < 7r/2.    Equation (15) 

cannot be satisfied for more than one value of m.    It is certainly true that the 

infinite susceptance at 

•    ±   , nX !/2 
sin 0  + —  = ± € 

^        a r 

is due to Equation (10).    A more exact expression for E(x, <j>) would lead to a finite 

reactance.    However, it is clear that it will be very difficult to maintain a good 

match between the array and free space if internal grating lobes are allowed to 

appear.    This difficulty may be increased by another large susceptive admittance 

at the interface between Regions I and II.    Any higher order modes which are propa- 

gating in the dielectric become evanescent in free space. 

This reasoning indicates both that the radiators should be of the simplest 

types slots or simple dipoles because such radiators will form a medium 

with only slightly slow-wave properties,  and also that the matching of the array 

should be effected in Region III rather than in Region n.   If the array is covered 

with a dielectric layer for protection against the weather, the layer should be very 

thin compared with the wavelength so that the reactive impedances, due to internal 

grating lobes, at both surfaces of the layer effectively cancel each other. 

11 



SECTION V 

EXPERIMENTAL DEMONSTRATION OF EXISTENCE 
OF INTERNAL GRATING LOBES 

The mode theory indicates that high mismatches are to be expected when internal 

grating lobes appear.    No attempt is made in this report to evaluate the mismatch 

quantitatively because of the analytical complexity of the problem.    It was decided, 

however, to conduct a simple experiment at X-band to ascertain how bad the mis- 

match could be in practice.   An array of seven waveguides in a 3-foot-square, flat, 

brass ground plane was used (see Figure 3).   The six outer waveguides were termi- 

nated in matched loads.   The center waveguide was terminated in a detector.    The 

GROUND PLANE  (3* x 3') ^ 

VERTICAL 

0.900" 

1 

H 0.40 0" HORIZONTAL 

0.695" \ RECTANGULAR 
WAVEGUIDES 
SET  FLUSH  WITH 
GROUND  PLANE 

Figure 3.     Experimental Array 

12 



horizontal plane polar diagram of the center waveguide was measured at a fre- 

quency of 8500 Mc, at which adjacent waveguides were separated by half a wave- 

length center-to-center (so that the array would not exhibit grating lobes in free 

space).    Figure 4 shows the measured polar diagram.    The ripples are due to the 

finite ground plane effect, as can be seen from diffraction lobes at + 82-degrees 

(note that the signal strength at ±90 degrees, the edge of the ground plane, is 

almost exactly 3 db down on the peak of the diffraction lobe).    The ripples have 

been smoothed out in Figure 5 (the dotted curve).   The pattern of Figure 4 is 

identical with cos <j) , within the limits set by experimental error. 

It was decided that to demonstrate the existence of internal grating lobes, the 

simplest method was to cover the ground plane with a dielectric sheet.    The dielec- 

tric used was plexiglass, which, by the theory of Section IV, should exhibit internal 

grating lobes for <p > 24 degrees.    Figure 5 shows the smoothed, measured polar 

diagrams of the center waveguide for two thicknesses of plexiglass, together with 

the polar diagram for no plexiglass.   The effect of the internal grating lobes is 

apparent.    The waveguides were matched to better than 1. 5 for each thickness of 

plexiglass. 

The experiments of King and Peters       on polyrod arrays show an effect 

similar to that displayed in Figure 5.    King and Peters explained their results on 

the basis of element interaction, a broader concept than mutual impedance.    Their 

Figure 2 is strikingly similar to the curve for the 0. 225-inch plexiglass sheet in 

Figure 5 of this report.    Their Figure 3 shows a smooth main beam, but the ele- 

ment spacing is large enough for the existence of several grating lobes in free 

space. 

Effects similar to those reported by King and Peters have also been noted by 
r8] 

J.  L.  Allen's group at Lincoln Laboratory L J with arrays of horns loaded with 

dielectric. 

13 
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Figure 4.     Measured Polar Diagram Center Waveguide 
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Figure 5.     Smoothed Measured Polar Diagrams of Center Waveguide 



SECTION VI 

INTERNAL GRATING LOBES IN POLYROD ARRAY 

The purpose of this section is to show that end-fire radiators probably 

exhibit internal grating lobes at modest scan angles.   Only the simplest theo- 

retical problem is treated, but it is sufficient to demonstrate the importance 

of internal grating lobes.    Figure 6 shows the geometry.    For a wave incident 

REGION I 

REGION H 

REGION m 

CROSS-HATCHING INDICATES REGION OF RELATIVE 
DIELECTRIC CONSTANT e. 

r 

Figure 6.     Array of Two-Dimensional Polyrods 

at angle 4> , the transverse resonance condition for the initial appearance of an 

internal grating lobe is 

16 



cos 2n t n + - sin (j) j 

9 X/2K 
27T (a - b)                  r 

cos —*-r—fc  cos  ;  
A A 

„      1/2. 
.   /l/2j     -i/2\     .    2*(a-b)     .    2lr€r     b 

" */2 i€r      + er        j  Sln ^T^  Sln  — 

as can be seen by matching the fields at the interfaces between free space and the 

dielectric in Region II of Figure 6.    The value of 0  satisfied by the above expres- 

sion is shown in Figure 7 as a function of b/a.   It is clear that internal grating 

lobes need to be considered in the design of polyrod arrays. 
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SECTION VII 

OPTIMUM SIZE OF RADIATOR 

Consider the simple array shown in Figure 1.    The matching of the array will 

be considered to be entirely in Region III so that Equation (11) will apply.    It will be 

assumed that a/X is sufficiently small so that there will be no grating lobes for the 

scan angles of interest.    Only the resistive part of the impedance of the space-array 

interface will be considered, because it is possible to imagine that a radiator could 

be found which exhibited a negligible reactance change over a useful range of scan 

angles.    The conductive part g of the impedance, for the geometry of Figure 1, is 

given by 

cos d> 
S=    .    2/kbsin.A    ' <16> 

Bine  ^ Y^) 

2    2 
with e    = b /a   .    Remember that the effect of the matching networks in Region m 

has been approximated by filling the parallel plate lines with a fictitious dielectric 

which is less dense than free space.    Figure 8 shows g versus 0, with b/X as the 

parameter.    It is seen that, for large scan angles, the optimum value of b/X is 

0. 5.    Greater values of b/X are not allowed because b cannot be greater than a, 

and if a/X is appreciably greater than 0. 5, there will be grating lobes in free 

space for wide scan angles.    An interesting point is Equation (11) shows that the 

change of reactance with scan angle is less for small values of b/X.    It is thus 

probable that a pronounced optimum size exists for a given type of radiator.    In 

practice, this optimum size will only be found from the type of measurement out- 

lined in the following section. 

19 
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SECTION VIII 

RELATION OF MODE THEORY TO ARRAY MEASUREMENTS 

The mode theory has a particular impact on array measurements which could 

be significant.    The scanning performance of an array can be predicted from mea- 

surements on a single radiator, in the presence of the other radiators, when they 

are properly terminated.    The gain pattern of the single radiator determines the 

gain of the whole array.   If the scanning performance of a particular array is found 

to be unacceptably inferior, then measurements on a single radiator will not indicate 

how the radiators should be modified in order to improve the scanning performance 

of the array.    In general, the gain pattern of a single radiator will not be smooth. 

The question is:   What should be attempted in practice to force the gain pattern 

closer to the ideal cos 0 ?   The mode theory approach indicates that any attempt to 

reduce mutual impedance by using end-fire radiators may compound the problem 

because of the increased possibility of the appearance of internal grating lobes. 

This is not to suggest that there is anything wrong with mutual impedance as a con- 

cept, only that mutual impedance does not completely govern the problem.   The 

mode theory indicates that radiators should be sought that have a minimum reac- 

tance change over a maximum range of scan angles.   Also, there is likely to be an 

optimum size for each type of radiator.   It follows that, besides the simple measure- 

ment on a single radiator, one of the two following types of array measurement is 

required: 

(a) array of matched radiators illuminated with, essentially, a plane 

wave; amplitude and phase of specularly reflected wave measured 

as a function of scan angle; and 

(b) array of radiators all driven; ability for phasing radiators required, 

so beam can be scanned; slotted line inserted in feed to one of central 

radiators; impedance of radiator measured as a function of scan 

angle. 

21 



Both types of measurement are more delicate and less convenient than the 

simple measurement on a single radiator. Nevertheless, the diagnostic power 

of either measurement is superior to that of the simple measurement. 
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