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ABSTRACT 

The results from an experimental study of an expansion 
tube conducted at the von Karman Gas Dynamics Facility (VKF) 
are presented and discussed.  The research was conducted in 
two facilities:  (1) a 6.75-in.-diam Modified Expansion Tube 
(MET) which utilizes a partially steady and partially un- 
steady expansion process, and (2) a 4-in.-diam (constant 
diameter) High Density Shock Tube (HDST) operated in an ex- 
pansion tube mode for a completely unsteady expansion of the 
shock-heated gas to the final test condition.  Flow veloci- 
ties from approximately 9000 to 16,000 ft/sec were studied. 
The theoretical performance of expansion tubes in terms of 
velocity is found to be nearly obtained; however, the steadi- 
ness of the resulting flow leaves much to be desired, and 
the definition of accurate flow conditions remains in serious 
doubt. 

in 
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NOMENCLATURE 

A Cross-sectional area of tube 

a Acoustic speed 

d Inside diameter of tube 

h Enthalpy 

^1>^4>^8 Tube  lengths (see Fig. 3) 

H% Test gas slug length at time of rupture of sec- 
ondary diaphragm 

M Mach number 

Ms Shock Mach number 

P Pressure 

P' Pitot pressure 
PHCW - Hemisphere-cylinder wall static pressure 

r Radial distance from tube centerline 

T Temperature 

t Time 

U Velocity 

Ug Shock velocity 

x Axial distance 

y Ratio of specific heats 

p Gas density 

T Ideal test time from inviscid simple shock-tube 

SUBSCRIPTS 

theory 

1,2,2a,3,  Denotes various regions in shock tube flow (see 
etc.      Fig. 3) 

o Stagnation conditions 
00 Free-stream conditions 

DUAL SUBSCRIPTS 

Denotes ratio of quantities, example: 

P.. = P./P. 
ij    i 3 

vnx 
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SECTION I 
INTRODUCTION 

The present need for advancement of ground test fa- 
cilities for hypervelocity flow research is quite apparent 
from even a cursory survey of the attendant problems.  A 
recent extensive survey paper by Cheng (Ref. 1) discusses 
many of these problems.  The spectra of hypervelocity flow 
problems is indeed quite wide, and many different types of 
aerodynamic tools will be required to cover the ever-increas- 
ing domain of velocities and altitudes. 

An aerodynamic test device utilizing an unsteady expan- 
sion to accelerate shock-heated gas was apparently first 
proposed by Resler and Bloxsom (Ref. 2) and was treated 
briefly by Hertzberg, et al. (Ref. 3).  Trimpi (Ref. 4) was 
the first to make a detailed theoretical study of the expan- 
sion tube, i„ e., a device in which the entire expansion 
from the shock-heated condition to the final test condition 
is performed unsteadily.  The theoretical advantage of an 
unsteady expansion in hypersonic flow is evident from com- 
parison of the steady and unsteady equations for isentropic 
expansions of the testing medium.  For a steady expansion, 

dU = -(dh/U) 

whereas for an unsteady expansion, 

dU = -(dh/a) 

Thus, for hypersonic testing (U » a, M » 1) the unsteady 
expansion yields a velocity increment M times the steady ex- 
pansion for a given incremental reduction in static enthalpy. 
It has been shown (Ref. 4) that for a given density level the 
test gas velocity obtainable with an expansion tube is approx- 
imately double that obtained by the shock tunnel for the same 
enthalpy level.  Such a comparison is shown in Fig. 1. 

Trimpi (Ref. 4) discussed both known and anticipated 
advantages and disadvantages of the expansion tube concept. 
One of the anticipated difficulties Trimpi mentioned is the 
fact that only an extremely small portion of the shock-heated 
gas is used for test purposes.  Some insight into the problem 
can be gained from Fig. 2, which shows that for the expansion 
tube all of the shock-heated gas (air) used for test purposes 
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is in very close proximity to the secondary diaphragm at the 
time of its rupture. 

A modification* of the expansion tube concept is pro- 
posed herein to alleviate the test gas slug length problem, 
and experimental data from both modified and normal expansion 
tubes are presented and discussed. 

SECTION   II 
DISCUSSION 

The purpose of this investigation is to assess the 
value of an expansion tube as a hypervelocity aerodynamic 
test device.  Flow uniformity is, of course, of major impor- 
tance in aerodynamic testing, and because of the close prox- 
imity of the test gas to the rupturing secondary diaphragm, 
was of major concern in this investigation.  To this end it 
was decided to investigate a modified version of the expan- 
sion tube designed to alleviate this problem. 

The modification consisted of the addition of an area 
change (a supersonic nozzle) between the driven and the accel- 
erating tubes (see Fig. 3).  The shock-heated gas is expanded 
first by a steady expansion to the 2a conditions (Fig. 3) 
and then by an unsteady expansion to the test conditions 
(region 6). 

The major advantage of such a modification is that 
there is a significant increase in the length to diameter 
ratio of the test slug, iL/d.. , at diaphragm rupture and, 
hopefully, a corresponding increase in test gas uniformity. 
The major disadvantage is a decrease in performance due to 
the use of a partially steady expansion versus a completely 
unsteady expansion.  This performance loss is shown as a 
function of area ratio in Fig. 4.  (Note that the velocity 
parameter, U /./ 2h02 - 2hoo is a "coefficient of performance", 
i.e., it represents the gain in performance by the use of 
the unsteady expansion.)  By using a nozzle with an area 
ratio of 10, the length parameter, i5t/dl>„ is increased by 
over an order of magnitude while the "coefficient of per- 
formance" is decreased to about 1.5 for the cases considered 
herein, which represents a velocity loss of about twenty- 
five percent due to the steady expansion. 

The idealized run time of a modified expansion tube 
with an abrupt area change is equal to that of a normal 

*Such a modification is discussed briefly by Hertzberg, 
et al. (Ref. 3). 
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expansion tube of the same length and test gas conditions. 
For a modified tube with a nozzle of finite length, the 
actual run time will be reduced by the nozzle start time 
and will depend upon the specific nozzle configuration. 

During the course of this investigation, a question 
arose as to the effects of the nozzle itself on the test gas 
uniformity.  An investigation was then undertaken in a 4-in.- 
diam buffered shock tube (the AEDC-VKF High Density Shock 
Tube - HDST).  The tube was run as a normal expansion tube. 
Some experimental results are presented for this expansion 
tube as well as the modified version. 

SECTION   III 
APPARATUS 

3.1   AEDC-VKF MODIFIED EXPANSION TUBE 

The AEDC-VKF Modified Expansion Tube (MET) is shown in 
Fig. 5.  The driver is 11 in. long with a 2.89-in. I.D.  The 
driven section is 82 in. long and has a 1,58-in. diameter. 
A transition section (nozzle) between the driven and accel- 
erating sections is 50 in. long.  Its design will be dis- 
cussed in the next paragraph.  The accelerating section is 
42-ft long and has a 6.75-in. diameter.  An open-jet test 
section (15 in. in diameter by 2 ft long) is used and a 2-ft- 
diam by 12-ft-long dump tank completes the facility. 

The area ratio, Agn, for this facility is 18.3, and the 
nozzle was designed by the method of Shapiro (Ref. 5).  This 
is a sophisticated fairing procedure and does not rely on 
wave cancellation.  Therefore, the design is not as sensitive 
to boundary-layer displacement thickness (5*) as the method 
of characteristics.  Use of this method is based on the indi- 
cation of Ref. 6 that it produces a shockless nozzle and the 
flow downstream is reasonably free of disturbances.  For an 
initial shock Mach number MSn =6.9 into 0.55-atm air, the 
nozzle entrance Mach number (M2) =2.12 and exit Mach number 
(M2a) = 4.75.  The boundary-layer displacement thickness was 
estimated to be very thin, and no correction was made for it. 
Real gas properties of Refs. 7 and 8 were used to calculate 
conditions throughout the entire flow process.  The parameter 
p. of Ref. 5 was chosen to be 8.25, and the nozzle exit angle 
is 0.08 deg.  The resulting nozzle is a 7~deg half-angle cone 
with a diameter from 1.58 to 5.80 in. and a smooth contour 
from the latter dimension to 6.75 in. in diameter. 
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As was previously mentioned, the run time of a modi- 
fied expansion tube is reduced by the nozzle start time. 
This start time is that time required for the head of the 
unsteady expansion to be swept through the nozzle.  The start 
time for the MET nozzle is not accurately known.  It is esti- 
mated that the start time for "standard"* run conditions is 
nearly equal to the ideal run time.  However, for most of 
the start time, the head of the unsteady expansion is in the 
contoured portion of the nozzle where the cross-sectional 
area is approximately equal to that of the accelerating tube. 
The effective nozzle start time is then somewhat less than 
actual start time, and probably leaves an appreciable run 
time, disregarding all other test-time loss mechanisms. 

The MET operating regime is shown in Fig. 6 based on 
using room temperature (300°K) helium as the driver gas at 
a pressure of 1700 atm.  The calculations are based upon 
ideal one-dimensional flow with no losses.  Most runs were 
made at the "standard" condition, duplication altitude 
* 125,000 ft and U«, * 14,000 ft/sec.  Theoretical gas pro- 
perties in regions of interest are shown for the "standard" 
shot in Fig. 7. 

In addition to the "standard" shot, the following spe- 
cial conditions were run: 

1. reduced driver pressure, 
2. increased accelerating tube pressure, 
3. helium-air mixtures were used as the 

accelerating gas, and 
4. by adding a small tube inside the accel- 

erating tube (see Fig. 8) runs were made 
in the constant-area expansion tube mode. 

3.2  AEDC-VKF HIGH DENSITY SHOCK TUBE 

The AEDC-VKF High Density Shock Tube (HDST) shown in 
Fig. 9 was used for experiments of the unmodified concept. 
It is a 112-ft-long, constant, 4-in.-diam tube, 18 ft of 
which is the driver.  The remaining 94 ft can be sectioned 
by diaphragms at various locations as desired.  For these 
experiments the driven length is 64 ft, and the accelerating 
section is 18 ft long, with 12 ft remaining to allow for 
shock reflection. 

The driver and driven tube charge conditions were held 
constant for all runs with room temperature (* 300°K) gases 

*See Fig. 7 for "standard" shot conditions.  Duplication 
altitude conditions based on U. S. Standard Atmosphere 1962 
(Ref. 16). 
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used throughout: 

P4 = 680 atm — helium 

P-^ = 259 mm Hg — air 

The accelerating gas was air for all runs and the charge pres- 
sure (Pß) was varied from 16 p,Hg to 18 mm Hg.  Theoretical 
gas conditions in the regions of interest are presented in 
Fig. 10 for the case of Pg = 16 |j,Hg. 

3.3 MODELS 

Several models (Fig. 11) were used in the MET phase of 
the tests.  The hemisphere-cylinder and flat-faced cylinder 
were mounted on tube centerline and tested only at J5g = 46 ft 
(i.e., the test section). The pitot rake and the single pitot 
probe were tested at several longitudinal stations. 

The pitot rake used in the HDST phase is shown in Fig. 12* 
The piezoelectric transducers were mounted in the recessed 
manner shown to protect the transducer from any large parti- 
cles that might be in the flow.  All tests in the HDST were 
made with the rake at &Q =  18 ft. 

3.4 INSTRUMENTATION 

Pressure and shock velocity measurements were made in 
these tests.  Table I presents the instrumentation used and 
pertinent data.  Transducer sensitivity, rise time, and fil- 
ter configuration varied throughout the tests, and the values 
given in Table I are approximate. 

For pitot pressure measurements, the transducer output 
caused by aerodynamic heating was found to be of the same 
order of magnitude as the pressure signal.  It was deter- 
mined that the transducer could be thermally protected by the 
application of a rubber mastic "gage kote" to the sensing sur- 
face.  The application of this thermal shield did not change 
the transducer sensitivity or response time appreciably. 

The monochromerer and photomultiplier setup consisted 
of a 2000 to 14,00Q A monochrometer set for a resolution of 
approximately 100 A with a photomultiplier tube of unknown 
sensitivity placed at the exit slit.  An approximate wave- 
length calibration was made by scanning the'spectra of a neon 
indicator lamp.  The entrance slit and associated lens were 
used to focus on an area approximately 0.1 in. square at the 
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nose of the hemisphere-cylinder,  The output of the photo- 
multiplier tube was recorded on an oscilloscope. 

SECTION IV 
EXPERIMENTAL RESULTS 

Early results in the modified expansion tube yielded 
pitot-pressure measurements which indicated the presence of 
strong timewise disturbances in the test gas. These dis- 
turbances, or "spikes", were found to be most pronounced on 
the tunnel centerline as can be seen in Fig. 13.  The major 
effort of this investigation was directed toward the deter- 
mination of the origin of these spikes.  Runs were not made 
over a wide range of test gas conditions and most runs were 
made at the "standard" conditions listed in Fig. 7.  Since 
the major point of interest was a timewise variation in test 
gas conditions, no great care was taken to insure the accuracy 
of the absolute level of the pressure measurements.  There 
are some runs in which absolute value of pitot pressure and 
wall static pressure were measured to a reasonable accuracy 
and experimental results from these runs are presented and 
discussed in Section 4.2, 

4.1 PITOT PRESSURE DISTURBANCES 

The basic approach taken in the search for the origin 
of the spikes was: 

1, hypothesize an agent which might cause 
the spike, 

2, vary the apparent controlling parameter 
while holding others constant, and 

3, look for changes in the nature of the 
spike greater than the normal run-to-run 
variation. 

The various hypotheses and the parameteric variations accom- 
plished to test the hypotheses are listed in Table II.  The 
results are discussed below. 

4.2.1   Hypothesis (-Mechanically Induced Accelerations 

Since the pressure transducers are very sensitive to 
acceleration normal to the sensing diaphragm, the possibility 
exists that the spikes are mechanically induced.  This 
possibility was ruled out by making large changes in model 
and support system without effecting the character of the 
spikes. 
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4.1.2 Hypothesis II - Instrumentation Difficulties 

The possibility that the spikes were somehow generated 
by the pressure transducer and/or the associated electronic 
circuitry was considered. A pitot rake (Fig. lie) was used 
to observe five pitot pressures simultaneously.  These data 
(Fig. 13) show that the spikes are predominant on the tube 
centerline. A further check was made by completely inter- 
changing the centerline and an off-axis instrument channel, 
and subsequent runs show the spikes to remain predominately 
on the tube centerline.  From these checks and the tests dis- 
cussed in Section 4.1.1, it was concluded that the spikes 
were not mechanical or electronic in nature but rather indi- 
cated flow disturbances. 

4.1.3 Hypothesis III-Flow Instability on Model 

The initial indications of spikes were obtained from 
the flat-faced cylindrical model (Fig, lib) (typical traces 
shown in Fig. 14), thus the possibility that the spikes could 
be induced by some model-flow instability was considered. 
Smaller diameter, flat-faced probes (e.g., the pitot rake, 
Fig. lie) and hemisphere-cylinder (Fig. 11a) models were 
tested, and typical traces from these tests are shown in Figs. 
13 and 15, respectively.  The radial location of the models 
was found, for example, to be far more critical with regard to 
the character of the spikes than the model configuration. 

4.1.4 Hypothesis IV - Oblique Shock from Wall 

The fourth hypothesized agent was an oblique shock wave 
which arrives at the test section approximately on the tunnel 
centerline.  Slight timewise flow variations would lead to 
movement of the shock across the centerline pitot probe which 
would cause variations in the centerline pitot pressure, but 
would not greatly affect the pitot pressure off centerline. 
A longitudinal pitot survey using either the pitot rake (typ- 
ical traces shown in Fig. 16) or a single centerline pitot 
probe (typical traces shown in Fig. 17) indicated that the 
pitot spikes were present on centerline for all longitudinal 
stations checked, thus apparently eliminating the oblique 
shock hypothesis. 

4.1.5 Hypothesis V-Accelerating-Tube Viscous Effects 

The fifth hypothesis is that the spikes are caused by 
viscous effects in the accelerating tube.  A major constituent 
of the boundary layer in the accelerating tube is the shock- 
heated accelerating gas which is normally air.  Several runs 
were made with helium-air mixture as the accelerating gas, 
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thus changing the boundary-layer constituents, with no notice- 
able change in the nature oi the pitot spikes (typical traces 
shown in Fig. 18).  The small, but finite, normal leakage of 
room air into the accelerating tube precluded the use of highly 
pure helium .  The helium concentration was varied from sixty- 
five to ninety percent (by volume). 

4.1.6 Hypothesis VI —Secondary Diaphragm Rupture Effects 

The secondary diaphragm is a natural suspect for pro- 
ducing the pitot spikes because of the proximity of the test 
gas to the diaphragm at the time of rupture (for the standard 
shot ^ s 0.84 in,).  To check this possibility, diaphragm 
thickness was varied from 0.00025 to 0.008 in., and several 
different materials were used.  Figure 19 presents what is 
considered to be the spread of the data using a 3/4-mil poly- 
ester secondary diaphragm.  All other diaphragms tested with 
the exception of the aluminum foil secondary diaphragm yielded 
pitot traces which appeared to fall within this scatter. 

Figure 20 shows the results for the aluminum foil sec- 
ondary diaphragm.  The three traces presented are represen- 
tative of run-to-run variations.  Note that the time scale of 
the traces of Figs. 19 and 20 are the same and that there is 
a change in the character of the spikes and no change of the 
static pressure trace, 

4.1.7 Hypothesis VII —Flow Contamination by Secondary Diaphragm 

For high Mach number flow, 

Po « K pU2 (1) 

Pitot spikes could then be caused by steep gradients in den- 
sity.  Gaseous contamination from the secondary diaphragm is 
one possible source of dense gas.  A monochrometer at the 
test section was used to detect this contamination when an 
aluminum foil diaphragm was installed.  The monochrometer was 
set to pass narrow bandwidth radiation about a strong alumi- 
num line (3090 A).  Although another aluminum line is stronger, 
it is near other predominate spectra.  The data obtained 
(Fig. 21) indicate that this contamination arrives during the 
useful flow but shows no correlation with the pitot disturb- 
ances which appear later in the flow.  The run with a poly- 
ester secondary diaphragm (Fig. 21) served as a "tare" run 
(i.e., aluminum contamination was not detected).  It should 
be noted that this technique may be insensitive to relatively 
cool particle contamination. 

8 
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4.1.8   Hypothesis VIII-Area Change Effect 

The AEDC-VKF modified expansion tube makes use of a 
steady expansion (nozzle) prior to the unsteady expansion. 
It is questionable that this nozzle actually has time to 
start during the short run time.  In addition, there is a 
good possibility that some weak shock waves are formed in 
the turning process although the nozzle is supposedly con- 
toured to eliminate shock formation.  It is not obvious how 
either of these difficulties would result in pitot spikes; 
however, it is plausible.  As a check, a 1.6-in.-diam tube 
was inserted inside the accelerating tube (Fig. 8), thus 
eliminating the nozzle.  An attempt was made to position a 
single pitot probe on tube centerline.  However, it was 
necessary to position the pitot probe externally, and it 
may have been slightly off centerline.  The data from this 
probe (Fig. 22) show no spikes, but the character of the 
trace cannot be explained.  The possibility exists that 
the tube, which was not exceedingly smooth, was completely 
filled with boundary layer at the test station. 

The results from the constant-area tube were promising, 
at least in that they showed no pitot spikes, and further 
study seemed advisable.  In order to relax problems inherent 
with the small diameter tube, the experiment was continued in 
the AEDC-VKF Pilot High Density Shock Tube (HDST) operated as 
a constant-area expansion tube.  Early runs, while producing 
little usable aerodynamic data, clearly demonstrated, through 
several mechanical failures, the high drag loads present dur- 
ing the passage of the unsteady expansion fan. 

A second operational problem demonstrated by the constant- 
area experiment was the hazardous location of transducers with 
respect to material lost from the rupturing primary diaphragm. 
For the original runs in the 4-in. expansion tube, the pitot- 
rake probes were instrumented with flush-mounted transducers 
as was the case in the MET.  After losing several transducers 
from damage caused by diaphragm particles, it was decided to 
give the transducers some protection by recessing them into 
the probe.  The specific configuration used along with a com- 
parison of pressure measurement using each mounting technique 
is shown in Fig. 23.  Although the pressure traces are not 
identical, the recessed gage seems adequate both in terms of 
response and acoustical ringing of the cavity. 

The constant-area experiment was carried out holding 
the driver and driven tube conditions constant and varying 
the accelerating tube charge pressure and thus the length of 
the test gas slug, fa.     (For Pg = 16 p,Hg, fa  « 0.035 in.; 
for P8 - 18 mm Hg, fa  « 7.7 in.) 
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Typical run traces for runs with low Pg (and therefore 
relatively short initial test slug length) are shown in Figs. 24 
and 25.  Once again, there are large disturbances on the 
pitot pressure traces.  The shape of these disturbances is 
somewhat different from those observed in MET; however, their 
relative magnitudes are approximately the same. 

Typical run traces for runs with high P8 (and therefore 
relatively long test slug length) are shown in Fig. 26.  Here, 
the disturbances occur at a much higher frequency and are of 
somewhat reduced relative amplitude.  Whether the disturbances 
on these traces are the same phenomena as those at the lower 
Pg is a matter of conjecture; however, from continuity con- 
siderations it is expected that frequency of the disturbances 
should decrease as the gas is further expanded.  In addition, 
if the disturbances are density gradients, their amplitude 
relative to the mean pitot pressure is expected to increase 
as the ratio of dynamic to static pressure increases.  It is 
possible then, that the disturbances seen on both low and 
high pressure runs may result from the same basic phenomena 
but appear different in frequency and amplitude because of 
the amount of expansion permitted. 

It is interesting to compare the pitot pressure trace 
before and after arrival of the interface. This comparison 
is shown in Fig«, 26 for a case where the pitot pressures 
before and after the interface are not vastly different.  From 
these traces it is apparent that the uniformity of the shock- 
heated gas (region 7) is superior to that of the expanded gas 
(region 6). 

Assuming that the disturbances are in some way induced 
by the secondary diaphragm, it is expected that they should 
diminish in time since the gas arriving at the test station 
later in time was further from the secondary diaphragm at 
the time of rupture»  The traces, in fact, show little indi- 
cation of disturbance attenuation in the available test time. 
Two diametrically opposed possibilities are apparent: 

1. The disturbances are not caused by the secon- 
dary diaphragm, or 

2. The effects of the secondary diaphragm are so 
extensive that the entire test slug length 
was affected to approximately the same degree. 

Since the disturbances arrive at the same time as the 
interface, the first possibility seems somewhat remote. 

10 



AEDC-TR-66-10 

4.1.9 Summary 

Of the many hypotheses tested only two showed any effect 
on the spikes: 

1. Deletion of the area change affects the shape 
of the disturbances, but disturbances of about 
the same relative magnitude as that of the MET 
spikes are present even without an area change. 

2. Changes in secondary diaphragm material appre- 
ciably changed both the shape and the time of 
arrival of the spikes but had little effect 
on their magnitude. 

4.2 PERFORMANCE DATA 

Although the uniformity of the test gas leaves much to 
be desired, it is of interest to compare approximate mean 
levels of the measured data with theoretical predictions. 

4.2.1 Velocity 

No direct measurement of flow velocity was attempted; 
however, it can be shown from viscous considerations (Refs. 9, 
10 and 11) that the interface velocity (and therefore the 
test gas velocity at the interface) is approximately equal to 
the accelerating tube shock velocity, Ugg.  This shock veloc- 
ity was found to be slightly below theory at the test section 
(Figs. 27 and 28), which implies that the flow velocity is 
in reasonable agreement with theory.  The theory is based upon 
measured values of Ms, , P]_, Pg, and one-dimensional inviscid 
flow using the thermoaynamic properties of Ref. 12.  The runs 
represented by the scatter band contain data from all runs in 
which reasonably reliable absolute pressure measurements were 
made. 

Driven tube shock velocity, Us,, is compared with theory 
in Figs. 29 and 30.  The theory was based upon one-dimensional 
inviscid flow with no losses.  The driver gas, helium, was 
considered to be perfect, and the driven gas, air, was con- 
sidered real, using the thermodynamic properties of Ref. 12. 
The initial shock strength was found to be slightly above the- 
ory and for the high P41 case in MET, initially increases with 
time.  Both of these phenomena were observed by White (Ref. 13) 
who attempts to explain them by a "formation from compression" 
model. 
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4.2.2   Pitot Pressure 

Pitot pressure was measured on all the models shown in 
Fig. 11.  No significant model-to-model variation was found 
in either level or uniformity of the pitot pressure.  To 
attempt to determine the level of pitot pressure for these 
runs is perhaps a bit courageous, but it was felt that even 
an approximate level might be a worthwhile piece of informa- 
tion at this point in expansion tube development. 

The MET traces were read at a time, t^, (Fig. 13) soon 
after the arrival of the interface but purposely chosen to 
avoid spikes.  For the MET runs with the pitot rake, a second 
time, t2> (Fig. 13) was chosen after the rapid decrease in 
pitot pressure on the two outer probes (apparent arrival of 
the boundary layer).  Once again, the time, t£j was chosen to 
avoid spikes.  The HDST traces were read at a time t^ (Fig. 24) 
immediately after the arrival of the interface, and here the 
pressure level was determined by fairing through the distur- 
bances. 

Measured centerline pitot pressures are compared with 
theory in Fig. 31.  The theoretical calculations are based 
upon: 

1.  Measured Us-, and P^ (T^ assumed to be room 
temperature; 

2„  Normal shock crossings using the thermody- 
namic properties of Refs. 12 and 13 to deter- 
mine conditions in region 2. 

3. Isentropic expansion of the gas in region 2 
to U6 = Us8r_„sll„_Hx using the properties of 
Refs. 12 aSdmf§fured; 

4. A steady isentropic expansion (for MET) cal- 
culated from the geometric area ratio, i.e., 
zero boundary-layer displacement thickness. 

The estimated overall accuracy in measured P0 is ±12%. 
The measured pitot pressure is in reasonable agreement with 
theory for the low velocity runs, but is considerably below 
theory for the higher velocity runs.  It should be remembered 
that the higher velocity runs have a stronger unsteady expan- 
sion fan and a lower pitot pressure. 

Observed pitot pressure profiles in MET are shown in 
Fig. 32.  As previously stated, the two times, ti and t2, are 
before and after the apparent arrival of the boundary layer 
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at the two outer pitot probes. Pitot profiles from the HDST 
are shown in Fig. 33.  A rapid decrease in pitot pressure on 
the outer pitot probes corresponding to that observed in MET 
was not found. Theory in both cases was calculated as pre- 
viously described. 

4.2.3 Wall Static Pressure 

Typical oscilloscope traces of the wall static pressure 
measurements are shown in Fig. 34.  The "dip,r in static pres- 
sure from the MET runs is typical and, like the spikes, is 
yet to be explained.  The results of the static pressure 
measurements are shown in Fig. 35. The MET traces were read 
at the same point in time, tj, as on the pitot trace.  The 
estimated accuracy is ±17%.  Here again, the measured pres- 
sure is in fair agreement with the theory for low velocity 
runs but is considerably low for the higher velocities.  The 
theoretical free-stream static pressure was calculate^ using 
the same assumptions listed for the calculations of Po+h 

Reliable pitot pressure and wall static pressure were 
obtained concurrently in only six runs - three in MET at low 
pressures and three in HDST at high pressure.  The measure- 
ments are compared to theory in Figs. 36 and 37,  The theory 
was obtained as described previously except that the gas in 
region 2 is expanded to a given Pg, whereas previously it 
was expanded to a given Ug (= USg).  The results agree rea- 
sonably well with theory for both the high pressure and low 
pressure runs.  This could be anticipated from the previous 
comparisons since both pitot and wall static pressure were 
in agreement with theory at high pressure and both low at 
low pressure.  It should be noted here, that the theoretical 
velocities, Ug, obtained by expanding to p6(measured) 

are 

approximately 7 percent higher than the experimentally ob- 
served Us8 values for MET (Fig. 36).  For the HDST (Fig. 37) 
the only data presented are for higher pressures, and here 
the theoretical velocity, Ü6, is slightly less than 
s8(measured)' 

4.2.4 Shock-Interface Separation 

The separation time between the shock»and the apparent 
interface can be determined from the pitot pressure trace. 
This time is compared to the theory of Mirels (Refs. 10 and 11) 
as a function of Pg in Fig. 38.  For low Pg the spread of 
the data becomes large and the agreement with theory becomes 
poor. 

Shock and interface curvature was obtained by deter- 
mining their time of arrival at each probe of the pitot rake 
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in MET.  The time scale was expanded for several runs in 
order to increase the experimental accuracy.  Results of 
these runs are presented in Fig. 39,  The rise time of the 
pressure transducer precluded very accurate measurements 
of shock curvature; however, the results are in reasonable 
agreement with those of Ref. 14.  The curvature of the inter- 
face was so severe that the transducer rise time was com- 
paratively insignificant.  Also the large scatter in ty 
(Fig. 38) is seen here as a run-to-run variation in the sep- 
aration distance. 

SECTION V 
CONCLUSIONS 

Based on the results of this experimental study of an 
expansion tube, the following conclusions are made: 

1. Expansion tube performance in terms of shock 
velocity and, therefore presumably flow veloc- 
ity, is in reasonable agreement with theoret- 
ical predictions. 

2. Pitot pressure measurements on centerline indi- 
cate flow disturbances of sufficient magnitude 
to preclude meaningful aerodynamic testing dur- 
ing these disturbances.  No firm conclusions 
can be drawn as to the source of these distur- 
bances; however, the present results point to 
the secondary diaphragm as the possible source 
of these disturbances, 

3. A brief test time can be chosen such that both 
wall static and pitot pressures are fairly con- 
stant in time; however, during this time both 
pressures are somewhat lower than expected 
based upon measured shock velocities, and thus 
the definition of accurate test conditions 
during even this time remains in serious doubt. 
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TABLE   i 

INSTRUMENTATION 

Measurement Range 
Strain-gage 
pressure 
transducer 

Sensitivity Rise Time Filter Readout 
Est. 

Accuracy 

I-         P4 
5-25 Kpsi Strain-gage 

pressure 
transducer 

— Steady state — Millivolt 
recorder 

±10% 

II.         Pl 4-9 psia Aneroid 
barometer 

— Steady state — Visual +1% 

III.         Pg 15uHg - 
5 psia 

Thermocouple, 
McLeod and 
aneroid 
barometer 

Steady state* Visual ±10% 
or less 

IV.         P2 100-500 psia Piezoelectric 7 mv/psi 5 Msec 100 kc 
low pass 

Oscilloscope ±10% 

V-         P6 0.04-200 
psia 

Variable- 
capacitance 

and 
piezoelectric 

500 mv/psi 

7 mv/psi 

15 psec 

5 Msec 

100 kc 
notch 
100 kc 

low pass 

Oscilloscope ±17% 

VI.         P0'6 6-700 psia Piezoelectric 
7 mv/psi 

or 
0.7 mv/psi 

5 Msec 100 kc 
low pass 

Oscilloscope +12% 

VII.          Uc 
°1 

USn b8 

5000-8000 fps 

5000-16,000 
fps 

Platinum 
thin film — < 1   psec — 

Raster 
Oscilloscope ±3% 

n 

XI 



en TABLE   i! 
'SPIKE" HYPOTHESES 

Hypothesis Parameter Variation 

1.   Mechanically induced 
accelerations 

Model and model 
support system 

All models of Fig. 11, single pitot probe supported 
from tube wall, pitot rake supported from 
"isolated" dump tank, sting length varied. 

II.    Instrumentation 
difficulties 

Pressure transducer 
and associated 
circuitry 

Instrumentation used in the centerline probe of 
pitot rake exchanged with that used in an off- 
center probe. 

III.   Flow instability 
on model 

Model configuration 1.4-in.-diam. flat-face cylinder 
0.3-in.-diam. flat-face probe 
2-in. -diam. hemisphere-cylinder 

IV.   Oblique shock from 
wall 

Longitudinal location 
of model 

18 < i8 < 46 ft 

V.   Accelerating tube 
viscous effects 

Accelerating tube 
charge gas 

PHe + Air = 30Hg) 

60     ( Pair = 10I*H9 
100     ) 

VI.   Secondary diaphragm 
rupture effects 

Secondary diaphragm 
thickness and material 

1 and 2 1/4 mil polyester 
1 to 8    3/4 mil polyester 
1          1/4 mil aluminum coated 

polyester 
1          3/4 mil aluminum foil 

VI1.   Flow contamination by 
secondary diaphragm 

(Same as VI) (Same as VI) 

VIII.   Area change effect Area ratio Agj = 1.0 and 18.3 
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