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ISOTROPIC TURBULENCE AND INERTIAL-RANGE STRUCTURE

IN THE ABRIDGED LHDI APPROXIMATION

Robert H. Kraichnan

Peterborough, New Hampshire

The abridged LHDI (Lagrangian-History Direct Interaction) closure
approximation is interpreted physically ;nd used to analyze energy transfer,
effective eddy viscosities, and Lagrangian spacetime statistics in station-
ary and decaying isotropic turbulence. The results are then specialized
to the inmertial range. Numerical values are predicted for the Kolmogorov
cénstant, the asymptotic eddy viscosities due to inertial-range wavenumbers,
and the dimensionless constant in Inoue's formula for the mear square
change of Lagrangian velocity with time. Computed curves are presented
for the localness of energy transfer, for Lagrangian spacetime structure
functions, and for Lagrangian spacetime acceleration-acceleration and
velocity-acceleration covariances. Inertial-range Eulerian spacetime
structure functions also are computed. The predicted absolute Kolmogorov
spectrum in the inertial and dissipation ranges is compared with data of

Grant, Stewart, and Moilliet and of M., M. Gibson.
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1, INTRODUCTION

This paper develops some analytical and numerical predictions of
recent closure approximations which involve tracing the history of velo-
city correlations along the particle trajectories.l Energy transfer, and
both Lagrangian and Eulerian spacetime correlations are explored for
stationary and decaying isotropic turbulence. Simple physical interpre-
tations of the closure formulas and their consequences are attempted.
The results are finally specialized to the iﬁertial range, and numerical
values are computed for all the dimensionless constants and universal
functions which appear in the formulas. The quantities evaluated are
listed in the abstract. Analytical and numerical predictions for two-
particle dispersion are developed in a paper to follow.

The closure approximations of Ref, 1 are based on a generalized
velocity gﬁﬁ,tlr), defined as the velocity measured at time r in that
fluid element which arrives at x, in laboratory coordinates, at time t.
Thus,

u(x,t|t) = u(x,t), (1.1)

where u(x,t) is the Eulerian velocity, and g(g,tolt) = w(a,t), where t,
is the initial time and w(a,t) is the velocity of the particle initially
at a (Lagrangian velocity).

The full function ggg,tlr) can be computed in terms of the Eulerian

velocity by the equationl

[3/3t + u(x,t)*Tulx,t|r) = 0, (1.2)

with the boundary condition (1.1). The interpretation of (1.2) is simple.
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The vector 2!§,t|r) is the velocity of a particular fluid element at time
r, and (x,t) is a point on the spacetime trajectory of this element. Thus
t may be called the labeling time and r, the measuring time., The same
fluid element can be labeled by any other point (x',t') on its trajectory,
and the velocity measured at time r is independent of which point is used
for labeling. Equation (1.2) expresses this by stating that the substantial
derivative of Ejé,t|r) in the spacetime (x,t) vanishes everywhere. In
other words, gﬁg,tlr) at fixed r is constant along every particle trajec-
tory in (x,t) spacetime,

Equation (1.2) thus has a peculiar character. It expresses only a
coordinate transformation through which the velocity field at time r is
labeled by the laboratory coordinates the fluid elements had (or will have)
at time t. The dynamics are fully determined by the equation of motion
for the Eulerianwelocity u(x,t). The role of (1.2) is to providé a
redundant, but useful, infinite family of transformed representations of
the Eulerian field, Such a family is useful Secause approximate statistical
equations are the ultimafe goal., Although the Lagrangian velocity is fully
determined by the Eulerian velocity in any realization, simple statistics
of the Lagrangian velocity are not determined by simple statistics of the
Eulerian velocity.

No restriction to incompressibility is im_plied by (1.2), which is
valid whatever the equation of motion for Hji.t). The latter will be
the incompressible Navier-Stokes equation in this paper,

Because the labeling transformation as well as the dynamics determine

2ﬂ§,tlr), the generalized velocity has properties that are unexpected from
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experience with Eulerian analysis, It was pointed out in Ref, 1 thau
divergenceless Eulerian velocity does not imply divergenceless u( .:_c',tlr)
for r # t. To explore another property, consider a hypothetical flow
maintained in a statistically steady and isotropic state at very low
Reynolds number by means c¢f suitably random stirring devices. If D is a
characteristic lemgth scale of the stirring process, the characteristic
scale of spatial variation of the Eulerian field u(x,t) will also be D,
and the condition of very low Reynolds number implies that variations at
scales small compared to D will be strongly damped., If a Fourier analysis
of 3_(5.t) is made, wavenumbers >>D"L should be very weakly excited.

Now consider g(;,tlr) for large values of ]t-rl. Although both
u(x,t) and u(x,r) display spatial variation at scale D, the x variation
of u(x,t|r) becomes rapid without limit as |t-r| increases. This is
because fluid elements which are close together at the labeling time t
will typically be farther apart at time r. No matter how small | 33-;_(_'] is
taken, g.(i,tlr) and u(x' ,t|r) typically are velocities measured at widely
separated parts of the fluid if |t-r| is large enough. For sufficiently
large |t-r|, the Fourier analysis of g‘(i,tlr) shows excitation extending
to indefinitely high wavenumbers. In particular, the excitation does not
fall off at the viscous cutoff wavenumber for the Eulerian velocity.

The assumption of low Reynolds number puts these observations in their
most striking form but is otherwise unnecessary. To examine a further
property, retain the stationarity, isotropy, and homogeneity conditions
but relax the restriction to small Reynolds number. The Eulerian covariance

<|.‘1~(§,t)’ (x',r)}, where () denotes ensemble average, is an even function

o~ o~



T

of t-r and has zero slope at r = t. This is not true of the Lagrangian
covariance <g_(§,t|t)-3(§' .t|r)>, unless x' = x. The behavior of the
Lagrangian covar;ance can be understood as follows. Two fluid elements
which are a distance |§?§'| apart at time t were typically a greater
distance apart at any sufficiently earlier time r. As the elements draw
together under the straining action of the turbulence, the joint effects
of molecular and eddy viscosity on the steepening velocity gradient
between the elements tends to reduce their velocity difference, while the
stirring action tends typically to increase the difference, If i§7§f| is
intermediate between the scale characteristic of the stirring and the scale
characteristic of dissipation, the effect of the stirring on relative
velocity is suppressed compared to the effect of molecular and eddy
viscosity. The typical net result is a reduction of the velocity difference,
As the elements again separate, their velocities tend to be bett_er
correlated than before the close approach. This suggests that the Lagrang-
ian covariance is an asymmetrical function of r - t, for x # %', and can
have a positive slope at r = t. However, if x = %', the covafiance measures
the autocorrelation of the velocity of a single fluid element, whence
stationarity and the equivalence of all elements require that the covariance
be an even function of r-t,

These properties are demonstrated analytically later in the paper.
The slope at r = t is shown to be simply related to the energy-transfer
function., In the limit of very low Reynolds number, transfer is negligible,
stirring and viscosity act on the same spatial scale, and the slope tends

to zero,



2, THE CLOSURE EQUATIONS

In isotropic, homogeneous turbulence, the covariance tensor
Uij(i‘.btlri.’i' bt e = (ui(?,‘_’t Ir)uj(?},' ot e )> (2.1)

is fully determined by the scalars

Bagelrer s = 2o~ EEp, ouy x,tlrag e Irhacgex",

i

( 2n)-afe-i']$~. (x-x")

Uc(l‘&;t|r;t' |2?) (l_g)Uij(;_c_,tIr;g_c_' ot' r?)d(x-x"),

My
(2.2)

where

2

2 x 2

US and Uc are the scalars of the solenoidal and antisolenoidal parts

of Uij' respectively, Uc(‘l.c‘;t|r;t'|r') vanishes if either t = r or t' = r',
The closure approximations of Ref. 1 involve both the covariance
tensor and a generalized infinitesimal Green's tensor Gij (§,t|r;:__g_' it eh),

which gives the average change in g(g_(,tlr) resulting from an applied
infinitesimal perturbation in u(x',t' |r'). The definition and properties
of the Green's tensor are discussed in detail in Ref. 1. The isotropic

Green's tensor is fully determined by the scalars

_iko -y !
%Ie ke(x~-x')

Gs(.lg;tlr;t' jr) Pij“'s-)Gij(i’t |r;:_g' ,t' Jd(x-x'),

Gc(li;t Irst!|r') Ie'ik.(i'z' )nij ()6, < (%,t Ipsxt,tt|rt)d(x-x').  (2.3)

3

Gs(kgtlr;t'lr') and Gc(h;tlr;t'h') mav be interpreted as average infini-

tesimal response functions for Fourier mode k. By definition,

3y i W
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Gs(k;tlr;t|r) z Gc(k;tlr;tlr) =1,
s ] ) - c 1] 1 - 1]
& (st|rstt|rt) = 6 (kstlrst'r') = 0 (r <1r'). (2.4)

Two closure approximations were proposed in Ref. 1. The first, called
the LHDI (Lagrangian-History Direct-Interaction) approximation, involves
all the time-argument values of the covariance and Green's functions. A
closed subset of the final equations involves only functions for which
t = t'. This approximation makes formidable storage and time demands in
numerical computations., The second, simpler closure, called the abridged
LHDI approximation, involves only the solenoidal, pure Lagrangian functions

U(k;t|r) and G(k;t|r) defined by

ulk;tle) = tltsels)  (t 2 n)
= U(kr|t) (t <),
G(k;stir) = Gs(g;tlt;tlr). (2,5)

The LHDI approximation was obtained in two stages. First, the direct-
interaction approximations for triple moments were constructed. Then, the
formulas were altered in a systematic way so that the final equations
exhibited the following properties of the exact turbulence dynamics:

Energy conservation; inviscid equipartition equilibrium and fluctuation-
relaxation relations; invariance of Lagrangian correlations under random
Galilean transformation; and invariance of certain averages under the
transformation from Eulerian to Lagrangian coordinates. The crucial
proﬁ}ty in this 1ist is invariance to random Galilean transformation.

This invariance, not retained by the unaltered direct-interaction approxi-

mation, is a formal statement of the obvious fact that random, uniform
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translations of the individual flows in a homogeneous ensemble cannot
affect the mean energy-transfer. The LHDI approximation appears to be
the unique alteration, within the general direct-interaction framework,
which restores this invariance for the full Lagrangian covariance
tensor without sacrificing the other properties listed. No cutoffs,
parameters, or arbitrary functions are invoked. The motivations of the
LHDI approximation, and the details of the alterations, are described at
length in Secs. 1 and 6 of Ref, 1.

The abridged closure was obtained in Ref, 1 as a further approximation
to the LHDI equations. It appears to be the unique alteration of the
direct-interaction equations which gives a closed set of equations for
the restricted quantities (2,5) and exhibits the consistency properties
listed above. Thus the abridged LHDI equations may be considered a
closure in their own right, rather than an approximation to an approximation.

Both closures assume that the velocity field is multivariate normal

at an initial instant t In the limit of very small Reynolds number,

0
both closures yield triple-moment formulas which are indistinguishable
from the first term in an expansion of the triple moments in powers of
turbulent Reynolds number.1

The analysis in the present paper is based ou the abridged LHDI
equations, with the exception of the discussion of Eulerian structure-
functions in Sec. 7. Quantitative estimates of how the numerical
predictions change in the unabridged approximation have not been attempted.

Qualitative changes in the predictions are not anticipated.

In the case of isotropic turbulence, the abridged equations of Ref. 1,



Sec, 10 may be written
(3/%t + 2vk2)U(k;t|t) =

t
2[fAdpqukqu [G(k3t|s)U(pstls) - G(pst|s)Ulkst|s)IU(qst|s)ds, (2.6)
. .
0
(3/3t + wA)U(k;t|r) =

t t
-U(k;tlr)ffAdpdqckqu Ulq;t|s)ds + ffAdpqukqu(p;tlr)f U(q;t]s)ds
r r

G(k3r|s)u(pst|s) - D! _G(p3r|s)U(k;st|s)IUu(q;st|s)ds

kpq

r
+ [[,dpdaf [B
A to kpq

t .
- ffAdpdqf kaq[G(p;tIs)U(k;rls) - kaqG(k;t|s)U(p;r|s)]U(q;t|s)ds
t
0 .

t
- Jf,dpdaf [B, - D! 16(p;t|s)U(k;t|s)U(qir|s)ds (t 2 r), (2.7)
8 t, kpq ~ “kpq ’

(373t + vk2)a(kst|r) =

t t
- G(k;t|r)ffAdpqukqu U(q;t|s)ds + ffAdpqukqu(p;tlr)f U(q;t|s)ds
r r

t
kpq " kaq]G(p;tIr)U(q;tlr)IrG(k;sIr)ds

- |/ dpdalD
t
- . . - U . . .
”Adpdqfr[kaqG(p,t|$G(k,sIr) kaqG(k,t|s)G(p,s|r)]U(q,t|s)ds

(t 2 ), 6(k;r|r) = 1, (2.8)

Here v is kinematic viscosity, the integration IIA is over the part of the

(p,q) plane such that k, p, q can form the sides of a triangle, and




ﬂpzq(xy + 23). ¢ = mkpq(l - y2).

B
kpq

kpq

D -1

1 1 2 _ 2 . 2
kpq ° 3 (kaq + qup) + 5 mkpa(z ¥y, kaq = (p/k) Dpk (2.9)

q’
where %, y, 2 are the cosines of the interior angles opposite the triangk
sides k, Py Qs respectively.2 These equations, with (2,5), determine
U(k;t|r) and G(kjt|r) forallt 2 r 2 ty if the initial values U(k;tolto)
are prescribed, The interpretation of (2.6)-(2.8) will be developed in

the Sections to follow.,

3. ENERGY TRANSFER

The kinetic-energy spectrum function
E(k,t) = 2mk2U(k;t|t) (3.1)
obeys the balance equation
(3/3t + 2vk2)E(k,t) = T(k,t), (3.2)

where T(k,t)/(2nk2) is the right-hand side of (2.6). Conservation of

energy,

| T(k,t)dx = 0, (3.3)
0

follows from the identity

k%, = p°B

3.4
kpq (3.4)

pkq’

T(k,t) can be written in the form

©  p+tk
T(k,t) = %-fodpfl k'qu(k,p,q,t), (3.5)
p-
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where T(k,p,q.t)/(uﬂkz) is the symmetrical part of the integrand of the

p,q integration in (2.6), [The A integration, although written asymmetrically
in (3.5), is symmetric in p and q so that only the symmetrical part of the
integrand can contribute.] The detailed conservation property of the

Navier-Stokes equation,
T(k,Pyqst) + T(p,q,k,t) + T(q,k,p,t) = 0, (3.6)

follows from (3.4).
The total rate of energy transfer into all wavenumbers >k is
° © o p'-'-k'
M(kot) = = [ dk*f dp*] dq'T(k' ,p'4q" (3.7)
’ 7 1% q sP'sq'5t). .
k 0 [p'-k'|
Since T(k',p',q',t) is symmetrical in p' and q', the total value of (3.7)
must equal twice the contribution from q' > p'. But for gq' > p' there is
no net contribution for p' > k because, by (3.6), the interaction of k',
p', q' then yields conservative transfer of energy within a triad of three
wavenumbers all >k. Therefore (3.7) can be rewritten
o k p|+k|
M(k,t) = [ dk'[ dp'[ dq'T(k',p',q',t), (3.8)
k 0 p

1]
# (p} = larger of p', |p'-k'|).

This form is the more useful one for computing N(k,t). Since k' is always
>k and p' always <k in (3.8), contributions from very small or very large
wavenumbers always involve triads with a big ratio of largest to smallest
wavenumber, If the transfer is effectively local in wavenumber, the inte-
grations in (3.8) converge at zero and infinity in such fashion that only
inertial-range k', p', q' contribute if k lies within a long inertial range.

Equation (3,7), on the other hand, gives a nonlocal representation of H(k,t),
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and a correct result is obtained from it for inertial-range k only if

the integrations are extended to include the entire dissipation range.
Insight about the structure of the nonlinear interaction is provided

by considering in detail the contributions to T(k,t) from interactions in-

volving wavenumbers very much larger or very much smaller than k. Heis-

enberg3 proposed that the effect of higher wavenumbers on T(k,t) could

be represented by an eddy viscosity. The present closure approximation

supports this hypothesis for wavenumbers much larger than k and yields an

analytical expression for the eddy viscosity (different in form from

Heisenberg's),

A Lagrangian time-correlation function for mode k can be defined by
1/2
R(k3t|r) = Ulkst]r)/CUCkst]t)UCksr|r) 1172, (3.9)

To evaluate the asymptotic eddy viscosity, assume first that both E(k,t)
and the characteristic decay times t-r of G(kjt|r) and R(k;t|r) decrease

as k rises, If these conditions are satisfied with sufficient strength

(to be checked later), the first term on the right-hand side of (2.6) gives
a negligible part of the contribution to T(k,t) from wavenumbers >>k, The
reason is that p >> k implies q >> k, and then U(k;tls)U(q;t|s) >>
U(p;t|s)U(q;t|s). Furthermore, U(k;t|s) = U(k;t|t) in the second term,

for s which make appreciable contributions. There results

k
f G(p;t|s)U(q;t|s)ds (3.10)

O

»qt (Kst) = = 2E(k, t)fq dq[ kpq

for the contribution to T(k,t) from all q > q' >> k.
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The integration in (3.10) is symmetric in p and q, to leading order
in k/q. To leading order in k/q,

1 5 3 3
5'(kaq - qup) % - mq (u - u’), (3.11)

where u = (p-q)/k. The trigonometric identity
27 ¢ B + B = wkpq(l - xyz - 2y222) (3.12)
Pq kpq © “kap

yields that to leading order

B )= = 2 Yy, (3.13)

1
B, +
( kpq kqp

2
5 1kq“(1 + u

N

If the G and U factors in (3.10) are expanded in Taylor series about u = 0,

these expressions lead to

T, () = - 20 (OK°EGGD) (@ 2> K), (3.14)

where m t
V(e = B[ 171 apstlsiuestlsids - pA(p,t)Ip2dp  (3.15)
q t

0
and

A(q,t) = {5%-f: [G(p;t|s)U(q;t]s) - G(q;tls)U(p;t|s)]ds}p=q. (3.16)
0
Note that the eddy viscosity vq(t) is independent of k and therefore is a
true counterpart of molecular viscosity.

Now define T<q(k,t) as the total contribution to T(k,t) due to all
interactions involving a wavenumber less than q. According to (3,14), the
loss from wavenumber k due to interaction with much higher wavenumbers is
proportional to the mean-square shear or vorticity associated with k. The
interactions are conservative, Therefore T<4k,t) should contain a contri-

bution that involves vk(t) and the mean-square vorticity in wavenumbers
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less than q, if q << k. Actually, the complete expression for T<q(k,t)
cannot be deduced from vk(t) because the interaction is among triads
rather than pairs of wavenumbers, The eddy viscosity represents the net
loss of energy from low to pairs of high wavenumbers. In addition, the
interaction with a low wavenumber induces a transfer of energy between
the two high wavenumbers, and these two effects turn out to be of com-
parable importance in the overall energy transfer at the high wavenumbers.
The complete asymptotic expression for T<q(k,t) is

2 q' -2 k+q t
T.qr(kot) = 2k°[ Eq,t)q™"daf apf [2a  Glkst|s)U(p;tls)
q 0 k-q t Pq

- kaqG(p;tls)U(k;t|s)]ds (k >> q"), (3.17)

which is obtained from (2.6) by neglecting the term involving U(kjt|s)

for p < q' and assuming that the characteristic times of mode q are long
compared to those of k and p. The factor 2 in the first term on the right-
hand side of (3.17) comes from including the contributions of both q < q!'
and p < q' in the first term on the right-hand side of (2.6). There is a
cancellation between the A and B terms in (3,17) to leading order in p-k,
The remainder can be evaluated conveniently by considering symmetrical

and antisymmetrical parts as in obtaining (3.15). The final result can be

written

q
_ r 2 ] 2% 4
T<q(k,t) = -2[;0E(p,t)p dp] % [vk(t) tTk A(k,t)

t

- B0 stgtloutitlsds] (k> q), (3.18)
t
0
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The three terms in (3.18) are most easily interpreted by integrating

over k to form the corresponding contribution to M(k,t):

.8 2 o1 b
n<q(k,t) = 2[oz(p,t)p dplv, (1) + 35 k A(k,t)

t
-2 K3 Glk;t|s)ulkst]s)ds]  (k >> q). (3.19)
t
0
The first term on the right clearly corresponds to the loss from low
wavenumbers given by (3.14#). If the modes ~k were in equipartition

equilibrium among themselves, they would satisfy the relationsl
G(k3t|s) = R(k;t|s), AU(k;st|t)/3k = O, (3.20)

whence A(k,t) would vanish, On the other hand, if U(k;t|t) is a rapidly
decreasing function of k, as in the inertial range, A(k,t) is positive,
Its appearance in (3.19) then represents a net tra_nsfer of energy from
modes in the range (k-q, k) to modes >k due to straining by modes <q
but without net loss from the modes <q. The last term in (3.19) survives
even if the modes ~k are in equipartition. Equation (2.6) is easily
shown to give zero transfer among a triad all three of whose members are
in equipartition equilibrium. This may be called the detailed balance
property. The presence of the last term in (3.19) illustrates that
detailed balance between only two members of a conservative interacting
triad of modes is an invaiid concept.

The eddy viscosity (3.15) does not have the form proposed by Heisen-
berga, but it gives qualitatively similar results in the inertial range.

1/2

There it yields vq4~ [q-lE(q)] , as the analysis to follow will show,
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When viscosity effects are strong, the characteristic fall-off time of
G(q;t|s) is (qu)-l, and the result is a value of ¥ which is smaller
than Heisenberg's and inversely proportional to the molecular viscesity.
The absence of an interference between molecular and eddy viscosities in
Heisenberg's formula leads to the prediction of a power-law dissipation-
range spectrum, which implies non-existence of high-order spatial deriva-
tives of the velocity field.u’5

The asymptotic formula for T<q(k,t) indicates that energy transfer
associated with widely separated wavenumbers is proportional to the mean-
square vorticity in the lower wavenumbers. It is important in understand-
ing the structure of (2.6) to remember that this result involves a near
cancellation between the two terms on the right-hand side. These terms
separately give contributions proportional to the emergy in the wavenumbers
<q, not to the mean-square vorticity. The term containing G(k;t|s) is an
input term giving a positive contribution to T(k,t), while the term con-
taining U(k;t|s) is an output term representing a drain of energy from
mode k to other modes. The input and output contributions from low wave-
numbers are proportional to energy because they represent convection as
well as straining. Convection of high-wavenumber structures by strongly
excited low-wavenumber velocity components implies a rapid change of phase
of the high-wavenumber Fourier amplitudes; that is to say, a rapid exchange
of energy between sine and cosine components of the high wavenumbers. This
exchange is represented in (2,6) by the large, cancelling input and output
contributions. The net contribution T<q(k,t) represents the effect of

straining alone,
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Since the output integral in (2.6) involves U(k;t|s), it gives a
negative contribution to T(k,t) roughly proportional to E(k,t). As a
result, the general behavior of (2.6) is to give energy flow out of
strongly excited modes into weakly excited modes. In equipartitionm,
the input and output terms cancel exactly. This can be seen immediately
by using (3,20) in (2.6), as noted earlier. Out of equipartition, the
energy flow is from low to high wavenumbers only if U(k;t|t) decreases

as k increases,

4, THE TIME-CORRELATION AND RESPONSE EQUATIONS

The multiplicity of terms in (2.7) and (2,8) arises from the peculiar
way in which Lagrangian dynamics are represented through (1.2). A more
standard Lagrangian analysis6 is based on the equation for the particle
acceleration 82(§,t0|r)/ar. This treatment leads to trouble in turbulence
theory because the expressions for viscous and pressure forces involve
awkward nonlinearity, which so far has precluded approximate statistical
equations that preserve incompressibility and conserve energy. In the
present approach, this trouble is sidestepped by avoiding direct calcula-
tion of 32(§,t|r)/3r. Instead, the basic equations are for ag(i,t|t)/8t
and agﬁﬁ,t|r)/3t. The r dependence is determined by the difference
between the behaviors along the appropriate paths of integration of these
two equations., The different approaches are illustrated in Fig. 1.
Suppose that the initial Eulerian field 2(§'to) = g(§,t0|to) is given and

g(ﬁ,tolr) is desired. The straightforward procedure is to integrate
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32(§,t0|r)/8r along the path AB. In the present treatment, the Navier-
Stokes equation is integrated along AC, yielding g(g,tlt) for ty s tsr.
Then (1.2) is integrated backward in t along CB. Thus g(§,t0|r)-g(5,t0|t0),
the total change in the particle velocity during the interval (to, r),
appears as the difference between the two forward integrations AC and BC.

If there are no viscous, pressure, or external forces, the two integrations
are identical, so that g(g,tolr)-g(g.to|to) = 0,

Since (x,t) is laboratory spacetime, this amounts to describing
Lagrangian behavior by equations which are Eulerian in character, a fact
pointed out to the author by Prof, S, Corrsin. The advantage is that
conservation and invariance properties appear directly and are easily
incorporated in the final closure equations. The penalty is that the
Lagrangian statistical functions are determined as algebraic sums of a
multiplicity of intricately counterbalancing terms.

The meaning of the various terms in (2.7) can be uncovered by tracing
how they arise in the perturbation analysisl through which the equation
was derived. The v term has an obvious significance: simple viscous decay
of Fourier amplitude of the Eulerian field at time t. The first term on
the right-hand side can be interpreted by considering a hypothetical situation.
Imagine that a velocity field with an isotropic, multivariate-Gaussian
ensemble distribution is set up at time r and then forces are somehow
applied so that the Eulerian field is frozen thereafter, exhibiting no
time-dependence at all, The fluid particles move along the streamlines of
the spatially varying Eulerian field, and the Lagrangian velocities change

with time. If the derivation of (2.7) is repeated for this situation,
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the only surviving term is the first term on the right-hand side. This
term represents a decrement in the correlation U(k;tlr) due to the labeling

transformation (transformation from Eulerian to Lagrangian coordinates):

The particle at x at time t was elsewhere at time r, so that 3(5,t|r) is
really the Eulerian velocity at a point other than x and is partly decorrelated
with u(x,t|t).

In the actual case, vhere the Eulerian velocity is not static, this
correlation loss is partly compensated by a correlation of tie relabeling
with the evolution of the Eulerian field during the same period: The
substantial derivative [3/3t + u(x,t)*Y] which determines the relabeling
also appears in the Navier-Stokes equation. The second term on the right-
hand side of (2.,7) expresses the compensation. The first and second terms
together express net effects of relabeling during the period (r,t). Call
them the Class I terms,

The remaining terms on the right-hand side of (2.7) all express
correlations arising from the distortion of the Eulerian field over its

entire history from t They consist of Class II, with upp.r limit r, and

0
Class III, with upper limit t. Each of these classes is itself a sum of
compensating terms. The algebraic sum of the terms within each class
provides a cancellation which eliminates convection effects in the Eulerian
evolution; only the difference between the histories at different space
points makes up the net contribution., The integrals of Class II and Class
III over d3k separately vanish for all t and r. This expresses that past

nonlinear processes in the Eulerian field have no direct effect on

3(255,t|t)-5(§,t|ri>/3t. The latter derivative is determined wholly by
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the labeling transformation in the interval (r,t). The vanishing of the
integrals over dak can be verified by using (2.9), (3.4), and some changes
of variable.

It may be asked why the net effect of past distorticn of the Eulerian
field does not appear simply as an integral over the interval (r,t) instead
of as the algebraic sum of Class II integrals over (to,r) and Class III
integrals over (to,t). The reason is that distortion during (r,t) is
affected by higher correlations built up over the entire history of the
dynamipal interaction as well as by the value of the velocity covariance
at time r. It will be seen below that, in general, the Class II and
Class III terms do not cancel each other if t = r, They express effects
that exist even if no labeling transformation has taken place.

A similar analysis may be made for the response equation (2.8). The
first two terms on the right-hand side arise from relabeling associated
with the unperturbed velocity field; that is, relabeling of the perturba-
tion according to the transformation that would take place in absence of
perturbation. They are analogous to the Class 1 terms in (2.7). In
addition, the applied perturbation at time r, to which G(k;t|r) gives the
average response, induces a perturbation in the relabeling transformation.

term
This is expressed by the [D J,on the right-hand side of (2.8).

kpa ~ Pkpq
The remaining two terms represent effects from the perturbation in the
nonlinear evolution of the Eulerian field.

Hopefully, the interpretations above help a little to make (2.7) and
(2.8) intelligible. However, no clean-cut separation is possible among

the various effects cited, All the terms together determine the values of

the G and U functions which appear in any one term.
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It was stated in Sec., 1l that g(}_,tlt)‘g(gg',tlr)) was not symmetric
about r = t in stationary, homogeneous turbulence, except if x = x'., This

can be investigated with (2.7). First, an isotropic energy source is needed

in order that stationarity and isotropy be mutually consistent. The easiest
way is to add a negative damping term to the Navier-Stokes equation so

that, after Fourier transformation,
w2 > w2 - u(k), (4.1)

where u(k) is positive, and >vk2 for some k. Let u(k) vanish outside the
energy-containing range. This input mechanism may be regarded as an
idealization of the mechanism by which real turbulence draws energy from
an overall shear, The effect of the input on (2,6)-(2,.8) is simply to
replace vk2 by vk2 - u(k) everywhere. To describe the stationary state,
the limit ty > == is taken,

Now consider (2.7) for r = t, The two D' terms cancel exactly, and,
by (2.9) and the symmetry of the integrand factors in p and q, the coeffi-
cient kaq in the sixth term can be replaced by kaq' The first two terms
on the right-hand side vanish., The result is that the right-hand side is
identical with the right-hand side of (2.6). Now subtract (2,6) from twice
(2.7) and multiply by 2nk%, In the stationary state, dU(k;t|t)/dt = 0,

Therefore, by the definitions of T(k,t) and R(k;t|r), the result is

E(k, D) [aR(k;t[r)/0t] = 5 T(k,t),
or, by stationarity,
E(k,)[aRCKk;t [0 /ar] _ = - 3 T(K,t), (4.2)
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Fourier transformation of (4,2) yields
. - . sin(ky)
[BUii(_gg,tIt,gc_-rx,tlr)/ar]r:t fOT(k,t)—-ka dk. (4,3)

For y = 0, (4,3) gives zero slope at r = t, by (3.3), For y intermediate
between energy-containing and dissipation scales, the sin(ky)/(ky) factor
depresses the relative contribution of wavenumbers receiving energy, so
that the right-hand side of (4.3) is positive. This agrees with the
discussion in Sec, 1. Equation (4.3) shows thatfgggggmgggggy is fed in
[negative T(k,t)] contribute acceleration positively correlated with
particle velocity, while wavenumbers dissipating energy contribute nega-
tively correlated acceleration,

Equation (4.,2) actually is an exact result of stationarity, independ-
ent of the closure approximation and of the nature of the input forces.

If an isotropic, statistically stationary forcing term of any kind is
added to the Navier-Stokes equation, then (4,2) follows immediately from
the identity of the triple moments and input terms in the exact equations
for 3U(k;t|t)/3t and [30(k;t|r)/3t]r=t that can be formed from (1.2) and
the Navier-Stokes equation.

Evenness of Uii(ﬁ,t]t;i,tlr) as a function of r-t requires that all
the higher odd r derivatives vanish at r = t, as well as the first, The
behavior of the higher derivatives has not been determined for either
(2.6)-(2.8) or the unabridged LHDI equations. This question is part of
the general problem of integrability and realizability of the LHDI equations

discussed in Ref. 1.

Further insight about the time-correlation and response equations is
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provided by investigating the contributions from interactions with much
larger and much smaller wavenumbers. It is interesting first to examine
the contribution from very local interactions, p =~ k, q = k. Suppose that

all triad interactions are absent from (2.6)-(2.8) except those for which
lp - k| <6, |ag-k| <8, &<<k, (4,14)

Let & be small enough that p and q may be replaced by k everywhere in the

integrands. Then

3 3
~ ~ Dt ~ - B - N .
kaq‘~ DkPq‘H DkPq.~ 8 ks ¢ 4 gk (4.5)

The right-hand side of (2.6) vanishes to this approximation; because of
symmetry, very local interactions produce no net energy transfer, All
terms but the first two in the right-hand sides of (2.7) and (2.8) either
cancel in pairs or vanish. When the integrations over p and q are per-

foried, the net contributions from the first two terms yield

t
- 301352005t ) [ UCkst]s)ds, (4.6)

(373t + vk2)U(k;t|r) >
r

t
- 31%6%6(kst |0 [ Ulk;t|s)as,
r

(3/3t + vk2)G(k;t|r)
G(k3r|r) = 1. (4.7)

The exact solution to (4.6) and (4.7) for v = 0 can be obtained by
the trial substitution
Ulkstlr) = U(K)G(k;st|r) = g(t-r)u(k), (u4.8)

which reduces (4.6) and (4,7) to the single equation

t
ag(t)/at = - a’g(t)[ g(s)ds, g(0) = 1, (4.9)
0
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where a2 = (3ﬂ/2)k362U(k). The solution of (4.,9) is

£t) = ue-at/2/(l . e-at/2)2’ (4.10)
which is an even function of t and has the asymptotic behavior
g0 = 1-5@)? (atecl), g(t) = w2 (at>>1). (4.11)

This solution suggests that interactions local in wavenumber tend to pro-
duce an eventual rapid decay of U(k;t|r) and G(k;t|r) at large t-r, Setting
§ = k suggests that the characteristic decay frequency due to interactions
with wavenumbers of order k is crudely kvk, where vi = kE(k,t).

To obtain the contribution to (2.7) from all interactions involving
wavenumbers >q >> k, make the same assumptions used in obtaining (3.10).

The asymptotic contribution is

o q'+k t
[3U(k;t|r)/8t]>q = U(kst|r) [ dq'f ' dp&kpq'f U(q';t]|s)ds
Qe q'-k r
t
+kaq.ftoG(p;tls)U(q';tls)ds] (@>>k).  (4.12)

All the other terms on the right-hand side are suppressed either because
they involve U(p)U(q) or because they involve at least one function for

p or q with a time separation of order t-r; (4,12) assumes that t-r is

large compared to the characteristic decay times of the modes 2q. In the
second term of (4.12), U(kjr|s) = U(k;r|t) = U(k;t|r) has been used, because
only s = t can contribute. The wavenumber integrations in this term were
performed in evaluating (3.10). The integration in the first term is easily

performed, with the result
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[BU(k;tIr)/at]>q = -v;l(t)u(k;tlr') (q >> k),

®© t
vi(t) = v (t) + %;-f dq'f (q')QU(q';tls)ds. (4.13)
q q q t
0
In the expression for v&(t), the lower limit r has been changed to tye
This is permissible because all appreciable contribution comes from

t-s << t-r, Similar analysis gives
[3G(k;t|r)/8t]>q = - v&(t)G(k;tIr) (q >> k) (4.14)

for the contribution to the right-hand side of (2,8) from wavenumbers zq,

for t-r large compared to the characteristic times of these wavenumbers.
Comparison of (4.13) and (4.14) with the viscous terms in (2.7) and

(2.8) shcws that the high-wavenumber interactions act like an eddy viscosity,

but not the same eddy viscosity which appears in the energy-transfer con-

tribution (3.14)., The difference may be understood as follows. The

energy transfer among different wavenumbers in isotropic turbulence can be

ascribed to advective straining. The pressure term makes no direct

contribution:, The pressure term also makes no direct contribution to the

evolution of the Eulerian time covariance <gﬁ§,t)’g(§',t'i>. The exact

equation for this covariance is

~

(373t -2 ){ulx, )l ') = - {alx,t) Tl

st)eulx' ,t')
- (u(x' ,t")Ip(x,t), (4.15)
and the term containing the pressure p(x,t) vanishes by incompressibility

and homogeneity.

Just the reverse is true for the Lagrangian time covariance., Advection




—25.

produces no direct change in particle velocity and therefore makes no
direct contribution to decay of the Lagrangian covariance. The pressure
fluctuations, on the other hand, produce accelerations which decorrelate
the Lagrangian velocity. Crudely speaking, vq(t) may be called the eddy
viscosity due to advective straining and vA(t), the eddy viscosity due

to pressure fluctuations. The separation is not clean because the advec-
tion and pressure fluctuations react on each other.

The difference vé(t) - vq(t) is a positive integral. This provides a
crude suggestion that the Lagrangian correlation time for turbulence may
be shorter than the Eulerian correlation time. Some simple physical
reasoning leads to the same suggestion.7 The argument is that even in a
frozen Eulerian velocity field (infinite Eulerian correlation time),
Lagrangian covariances decay with difference time because given fluid
elements migrate through the velocity field. This question will be dis-
cussed further in Sec, 6, after the quantitative inertial-range results
are available.

Now consider the contributions to (2,7) and (2.8) from interactions
with wavenumbers £q' << k. For t-r the order of the correlation and response
times of mode k, the situation is like that for energy transfer. The contri-
butions to the various terms on the right-hand sides cancel in such fashion
that what remains is proportional to the mean-square vorticity in the wave-
numbers £q'. In (2,7), the Class I, Class II, and Class IIII?égEEI separately.
In (2.8), there are cancellations between the first two terms, within the
third term, and between the last two terms.

The behavior at large t-r is more complicated., The analysis above
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suggests that if k interacted only with wavenumbers of order k and larger,
the functions U(k;t|r) and G(k;t|r) would fall off exponentially for large
t-r. What actually happens is that interactions with low wavenumbers
dominate the long-time behavior and cause these functions to fall off

more slowly, Discussion of this phenomenon is postponed to Sec. 6.

5. INERTIAL-RANGE EQUATIONS
Kolmogorov's inertial-range law is

2/3k-5/3

E(k) = Ce . (5.1)

where € is the rate of energy dissipation per unit mass and C is a universal
constant, The time-dependence is omitted in (5.1) because the relevant
dynamical times in the inertial range are assumed to be short compared to
the decay time of the total turbulent energy, so that the inertial range is
nearly statistically stationary. Kolmogorov's hypotheses also yield
inertial-range forms for G(k;jt|r) and R(kjt|r). The requirement that they

depend only on €, k, and t-r imposes on these functions the forms
alk;t|e) = 6?21y,  RGkstle) = R(eY%2P1), 1= ter.  (5.2)

Reference 1 argued that the LHDI equations led to a Kolmogorov inertial
range because they gave the required localness of the dynamical interaction
in wavenumber. This can be verified for the abridged LHDI equations by
substituting (5,1) and (5.2) into (2.6)-(2.8) and checking that the inte-
grations over p and q converge properly at zero and infinite wavenumbers.

The equations for G(T) and R(t) which result from the substitution can be
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written most usefully by introducing rescaled functions

B(1) = 6(yr),  R(1) = R(y1), v = (21/0)}2, (5.3)

l/3k2/3

where, for convenience, T now denotes the nondimensional argument € T

of (5.2). Then C drops out of (2.7) and (2.8) leaving

da(1)/dt = jjAdvdw{-cWE(r)I;E(wz/%)ds + nwav?"’r)f;i(wms)ds
- o, - Buv]§(v2/3t)'§(w2/§T)f;E(s)ds
- J;[Bwa(v”"’s)af-s) - 0! BB ¥(1-)) (W °s)as)
(t 2 0), G(o) = 1, (5.4)
dR(v)/av = [[ dvawi-c, R(x) f:E(w”‘*s)ds + o, v 3R 3 f;'i(w"’as)ds
+ f:[BWv'n/aE(s-r)ﬂv?/as) - 0! Tv? 3 (s-1)R(s) R %s)as
- j:[awa(v"’/as)i'(ls-rl) - b, v %R 3 st D R %s)as

- IOEBVW - D! I&(v

2B30R()RW? ¥ |s-t])dsy (x 2 0), FO0) = 1. (5.5)

Here v = p/k, w = q/k, and ”A now denotes integration over all of the
(v,w) plane such that (1,v,w) can form the sides of a triangle. In accord
with the assumption of an asymptotically stationary inertial range, the
limit ty > has been taken. In addition, some simple transformations of

time variables have been made and the symmetry property (2.5) has been used.
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The coefficients in (5.4), (5.5) can be written

2 -8/3 3 -8/3 2
B, = TVW (xy + 27), va:nvw/(l-y),
1 __ -8/3 22 2 2
Dvw = 3w (1 - xyz - 2y°z" + 2" - y7),
Dcw = %-nvaw'e/a(l - XyzZ - 2x%2% + 22 - x2), (5.6)

where x, y, z are now the cosines of the interior angles opposite the
triangle sides 1, v, w respectively.

Substitution of (5.1) and (5.2) into (2.6) makes T(k,t) vanish
identically by virtue of the conservation identity (3.u4). The energy
gained by k from lower modes is exactly balanced by a drain to higher modes.
This formal result is a necessary consistency requirement for an inertial
range, but it says nothing about the localness of the energy transfer.
Transfer between widely separated wavenumbers can be investigated by sub-
stituting (5.1) and (5.2) into (3.15) and (3.19). The result is that both
the loss from modes <q due to interactions with modes 2k and the gain in
modes 2k due to interactions with modes <q are ﬂ:(q/k)w3 for k >> q, pro-
vided that G(t) and R(t) are properly integrable over 1, Discussion of the
behavior of the latter functions, and the check of localness for (5.4) and
(5.5), are discussed later in this Section and in Sec. 6.

The Kolmogorov constant C can be determined by evaluating (3.8). In
the inertial range, Nl(k,t) must be independent of k and equal to e, since
there is negligible dissipation and the energy cascade is conservative.

This implies the similarity law

T(ak, ap, aq, t) = a-ST(k, Py Qs 1), (5.7)
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where a is such that all wavenumbers involved are in the inertial range.

Equation (5.7) can be verified for the abridged LHDI transfer function by

inserting (5.1) and (5.2). It leads to an important simplification of (3.8).

Write b = p'k/k', q = q'k/k' so that the expression for € = TI(k,t) becomes
K2kt bk

e =[ (k/k")dk'[ db] dqT(k,b,q) (b, = larger of b, k-b), (5.8)
X 0 b,

by (5.7). The time argument in (5.8) and later equations is supprecsed as

in (5.1). Now set p = k2/k' in (5.8) and find

X p btk
e = [ (k/p)dpf dbf  dqT(k,b,q). (5.9)
0 0 b,
Finally, integrate by parts and obtain8

ptk

k
e = k[ dp In(k/p)[ T(k,p,q)dq. (5.10)
0 Py

If (5.1) and (5.2) are substituted into (5.10), some simple changes of

variable yield the formula

1+v
1 ]
(c/2m™%? = unf av 1n(a/v)[  awf dslA_ B(s)R(v 2s)R(w?/ 3s)

0 Ve 0 v

-va51v2/3s)§13)§(w2/3s) - Bwv51w2/as)§¥s)§kv2/as)]. (5.11)
where
-8/3 1 1

Bg = (Bryy * B (W) / » V= lv- 5' tz

It should be remembered that although T(k,t) vanishes identically in
the inertial range, Ni(k,t) defined by (3.7) does not vanish, because the
integrations include the dissipation range. The passage from (3.7) to (3.8)

uses the conservation properties to obtain a formula for C which involves

only inertial-range functionms.
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Equation (5.10) can be cast into the form
0
e = | W(a)S s (5.12)
1 )

where W(a)(da/a) is defined as the contribution to ¢ from all triad inter-
actions such that the ratio of maximum to minimum wavenumber lies between o
and o + da. To obtain W(a), write (5.10) as

k+p

k k k
e = kf dp 1n(k/p)[ T(k,p,q)dq + kf dp In(k/p)[ T(k,p,q)dq.
0 0 k

Px
In the first term the ratio of maximum to minimum wavenumber is a = k/p
and in the second term it is a = q/p. In the first term write q = k/B

and in the second write p = k/B8, q = ak/B. Then some mani_pulations of

the limits yields e in the form (5.12) with

L]
3, -1, 2 -2 @ -3
W(a) = k°[a""1naf T(k,k/a,k/8)8"“dB + af T(k,k/B,ak/B)8 ~1ng dgl,
1 a-1
# 1 1y, 1 .-1
« =[2-F]+517 (5.13)

which is independent of k, by (5,7). Substitution of (5.1) and (5.2) into

(5.13) yields

4/3

Wa) = o a>> 1, (5.14)

in agreement with the results obtained from (3.15) and (3,19).
For values of T small enough that R(t) and G(t) are still 0(1), the
convergence properties of the wavenumber integrals in (5.4) and (5.5) are

like those of the energy transfer. Equations (4.13) and (4,14) yield
u/3

contributions «a from interactions with v or w > a, a >> 1, Investi-

gation shows that the contribution from interactions involving v or w <a'l

4/3

is =" also. The behavior at large t will be discussed in Sec. 6.
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6. BASIC NUMERICAL RESULTS AND THEIR INTERPRETATION

Before inertial-range computations were attempted, an overall consis-
tency check of the closure equations was performed by repeating some numerical
studies originally carried out for the unaltered Eulerian direct-interaction
equations.g Inviscid equipartition solutions were investigated first, The
viscosity was set equal to zero in (2,6)-(2,8) and the equations truncated
to a finite wavenumber range, as in Ref., 9. Initial spectra U(k;tolto) of
several forms were taken, including sharply peaked spectra confined to a
narrow wavenumber band. The system was found to approach equipartition
and fluctuation-dissipation equality [Eq.(3.20)]. E(k,t) stayed positive
for all k and t, and G(k;t|r) and R(k;t|r) approached zero for large t-r.
Some of the finite-viscosity decay calculations at moderate Reynolds
number described in Ref, 9 were also repeated. The spectral predictions
of the present abridged LHDI equations turned out to be quali tatively
similar to those of the unaltered Eulerian direct-interaction equations
at the Reynolds numbers investigated (Rx < 40).

The unaltered direct-interaction equations are the exact description
of a model dynamical system and are guaranteed self-consistent. There is
no such guarantee for the LHDI equations.l The numerical results just
described, and those to follow, suggest that the LHDI equations actually
are a more stable system than the unaltered direct-interaction equations
and stay farther from unphysical behavior. Functions which decay with
damped oscillations in the unaltered approximation instead fall smoothly to
zero in the LHDI and abridged LHDI approximations, A possible explanation

lies in the general nature of the alteration prescription. The change from
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direct-interaction to LHDI triple-moment formulas consists of replacing
certain labeling times s < t by t in the integrals over the history of the
fluid. This appears to be stabilizing in the same way as a change from
forward to backward differences can be stabilizing in the numerical
integration of differential equationms,

The basic inertial-range equations (5.4) and (5.5) were integrated
by a modification of numerical methods developed for the Eulerian direct-
iﬁteraction equations.g The Kolmogorov constant was then computed by
evaluating the multiple integral (5,11) in such a way that the calculation

also yielded W(o) without extra work., The results for G, R, W, and
a
1
Ko) £ [ W(an)Er
1

are plotted in Figs. 2 and 3., The value computed for the Kolmogorov
constant islo

C= 1.77. (6.1)
A description of the numerical procedures and estimates of computational

errors are given in the Appendix,

The following values for integrals over R and G were obtained:

Ig = foe(s)ds = L.04, Ip= IOR(s)ds = 1.87, I, = jOG(s)R(s)ds = 0.76,
* i
I, = [ [R(s)d6(s)/ds - G(s)dR(s)/ds)sds = -0.18. (6.2)
0

These numbers yield the following inertial-range values for the quantities H

which appear in (3.15), (3.18), and (4,13):
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_1 1 1/3, -4/3 _ 1/3, -4/3
w =gl -1, = 0,235 ¢k s
® t
14 2 - -
-—1-f p“dp/ G(p3t|s)U(p;tis)ds = ¢l el/3k 43 0.47 el/sk 4/3
15 ¢, = 20 71 ’
x
2m 3 o1 1/3, -4/3 _ 1/3, -4/3
3 jkp A(p)dp = g5 (111, + 21,0c ™"k = 0,235 ¢~k .
2n U 1 1/3, -4/3 _ 1/3,-4/3
Tk ak) = gz (11, + 21,0c ek = 0.314 /%™,
t
3 - -
28130 Gkt |s)Ulkst]s)ds = 2= c1, e1/3%3 < 0,090 €1/34/3
5 15 ~1 ’
_ 1 1/3 -4/3 1/3 -4/3
vi =V + 5 CI ek /3 . 1.89 ¢ / k / . (6.3)

Figure 3 indicates that W(u) peaks at a = 2, However, it also indi-
cates that only about 20% of the total transfer comes from a £ 2; that is,
from triad interactions in which the largest and smallest wavenumbers differ
by a factor of two or less, The tail of W(a) carries most of the energy
transfer, so that the local cascade appealed to by Kolmogorov seems actually
to be rather diffuse., This may mean that inertial ranges must be quite
extensive before they exhibit nearly asymptotic dynamical properties., The

4/3 dependence of W(a) at large a found

numerical results support the o
analytically.

The numerical results (6.3) for effective eddy viscosities and other
functions relevant to distant interactions exlibit some interesting features.
Substitution of these results into (3,19) indicates that the eddy-viscosity

loss from low wavenumbers (the first term on the right-hand side) represents

slightly more than 50% of the energy gain of the high wavenumbers. An
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almost equal gain in the wavenumbers >k comes from the straining action
of the wavenumbers sq upon wavenumbers in the range (k-q, k), without loss
from the wavenumbers <q.

The most striking feature of (6.3) is that vi is about eight times as

large as v Some help in interpretation comes from noting that v]'< -V,

k. AN
arises from the first term on the right-hand side of (2.7), or (2.8).
According to the discussion in Sec, 4, this term would contribute all of
vé if the Eulerian field were frozen. The remaining contribution V) repre-

sents the effects of change of the Eulerian field with time. A large ratio of

v;i;e:hs that the migration of particleg, under the action of wavenumbers

2k, is accompanied by accelerations which leave the large-scale Eulerian

field almost unchanged; the particles are subjected to pressure forces

such that they take on nearly the velocity of their new surroundings, apart

from fluctuations at scales sk-% In other words, the transport of particles

by the velocity excitation in wavenumbers >k is much more efficient than

the transport of momentum across gradients of the large-scale velocity field.
The migration of fluid particles is directly related to the turbulent

transport of heat in a fluid with passive temperature gradients. A large

ratio Vﬂ/“k therefore implies that the ratio of eddy conductivity to eddy

viscosity is large. The LHDI result for the asymptotic thermometric eddy

conductivity due to wavenumbers >k is, in fact, just vﬁ - VYo Thus (6,3)

implies that the eddy-transport Prandtl number is

o, = vk/(vé - vk) = 0,14 (inertial-range k). (6.4)

k

Both G(7) and R(t) have zero slopes at T = 0. The result for G is

obvious from (5.4). The slope of R vanishes because the right-hand side
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of (5.5) is proportiocnal to the energy transfer if T = 0 [see (4.2)], and

the latter vanishes in the inertial range. Figure 2 indicates that G and

R are indistinguishable near the origin but are markedly different at

large argument values. For T < 1, the numerical investigation supports

the analytical result that the behavior of G(1) and R(t1) is dominated by
interactions local in wavenumber., The behavior at large T turns out to

be dominated by interactions with low wavenumbers. Analysis of this phe-
nomenon requires investigating the asymptotic forms of all the terms on

the right-hand sides of (5.4) and (5.5). Only the results and their physical
interpretation will be described here.

Consider (5.5) first., The low-wavenumber contributions come from
small v and small w. The small-w contributions turn out to be negligible
for all T, The dominant small-v contributions for large T come from
‘A 1'3/2 and appear in the second and sixth terms on the right-hand side
of (5.5), both of which have the coefficient D e These contributions

act as a source term which supports R(t) against the effective eddy damping

from v, w = 0(1). The result is

R(1) n 172 (r > 1), (6.5)
apart from a factor which varies more slowly than any power of 7. In (5.4),
the important contributions again come from v 2 1-3/2 and appear in the

second and last terms on the right-hand side, They result in a tail

-15/2

B(1) v 1 (t >> 1), (6.6)

apart from a factor which varies more slowly than any power of t. The

for R and § .
numerical resultgfgre ggnsgstent with (6.5) and (6.6). The dominant con-
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tributions to C, as given by (5.11), and to the integrals in (6.2), are all
from values of the time-arguments such that G and R are dominated by inter-
actions local in wavenumber.

The physical interpretation of the tails on R and G is interesting.
Transfer of energy from low to high wavenumbers involves straining pro-
cesses which produce relative displacements of fluid elements. Suppose
that there is an initial excitation of the velocity field at wavenumber p
and that this excitation is spatially distorted by the action of much
higher wavenumbers at a time tl. Apart from the effects of acceleration,
spectrum changeés can be produced just by the differential displacement.

If the elements along some line in the fluid suffer displacement modulated
at wavenumbers ~k (k >> p), then the resulting Eulerian velocity field
will have a component at wavenumber k because elements which are equally
spaced after the displacement were not equally spaced before displacement.
Of course, there will be additional spectrum changes because the fluid
elements suffer changes of velocity, but they turn out not to be relevant.

Now consider u(x,t|r) for t > t, and r < ¢,. The field u(x,t|t) is
the Eulerian field after distortion, and has a component k. The field
gﬂ&,tlr) is the Eulerian field before distortion, but relabeled according
to the positions of the fluid elements after the distortion., Because of
the modulated displacement, correlation in the velocity of a fluid element
before and after distortion shows up as a correlation between the fields
u(x,t|t) and u(x,t|r) that contributes to U(kjt|r)., But for r < t), the

excitation of interest is, in the Eulerian picture, at the low wavenumber p.

The connection with wavenumber k comes only through the labeling transforma-




tion that takes place between t. and t. Consequently, there is a X component

1
of 3(§,t|r) that varies with r at the slow rates of evolution of the low
wavenumber p, and the contribution of the distortion process to U(kjt]|r)
decays slowly with r.

The terms in (5.5) which give rise to the tail in R can be seen to
describe just this process if the perturbation analysis is traced through
in detail. The contribution to U(k;t|r) depends on the shear associated
with the low wavenumbers p; unless velocity gradients are present, the
modulated displacement of fluid elements cannot generate modulation of
the velocity field.

A similar but more involved argument gives the physical basis for the
tail on G. The essential point is that, because of differential displace-
ment of fluid elements (labeling transformation), the externally imposed
perturbation in the field 3(§,t|r) which produces a pure wavenumber k
perturbation in 3(§,t|t) must contain all wavenumbers, including low wave-
numbers p which evolve slowly.,

According to the LHDI closure formulas, the functions R(kj;t|r) and
6(k;t|r) determine the effective memory times for the buildup of triple
correlations and energy transfer. The action of wavenumbers <<k in making
the functions more persistent therefore tends to lengthen these memory
times. An interpretation is the following: Production of high wavenumbers
involves stretching of large-scale spatial structures into structures having
small transverse scales., During this process, the correlations present
in the large scales are not destroyed exponentially wich repeated halvings

¢ scale size, but tend to persist throughout the straining process. 1In
wavenumber language, the triple correlations associated with energy transfer

tend themselves to be transferred up the wavenumber spectrum.
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7. LAGRANGIAN AND EULERIAN STRUCTURE FUNCTIONS

A generalized spacetime structure-function tensor may be defined by

B..(x,t|r3x',t" ") = {[u.(x,t]r) - u,(x',t"|r")]
= = 1'% it

13
x [“j(i‘.’tlr) - uj(g',t'lr')]>. (7.1)
The structure tensor measures the velocity difference between two fluid

elements. The invariance property

auij(i,t|r;§,t|r')/3t =0 (7.2)

for homogeneous turbulence was obtained in Ref. 1. It expresses that the
transformation from Eulerian to Lagrangian coordinates preserves volume in

an incompressible fluid.ll For isotropic turbulence, (7.1) and (7.2) give
Bij(ﬁ,tlr;§],t'|r') = Gij[U(r) + U(r")] - 2Uij(§,t|r;§',t'|r'), (7.3)

where U(r) is the mean-square velocity in any direction at time r.
A purely Lagrangian structure tensor, which compares fluid elements
labeled simultaneously, is given by t = t', and a purely Eulerian tensor

is given by r = t, r' = t', The specialized Lagrangian tensor

B

-~

ij(§7§f;t|r) z Bij(i,t|t;x',t|r) (7.4)
can be evaluated for t 2 r from the abridged LHDI equations. This tensor is
purely solenoidal, while the full Lagrangian structure tensor is not.

When the turbulence is isotropic and stationary, standard Fourier

transformation formulas12 yield

B(y;t|r) = uf [1 - L:;kﬂ R(k;t|r)E(k)dk,
-~ 0
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By (yitlr) = uf (5 - (S220KE) 2ot ey | yE()ak, (7.5)
= 0 k)’ (k)

where B and B, are, respectively, the trace of Bij(z;tlr) and the diagonal
component parallel to'z, in a coordinate system aligned withdz. The diag-
onal components perpendicular to‘z are each given by B, = (B - B")/2, and
the off-diagonal components vanish in this coordinate system,

If the inertial-range forms (5.1) and (5.2) are substituted into (7.5),
the result, denoted here by superscript (1), is

B(l)(z;t|r) = 22/3y2/3F(l)(el/sr/yz/a),

Bﬁl)(z;tlr) = 52/3y 2/3Fﬁl)(el/31/y2/3), T=t-r, (7.6)
where
F'P(e) = ucf [1 - SBX p(x/3%) 1075 %y,
0
Pl (s) = uef (& - (BEBX 208 X 5y 2/35) 3,5/ 3yy, (7.7)
f 0 3 x3 x2
and, in particular,
(1) =91 - (L 23 (D
F=(0) = gr(g) C = 8.52, F" (0) = 1T Fr77(0). (7.7a)

The computed value of C is used in (7,7a).

The integrations over x in (7.7) are transformed wavenumber integrationms,
and they converge at both limits as a consequence of the properties of R
established in Secs. 5 and 6. And if y is the reciprocal of a wavenumber
within an extensive inertial range, only inertial-range wavenumbers contri-
bute appreciably to the integrals, Nevertheless, (7.6) does not give the
inertial-range structure functions correctly. This can be seen from (u4,2).

If (4,2) is integrated over the energy-containing range, it yields
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[ [3RGkst|r)/at] _ E(kdk = -e/2. (7.8).
energy
range
Consequently, if 1 = t-r is in the inertial range of time differences,

small compared to the characteristic evolution times of the energy-contain-

ing wavenumbers,

| R(k;t|r)E(k)dk = - (t-r)e/2. (7.9)
energy
range
The factor ky in (7.5) can be replaced by unity with negligible error if

k is in the energy-containing range and y_l in the inertial range. Hence

there is an additional contribution

3 (yst|r) = 2(t - re, B (y stlr) = 2t - m)es3, (7.10)
so that
Bysele) = 232 My g (ysele) - 52/3y2/3F"(€1/31/y2/3),
T=t-I‘_>_0, (7.11)
with
r(s) = ' P(s) + 2s, F (s) = Fﬁl)(s) + 2s/3. (7.12)

If s ~ 1, the two contributions to F(s) have comparable magnitudes.

There is no corresponding asymptotic contribution from dissipation-
range wavenumbers, The total transfer into the dissipation range equals
the transfer out of the energy range, but the dissipation-range contribution
to (7.5) is suppressed by the trigonometric coefficients if y is in the
inertial range and by the small correlation time of R(kjt|r) if t-r is in
the inertial range.

A closer look at how the contributions (7.10) arise shows that actually

they should not be considered direct effects of the energy~containing eddies.
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Equation (7,2) can be Fourier analyzed just like the energy-balance equation.
It then describes a similar cascade process: There is a negative contribu-
tion —26ije/3 to the left-hand side from the energy-containing range, if
t-r is small compared to the characteristic times of the energy-containing
eddies, This is balanced by a positive contribution at higher wavenumbers,
These properties can be established by analysis similar to that which gves
(4.,2). Note also the discussion of small scales at the end of Sec. 1.

Thus, if (7.1) is Fourier analyzed before (7.2) is used, there are two
equal and opposite energy-range contributions which cancel, and (7.10)
appears as a contribution at higher wavenumbers, from the cascade process.
The formal analysis evidently indicates an ambiguous origin for (7.10),
determined by what implicit uses of conservation and invariance properties
have been made.

The physical interpretation of (7.10) seems fairly straightforward:
On the average, two particles which are separated by‘X at a given time t
are undergoing a relative acceleration negatively correlated with the
velocity difference, the correlation being measured by the slope of
B(2){X;t|r) as a function of r at r = t. This was discussed at the end of
Sec, 1. B(l)(y;t|r) has zero slope at r = t and is a contribution from the
part of the relative acceleration which is uncorrelated with the relative
velocity at time t. The correlation described by B(Q)(ggtlr) is due to
straining processes established over finite times. If the velocity is
multivariate Gaussian at tys SO that T(k,to) vanishes for all k, then there
is no initial correlation of relative acceleration,due to pressure forces,
with relative velocity.

The abridged LHDI equations of the present paper do not predict
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BQX;t|r) for r > t. But clearly the negative slope as a function of r
cannot persist. Eventually, B(X;tlr) must increase with r, Note that

if two particles,known to be separated by‘X,at t, have reached a new
separation'z' at a later time t', their mean-square velocity difference is
not given by B(z';t'lt'). These two particles are members of a special
subset of all pairs separated by’z' at t', and have special statistics.
The present results at r = t thus do not contradict the proposal by C. C.
Lin13 that the simultaneous correlation of relative velocity and relative
acceleration be positive and constant at times sufficiently long after
release of a particle pair at an inertial-range spatial separation., The
structure function which describes the change with time of simultaneous
relative velocity is Bii(fftlt';iil’tlt')‘

Equation (7.11) is inconvenient for finding

B(t-r) = B(0O;tir).
which gives the mean-square change of velocity of a single fluid element

in the interval t-r. For inertial-range values of 1 (not for 1 + 0),

B(1) = xe|t], K = GCI [1- R(s)]s-2ds + 2, (7.13)
0
The second term in « is obtained from (7.10), and the first term is obtained

by using (5.1) and (5,2) "~ (7.5) with y = 0. Equation (7.12) yields
F(s) =~ ks F"(s) = ks/3, s> 1, (7.12a)

B(1) must be even in t for statiomary turbulence, and this fact has been
incorporated into (7.13). The linear dependence of B(t) on t in the inertial
range was obtained by Inouelu by Kolmogorovian dimensional analysis.

The computed results for F(s) and ﬁi(s) are plotted in Fig. 4. The




—43-

value computed for the integral in (7.13) is 1.46, yielding x = 17.5,

The above formulas for the inertial-range Lagrangian structure func-
tions assume stationary isotropic turbulence, which must be maintained by
statistically stationary driving forces of some kind. The results are un-
changed if the turbulence is freely decaying. This can be verified by re-
tracing the analysis carefully for the freely decaying case. It also can
be seen by a simple argument: The decay of the total kinetic energy is
given by 8u2/3t = -2e, where u is the total rms velocity. The characteristic
decay time of u is therefore u2/e. In a time T << u2/c, the mean-square
change of velocity due to decay (i.e.. due to the lack of energy-range
sustaining forces) is <(Au) 2)’» (t:'r/u)2 v ET[T/(U2/€)], which is asymptotically
negligible compared to the mean-square velocity differences of order et
found above. Note that mean-square change of velocity does not mean change
of mean-square velocity.

A purely Eulerian structure tensor is cbtained by setting r = t,

r' = t' in (7.1). For t - t' small enough that the time dependence of
E(k,t) is negligible, the formulas for the Eulerian scalars BE(X;t,t')

and Bi(y;t,t'),analogous to B and B ,are identical with (7.5), except that

Ine
R(k;t|r) is replaced by the Eulerian modal correlation function

RE(kyt, 1) = 2mk2UCkst| et |1 ) /LECK, DEK, )12, (7.14)

The Lagrangian and Eulerian modal time correlations measure quite
different properties when k is in tue inertial range. The Lagrangian cor-
relation is determined by intrinsic distortions of the small-scale structures,
and the correlation time is of order (vkk)'l, where v, is the rms velocity

in wavenumbers 2> k. The Eulerian correlation is dominated by the convection
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of the small scales by the energy-containing scales,

The convection of a frozen small-scale structure by a uniform velocity
u induces the time dependence exp(-ik+u) in the Fourier amplitude k of the
small-scale structure. Now assume, in accord with Koimogorov's hypotheses,
that the distribution of the small-scale velocity fluctuations is statisti-
cally independent of the simultaneously measured distribution of the con-

vecting velocity. Then it follows immediately that

RE(kjt,t-1) = M(kT,t), (7.15)
where
Mla,t) = (e ¥%) = femi8"¥p(y,e)ay (7.16)
is the characteristic function of the one-point probability distribution
P(u,t) of the convecting velocity at time t. The correlation time indicated

by (7.15) is (vok)_l, where v, is the rms value of any vector component of

0
the convecting velocity, now identified with the energy-range velocity.
Since this correlation time is << (vkk)_l, it may be concluded that dis-
tortion effects make a negligible charge in the Eulerian time correlation
and that (7,15) is the complete asymptotic result for inertial-range k.
Finally, P(u,t) in (7.16) may be taken as the one-point distribution of
the entire velocity, since the energy-range contributions dominate the
latter distribution.

Equation (7.15) follows also for dissipation-range wavenumbers if
the relevant distortion time for scales of order k-l is assumed to be not
less than the Kolmogorov time (\)/s)l’l2 regardless of how high k may be. In

other words, it is necessary that the very small-scale structures follow

the structures of scale ks-l and not exhibit independent distortions.
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The result for the Eulerian modal response function GE(k;t,t')

corresponding to (7.15) is
E 2
G (kst,t-1) = exp(=-vk T)M(kT,t), (7.17)

for k in the inertial or dissipation range. The viscous factor appears in
(7.17) because an arbitrary perturbation at a wavenumber high in the dissi-
pation range will be uncorrelated with the existing structures, will not

be supported by them, and will decay, during the convection by energy-range
scales, as if in isolation. Note that vkz << voks, so that when the iner-
tial range is extensive the viscous damping in (7.17) is negligible except
for k in the far dissipation range.,

Equations (7.15) and (7.17) are presumably exact results if the
underlying assumption of asymptotic statistical indga@ence of simultaneously
measured small- and large-scale structures is valid, No closure approxi-
mation is used, and isotropy of the energy-containing range is not invoked,

The abridged LHDI equations do not predict Eulerian time correlations.
However, the unabridged LHDI approximation leads easiIX.to explicit results
for RE(ﬁ;t,t') and GE(E;t,t') when k is high enough that (vok)-l is short
compared to Lagrangian correlation times for mode k. In that case, the
Galilean invariance properties of the LHDI equationsl imply directly that

2,2
exp[- %-vok 12],

RE(k;t,t-r)

exp[-vsz - l-v2k212], (7.18)

eBkst,t-1) 22

in the isotropic case. This agrees with (7.15) and (7.17) if the univariate
velocity distribution is Gaussian. Thus the accuracy of the LHDI results

depends on how close the actual univariate distribution is to Gaussian,
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In the case of inhomogeneous turbulence with nonzero mean velocity, the
LHDI result again is exact if and only if the univariate velocity distri-
bution is normal.

Insertion of (7,18) into the formulas for BE and Bf yields
2/3 2/3

E 2/3 2/3 E

B ().r;t,t') = (v t/y), B'?(y;t,t') = (v 1/y),
T =t -t', (7.19)
where
Fi(s) = HCI [1- X exp(- L2 -5/3 dx,
0
FE(s) = ucf [ % - (-s-i—g-)-(' - Ec%-}i) exp(- -}-x sT)Ix ~5/34x (7.20)
I X "
Also,
(1) = «2(ev, 2%, &% = uef [ - exp(- 5 59157 %, (7.21)
0

where BB(t-t') = BE(O;t,t'). Equation (7.21) gives the mean-square velocity

change at a fixed point in laboratory coordinates, Equations (7.19)-(7,21)
are Qalid for y and Vo T in the inertial range of spatial scales, There are
no contributions analogous to (7.10); RE(k;t,t') has zero slope at t = t'
for all wavenumbers, in stationary turbulence,

FE(s) and qf(s) are plotted in Fig. 5. The integral in (7.21) has the
value 1,61, yielding € = 11,4, Equation (7.20) yields

e 2/3 e 2/3/3

FE(s) N F - ﬂf(s) % K S s > 1, (7.20a)
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8. LAGRANGIAN ACCELERATION AND PRESSURE COVARIANCES
The function
i(ﬁ,tlr) = 82(§,t|r)/3r (8.1)
is the acceleration at time r of the fluid element which arrives at g at
time t. The two simplest Lagrangian covariances between acceleration and

velocity are

-
~~
<
e
t
2]
S’
"

<ui(§,t|t)aj(§fx,t[r£> (8.2)

and
<ui(§v,t|r)aj(>~<.-z,t|t)>. (8.3)

~~
<
-
-+
2
"

Giver a pair of particles known to be separated by‘X at time t, Kij measures
the correlation between the velocity of one at time t and the acceleration
of the other at a time r. sz measures the correlation between the vel-
ocity of the first at time r and the acceleration of the second at time t.
The relation between Kij and KIj is simplest in stationary, homogeneous
turbulence, To permit such turbulence, let a stationary, homogeneous,
solenoidal forcing field f(x,t) be introduced so that the Navier-Stokes

equation is
[a/at + u(x,t]t)-vlulx,t]t) = alx,t|t), (8.4)
alx,t|t) = vv2gﬂ§,t|t) - vp(x,t) + £(x,t), (8.5)

where p(x,t) is the kinematic pressure field. The nature of f(x,t) need
not be specified further, The forces may, but need not, be negative damp-

ings as in Sec, 4, In the stationary state,

Kij(§'§'5t|r) = BUij(ﬁ,tIt;i',t|r)/ar z - anj(i,tIt;g',t|r)/3t. (8.6)
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An expression for the last member of (8.6) is readily obtained by multi-
plying (8.4) with E(§f,t|r), multiplying (1.2) with Ejﬁ,t|t), adding, and

averaging, This gives

Kij(ﬁfgj;t|r) = (pj(ﬁ',t|r)un(ﬁ,tIt)aui(ﬁ,t|t)/8xn>

+ <ui(§,t|t)un(§',t|t)8uj(§',tlr)/ax£> - <hj(§j,t|r)ai(§,t|ti>. (8.7)
If the second term on the right-hand side is rewritten using

aun(gf,tlt)/ax; = 0 and homogeneity, (8.7) becomes

1.
Kij(l‘."-‘-"t|r') = - Kji()}_‘-ﬁ;ﬂr)
+ <uj(§:,t|r)[un(§,t|t) - un(§j,tlt)laui(g,t|t)/3xn>. (8.8)
Equation (8.8) shows that Kij(§:§f;t|r) = - K;i(§:1§;t|r) if x = x',

but not if x # x'. The result for x = x' can also bv obtained from dif-

ferentiation of
Uij(59t|t3ift|r) = Uij(i,rlt;i,rlr), (8.9)

a relation which follows from (7.2). Moreover, the evenness of
Ug; (xyt|tsx,t|r) in t-r shows that K(t-r) = K;;(0st]r) is an odd function
Of t-rl

K is solenoidal in i because the Eulerian velocity is solenoidal,

4
and is solenoidal in j also if the turbulence is homoge.neous and reflection-

invariant. In the stationary state,

-

- anj(ﬁ,t|t;§',t|r)/3t = %-aBij(i,t|t;x',t|r)/3t, (8.10)

so that for stationary, isotropic turbulence (7,11) yields

), K"(X;t|r) =1 Eﬁl(sllaT/y2/3),

N

T=t-rz0 (stationary turbulence), (8.11)
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where K and K" are the trace and the longitudinal, diagonal element of
K... The functions
1]
F(s) = dF(s)/ds, Fy(s) = dF, (s)/ds

are plotted in Fig. 6. Equation (7.13) yields

K(t) =

N

KE Sgn T (stationary turbulence), (8.12)

It must be remembered that (8.12) is established only for |1| in the inertial
range of times and is invalid for |t| + 0,

The change of sign in (8,12) has a simple physical interpretation,
For T > 0, K(1) measures the correlation of a particle's velocity with its
previous acceleration. This is positive because the velocity increment pro-
duced by the acceleration shows some persistence., On the other hand, a
negative correlation of velocity with later acceleration is necessary if
the velocity is to change direction without increasing its magnitude, in
mean square. Contrast this behavior of one-particle velocity and accelera-
tion with the opposite correlation of relative velocity and relative acceler-
ation of two particles, as indicated by the slope of B(z,tlr) atr=1t
[Equations (7.10) and (7.11), et seq.].

A constant negative value of K(1) for 1 negative and in the inertial
range has been proposed on the basis of a kind of Brownian-motion model of

15,16 The present result does not seem

the behavior in velocity space.
properly explicable in terms of such a model. The major contribution to
K(1) at an inertial-range 1 comes from eddies whose circulation times are
of order 1 . A Brrwnian-motion model requires that instead the major

effect come from eddies whose circulation times are << 1, so that many un-

correlated eddies contribute. The similarity of the results of the two
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approaches seems fortuitous, but this may be a premature conclusion,

Conservation of energy requires

(ui(i,tlt)fj(i,tlt)) = %5. (8.13)

1]’e
in stationary, isotropic turbulence, If the driving forces fj are confined
to the energy-containing range, then (8.13) is nearly satisfied with
“i(ﬁ’tlt) replaced by ui(fj,t|r), provided that |x-x'| and t-r are small
compared to energgy-range space and time scales. In this case, (8,5) yields

KT.(x-x';tlr) = w2

1
.- axt -yt e —_
i x'Uij("’tlr”i ,tlt) + Dij(x X stie) + 3 Gije’ (8,1u4)

where
Dij(§:£'3t|r) = -(ui(i,t|r)ap(§',t)/ax5> (8.15)
is the covariance of pressure gradient with Lagrangian velocity. Dij is a
pure antisolenoidal tensor in homogeneous, reflection-invariant turbulence.
Its curl with respect to each index vanishes.
The right-hand side of (8.15) can be converted into a third-order
moment of the velocity field by eliminating the pressure in standard fashion.

The triple moment can be evaluated for t > r by the abridged LHDI approxi-

mation of Ref. 1. The result for isotropic turbulence is

D(y;t|r) = [ 5(k;t|r)§iﬁékxlvdk,
- 0

D (yitle) = J Quse|pyrintky) _ costhylyg (8.16)
= 0 (ky) (ky)?

where +
5(k;t|r) = -4n2k2ffAdpdq p2qhkqu(p;t|r)f U(q;t|s)ds,
r

} 2
hkpq = (1-27)(z+xy). (8.17)
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In (8.16), D and D are the trace and diagonal element perpendicular to y.
The diagonal element parallel to‘z is given by D'l =D - 2D, and the off-
diagonal elements vanish in a coordinate system alig ned withlx. In (8.17),
X, y, and z are the cosines of the interior angles opposite k, p, and q in
a triangle with these wavenumbers as sides,

For |§:£'| and/or t-r in the inertial range of separations, assume
that the v term in (8.14) is negligible, subject to later check. Then KIj
is purely curlfree, in contrast to Kij which is purely solenocidal., If the
inertial-range forms (5.1) and (5.2) are substituted into (8.17), the

result can be written

el/3k2/3

Bkst|t-1) = -c2ex o 1), (8.18)

where

u-5/3v-8/d 2/3
luv

2/3

Qs) = [ duj dv h w)dw, (8.19)

)f R(v
0 |u-1

The function Q(s) is plotted in Fig., 7. For s >> 1, Q(s) ~ s-2, to within

a factor that varies more slowly than any power of s. Equation (8.18) gives

D(y3t|r) = - eZ(el/3 ), Dx(z;t|r) = - er(el/3 ),
T=t-r, (8.20)
with ©
Z(s) = C2f —-——Sl: X Q(xz/as %:i,
0
_ A2 ® sin x  cos x 2/3 ,dx
ZX(S) = C fo[-x—a— - -;2—— Jo(x S)-x—. (8.21)

Also, o
D(03t|r) = - % C2sf Q(s)%? . (8.22)
0
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Using these values for the pressure contribution to KIj in the inertial

range, it can be verified that the viscous contribution to (8.14) is negli-

gible in comparison if t-r is large compared to the Kolmogorov time (v/e)l/z.

The check consists of assuming a long inertial range and evaluating the

total viscous contribution from the whole range of wavenumbers up to ks =

3)1/4

(e/v , using the forms (5,.,1) and (5.2) and using the properties of

R(t) for long T discussed in Sec, 6,
The final inertial-range results are

1.

K (ystlr) = —ez(et/3

/Y2/3) ¥ e, KI(,.Y.;tIr) = _gzx(el/a-[/YZ/a) + €/3,

(stationary turbulence) T=t=-r, (8.23)
+ 3 .2 (. \d
K (1) = - §-C ef Q(s)Es + ¢ (stationary turbulence), (8,24
0

where Kty;tlr) and KI(y;tlr) are the trace and transverse diagonal element

of sz(y;tlr), and K+(t-r) E K*(O;t|r). The functions Z(s) and 2 (s) are

plotted in Fig. 8. The computed value of the right-hand side of (8.24)

is -8,96 €. Equation (8,23) yields

Kystlenx Ko, astlenx Fefo, %78 5 1 (a.23)

According to (8.8),

K(t) = - KT(1). (8.25)

Thus if (7.13), (8.12), and {(8.24) are consistent equations, C and R(s)

must satisfy

scf [1- R(s)1s7%s + 1= 3 ¢7f o) - 1, (8.26)
0 0 s

with Q(s) given by (8.,19), This consistency is assured by the abridged




LHDI procedure. The calculation of Kij by (8.6) amounts to evaluating

the right-hand side of (8.7), using the abridged LHDI recipe for all the
triple moments. The vanishing of tte last term on the right-hand side of
(8.8) at x = x' survives the approximation because un(i,tlt) and un(i',t|t)
receive similar treatments. Equation (8.26) is a useful overall check on
the algebra and numerical calculations (see Appendix).

The Lagrangian acceleration covariance
Aij(l‘."-’f-’ stir) = (ai(i,tlr)aj(i',t|t)> (8.27)
can be evaluated by using the relation
-'-
Alj(§:§:;t|r) = aKij(i'i';tlr)/ar' (8.28)

This yields the inertial-range results

4/3 -2/3; 4/3 -2/3; 1/3 /

Ayitlt-n) = M3 %), Ayl = 5 (e
(8.29)
where A and A, are the trace and transverse diagonal element of Aij' The
functions
Z(s) = d2(s)/ds, % (s) = dz (s)/ds
are plotted in Fig, 9. The quantity dQ(s)/ds determined by (8.19) can be
evaluated analytically at s = 0 [see (8.36), (8.37)], when =

2(0) = 333 [2 11

8.39, Z(0) = % 2(0). (8.30)
The covariance of acceleration along a particle trajectory is
A(t-r) = A(03t]r). It satisfies
AC) = - ak (1) /dr. (8.31)

Differentiation of (8.24) with respect to 1 gives zero. This says that
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there is no inertial-range contribution to A(T) proportional to 51-1, the
form that might be suggested by Kolmogorov scaling., For given T, the
positive contributions to A(T) from some inertial-range wavenumbers are
balanced by negative contributions from other wavenumbers. A relevant fact
is that the pressure forces conserve energy and cannot change the mean-
square particle velocity. If there were a nonzero net inertial-range con-
tribution of the form ei-l, then the inertial range (where only pressure
forces cause acceleration) would give a nonzero contribution to IZA(s)ds,
the total rate of change of kinetic energy. Also, a contribution of the

l/2t/vl/2)

form erd to A(1) would imply a contribution of form - ¢ 1ln(e
to Kf(T), which would violate Kolmogorov's concept of a v-independent
inertial range.

In contrast to the results for the structure functions, the inertiai-
range formulas for Kij and KIj are altered if the turbulence is freely
decaying instead of stationary. The free-decay results are obtained simply

by subtracting off the driving term in (8,14), seq, Thus (8.11), (8.12),

(8.14), (8.23)-(8,25) are replaced by

K(y;tir) = %-eﬁ(sl/ar/y2/3) -,
K”(Z;tlr) = % eﬁl(el/sr/y2/3) - €/3, (8.11")
1
K(t) = e(-1 + 7 K sgn 1), (8.12)
. 2
hij(f-i';tlr) = vi,Uij(i,tlr;gj,t|t) + Dij(§-§];t|r), (8.14')
K+(y;t|t-r) z - cZ(el/BT/yQ/s), KI(y;tIt-r) = - szx(al/3t/y2/3), (8.23")
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Ko = - 3 Pef e, (8.24")
0 S

K(1) + 2¢ = =K' (1), (8.25')

where a corresponding subtraction of the driving-force contribution has been
made from (8.11) and (8.12). These changes express that the decay of the
turbulence requires a deceleration of the particles, on the average. By
conservation of energy, the deceleration must contribute -e to K(0), an
amount which is comparable to the inertial-range contributions and super-
posed upon them. Equations (8,18) - (8,22) and (8.29)-(8.31) are unchanged.

The contribution of the decay deceleration to A,, is of order 52/v§ , where

ij
v, is the total rms velocity component. This is smaller than the inertial-

0
2/3

range contributions (8,29) by a factor of order(y/lo) , where £_ is the

0
characteristic energy-range spatial scale, and therefore does not appear
in the asymptotic formulas.

It is a matter of taste whether the overall deceleration in decaying
turbulence should be considered an energy-range effect., Actually, all
scales of motion are involved: The loss of kinetic energy occurs at
dissipation-range scales, in the Eulerian picture, so that the entire cas-
cade plays a role, It is clear, however, that the scales of order y play
no special role in determining the deceleration contribution to KQz;tlr)
when y is an inertial-range separation. Therefore it seems justified to
consider the steady-state formulas as the "true" inertial-range expressions.

The functions discussed above give some limited information about

pressure statistics. By (8.1) and (8.15),
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[aDij(ﬁ-g';tIr)/ar]Ft = - (ai(z,tlr)apﬁ§',t)/3x5> . (8.32)

In homogeneous, reflection-invariant turbulence, only the curlfree term

=9p in (8.5) can contribute to (8.32). Hence,
{lap(x,t) /3%, 13p(x! .t)/ax_,; D= [aDij(:L-;g' it |r-)/ar']r=t . (8.33)

The pressure spectrum function [satisfying mean-square-pressure = f;P(k,t)dk ]
is therefore

P(k,t) = k'2[a3(k;t |")/3"]r=t (8.34)

in isotropic turbulence. By (8.17), this gives
= 2
P(k,t) = ffAdpdq P qhkpqE(p,t)E(q,t). (8,35)

This abridged LHDI result for P(k,t) is identical, after trigonometric
manipulations, with the quasinormality approximation for P(k,t) used by
Heisenberg3 and Batchelor.12 The unabridged LHDI expression for P(k,t)
does not appear to reduce to the quasinormality approximation.

In the inertial range, (8.35) yields
b utl

P(k,t) = ¢2%* %73 auf " avn
0 |u-1]

-5/3v-8/3.

1uv (8.36)

Using trigonometric identities and results of Oboukhov,17 the quadratures

can be performed to give

P(k,t) = -'1'—‘;{-:-[ %r(%)]"cze-."/:"k"’/3 = 4,13 /373, (8.37)

and

(Iptx,t - plary,)1% = [8 (y3t[0)1% = 5,30 */34/3, (8.38)

A Lagrangian pressure field p(ﬁ,t[r) can be defined as the pressure
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at time r in the fluid element which arrives at x at time t. The contribu-
tion a(x,t|r) of the pressure field to a(x,t|r) is the negative of the
pressure gradient in the fluid element at time r. Except in degenerate
cases,

a(x,t|r) # - Ip(x,t|r) (t #7r), (8.39)

because x is a Lagrangian coordinate at time r, not a laboratory Cartesian
coordinate., Consequently, the Lagrangian spacetime structure function
<[p(§,t) - p(*j,t|r)]%} is not obtained by simply extending (8.33)-(8.38)

tor # t.

9, COMPARISON OF INERTIAL-RANGE PREDICTIONS WITH EXPERIMENT

The qualitative inertial-range predictions of the abridged LHDI
equations are implied by Kolmogorov's hypotheses and the associated dimen-
sional analysis, Experimental testing of the results therefore involves,
first of all, a test of the Kolmogorov theory. The Kolmogorov scaling
laws have received support from measurements of energy spectra at high
Reynolds numbers, and such measurements appear to offer the principal
check available on quantitative predictions of inertial- and dissipation-
range properties,

The Kolmogorov constant is customarily estimated from experiment by
choosing, visually, best-fitting straight lines to log-log plots of spectrum
versus wavenumber., The normalization parameter ¢ is determined by drawing
a best-looking curve through a plot of the dissipaticn spectrum, and using
isotropic relations. The fitting of a best straight line requires an ex-

plicit or implicit estimate of the maximum wavenumber at which dissipation
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effects on spectrum shape can be neglected in comparison with experimental
scatter. This estimate plays a significant role because, as the Figures to
follow illustrate, the experiments cover very limited inertial ranges.
Consequently, it is desirable to compare the data directly with predictions
of the entire.Kolmogorov spectrum, instead of merely comparing the experi-
mental and theoretical estimates of the Kolmogorov constant,

The abridged LHDI prediction of the Kolmogorov spectrum in the dissipa-

-11/3 ver a wide k

tion range has been obtained by taking U(k;tolto)oc k
range, and then integrating (2.6)-(2,8) forward in time, with nonzero vis-
cosity, The calculation was continued until the normalized dissipation

spectrum (k/ks)zE(k)/(el/qu/u

) reached and held steady-state values,
Further details of the calculation are given in the Appendix., One-dimen-

sional spectra were then computed from the formulas

» [
6,00 = 2 [ BN - K /p%p7ep, 0, (k) = [ Ep)p ™ ep. (9.1)
k k _
Here ¢1(k) is the longitudinal one-dimensional spectrum12 and ¢t°t(k) is

the sum of the longitudinal and the two transverse spectrum functions. The
corresponding asymptotic inertial-range spectra are

2/3k-5/3 2/3k-5/3.

¢l(k) = (9/55)Ce (k) = (3/5)Ce (9.2)

’ ¢tot

5/3¢1(k)/(e1/“v5/u) from the inertial and

The computed values of (k/ks)
dissipation-range calculations are plotted together in Fig.10. This kind
of plot displays differences in inertial-range spectra more prominently than
the usual log-log spectrum plot. Note that the low-wavenumber end of the

decay=-calculation curve rises slightly above the asymptotic inertial-range

line C = 1.77. This is due to truncation of the wavenumber range and to
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the finite time of evolution, each of which tends to depress ¢ below its
asymptotic value. A more precise computation would yield a curve lying
slightly below that shown, in the range .002 < (k/ks) < ,02,

The experimental points plotted in Fig. 10 are sea-water data obtained
by Grant, Stewart, and Moilliet.l8 These experiments appear to be the
highest-Reynolds-number measurements of absolute spectrum levels which
have been reported (RA A 3000). The points represent the three runs on
3 October 1959, The run at 0950 hrs was cited as particularly satisfactory
with regard to scatter and noise level; it is plotted in different ways in
Figs. 8-10 of Ref. 18. The dissipation spectra (k/ks)2¢l(k)/(slluv5/u)
for the three runs are displayed in a linear plot in Fig. 11, together
with the theoretical curve. Both data and theory indicate a maximum at
about (k/ks) = 0,09, At this value of k/ks’ the curve in Fig. 10 is down
from the asymptotic inertial-range line by about 30%.

Figure 10 illustrates the difficulties in accurate experimental
determination of C. Only eight points lie in the range (k/ks) < 01,
where the theoretical curve indicates negligible deviation from the asymp-
totic inertial-range level. These eight points scatter from 20% below to
25% above the computed inertial-range line. The 17 runs reported in Ref,
18 show substantially greater scatter at (k/ks) < ,01 than in the dissipa-
tion range .01 < (k/ks) < .5, both individually and collectively., The
fluctuations at low k seem oscillatory rather than random, possibly as a
result of coupling between the turbulence and the towed body on which the
sensors were mounted.18 Figure 12 compares the three longest runs on 1

February 1960, and on 2 February 1960, with the theoretical curve. The
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oscillations are particularly prominent in the run at 1331 hrs on 1 February,

Grant, Stewart, and Moilliet report a mean determination C = 1,44 from
the 17 runs. The rms fluctuation of .the 17 values of C about the mean is
about 0.19. The accuracy of absolute level determination is reported as
10%. The mean value of C rises if best visual fits are made to curves
like that in Fig, 10 instead of simply to straight lines.19 This is be-
cause the curve approaches the asymptotic inertial-range line gradually.
Heisenberg's transfer expressiona gives a sharper knee. The mean value
rises further if the longer runs are given greater weight, as Figs. 10 and
12 suggest,

Probably the following conclusions are justified: (1) The experimental
data are consistent with Kolmogorov's theory. (2) The data suggest that
the abridged LHDI prediction for C is better than an order-of-magnitude
approximation to the correct value. (3) The abridged LHDI value appears
to be high rather than low, but the data do not set a lower bound to the
magnitude of the error nor determine its sign unequivocally, On the
theoretical side, the approximations made in deriving the LHDI equations
are sufficiently drastic that if theory and experiment agreed to better
than the order of 10% it would be an accident. An interesting question
is how much the abridged LHDI value of C differs from the prediction of
the unabridged equations. Numerical integration of the latter in the
inertial range appears to be feasible,

Figure 13 shows the computed values of (k/ks)5/3¢t°t(k)/(el/uvslu)
plotted together with data obtained by M, M, Gibson2° in a round air jet

at RA ~ 750, The data were normalized by values of ¢ determined by Gibson
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from the ¢l values only. For the off-axis run, this ¢ agrees, to within
the accuracy of determination, with the € determined graphically from the
¢tot values, For the on-axis run, the ¢tot values give a larger ¢, but
they yleld so irregular a dissipation spectrum that accurate determination
ls impossible, Therefore the on-axis points for ¢tot should be displaced
downward, along lines of slope -4/3, by an uncertain ambunt.lg

Gibson estimates C = 1,57 for the on-axis run and C = 1.62 for the
off-axis run, on the basis of visual straight-line fits to the ¢l measure-
ments only. As in the sea-water experiments, these values rise if fits
are made to scaled theoretical curves instead, Both runs exhibit aniso-
tropy in the inertial range. For this reason, and because ¢l represents
only 3/11 of the energy in an isotropic -5/3 range, it seems more Justified
to compare ¢tot with isotropic theory, rather than ¢1.“ But the argument
loses force if the transverse spectrum measurements are less reliable
than the longitudinal,

It should be stressed in conclusion that no reported experiments

/3

confirm the k-s asymptotic spectrum law beyond reasonable doubt. Actually,

“7/% better than k-5/3’

/3

the data at k/ks < .01 on Figs. 10 and 12 fit, say, k

but the scatter is so great that no inconsistency with k's can be inferred,

Clearly an inertial range of many decades extent is needed for a definitive

5/3

answer. Corrections of logarithmic type to the k= law would be parti-

cularly difficult to resolve.
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APPENDIX, NUMERICAL METHODS

The numerical integrations are based on é scheme described in detail
previousl.y.9 The wavenumber integrations in (2.6)-(2.8) are performed
just as in Ref, 9, For decay studies, (2.6)-(2,8) are integrated forward
in time from t, by a modification of the time-integration scheme of Ref. 9:
The first two terms on the right-hand sides of (2.7) and (2,8) are treated
in parallel with the vk2 terms on the left-hand sides. Thus,for (2.7), a

function N(k;t|r) is defined by

kpq

t
kqu(k;tlr)-D U(p;t|r)]frU(q;t|s)ds, (A1)

N(kstInuGkst|r) = [, Cc

and the contribution of the two terms is included by replacing vk2 with

vk2

+ N(k;t|r) in the scheme of Ref. 9, N(k;t|r) is evaluated at the
mid-point of each time step, like the other quantities in the scheme,

The analogous procedure is used for (2.8). This modification gives improved
stability and accuracy. The C and D terms on the right-hand side of (Al) are
treated in strict parallel with each other to avoid errors from the effect
of time and wavenumber discretizing upon the cancellations of the small-q
contributions.

For the steady-state solution of (5.4) and (5.5), this method is
augmented by an iteration procedure. The time limit « in (5.5) is truncated
to a large finite value MAt (M integer), Initial guesses Eo(t) and io(r)
are taken (identical Gaussian functions). The values G(0) = 1, R(0) = 1

are held fixed and improved functions obtained by a modification of the

scheme
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e(r,) = %{E”'l(m + T 1) + 3 0elix ) + F(x, )1}, F0) = 0,
R(r ) = 2R3 ) + Fr_ ) + 3 8e(8(x) + Sx, )1}, Fo)=0. (A2)

Here 'ér('rn), Er('rn) is the rth approximation at the nth time step, and
H(t), 5(1) are the right-hand sides of (5.4), (5.5). For each r, (A2) is
used for each n in succession, starting with n = 1 ['l’n = not (n = 1,2,
oeoM)]. At eagg':gfep, S and H are evaluated by the trapezoidal rule of Ref,
9, using always the best available values of G and R: As soon as Er('rn)

and I-lr(tn) are computed for any r and n, the old values Er-l('rn) and gl

2/3

(t)
are discarded completely, Functions like R(w“’/“s) are evaluated from the
E(Tn) by two-point interpolation. The modification of (A2), in accord

with (Al) seq., is to replace %{g('tn) + §(1’n_l)] as follows:

1f- -
_ _ 1 - exp{- Z[N(t ) + N(t__.)]At}
2 8e[8(r ) + Sx,_ )1+ z s L ]

N(r ) + Fr__))

x ['S'(tn) + §(1n_1)]. (A3)

where -N(1)R(t) is defined as the first two terms on the right-hand side of
(5.5). The G equation is treated in parallel fashion.

The iteration scheme was found to converge reliably but slowly; e.g.,
Iﬁr(fn) -’ Y rn)| decreased typically by 20% per it eation. Convergence
is markedly speeded by repeated cycles of iteration-followed-by-extrapolation,
The extrapolation assumes geometrically decreasing errors (the errors do

decrease nearly geometricallly).
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Equation (5.11) is integrated by the same wavenumber discretizing
used in (5.4) and (5.5). The contributions from wavenumber triads with
different a valués are accumulated separately so as to yield W(a) without
the need for further calculation.

The numerical values reported in the text come from a calculation in
which the v and w integrations in (5.4), (5.5) extend over the range

=145/12 (v 2.3 % lo-u) to 279/12

2 (v 96,), which is divided into 112 one-
sixth-octave steps according to the method of Ref. 9. The contributions of
higher w and v values are approximated by correction terms based on (4.13);
these corrections are quite small. The s integrations are truncated at
s = 20, and R(t), G(1) are computed over (0 < T < 20) at steps of 0.1,
Iteration was continued until the change in C per iteration was <0.1%, with
extrapolation indicating residual error <0.3%. Changes of R(s) and G(s) per
iteration were less than both .00l and 1%, with extrapolation indicating
residual errors less than .005 and 5%. Errors from finite step-sizes and
truncation were estimated by varying the relevant parameters and extrapolating.,
The estimated total error in C from all causes is about 1%. Errors in some
of the other dimensicnless constants are larger, but are not expected to
exceed 3%, The theory probably does not justify more accurate computation,
Six to eight decimal digits were carried in the computations, and all
final numbers reported in the text are rounded to two or three digits., Tc
six digits, the values found for (6.1) and (6,2) are C = 1,76612,
= ,760973, I, = -,188401. The values com-

Ig R 1 2
puted for thé left and right sides of (8,26) are 8.73360 and 8,96029, which

= 1,04404, I_ = 1,87438, 1

agree to within 2,6%,
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For rough calculations, the computed functions G(t) and R(T) are

adequately approximated by
2 1 2.1
6(t) = 4 exp(21/I,)/[1 + exp(2T/IG)] »  R(T) = [14(5 71/I)°T (A4)

The decay calculation used in Sec. 9 was performed by taking v = ,008,

~19/6 (o .11) to 237/8

E(k,t)) = 6.29 k-5/3’ and a k range 2 (v 72,) dis-
cretized into 28 one-third octave steps. Equations (2.6)-(2.8) were in-
tegrated, with the techniques described above, for 20 time steps 4t = ,02,
by which time changes in the normalized energy and dissipation spectra

were imperceptible on automatically generated plots. Final values ks = 58,5
and R, = 440 were obtained, with respective changes of 0.1% and 0.2% per
time step. The estimated overall computational errors are not significant
for the comparison with experiment in Figs. 10-13, provided k/ks < 0,6,

The difference between this RA = 440 spectrum and an Rk = « gpectrum
normalized in the same way probably is negligible also. It was to minimize

/3 down to the low-

the difference that the initial spectrum was taken .« k-5
est wavenumber retained.
All the calculations were performed on the IBM 7094 computer at the

Goddard Institute for Space Studies. The plots were generated on a General

Dynamics S-C 4020 Recorder.
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points along lines of slope -4/3 by an amount determined by C' = 8'2/30.
20, M, M. Gibson, J. Fluid Mech. 15, 161 (1963), The data in Fig. 13 are
machine-plotted from tabulations kindly supplied by Dr. Gibson in October

1963, (The values of v given in the published paper are ten times too small.)
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ERRATA: LAGRANGIAN-HISTORY CLOSURE APPROXIMATION FOR TURBULENCE
[Phys. Fluids 8, 575 (1965)]
Robert H. Kraichnan

Peterborough, New Hampshire

The minus signs should be changed to plus signs in the third line of
(8.10), the first line of (8,11), and the second, fifth, and seventh lines

of (8.12). In the sixth line of (8.11), P should be Qe In the fourth

line of (10.9), the plus sign should be a minus sign,

ERRATA: PRELIMINARY CALCULATION OF THE KOLMOGOROV TURBULENCE SPECTRUM
(Phys. Fluids 8, 995 (1965)]
Robert H, Kraichnan

- Peterborough, New Hampshire

In the third line of (3), the plus sign should be a minus sign. This

error was carried through the numerical computations. The corrected numer-

ical coefficients in. (10) are 1.60, 0.50, 0.99, in order of appearance. The

corrected coefficients in (10') are 1,77, 0.53, 0.96., Corrections in the

Figures are small. For corrected Figures, see R, H. Kraichnan, Phys.

Fluids 9, xxx (1966) [Research Report 8].
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FIGURE CAPTIONS

Fig. 1. Integpation paths for following the evolution of the Lagrangian
velocity.
. Fig. 2. The inertial-range Lagrangian time-correlation and response
i functions R(1) and G(t), versus nondimensional time difference T,
Fig. 3. Dimensionless measures of localness of inertial-range energy
transfer,versus maximum to minimum wavenumber ratio a. Here W(a) = W(a)/e
and P(a) = P(a)/e,
Fig. 4. Dimensionless Lagrangian spacetime, or two-particle, structure
functions F(s) and ﬁ,(s) in the inertial range, versus dimensionless time
difference s, The straight line isAthe function s of (7.12a).
; Fig. 5. Dimensionless Eulerian spacetime structure functions FE(s) and
.l(s) in the inertial range, versus dimensionless time difference s.
Fig. 6, Nondimensional measures F(s) and ﬁl(s) of the inertial-range
covariance of one particle's velocity with a second particle's prior
acceleration, versus dimensionless time difference s.
Fig. 7. Nondimensional time-displaced, inertial-range cospectrum Q(s) of
pressure gradient and prior Lagrangian velocity, versus nondimensional
time difference s.
_Fig. 8., Nondimensional inertial-range covariances 2Z(s) and Z_(s) of one
particle's prior velocity with a second particle's acceleration, versus
dimensionless time difference s.
Fig. 9. Nondimensional inertial-range,two-particle,Lagrangian acceleration

covariances Z(s) and ix(s), versus dimensionless time difference s.
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Fig. 10. Computed nondimensionalized spectrum function k5/3¢1(k)

in the inertial and dissipation ranges compared with the October 1959 data
of Grant, Stewart, and Moilliet., Circles, run 0905/3/10/59; dots,
0907/3/10/59; plus signs, 0915/3/10/59, (The low-wavenumber terminus of
the decay curve lies within the fourth circle from the left.)

Fig. 11l. Computed nondimensionalized dissipation spectrum k2¢l(k) compared
with the October data of Grant, Stewart, and Moilliet, Circles, run
0905/3/10/59; dots, 0907/3/10/59; plus signs, 0915/3/10/59,

Fig. 12(a), Computed function k5/3¢l(k) compared with the three longest
runs obtained by Grant, Stewart, and Moilliet on 1 February 1960, Circles,
run 1126/1/2/60; dots, 1203/1/2/60; plus signs, 1331/1/2/60.

Fig. 12(b). Computed function k5/3¢1(k) compared with the three longest
runs obtained by Grant, Stewart, and Moilliet on 2 February 1960. Circles,
run 1301/2/2/60; dots, 1316/2/2/60; plus signs, 14u45/2/2/60.

Fig, 13, Comparison of computed spectra with data of M. M, Gibson. Upper

5/3

curve and data: computed function k ¢tot(k); dots, on-axis run; plus

signs, off-axis run. Lower curve and data: computed function k5/3¢l(k);

dots, on-axis runj plus signs, off-axis run, The data for ¢ appear only

tot

at those wavenumbers where Gibson obtained the necessary measurements of

both longitudinal and transverse spectra,
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