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ISOTROPIC TURBULENCE AND INERTIAL-RANGE STRUCTURE 

IN THE ABRIDGED LHDI APPROXIMATION 

Robert H. Kralchnan 

Peterborough, New Hampshire 

The abridged LHDI (Lagrangian-History Direct Interaction) closure 

approximation is interpreted physically and used to analyze energy transfer, 

effective eddy viscosities, and Lagrangian spacetime statistics in station- 

ary and decaying isotropic turbulence. The results are then specialized 

to the inertial range. Numerical values are predicted for the Kolmogorov 

constant, the asymptotic eddy viscosities due to inertial-range wavenumbers, 

and the dimensionless constant in Inoue's formula for the mean square 

change of Lagrangian velocity with time.  Computed curves are presented 

for the localness of energy transfer, for Lagrangian spacetime structure 

functions, and for Lagrangian spacetime acceleration-acceleration and 

velocity-acceleration coVariances. Inertial-range Eulerian spacetime 

structure functions also are computed. The predicted absolute Kolmogorov 

spectrum in the inertial and dissipation ranges is compared with data of 

Grant, Stewart, and Moilliet and of M. M. Gibson. 
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1.    INTRODUCTION 

This paper develops some analytical and numerical predictions of 

recent closure approximations which involve tracing the history of velo- 

city correlations along the particle trajectories.      Energy transfer, and 

both Lagrangian and Eulerian spacetime correlations are explored for 

stationary and decaying isotropic turbulence.    Simple physical interpre- 

tations of the closure formulas and their consequences are attempted. 

The results are finally specialized to the inertial range, and numerical 

values are computed for all the dimensionless constants and universal 

functions which appear in the formulas.    The quantities evaluated are 

listed in the abstract.    Analytical and numerical predictions for two- 

particle dispersion are developed in a paper to follow. 

The closure approximations of Ref.  1 are based on a generalized 

velocity u(x,t|r), defined as the velocity measured at time r in that 

fluid element which arrives at x, in laboratory coordinates, at time t. 

Thus, 

u(x,t|t)  = u(x,t), (1.1) 

where u(x,t) is the Eulerian velocity, and u(a,t0|t)  = w(a,t), where t0 

is the initial time and w(a,t) is the velocity of the particle initially 

at _a (Lagrangian velocity). 

The full function u(x,t|r) can be computed in terms of the Eulerian 

T velocity by the equation 

[a/3t + u(x,t)'V]u(x,t|r)  = 0, (1.2) 

with the boundary condition (1.1).    The interpretation of (1.2)  is simple. 
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The vector u(x,t|r) Is the velocity of a particular fluid element at time 

r, and (x»t) Is a point on the spacetlme trajectory of this element. Thus 

t may be called the labeling time and r, the measuring time. The same 

fluid element can be labeled by any other point (x*.t') on Its trajectory, 

and the velocity measured at time r Is Independent of which point Is used 

for labeling. Equation (1.2) expresses this by stating that the substantial 

derivative of u(x,t|r) In the spacetlme (x,t) vanishes everywhere. In 

other words, u(x,t|r) at fixed r Is constant along every particle trajec- 

tory In (x,t) spacetlme. 

Equation (1.2) thus has a peculiar character. It expresses only a 

coordinate transformation through which the velocity field at time r Is 

labeled by the laboratory coordinates the fluid elements had (or will have) 

at time t. The dynamics are fully determined by the equation of motion 

for the Eulerlanvelocity u(x,t). The role of (1.2) is to provide a 

redundant, but useful, infinite family of transformed representations of 

the Eulerian field. Such a family is useful because approximate statistical 

equations are the ultimate goal. Although the Lagrangian velocity is fully 

determined by the Eulerian velocity in any realization, simple statistics 

of the Lagrangian velocity are not determined by simple statistics of the 

Eulerian velocity. 

No restriction to incompressibllity is implied by (1.2), which Is 

valid whatever the equation of motion for u(x,t). The latter will be 

the Incompressible Navler-Stokes equation in this paper. 

Because the labeling transformation as well as the dynamics determine 

u(x,t]r), the generalized velocity has properties that are unexpected from 
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experience with Eulerian analysis. It was pointea out in Ref. 1 tha\ 

divergenceless Eulerian velocity does not imply divergenceless u(x,t|r) 

for r / t. To explore another property, consider a hypothetical flow 

maintained in a statistically steady and isotropic state at very low 

Reynolds number by means of suitably random stirring devices. If D is a 

characteristic length scale of the stirring process, the characteristic 

scale of spatial variation of the Eulerian field u(x,t) will also be D, 

and the condition of very low Reynolds number implies that variations at 

scales small compared to D will be strongly damped. If a Fourier analysis 

of u(x,t) is made, wavenumbers >>D' should be very weakly excited. 

Now consider u(x,t|r) for large values of |t-r|. Although both 

u(x,t) and u(x,r) display spatial variation at scale D, the x variation 

of u(x,t|r) becomes rapid without limit as |t-r| increases. This is 

because fluid elements which are close together at the labeling time t 

will typically be farther apart at time r. No matter how small jx-x'| is 

taken, u(x,t|r) and uCx'.tlr) typically are velocities measured at widely 

separated parts of tha fluid if |t-r| is large enough. For sufficiently 

large |t-r|, the Fourier analysis of u(x,t|r) shows excitation extending 

to indefinitely high wavenumbers. In particular, the excitation does not 

fall off at the viscous cutoff wavenumber for the Eulerian velocity. 

The assumption of low Reynolds number puts these observations in their 

most striking form but is otherwise unnecessary. To examine a further 

property, retain the stationarity, isotropy, and homogeneity conditions 

but relax the restriction to small Reynolds number. The Eulerian oovariance 

/u(x,t).u(x,,r)^, where (^ denotes ensemble average, is an even function 
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of t-r and has zero slope at r = t. This is not true of the Lagrangian 

covariance (uCxjtlt^uCx1 ,t|r)^, unless x" = x. The behavior of the 

Lagrangian covariance can be understood as follows. Two fluid elements 

which are a distance jx-x'| apart at time t were typically a greater 

distance apart at any sufficiently earlier time r. As the elements draw 

together under the straining action of the turbulence, the joint effects 

of molecular and eddy viscosity on the steepening velocity gradient 

between the elements tends to reduce their velocity difference, while the 

stirring action tends typically to increase the difference. If jx-x'| is 

intermediate between the scale characteristic of the stirring and the scale 

characteristic of dissipation, the effect of the stirring on relative 

velocity is suppressed compared to the effect of molecular and eddy 

viscosity. The typical net result is a reduction of the velocity difference. 

As the elements again separate, their velocities tend to be battler 

correlated than before the close approach. This suggests that the Lagrang- 

ian covariance is an asymmetrical function of r - t, for x, i' x', and can 

have a positive slope at r = t. However, if x = x*, the covariance measures 

the autocorrelation of the velocity of a single fluid element, whence 

stationarity and the equivalence of all elements require that the covariance 

be an even function of r-t. 

These properties are demonstrated analytically later in the paper. 

The slope at r = t is shown to be simply related to the energy-transfer 

function. In the limit of very low Reynolds number, transfer is negligible, 

stirring and viscosity act on the same spatial scale, and the slope tends 

to zero. 



2.    THE CLOSURE EQUATIONS 

In Isotropie, homogeneous turbulence, the covarlance tensor 

U^Cx.tl^xVlr«) = (u^tlr^UVMr-')) (2.1) 

Is fully determined by the scalars 

U^tlnt'lr')  = (2ir)"3/e"i^(5-».,)Pij(k)uij(x,t|r;x',t'|r')d(x-x'), 

.   U^kjtlrtt'lr')  . (2ii)"3/e"i~(-"~,)nij(k)Uij(x,t|r;x',t'|r,)d(x-x'), 

(2.2) 
where 

nij<y " VjA2.     P^Ck) = «ij - k.^/k2. 

s        c U    and U   are the scalars of the solenoldal and antisolenoldal parts 

of U.., respectively.    U (k;t|r;t'Ir') vanishes if either t = r or t*  = r1. 

The closure approximations of Ref.  1 Involve both the covariance 

tensor and a generalized infinitesimal Green's tensor 6. .(x,tir;x',t'jr*), 

which gives the average change in u(x,t|r) resulting from an applied 

infinitesimal perturbation in uCx'^'Ir').    The definition and properties 

of the Green's tensor are discussed in detail in Ref.  1.    The Isotropie 

Green's tensor is fully determined by the scalars 

GS(k;t|rit'|r')  = ^/e-i^(&"i')Pi.(k)Gij(x,t|r;x',t'|r')d(x-x'), 

GC(k;t|r;t'|r')  = /e^'^'S'^.^^G^^^Ir;^ ,t'|r')d(x-x').        (2.3) 

G (kjt|r;t'|r') and G (kjtlrjt*jr') may be interpreted as average infini- 

tesimal response functions for Fourier mode k. By definition. 



6S(k;t|r;t|r) = GC(k;t|r;t|r) = 1, 

G^tlist'lr") = GC(k;t|^;t•|^,) »0   (r < r'). (2.4) 

Two closure approximations were proposed in Ref. 1. The first, called 

the LHDZ (Lagrangian-History Direct-Interaction) approximation, involves 

all the time-argument values of the covariance and Green's functions. A 

closed subset of the final equations involves only functions for which 

t • t'. This approximation makes formidable storage and time demands in 

numerical computations. The second, simpler closure, called the abridged 

LHDI approximation, involves only the solenoidal, pure Lagrangian functions 

U(k;t|r) and 8(kit|x) defined by 

U(k;t|r) = üS(k;t|t;t|r)   (t > r) 

» U(k;r|t)       (t < r), 

G(k;t|r) = GS(k;t|t;t|r). (2.5) 

The LHDI approximation was obtained in two stages. First, the direct- 

interaction approximations for triple moments were constructed. Then, the 

formulas were altered in a systematic way so that the final equations 

exhibited the following properties of the exact turbulence dynamics: 

Energy conservation; inviscld equlpartltion equilibrium and fluctuation- 

relaxation relations: invariance of Lagrangian correlations under random 

Galilean transformation; and invariance of certain averages under the 

transformation from Eulerian to Lagrangian coordinates. The crucial 

pro]Jj?ty in this list is Invariance to random Galilean transformation. 

This invariance, not retained by the unaltered direct-interaction approxi- 

mation, is a formal statement of the obvious fact that random, uniform 



translations of the Individual flows In a homogeneous ensemble cannot 

affect the mean energy-transfer. The LHDI approximation appears to be 

the unique alteration, within the general direct-interaction framework, 

which restores this invariance for the full Lagrangian covariance 

tensor without sacrificing the other properties listed. No cutoffs, 

parameters, or arbitrary functions are invoked. The motivations of the 

LHDI approximation, and the details of the alterations, are described at 

length in Sees. 1 and 6 of Ref. 1. 

The abridged closure was obtained in Ref. 1 as a further approximation 

to the LHDI equations. It appears to be the unique alteration of the 

direct-interaction equations which gives a closed set of equations for 

the restricted quantities (2.5) and exhibits the consistency properties 

listed above. Thus the abridged LHDI equations may be considered a 

closure in their own right, rather than an approximation to an approximation. 

Both closures assume that the velocity field is multivariate normal 

at an initial instant t-. In the limit of very small Reynolds number, 

both closures yield triple-moment formulas which are indistinguishable 

from the first term in an expansion of the triple moments in powers of 

turbulent Reynolds number. 

The analysis in the present paper is based on the abridged LHDI 

equations, with the exception of the discussion of Eulerian structure- 

functions in Sec. 7. Quantitative estimates of how the numerical 

predictions change in the unabridged approximation have not been attempted. 

Qualitative changes in the predictions are not anticipated. 

In the case of Isotropie turbulence, the abridged equations of Ref. 1, 
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Sec.   10 may be written 

O/St + 2vk2)U(k;t|t) = 

2//4dpdqBkp(i/    [G(k;t|s)U(p;t|s) - G(p;t|s)U(k;t|s)]U(q;t|s)ds,     (2.6) 
t0 

0/3t t vk2)U(k;t|r)  = 

.U(k;t|r)//AdpdqCkpq/ U(q;t|s)ds + //&dpdqDkpqU(p;t|r)/ U(q;t|s)ds 

r 
+ J/^dpdq/    [BkpqG(k;r|s)U(p;t|s) - D'    G(p;r|s)U(k;t|8)]U(q;t|s)ds 

t0 

t 
//Adpdq/    Bkp(i[G(p;t|s)U(k;r|s) - DkpqG(ktt|B)U(p;r|s)]U(q;t|s)ds 

t 
- //^dpdqj    [Bkpq - D'     ]G(p;t|s)U(k;t|s)U(q;r|s)ds      (t^r),       (2.7) 

t0 

0/3t + vk2)G(k;t|r) = 

t t 
- G(k;t|r)//AdpdqCkpq/ U(q;t|s)ds + //AdpdqDkpqG(p;t|r)J U(q;t|s)ds 

//Adpdq[Dkpq - Bkpq]G(p;t|r)U(q;t|r)/ G(k;s|r)ds 

t 
- //Adpdq/ [BkpqG(p;t|^G(k;s|r) - D^pqG(k;t|s)G(p;s|r)]U(q;t|s)ds 

(t i r), G(k;r|r)  =  1. (2.8) 

Here v is kinematic viscosity, the integration J/& is over the part of the 

(pfq) plane such that k, p, q can form the sides of a triangle, and 
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Bkpq s vp2<llxy + ^^        ckpq = 1Tkpq(1' ^ 

V = 7 (Bkpq + V5 + ? ^^^ " y2)'      Dkpq =  (p/k) Vq*       (2-9) 

where x, y, z are the cosines of the interior angles opposite the triangle 

2 
sides k, p, q, respectively.      These equations, with (2.5), determine 

U(k;t|r) and G(k;t|r)  for all t * r £ t- if the initial values U(k;t0|t0) 

are prescribed.    The interpretation of (2.6)-(2.8) will be developed in 

the Sections to follow. 

3.    ENERGY TRANSFER 

The kinetic-energy spectrum function 

E(k,t)  = 2iTk2U(k;t|t) (3.1) 

obeys the balance equation 

(3/3t + 2vk2)E(k,t) = T(k,t), (3.2) 

2 
where T(k,t)/(2TTk ) is the right-hand side of (2.6).    Conservation of 

energy, 

/ T(k,t)dk = 0, (3.3) 
0 

follows from the identity 

k2B.  = p2B . . (3.1) 
kpq  r pkq 

T(k,t) can be written in the form 

"  p+k 
T(k,t)=i/dpJ    dqT(k,p,q,t), (3.5) 

2 0  |p-k| 
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2 
where T(k,p,q,t)/(4i?k ) is the symmetrical part of the integrand of the 

p,q integration in (2.6).    [The A integration, although written asymmetrically 

in (3.5), is symmetric in p and q so that only the symmetrical part of the 

integrand can contribute.]    The detailed conservation property of the 

Navier-Stokes equation, 

T(k,p,q,t) + T(p,qtk,t) + T(q,k,p,t) = 0, (3.6) 

follows from (3.4). 

The total rate of energy transfer into all wavenumbers >k is 
0 

oo    oo     p'+k' 
n(k,t) = i/ dk'/ dp«/     dq'T(k,,p',q,,t). (3.7) 

*    k       0   Ip'-k'l 

Since TU',?'^ ,t)  is symmetrical in p'  and q', the total value of (3.7) 

must equal twice the contribution from q'  > p'.    But for q'   > p*  there is 

no net contribution for p"  > k because, by (3.6), the interaction of k', 

p', q' then yields conservative transfer of energy within a triad of three 

wavenumbers all >k.    Therefore (3.7) can be rewritten 

k       p'+k» 
n(k,t)  = / dk'/ dp'/ dq»T(k,,p,,q,,t), (3.8) 

k        0        pft (p^ = larger of p',   Ip'-k'l). 

This form is the more useful one for computing n(k,t). Since k' is always 

>k and p' always <k in (3,8), contributions from very small or very large 

wavenumbers always involve triads with a big ratio of largest to smallest 

wavenumber. If the transfer is effectively local in wavenumber, the inte- 

grations in (3.8) converge at zero and infinity in such fashion that only 

inertial-range k1, p', q' contribute if k lies within a long inertial range. 

Equation (3.7), on the other hand, gives a nonlocal representation of n(k,t)> 
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and a correct result is obtained from it for inertial-range k only if 

the integrations are extended to include the entire dissipation range. 

Insight about the structure of the nonlinear interaction is provided 

by considering in detail the contributions to T(k,t) from interactions in- 

volving wavenumbers very much larger or very much smaller than k. Heis- 

.   3 
enberg proposed that the effect of higher wavenumbers on T(k,t) could 

be represented by an eddy viscosity. The present closure approximation 

supports this hypothesis for wavenumbers much larger than k and yields an 

analytical expression for the eddy viscosity (different in form from 

Heisenberg's). 

A Lagrangian time-correlation function for mode k can be defined by 

R(k;t|r) = U(k;t|r)/[U(k;t|t)U(k;r|r)]1/2. (3.9) 

To evaluate the asymptotic eddy viscosity, assume first that both E(k,t) 

and the characteristic decay times t-r of G(k;t|r) and R(k;t|r) decrease 

as k rises. If these conditions are satisfied with sufficient strength 

(to be checked later), the first term on the right-hand side of (2.6) gives 

a negligible part of the contribution to T(k,t) from wavenumbers »k. The 

reason is that p » k implies q >> k, and then U(k;t|s)U(q;t |s) » 

U(p;t|s)U(q;t|s).  Furthermore, U(k;t|s)» U(k;t|t) in the second term, 

for s which make appreciable contributions. There results 

»   q+k      t 
T ,(k,t) = - 2E(k,t)/ dq/  dpB  / G(p;t|s)U(q;t|s)ds        (3.10) 

q'  q-k   W  t0 

for the contribution to T(k,t) from all q > q* >> k. 
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The integration in (3.10) is symmetric in p and q, to leading order 

in k/q.    To leading order in k/q, 

i (B.       - B.     ) » - iTq3(u - u3), (3.11) 
2      kpq        kqp 

where u = (p-q)A. The trigonometric identity 

2Akpq '=    Bkpq 
+ Bkqp -  ^P^1 - XyZ " 2y2z2) (3-12) 

yields that to leading order 

i (Bu  + Bu  ) » ^ irkq2(l + u2 - 2u'*). (3.13) 2  kpq   kqp   2  ^ 

If the G and U factors in (3.10) are expanded in Taylor series about u = 0, 

these expressions lead to 

T    (k,t)  = - 2v (t)k2E(k,t) (q » k), (3.14) >q q 

where „     t 

v (t) = |i/ [7/    G(p;t|s)U(p;t|s)ds - pMp,t)]p2dp        (3.15) 

and 
a     t 

A(q,t)={^/    [G(p;t|8)U(qjt|s) - G(1;t|s)U(p;t|s)]ds}psq.    (3.16) 
t0 

Note that the eddy viscosity v (t) is independent of k and therefore is a 

true counterpart of molecular viscosity. 

Now define T (k,t) as the total contribution to T(k,t) due to all 

interactions involving a wavenumber less than q. According to (3.It), the 

loss from wavenumber k due to interaction with much higher wavenumbers is 

proportional to the mean-square shear or vorticity associated with k. The 

interactions are conservative.  Therefore TJ^kjt) should contain a contri- 

bution that involves \^  and the mean-square vorticity in wavenumbers 
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less than q, if q << k. Actually, the complete expression for T< (k,t) 

cannot be deduced from vk(t) because the interaction is among triads 

rather than pairs of wavenumbers. The eddy viscosity represents the net 

loss of energy from low to pairs of high wavenumbers.  In addition, the 

interaction with a low wavenumber induces a transfer of energy between 

the two high wavenumbers, and these two effects turn out to be of com- 

parable importance in the overall energy transfer at the high wavenumbers. 

The complete asymptotic expression for T (k,t) is 

o i'    o k+q t 
T  ,(k,t) = 2k*l    E(q,t)q"^dq/  dp/ [2A,  G(k;t|s)U(p;t|s) 

q 0 k-q  t0  
Kpq 

-B  G(p;t|s)U(k;t|s)]ds     (k»q'), (3.17) 

which is obtained from (2.6) by neglecting the term involving U(k;t|s) 

for p < q1 and assuming that the characteristic times of mode q are long 

compared to those of k and p. The factor 2 in the first term on the right- 

hand side of (3.17) comes from including the contributions of both q < q' 

and p < q1 in the first term on the right-hand side of (2.6). There is a 

cancellation between the A and B terms in (3.17) to leading order in p-k. 

The remainder can be evaluated conveniently by considering symmetrical 

and antisymmetrical parts as in obtaining (3.15). The final result can be 

written 

2ir , H, 
T  (k,t) = -2[; E(p,t)p/dp] ^ [vk(t) t ilk^k.t) 

^k3/ G(k;t|s)U(k;t|s)ds]    (k » q). (3.18) 

to 
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The three terms in (3.18) are most easily interpreted by integrating 

over k to form the corresponding contribution to n(k,t); 

n (k,t) = 2/ E(p,t)p2dp[v.(t) +£|.kl*Mk,t) 

_llk3/    G(k;t|s)U(k;t|s)ds]        (k » q). (3.19) 

t0 

The first term on the right clearly corresponds to the loss from low 

wavenumbers given by (3.14).    If the modes -k were in equipartition 

equilibrium among themselves, they would satisfy the relations 

G(k;t|s) = R(k;t|s), 3U(k;t|t)/3k = 0, (3.20) 

whence Mk,t) would vanish.    On the other hand,  if U(k;t|t) is a rapidly 

decreasing function of k, as in the inertial range,    A(k,t) is positive. 

Its appearance in (3.19) then represents a net transfer of energy from 

modes in the range (k-q, k) to modes >k due to straining by modes    <q 

but without net loss from the modes    <q.    The last term in (3.19)  survives 

even if the modes  ~k are  in equipartition.    Equation (2.6) is easily 

shown to give zero transfer among a triad all three of whose members are 

in equipartition equilibrium.    This may be called the detailed balance 

property.    The presence of the last term in (3.19) illustrates that 

detailed balance between only two members of a conservative interacting 

triad of modes is an invalid concept. 

The eddy viscosity (3.1.5)  does not have the form proposed by Heisen- 

berg  , but it gives qualitatively similar results in the inertial range. 

-1 1/2 There it yields v   ^ [q    E(q)]       , as the analysis to follow will show. 
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When viscosity effects are strong, the characteristic fall-off time of 

G(q}t|s) is (vq )~  , and the result is a value of v   which is smaller 

than Heisenberg^ and inversely proportional to the molecular viscosity. 

The absence of an interference between molecular and eddy viscosities in 

Heisenberg's formula leads to the prediction of a power-law    dissipation- 

range spectrum, which implies non-existence of high-order spatial deriva- 
H 5 

tives of the velocity field.   • 

The asymptotic formula for T< (k,t)  indicates that energy transfer 

associated with widely separated wavenumbers is proportional to the mean- 

square vorticity in the lower wavenumbers.    It is important in understand- 

ing the structure of (2.6) to remember that this result involves a near 

cancellation between the two terms on the right-hand side.    These terms 

separately give contributions proportional to the energy in the wavenumbers 

<q, not to the mean-square vorticity.    The term containing G(k;t|s)  is an 

input term giving a positive contribution to T(k,t), while the term con- 

taining U(k;t|s) is an output term representing a drain of energy from 

mode k to other modes.    The input and output contributions from low wave- 

numbers are proportional to energy because they represent convection as 

well as straining.     Convection of high-wavenumber structures by strongly 

excited low-wavenumber velocity components implies-, a rapid change of phase 

of the high-wavenumber Fourier amplitudes; that  is to say,  a rapid exchange 

of energy between sine and cosine components of the high wavenumbers.    This 

exchange is represented in (2.5) by the large, cancelling input and output 

contributions.    The net contribution T    (k,t)  represents the effect of 

straining alone. 
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Since the output integral in (2.6) involves U(k;t|s), it gives a 

negative -contribution to T(k,t) roughly proportional to E(k,t). As a 

result, the general behavior of (2.6) is to give energy flow out of 

strongly excited modes into weakly excited modes.  In equipartition, 

the input and output terms cancel exactly.  This can be seen immediately 

by using (3.20) in (2.6), as noted earlier. Out of equipartition, the 

energy flow is from low to high wavenumbers only if U(k;t|t) decreases 

as k increases. 

4.  THE TIME-CORRELATION AND RESPONSE EQUATIONS 

The multiplicity of terms in (2.7) ami (2.8) arises from the peculiar 

way in which Lagrangian dynamics are represented through (1.2). A more 

standard Lagrangian analysis is based on the equation for the particle 

acceleration 3u(x,t0|r)/3r. This treatment leads to trouble in turbulence 

theory because the expressions for viscous and pressure forces involve 

awkward nonlinearity, which so far has precluded approximate statistical 

equations that preserve incompressibility and conserve energy.  In the 

present approach, this trouble is sidestepped by avoiding direct calcula- 

tion of 3u(x,t|r)/3r.  Instead, the basic equations are for 3u(x,t|t)/3t 

and 3u(x,t|r)/3t. The r dependence is determined by the difference 

between the behaviors along the appropriate paths of integration of these 

two equations. The different approaches are illustrated in Fig. 1. 

Suppose that the initial Eulerian field u(x,t0) = u(x,t0|t0) is given and 

u(x,t0|r) is desired. The straightforward procedure is to integrate 

i 
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3u(x,tn|r)/3r along the path AB. In the present treatment, the Navier- 

Stokes equation is integrated along AC, yielding u(x,t|t) for t0 < t < r. 

Then (1.2) is integrated backward in t along CB. Thus u(x,t0|r)-u(x,t0|t0), 

the total change in the particle velocity during the interval (t0, r), 

appears as the difference between the two forward integrations AC and BC. 

If there are no viscous, pressure, or external forces, the two integrations 

are identical, so that u(x,t0|r)-u(x,t0|t0) = 0. 

Since (x,t) is laboratory spacetime, this amounts to describing 

Lagrangian behavior by equations which are Eulerian in character, a fact 

pointed out to the author by Prof. S. Corrsin. The advantage is that 

conservation and invariance properties appear directly and are easily 

incorporated in the final closure equations. The penalty is that the 

Lagrangian statistical functions are determined as algebraic sums of a 

multiplicity of intricately counterbalancing terms. 

The meaning of the various terms in (2.7) can be uncovered by tracing 

how they arise in the perturbation analysis through which the equation 

was derived. The v term has an obvious significance: simple viscous decay 

of Fourier amplitude of the Eulerian field at time t. The first term on 

the right-hand side can be interpreted by considering a hypothetical situation. 

Imagine that a velocity field with an Isotropie, multivariate-Gaussian 

ensemble distribution is set up at time r and then forces are somehow 

applied so that the Eulerian field is frozen thereafter, exhibiting no 

time-dependence at all. The fluid particles move along the streamlines of 

the spatially varying Eulerian field, and the Lagrangian velocities change 

with time.  If the derivation of (2.7) is repeated for this situation. 
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the only surviving term is the first term on the right-hand side. This 

term represents a decrement in the correlation U(k;t|r) due to the labeling 

transformation (transformation from Eulerian to Lagrangian coordinates): 

The particle at x at time t was elsewhere at time r, so that u(x,t|r) is 

really the Eulerian velocity at a point other than x and is partly decorrelated 

with u(x,t|t). 

In the actual case, where the Eulerian velocity is not static, this 

correlation loss is partly compensated by a correlation of the relabeling 

with the evolution of the Eulerian field during the same period: The 

substantial derivative [3/3t + u(x,t)*V] which determines the relabeling 

alao appears in the Navier-Stokes equation. The second term on the right- 

hand side of (2.7) expresses the compensation. The first and second terms 

together express net effects of relabeling during the period (r,t). Call 

them the Class I terms. 

The remaining terms on the right-hand side of (2.7) all express 

correlations arising from the distortion of the Eulerian field over its 

entire history from t0. They consist of Class II, with upp r limit r, and 

Class III, with upper limit t. Each of these classes is itself a sum of 

compensating terms. The algebraic sum of the terms within each class 

provides a cancellation which eliminates convection effects in the Eulerian 

evolution; only the difference between the histories at different space 

points makes up the net contribution. The integrals of Class II and Class 

3 
III over d k separately vanish for all t and r. This expresses that past 

nonlinear processes in the Eulerian field have no direct effect on 

3(u(x,t|t)'u(x,t|r)//3t. The latter derivative is determined wholly by 



I 

-19- 

the labeling transformation in the interval d'.t).    The vanishing of the 
3 

integrals over d k can be verified by using (2.9),  (3.t), and some changes 

of variable. 

It may be asked why the net effect of past distortion of the Eulerian 

field does not appear simply as an integral over the interval (r,t) instead 

of as the algebraic sum of Class II integrals over (t-.r) and Class III 

integrals over (t0,t). The reason is that distortion during (r,t) is 

affected by higher correlations built up over the entire history of the 

dynamical interaction ds well as by the value of the velocity aovariance 

at time r. It will be seen below that, in general, the Class II and 

Class III terms do not cancel each other if t = r. They express effects 

that exist even if no labeling transformation has taken place. 

A similar analysis may be made for the response equation (2.8). The 

first two terms on the right-hand side arise from relabeling associated 

with the unperturbed velocity field; that is, relabeling of the perturba- 

tion according to the transformation that would take place in absence of 

perturbation. They are analogous to the Class I terms in (2.7). In 

addition, the applied perturbation at time r, to which G(k;t|r) gives the 

average response, induces a perturbation in the relabeling transformation. 

term 
This is expressed by the [D.   - Bk ]Aon the right-hand side of (2.8). 

The remaining two terms represent effects from the perturbation in the 

nonlinear evolution of the Eulerian field. 

Hopefully, the interpretations above help a little to make (2.7) and 

(2.8) intelligible. However, no clean-cut separation is possible among 

the various effects cited. All the terms together determine the values of 

the G and U functions which appear in any one term. 
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It was stated in Sec. 1 that ^uCx.tlt^uCx',t|r)^ was not symmetric 

about r = t in stationary, homogeneous turbulence, except if x = x*. This 

can be investigated with (2.7). First, an isotropic energy source is needed 

in order that stationarity and isotropy be mutually consistent.  The easiest 

way is to add a negative damping term to the Navier-Stokes equation so 

that, after Fourier transformation, 

vk2 * vk2 - y(k), (t.l) 

2 
where u(k) is positive, and >vk for some k. Let u(k) vanish outside the 

energy-containing range.  This input mechanism may be regarded as an 

idealization of the mechanism by which real turbulence draws energy from 

an overall shear.  The effect of the input on (2.6)-(2.8) is simply to 

2     2 
replace vk by vk - M(k) everywhere. To describe the stationary state, 

the limit tQ ■* -00 is taken. 

Now consider (2.7) for r = t. The two D" terms cancel exactly, and, 

by (2.9) and the symmetry of the integrand factors in p and q, the coeffi- 

cient D,   in the sixth term can be replaced by B.  .  The first two terms 
kpq r      '  kpq 

on the right-hand side vanish. The result is that the right-hand side is 

identical with the right-hand side of (2.6).  Now subtract (2.6) from twice 

(2.7) and multiply by 2irk2. In the stationary state, 3U(k;t|t)/3t = 0. 

Therefore, by the definitions of T(k,t) and R(k;t|r), the result is 

E(k,t)C3R(k;t|r)/3t]r.t = jT(k,t), 

or, by stationarity, 

E(k,t)C3R(k;t|r)/8r]r=t = - i T(k,t). (U.2) 
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Fourier transformation of (.^,2) yields 

00 

[3Ui.(x,t|t;x+2,t|r)/3r]r=t = -/ T(k.t)si^ky) dk. (U.3) 

For y = 0, (t.a) gives zero slope at r = t, by (3.3). For y intermediate 

between energy-containing and dissipation scales, the sin(ky)/(ky) factor 

depresses the relative contribution of wavenumbers receiving energy, so 

that the right-hand side of (4.3) is positive. This agrees with the 

.„   ,  r,   .  /.„x,    t wavenumbers  . r ,  . 
discussion in Sec. 1. Equation (4.3) shows thatAwhere energy is fed in 

[negative T(k,t)] contribute acceleration positively correlated with 

particle velocity, while wavenumbers dissipating energy contribute nega- 

tively correlated acceleration. 

Equation (4.2) actually is an exact result of stationarity, independ- 

ent of the closure approximation and of the nature of the input forces. 

If an isotropic, statistically stationary forcing term of any kind is 

added to the Navier-Stokes equation, then (4.2) follows immediately from 

the identity of the triple moments and input terms in the exact equations 

for 3ü(k;t|t)/3t and [3l)(k;t|r)/3t]   that can be formed from (1.2) and 

the Navier-Stokes equation. 

Evenness of U..(x,tlt;x,tlr) as a function of r-t requires that all 
ii **   ^ 

the higher odd r derivatives vanish at r = t, as well as the first. The 

behavior of the higher derivatives has not been determined for either 

(2.6)-(2.8) or the unabridged LHDI equations. This question is part of 

the general problem of integrability and realizability of the LHDI equations 

discussed in Ref. 1. 

Further insight about the time-correlation and response equations is 
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provided by investigating the contributions from interactions with much 

larger and much smaller wavenumbers.     It is interesting first to examine 

the contribution from very local interactions, p as k, q as k.    Suppose that 

all triad interactions are absent from (2,6)-(2.8) except those for which 

|p - k|   < 6,       |q - k|   < 6,      6 << k. (it.U) 

Let 6  be small enough that p and q may be replaced by k everywhere in the 

integrands. Then 

B,  » D.  » D'  as i itk3,   C. » ~  irk3. (4.5) 
kpq   kpq   kpq  8   *    kpq  4 

The right-hand side of (2.6) vanishes to this approximation; because of 

symmetry, very local interactions produce no net energy transfer. All 

terms but the first two in the right-hand sides of (2.7) and (2.8) either 

cancel in pairs or vanish. When the integrations over p and q are per- 

formed, the net contributions from the first two terms yield 

O/at + vk2)U(k;t|r) = - y-k362U(k;t|r)/ U(k;t|s)ds, (4.6) 
r 

0/3t + vk2)G(k;t|r) = - y-k362G(k;t |r)/ ü(k;t|s)ds, 
r 

G(k;r|r) = 1.    (4.7) 

The exact solution to (4.6) and (4.7) for v = 0 can be obtained by 

the trial substitution 

U(k;t|r) = U(k)G(k;t|r) = g(t.-r)U(k), (4.8) 

which reduces (4.6) and (4.7) to the single equation 

,    t 
3g(t)/3t = - a g(t)/ g(s)ds,   g(0) = 1, (4.9) 



-23- 

where a2 =  (3Tr/2)k362U(k).    The solution of (4.9)  is 

^  = 4e-at/2/(l + e-at/2)2. (4.10) 

which is an even function of t  and has the asymptotic behavior 

g(t)« 1 - i (at)2      (at«l),      g(t) » 4e'at/2      (at»l). (4.11) 

This solution suggests that interactions local in wavenumber tend to pro- 

duce an eventual rapid decay of U(k;t|r) and G(k;t|r) at large t-r. Setting 

6 = k suggests that the characteristic decay frequency due to interactions 

2 
with wavenumbers of order k is crudely kv, , where v, = kE(k,t). 

To obtain the contribution to (2.7) from all interactions involving 

wavenumbers >q >> k, make the same assumptions used in obtaining (3.10). 

The asymptotic contribution is 

»   q'+k      t 
[3U(k;t|r)/3t]  = -U(k;t|r)/ dq'J   dPE-kDa./ U(q';t|s)ds 

q   q'-k   " r 

t 
+ B.  ,/ G(p;t|s)U(q,;t|s)ds]  (q»k).    (4.12) 

^0 

All the other terras on the right-hand side are suppressed either because 

they involve U(p)U(q) or because they involve at least one function for 

p or q with a time separation of order t-r; (4,12) assumes that t-r is 

large compared to the characteristic decay times of the modes >q.  In the 

second term of (4.12), U(k;r|s) « U(k;r|t) = U(k;t|r) has been used, because 

only s « t can contribute. The wavenumber integrations in this terra were 

performed in evaluating (3.10).  The integration in the first term is easily 

performed, with the result 



-2U- 

[3U(k;t|r)/3t]      = -v'(t)U(k;t|r)        (q » k). 

v'(t)   = v (t)  + —■ /  dq'J     (q')2U(q';t|s)ds. (4.13) 

In the expression for v'(t), the lower limit r has been changed to t  , 

This is permissible because all appreciable contribution comes from 

t-s <<  t-r.     Similar analysis gives 

[3G(k;t|r)/8t]      = - v'(t)G(k;t|r)      (q » k) (4.14) 

for the contribution to the right-hand side of (2.8) from wavenumbers iq, 

for  t-r large compared to the characteristic times of these wavenumbers. 

Comparison of (4.13) and (4.14) with the viscous terms in (2.7) and 

(2.8) shews that the high-wavenumber interactions act like an eddy viscosity, 

but not the same eddy viscosity which appears in the energy-transfer con- 

tribution (3.14). The difference may be understood as follows. The 

energy transfer among different wavenumbers in isotropic turbulence can be 

ascribed to advective straining. The pressure term makes no direct 

contribution. The pressure term also makes no direct contribution to the 

evolution of the Eulerian time covariance ^.(x.O'uCx'.t')^. The exact 

equation for this covariance is 

(3/3t -W^u^.O'ufx'.t')) = - <u(x,t)'V uU.t^jjKx'.t'}) 

- <u(x',t')«yp(x,t)>, (4.15) 

and the term containing the pressure p(x,t) vanishes by incompressibility 

and homogeneity. 

Just the reverse is true for the Lagrangian time covariance.    Advection 
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produces no direct change in particle velocity and therefore makes no 

direct contribution to decay of the Lagrangian covariance. The pressure 

fluctuations, on the other hand, produce accelerations which decorrelate 

the Lagrangian velocity. Crudely speaking, v (t) may be called the eddy 

viscosity due to advective straining and v'Ct), the eddy viscosity due 

to pressure fluctuations. The separation is not clean because the advec- 

tion and pressure fluctuations react on each other. 

The difference v^t) - v (t) is a positive integral. This provides a 

crude suggestion that the Lagrangian correlation time for turbulence may 

be shorter than the Eulerian correlation time. Some simple physical 

7 
reasoning leads to the same suggestion.  The argument is that even in a 

frozen Eulerian velocity field (infinite Eulerian correlation time), 

Lagrangian lovariances decay with difference time because given fluid 

elements migrate through the velocity field. This question will be dis- 

cussed further in Sec. 6, after the quantitative inertial-range results 

are available. 

Now consider the contributions to (2.7) and (2.8) from interactions 

with wavenumbers iq' << k. For t-r the order of the correlation and response 

times of mode k, the situation is like that for energy transfer. The contri- 

butions to the various terms on the right-hand sides cancel in such fashion 

that what remains is proportional to the mean-square vorticity in the wave- 

terms 
numbers Sq'.  In (2.7), the Class I, Class II, and Class IIIAcancel separately. 

In (2.8), there are cancellations between the first two terms, within the 

third term, and between the last two terras. 

The behavior at large t-r is more complicated. The analysis above 
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suggests that if k interacted only with wavenumbers of order k and larger, 

the functions U(k;t|r) and G(k;t|r) would fall off exponentially for large 

t-r. What actually happens is that interactions with low wavenumbers 

dominate the long-time behavior and cause these functions to fall off 

more slowly. Discussion of this phenomenon is postponed to Sec. 6. 

5.  INERTIAL-RANGE EQUATIONS 

Kolmogorov's inertial-range law is 

E(k) = Ce2/3k"5/3, (5.1) 

where e is the rate of energy dissipation per unit mass and C is a universal 

constant. The time-dependence is omitted in (5.1) because the relevant 

dynamical times in the inertial range are assumed to be short compared to 

the decay time of the total turbulent energy, so that the inertial range is 

nearly statistically stationary. Kolmogorov's hypotheses also yield 

inertial-range forms for G(k;t|r) and R(k;tir). The requirement that they 

depend only on e, k, and t-r imposes on these functions the forms 

G(k;t|r) = G(e1/3k2/3T),  R(k;t|r) = R(e1/3k2/3T), T = t-r.   (5.2) 

Reference 1 argued that the LHDI equations led to a Kolmogorov inertial 

range because    they gave the required localness of the dynamical interaction 

in wavenumber.    This can be verified for the abridged LHDI equations by 

substituting (5.1) and (5.2)  into (2.6)-(2.8)  and checking that the inte- 

grations  over p and q converge properly at zero and infinite wavenumbers. 

The equations for G(T)  and R(T) which result from the substitution can be 
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written most usefully by introducing rescaled functions 

G(T) = G(YT),   R(T) = R(YT),    Y = (2TI/C)
1/2

, (5.3) 

1/3 2/3 
where, for convenience, x now denotes the nondimensional argument e  k  T 

of (5.2). Then C drops out of (2.7) and (2.8) leaving 

T T 

dG(T)/dT = r/.dvdw{-C G(T)/ R(w2/3s)ds + D G(V
2/3

T)/ R(w2/3s)ds 
' ' il        VW    ' VW ' - 

[D  - B ]S(V
2/3

T)R(W
2/3

T)/ G(s)ds 
UV    UV 

/ [B G(V
2/3

S)G(T-S) - D' G(s)G(v2/3(T-s))]R(w2/3s)ds} 
' -  VW VW 

(T > 0), G(0) = 1, (5.4) 

T T 

dR(T)/dT = //Advdw{-C R(T)/ R(w2/3s)ds + D V"
11/3

R(V
2/3

T)/ R(w2/3s)ds 
ü     vw    0 vw 0 

00 

+ / [B v"11/3G(s-T)R(v2/3s) - D' G(v2/3(s-T))R(s)]R(w2/3s)ds 
'  vw vw 
T 

oo 

- J [B G(V
2/3

S)R(|S-T|) - D v"11/3G(s)R(v2/3|s-T|)]R(w2/3s)ds 
'   VW '    '     vw '    ' 

oo 

- f [B  - D' ]G(v2/3s)R(s)R(w2/3|s-T|)ds>  (x i.    0),  R(0) = 1. (5.5) 
'. vw   vw 

Here v = p/k, w = q/k, and JJ now denotes integration over all of the 

(v,w) plane such that (l,v,w) can form the sides of a triangle.  In accord 

with the assumption of an asymptotically stationary inertial range, the 

limit t. •*■ -a, has been taken. In addition, some simple transformations of 

time variables have been made and the symmetry property (2.5) has been used. 
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The coefficients in (5,4),  (5.5)  can be written * 

0 ,2 -8/3.       ^     3, . -8/3,. 2, Bvw = irv w        (xy + z  ),      C^ = irvw    '   (1 - y ), 

Dvw = i ^w"87^1 - xyz - 2y2z2 + z2 - y2). i 

Dw = j irv3w"8/3(l - xyz - 2x2Z
2 t z2 - x2), (5.6) 

where x, y, z are now the cosines of the interior angles opposite the 

triangle sides 1, v, w respectively. 

Substitution of (5.1) and (5.2) into (2.6) makes T(k,t) vanish 

identically by virtue of the conservation identity (3.4). The energy 

gained by k from lower modes is exactly balanced by a drain to higher modes. 

This formal result is a necessary consistency requirement for an inertial 

range, but it says nothing about the localness of the energy transfer. 

Transfer between widely separated wavenumbers can be investigated by sub- 
i 

stituting (5.1) and (5.2) into (3.15) and (3.19). The result is that both 

the loss from modes <q due to interactions with modes 2k and the gain in 

4/3 
modes >k due to interactions with modes <q are a(q/k)   for k >> q, pro- 

I 
vided that G(T) and R(T) are properly integrable over T. Discussion of the 

behavior of the latter functions, and the check of localness for (5.4) and 
i 

(5.5), are discussed later in this Section and in Sec,   6. 
1   1 

The Kolmogorov constant C can be determined by evaluating (3.8).     In 

the inertial range, n(k,t) must be independent of k and equal to e,  since 

there is negligible dissipation and the energy cascade  is conservative. 

This implies the similarity law 

T(ak, ap,  aq, t)  = a"3T(k, p, q,  t), (5.7) 
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where a is such that all wavenumbers involved are in the inertial range. 

Equation (5.7) can be verified for the abridged LHDI transfer function by 

inserting (5.1) and (5.2).  It leads to an important simplification of (3.8), 

Write b = p'k/k', q = q'k/k' so that the expression for e = n(k,t) becomes 

k2/^      b+k 
e =/ (k/k'Jdk'/ dbf      dqT(k,b,q)      (bft = larger of b,  k-b),     (5.8) 

k 0 bft 

by (5.7).    The time argument in (5.8)  and later equations is suppressed as 
2 

in (5.1).    Now set p = k /k'  in (5.8)  and find 

k      p  b+k 
e = / (k/p)dp/ dbf  dqT(k,b,q). (5.9) 

0       0  bft 
o 

Finally, integrate by parts and obtain 

k ptk 
e = k/ dp ln(k/p)/      T(k,p,q)dq. (5.10) 

0 Pft 

If (5.1) and (5.2)  are substituted into (5.10),  some simple changes of 

variable yield the formula 

1 1+v     » 
(C/2IT)"

3/2
 = kvj dv ln(l/v)/      dw/ ds[A    G(s)R(v2/3s)R(w2/3s) 

0 vft        0        w 

-B G(v2/3s)R(s)R(w2/3s) - B G(w2/3s)R(s)R(v2/3s)],  (5.11) vw wv 

where 

A  = (B,  + B.  )(vw)"8/3, vA = |v - i| + i . vw    Ivw   Iwv        »  ft  i   2'   2 

It should be remembered that although T(k,t) vanishes identically in 

the inertial range, n(k,t) defined by (3.7) does not vanish, because the 

integrations include the dissipation range. The passage from (3.7) to (3.8) 

uses the conservation properties to obtain a formula for C which involves 

only inertial-range functions. 
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Equation (5.10) can be cast into the form 

E = / WU)^. , (5.12) 
1 

where W(a)(da/a) is defined as the contribution to E from all triad inter- 

actions such that the ratio of maximum to minimum wavenumber lies between o 

and a + da. To obtain W(a), write (5.10) as 

k        k k        k+p 
e = k/ dp ln(k/p)/ T(k,p,q)dq t k/ dp ln(k/p)/  T(k,p,q)dq. 

0 PA Ok 

In the first term the ratio of maximum to minimum wavenumber is a = k/p 

and in the second term it is a = q/p. In the first term write q = k/ß 

and in the second write p = k/ß, q = ak/ß. Then some manipulations of 

the limits yields e in the form (5.12) with 

W(a) = k0[c. Ina/ T(k,k/o,k/ß)ß (iß + a/  T(k,k/ß,ak/ß)ß"Jlnß dß], 
1 o-l 

a* = [li-ij + i]-1. (5.13) 

which is independent of k, by (5.7). Substitution of (5.1) and (5.2) into 

(5.13) yields 

W(a) " a"4/3      a >> 1, (5.It) 

in agreement with the results obtained from (3.15) and (3.19). 

For values of T small enough that R(t)  and G(T)  are still 0(1), the 

convergence properties of the wavenumber integrals in (5.4) and (5.5) are 

like those of the energy transfer. Equations (lt.l3) and (4.11+) yield 

-1/3 
contributions «a    from interactions with v or w > a, a >> 1.  Investi- 

gation shows that the contribution from interactions involving v or w <a" 

-4/3 
is *oi    also.  The behavior at large T will be discussed in Sec. 6. 
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6.    BASIC NUMERICAL RESULTS AND THEIR INTERPRETATION 

Before inertial-range computations were attempted,  an overall consis- 

tency check of the closure equations was performed by repeating some numerical 

studies originally carried out for the unaltered Eulerian direct-interaction 
g 

equations.       Inviscid equipartition solutions were investigated first.    The 

viscosity was set equal to zero in  (2.6)-(2.8) and the equations truncated 

to a finite wavenumber range, as in Ref. 9.    Initial spectra U(k;t0|t ) of 

several forms were taken, including sharply peaked spectra confined to a 

narrow wavenumber band.    The system was found to approach equipartition 

and fluctuation-dissipation equality CEq.(3.20)].    E(k,t)  stayed positive 

for all k and t, and G(k;t|r) and R(k;t|r)  approached zero for large t-r. 

Some of the  finite-viscosity decay calculations at moderate Reynolds 

number described in Ref. 9 were also repeated.    The spectral predictions 

of the present abridged LHDI equations turned out to be qualijatively 

similar to those of the unaltered Eulerian direct-interaction equations 

at the Reynolds numbers investigated (R,   4 10). 

The unaltered direct-interaction equations are the exact description 

of a model dynamical system and are guaranteed self-consistent.    There is 

no such guarantee for the LHDI equations.      The numerical results just 

described, and those to follow, suggest that the LHDI equations actually 

are a more stable system than the unaltered direct-interaction equations 

and stay farther from unphysical behavior.    Functions which decay with 

damped oscillations in the unaltered approximation instead fall smoothly to 

zero in the LHDI and abridged LHDI approximations.    A possible explanation 

lies in the general nature of the alteration prescription.    The change from 
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direct-interaction to LHDI triple-moment formulas consists of replacing 

certain labeling times s < t by t in the integrals over the history of the 

fluid. This appears to be stabilizing in the same way as a change from 

forward to backward differences can be stabilizing in the numerical 

integration of differential equations. 

The basic inertial-range equations (S.'O and (5.5) were integrated 

by a modification of numerical methods developed for the Eulerian direct- 

g 
interaction equations.  The Kolmogorov constant was then computed by 

evaluating the multiple integral (5.11) in such a way that the calculation 

also yielded W(a) without extra work. The results for G, R, W, and 

Ha) 5 / W(a')^r 

1 

are plotted in Figs. 2 and 3. The value computed for the Kolmogorov 

constant is 

C = 1.77. (6.1) 

A description of the numerical procedures and estimates of computational 

errors are given in the Appendix. 

The following values for integrals over R and G were obtained: 

00 CO oo 

I     = / G(s)ds =  l.Oi*,       IR = / R(s)ds  =  1.87,       I,  = / G(s)R(s)ds  =  0.76, 
G        0 0 0 

I,  = / [R(s)dG(s)/ds - G(s)dR(s)/ds]sds = -0.19. (6.2) 
2        0 

These numbers yield the following inertial-range values for the quantities 

which appear in (3.15), (3.18), and (4.13): 
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Vk = 1 [^ - l^C^V4/^ 0.235  e1/3^3. 

ig/Vdp/* G(pit|s)ü(p;tis)ds  -LrCl,   ^V^3 =  0.H7   ^V^3. 
k -00 

fl rp3Mp)dp = A [u^ + 2I2]C e1/^-4/3 = 0.235  ^V'3. 

f k%(k)   = A [11^ + 2I2]C  e1/3k-4/3 = 0.31. ^V4'3. 

gk3/    G(k;t|s)ü(k;t|s)ds = ^ CI    e
1/3k-4/3 = 0.090  e

1/3k-U/3. 
^ 00 

v-   =vk+iciRE
1/3k-,+/3 = 1.89e

1/V't/3. (6.3) 

Figure 3 indicates that W(a) peaks at a = 2.    However, it also indi- 

cates that only about 20% of the total transfer comes from o <    2; that is, 

from triad interactions in which the largest and smallest wavenumbers differ 

by a factor of   two or less.    The tail of W(a) carries most of the energy 

transfer, so that the  local cascade appealed to by Kolmogorov seems actually 

to be rather diffuse.    This may mean that  inertial ranges must be quite 

extensive before they exhibit nearly asymptotic dynamical properties.    The 

-4/3 numerical results support the a dependence of W(o) at large o found 

analytically. 

The numerical results (6.3) for effective eddy viscosities and other 

functions relevant to distant interactions exlibit some interesting features. 

Substitution of these results into (3.19)  indicates that the eddy-viscosity 

loss from low wavenumbers (the first term on the right-hand side)  represents 

slightly more than 50% of the energy gain of the high wavenumbers.    An 
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almost equal gain in the wavenumbers >k comes from the straining action 

of the wavenumbers Sq upon wavenumbers in the range (k-q, k), without loss 

from the wavenumbers <q. 

The most striking feature of (6.3) is that v* is about eight times as 

large as v. . Some help in interpretation comes from noting that v/ - v, 

arises from the first term on the right-hand side of (2.7), or (2.8). 

According to the discussion in Sec. H,  this term would contribute all of 

v£ if the Eulerian field were frozen. The remaining contribution v repre- 

sents the effects of change of the Eulerian field with time. A large ratio of 
to v. 

V jneans that the migration of particles, under the action of wavenumbers 
k " 

>k, is accompanied by accelerations which leave the  large-scale Eulerian 

field almost unchanged; the particles are subjected to pressure  forces 

such that they take on nearly the velocity of their new surroundings, apart 

from fluctuations at scales Sk  .  In other words, the transport of particles 

by the velocity excitation in wavenumbers  >k is much more efficient than 

the transport  of momentum across gradients of the large-scale velocity field. 

The migration of fluid particles is directly related to the turbulent 

transport of heat in a fluid with passive temperature gradients. A large 

ratio v'/v, therefore implies that the ratio of eddy conductivity to eddy 

viscosity is large. The LHDI result for the asymptotic thermometric eddy 

conductivity due to wavenumbers >k is, in fact, just v/ - v, . Thus (6.3) 

implies that the eddy-transport Prandtl number is 

0k =  vk/(vk ' vk)  = 0'lk        (inertial-range k). (e.t) 

Both G(T)  and R(T) have zero slopes at  T = 0.    The result for G is 

obvious from (5.4).    The slope of R vanishes because the right-hand side 
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of (5.5) is proportional to the energy transfer if T = 0 [see (4.2)], and 

the latter vanishes in the inertial range. Figure 2 indicates that G and 

R are indistinguishable near the origin but are markedly different at 

large argument values. For T <, 1, the numerical investigation supports 

the analytical result that the behavior of G(T) and R(T) is dominated by 

interactions local in wavenumber. The behavior at large T turns out to 

be dominated by interactions with low wavenumbers. Analysis of this phe- 

nomenon requires investigating the asymptotic forms of all the terms on 

the right-hand sides of (5.4) and (5.5). Only the results and their physical 

interpretation will be described here. 

Consider (5.5) first. The low-wavenumber contributions come from 

small v and small w. The small-w contributions turn out to be negligible 

for all T. The dominant small-v contributions for large T come from 

-3/2 v i T    '     and appear in the second and sixth terms on the right-hand side 

of (5.5), both of which have the coefficient D    .    These contributions 

act as a source term which supports R(T) against the effective eddy damping 

from v, w = 0(1).    The result is 

R(T) -V T"
2 (T >>  1), (6.5) 

apart from a factor which varies more slowly than any power of x.      In (5.4), 

-3/2 the important contributions again come from VäT and appear in the 

second and last terms on the right-hand side.    They result  in a tail 

G(T) -V T-
15/2

        (T »  1), (6.6) 

apart from a factor which varies more slowly than any power of T. The 

numerical results, are consistent with (6.5) and (6.6). The dominant con- 
A 
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tributions to C, as given by (5.11), and to the integrals in (6.2), are all 

from values of the time-arguments such that G and R are dominated by inter- 

actions local in wavenumber. 

The physical interpretation of the tails on R and G is interesting. 

Transfer of energy from low to high wavenumbers involves straining pro- 

cesses which produce relative displacements of fluid elements.  Suppose 

that there is an initial excitation of the velocity field at wavenumber p 

and that this excitation is spatially distorted by the action of much 

higher wavenumbers at a time t^. Apart from the effects of acceleration, 

spectrum changes can be produced just by the differential displacement. 

If the elements along some line in the fluid suffer displacement modulated 

at wavenumbers ^k  (k >> p), then the resulting Eulerian velocity field 

will have a component at wavenumber k because elements which are equally 

spaced after the displacement were not equally spaced before displacement. 

Of course, there will be additional spectrum changes because the fluid 

elements suffer changes of velocity, but they turn out not to be relevant. 

Now consider u(x,t|r) for t > ^ and r < t.. The field u(x,t|t) is 

the Eulerian field after distortion, and has a component k,.  The field 

u(x,t|r) is the Eulerian field before distortion, but relabeled according 

to the positions of the fluid elements after the distortion.  Because of 

the modulated displacement, correlation in the velocity of a fluid element 

before and after distortion shows up as a correlation between the fields 

u(x,t|t) and u(x,t|r) that contributes to Ll(k;t|r).  But for r < t., the 

excitation of interest is, in the Eulerian picture, at the low wavenumber p. 

The connection with wavenumber k comes only through the labeling transforma- 
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tion that takes place between t. and t. Consequently, there is a k, component 

of u(x,t|r) that varies with r at the slow rates of evolution of the low 

wavenumber p, and the contribution of the distortion process to U(k;t|r) 

decays slowly with r. 

The terms in (5.5) which give rise to the tail in R can be seen to 

describe just this process if the perturbation analysis is traced through 

in detail. The contribution to U(k;t|r) depends on the shear associated 

with the low wavenumbers p; unless velocity gradients are present, the 

modulated displacement of fluid elements cannot generate modulation of 

the velocity field. 

A similar but more involved argument gives the physical basis for the 

tail on G. The essential point is that, because of differential displace- 

ment of fluid elements (labeling transformation), the externally imposed 

perturbation in the field u(x,t|r) which produces a pure wavenumber k 

perturbation in u(x,t|t) must contain all wavenumbers, including low wave- 

numbers p which evolve slowly. 

According to the LHDI closure formulas, the functions R(k;t|r) and 

G(k;t|r) determine the effective memory times for the buildup of triple 

correlations and energy transfer. The action of wavenumbers <<k in making 

the functions more persistent therefore tends to lengthen these memory 

times. An interpretation is the following: Production of high wavenumbers 

involves stretching of large-scale spatial structures into structures having 

small transverse scales. During this process, the correlations present 

in the large scales are not destroyed exponentially vich  repeated halvings 

'   scale size, but tend to persist throughout the straining process.  In 

wavenumber language, the triple correlations associated with energy transfer 

tend themselves to be transferred up the wavenumber spectrum. 
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f 

7.     LAGRANGIAN AND EULERIAN STRUCTURE FUNCTIONS 

A generalized spacetime structure-function tensor may be defined by 

Bi-(S»tlrjS',»t,'r')  = (tui(*itlr0  - ui(x^t'|^,)] 

x [u.(x,t|r)  - u.Cx'.t'lr')]). (7.1) 

The structure tensor measures the velocity difference between two fluid 

elements.    The invariance property 

3U..(x,t|r;x,t|r')/3t = 0 (7.2) 

for homogeneous turbulence was obtained in Ref. 1. It expresses that the 

transformation from Eulerian to Lagrangian coordinates preserves volume in 

an incompressible fluid.   For isotropic turbulence, (7.1) and (7.2) give 

B^U.tlrjx'.t'lr') = 6ij[U(r) + U(r')] - 2Uij(x,t Ir;^ ,t'|r'),   (7.3) 

where U(r)  is the mean-square velocity in any direction at time r. 

A purely Lagrangian structure tensor, which compares fluid elements 

labeled simultaneously, is given by t = t', and a purely Eulerian tensor 

is given by r = t, r'  = t'.    The specialized Lagrangian tensor 

B..(x-x,;t|r)  s B. .(x,tItix1,t|r) (7.4) 

can be evaluated for t > r from the abridged LHDI equations. This tensor is 

purely solenoidal, while the full Lagrangian structure tensor is not. 

When the turbulence is isotropic and stationary, standard Fourier 

12 
transformation formulas  yield 

B(y;t|r) = 4/ [1 - Si"(ky) R(k;t|r)]E(k)dk, 
0   ky 
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Bn^tlD = H/ {i- [^2<JSZl-£2SiM]R(k}t|r)}E(k)dk, (7.5) 
0 3    (ky)3    (ky)2 

where B and B.. are, respectively, the trace of B..(y;t|r) and the diagonal 

component parallel to y, in a coordinate system aligned with y. The diag- 

onal components perpendicular to y are each given by Bx = (B - B..)/2t  and 

the off-diagonal components vanish in this coordinate system. 

If the inertial-range forms (5.1) and (5.2) are substituted into (7.5), 

the result, denoted here by superscript (1), is 

B(1)(y;t|r)   =  e
2/V/V1)(e

1/3T/y2/3), 

B^Wlr) = e
2/3

y ^FJ^e^t/y273).      x = t - r, (7.6) 

where 

F(1)(s) = kcfll - HILüR(x2/3s)]x-5/3dx> 
0 x 

F(1)(S)  -. ucf [i - (^2Ji - S°p )R(x2/3s)]x-5/3dx, (7.7) 
" 0 X X 

and,  in particular, 

F(;L)(0)  = I r(j) C = 8.52, FJ-'-^O) = ■i-F(1)(0). (7.7a) 

The computed value of C is used in (7.7a). 

The integrations over x in (7.7) are transformed wavenumber integrations, 

and they converge at both limits as a consequence of the properties of R 

established in Sees. 5 and 6. And if y is the reciprocal of a wavenumber 

within an extensive inertial range, only inertial-range wavenumbers contri- 

bute appreciably to the integrals. Nevertheless, (7.6) does not give the 

inertial-range structure functions correctly. This can be seen from (4.2). 

If (4.2) is integrated over the energy-containing range, it yields 
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/  [3R(k;t|r)/3t]t=rE(k)dk = -t/2. (7.8). 
energy 
range 

Consequently, if T = t-r is in the inertial range of time differences, 

small compared to the characteristic evolution times of the energy-contain- 

ing wavenumbers, 

/ R(k;t|r)E(k)dk = - (t-r)e/2. (7.9) 
energy 
range 

The factor ky in (7.5) can be replaced by unity with negligible error if 

k is in the energy-containing range and y  in the inertial range. Hence 

there is an additional contribution 

B(2)(y;t|r) = 2(t - r)c,    Bj2)(y ;t|r) = 2(t - r)c/3,      (7.10) 

so that 

B(y;t|r) - e
2/V/3F(e

1/3
T/y2/3).      B(|(y;t|r) = c^V^^W'3). 

T  = t  - r >  0, (7.11) 

with fn m 
F(s)  = F^i;(s)  + 2s, F^s)   =  F,     (s)  + 2s/3. (7.12) 

If s 'v 1, the two contributions to F(s) have comparable magnitudes. 

There is no corresponding asymptotic contribution from dissipation- 

range wavenumbers.    The total transfer into the dissipation range equals 

the transfer out of the energy rarge, but the dissipation-range contribution 

to (7.5)  is suppressed by the trigonometric coefficients if y is  in the 

inertial range and by the small correlation time of R(k;t|r)  if t-r is  in 

the  inertial range. 

A closer look at how the contributions  (7.10) arise shows that actually 

they should not be considered direct effects of the energy-containing eddies. 
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Equation (7.2) can be Fourier analyzed just like the energy-balance equation. 

It then describes a similar cascade process: There is a negative contribu- 

tion -26..e/3 to the left-hand side from the energy-containing range, if 

t-r is small compared to the characteristic times of the energy-containing 

eddies. This is balanced by a positive contribution at higher wavenumbers. 

These properties can be established by analysis similar to that which gives 

(•+.2). Note also the discussion of small scales at the end of Sec. 1. 

Thus, if (7.1) is Fourier analyzed before (7.2) is used, there are two 

equal and opposite energy-range contributions which cancel, and (7.10) 

appears as a contribution at higher wavenumbers, from the cascade process. 

The formal analysis evidently indicates an ambiguous origin for (7.10), 

determined by what implicit uses of conservation and invariance properties 

have been made. 

The physical interpretation of (7.10) seems fairly straightforward: 

On the average, two particles which are separated by y at a given time t 

are undergoing a relative acceleration negatively correlated with the 

velocity difference, the correlation being measured by the slope of 

B  (y;t|r) as a function of r at r = t. This was discussed at the end of 
^* 

Sec. 1. B  (y;t|r) has zero slope at r = t and is a contribution from the 

part of the relative acceleration which is uncorrelated with the relative 

velocity at time t. The correlation described by B  (y;t|r) is due to 

straining processes established over finite times. If the velocity is 

multivariate Gaussian at t-, so that T(k,t ) vanishes for all k, then there 

is no initial correlation of relative acceleration,due to pressure forces, 

with relative velocity. 

The abridged LHDI equations of the present paper do not predict 
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B(y;t|r) for r > t.  But clearly the negative slope as a function of r 

cannot persist.  Eventually, B(y;t|r) must increase with r.  Note that 

if two particles,known to be separated by y at t, have reached a new 

separation y' at a later time t', their mean-square velocity difference is 

not given by BCy'jt'lt'). These two particles are members of a special 

subset of all pairs separated by y' at t', and have special statistics. 

The present results at r = t thus do not contradict the proposal by C. C. 

13 • 
Lin  that the simultaneous correlation of relative velocity and relative 

acceleration be positive and constant at times sufficiently long after 

release of a particle pair at an inertial-range spatial separation. The 

structure function which describes the change with time of simultaneous 

relative velocity is B..(x,t|t';x-y,t|t'). 

Equation (7.11) is inconvenient for finding 

B(t-r) 5 B(0;t|r). 

which gives the mean-square change of velocity of a single fluid element 

in the interval t-r.  For inertial-range values of T (not for T -» 0), 

00 

B(-t) = KEITI,    K = 6C/ [1 - R(s)]s"2ds + 2. (7.13) 
0 

The second term in K  is obtained from (7.10), and the first term is obtained 

by using (5.1) and (5.2) '-   (7.5) with y = 0. Equation (7.12) yields 

F(S)»KS     F(S)»ICS/3,  s » 1. (7.12a) 

B(T) must be even in T for stationary turbulence, and this fact has been 

incorporated into (7.13). The linear dependence of B(T) on T in the inertial 

It ... range was obtained by Inoue      by Kolmogorovian dimensional analysis. 

The computed results for F(s) and F (s)  are plotted in Fig.   t.    The 
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value computed for the integral in (7.13) is 1.U6, yielding K = 17.5. 

The above formulas for the inertial-range Lagrangian structure func- 

tions assume stationary Isotropie turbulence, which must be maintained by 

statistically stationary driving forces of some kind. The results are un- 

changed if the turbulence is freely decaying. This can be verified by re- 

tracing the analysis carefully for the freely decaying case. It also can 

be seen by a simple argument: The decay of the total kinetic energy is 

o 
given by 3u /3t = -2c,  where u is the total rms velocity. The characteristic 

2 2 
decay time of u is therefore u /e.  In a time T << U /e, the mean-square 

change of velocity due to decay (i.e. due to the lack of energy-range 

9        2 2 
sustaining forces) is ^(Au) )^  (ET/U) ^ ET[T/(U /e)], which is asymptotically 

negligible compared to the mean-square velocity differences of order EX 

found above. Note that mean-square change of velocity does not mean change 

of mean-square velocity. 

A purely Eulerian structure tensor is obtained by setting r = t, 

r' = t' in (7.1). For t - t1 small enough that the time dependence of 

E(k,t) is negligible, the formulas for the Eulerian scalars B (yjt.t') 

and B, (y^t1), analogous to B and B||,are identical with (7.5), except that 

R(k;t|r) is replaced by the Eulerian modal correlation function 

RE(k;t,t') = ^UU^Itjt'lt'J/CEa^Etk,^)] 1/2 (7.14) 

The Lagrangian and Eulerian modal time correlations measure quite 

different properties when k is  in tne inertial range.    The Lagrangian cor- 

relation is determined by intrinsic distortions of the small-scale structures, 

and the correlation time is of order (vik)~  , where vk is the rms velocity 

in wavenumbers > k.    The Eulerian correlation is dominated by the convection 
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of the small scales by the energy-containing scales. 

The convection of a frozen small-scale structure by a uniform velocity 

u induces the time dependence exp(-ik'u) in the Fourier amplitude k^ of the 

small-scale structure. Now assume, in accord with Kolmogorov's hypotheses, 

that the distribution of the small-scale velocity fluctuations is statisti- 

cally independent of the simultaneously measured distribution of the con- 

vecting velocity. Then it follows immediately that 

RE(k;t,t-T) = M(kT,t), (7.15) 

where 

M(a.t) = (e-^i) = /e-iS^P(u.t)d3u (7.16) 

is the characteristic function of the one-point probability distribution 

P(u,t) of the convecting velocity at time t. The correlation time indicated 

by (7.15) is (vQk)  , where v is the rms value of any vector component of 

the convecting velocity, now identified with the energy-range velocity. 

Since this correlation time is << (vJO" , it may be concluded that dis- 

tortion effects make a negligible charge in the Eulerian time correlation 

and that (7,15) is the complete asymptotic result for inertial-range k. 

Finally, P(u,t) in (7.16) may be taken as the one-point distribution of 

the entire velocity, since the energy-range contributions dominate the 

latter distribution. 

Equation (7.15) follows also for dissipation-range wavenumbers if 

the relevant distortion time for scales of order k  is assumed to be not 

less than the Kolmogorov time (V/E) ' regardless of how high k may be. In 

other words, it is necessary that the very small-scale structures follow 

the structures of scale k   and not exhibit independent distortions. 
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The result for the Eulerian modal response function G (k^.t1) 

corresponding to (7.15) is 

GE(k;t,t-T) = exp(-vk2T)M(kT,t), (7.17) 

for k in the inertial or dissipation range. The viscous factor appears in 

(7.17) because an arbitrary perturbation at a wavenumber high in the dissi- 

pation range will be uncorrelated with the existing structures, will not 

be supported by them, and will decay, during the convection by energy-range 

2 
scales, as if in isolation. Note that vk << v„k , so that when the iner- 

s    ü s 

tial range is extensive the viscous damping in (7.17) is negligible except 

for k in the far dissipation range. 

Equations (7.15) and (7.17) are presumably exact results if the 

en 
underlying assumption of asymptotic statistical indepdence of simultaneously 

measured small- and large-scale structures is valid. No closure approxi- 

mation is used, and isotropy of the energy-containing range is not invoked. 

The abridged LHDI equations do not predict Eulerian time correlations. 

However, the unabridged LHDI approximation leads easily to explicit results 

E E -1 
for R (k;t,t') and G (jk^t.t') when k  is high enough that (vJO  is short 

compared to Lagrangian correlation times for mode k,. In that case, the 

Galilean invariance properties of the LHDI equations imply directly that 

RE(k;t,t-T) = exp[- ■i-vJkV], 

GE(k;t,t-T) = exp[-vk2T - ! v2k2T2], (7.18) 

in the isotropic case. This agrees with (7.15) and (7.17) if the univariate 

velocity distribution is Gaussian. Thus the accuracy of the LHDI results 

depends on how close the actual univariate distribution is to Gaussian. 
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In the case of inhomogeneous turbulence with nonzero mean velocity, the 

LHDI result again is exact if and only if the univariate velocity distri- 

bution is normal. 

E     E 
Insertion of (7.18) into the formulas for B and B yields 

BE(y;t.f) = e
2/3y2/3FE(v0T/y). B^jjt.f) = e^V^F^t/y). 

T = t -t', (7.19) 

where 

r-E, N  „nTn      sin x   ,  1 2 2.-.  -5/3, 
F (s) = 4CJ [1 exp(- y x s )]x   dx, 

T^E, ^  „_f r 1   /Sin x   cos x . ,12  2., -5/3,       ,_ nnS F (s) = tCj [ j - (—g— ^— ) exp(- j x s )]x   dx.     (7.20) 
1 0 x x 

Also, 
00 

BE(T) = ice(ev T)
2/3

,      ice = HC/ [1 - exp(- i s2)]s"5/3ds, (7.21) 
0 

E        E 
where B (t-f) = B (O^.f). Equation (7.21) gives the mean-square velocity 

change at a fixed point in laboratory coordinates. Equations (7.19)-(7.21) 

are valid for y and v x in the inertial range of spatial scales. There are 

£ 
no contributions analogous to (7.10); R (k^.t1) has zero slope at t = t' 

for all wavenumbers, in stationary turbulence. 

F (s) and F (s) are plotted in Fig. 5. The integral in (7.21) has the 

value 1.61, yielding K    = 11,4. Equation (7.20) yields 

FE(s) a* <es2/3,   F^s) » Ke82/3/3t    s » 1.        (7.20a) 



-47- 

8. LAGRANGIAN ACCELERATION AND PRESSURE COVARIANCES 

The function 

a(x,t|r) = 3u(x,t|r)/3r (8.1) 

is the acceleration at time r of the fluid element which arrives at x at 

time t. The two simplest Lagrangian covariances between acceleration and 

velocity are 

K (y;t|r) = <u.(x,t|t)a (x-y,t|r)> (8.2) 

and 

K^.(y;t|r) = (u^x.t |r)a.(x-y,t |t)>. (8.3) 

Giver, a pair of particles known to be separated by y at time t, K.. measures 

the correlation between the velocity of one at time t and the acceleration 

of the other at a time r. K.. measures the correlation between the vel- 

ocity of the first at time r and the acceleration of the second at time t. 

The relation between K . and K.. is simplest in stationary, homogeneous 

turbulence. To permit such turbulence, let a stationary, homogeneous, 

solenoidal forcing field f(x,t) be introduced so that the Navier-Stokes 

equation is 

[3/3t + ä(x,t|t).v]u(x,t|t) =i(5.«tlt)» (8,'*) 

a(x,t|t) = vV2u(x,t|t) - 7p(x,t) + f(x,t), (8.5) 

where p(x,t)  is the kinematic pressure field.    The nature of f(x,t) need 

not be specified further.    The  forces may, but need not, be negative damp- 

ings as  in Sec.   4.     In the stationary state, 

K..(x-x';t|r)  =  3U. .(x,t |t jx',t lr)/3r = - B^^x.t |t;x',t |r)/3t.     (8.6) 
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An expression for the  last member of (8.6)  is readily obtained by multi- 

plying (B.t) with vUx',t|r), multiplying (1.2) with u(x,t|t), adding, and 

averaging.    This gives 

K. .(x-x'itlr)  = Ai.U'tlrOu (x.tl t)3u.(x,tl t)/3x ^ 
ij -~ •<"      ' \ -j *■ n -^    ' i •"*    ' n' 

+ {ui(x,t|t)un(x',t|t)^u.(x,,t|r)/8x^) - <u (x-,t|r)ai(x,t|t)).     (8.7) 

If the second term on the right-hand side is rewritten using 

3u (x'.tltj/äx'   = 0 and homogeneity,  (8.7)  becomes n '* n 

K-.U-x';t|r)  = - Kt.(x'-x;t|r) 

+ ^u.(x;,t|r)[un(x,t|t)  - un(x',t|t)]3ui(x,t|t)/3xn). (8.8) 

Equation (8.8)  shows that K,.(x-x';t|r)  = - K..(xj-x;t|r)  if x = x1, 

but not if x !< x1.    The result for x = x'   can also b-   obtained from dif- 

ferentiation of 

U..(x,t|t;x,t|r)  = U.   (x,r|t;x,r|r), (8.9) 

a relation which follows from (7.2).    Moreover, the evenness of 

U..(x,t|t;x,t|r)  in t-r shows that K(t-r)  = K..(0;t|r)  is an odd function 

of t-r. 

K.,   is solenoidal in i because the Eulerian velocity is solenoidal, 

and is solenoidal in j  also if the turbulence is homogeneous and reflection- 

invariant.    In the stationary state, 

- aUMx.tltsx',t|r)/3t = i 3Bi.(x,t|t;xl,t|r)/3t, (8.10) 

so that  for stationary,  isotropic turbulence  (7.11) yields 

K(y;t|r)  = ± eF(e
1/3T/y2/3),        ^(y^lr)  = i e^ (e

1/3T/y
2/3). 

T = t  - r > 0 (stationary turbulence), (8.11) 
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where K and K.. are the trace and the longitudinal, diagonal element of 

K...  The functions 

F(s) = dF(s)/ds, F^is) =  dF||(s)/ds 

are plotted in Fig. 6. Equation (7.13) yields 

K(T) = y KE sgn T     (stationary turbulence),      (8.12) 

It must be remembered that (8.12) is established only for |T| in the inertial 

range of times and is invalid for |T| -•■ 0. 

The change of sign in (8.12) has a simple physical interpretation. 

For T > 0, K(T) measures the correlation of a particle's velocity with its 

previous acceleration. This is positive because the velocity increment pro- 

duced by the acceleration shows some persistence. On the other hand, a 

negative correlation of velocity with later acceleration is necessary if 

the velocity is to change direction without increasing its magnitude, in 

mean square. Contrast this behavior of one-particle velocity and accelera- 

tion with the opposite correlation of relative velocity and relative acceler- 

ation of two particles, as indicated by the slope of B(y,t|r) at r = t 

[Equations (7.10) and (7.11), et seq.]. 

A constant negative value of K(T) for T negative and in the inertial 

range has been proposed on the basis of a kind of Brownian-motion model of 

the behavior in velocity space.  '   The present result does not seem 

properly explicable in terms of such a model. The major1 contribution to 

K(T) at an inertial-range T comes from eddies whose circulation times are 

of order T . A Brownian-motion model requires that instead the major 

effect come from eddies whose circulation times are << T, SO that many un- 

correlated eddies contribute. The similarity of the results of the two 



-50- 

approaches seems fortuitous, but this may be a premature conclusion. 

Conservation of energy requires 

<u.(x,t|t)f.(x,t|t)> = jfi-.e (8.13) 

in stationary, Isotropie turbulence. If the driving forces f. are confined 

to the energy-containing range, then (8.13) is nearly satisfied with 

u.(x,t|t) replaced by u.Cx^1 ,t |r), provided that Ix-x1] and t-r are small 

compared to energgy-range space and time scales. In this case, (8.5) yields 

Kt.Cx-x'^lr) = vV2,U..(:.,t|r;x,,t|t) + D. .(x-x';t |r) + ^ 6..E,   (8.14) 

where 

D. .(x-x';t|r) = -<u.(x,t|r)^p(x,,t)/3x: ) (8.15) 

is the covariance of pressure gradient with Lagrangian velocity. D.. is a 

pure antisolenoidal tensor in homogeneous, reflection-invariant turbulence. 

Its curl with respect to each index vanishes. 

The right-hand side of (8.15) can be converted into a third-order 

moment of the velocity field by eliminating the pressure in standard fashion. 

The triple moment can be evaluated for t > r by the abridged LHDI approxi- 

mation of Ref. 1. The result for isotropic turbulence is 

D(y;t|r)  = /^(k;t|r)l^ dk. 

D(y;t|r) = fq^tlrKiMM - 2^]dk, (8.16) 
0 (ky)* (ky)2 

where 

Q(k;t|r)  =  -4A2//Adpdq p2qh      U(p;t|r)/ U(q;t|s)ds, 
P4 r 

h.        =  (l-z2)(z+xy). (8.17) 
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In (8.16),  D and D    are the trace and diagonal element perpendicular to y. 

The diagonal element parallel to y is given by D    = D - 2D  , and the off- 

diagonal elements vanish in a coordinate system aligjied with y.     In  (8.17), 

x, y, and z are the cosines of the interior angles opposite k, p,  and q in 

a triangle with these wavenumbers as sides. 

For   Ix-x'l  and/or t-r in the inertial range of separations,  assume 

that the v term in (8.14)  is negligible,  subject to later check.    Then K^ 

is purely curlfree,  in contrast to K.. which is purely solenoidal.     If the 

inertial-range forms  (5.1) and (5.2) are substituted into (8.17), the 

result can be written 

Q(k;t|t-T)  = -C2ek-;LQ(e
1/3k2/3T), (8.18) 

where 
oo 11+1 S 

Q(s)  = / du/        dv h      u'5/3v"8/3R(u2/3s)/ R(v2/3w)dw. (8.19) 
0       |u-l|        1UV 0 

_2 
The function Q(s)  is plotted in Fig.  7.     For s  >> 1, Q(s) ^ s     , to within 

a factor that varies more slowly than any power of s.    Equation (8.18) gives 

D(y;t|r) = -  eZU1/3T/y2/3),    Dx(y;t|r)  = -  EZx(e
1/3T/y2/3), 

T = t - r, (8.20) 

with 
Z(s)  = C^^Q(x^s)f, 

0     X X 

Ms)   =  c
2/  [Sifü - S°p. ]Q(x2/3s)^. (8.21) 

Also, 

0    x 

D(0;t|r)  = - |c2
e/ Q(s)%- . (8.22) 2 0 s 
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Using these values for the pressure contribution to K.. in the inertial 

range, it can be verified that the viscous contribution to (8.14) is negli- 

1/2 
gible in comparison if t-r is large compared to the Kolmogorov time (v/e)  . 

The check consists of assuming a long inertial range and evaluating the 

total viscous contribution from the whole range of wavenumbers up to k = 

3 l/t 
(E/V )  , using the forms (5.1) and (5.2) and using the properties of 

R(T) for long T discussed in Sec. 6. 

The final inertial-range results are 

K+(y;t|r) = -eZ(£1/3T/y2/3) + e,  K+(y;t|r) = -eZx(e
1/3T/y2/3) + e/3, 

(stationary turbulence)        T = t - r, (8.23) 

CO 

K (T) = - _ c e/ Q(s)— + E  (stationary turbulence), (8.2H 
2    0   S 

+ 4* 
where K(y;t|r) and Kx(y;t|r) are the trace and transverse diagonal element 

4- Ja J. 

of K;.(y;tlr), and K (t-r) r K (0;t|r). The functions Z(s) and Z (s) are 

plotted in Fig. 8. The computed value of the right-hand side of (8.24) 

is -8.96 e. Equation (8.23) yields 

K+(yjt|t-T)« K+(T),  K^(y;t|t-T)Ä |-K+(T),  e1/3T/y2/3 » 1.  (8.23a) 

According to (8.8), 

K(T) = - K+(T). (8.25) 

Thus if (7.13), (8.12), and (8.21) are consistent equations, C and R(s) 

must satisfy 

3C/ [1 - R(s)]s"/ds t 1 » 4 (T/ Q(s)— . i, (8.26) 
0 ^   0    S 

with Q(s) given by (8.19). This consistency is assured by the abridged 
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LHDI procedure.     The calculation of K..  by (8.6) amounts to evaluating 

the right-hand side of (8.7), using the abridged LHDI  recipe  for all the 

triple moments.     The vanishing of t^e  last term on the right-hand side of 

(8.8) at x = x'   survives the approximation because u (x,t|t)  and u (x',t|t) 

receive similar treatments.    Equation  (8.26)   is a useful overall check on 

the algebra and numerical calculations  (see Appendix). 

The Lagrangian acceleration covariance 

A..(x-x';t|r) = <a.(x,t l^a.U',t |t)) (8.27) 

can be evaluated by using the relation 

A. .(x-x1 ;t|r) = ai^.U-x1 ;t |r)/3r. (8.28) 
i] -~ ~        i] -~ ~ 

This yields the  inertial-range results 

.,    ..u     x t/S -2/3',  1/3   . 2/3,       .  /     ^u    x t/S -2/3-  ,   1/3   , 2/: A(y;t|t-T)  =  e  '  y    '   Z(e '   T/y '   ),    Ax(y;t|t-T)  =  e      y        Zx(e      x/y 

(8.29) 

where A and A are the trace and transverse diagonal element of A... The 

functions 

Z(s) = dZ(s)/ds,  Zx(s) = dZx(s)/ds 

are plotted    in Fig.  9."   The quantity dQ(s)/ds determined by  (8.19)  can be 

evaluated analytically at s = 0  [see  (8.36),  (8.37)], when  e 

Z(0)  = ^J [|r(y)]2C2 = 8.39, Zx(0)S|z(0). (8.30) 

The covariance of acceleration along a particle trajectory is 

A(t-r) i A(0;t|r). It satisfies 

A(T) = - dK+(T)/dT. (8.31) 

Differentiation of (8.2*0 with respect to T gives zero. This says that 



-54- 

there is no inertial-range contribution to A(T) proportional to ET" , the 

form that might be suggested by Kolmogorov scaling. For given T, the 

positive contributions to A(T) from some inertial-rango wavenumbers are 

balanced by negative contributions from other wavenumbers. A relevant fact 

is that the pressure forces conserve energy and cannot change the mean- 

square particle velocity. If there were a nonzero net inertial-range con- 

tribution of the form ex , then the inertial range (where only pressure 

forces cause acceleration) would give a nonzero contribution to Jr.A(s)ds, 

the total rate of change of kinetic energy. Also, a contribution of the 

-1 1/2  1/2 
form ex  to A(T) would imply a contribution of form - e ln(e  T/V  ) 

to K (T), which would violate Kolmogorov's concept of a v-independent 

inertial range. 

In contrast to the results for the structure functions, the inertial- 

range formulas for K.. and K. . are altered if the turbulence is freely 

decaying instead of stationary. The free-decay results are obtained simply 

by subtracting off the driving term in (8.14), seq. Thus (8.11), (8.12), 

(8.It), (8.23)-(8.25) are replaced by 

K(y;t|r) = i eF(E
1/3T/y2/3) -e, 

^(yjtlr) = icF^e173!^273) - e/3,        (8.11') 

K(T) = e(-l t j K sgn T), (8.12) 

+ 2 
KT.(x-x'it|r) = W U,.(x,t|r;x',t|t) + D (x-x'^lr), (8.14') 
l] ~ — x  1] -~ i] "" 

K+(y;t|t-T)  =  -   eZ(£1/3T/y2/3),    K^(y;t|t-r)  =  -  tZx(£
1/3T/y2/3),     (8.23-) 
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00 

K
+
(T) = - |c2e/ Q(s)^. , (8.24') 

^   0   s 

K(T) + 2e = -K+(T), (0.25') 

where a corresponding subtraction of the driving-force contribution has been 

made from (8.11) and (8.12). These changes express that the decay of the 

turbulence requires a deceleration of the particles, on the average. By 

conservation of energy, the deceleration must contribute -e to K(0), an 

amount which is comparable to the inertial-range contributions and super- 

posed upon them. Equations (8.18) - (8.22) and (8.29)-(8.31) are unchanged. 

2 2 
The contribution of the decay deceleration to A.. is of order E /V , where 

v is the total rms velocity component. This is smaller than the inertial- 

2/3 
range contributions (8.29) by a factor of order(y/)l0)  , where lQ  is the 

characteristic energy-range spatial scale, and therefore does not appear 

in the asymptotic formulas. 

It is a matter of taste whether the overall deceleration in decaying 

turbulence should be considered an energy-range effect. Actually, all 

scales of motion are involved: The loss of kinetic energy occurs at 

o 

dissipation-range scales, in the Eulerian picture, so that  the entire cas- 

cade plays a role.    It  is clear, however, that the scales of order y play 

no special role in determining the deceleration contribution to K(y;t|r) 

when y is an inertial-range separation.    Therefore it seems  justified to 

consider the steady-state formulas as the "true" inertial-range expressions. 

The functions discussed above give some  limited information about 

pressure statistics.    By (8.1) and  (8.15), 
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[aD^x-x'^lrO/ar]^ = - <ai(x,t|r)3p(x',t)/3x'> . (8.32) 

In homogeneous, reflection-Invariant turbulence, only the curlfree term 

-7p in (8.5) can contribute to (8.32). Hence, 

<C3p(x,t)/3xi][3p(x;,t)/ax^= [3Dij(x-x
,;t|r)/3r]r=t .        (8.33) 

The pressure spectrum function  [satisfying mean-square-pressure = /.P(k,t)dk ] 

is therefore 

P(k,t) = k"2C3Q(k{t|r)/3r]r=t (8.3«t) 

in isotropic turbulence.    By (8.17), this gives 

P(k,t) = //Adpdq p2qh      E(p,t)E(q,t). (8.35) 

This abridged LHDI result for P(k,t)  is identical, after trigonometric 

manipulations, with the quasinormality approximation for P(k,t) used by 

3 12 Heisenberg    and Batchelor.        The unabridged LHDI expression for P(k,t) 

does not appear to reduce to the quasinormality approximation. 

In the inertial range, (8.35) yields 

P(k,t)  = CV/V7/3/"*!/ U+1 dv h,    u-5/V8/3. (8.36) 
0       |u-l|        luv 

17 Using trigonometric identities and results of Oboukhov,        the quadratures 

can be performed to give 

P(k.t)  = I2§ [ f r(i)]3C2
e^V7/3 = 4.13 s^V7'3, (8.37) 

and 

<[p(x,t - p(x+y,t)]2> =  [B.1(y}t|t)]2 = 5.39 E^V*/3. (8.38) 

A Lagrangian pressure field p(x,t|r) can be defined as the pressure 
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at time r in the fluid element which arrives at x at time t. The contribu- 

tion aOc,t|r) of the pressure field to a(x,t|r) is the negative of the 

pressure gradient in the fluid element at time r. Except in degenerate 

cases, 

o(x,t|r) f  -.VpU.tlr)   (t j< r),        (8.39) 

because ^ is a Lagrangian coordinate at time r, not a laboratory Cartesian 

coordinate. Consequently, the Lagrangian spacetime structure function 

^Cp(x,t) - p^» .tjr)]^ is not obtained by simply extending (8.33)-(8.38) 

to r / t. 

9.  COMPARISON OF INERTIAL-RANGE PREDICTIONS WITH EXPERIMENT 

The qualitative inertial-range predictions of the abridged LHDI 

equations are implied by Kolmogorov's hypotheses and the associated dimen- 

sional analysis. Experimental testing of the results therefore involves, 

first of all, a test of the Kolmogorov theory. The Kolmogorov scaling 

laws have received support from measurements of energy spectra at high 

Reynolds numbers, and such measurements appear to offer the principal 

check available on quantitative predictions of inertial- and dissipation- 

range properties. 

The Kolmogorov constant is customarily estimated from experiment by 

choosing, visually, best-fitting straight lines to log-log plots of spectrum 

versus wavenumber. The normalization parameter e is determined by drawing 

a best-looking curve through a plot of the dissipation spectrum, and using 

Isotropie relations. The fitting of a best straight line requires an ex- 

plicit or implicit estimate of the maximum wavenumber at which dissipation 
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effects on spectrum shape can be neglected in comparison with experimental 

scatter. This estimate plays a significant role because, as the Figures to 

follow illustrate, the experiments cover very limited inertlal ranges. 

Consequently, it is desirable to compare the data directly with predictions 

of the entire■Kolmogorov spectrum. Instead of merely comparing the experi- 

mental and theoretical estimates of the Kolmogorov constant. 

The abridged LHDI prediction of the Kolmogorov spectrum in the dissipa- 

tion range has been obtained by taking U(k;t0|t0) «e k~   over a wide k 

range, and then integrating (2,6)-(2.8) forward in time, with nonzero vis- 

cosity. The calculation was continued until the normalized dissipation 

2     1/4 5/t 
spectrum (k/k ) E(k)/(e ' v ' ) reached and held steady-state values. 

Further details of the calculation are given in the Appendix. One-dimen- 

sional spectra ware then computed from the formulas 

» to 

♦ .(k) = i / E(p)(l - k2/p2)p"1dp.  *+«+(10 = / E(p)p"
1dp.     (9.1) 

•L    2 k TOT     k 

12 
Here ♦1(k) is the longitudinal one-dimensional spectrum  and «L t(k) is 

the sum of the longitudinal and the two transverse spectrum functions. The 

corresponding asymptotic inertlal-range spectra are 

^(k) * (9/55)Ce2/V5/3,    «totCO = (3/5)Cc2/V5/3.       (9.2) 

The computed values of (k/ks)
5/3* (k)/(E1/'*v5/l1) from the inertial and 

dissipation-range calculations are plotted together in Fig.10. This kind 

of plot displays differences in inertlal-range spectra more prominently than 

the usual log-log spectrum plot. Note that the low-wavenumber end of the 

decay-calculation curve rises slightly above the asymptotic inertlal-range 

line C = 1.77. This Is due to truncation of the wavenumber range and to 
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the finite time of evolution, each of which tends to depress c below its 

asymptotic value. A more precise computation would yield a curve lying 

slightly below that shown, in the range .002 < (k/ks) < .02. 

The experimental points plotted in Fig. 10 are sea-water data obtained 

18 
by Grant, Stewart, and Moilliet.   These experiments appear to be the 

highest-Reynolds-number measurements of absolute spectrum levels which 

have been reported (R, ^ 3000). The points represent the three runs on 

3 October 1959. The run at 0950 hrs was cited as particularly satisfactory 

with regard to scatter and noise level; it is plotted in different ways in 

2       1/4 5/4 
Figs. 8-10 of Ref. 18. The dissipation spectra {k/kg) *1(k)/(e ' v ' ) 

for the three runs are displayed in a linear plot in Fig. 11, together 

with the theoretical curve. Both data and theory indicate a maximum at 

about (k/k ) » 0.09. At this value of k/k , the curve in Fig. 10 is down 
s s 

from the asymptotic inertial-range line by about 30%. 

Figure 10 illustrates the difficulties in accurate experimental 

determination of C. Only eight points lie in the range (k/k8) < .01, 

where the theoretical curve indicates negligible deviation from the asymp- 

totic inertial-range level. These eight points scatter from 20% below to 

25% above the computed inertial-range line. The 17 runs reported in Ref. 

18 show substantially greater scatter at (k/ks) < .01 than in the dissipa- 

tion range .01 < (k/k ) < .5, both individually and collectively. The 

fluctuations at low k seem oscillatory rather than random, possibly as a 

result of coupling between the turbulence and the towed body on which the 

18 
sensors were mounted.   Figure 12 compares the three longest runs on 1 

February 1960, and on 2 February 1960, with the theoretical curve. The 
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osclllatlons are particularly prominent In the run at 1331 hrs on 1 February. 

Grant, Stewart, and Mollliet report a mean determination C = l.tH from 

the 17 runs.  The rms fluctuation of.the 17 values of C about the mean Is 

about 0.19. The accuracy of absolute level determination is reported as 

10%. The mean value of C rises If best visual fits are made to curves 

19 
like that In Fig. 10 Instead of simply to straight lines.   This is be- 

cause the curve approaches the asymptotic inertlal-range line gradually. 
3 

Heisenberg*s transfer expression gives a sharper knee. The mean value 

rises further if the longer runs are given greater weight, as Figs. 10 and 

12 suggest. 

Probably the following conclusions are justified: (1) The experimental 

data are consistent with Kolmogorov's theory. (2) The data suggest that 

the abridged LHDI prediction for C is better than an order-of-magnitude 

approximation to the correct value. (3) The abridged LHDI value appears 

to be high rather than low, but the data do not set a lower bound to the 

magnitude of the error nor determine its sign unequivocally. On the 

theoretical side, the approximations made in deriving the LHDI equations 

are sufficiently drastic that if theory and experiment agreed to better 

than the order of 10% It would be an accident. An interesting question 

Is how much the abridged LHDI value of C differs from the prediction of 

the unabridged equations. Numerical integration of the latter in the 

Inertlal range appears to be feasible. 

Figure 13 shows the computed values of (k/k )5/V 4.(k)/(e
1/'tv5/4) 

s   tot 
20 

plotted together with data obtained by H. M. Gibson  in a round air jet 

at R. t 750. The data were normalized by values of e determined by Gibson 
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from the ♦. values only.    For the off-axis run, this e agrees, to within 

the accuracy of determination, with the e determined graphically from the 

♦„ ^ values.    For the on-axis run, the $.   .   values give a larger e, but tot zaz 

they yield so irregular a dissipation spectrum that accurate determination 

is impossible.    Therefore the on-axis points for ♦       should be displaced 

19 downward, along lines of slope -4/3, by an uncertain amount. 

Gibson estimates C * 1.57 for the on-axis run and C = 1.62 for the 

off-axis run, on the basis of visual straight-line fits to the 4^ measure- 

ments only.    As in the sea-water experiments, these values rise if fits 

are made to scaled theoretical curves instead.    Both runs exhibit aniso- 

tropy in the inertial range.    For this reason, and because ♦. represents 

only 3/11 of the energy in an isotropic -5/3 range, it seems more justified 

to compare ♦        with isotropic theory, rather than ♦,.    But the argument 

loses force if the transverse spectrum measurements are less reliable 

than the longitudinal. 

It should be stressed in conclusion that no reported experiments 

-5/3 confirm the k asymptotic spectrum law beyond reasonable doubt.    Actually, 

the data at k/k    <  .01 on Figs. 10 and 12 fit, say, k'7/l* better than k"5/3, 
s 

-5/3 
but the scatter is so great that no inconsistency with k    can be inferred. 

Clearly an inertial range of many decades extent is needed for a definitive 

-5/3 
answer. Corrections of logarithmic type to the k    law would be parti- 

cularly difficult to resolve. 
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APPENDIX. NUMERICAL METHODS 

The numerical integrations are based on a scheme described In detail 
a 

previously.  The wavenumber integrations in (2.6)-(2.8) are performed 

just as in Ref. 9. For decay studies, (2.6)-(2.8) are integrated forward 

in time from t by a modification of the time-integration scheme of Ref. 9: 

The first two terms on the right-hand sides of (2.7) and (2.8) are treated 

2 
in parallel with the vk terms on the left-hand sides. Thus,for (2.7), a 

function N(k;t|r) is defined by 

t 
N(k;t|r)U(k;t|r) = //ACCk Ü(k;t|r)-D  U(p;t|r)]/ U(q;t|s)ds,    (Al) 

2 
and the contribution of the two terms is Included by replacing vk   with 

vk    + N(k;t|r) in the scheme of Ref. 9.    N(k;t|r)  is evaluated at the 

mid-point of each time Step, like the other quantities in the scheme. 

The analogous procedure is used for (2.8).    This modification gives improved 

stability and accuracy.    The C and D terms on the right-hand side of (Al) are 

treated in strict parallel with each other to avoid errors from the effect 

of time and wavenumber discretizlng upon the cancellations of the small-q 

contributions. 

For the steady-state solution of (5.4) and (5.5), this method is 

augmented by an iteration procedure.    The time limit " in (5.5) is truncated 

to a large finite value MAt (M integer).    Initial guesses G (T) and R (T) 

are taken (identical Gaussian functions).    The values G(0) = 1, R(0) = 1 

are held fixed and Improved functions obtained by a modification of the 

scheme 
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G^T  ) = i {^"^T  ) + G'V   .) + i AtCH(T  ) + HCx    .)]},  !r(0)  = 0, no n n-i       2 n n-x 

1 /sr-l 1   .^rS-/ W{T) = i {r'^x  ) + IHT    ,) + i At[S(T  ) t S(T    .)]},  J(0)=0.    (A2) n       z n n-x       z n n-x 

Here (fd ), ^"(T ) is the rth approximation at the nth time step, and 

Hd), §"(T) are the right-hand sides of (5.«t), (5.5). For each r, (A2) is 

used for each n in succession, starting with n = 1   ^rn s  nAt ^n = ^•2» 

time—  ^   —■ 
...M)]. At each, step, S and H are evaluated by the trapezoidal rule of Ref. 

9, using always the best available values of G and R: As soon as G (T ) 

and R^x ) are computed for any r and n, the old values 6 ~ (T ) and R ~ (Tn) 

    2/3 
are discarded completely.    Functions like R(w     s) are evaluated from the 

R(T ) by  two-point interpolation.    The modification of (A2), in accord 

with (Al) seq., is to replace ^St^) + Sdj^)] as follows: 

"l - exp{- ffiij + Nd^DAt} 
yAtCS(T  ) t S(T    .)] * 2 n n-x N(T  ) + N(T    .) n n-l 

x [sdn) + ^Vi)3, (A3) 

where -N(T)R(T) is defined as the first two terms on the right-hand side of 

(5.5).    The G    equation is treated in parallel fashion. 

The iteration scheme was found to converge reliably but slowly; e.g., 

jlTd ) - R*"    d )| decreased typically by 20% per itjacation.    Convergence 

is markedly speeded by repeated cycles of iteration-followed-by-extrapolation. 

The extrapolation assumes geometrically decreasing errors  (the errors do 

decrease nearly geometricallly). 
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Equation (5.11) Is Integrated by the same wavenumber dlscretizing 

used In (5.4) and (5.5). The contributions from wavenumber triads with 

different o values are accumulated separately so as to yield W(a) without 

the need for further calculation. 

The numerical values reported in the text cone from a calculation in 

which the v and w integrations in (5.4), (5.5) extend over the range 

I 2"145/12 Cv 2.3 x 10'4) to 279/12 (^ 96.), which is divided into 112 one- 

sixth-octave steps according to the method of Ref. 9, The contributions of 

higher w and v values are approximated by correction terms based on (4.13); 

these corrections are quite small. The s integrations are truncated at 

s = 20, and R(T), Gd) are computed over (0 < T s 20) at steps of 0.1. 

Iteration was continued until the change in C per iteration was <0.1%, with 

extrapolation indicating residual error <0.3%. Changes of R(s) and G(s) per 

iteration were less than both .001 and 1%, with extrapolation indicating 

residual errors less than .005 and 5%. Errors from finite step-sizes and 

truncation were estimated by varying the relevant parameters and extrapolating. 

The estimated total error in C from all causes is about 1%. Errors in some 

of the other dimensionless constants are larger, but are not expected to 

exceed 3%. The theory probably does not justify more accurate computation. 

Six to eight decimal digits were carried in the computations, and all 

final numbers reported in the text are rounded to two or three digits. To 

six digits, the values found for (6.1) and (6.2) are C = 1.76612, 

I -  1.04404, IR = 1.87438, ^ = .760973, I2 = -.188401. The values com- 

puted for the left and right sides of (8.26) are 8.73360 and 8.96029, which 

agree to within 2.6%. 
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For rough calculations, the computed functions G{T) and R(T) are 

adequately approximated by 

G(T) = H exp(2T/IG)/[l + exp(2T/IG)32,      R(T) = Clt(j HT/I^2]'1.      (A4) 

The decay calculation used in Sec.  9 was performed by taking v =  .008, 

E(k,t0)  = 6.29 k'5/3, and a k range 2'19/6 (^ .11) to 237/6 (^ 72.) dis- 

cretized into 28 one-third octave steps.    Equations (2.6)-(2.8) were in- 

tegrated, with the techniques described above, for 20 time steps    At =  .02, 

by which time changes in the normalized energy and dissipation spectra 

were imperceptible on automatically generated plots.    Final values ks = 58.5 

and R.   = UtO were obtained, with respective changes of    0.1% and 0.2% per 

time step.    The estimated overall computational errors are not significant 

for the comparison with experiment in Figs.  10-13,    provided k/kg < 0.6. 

The difference between this R,     = t40 spectrum and an R^ = "> spectrum 

normalized in the sama way probably is negligible also.    It was to minimize 

-5/3 
the difference that the initial spectrum was taken « k down to the low- 

est wavenumber retained. 

All the calculations were performed on the IBM 709«+ computer at the 

Goddard Institute for Space Studies.    The plots were generated on a General 

Dynamics S-C 4020 Recorder. 
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ERRATA: LA6RANGIAN-HIST0RY CLOSURE APPROXIMATION FOR TURBULENCE 

[Phys. Fluids 8, 575 (1965)] 

Robert H. Kraichnan 

Peterborough, New Hampshire 

The minus signs should be changed to plus signs in the third line of 

(8.10), the first line of (8.11), and the second, fifth, and seventh lines 

of (8.12). In the sixth line of (8.11), p should be q .   In the fourth 
c   .      c 

line of (10.9), the plus sign should be a minus sign. 

ERRATA: PRELIMINARY CALCULATION OF THE K0LM0G0R0V TURBULENCE SPECTRUM 

[Phys. Fluids 8, 995 (1965)] 

Robert H. Kraichnan 

Peterborough, New Hampshire 

In the third line of (3), the plus sign should be a minus sign. This 

error was carried through the numerical computations. The corrected numer- 

ical coefficients in (10) are 1.60, 0.50, 0.99, in order of appearance. The 

corrected coefficients in (10') are 1.77, 0.53, 0.96. Corrections in the 

Figures are small. For corrected Figures, see R. H. Kraichnan, Phys. 

Fluids 9, xxx (1966) [Research Report 8]. 
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FIGURE CAPTIONS 

Fig.  1.    Integration paths for following the evolution of the Lagrangian 

velocity. 

Fig.  2.    The inertial-range Lagrangian time-correlation and response 

functions R(T) and G(T), versus nondimensional time difference T. 

Fig.  3.    Dimensionless measures of localness of inertial-range energy 

transfer,versus maximum to minimum wavenumber ratio o.    Here W(a) = W(a)/e 

and P(a)  = P(o)/e. 

Fig. t. Dimensionless Lagrangian spacetime, or two-particle, structure 

functions F(s) and F^ (s) in the inertial range, versus dimensionless time 

difference s. The straight line is the function <s  of (7.12a). 

Fig. 5. Dimensionless Eulerian spacetime structure functions f (s) and 

FTCs) in the inertial range, versus dimensionless time difference s. 

Fig. 6. Nondimensional measures F(s) and F.. (s) of the inertial-range 

covariance of one particle's velocity with a second particle's prior 

acceleration, versus dimensionless time difference s. 

Fig. 7. Nondimensional time-displaced, inertial-range cospectrum Q(s) of 

pressure gradient and prior Lagrangian velocity, versus nondimensional 

time difference s. 

Fig. 8. Nondimensional inertial-range covariances Z(s) and Zx(s) of one 

particle's prior velocity with a second particle's acceleration, versus 

dimensionless time difference s. 

Fig. 9. Nondimensional inertial-range,two-particle^Lagrangian acceleration 

covariances Z(s) and Z (s), versus dimensionless time difference s. 
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5/3 
Fig. 10. Computed nondlmensionalized spectrum function k  <Mk) 

in the inertial and dissipation ranges compared with the October 1959 data 

of Grant, Stewart, and Moilliet. Circles, run 0905/3/10/59; dots, 

0907/3/10/59; plus signs, 0915/3/10/59. (The low-wavenumber terminus of 

the decay curve lies within the fourth circle from the left.) 

Fig. 11. Computed nondlmensionalized. dissipation spectrum k ^.(k) compared 

with the October data of Grant, Stewart, and Moilliet. Circles, run 

0905/3/10/59; dots, 0907/3/10/59; plus signs, 0915/3/10/59. 

5/3 
Fig. 12(a). Computed function k  (Mk) compared with the three longest 

runs obtained by Grant, Stewart, and Moilliet on 1 February 1960. Circles, 

run 1126/1/2/60; dots, 1203/1/2/60; plus signs, 1331/1/2/60. 

5/3 Fig. 12(b). Computed function k  «Mk) compared with the three longest 

runs obtained by Grant, Stewart, and Moilliet on 2 February 1960. Circles, 

run 1301/2/2/60; dots, 1316/2/2/60; plus signs, lMt5/2/2/60. 

Fig. 13. Comparison of computed spectra with data of M. M. Gibson. Upper 

5/3 
curve and data: computed function k  $ t(k); dots, on-axis run; plus 

5/3 signs, off-axis run. Lower curve and data: computed function k  <Mk); 

dots, on-axis run; plus signs, off-axis run. The data for <L  appear only 

at those wavenumbers where Gibson obtained the necessary measurements of 

both longitudinal and transverse spectra. 
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