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ELECTRICAL CONDUCTIVITY OF PARTIALLY IONIZED GASES

ABSTRACT

A simplification of the Chapman-Enskog method for the

calculation of the electrical conductivity of a multi-component

partially ionized gas in a magnetic field is presented. The

calculation requires the inversion of a matrix which is of the

order of the approximation, and is independent of the number

of species. The third approximation to the electrical con-

ductivity is examined for an electron-ion-neutral plasma and

the results are compared with those obtained from the mixture

rules of Lin, Resler, and Kantrowitz, and of Frost. It is

shown that within the uncertainties in the experimental

electron-neutral cross-section values, Frost's formula offer6

a satisfactory method of calculation for most engineering

applications.

*
This report has been submitted for publication to the

Journal of the AIAA.
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ELECTRICAL CONDUCTIVITY OF PARTIALLY IONIZED GASES

I. INTRODUCTION

At the present time, the Chapman-Enskog1 method of solution

of the Boltzmann equation appears to offer the soundest theoretical

basis for the c:lhm1ation of' the electrical condictivity of a

partially ionized gas. Comparison of calculations made by this

method with those based on the mixture rules proposed either by

Lin, Resler, and Kantrowitz2 or by Frost 3, should provide a basis

for Judging the accuracy of these mixture rules.

The Chapman-Enskog method as axtended by Hirschfelder,

Curtiss and Bird 4 for a multi-component mixture gives rise to a

set of simultaneous linear equations requiring the inversion of

a matrix of the order of the number of species multiplied by

the order o" the approximation. In the limit of a fully ionized

gas it is well known from the work of Landshoff 5, Spitzer6, and

Marshall7 that the first and second Chapman-Enskog approximations

yield values for the electrical conductivity that are 51 per cent

and 98 per cent, respectively, of the Spitzer value. Therefore

at least the second order approximation is required for a

reasonable level of accuracy.

In the Lorentzian limit of a weakly ionized gas the rate of

convergence of successive approximations is very sensitive to the

speed dependence of the electron-neutral elastic scattering

cross-section. For the case where the electron-neutral collision

frequency v en depends on relative speed g in accordance with
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the relation yen a g2m , the rate of convergence of successive

Chapman-Enskog approximations is illustrated in Fig. 1. (See

Appendix B.) For an electron-ncutral collision cross-section

tiat is linear with electron speed, the calculation must be

czarrled to sixth order to obtain 90 per cent of the final value.

For some atoms, the electron-neutral elastic scattering cross-

section is an increasing function of relative speed in the

vicinity of thermal speeds of interest, in which case high orders

of approximation are necessary for acceptable accuracy. The rate

of convergence for a weakly-ionized gas calculated in the

Lorentzian limit using experimental data for the electron-argon

momentum transfer cross-section1 3, is shown in Fig. 2. For a

gas consisting of seeded combustion products where there may be

of the order of seven (or more) species present in significant

amounts, extensive calculations of the electrical conductivity

to higher orders of approximation very soon become impractical

for most engineering applications.

A simplification of the Chapman-Enskog method for a multi-

component partially ionized gas in applied electric and magnetic

fields is presented in which the order of the resulting matrix

is the same as the order of the approximation and is independent

of the number of species. This simplification results from being

able to decouple approximately the Boltzmann equation for the

electron velocity distribution function, from the Boltzmann equa-

tions for the remaining heavy particles in the mixture.
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The first three approximations of the parallel electrical

coliductivity (zero applied magnetic field) as a function of

degree of ionization have been calculated for a three component

gas, taking the electron-neutral collision frequency to be

proportional to a power of the relative electron speed.* These

calculations are compared with several proposed mixture rules.

It is :onclu'cd that the Lin, Resler, Kantrowitz rule under

some circumstances may overestimate the electrical conductivity

by as much as 70 per cent. On the other hand, the relatively

simple mixture rule proposed by Frost agrees with the mol

accurate calculation to within 15 per cent over the complete

range of degree of ionization and for a wide variety of collision

frequency models. Calculations with actual cross-sections

corresponding to cesium-seeded argon verify the order of magnitude

discrepancy between these two mixture rules.

In order to evaluate Frost's proposed mixture rule for

engineering applications we have examined the spread in the

calculated electrical conductivity resulting from uncertainties

in the electron-neutral collision cross-sections. Relying on

published data, reasonable upper and lower bounds for the

electron-argon and electron-cesium elastic scattering cross-

section have been constructed and these have been used to estimate

the resulting uncertainty in calculated electrical conductivity

(using Frost's formula). At temperatures applicable to

For this special model, our results agree with those of Shkarofsky8
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magnetohydrodynamic power generators, this spread in the calculated

conductivity for cesium-seeded argon exceeds significantly any

difference between the simplif±ed Chapman-Enskog third approximation

and the Frost formula. Be;ed on the accuracy of present electron-

neutral zross-section measurements, the magnitude of the uncer-

tainties we have used appear to be typical9'1 0 . We may therefore

conclude that tn .,I.% e rule proposed by B.cst provides a

convenient and satisfactory method for calculating the electrical

conductivity of partially ionized gases.
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II. SIMPLIFICATION OF THE CHAPMAN-ENSKOG APPROXIMATIONS FOR

CALCULATING ELECTRICAL CONDUCTIVITY

For purposes of brevity, we shall use similar notation and

9
refer freely to the book by Chapman and Cowling 9 . The subscripts

one and two will be used to denote electrons and ions respec-

tively, and further subscripts 3, 4, ..., v will denote neutrals.

in accordance with the Chapman-Enskog approximation scheme, one

seeks a solution of the v Boltzmann equations for the velocity

distribution functions of each species in the form

f f(O)[1 + + ... ] for j = 1, 2, ... v where f(o) is a

Maxwellian function. Following the developmrent in Section (18.4)

of Chapman and Cowling, the generalization of Eq. (18.4-10) for

the electron function 01 (c-1 ) to the case of a multi-component

partially ionized gas (as distinct from a binary mixture) is

? +( ISM)C -) 0 C; ' = .1@){ C.( +or ikT -l

wnh e p+ oble

where in the present problem

w4- _ a
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We have used the symbol B for the magnetic induction (M.K.S.

units) and have denoted the electric field in a frame of refer-

ence having the mean mass velocity of the mixture
Co0 by E = E + c x B . The quantity Iii(2,g) denotes the

differential cross-section for the scattering of an electron

having speed g = Icl -ci relative to a J-type particle into

the solid angle d2 about the unit vector Q2 The charge

density is denoted by pc and el = -e is the charge on an

electron. The electron velocity is cI , and

C £ 1 _ o = (2kT/m1 ) 1/2

Since Eq. (1) involves the unknown functions 0 '

in addition to 0, , it is necessary in general, to consider the

simultaneous solution of a set of v integral equations of which

Eq. (1) is a proto-type. However, because the electron mass is

much less than the mass of any other particle in the mixture, we

may take as an approximation that the velocity of a heavy par-

ticle is unaltered by electron collisions, i.e.,

0_(c') = 0%1(c) for J = 2, 3, ... v . With the small electron

mass approximation we may also drop the first term on the right

hand side of Eq. (!),and re-write the equation for 01 as

s'YT~zc

)2~I4~1h Ti 1 (U s(tJl1
1.vvr I +0(c'

eC
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By this means, we are able to de-couple the equation for the

electron velocity distribution function from the remaining

equations. In the small electron mass approximation the ion

current may be neglected relative to the electron current so

that the current density

depends only on ." Therefore to determine the electrical

conductivity we need concern ourselves only with the solution

of Eq. (3).

In Appendix A, it is shown that in the absence of thermal

diffusion,

+C. 1 . _ (

where is a "generalized" electric field, B = B B B

and E . In the th Chapman-Enskog approximation, the

transverse electrical conductivities for an electrically neutral

plasma have the values

- 0 )(T + rNLo ej.
.ft MA
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where d(o)( ) is determined as a solution of the linear

equations

(7)

The coefficients Qmm' are expressed in Appendix A in terms

of certain "bracket expressions" which depend on collision
is

integrals n , defined by Eq. (A23). These collision inte-

grals, in turn, are determined by the elastic differential

scattering cross-sections between electrons and other species

in the mixture. The parallel conductivity a = lim al , and
B-4O

is therefore the same as the electrical conductivity in the

absence of a magnetic field.
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III. THE THIRD CHAPMAN-ENSKOG APPROXIMATION (B = 0)

Beginning with this section, we shall restrict our dis-

cussion to the first three Chapman-Enskog approximations and

to the case of no magnetic field; (the case of B 0 will

be discussed in a forthcoming publication). For the charged

particle interactions, we shall employ the Rutherford differ-

ential scattering cross-section

with the usual Debye length cut-off. The validity of this

approach is examined in Appendix C. Using Eq. (8), the collision

integral for the charged particle interactions satisfy the

relations

0~ (3')

Using the values of the bracket expressions in terms of

the collision integrals provided in Refs. 1 and 4, the third

Chapman-Enskog approximation for the electrical conductivity

may be written as

3 ro
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where

- +i +r..o~ t 0? l.r t  ..2

and where A1 denotes the determinant formed from A by)

deleting the first row and column. The qmm quantities

are defined in terms of the electron-neutral collision inte-

grals as follows:
11 ,

trca onucity 0 o1 arbitrar eIcroet ra crs-s o

v2aa

To obtain the second Chapman-Enskog approximation, one deletes

the last row and column from q , and similarly for the first

approximation.



IV. RESULTS FOR A THREE COMPONENT PLASMA

For the sake of simplicity, we shall consider a three

component plasma, and represent the effects of electron-neutral

collisions by the model isotropic differential cross-section

In% = Am

where m is a parameter.

Using Eq. (13) one obtains the relation

and therefore

To examine the dependence of a(3) on degree of ioniza-

tion (nl/n 3) ,P it is convenient and instructive to normalize

a(3) with respect to cadd I where

C1 >)
I

a- A(T. )
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Equation (16) is a mixture rule for calculating the electrical

conductivity of a partially ionized gas proposed in Ref. (2),

in which i

1
is the conductivity for a Lorentzian gas and

= (0,5S2)64.(ZTE 2\)'

is the Spitzer-Hgrm6 conductivity for a fully-ionized gas.

Here, k is Boltzmannts constant, T is the absolute temperature,

v en(g) is the electron-neutral collision frequency, e the

electronic charge, co the dielectric constant of free space,

and A is the ratio of the Debye length to the impact parameter

for a 900 collision. The physical basis underlying Eq. (16) is

that the resistivity is proportional to electron collision fre-

quency, and therefore to the sum of electron-neutral and of

electron-ion collision frequencies. Eq. (16) has the property

of yielding the correct result in the limiting cases of either

zero or infinite degrees of ionization.

For a three component plasma, ve(g) = g n3 Q ) , and

using Eq. (13), we obtain

2.M
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As a convenient measure of the degree of ionization, we may

introduce the dimensionless variable

x (20)

where

6 (0.58Z)

Employing Eqs. (14), (15), (16), (18), (19) and (20), we may

write Eq. (10) in the form

. rL;=3. 5 + 8_3.5_ _ %A+IO.79?.XI (%a)

, K ,7+ 2,072.

where

EV"'
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Figures 3 to 6 show the dependence on degree of ionization

of the first 3 approximations to the electrical conductivity,

given by Eq. (20), for several values of the parameter m

These curves indicate the rate of convergence of successirv

approximations. For larger values of the degree of ioniza ,,

charged particle interactions dominate. The conductivity is

insensitive to the parameter m ana convergence is rapid. The

behavior at lower levels of ionization is different however.

For m = -1 and for m = 0 (Maxwellian molecules) convergence

is excellent and the third approximation seems to be sufficient

for all levels of ionization. For m = 1/2 (hard spheres) and

m = 1 , convergence at low ionization is less r-pid. While the

third approximation fcr m = 1 is satisfactory at high levels

of ionizaticn, it is not very good at low ionization levels.

This behavior, of course, is merely a reflection of the results

illustrated for a Lorentzian gas in Fig. 1. Finally, it appears

that the mixture rule proposed by Lin, Resler, and Kantrowitz may

in some circumstances over-estimate the electrical conductivity

by about 70 per cent.
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V. EXAMINATION OF FROST'S MIXTURE RULE

In 1961, Frost 3 proposed calculating the electrical con-

ductivity of a partially ionized gas using Eq. (17), valid

for a Lorentzian gas, but replacing the electron-neutral colli-

sion frequency with the sum of the electron-neutral and electron-

ion collision frequencies. To take into account electron-

electron interactions, Frost introduced a modified expression

for the electron-ion collision frequency having the form

=(24)

in which

e2 e1.)~K =.47 6 21

is determined so as to yield the Spitzer-Hgrm value of the

electrical conductivity in the fully-ionized limit.

In order to examine the validity of Frost's procedure, we

have included in Figs. 3 to 6 the reI.its obtained using Frost s

formula. At very low values of ionization Frost's results seem

to be more satisfactory, as expected, since his formulation is

rigorous in the limit of zero electron concentration. For high

degrees of ionization, Frost's results agree well with the

third approximation, and in the fully-ionized limit his results,

as they must be, are slightly better than the third approxima-

tion (by le3s than 2%). Over the complete range of ionization
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and for all the cross-section models examined, Frostt s results

and the third approximation agree to better than 15 per cent.

Considering the uncertainties in actual cross-seccion data (see

Section V) this agreement appears quite satisfactory.

In the range of degree of ionization corresponding to

.01 < aen < 1 it is not clear to what extent the difference
_e -

between Frost and the third Chapman-Enskog approximation is

attributable to Frost's representation of the charged particle

interactions, or to a slow rate of convergence. To illustrate

this point we have plotted in Figs. 7, 8 and 9 for three values

of m , conductivities using Frost's formula, but with

and with

(26)

We have also replotted the curves obtained with Eq. (24) and the

third Chapman-Enskog approximation. The constants K1 and K2

have been adjusted in the same manner as K . An additional

comparison is provided by using Shkarofsky's8 fourth approxi-

mation which is based on a solution of the Fokker-Planck equa-

tion resulting in the same matrix as derived from Eq. (7).

Shkarofsky's results are not as readily applicable for use with

experimental e-n cross-sections, as are the Chapman-Enskog

results.
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The velocity dependence of Eq. (25) follows directly from

the Coulomb cross-section of Eq. (8). For very low degrees of

ionization where the electron distribution function i- unaffected

by electron-electron encounters, we would expect Frost's formula

to apply using Eq. (25). The collision frequency of Eq. (26)

has been suggested by Sodha and Varshni l , to which Frost has

given a single power fit, and is based on the Spitzer-Hgrm

numerical solution for a fully-ionized plasma. One would expect

the use of Eq. (26) with Frost's formula to supply a close

approximation at high degrees of ionization.

Figures 7, 8 and 9 show that Frost's formula with Eq. (24)

lies between the curves obtained with Eqs. (25) and (26) for all

degrees of ionization. This results suggests that the velocity
-2

power dependence g may be viewed as a compromise choice which

achieves a reasonable approximation to the conductivity for both

low and high degrees of ionization. The Frost mixture rule

appears to over-estimate the conductivity at low degreeE of

ionization, and to under-estimare slightly at high degrees of

ionization. The conclusion for low degrees of ionization is

supported by additional calculations in which Eq. (17) is used

with Eq. (25), but with K1 determined by the Rutherford

collision cross-section, rather than by adjustment to agree with

the Spitzer-Hdrm conductivity.
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VI. RESULTS WITH EXPERIMENTAL CROSS-SECTIONS

Figure 10 shows Frost's normalized conductivity of cesium

seeded argon as a function of temperature, in the range of

interest for magnetogasdynamic generators. Curve I makes use

of the e-Ar. cross-section given by Frost and Phelps 12 and

curve II is based on Brode's1 3 cross-section for e-Ar .

Both curves use Brode's6 cross-section for e-Cs . The same

dipping in the actual conductivity curve is observed, substan-

tiating some of the conclusions drawn from the use of an

electron-neutral collision model.

We have attempted to estimate the possible spread in con-

ductivity calculations resulting from the uncertainty in experi-

mental values of the collision cross-sections. Figure 11 shows

the momentum collision cross-section for e-Ar. obtained by

different experimenters. Based on O'Malley's extrapolation

for low energy and the various experimental results as well as

their own work, Frost and Phelp 2have suggested an effective

electron-argon cross-section which is shown on Fig. 12. In

subsequent calculations we have used this curve as a lower bound

a.1d Brodets data with extrapolation at low energy as an upper

bound.

Figure llshows the momentum collision cross-section for

e-Cs . The data spread at low energy is quite large. To determine

the corresponding uncertainty in calculated conductivity we have

chosen a reasonable (low energy) upper bound guided by recent

theoretical calculations made by Stone and Reitz
1 5
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[0 t .7 (e)~/2 Brde~1 6

[0 to .75 (ev)L/2 I which has been merged with Brode's data

r1.6 to 10 (ev) 1/2) . and a lower bound as shown in Fig. 12.

Typical results of the calculations for upper and lower

bound conductivities of cesium seeded argon, using Frost's

formula and the third Chapman-Enskog approximation are shown

in Fig. 13. As expected from the study of the electron-neutral

collision model at low ionization, Frost's conductivity is

higher than the conductivity calculated via the third approxi-

mation. As the degree of ionization increases (temperature

increase), the difference becomes less prcnounced.

The maximum difference between the Frost and Chapman-Enskog

conductivities is about 25% and occurs at 20000K. Over the

entire temperature range, the difference between the Frost and

the Chapm-n-Enskog third approximation conductivities is cf the

same order or less than the difference in calculated conductivity

resulting from uncertainty in experimental values of the cross-

sections. For comparison some recent cor.ductivity measurements

made by Harris2 2 are included.
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VII. CONCLUSIONS

Figures 3, 4, 5, and 6 show that the conductivities calculated

by Frost's method and by the third approximation to the simplified

Chapman-Enskog method differ by less than 15 per cent for a wide

range of collision cross-section models. Figure 13 indicates that

the uncertainties in calculated conductivity resulting from experi-

mental cross-section uncertainties exceed~or are of the same order

of magnitude as the differences resulting from these two methods of

calculation. Examination of experimental and theoretical cross-

section data available for elastic collision of electrons with a

variety of neutral species indicates that the magnitude of the

uncertainties we have used appears to be typical.9 ,10 We may

therefore conclude that Frost's mixture rule, at present, provides

a satisfactory approximation for calculating the electrical con-

ductivity in engineering applications.
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APPENDICES

A. DERIVATION OF SIMPLIFIED CHAPMAN-ENSKOG APPROXIMATION

FORMULAE

Because Eq. (3) is linear in 1 ' the solution will have

the structure

•)

where the unknown vector function D is determined by inserting

Eq. (Al) into Eq. (3) and equating coefficients of similar

gradients. The resulting integral equation for D is:

(CIS) + K0~(~

The quantities B and A are determined by similar equations,

but we shall not consider these since the dependence of Ji)

on E' (and thereby the electrical conductivity) is provided

through D .

For the reasons discussed in Ref. (1) and (7),

The quantities D1 , D2 , and D3 are scalar functions of the

magnitudes C1 and B , and are determined by the three simul-

taneous equations



(A-

tcC)
ot- s -(C), T l

ba (C)

Multiplying Eq. (A6) by B2  and adding to Eq. (A4) yields the

equation

for (D + B2D3 ) Multiplying Eq. (A5) by iB and adding to

Eq. (A4) yields a single complex equation("o _ - r (~)

W (0 ) W to)
C wI)

• ))C
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for D I + iB D2 . The electron cyclotron frequency is

denoted by

According to Eq. (18.41-1) of Ref. (1), (7) and Eq. (4),

the contribution of D to the current density is

If dl is decomposed into components parallel and perpendicular

to the magnetic field, dl = 1 + dl then

(An)

where

A
is a "generalized" electric field, and where B = B B . The

electrical conductivity parallel to the magnetic field a , is

determined by (D1 + B2 D3 ) and from Eq. (AT), a is inde-

pendent of B . The transverse electrical conductivities are
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determined in terms of T as

determiet

Since a, reduces to a when B = 0 , we need be concerned

only with the solution to Eq. (A8). Let us look for a solution

of the form of a sum of Sonine polynomials,

I--A 

+

where is an integer that defines the order of approximation.

In terms of the coefficients d(m) , the transverse conductivities

are given by Eq. (A13) as

W (AIS

(AA q _

where we have used the orthogonality property

2.fl% 
S Ye gv% (Ak )
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Substituting (A14) into Eq. (A8), we obtain

_ c

If we now take the scalar product of this equation with

Sm and integrate with respect to dcI , we obtain

the set of equations

where

and where

A (o

-' J' "C )
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These definitions correspond to the definitions of Section (4.4)

in Ref. (1). Values for the bracket expressions in terms of the

integrals

where

Q v (t- Cos

are provided in Section (9.6) of Ref. (1) and in Ref. (4). The

quantity denotes the reduced mass; ".i 1 = m/2 and

12 = 3 ... -i3 m-
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B. LORENTZIAN GAS RESULTS

In thi. appendix, we primarily summarize some results for

1
a Lorentzian gas as discussed by Chapman and Cowling The

formula for the electrical conductivity of a Lorentzian gas,

Eq. (17) follows from Chapman and Cowling's Eqs. (10.5-7),

(9.33-2), (18.11-5) and is shown to correspond to the infinite

Chapman-Enskog approximation en(oo). (This result has also been

derived by Allis 21 using an expansion in spherical harmonics.)

The first Chapman-Enskog approximation to the electrical con-

ductivity of a Lorentzian gas may be shown from Eqs. (9.81-1),

(9.8-8), (18.11-5) to be

3 e 1
Gen(1) = 1 n1m =V  (BI)

en ln mQ
3 1 1l3

where n is defined by our Eq. (A.23).

For the special case of an interparticle interaction force

proportional to (interparticle separation)-v , Chapman and

Cowling in Eq. (10.53-10) show that the successive Chapman-

Enskog approximations may be written

( )  2 2 2
en1 = 1+ + P (p + 1) + ... to , terms, (B2)

q.1 q(q + 1).2!

where p = (v - 5)/2(v - 1) , q = 3 - 2/(v - 1) . From Chapman

and Cowling's Eq. (10.3-8), the parameter v may be related to

our parameter m introduced in Eq. (13) according to
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5= 2m (B3)

Combining Eqs. (14), (19) and (B1), we obtain for this case

Cen (co) 16 r(5 m) (B4)

5 5
subject to the restrictions - 7 < m < 2. The results

plotted in Fig. 1 are based on Eqs. (B.2) and (B.4).
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. EFFECT OF SMALL £nA

The kinetic theory description of collisions between charged

20particles has, until recently , required some sort of ad hoc

cut-off procedure in order to prevent the occurrence of divergent

integrals. The source of this difficulty stems from the long-

range nature of the Coulomb interaction and the treatment of all

collisions as two-body encounters. In actuality, the interaction

potential is essentially shielded by the collective behavior of

the particles at sufficiently large distances. A convergent

theory is obtained by introducing some device for Ignoring colli-

sions with large impact parameters in excess of the Debye length.

The resulting theory is valid to order (tnA)-I , where

A = 1.24 x l07 (T3/n)1/2 is the ratio of the Debye length to

the impact parameter for a 900 deflection. (The quantities T

and n denote the temperature in OK and the number density

per m3  respectively.) In particular, the widely-quoted value

of Spitzer and H4rm for the electrical conductivity of a fully-

ionized plasma is correct to this order.

In Table (1), we have calculated the values of A and InA

for a range of temperatures and number densities which encompass

conditions expected in magnetohydrodynamic generators. Typical

values of InA are seen to ranfe between 4 and 5 which implies

an uncertainty of about 25 per cent in the Spitzer-H.rm con-

ductivity.
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TABLE 1

Values of A and (inA)

ne(m3 )
Te( 0 K)

1O18 1019 1o2o 1 io22

1000 392 124 39.2 12.4 3.92

(5.97) (4.82) (3.67) (2.52) (1.37)

1500 721 224 72.1 22.4 7.21

(6.5 ) (5.41) (4.28) (3.11) (1.98)

2000 1110 351 ill 35.1 11.1

(7.01) (5.86) (11.71) (3.56) (2.40)

2500 1550 491 155 49.1 15.5

(7.35) (6.20) (5.04) (3.89) (2.74)

3000 2040 645 204 64.5 20.4

(7.62) 1(6.47) (5.32) (4.17) (3.02)

The region to the left of the heavy line in this table indicates

roughly conditions for which the uncertainty in this theory is

less than 20 per cent.

In about 1960, Lenard, Balescu, Rostoker and Rosenbluth
17

as well as others, obtained a kinetic equation which automatically

took into account the collective behavior of a plasma, and

converged for large impact parameters. However, this so-called

"fluid-approximation" diverged for small impact parameters, and

so it was necessary to introduce an ad hoc small cut-off limit.
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A more recent advance in the kinetic-theory of charged

particles was made in 1963 by Kihara and Aono20 . These authors

proposed a "unified theory" for combining both the close and

distant encounter contributions to the kinetic descriptions of

collisions, in such a way as to yield a divergenceless theory

without the need of ad hoc assumptions. The validity of this

new theory is of order A- , and thus provides ample accuracy

for magnetohydrodynamic generator applications. The region to

the left of the double-line in the preceding table indicates

conditions for which this new theory has an uncertainty of 10

per cent or less.

The theory of Kihara and Aono has been applied by Ikitawa
18

to the calculation of the electrical conductivity of a fully-

ionized plasma. The method of calculation is Similar to that

of Chapman and Enskog, and involves an expansion in terms of Sonine

polynomials. The results of Ikitawa may be incorporated into the

framework of the standard Chapman-Enskog theory with the

following identificiation of the bracket expressions:

C( t-

!+

lip I4&bI
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where
o 0... o0 0

(o' 31f0 0 Y LC
0 YL.'i

-/0 . 00° o oSI Ot&
o o.ZW- -. 0745

In Fig. 14 we have plotted the ratio of Ikitawa's second

approximation to the Spitzer-Hgrm value of the electrical con-

ductivity, as a function of lnA . For values of lnA = 4 ,

the more accurate value of the electrical conductivity is about

30 per cent higher than the Spitzer-Hgrm value.
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In 1964, Rynn 19 reported a measurement of the electrical

conductivity in a fully-ionized plasma which was 20 per cent

higher than the Spitzer-Hgrm theoretical value. The probable

error of Rynn's measurement was stated to be + 10 per cent.

At the value of lnA = 7 for which Rynn's experiment was per-

formed, Ikitawa's value of conductivity is about 10 per cent

larger than the Spitzer-Hgrm value, which places Ikitawa's

theoretical value within the probable error of the experiment.

This comparison with experiment appears to provide some support

for the new theory.

Under magnetohydrodynamic generator conditions, the plasma

is only partially ionized, and so the magnitude of the correction

discussed above will be proportionately smaller. When the

charged particle encounters are equally important to electron-

neutral collisions, we may expect a correction of the order of

15 per cent.
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