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ABSTRACT 

We consider the problem of the scattering of a photon by 

hydrogen in the ground state when the photon has its principal 

frequencies near that of Lyman-rv radiation.  We obtain the 

scattering operator and cross-section for this process. 

Our procedure is to adapt Dirac's theory of resonance 

scattering to the problem and, by quantizing the electromagnetic 

field in an angular momentum basis, to solve the problem exactly 

within the framework of the Dirac theory. 

We find that the total scattering cross-section at resonance 

-12    2 is 7.062 x 10    cm. .  The natural half width of the scattered 

_4 
line is 1.03 x 10   A.  The resonance frequency itself is shifted 

toward the long wave length side by 4281 mc/sec. 

The shift in the resonance from the original Lyman-Q- frequency 

can be interpreted as an indication that the Dirac resonance scatter- 

ing theory contains a large part of the Lamb shift oi the ground 

state.  This fact suggests new ways of obtaining the Lamb shift 

for various levels which will be explored in later papers. 

Accepted for the Air Force 
Franklin C.   Hudson 
Chief,   Lincoln Laboratory Office 
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I.   INTRODUCTION AND SUMMARY 

It is remarkable that, despite the existence of a large 

body oi literature on the theory oi resonance scattering and on 

its application to problems in nuclear and atomic physics where 

the particle which is being scattered has non-zero mass, there 

have been no numerical calculations for the resonance scattering 

oi photons by atoms or nuclei.  While it is true that there are 

some formulas for this problem (see e.g. reference 1), these for- 

mulas seem not to have been used to obtain numerical results. 

The existing formulas for the resonance scattering of light as 

given, for example in reference 1, are obtained in such an un- 

systematic manner that one is discouraged from using them for fear 

that the result will not be very meaningful.  It is perhaps for 

this reason that no numerical calculations exist. 

To correct this deficiency of a quantum theory for the reson- 

ance scattering of light by an atom or nucleus we have undertaken 

a series of investigations which culminate in the calculation of 

t he resonance scattering cross section for hydrogen atoms in the 

ground state when the frequency of the light is near or at that 

which is necessary to raise the atom to its first excited state. 

We have concentrated our attention on hydrogen because the wave 

functions are simple enough to permit evaluation of the various 

integrals which occur.  Of course, this case is of great interest 

in its own right, for obvious astrophysical applications.  How- 

ever, the techniques which we have developed can be used when 

the scatterer is any atom or nucleus , provided the wave functions 

are known. 



For our treatment we have considered only the simplest model 

i or the hydrogen atom, namely that of a spinless L-lectron bound 

to the nucleus by a Coulomb potential.  The extension to the 

relativistic Dirac electrons appears to oiler no difficulty other 

than the necessity of evaluating more complicated integrals and 

we hope to treat this case later. 

In the Dirac approximation one sets some oi the matrix ele- 

ments oi the interaction equal to zero, retaining only those which 

are large in th. resonance region.  If one regards the interaction 

as consisting only of this Dirac interaction, the resulting quantum 

mechanical problem can be solved exactly.  That is, in the Dirac 

resonance th'ory one replaces the exact problem by an approximate 

one which can be solved exactly.  Thus it is unnecessary and even 

incorrect to ignore retardation effects (i.e. setting exp ik-x ^ 1 

in matrix elements) as one frequently does in the semi-classical and 

quantum theory of emission and absorption of photons.  Use of the 

exact Dirac resonance theory gives us more accurate values for the 

scattering line breadth and shift in the position of resonance than 

could be obtained by ignoring retardation. 

The fact that the Dirac approximation can be solved exactly 

does not seem to have been widely appreciated until the appearance 

of reference 3, where the Dirac approximation is treated as a 

rigorous problem in spectral theory for certain rather general 

situations.  Our approach to the problem is strongly influenced 

by reference 3. 

The present paper is intended to provide a summary of results 

and only a sketch of the procedure used to obtain them.  A more 



detailed derivation will appear later in a series ol papers which 

are st;ll to be written. 

Finally, in this present section we shall give soice results: 

Let us consider a light wave (photon) of frequency v moving 

along the positive z-axis toward a hydrogen atom in the ground state 

We shall assume that the light wave has a specific circular 

polarization.  Then the differential cross section for scattering 

in the solid angle dO is 

dA = 0.8431 x 10-11 cm.2 cos^ | C(v)dQ (1.1) 

for scattered light whose circular polarization is in the same 

sense as that of the incident wave, and 

dA - 0.8431 x 10 U cm.2 sin4 %  C(v)dQ (1.2) 

for scattered light whose circular polarization is in the opposite 

sense of the circular polarization of the incident wave.  In (1.1) 

and (1.2) q is the angle which a vector drawn from the atom, which 

is supposed to be at the origin of coordinates, to the point of 

observation makes with the positive z-axis (i.e. 6 is the usual polar 

angle).  The function C(v) is the shape function for scattering 

and is given by 

y2 

C(v) = 2 ^— (1.3) 
(v-v-, - 6)  + v 

15 
where v-, = 2.4660 x 10   cycles/sec. = frequency of the Lyman-o- 



line, y   = 252 Mc/sec. , and *> = -4281 Mc/sec.  The number v is 

thus the half-breadth ol the scattered line in frequency terms 

-4 and in wave length terms is 1.03 x 10   A.  The quantity F,   repre- 

sents a shift in the position of maximum intensity of the scattered 

radiation from the frequency derived by the Bohr rule from the 

energy dilference of the: hydrogen energy levels. 

The quantity 6 is very interesting, since it contains a large 

part of the Lamb shift oi the ground state.  One can, if one wishes, 

regard the shifting of the frequency of resonance as due to an 

increase in the energy of the ground state because of the inter- 

action of the atom with the electromagnetic radiation.  From the 

Lamb shift as given in reference 4, the ground state would be raised 

(in frequency terms) by 8139 Mc/sec.  The I  = 1 states are raised 

only slightly.  Hence the Dirac approximation contains more than 

50% of the Lamb shift of the ground state.  The interpretation of 

the resonance shift as a change of position of an energy level is 

discussed in more detail in reference 3.  The numerical results 

strongly suggest that one might be able to obtain the electromagnetic 

shifts of energy of the hydrogen atom by perturbing about the Dirac 

approximation.  Perhaps some of the infinities associated with the 

problem will not appear. 

Finally, the total cross section for the scattering of radia- 

tion near resonance is 

a(v) = 7.062 x 10 1X  cm.2 C(v), (1.4) 

when the incident radiation has a frequency v, whatever its 

polarization. 



2.  GENERALIZED DIRAC RESONANCE SCATTERING THEORY 

It will be convenient to give a generalization ol the Dirac 

resonance scattering theory and we shall start with a short review 

oi formal scattering theory.  Let us consider the Hamiltonian of a 

scattering system H = H  + V where V is the interaction. 

We shall assume that H  has a continuous spectrum and we shall o r 

denote any point in the continuous spectrum by E.  Generally the 

continuous spectrum will be degenerate and we shall collectively 

denote the degeneracy variables by the letter s.  We shall associate 

with the continuous spectrum a real positive weight function w(E,s). 

The operator H  will also have a discrete spectrum for which we shall 

denote each eigenvalue by E..  The corresponding degeneracy will be 

denoted by d.  The values of d are always denumerable. in contrast 

to the values of the degeneracy variable s which in general may be 

chosen to be denumerable or non-denumerable.  For the purposes of 

notation we shall act as though s is denumerable and use sums over 

s although we give ourselves the freedom to interpret s as a con- 

tinuous variable at our convenience. 

The eigenstates of H  are required to satisfy the completeness 
o 

relations 

Y |Ei,d><Ei,d| + 7,   [dE|E,s)w(E,s)<E,s! = I,       (2.1) 

i,d 

where I is the identity operator in the space and the integration 

over E is over the entire continuous spectrum. 



The orthogonality relations between the eigenfunctions are 

<E. ,dlE. ,d' > = 5, . '.    ,, 
1  • j»      IJ  d,d' 

<E,s|E\s') = [w(E,s)j 1§s g,6(E-E') (2.2) 

<E,s|E  d) = 0 

For the purposes of scattering theory one is interested in the 

eigenstates of H which we shall denote by |E,s) and which satisfies 

the equation 

E,s) = |E,s) + Y_(E-Ho)V|E,s), (2.3) 

where 

(x) = lim 
e-0 x+ie 

(2.4) 

From (2.3) and (2.4) it is readily verified that 

(E-Ho)|E,s) = VlE,s) (2.5) 

as is required by an eignestate of H.  If V is sufficiently "smooth" 

one can show 

lim     exp[i-pt]exp[-iSt]!E,s)   =   JE,s>, 
t—» (2.6) 

lh 
lim   exp[i^t]exp[-iJt]|E,s)   =   | E, s^ -2ni5 (E-H  ) V | E , s) 

t-+- " * 



as in the usual scattering theory.  The matrix elements of the 

scattering operator S are 

<E,s|S|E' ,s'> = 5(E-E')[6   ,-2iri T(E , s I E , s ' ) ] ,   (2.7) 

where 

T(E,slE',S') = <E,s'VlE',s') (2.7a) 

If we designate the state of the system before scattering by 

I $ ),   then the state after scattering is 

E fdE' (E,s|SlE»,s')w(E',s')<E's'|$ ) 
s*' 

in the representation given by the kets |E,s). 

If we take the state before scattering to correspond to a 

definite value of energy E  and "direction" s , we have &J  o o 

) = |E ,s ) o' o 
(2.8) 

Then the relative probability per unit time that the particle will 

be scattered into an interval A of the "directions" s from the 

initial "direction" s  is o 

J    ^l^o'^o'So)'2 w(Eo's)- 
s in A 

(2.9) 



The expression (2.9) is used to find cross sections if s 

represents the direction of momentum.  One need only divide (2.9) 

by the flux of particles corresponding to the eigenstate JE ,s ). 

The usual way to evaluate T(E,s!E,s'), which plays the essen- 

tial role in the scattering phenomena, is to assume V is small and 

to evaluate (2.3) by iteration.  One obtains in this way a series 

for lE,s) and, from (2.7a) also for T(E,slE,s').  The series is 

called a "Born expansion" by physicists and a "Neumann expansion" 

by mathematicians. 

However, if any of the point eigenvalues E. is embedded in 

the continuous spectrum each term beyond the first of the Born 

series for T(E.,s|E.,s') diverges.  The case of resonance scatter- 

ing of a photon by an atom is precisely a case in which a point 

eignevalue is embedded in the continuous spectrum and in the case 

of resonance scattering we are interested in just those values of 

E near or at E.. 

For the scattering of Lyman-^ by hydrogen, the point eigenvalue 

is the energy of the first excited state of the hydrogen atom. 

The degeneracy variable d is used to label the angular momentum 

of the corresponding eigenstate.  The part of the continuous spec- 

trum in which we are interested corresponds to having the hydrogen 

atom in the ground state and to having a photon whose energy is 

at or near the difference of energies of the first excited state 

by hydrogen and the ground state.  The degeneracy variable s can 

be selected to specify the direction of the photon together with 

its circular polarization or s can specify the angular momentum 

of the photon together with its circular polarization. 



Since we have been able to relate  photons in an angular 

momentum basis to those given in the linear momentum basis 

(reference 5) and give the electromagnetic vector potential in 

both the linear and angular momentum bases (references 6 and 7), 

we are able to handle photon wave functions with as much ease 

as the wave functio  ol any other particle.  It seems to us that 

the previous lack of consistent, simple quantum theory of photons 

has held up the treatment of resonance scattering of photons which 

we consider in this paper. 

Let us now assume that the point eigenvalue E-. is embedded in 

the continuum and that we are interested in resonance scattering 

at or near E,.  We shall then have to compute T(E,slE,s') for 

values of E near or at E,.  In the Dirac approximation, instead 

of assuming that the entire scattering potential V is small, we 

assume that all matrix elements of V are small except (E, ,d!V|E,s"> 

and (E,sIVIE, ,d) for all d and s.  In effect the potential V is 

written 

V = Vl   +  V2 (2.10) 

where 

<E1,dlV1|E,s) = (E,slV1|E1,d)  = ^,dIVlE,s>     (2.11) 

where all other matrix elements of V-. are zero.  The interaction 

V9 is defined by (2.10) as the difference between V and V,.  It 

is a ronarkable fact that the eigenstates lE,s) obtained when V 

is replaced by V, can be found exactly.  Since V-. is Hermitian, 



the scattering operator obtained through its use is unitary. 

In the Dirac resonance theory we have thus replaced our original 

problem by an approximate one which can be solved exactly.  One 

can treat V„ a^ being  small and obtain the eigenstates of H by 

perturbing about those for H  + V, . o    1 

We shall now obtain the eigenstates |E,s) for H + V, exactly. '        o    1       ' 

Our treatment follows that of Dirac closely.  Our generalization 

consists of taking into account the degeneracy of the spectrum. 

Accordingly we shall replace V by V  in (2.3) and (2.5). 

Further we shall write 

<E,s!V,lE ,d> = <E,slVlE d} = f(E;s,d). (2.12) 

Then from (2.4), (2.5), (2.1) and the fact that most of the 

matrix elements of V, are zero we obtain 

(E',s»|E,s)= 6(E-E')6   , fw(E,s) ]_1 + 7v (E-E ' ) f (E ' ; s » , d) <E ,,d | E, s), 
s,s d 

(2.13) 
and 

(E-E1)(E  d|E,s) = £ fdE'w(E',s')f*(E';s»,d)<E',s'|E,s). 
s '' 

(2.14) 

Equations (2.13) and (2.14) are simultaneous equations for the trans- 

formation functions (E, ,d|E,s) and (E's'|E,s), these two functions 

giving |E,s) completely in the H  representation. 

On substituting (2.13) into (2.14) we obtain 

(E-E ) (E  d|E,s) = f*(E;s,d)+T] v fdE' w (E ' , s ' ) f * (E ' : s ' , d) x 
1 d's'" 

v_(E-E')f(E';s',d')<E1,d'|E,s) (2.15) 

10 



Equation (2.15) is really a set of equations for the functions 

(E.,dlE,s).  It is easy to show that this set of equations has a 

solution. 

We note that 

(x) = -inftCx) + (2.16) 

where P means that the principal part is to be used in integrals 

Then we may write 

v FdE* w(E',s')f*(E':s',d)v_(E-E')f(E';s',d') 
s'' 

AE(d,d') -in BE(d,d') (2.17) 

where 

A.<d,d') = v fdE' w(E',s<) f (E';s',d)f(E';s',d') 
E E-E' 

BE(d,d
f) =7     w(E,s*)f (E;s',d)f(E;s',d')     (2.18) 

s' 

In the integral for A_(d,d') the principal part is to be taken. 
hi 

The quantities A_,(d,d') and BE(d,d') may be regarded as being 

matrix elements of matrices A_ and BF respectively, where B„ is a 

is a positive definite matrix and A^ and B„ are both Hermitian. 

11 



There thus exists a non-singular matrix SF (The subscript 

shows that this matrix may depend on the energy) such that 

t 
SEAESE 

SEBESE 

= A 
ED 

(2.19) 

B 
ED 

where A._n and RF_ are diagonal matrices and the dagger means 

Hermitian adjoint.  Then 

AED(d,d') = a(E,d)6djd, 

(2.20) 

B„n(d,d') = b(E,d)^ ED d,d' 

In (2.15) let us drop for the moment the variable d and define 

f(E;s) as being a column vector with components f(E;s,d).  Similarly 

define (E,|E,s) as being a column vector with components (F ,d|E,s). 

Then equation (2.15) can be written 

(E-EfAE]) + irrBED)S~
1 (E;L|E,s) = SEf*(E;s) (2.21) 

It is now an easy matter to solve for SF  (E,|E,s) and hence 

<E1|E,s) On substituting (E,|E,s) or equivalently (E,,d|E,s) 

into (2.13), one can solve for (E',s'|E,s) and also the scattering 

operator from (2.7) and (2.7a). 

In our problem, the scattering of a photon by a hydrogen atom, 

H  is the sum of the Hamiltonian of the hydrogen atom and the 
o 

12 



Hamiltonian of the photon field.  We take the usual non-relativistic 

interaction between the photon field and the atom, namely 

V = -  £- p.A +  e 0  A
2 

mc ~ ~   „  2  ~ 2mc 

where p is the momentum operator oi the electron and A is the vector 

potential as given in the radiation gauge. 

The matrices corresponding to A^ and BF in the above treatment 

are already diagonal if we work in an angular momentum basis for the 

photon.  We anticipate this result because the total angular momen- 

tum is a constant of the motion if we ignore recoil of the hydrogen 

atom as we do (and as is commonly done for emission and absorption 

of photons by atoms and nuclei unless the radiation is very hard). 

Then |E,, d) is a state corresponding to the vacuum for the photon 

and to having the hydrogen atom in the first excited state.  The 

variable d is chosen to specify the angular momentum quantum number 

j and the magnetic quantum number m. 

The continuous spectrum vector |E,s) corresponds to having the 

atom in the ground state and to having a single photon whose energy 

has a value near the energy difference between the first excited 

state and the ground state.  The label d is taken to give the 

angular quantum number j of the photon, the magnetic quantum 

number m and the circular polarization of the photon. 

Because we are dealing with a single photon, the quadratic 

term in the vector potential contributes nothing.  In reference 7 

we have developed the theory of quantization of the photon in terms 

of an angular momentum basis which parallels closely the technique 

1 5 



of Blatt and Weisskopf (reference 8) for classical electromagnetic 

radiation.  The matrix elements of V, simplify considerably because 

the selection rules are built into the angular momentum represen- 

tation as in semi-classical treatments.  Since the matrices A,, 

and B„ are diagonal, it is a comparatively simple matter to obtain 

the scattering operator in the angular momentum representation. 

The principal difficulty is in evaluating the integral for Br. 
hi 

We have evaluated this integral exactly without ignoring retar- 

dation, as is commonly done in semi-classical treatments of 

absorption and emission.  Indeed the integral diverges if retar- 

dation is not taken into account. 

We now transform our scattering operator to a linear momentum 

basis using the results of reference 5.  We then assume that the 

incident wave has a specific momentum and calculate the cross- 

section using (2.9).  Since one has to divide the expression (2.9) 

by current density of photons a side calculation of the Pbynting 

vector has to be made, which has been done usinp the results of 

reference 6. 

In the exact calculation v and *> of equation (1.3) are actually 

functions of a /X where a  is the Bohr orbit and > is the wave o o 

length of the light.  Since this ratio is very small, the numerical 

values which we have given represent the leading terms obtained 

from the exact expression.  In a certain sense the calculation of 

Y and 5 is a sort of eigenvalue problem just as the calculation 

of the energy levels of hydrogen. 

14 



In   tei*ms   of   atomic   constants   wo   find 

(v) %-   \*   C(v) 
ZTT        1 

and 

2 3 
Y   =   2 (-o)      or      v-, 

2TT 

5      ,2N
7   c      : 

24   (3}      a  " o 

-5 where >  is the wave length of Lyman-cv radiation = 1.215 x 10   cm. 

v, = c/X-, = frequency of the Lyman-c^ radiation, a  is the radius of 

the first Bohr orbit, and <y   is the line structure constant. 

15 
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