
iH

QQ MEMORANDUM
QQ RM-4783-PR

C
, FEBRUARY 1966

INTEGER PROGRAMMING BY
IMPLICIT ENUMERATION AND

BALAS' METHOD

Arthur M. Geoffrion

2,6>ö 0'S~o 2? M
i

PREPARED FOR:

UNITED STATES AIR FORCE PROJECT RAND

*.

ßuno,
SANTA MONICA • CALIFORNIA

MEMORANDUM

RM-4783-PR
FEBRUARY 1966

INTEGER PROGRAMMING BY
IMPLICIT ENUMERATION AND

BALAS' METHOD
Arthur M. Geoffrion

This research is sponsored hy the United States Air Force under Project RAND—Con-
tract No. AF 49(638)-] 700—monitored by the Directorate of Operational Requirements
and Development Plans, Deputy Chief of Staff. Research and Development. Hq lTSAF.
Views or conclusions contained in this Memorandum should not be interpreted as
representing the official opinion or policy of the United States Air Force.

DISTRIBUTION STATEMENT
Distribution of this document is unlimited.

mm 76 K-H 11 \J faßwuto*
1700 MAIN !l • S»NI» MOhICA • CMKOINI« • ••«(«.

A;<('r:iv".1 f,i! r. Ic-.iS!' ;,y tlie Clecirmghouse »or
Fodcrjl Sen; v.nr ^rw.l Tcchnicdl Infornution

11-

PREFACE

Integer linear programming has been recognized since the early

days of linear programming as a class of problems of the greatest prac-

tical importance. A number of difficult Air Force problems of basically

combinatorial character—such as those that occur in flight scheduling,

multi-stage machine scheduling, and maintenance operation sequencing--

can be formulated as integer linear programs.

The fact that no computationally satisfactory algorithm yet appears

to be known for a sufficiently wide class of such problems causes in-

terest to run high when new approaches are suggested. Such was the case

with Balas' work when it first became known in this courtry. This

Memorandum presents an elementary technical exposition of a reformulation

of Balas1 algorithm. It is more economical in terms of computer storage

than the original, and forms the basis for a computer routine that has

(4) been used to experimentally assess computational efficiency.

The author is a consultant for The RAND Corporation.

V-

SUMMARY

This Memorandum presents a reformulation of the essential» of

Balas1 algorithm for the zero-one integer linear programming problem,

and is based upon the idea of "elementary tree search" that has also

been used by Glover as the basis for his multiphase-dual algorithm.

The present reformulation requires considerably less computer storage

than the original version, and clarifies the rationale behind the

algorithm, thereby leading naturally to variants and extensions.

■vii-

CONTENTS

PREFACE iii

SUMMARY v

Section
I. INTRODUCTION 1

II. A PROCEDURE FOR IMPLICIT ENUMERATION A

III. A PARTICULARIZATION OF THE PROCEDURE BASED ON BALAS'
ALGORITHM 12

IV. AN EXAMPLE 16

V. FURTHERREMARKS 18
Finding Alternative Optimal Solutions 18
Using Prior Information to Make a Better Start 18
Finding Any Feasible Solution 20
Nonlinear Objective Functions 20

REFERENCES 21

-1-

I. INTRODUCTION

In a recent comprehensive survey ' of integer programming,

M. L. Balinski expressed a belief, "...that various clever methods of

enumeration can be the most efficacious means existent by which to ob-

tain solutions to practical problems." The adjective '"clever" is un-

doubtedly meant to imply, of course, that one should do better than com-

plete enumeration. This can be done by using strategies which lead, as

the enumeration proceeds, to the generation of information that can be used

to exclude large numbers of solutions from further consideration. The

exclusion of solutions, which suggests the descriptive term "implicit

enumeration" for such methods, can usually be accomplished in a /ariety

of ways--for example, by exploiting the availability of a gradually

improving bound on the optimal value of the objective function as better

and better feasible solutions are found. It is unfortunate that the ex-

clusion of solutions sometimes gives rise to very large infor.nation

storage requirements in order to "remember" whicn solutions have been

excluded as well as enumerated, thereby adding another dimension to the

need for "cleverness." A computationally successful algorithm must com-

bine a sufficiently high "rate of exclusion" with sufficiently modest

storage requirements.

Since Balinski's survey was written, additional support for the

(2)
viewpoint quoted above has derived from contributions by Balas and

(3) Glover, among others. Their work suggests that it may be possible

to combine a high rate of exclusion with low storage requirements for a

wide class of important problems, namely linear programs that require

bounded integer solutions. Such an approach requires only addition for

arithmetic operations, for no systems of linear equations need to be

solved, and shares with other implicit enumeration approaches the im-

portant advantage that a feasible solution (hopefully a good one) is

usually In store If the calculations are stopped prior to natural ter-

mination by exhaustion.

The primary purpose of this Memorandum is to give an expository

derivation of the main Ideas that motivate and underlie the approaches

of Balas and Glover, and those that will Inevitably follow them. We do

not attempt a critique or thorough discussion of their work, but rather

draw freely upon their Ideas as we develop fundamentals.

(3) In Sec. II we elaborate upon an idea of Glover in order to

develop a basic enumeratlve scheme which achieves a remarkable degree

of flexibility with only modest storage requirements. Using this enu-

meratlve scheme, In Sec. Ill we synthesize what is essentially a refor-

mulation of Balas* algorithm. We attempt to make it clear that the al-

gorithm presented here is but a particular member of an entire class of

possible algorithms. An example is presented In Sec. IV, and some fur-

ther remarks are made in the final section. We conclude this introduction

with a precise statement of the problem and some preliminary definitions.

Any bounded integer linear orogra- mlng problem can be written In

the form

(P) Minimize ex subject to b + Ax ^ 0, x ■ 0 or 1,
x J

where c is an n-vector, b and 0 are m-vectors, A is an m by n matrix.

. ..— —--i »' >f

-3-

and x is a binary n-vector to be chosen. Any binary x will be called

a solution. A solution that satisfies the constraints b + Ax s 0 will

be called a feasible solution, and a feasible solution that minimizes

ex over all feasible solutions will be called an optimal feasible

solution.

A bounded problem is one for which an upper bound v. is available
for each variable. The substitution

k i x - 2 2 y
1 i-0 J1

k+1 where k is the smallest integer such that v, ^ 2 -1, y., binary, per-
mits a binary representation for x .

-4-

II. A PROCEDURE FOR IMPLICIT ENUMERATION

Since there is a finite number 2 of solutions, exhaustive enumera-

tion provides a finitely convergent procedure for discovering an optimal

feasible solution of (P). As indicated above, not all solutions are to

be explicitly enumerated, of course, but rather implicitly enumerated by

considering groups of solutions together. To explain how groups of solu-

tions will be defined, we require the notion of a partial solution. A

partial solution S is defined as an assignment ol binary values to a sub-

set of the n variables. Any variable not assigned a value by S is calleu

free. We adopt the notational convention that the symbol j denotes

x « 1 and the symbol -J denotes x ■ 0. Hence, if n ■ 5 and S ■

{3,5,-2], then x3 ■ 1, X- - 1, x2 « 0, and x1 and x^ are free.

It will be seen that the order in which the elements of S are written will

be used to represent the order in wnich the elements are generated, A

completion of a partial solution S is denned as a solution that is deter-

mined by S together with a binary specification of the values of the free

variables. In the above example, there are four possible completions of S:

(0,0,1,0,1),

(0,0,1,1,1),

(1,0,1,0,1), and

(1,0,1,1,1).

Thus, a partial solution S with s elements, 3ay, determines a group of

n—s
2 different completions or solutions. When there are no free variables,

there is only one completion of S, the trivial one determined by S icself.

Implicit enumeration involves generating a sequence of partial solu-

tions and simultaneously considering all completions of each. As the

calculations proceed, feasible solutions are discovered from time to

time, and the best one yet found is kept in store as an incumbent. Now

it may happen that for a given partial solution S we can determine a

best feasible completion of S, i.e., a feasible completion that minimizes

ex among all feasible completions of S. If such a best feasible comple-

tion is better than the best known feasible solution (assuming that one

is known), then it replaces the latter in store. Or we may be able to

determine that S has no feasible completion better than the incumbent.

In either case, we shall say that we can fathom S. All completions of

a fathomed S have been implicitly enumerated in the sense that they can

be excluded from further consideration--except, of course, a best feasible

completion of S that unseats the incumbent.

Leaving aside until the next section the important question of how

one fathoms a given S, we shall give a flexible procedure for generating

a sequence of partial solutions that is non-redundant and terminates only

after all 2 solutions have been enumerated. By non-redundant. we mean

that no completion of a partial solution in the sequence ever duplicates

a completion of a previous partial solution that was fathomed.

Consider the following scheme for generating a non-redundant

v n sequence < S > that will terminate only after all 2 solutions have been

(implicitly) enumerated. Start with S "0, where 0 Indicates an empty

set. If S can be fathomed, we are flnlshed--elther there Is no feasible

solution, or there Is one and the best feasible solution can be found.

*
To cover the case where there are no free variables, we shall agree

that such an S Is fathomed.

6-

If S0 cannot be fathomed, augment it by specifying a binary value for

one additional free variable at a time, each time trying to fathom the
kl

resulting partial solution, until at some trial k., S is fathomed. Now

to be sure of having enough information in the future to enable us to

n * 1
know when all 2 solutions have been accounted for, we must store S ;

and to be sure of having a non-redundant sequence < S > from v = k- + 1

on , it is obviously necessary and sufficient to have in all future
kl

Sv at least one element complementary to one in S . We may accomplish
kl

the storage of S and heed the condition for the non-redundancy of
k + 1 k + 1 k

S , at least, by taking S to be exactly S with its last

element multiplied by -1 and underlined. The underline commemorates the
kl

fathoming of S (an example is presented below to make these ideas more

concrete).
k + 1

If S can be fathomed, then it is easy to see that all comple-
kl

tions of S without its last element have been enumerated, and thus
k ^ + 1

that we can "forget" the fathoming of S and of S and "remember"
kl

only the fact that S without its last element has been fathomed. For

example, if k. =3 and S = [3,5,-2] was fathomed and then L = [3,5,2]

was fathomed, then all completions of [3,5] have been accounted for,

since the completions of [3,5,-2] and [3,5,2] dichotomize those of [3,5],

Thus, fathoming S and S is equivalent to fathoming [3,5]. Opportunities

such as this to forget some history lead to the economical storage

* o
Since the augmentation of S was entirely arbitrary, it seems un-

likely that we could store the information that all completions of

have been fathomed any more economically than by storing
k

S i.
This need not be true if we had used a simple rigid rule for generating
< Sv >, for then we would only have to store the rule and the value k,.

requirements of the procedure we are now motivating. The same motive
k + 1 k + 2

that directed our choice of S directs us to choose S as
kl

S less its last element with its next to last element multiplied by

-1 and underlined. In our hypothetical example, S would be taken to be

[3,-53. Note that S contains an element complementary to one that

appears in both previously fathomed partial solutions.
k + 1

If, on the other hand, S cannot be fathomed, then one vjould

augment it by specifying a binary value for one additional free variable

af a time, each time trying to fathom the resulting partial solution,
k2

until at some later trial k„, S is fathomed. Note that the sequence
^ + 1 k2

S , ..., S , is non-redundant because each contains the complement
kl k2 kl

of an element of S . When S is fathomed, it, in addition to S ,

v
must be stored; and every succeeding S must contain not only an element

kl
that is the complement of one in S , but also one that is the complement

k2
of an element of S . Both ends may be accomplished economically by

k2 + 1 k2

taking S as S with its last element complemented and underlined.

4 5 r i In our example, if S could not be fathomed and S were [3,5,_2,lj, say,

that could be fathomed (k = 5), then S would be taken to be {3,5,2,-l].

Continuing along these lines, one is led to the procedure of Fig. 1.

In this figure, the content of Steps 1 and 2 is deliberately unspecified

in order to leave maximum flexibility in the design of an algorithm by

having a general convergence proof. It is important to note that the

mechanism by which Step 1 attempts to fathom a partial solution can be

as weak or as powerful as desired--so long as S is truly fathomed when

it purports to be.

-8-

Start

III
II

Augment S

i
No

Attempt to fathom
S0 » 0. Is the
attempt successful?

iYes
Terminate

1

Attempt to fathom S.
Is the attempt
successful?

Yes
-*-

w

Augment S

3b

Replace the last
element of S by its
underlined complement.

No

3d

Replace the last non-
underlined element uf
S by its underlined
complement and drop
all terms to its right.

jia^

If the best feasible
completion of S has been
found, and it is better
than the incumbent solu-
tion, store it as the new
incumbent.

3a

Last element of S
underlined?

Yes

3c 1
All elements of S
underlined?

(

I Yes
Terminate

Fig. 1 -- Flow Chart of a General Enumerative Procedure

To facilitate proof of its validity, the scheme is not
presented as compactly as it could be.

-»

9-

Theorer.-... The procedure of Fig. 1 leads to a non-redundant

sequence of partial trial solutions which does not terminate

before all 2 solutions have been (implicitly) enumerated.

Before proving this theorem, wo note its main consequence: if the

mechanisms of Steps 1 and 2 are computationally finite (as they are in

Balas' algorithm and certainly would be in any reasonable algorithm that

uses the procedure of Fig. 1), then Fig. 1 is computationally finite

and an optimal feasible solution of (P) is in stjie at termination if

the collection of feasible solutions is not empty. If there are no

feasible solutions, then, of course, no feasible solution is in store

at termination.

* o Proof. If S =0 can be fathomed, the theorem is obviously true. Hence,

we may assume that $ cannot be fathomed.

To show that < S > is non-redundant, we shall show that if

S , ..., S is non-redundant, then S cannot be redundant; i.e.,

that S s must include the complement of at least one element from each

of the partial solutions fathomed prior to S . There are three

pathways by which S " can be determined from S ; they are labeled

I, II, and III in Fig. 1. If pathway I is taken, the desired conclusion

follows from S c: S ' . If pathway II is taken, the desired conclu-

sion follows from the definition of Step 3b and the implication of the

negative branch of test 3a--that S less its last eliment is not redundant.

To establish the desired conclusion for pathway III, we observe from

Fig. 1 that the element complemented in Step 3d was contained in every

* (3) Glover has sketched an inductive proof of an essentially equiva-
lent theorem.

-10-

partlal solution since it was originally introduced (and hence in every

fathomed partial solution since that time), and that S less its

last element is not redundant with respect to the partial solutions (if

any) fathomed prior to the time that the deleted element was introduced.

It remains to show that < S > terminates only if all 2 solutions

v
have been enumerated. From Fig. 1 we see that < S > terminatf» only If

a partial solution consisting of all underlined elements is fathomed.

From our earlier remarks concerning the "forgetting of history," we see

that the proof would be at hand if we could show that every partial

solution S has the property an underlined element implies that all com-

pletions of that portion of S up to and including the complement of the

underlined element have been enumerated. Now underlined elements have

two possible origins: Steps 3b and 3d. Any underlined element created

at Step 3b obviour.ly has the asserted property. To see that the same is

true of underlined elements created at Step 3d, we begin by considering

the first time Step 3a is positive, i.e., the first time Step 3d could

occur. Then all underlined elements of S .nust have been created at

Step 3b, and both S and its immejiate predecessor must have been

fathomed. It follows that S less its right-most consecutive elements

has been fathomed--all of the completions of this deleted partial solu-

tion have been enumerated. Thus, the new partial solution generated at

the first execution of Step 3d has the desired property. Parallel argu-

ments hold for each subsequent execution of 3d. The proof is now

complete.

For completeness we note an observation that is clear from the

above discussion, and is of interest when (perhaps due to excessive

11-

computation times) the procedure of Fig. 1 is stopped prior to termina-

tion. At any iteration, from the current partial solution (including

the underlines) it is immediately evident exactly which solutions have

been accounted for. For example, if n = 24 and the calculations are

stopped when S = (5,4,-2,3,9], then all 2^2 " ^ completions of (5,4,2}

(24-4) r i have been accounted for, as have all 2 completions of 15,4,-2,-3j

91 9 0 9 /
Thus, it is known precisely which 2 +2 of the 2 solutions have

been enumerated, and the current incumbent is an optimal feasible solu-

tion of (P) with the additional restrictions, fx, = 1, x, = l"] and
j 4

either fx« = ll or fx =0, x = 0].

■12-

III. A PARTICULAR!ZATION OF THE PROCEDURE
BASED ON BALAS1 ALGORITHM

In Sec. II we presented and justified a general enumerative scheme

for finding an optimal feasible solution of (P) by implicit enumeration.

Details for the mechanisms of Steps 1 and 2 based on Balas1 algorithm

will now be derived. Remember that many other choices for these mech-

anisms exist, and that our appeal to Balas1 work is mainly illustrative.

Beginning with Step 1, the problem here is to "fathom" the current

partial solution, S. Recall that S may be fathomed by doing either of

the following:

(i) Finding the best feasible completion of S.

(ii) Determining that no feasible completion of S has a lower
value of the objective function than the incumbent.

The general strategy will be to attempt to fathom S by taking each tack

in turn by means of very simple computations.

Associated with S is a best (not necessarily unique or feasible) com-

pletion x of S. Constructing such a best completion is trivial--ju8t

take x = 0 or 1 for each free variable according as c £ 0 or < 0. For

* >
convenience we shall assume without loss of generality that c ■ 0, so

s s
that each free variable x may be taken to be 0. Observe that if x is

feasible, then x is a best feasible completion of S and S is thereby

c
fathomed. Since the computation of x is so easy, we shall test its

feasibility as the first substep of Step 1 of Fig. 1. As the computations

proceed, the value of the incumbent feasible solution gives a (hopefully

good) upper bound z* on the optimal value z* of (P) that can be used to

*
If an original c. were negative, one should make the corresponding

substitution x'. - l-x,.
J J

-ll-

good a~vantage as indicated below. Until the first feasible solution

-has been found, we take P • CD.

s If the best completion x is not feasible, we do nothing further

to find the best feasible completion. Instead, we attempt to determine

that no feasible completion of S is better than the incumbent. If this

.s actuaLly the case, then it must be impossible to complete S so as to

eliminate all of the infeasibilities of xs and yet improve upon ii. To

demonstrate this impossibility, it is clearly sufficient to contemplate

non-&ero binary values only for the variables in

s (s s J T • J free: ex + cj < zit and aij > 0 for ljome i such that yi < 0 ,

s s where y • Ax + b, for to give a value of 1 to some free variable not

in Ts would either lead to a higher value than zit or would not contribute

to diminishing an infeasibility of x8
(we have made use of our ass\Dla..,-

> s tion that c • 0). Hence, if T is empty then there could be no feasible

completion of S that is better than the incumbent, and S is fathomed.

It is also easy to see that the same conclusion holds if

y~ + t max(O,aij) < 0
j c~

s for some i such that yi < 0; for then th~ce could be no way to select

free variables so as to eliminate infeasibility. So much for Step 1.

For the ausmentation mechanism of Step 2, one choice is to au..-nt

S by one variable from ~--the one that leaves the least a.ount of total

s infeasibility in the next x in the sense of making

an algebraic max~.

m

t ain(y~ + a 1J,0}
i•l

•14-

The above details have been incorporated into the procedure of

Fig. 1 as Fig. 2. The logic of Fig. 1 has be'jn rearranged for compact

presentation, but it should be evident that the logics of Figs. 1 and 2

are in fact equivalent.

15-

i^J
y" ^07

lb

No

T - 07

1c

Id

^es

res

yf + S Max f0,a, .1 < 0,
i j T8 lj

some 1 such that y. < 0?

res

No

Augment S by j eT which maximizes

m
2 Mtn {yj + aj.,0} over all j eT8

1-1

Ir ex' z*. put

tx 8 J
ä

s
z* ^ ex and x ^ x

1'

Locate the rightmost element
of S which Is not underlined.
If none exists, terminate.
Otherwise, replace the element
by Its underlined complement
and drop all elements to the
right

Fig. 2 -- Flow Chart of a Partlcularlzatlon of the Procedure of
Fig. 1 Based on Balas' Algorithm

-16-

IV. AN EXAMPLE

Let It be desired to minimize 5x. + 7x- + 10xo + 3x. + x_ over
12 3 4 5

all binary x-.-.-.x that satisfy:

2 + x- - 3x- + 5x- + x - 4x_ ü 0
12 3 4 5

2X, + 6x_ - 3x0 - 2X. + 2x. ;> 0
1/345

1 - x. + 2x- - x. - x,. ^ 0 .
2 3 4 5

Summarized below are the calculations that arise from applying the

procedure of Fig. 2 to this problem. The subscripts on y and T are

suppressed.

Step

Z* =oo

S " 0

la y = (-2,0,-1) t 0

lb T - fl.3,4} ^ 0

1c i -I: -2+7^0

j -1

j - 3

J = A

-1+2^0

-1

-3

-1

- 2

- 2

1 - -4

-EH

Hence,

1
f3}.

We have chosen to base our example on a problem taken from
Balasv^ so that the interested reader may compare the present algorithm
with the original one.

17-

Step

la

lb

1c

2

3

la

lb

1c

3

la

lb

1c

y

T

i

J

= (3,-3,1) f 0

= {2,5] ? <t>

» 2

= 2

J = 5

Hence,

5^0

0
-1 - 1 = -2

SZ = f3,2].

s
ex

3

(0,3,0) :> 0 (S fathomed)

17 < «; äi* - 17; x - (0,1,1,0,0)

f3,-2]

(3,-3,1) jt 0

[5] ^

2: -3 + 2 < 0 (S3 fathomed)

f-3]

(-2,0,-1) jf t

[1,4} 5^0

1: -2+1+1=0

3: -2 < 0 (S fathomed)

Terminate. An optimum solution is (0,1,1,0,0),

and the optimal value of the objective function

is 17.

18-

V. FURTHER REMARKS

Several further remarks that enhance the usefulness and efficiency

of the procedure of Figs. 1 and 2 are now presented.

FINDING ALTERNATIVE OPTIMAL SOLUTIONS

The procedure of Fig. 1 finds exactly one optimal solution of (P)

when its constraints are consistent. To find alternative optimal solu-

tions, the procedure can be restarted (see below) with the following

changes:

(a) put S equal to a permutation of the known optimal solution;

(b) in part (ii) of the definition of fathoming (see Sec. Ill),
replace "a lower" by "at least as low a";

(c) in the step immediately after the positive branch of Step 1,
replace "better1' by "as good as" and print out each new
incumbent.

In terms of Fig. 2, the initial z* should be taken as z*, and (b) is ef-

a
fectively accomplished by slightly modifying the definition of T as

follows:

S S —— c
T = f j free: ex + c ^ z* and a . > 0 for some i such that y < 0] .

It should be noted, however, that not all alternative optima are neces-

sarily found when some 0^=0, for then any corresponding variable that
j

appears with the value 0 in an optimal feasible solution can also be

assigned the value 1 without destroying optimality if the resulting

solution is still feasible.

USING PRIOR INFORMATION TO MAKE A BETTER START

In many realistic problems, an upper bound on z* is known a

priori. In this case, z* can be initially set at tnis upper bound

-19-

rather than at », with the result that convergence should be speeded up

due to greater fathoming ability in the early stages of the computations.

When a feasible solution is known a priori, z* can be put equal

to its value, and it is clear from the arbitrary nature of Step 2 that

o
S can be initially taken as a permutation of this solution rather than

as the empty set. When the feasible solution is a good one, as is

likely if it is produced by insight into the problem or the solution to

a very similar problem or by a heuristic method, then convergence should

be improved.

Still other times, it isclear a priori that certain variables must

take on certain values at an optimum solution. Such variables should,

of course, be eliminated from the problem statement, as by assigning

them the appropriate values and relabeling the remaining variables.

Another way of accomplishing essentially the same thing is to take S

as any permutation of these values underlined. If it is certain that

x- ■ 0 and x7 = 1 at an optimum, for example, S could be taken as f-2,7]

If it Is likely a priori that certain variables take on certain

values at an optimum solution, then again by the arbitrary nature of

Step 2, S can be taken as a permutation of these values. Since the

earlier elements of S will be complemented during the course of the

calculations after the later elements are complemented, by the nature

of the basic enumerative scheme it seems reasonable to choose the per-

mutation that ranks the variables in decreasing order of certainty as

to their values. For example, it may be deemed "very likely" a priori

that x = 1 at an optimum, and "fairly likely" that x = 0. Then S

should be taken as f7,-2l rather than as f-2,7]. The same strategy for

choosii _, a permutation can be applied when S is to be a known feasible

solution.

•20-

FINDING ANY FEASIBLE SOLUTION

For some problems, a feasible solution of b + Ax ■ 0 is all that

is desired. In this case, the objective function is entirely arbitrary,

and the calculations can be terminated after the first feasible solution

is found. A good choice for c is 0.

NONLINEAR OBJECTIVE FUNCTIONS

The underlying enumerative scheme of Fig. 1 is not in any way

dependent on the linear nature of (P). It Just happens that in the

linear case, reasonably efficient details for Steps 1 and 2 appear to be

available. If these details do indeed prove to be efficient, it is

natural to want to extend them to integer nonlinear problems. We now

indicate how this can be done when the constraints remain linear.

Let it be desired to minimize a nonlinear function, f(x), subject

to b + Ax » 0 and x binary. The crux of the matter is to compute econo-

mically, given a partial solution, S, a best completion x of S. That

is, we must be able to minimize f(x) over the free binary variables while

the variables in S are held at their assigned values. If this can be

done, it can be shown that the procedure of Fig. 2 remains valid if we

s s
make the following modifications: (a) x defined as above; (b) T de-

fined as fj free: f(x) < z* and a*, > 0 for some i 3 y. < 0], where

s /1 s ~
x J is just x with the free variable x complemented, and a. is de-

fined to be a if x * 0 and -a if x * 1; (c) a' replaces a in

s s
Steps 1c and 2; and (d) f(x) replaces ex in Step Id.

It should be borne in mind that the computational efficiency of an

integer nonlinear programming algorithm of this type is, at this early

stage of development, a completely open question.

•21-

REFERENCES

1. Balinski, M. L. , "Integer Programming: Methods, Uses, Computation,"
Management Science, Vol. 12, No. 3 (November 1965), pp. 253-313.

2. Balas, E., "An Additive Algorithm for Solving Linear Programs With
Zero-One Variables," Operations Research, Vol. 13, No. ü
(July-August 1965), pp. 517-546.

3. Glover, F., "A Multiphase-Dual Algorithm for the Zero-One Integer
Programming Problem," Operations Research. Vol. 13, No. 6
(November-December 1965), pp. 879-919.

4. Freeman, R. J. , Computational Experience With the Balas Integer
Programming Algorithm, The RAND Corporation, P-3241 , October 1965.

DOCUMENT CONTROL DATA
I ORWINATING ACTIVITY

THE RAND CORPORATION

2o REPORT SECURITY CLASSIFICATION
UNCLASSIFIED

2b GROUP

3 REPORT TITLE

INTEGER PROGIAMMING BY IMPLICIT ENUMERATION AND BALAS' METHOD

4. AUTHOR!S) (Lost nom«, firtt noma.initioO

Geoffrion, Arthur M.

5 REPORT DATE

February 1966

6o. TOTAL NO OF PAGES

28

6b NO. OF REFS

4

7 CONTRACT or GRANT NO.

AF 49(638)-1700

MVAILABILITV/LIMITATIW RBTTCR

8. ORIGINATOR'S REPORT NO.

RM-4783-PR

PDC 1

9b SPONSORING AGENCY

United States Air Force
Project RAND

IO. ABSTRACT

A reformulat
Balas' algori th
linear proRramm
based upon the
tree search" us
of his multi-ph
reformulation r
storage than th
also clarifies
algorithm, ther
variants and ex

ion of the essentials of
m for the zero-one integer
ing problem. The study is
concept of "elementary
ed by Glover as the basis
ase-dual algorithm. The
equires much less computer
e original version; it
the rationale behind the
eby leading naturally to
tensions. 28 pp. Illus,

II KEY WORDS

Integer programming
Algori thms
Linear programming
Operations research
Computer programming

