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PREFACE 

Integer linear programming has been recognized  since  the  early 

days of linear programming as  a  class of problems of  the  greatest prac- 

tical  importance.    A number of difficult Air Force problems of basically 

combinatorial  character—such as  those  that occur in flight  scheduling, 

multi-stage machine  scheduling,  and maintenance operation  sequencing-- 

can be   formulated  as  integer linear  programs. 

The   fact  that no computationally satisfactory algorithm yet appears 

to be known  for a  sufficiently wide  class of such problems  causes  in- 

terest  to  run high when new approaches  are suggested.     Such was  the  case 

with Balas'  work when it   first  became known  in  this   courtry.     This 

Memorandum presents an elementary  technical  exposition of a  reformulation 

of Balas1   algorithm.     It   is more  economical  in  terms  of computer storage 

than the original, and  forms  the basis   for a computer routine  that has 

(4) been used   to  experimentally assess  computational  efficiency. 

The  author  is  a consultant  for  The  RAND Corporation. 
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SUMMARY 

This Memorandum presents a reformulation of the essential» of 

Balas1 algorithm for the zero-one integer linear programming problem, 

and is based upon the idea of "elementary tree search" that has also 

been used by Glover as the basis for his multiphase-dual algorithm. 

The present reformulation requires considerably less computer storage 

than the original version, and clarifies the rationale behind the 

algorithm, thereby leading naturally to variants and extensions. 
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I.     INTRODUCTION 

In a recent comprehensive survey    '  of  integer programming, 

M.  L.   Balinski expressed a belief,  "...that various  clever methods  of 

enumeration can be  the most  efficacious means  existent by which to ob- 

tain solutions   to  practical  problems."    The  adjective   '"clever" is  un- 

doubtedly meant   to  imply,  of  course,   that  one  should do  better than  com- 

plete  enumeration.    This  can be done by using strategies which lead,  as 

the enumeration proceeds,   to  the  generation of  information that can be used 

to exclude  large numbers of solutions  from further consideration.     The 

exclusion of solutions, which suggests   the descriptive  term  "implicit 

enumeration" for such methods,  can usually be accomplished  in a   /ariety 

of ways--for example,  by exploiting the availability of a  gradually 

improving bound on the optimal value of the objective  function as  better 

and better feasible solutions are found.     It   is unfortunate  that   the ex- 

clusion of solutions  sometimes  gives rise  to very large  infor.nation 

storage  requirements   in order to  "remember" whicn solutions have been 

excluded as well as enumerated,   thereby adding another dimension to   the 

need  for "cleverness."    A computationally successful algorithm must  com- 

bine a  sufficiently high  "rate of exclusion" with sufficiently modest 

storage requirements. 

Since Balinski's  survey was written, additional  support  for the 

(2) 
viewpoint  quoted above has derived from contributions by Balas        and 

(3) Glover,        among others.     Their work suggests   that   it may be possible 

to combine a high rate of exclusion with low storage requirements   for a 

wide class of important  problems, namely linear programs  that  require 

bounded  integer solutions.     Such an approach  requires only addition  for 



arithmetic operations,  for no systems of  linear equations need  to be 

solved, and shares with other implicit  enumeration approaches  the  im- 

portant advantage that a feasible solution (hopefully a good one)   is 

usually In store If  the calculations are  stopped prior to natural  ter- 

mination by exhaustion. 

The primary purpose of this Memorandum is  to  give an expository 

derivation of the main Ideas  that motivate and underlie the approaches 

of Balas and Glover,  and those that will   Inevitably follow them.    We do 

not attempt a critique or thorough discussion of their work, but rather 

draw freely upon their Ideas as we develop fundamentals. 

(3) In Sec.  II we elaborate upon an idea of Glover        in order to 

develop a basic enumeratlve scheme which achieves a remarkable degree 

of flexibility with only modest storage  requirements.    Using  this enu- 

meratlve scheme,  In Sec.  Ill we synthesize what  is  essentially a  refor- 

mulation of Balas*  algorithm.    We attempt  to make  it clear that   the al- 

gorithm presented here is but a particular member of an entire  class of 

possible algorithms.    An example is presented In Sec.  IV, and some fur- 

ther remarks are made  in the  final section.    We conclude  this   introduction 

with a precise statement of the problem and some preliminary definitions. 

Any bounded  integer linear orogra- mlng problem can be written In 

the  form 

(P) Minimize ex subject  to b + Ax ^ 0,    x    ■ 0 or 1, 
x J 

where c is an n-vector, b and  0 are m-vectors, A is an m by n matrix. 

. ..— —--i »' >f 
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and x  is a binary n-vector  to be chosen.       Any binary x will  be  called 

a  solution.    A solution that  satisfies   the constraints b + Ax s 0 will 

be called a  feasible  solution, and a  feasible  solution  that minimizes 

ex over all  feasible solutions will be  called an optimal  feasible 

solution. 

A bounded problem is one for which an upper bound v.   is available 
for each variable.     The substitution 

k      i x   -   2    2    y 
1      i-0 J1 

k+1 where k is  the smallest integer such that v,  ^ 2      -1, y.,  binary,  per- 
mits a binary representation for x . 
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II.    A PROCEDURE FOR IMPLICIT ENUMERATION 

Since  there  is a  finite number 2    of solutions, exhaustive enumera- 

tion provides a  finitely convergent procedure for discovering an optimal 

feasible solution of  (P).    As  indicated above, not all solutions are to 

be explicitly enumerated, of course, but  rather implicitly enumerated by 

considering groups of solutions  together.    To explain how groups of solu- 

tions will be defined, we require the notion of a partial solution.    A 

partial solution S is defined as an assignment ol binary values to a sub- 

set of the n variables.    Any variable not assigned a value by S  is calleu 

free.    We adopt the notational convention that the symbol  j denotes 

x    « 1 and the symbol  -J denotes x    ■ 0.    Hence,  if n ■ 5 and S ■ 

{3,5,-2],   then    x3 ■ 1, X- - 1, x2 « 0,  and x1 and x^ are  free. 

It will be seen that the order in which  the elements of S are written will 

be used  to  represent  the order in wnich  the elements are generated,    A 

completion of a partial solution S  is  denned as a solution that is deter- 

mined by S together with a binary specification of the values of the  free 

variables.     In the above example,  there are  four possible completions of S: 

(0,0,1,0,1), 

(0,0,1,1,1), 

(1,0,1,0,1), and 

(1,0,1,1,1). 

Thus, a partial  solution S with s  elements,  3ay, determines a  group of 

n—s 
2        different completions or solutions.    When there are no  free variables, 

there  is only one  completion of S,   the  trivial one determined by S  icself. 

Implicit  enumeration involves  generating a sequence of partial solu- 

tions and simultaneously considering all completions of each.     As  the 



calculations  proceed,  feasible  solutions are discovered  from time  to 

time, and   the best one yet found  is kept  in store as an  incumbent.    Now 

it may happen that  for a given partial solution S we can determine a 

best  feasible completion of S,   i.e.,  a feasible completion that minimizes 

ex among all feasible completions of S.    If such a best feasible comple- 

tion is better than the best known feasible solution  (assuming that one 

is known),   then it  replaces  the  latter in store.    Or we may be able  to 

determine  that S has no  feasible completion better than the  incumbent. 

In either case, we shall say  that we can  fathom S.      All completions of 

a  fathomed S have been implicitly enumerated  in the sense  that  they can 

be excluded  from further consideration--except, of course,  a best  feasible 

completion of S that unseats  the  incumbent. 

Leaving aside until  the next section the important question of how 

one fathoms a given S, we shall give a  flexible procedure  for generating 

a sequence of partial solutions  that  is non-redundant and terminates only 

after all  2    solutions have been enumerated.     By non-redundant. we mean 

that no completion of a partial  solution in the sequence ever duplicates 

a completion of a previous partial solution that was  fathomed. 

Consider the following scheme for generating a non-redundant 

v n sequence < S    > that will terminate only after all 2    solutions have been 

(implicitly)  enumerated.    Start with S    "0, where 0  Indicates an empty 

set.    If S    can be fathomed, we are flnlshed--elther there  Is no feasible 

solution, or there Is one and the best  feasible solution can be  found. 

* 
To cover the case where there are no free variables, we shall agree 

that such an S  Is  fathomed. 



6- 

If S0 cannot be fathomed, augment it by specifying a binary value for 

one additional free variable at a time, each time trying to fathom the 
kl 

resulting partial solution, until at some trial k., S  is fathomed.  Now 

to be sure of having enough information in the future to enable us to 

n *  1 
know when all 2  solutions have been accounted for, we must store  S ; 

and to be sure of having a non-redundant sequence < S > from v = k- + 1 

on ,  it is obviously necessary and sufficient to have in all future 
kl 

Sv at least one element complementary to one in S .  We may accomplish 
kl 

the storage of S  and heed the condition for the non-redundancy of 
k + 1 k + 1 k 

S     , at least, by taking S      to be exactly S  with its last 

element multiplied by -1 and underlined.  The underline commemorates the 
kl 

fathoming of S  (an example is presented below to make these ideas more 

concrete). 
k + 1 

If S     can be fathomed, then it is easy to see that all comple- 
kl 

tions of S  without its last element have been enumerated, and thus 
k        ^ + 1 

that we can "forget" the fathoming of S  and of S      and "remember" 
kl 

only the fact that S  without its last element has been fathomed.  For 

example, if k. =3 and S = [3,5,-2] was fathomed and then L = [3,5,2] 

was fathomed, then all completions of [3,5] have been accounted for, 

since the completions of [3,5,-2] and [3,5,2] dichotomize those of [3,5], 

Thus, fathoming S and S  is equivalent to fathoming [3,5].  Opportunities 

such as this to forget some history lead to the economical storage 

* o 
Since the augmentation of S was entirely arbitrary, it seems un- 

likely that we could store the information that all completions of 

have been fathomed any more economically than by storing 
k 

S i. 
This need not be true if we had used a simple rigid rule for generating 
< Sv >, for then we would only have to store the rule and the value k,. 



requirements of the procedure we are now motivating.  The same motive 
k + 1 k + 2 

that directed our choice of S      directs us to choose S      as 
kl 

S  less its last element with its next to last element multiplied by 

-1 and underlined.  In our hypothetical example, S would be taken to be 

[3,-53.  Note that S contains an element complementary to one that 

appears in both previously fathomed partial solutions. 
k + 1 

If, on the other hand, S      cannot be fathomed, then one vjould 

augment it by specifying a binary value for one additional free variable 

af a time, each time trying to fathom the resulting partial solution, 
k2 

until at some later trial k„, S  is fathomed. Note that the sequence 
^ + 1      k2 

S     , ..., S  , is non-redundant because each contains the complement 
kl       k2 kl 

of an element of S  .  When S  is fathomed, it, in addition to S  , 

v 
must be stored; and every succeeding S must contain not only an element 

kl 
that is the complement of one in S  , but also one that is the complement 

k2 
of an element of S  .  Both ends may be accomplished economically by 

k2 + 1 k2 

taking S as  S       with  its   last  element  complemented and underlined. 

4 5 r i In our example,   if S     could not be  fathomed and S    were   [3,5,_2,lj,  say, 

that  could be   fathomed  (k   = 5),   then S    would be  taken to  be   {3,5,2,-l]. 

Continuing along  these  lines,  one   is   led  to   the  procedure  of Fig.   1. 

In this  figure,   the  content  of Steps   1  and  2  is  deliberately unspecified 

in order to   leave maximum flexibility  in  the design of an algorithm by 

having a general  convergence  proof.     It  is  important  to note   that  the 

mechanism by which  Step  1 attempts   to  fathom a partial  solution  can be 

as weak or as powerful as desired--so  long as  S  is  truly fathomed when 

it purports  to be. 



-8- 

Start 

III 
II 

Augment S 

i 
No 

Attempt to fathom 
S0 » 0.  Is the 
attempt successful? 

iYes 
Terminate 

1 

Attempt to fathom S. 
Is the attempt 
successful? 

Yes 
-*- 

w 

Augment S 

3b 

Replace the last 
element of S by its 
underlined complement. 

No 

3d 

Replace the last non- 
underlined element uf 
S by its underlined 
complement and drop 
all terms to its right. 

jia^ 

If the best feasible 
completion of S has been 
found, and it is better 
than the incumbent solu- 
tion, store it as the new 
incumbent. 

3a 

Last element of S 
underlined? 

Yes 

3c 1 
All elements of S 
underlined? 

( 

I Yes 
Terminate 

Fig. 1 -- Flow Chart of a General Enumerative Procedure 

To facilitate proof of its validity, the scheme is not 
presented as compactly as it could be. 

-» 
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Theorer.-...     The  procedure of Fig.   1   leads   to  a non-redundant 

sequence of partial  trial  solutions which does  not   terminate 

before all  2    solutions have been  (implicitly)   enumerated. 

Before proving this   theorem,  wo note  its main consequence:     if the 

mechanisms of Steps  1 and  2 are  computationally  finite   (as   they are  in 

Balas'  algorithm and certainly would be   in  any  reasonable  algorithm  that 

uses   the  procedure  of Fig.   1),   then Fig.   1   is  computationally  finite 

and an optimal  feasible  solution of  (P)   is   in  stjie  at   termination  if 

the  collection of   feasible  solutions   is  not   empty.     If   there  are  no 

feasible   solutions,   then,  of course,   no   feasible  solution   is   in  store 

at  termination. 

* o Proof.     If  S     =0 can be  fathomed,   the   theorem  is  obviously  true.     Hence, 

we may assume   that  $ cannot be   fathomed. 

To  show  that < S    >  is  non-redundant,  we  shall   show that   if 

S   ,   ...,  S     is  non-redundant,   then S cannot be  redundant;   i.e., 

that  S     s       must   include  the complement of at   least  one  element  from each 

of  the  partial  solutions   fathomed  prior  to S .     There are  three 

pathways  by which S " can be  determined  from S   ;   they are  labeled 

I,  II,  and  III   in Fig.   1.     If  pathway  I   is   taken,  the desired  conclusion 

follows   from S    c: S     '     .     If  pathway II   is  taken,   the  desired  conclu- 

sion  follows   from  the  definition of Step 3b and  the   implication of  the 

negative  branch of  test  3a--that  S     less   its   last  eliment  is  not   redundant. 

To  establish   the desired conclusion  for pathway  III,  we  observe  from 

Fig.   1   that   the  element complemented   in Step  3d was  contained  in  every 

* (3) Glover        has  sketched an  inductive proof of an  essentially  equiva- 
lent  theorem. 
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partlal solution since it was originally introduced (and hence in every 

fathomed partial solution since that time), and that S     less its 

last element is not redundant with respect to the partial solutions (if 

any) fathomed prior to the time that the deleted element was introduced. 

It remains to show that < S > terminates only if all 2 solutions 

v 
have been enumerated.  From Fig. 1 we see that < S > terminatf» only If 

a partial solution consisting of all underlined elements is fathomed. 

From our earlier remarks concerning the "forgetting of history," we see 

that the proof would be at hand if we could show that every partial 

solution S has the property an underlined element implies that all com- 

pletions of that portion of S up to and including the complement of the 

underlined element have been enumerated.  Now underlined elements have 

two possible origins:  Steps 3b and 3d. Any underlined element created 

at Step 3b obviour.ly has the asserted property.  To see that the same is 

true of underlined elements created at Step 3d, we begin by considering 

the first time Step 3a is positive, i.e., the first time Step 3d could 

occur.  Then all underlined elements of S .nust have been created at 

Step 3b, and both S and its immejiate predecessor must have been 

fathomed.  It follows that S less its right-most consecutive elements 

has been fathomed--all of the completions of this deleted partial solu- 

tion have been enumerated.  Thus, the new partial solution generated at 

the first execution of Step 3d has the desired property.  Parallel argu- 

ments hold for each subsequent execution of 3d.  The proof is now 

complete. 

For completeness we note an observation that is clear from the 

above discussion, and is of interest when (perhaps due to excessive 
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computation times) the procedure of Fig. 1 is stopped prior to termina- 

tion.  At any iteration, from the current partial solution (including 

the underlines) it is immediately evident exactly which solutions have 

been accounted for.  For example, if n = 24 and the calculations are 

stopped when S = (5,4,-2,3,9], then all 2^2 " ^ completions of (5,4,2} 

(24-4) r        i have been accounted for, as have all 2      completions of 15,4,-2,-3j 

91 9 0 9 / 
Thus,   it   is  known precisely which  2      +2      of  the   2       solutions  have 

been enumerated,  and  the  current   incumbent   is an optimal   feasible  solu- 

tion of   (P)   with  the  additional  restrictions,  fx,   =  1,  x,   = l"]   and 
j 4 

either  fx«  = ll  or  fx    =0,   x    = 0]. 
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III.    A PARTICULAR!ZATION OF THE PROCEDURE 
BASED ON BALAS1 ALGORITHM 

In Sec.   II we  presented and  justified a  general  enumerative  scheme 

for finding an optimal  feasible  solution of  (P)  by  implicit enumeration. 

Details  for the mechanisms of Steps  1 and  2 based on Balas1  algorithm 

will now be derived.     Remember that many other choices   for these mech- 

anisms  exist, and that our appeal  to Balas1  work  is mainly illustrative. 

Beginning with Step  1,   the  problem here  is   to   "fathom" the current 

partial solution,  S.     Recall  that  S may be  fathomed by doing either of 

the  following: 

(i)   Finding  the best   feasible completion of S. 

(ii)  Determining that  no  feasible completion of S has a  lower 
value of  the objective  function than the  incumbent. 

The general  strategy will be  to attempt  to  fathom S by  taking each  tack 

in turn by means of very simple computations. 

Associated with S  is a best   (not necessarily unique or feasible)  com- 

pletion x    of S.    Constructing such a best completion  is  trivial--ju8t 

take x    = 0 or 1  for each  free  variable according as c    £ 0 or < 0.    For 

*      > 
convenience we shall assume without loss of generality that c ■ 0, so 

s s 
that each free variable x may be taken to be 0.  Observe that if x is 

feasible, then x is a best feasible completion of S and S is thereby 

c 
fathomed.  Since the computation of x is so easy, we shall test its 

feasibility as the first substep of Step 1 of Fig. 1.  As the computations 

proceed, the value of the incumbent feasible solution gives a (hopefully 

good) upper bound z* on the optimal value z* of (P) that can be used to 

* 
If an original c. were negative, one should make the corresponding 

substitution x'. - l-x,. 
J     J 
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good a~vantage as indicated below. Until the first feasible solution 

-has been found, we take P • CD. 

s If the best completion x is not feasible, we do nothing further 

to find the best feasible completion. Instead, we attempt to determine 

that no feasible completion of S is better than the incumbent. If this 

.s actuaLly the case, then it must be impossible to complete S so as to 

eliminate all of the infeasibilities of xs and yet improve upon ii. To 

demonstrate this impossibility, it is clearly sufficient to contemplate 

non-&ero binary values only for the variables in 

s ( s s J T • J free: ex + cj < zit and aij > 0 for ljome i such that yi < 0 , 

s s where y • Ax + b, for to give a value of 1 to some free variable not 

in Ts would either lead to a higher value than zit or would not contribute 

to diminishing an infeasibility of x8 
(we have made use of our ass\Dla..,-

> s tion that c • 0). Hence, if T is empty then there could be no feasible 

completion of S that is better than the incumbent, and S is fathomed. 

It is also easy to see that the same conclusion holds if 

y~ + t max(O,aij) < 0 
j c~ 

s for some i such that yi < 0; for then th~ce could be no way to select 

free variables so as to eliminate infeasibility. So much for Step 1. 

For the ausmentation mechanism of Step 2, one choice is to au..-nt 

S by one variable from ~--the one that leaves the least a.ount of total 

s infeasibility in the next x in the sense of making 

an algebraic max~. 

m 

t ain(y~ + a 1J,0} 
i•l 



•14- 

The above details have been incorporated into the procedure of 

Fig. 1 as Fig. 2. The logic of Fig. 1 has be'jn rearranged for compact 

presentation, but it should be evident that the logics of Figs. 1 and 2 

are in fact equivalent. 
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i^J 
y" ^07 

lb 

No 

T - 07 

1c 

Id 

^es 

res 

yf + S   Max f0,a, .1 < 0, 
i  j T8       lj 

some 1 such that y. < 0? 

res 

No 

Augment S by j eT  which maximizes 

m 
2 Mtn {yj + aj.,0} over all j eT8 

1-1 

Ir ex' z*. put 

tx    8  J 
ä
   

s 
z* ^ ex and x ^ x 

1' 

Locate the rightmost element 
of S which Is not underlined. 
If none exists, terminate. 
Otherwise, replace the element 
by Its underlined complement 
and drop all elements to the 
right 

Fig. 2 -- Flow Chart of a Partlcularlzatlon of the Procedure of 
Fig. 1 Based on Balas' Algorithm 



-16- 

IV. AN EXAMPLE 

Let It be desired to minimize 5x. + 7x- + 10xo + 3x.  + x_ over 
12 3 4        5 

all binary x-.-.-.x    that  satisfy: 

2 +    x-   - 3x- + 5x-  +    x    -   4x_ ü 0 
12 3 4 5 

2X,   + 6x_  - 3x0  -  2X. + 2x. ;> 0 
1/345 

1 -    x.  + 2x-   -    x.   -     x,.  ^ 0  . 
2 3 4 5 

Summarized below are  the calculations  that arise  from applying the 

procedure of Fig.   2  to  this problem.     The subscripts on y and T are 

suppressed. 

Step 

Z*      =oo 

S "  0 

la y = (-2,0,-1) t 0 

lb T - fl.3,4}  ^ 0 

1c i -I:    -2+7^0 

j   -1 

j       - 3 

J       = A 

-1+2^0 

-1 

-3 

-1 

-  2 

-  2 

1 - -4 

-EH 

Hence, 

1 
f3}. 

We have chosen  to base our example on a  problem taken  from 
Balasv^   so  that  the   interested  reader may compare  the present algorithm 
with  the original one. 
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Step 

la 

lb 

1c 

2 

3 

la 

lb 

1c 

3 

la 

lb 

1c 

y 

T 

i 

J 

=  (3,-3,1)  f 0 

= {2,5]  ? <t> 

» 2 

= 2 

J      = 5 

Hence, 

5^0 

0 
-1   -   1  = -2 

SZ    =  f3,2]. 

s 
ex 

3 

(0,3,0)  :> 0 (S    fathomed) 

17 < «; äi* - 17;  x - (0,1,1,0,0) 

f3,-2] 

(3,-3,1)  jt 0 

[5] ^ 

2:    -3 + 2 < 0 (S3 fathomed) 

f-3] 

(-2,0,-1)   jf t 

[1,4}  5^0 

1:    -2+1+1=0 

3: -2 < 0 (S    fathomed) 

Terminate. An optimum solution is (0,1,1,0,0), 

and the optimal value of the objective function 

is  17. 
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V.    FURTHER REMARKS 

Several  further remarks  that  enhance  the usefulness and efficiency 

of  the procedure  of Figs.   1 and  2 are now presented. 

FINDING ALTERNATIVE OPTIMAL SOLUTIONS 

The procedure of Fig.   1  finds exactly one optimal solution of (P) 

when its constraints are consistent.    To   find alternative optimal solu- 

tions,  the procedure can be restarted  (see below) with the  following 

changes: 

(a) put S    equal  to a permutation of  the known optimal  solution; 

(b) in part   (ii)  of  the definition of fathoming (see Sec.  Ill), 
replace   "a  lower" by "at  least as  low a"; 

(c) in the  step immediately after the positive branch of Step 1, 
replace   "better1' by "as good as" and print out each new 
incumbent. 

In terms of Fig.   2,  the  initial  z* should be  taken as  z*,  and  (b)   is  ef- 

a 
fectively accomplished by slightly modifying the definition of T as 

follows: 

S S —— c 
T = f j free: ex + c ^ z* and a . > 0 for some i such that y < 0] . 

It should be noted, however, that not all alternative optima are neces- 

sarily found when some 0^=0, for then any corresponding variable that 
j 

appears with the value 0 in an optimal feasible solution can also be 

assigned the value 1 without destroying optimality if the resulting 

solution is still feasible. 

USING PRIOR INFORMATION TO MAKE A BETTER START 

In many realistic problems, an upper bound on z* is known a 

priori.  In this case, z* can be initially set at tnis upper bound 
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rather  than at  »,  with  the  result   that   convergence  should  be  speeded  up 

due  to  greater  fathoming ability   in  the  early stages  of  the  computations. 

When a   feasible   solution   is  known a   priori,  z* can be  put   equal 

to   its  value,  and  it   is  clear  from  the arbitrary nature  of Step  2   that 

o 
S    can be   initially  taken as  a  permutation of  this  solution  rather  than 

as  the  empty  set.     When  the  feasible  solution  is a  good  one,  as   is 

likely  if  it   is   produced by  insight   into   the  problem or  the  solution  to 

a  very similar problem or by a heuristic method,   then convergence  should 

be  improved. 

Still other  times,   it  isclear a  priori   that certain  variables must 

take on certain values  at an optimum solution.     Such variables  should, 

of course,  be  eliminated  from  the  problem statement,  as  by assigning 

them the  appropriate  values  and  relabeling  the  remaining  variables. 

Another way of accomplishing essentially  the  same   thing  is   to   take  S 

as any permutation of  these values  underlined.     If  it   is  certain  that 

x-  ■ 0 and x7   =  1 at  an optimum,   for  example,  S    could be   taken as   f-2,7] 

If  it Is   likely a  priori     that  certain variables  take on  certain 

values at an optimum  solution,   then again by   the arbitrary nature of 

Step 2,  S    can be  taken as a permutation of  these  values.     Since   the 

earlier elements  of S    will be  complemented  during  the course of   the 

calculations  after the   later elements  are  complemented,  by   the  nature 

of  the basic  enumerative  scheme   it  seems  reasonable  to  choose   the  per- 

mutation   that   ranks   the  variables   in decreasing order of  certainty as 

to  their values.     For  example,   it may be deemed  "very  likely" a  priori 

that x    =  1  at  an optimum, and  "fairly  likely"  that  x    =  0.     Then S 

should be  taken as   f7,-2l   rather  than as   f-2,7].     The same  strategy  for 

choosii _, a  permutation can be applied when S     is   to  be a  known   feasible 

solution. 
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FINDING ANY FEASIBLE SOLUTION 

For some problems, a  feasible solution of b + Ax ■ 0 is all  that 

is desired.     In this  case,   the objective  function is  entirely arbitrary, 

and the calculations  can be  terminated after the  first   feasible solution 

is  found.     A good choice for c  is  0. 

NONLINEAR OBJECTIVE FUNCTIONS 

The underlying enumerative scheme of Fig.   1  is not  in any way 

dependent on the  linear nature of  (P).     It  Just happens   that  in the 

linear case,  reasonably efficient details   for Steps  1 and 2 appear to be 

available.     If these details do indeed prove to be efficient,   it  is 

natural  to want  to extend them to  integer nonlinear problems.     We now 

indicate how this  can be done when the constraints  remain linear. 

Let  it be desired  to minimize a nonlinear function,   f(x),  subject 

to b + Ax » 0 and x binary.     The crux of  the matter is  to compute econo- 

mically,  given a partial solution,  S, a best completion x    of S.    That 

is, we must be able  to minimize  f(x)  over the free binary variables while 

the variables  in S are held at their assigned values.     If this  can be 

done,  it can be shown that   the procedure of Fig.   2 remains valid  if we 

s s 
make the  following modifications:     (a)  x    defined as above;   (b)   T    de- 

fined as   fj   free:     f(x      ) < z* and a*,    > 0 for some  i 3 y. < 0], where 

s /1 s ~ 
x    J  is   just  x    with  the  free variable  x    complemented,  and a.     is de- 

fined to be a       if x    * 0 and  -a       if x    * 1;   (c)  a'      replaces a      in 

s s 
Steps  1c and  2;  and  (d)   f(x )   replaces ex    in Step Id. 

It  should be borne  in mind  that  the  computational  efficiency of an 

integer nonlinear programming algorithm of  this   type  is,  at  this  early 

stage of development, a completely open question. 
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