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Stochastic Stability and the
Pesign of Feedback Controls

H. Kushner

1. INTRODUCTION

The object of this paper is to describe the stochastic extensions of
the various techniques for using the second method of Liapunov to aid “he
construction and analysis of feedback controls [1-8]. The method appears
to be useful for design and analysis, although it is too early to make a
final judgment. Much depends on future success in finding suitable Liapunov
functions, and understanding the relationship between the loss function and the
desired behavior of the control system.

The deterministic methods have been motivated by considerations of the
following nature. Consider the optimal control problem with control u,

and system
X = £(x, u)
angd cost
u T u
c(x) = f k(x, u)dt, C(B) =0
)

where 7 1is the time of contact with &, the boundary of a targe’ set

S. The minimum cost

¢(x) = min C(x),
- u
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is achieved by u= w., If g(x) is sufficiently differentiable, then the

Hamilton-Jacobi equation
dc(x)/at = ' (x)f(x, w) = -k(x, w)

is satisfied (where ' 1is transpose and Ex is the gradient of C),

and w is the u minimizing
[E;((X)f(x: u) + k(x, w)l.

In lieu of attempting to solve this problem, an alternative procedure

has suggested itself to many authors (e.g.[1]-[8]). Chocse a Liapunov

function V(x), and some u(x) so that the system has suitable stability

properties, and compute (X is the state space)

V;(x)f(x, u) = - kl(x, u).

vhere k,(x, u) 20 in X+ dS. X is the state space.

A comparison of kl(x, u) and k(x, u) can yield useful information; e.g.,

whether V(x) is greater or less than C(x), or stability properties of
the controlled system, the nature of the problem for which V(x) and u

are optimum, and whether some other calculatable control would minimize the

cost C'(x), ete.
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Similar results are achievable in the stochastic situation. Stochastic
stability seems to be a more complicated subject than its deterministic

counterpart, since the corresponding Liapunov functions do not decrease

PSS

monotonically for each sample function. The effect of controls on the
statistical behavior of the system can be made rather explicit in terms of
a reduction of a bound on the probability of arbitrary deviations in the
sample paths before hitting 5.

In part II several comparison and optimality theorems are proved. In
part III the theorems are applied to the problem of choosing and analyzing

the effect of feedback controls for several stochastic systems.

2. THE SYSTEM TO BE CONTROLLED

The object to be controlled is represented by the vector stochastic

differential (Ito) equation
(1a) dx = f(x, u)dt + o(x, u)dz,

by which is meant (using the Ito [9] interpretation of the stochastic integral)

t
(1v) X, = xs + fo Z(xt, u(xt))dt + f: o(xt, u(xt))dzt.

z 1is a vector Wiener process with independent components, 2z is commonly

called white Gaussian noise;
(1e) x = £f(x, u) + o(x, a)z .

£ 1is a vector witb components fi’ and o is a matrix with components

o The process x, is confined to X, '

i3’
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Without the control parameter u, the meaning of (Jb) and the conditions
under which a solution (a stochastic process) exists and is unique is discussed
in [9], [10]. To be secure in the mathematical development we assume these

conditions. Let | | be the Euclidean norm. For some finite positive K, let

I£(x + @, u+B) - £(x, w)l| = Kloff + K8

(2) lo(x + @, u+ 8) - o(x, wll = Ko + K&
he(x, W s K11+ 142 + [u2?
(3) lu(x + @) - u(x)f s Ko

A control satisfying (3) is termed admissible. (3) implies continuity of u(x).
Note that w = sign x is not admissible. Since the K in (3) can be large,
admissibility is probably not a serious restriction.

In certain cases, our results are valid if (2) and (3) replaced by
local Lipshitz conditions. This is the case when the trajectories have appro-
priate stability properties (e.g., when the origir is stable w.p.l in the sense
of [15]).

The primary attractions of the model (1) are that it represents a rather
large class of Markov processes with continuous sample paths, there is a large
body of theory concerning it, and it seems that many physical problems can be
modelled by it. The question of modelling will not be discussed. The identifi-
cation of particular forms of (1) with particular physical problems is still an
open problem in general (especislly in the non-linear case). (Some interesting
results in [11] clarify some of the questions of modelling, )

For each integer r, define the stochastic process

(1) X = X+ £(x u(x))A + o(x, u(x;))Szn,

where Gzn z((n+1)4A) - z(na), and define x"(t) = x* in the interval

n
(n+1)A > t 2 nA.  Then, for a suitable sequence of A -0, we have xr(t)-+x(t)

with probability one for each t, where x(t) is the solution to (1).
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Some facts, to be used later, will be quoted. If wu{x) is admissible,
X, is continuous with probability one, and is a Markov process; i.e., for

any measurable set A in X,

(5) P[xt+s €A | X, 02 t] = P[x +s © A xt])

where the bar | denotes conditional probability. A major, relatively
recent, development in probability theory is the analysis and extensive
use of the concept of random time (see [10], [12], [13] for details). An
example of a random time is the first time that X, leaves an open set A;
T = min {t: X, t A}. 1 1is a random varisble. Loosely speaking, whether
or not the event {7 <t} has occured (in the example, whether x, bas
left A by time t) can be determined by observations on the X process
up to and including time t. (The set {7 <t} 1is in the o-field
dete rined by x, s = t.)

The sign.ficance to control applications, of the concept of random
time, will be seen in the sequel. If the process x_ 1is confined to a

t

set X which is compact, and if u 1is admissible, tke process X,

fact, a strong Markov process. A strong Markov process has the Markovian

is, in

property relative to random times. Let 1 be a random time, then

Px,,  €A| x5 557]=PFx €A | x.]

T+s T+8

For example, let X

of leaving B, then for any non random s the probability that Xirs €A

given X, and the paths up to T equals the probability given only X

start in ar open set B, let T be the least time

The strong Markov property is proved in [10].
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3. THE CONTROL FROBLEM

The process X, is defined in a set X in a Euclidean space. There
isaset S in X given, and the main object of the control is to trens-
fer X, =X to 9 S in finite average time. In certain cases, infinite
average times vill be alluwed. The proofs of the theorems we require as-
sume that X 1is compact (e.g., the proof of (8) for the operator L°).
This does not seem to be a restriction from the practical point of view
since X may he as large as desired. We may stop the process upon leaving
some very large set, and estimate the probability of this event by (10).

Also, to each u and initial point X, = X, there is the associated cost

(6) c(x) = E_ f:“ K(x,, u)at

E: is the expectation and ™ is the random time of errival at o8,
(provided that il is defined) and k(x, u) is continuous and ncn-negative,
and is referred to as the loss.

Define C(x) = n&n c%(x), provided that the minimizing u is admissible.
Part of the control problem is the comparison of Cu(x), and E: ™ for
various controls. Various restrictions may be placed on the control; it
may be bounded, or its functional form may be restricted; e.g.. it may be
allowed to be a function of some, but not all, components of x. Some sta-
bility properties msy also be of interest; e.g., an estimate 0" the probability
that x, ever leaves some set X', if X, is in X', or some other quali-
tative information cn the random paths.

A number of relevant results and examples on stability are in [14]-[16].
[17] is concerned with ergodic properties of the processes and utilizes cer.-

tain properties of stochastic ILiapunov functions.
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L, OTHER MATHEMATICAL PRELIMINARIES

Let u be admissible. Define the operator

2
A +Zf(x, u) l Z. S..(x, u) 0

. SR e w
515 21:‘ 9k %jx

u

L 1is the differential generator of the X, process, with control .

We say that V(x) is in the domain of L (V(x) € D(L)) if V(x) is a
non-negative, scalar valued function with continuous second derivatives
and the sets {x : V(x) = ¢} are compact and connected,lr for all ¢ less
than some c > 0. Such a V(x) will also be called a Liapunov function,
or a Liapunov function in a region R, if 1" s0 in R for the given
u. Note that L™W(x) = av(x)/at = V;(x)f(x, u) in the deterministic
case.

Since X 1is compact and X, is a strong Markov process,

Dynkin's formula {10]
(8) E: V(x) - V(x) = E: f: LuV(xs)ds

holds for all random times T with E: T<w», (8) underlies many of the
results of the sequel. It says, in effect, that V(x) is the average
value of the integral of the 'stochastic derivative' L™(x). The com-
pactness of X and the finiteness of E:T are important in establishing
its validity. In other cases the operator Lu, for which (8) is valid,

i will be an extension of (7), but this is beyond our purpose.

Let V(x) be in D(L®) 4n the region R € X,

t . .
The domain of L% 1is obviously larger than our D(L), but D(L) suffers
less.
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R=[x:V(x)<X)-{x:V(x)éxol, A> A

OR = {x: V(X) = X, V(x) = )»o}-

Let L'V<O in R and LW(x) SO on dR. Let 7 be the random
time to o R, starting at x € R. It can be proved, using the continuity
of x, and LV(x), and the compactness of X, that T, will exist
(although E.* may not be finite), and that the integral in (8) is defined
and finite, and that (8) is valid. (See [15]). Since x, 1s continuous

with probability one, x,_ cannot leave R without touc! ‘ng 9 R (with

v
probability one), We have

u
E. V(x) = AP sup V(x.) = X_]
X T AU T 2t20 t o}
u

(9)

+ A H sup V(xt) z 2] .
ruztgo

Letting A = 0, and noting that the integral in (8) is non-positive in R + OR,

(10) P[ sup V(xt) z A] = (V(x) - E‘; ITu Lv(x)dat) /2
1, Zt20 o

I

V(x)/\.

(10) can aiso be derived by showing that V(yt) is a non-negative

super martingale, where Yy is the X,

the incquality (10) is the non-negative super martingale ineyuality. Both

process stopped at time 7,; then

methods may be used when time is discrete. If Lan(x) =0 in R for any

real number n Z 1, then

L P e
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(11) P[sup V(x) 22 = V{(x)/A"
T 2120
u
which is an improvement over (10),
In general, we will try to improve (10) by finding the maximum n
for which LW%(x) s 0 in R. This method is mt generally the best for

obtaining probability bounds on the behavier of components of x.

Part II. COMPARISON AND OPTIMALITY THIOREMS

It is always assumed that X is compact, k(x, u) 2 O and continuous,
and that (2}, (3) are satisfied. The purpose of the theorems is to allow
a comparison of the costs and stability properties resulting from the use
of different controls, and to obtain upper .3 lower bounds on g(x) withe
out actually solving the minimization problem. The symbols Ty T, 8re
the random times to transfer x, =X (in some given initial set) to BS,
i1he boundary of the target set S, in the cases of no control, and control
u, respectively.

The theorems use the assumption E:Tu'< ®», When L%W(x) <0 in X - S
and LuV(x) £ 0 on OS and does not depend on time, the finiteness assumption
may be dropped. The modification will be used occasivnally in the examples.

It is usually of little consequence, since a slight enlargement of the target

set will usually assure that E;Tu,< o,

Theorem _}_.

Assume that there is ar. optimal admissible control w withk EZ':w < m,

Let u be admissible and E:'ru <w Let Vy(x) bein D{L) and V,(38) =0,

and

(14) LV, (x) + K(x, w) <0

. - cyohe T » - 4:"!: — wmrﬁ e .“r,,. I i A TN TAEe ':'(M'K Sa
] !;?Mc ¥ ~ N B! N
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in X - S. Then

(15) Vl(x) > C(x).
Also, for any A >0,
(16) P[  sup Vl(xt) 2z A] s EVl(x)/X.
«rug t20

If there is & V,(x) in D(L) with ve(as) = G and, for all admissible u,

(17) LV, (%) + k(x, u) >0,

in X - 8, chen

st s ovrnama.

(18) V(%) < ().

(In the even: that there is a non-admissible control for which the problem

has a meaning, and which minimizes Cu(x), then the first part of the theorem

still holds.)

Proof':

(8) may be applied to Vl(x) and 7 . Thus,
u T +
Vl(x) - E;Vl(xTu) > Exfou k(x, w)dt 2z C(x).

Since Ei T.<% X ison 05 w.p.l. Since X is bounded and
u
v,(98) = 0, we have E: Vi(x_ )} =0, and (15) follows.
u
Since w is admissible, and Vo(x) is in D(L) and E:Tw < @, the ap-

plication of (8) to V2(x) and T yields

T
' oW .
Vg(x) - E, VE(XTW) <E_ Jo k(x, w)ds = (x),

E: V2(:<T ) =0 by a repetition of a former argument. (16) follows from {10).
’ w

- - - e T, e T . Y A G Y Rt ST -
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Corollary 1

Let the optimal admissible control exist, and let V(x) satisfy the condi-

tions on V,(x). Let u and w be admissible controls, E:'rw < o E;Tu < w

and, for all such u,

LV(x) + k(x, u} 20

with equality when u = w. Then

v(x)

&(x)
and w is optimal.

Proof:

The statement follows from Theorem 1, by setting V(x) = Vl(x) = Ve(x) and

replacing all > by =2.

Remark:

If there is an admissible control which is optimal and a V(x) satisfying
the conditions of the corollary is svailable, then the corollary partially jus-
tifies the usual result of dynamic programming; i.e., that the optimum control

minimizes (19) and that the solution of (19) is V{(x) = C(x).
{19) min[LV(x) + k(x, w)] = 0
u

Corollarg_g

(10) is valid and T, As defined with probability one, when k(x, u) >0

in X - S. YUnder this condition, the condition on definiteness of the average

arrival {imes can be dropped, and we have a true optimality theorer, (the stochas-

tic counterpart cf the Hamiliton-Jacobl eguation theorem in [20]).

Thesrem 2

Let
- c¥(x} = Ez f:u [k(x) + £(x, u)ldt

P R T el L PraN- Ao~ o o T ~eca) e T P
Masies 2 0 oL Sallh , - - Sy
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where k20,220 and £(x, 0) = 0. Let L’ correspond to u = 0. Let

E;t <= V(x) in D(L) and V(38) =0 and
LoV(x) + k(x) = 0.

For some u, let E:Tu < o, and

(20) LV(x) + k(x) + £(x, u) <oO.
Then
(21) c°(x) = E f:° k(x)dt > E_ f:“ [k(x) + £(x, u)lat = C%(x).

If 2z replaces > in (20), it does so in (21).

Proof';

The proof is essentially that of Theorem 1. From (8)

E f:“ [LV(x) + k(x) + £(x, v)lat <0 = E) f:olLOV(x) + k(x)]dt

J

- V(%) + EV(x, ) + CU(x) < - V(x) + EQV(x_) + c(x).
u

C

Since z_  and x_ are on 0S8 w.p.l, and V(x) 4is bounded in X - S,
u o
the theorem follows.

Remark:

Consider the special case
dx = f(x, u)dt + o(x)dz,

o s P Pt g -~
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where o does not depend on u, and where (with V(9 S) = 0)

(22) k(x) = - L°V(x) = - Vi(x)£(x, 0) - Z ﬁ—l Sij(x).
j,
With u £ 0,
(23) -LNV(x) = -V (x)f(x, u) - iy %?V_%l S .(x).
x SERILIL NS
By Theorem 2, for any u such that
t(x) - 1%(x) + £(x, u) 50
or
(24) Vi(x) [£(x, u) - £(x, 0)] + £(x, u) <0,
we have

cY¥(x) < c°(x).

Although the theorem states that a control will decrease the cost
under certain conditions, accurate estimates of the decrease are usually
difficult to obtain., Estimates of the effect of the control on the pro-
bability (16) are readily available (see the examples). We obtain the
best improvement of the value of (16) with the u which minimizes (20).
Otherwise, the problem of selecting one, from among the many controls which
may satisfy (24), is open.

Theorem > gives a condition under which E: 1’u< o is assured.
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Theorem 5

Let V(x) be in D(L). If, for some € >0,

LV(x) = -kl(x, u) s - €

in X - 5, then T exists w.p.l and

u
X

E T, S V(x)/e < =,

Let there exist an optimum w and C(x) with loss function

k(x, u). Let Xx(x, u) s kl(x, u) and

inf k(x, u) 2 € >0,
X,u

Then

W
E. 7, 2 V(x)/e <

Proof.

Let 7 be any random time with E:T < o, The first statement follows

from

. u T u
V(x) - E;V(x,r) =E [, k(% u)dt z cEr

and from the boundedness of V(x) in X. (If E::Tu = o

= ® we could increase

T until eE:T>V(x) in X.)

Now, by Theorem 1,

o

atn——
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T
W oW W
2 = 2
V(x) 2 C(x) = E, fo k(x, u) 2 € E.T,
and the second statement follows., The existence of a T is part
of the statement on the existence of an optimum w.
Theorem 4 gives a method of selecting S so that the corresponding

problem can be studied by means of Liapunov functicns.

Theorem 4

Let u be admissible and let V(x) be in D(L). Define the sets

R = {x : L'V(x) 2 0} and 5. = (x: V(x) £ 7).

Let the sets be non-empty and let R be a proper subset of Sy_.

Let xo =x bein X - ST and define Tu as the random time of

arrival at oS r Then

(25) E:'ru < o,
(26) P{ sup V(xt) - vz 2] s E[V(x) - 7]/
ruztzo

If w minimizes L'V(x) in X-S, and L™(x) = -k(x) £ . € <O in

7‘

X-8 ¢ then w is the optimal control for the loss k(x) and target

set S‘f' The cost is
(27) S(x) = V(x) - v=E, [ ¥ k(x)dt.

Also, if LV(x) + k(x) 0 in X - S, then
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(28) V(x) - vz c%(x) = E: f:uk(x)dt.

Proof’:

Since LuV(x) is continuous, and RY is a proper subset of S‘r s
L%W(x) £ - €<0, for some €, in X - S, . Consequently (25) follows
from Theorem 3.

Since’ V(x) - Y20 in X-S_ and M [V(x) - Y1 s0 in X - S
(26) follows from (10). The fact that the u which minimizes L"V(x)
is an optimal control for loss k(x) = - min L"V(x) and target o SY fol-
lows from Corollary 1. (27) and (28) follLlw from Theorem 1 end Corollary

1, by using V(x) - v in their proofs.

Discussion:

For a given Liapunov function V(x), the control problem may be
studied in several ways.

Let the loss be k(x, u). Now compute RY = {x ¢ LuV 2 0}. Now choose

a Y such that SYD Rg and check that X - SY is not empty. Check

A

that LW(x) + k(x, u) =0 in X - SY' Then, Theorem U4 says that, start-

ST , the total cost, C'(x) of transferring

x_ = x to a point on ) ST is no greater than V(x) - v. If L%W(x) +

ing from a point in X

+ k(x, u) = 0, then the cost is V(x) - r= c%(x).

u
Now let u, and u be given and check that Sr‘:)(Ru UR 1) and that

u
X - ST is not empty. If LV(x) + k(x, u) = L 1¥(x) + k(x, ul) = 0, then

the theorem says that the cost of transferring x = X, in X - SY to 9o S‘r

is no greater with u than with u,. Theorer 2 may be used to try to find

improved controls, provided that V(x) and k{(x) are given,
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If, for some S, two Liapunov functions Vl(x) and Ve(x) are

given with the properties V,(9S5) = v; , and L. (x) + k(x, u) 50,

1(

LuVQ(X) +k(x, u) 20, L'W,(x) <0 in X - S, then the cost of trans-

i
ferring x_ = x to dS is bounded by

o £ u
Volx) - v,5C (x) = Vl(x) - 7N

Obviously, the cost of transferring to a point interior to S 1is no
less than the cost of transferring to S (by the continuity of xt). The
cost of transferring to a set enclosing S 1s no greater than the cost of
transferring to S. The observation yields bounds for terminal sets other
than the 8.

Other forms of boundary conditions and loss functions and possible (for
exemple, in case of instability we may minimize the probability of being lost) and
will be considered in the examples. Choosing suitable V(x) 1is, of course,
no easier in the stochastic case than in the deterministic case. We have
the double problem of finding V(x) so that both k(x, y) and S are
sultable,

In the (homogeneous) deterministic case when V(x) S 0 with equality
implying X = 0, 1t is possible to transfer X, =X to the origin. This
is possible in the stochastic case (with probability one) if LuV(x) £0
with equality only when x = O.

The following theorem is useful for obtaining probability bounds on the
rate of convergence of X, to 9 S. The quantity a may depend on the

control.

Theorem 5

Let V'(x) be in D(L) _and
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LY (x) 5 - av(x), a>o0,

in X - 8. Let t(r) »_min [t, 1], for t non-random. Then

Pl osup  V(x,) & M) e~y (x) /A",
Tuitis(1u)

where X = X,

Proof

Modify the system in 8 only, so that LV(x) § . a¥(x) in X. Let
x' be the modified trojectory and 1' the time to the origin for the
modified trajectory. By the continuity or thL2 paths

P[ esup vi(xt) 2z A = Pl sup Vi(x,) g A"y,

)
T etea(r') t wuthH(Tu) t

By Theorem 5 of [15], the left side is less than e "V'(x)/A", if x_ = x,

I - SR T Tros

me e merh e aeadaes

JIIL.  EXAMPLES

Exumgle 1. Lct.)r

dxl - xedt

dx, = (-x = x5 + u)dt + o(x)dz
with

f'he cpaces X of the examples are not compact. However, by letting
0% w 0 for large ||x|, and confining x, = x to some large, but compact,
sct, the space may be compactified with little loss in generality.
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02, <2

2 2
+ Xy 4 U,

oz(x) . X

F RO

k(x, u) = x
If 62 <2 and uw= 0, then X, =0 with probability one [15]. Owing to
this, the target set may be the origin, Theorem 2 will be applied to the com-
putation of a control. With uw= O, there is a positive definite quadratic

form [15]

2 2

V(x) = LIE 2blzxéxi + bosxs
2 2
by = % + (2 + 0%)/(2 - ¢F)
b, = % + °2/(2 - °2)
bps = 2/(2 - 02)
"-'-g& ‘tha,t.k. - z s

L°7(x) = -~ k(x, 0) m - xi - xg

©(x) = B £ 02 + B)at = ¥(x).
By Theorem 2 (Eq, (24)), for any u such that
(30) | w(3v/3x,) + u? <o,
we have

(31) c¥(x) - ¢°x) <o.



" Since the control contribution T8 proportional to ‘the tern containtng’ <<%
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In particular,

(32) u = - (BV/axe)/E = - (bllxl + byox,)

satisfies (30). Although the improvement (31) 1s difficult to estimate,

an estimate of the stability improvement may be obtained with the use of

(11). Now, with (32), and any real number n z 1,

L = ny-t [§§I Xy + g%; (-xl-x2 + u)]

o 1 &y 2,V \2
(33) + = [V S+ n(n-1)VH(E)T)
axe ax2

n-1. 2 2 2 2 2, 2
= oV T[-x] -xp - 2(b12xl + Dpo%s)" + 2(n-1)07(b 5%, + byyX,) (xl/V)].

m 2
The middle entry, -2(b12xl + b22x2) , is due to the control. The noise

2 2 -1
‘contributeg»to'all,other_tg;g§ﬂqr§%§9 “(xl/Y) ? (Fll 7“§12/P221wn.

02, and i1s of opposite sign, some cancellation occurs; this cancellation
increases the maximwn value of n for which L™V® 41s non positive in X,

As n increases, the estimate

(34) P[ sup V(xt) z 2] = VO(x)/A"

T 2t20

u
improves. With properly chosen V(x), estimates of the form of (34) can
yield useful information on the effect of the particular controls. By
Theorem 3, if S 1is a set containing the origin as an interior point, then

the average time to S 1s finite. In any case, x

" -0 w.p.l.

A useful general form is

R e+ T | oy



P

|

'= (ov/ox, )(av/ox,)
, v Lo 4 (L% - 1OV 4 (n-1) & 1 1 s,
1,3 2v ij

Darrm
t‘{
it

S5i5= % %5k T4x

In our case,

u O
(L° - L)V = u(av/ox,) = 2(1712141 + byyx,)u

T T

Let numbers 8 >0 and &€ < A ve given, and assume that X, = X is

g in {x: V(x) s €}. We will compute the'smallest' control which guarantees
xi/v)j. E (sccording to our estimates and method) thgt x, 0 w.p.l and
% P[ sup Vi{.) 2 2] =5d
T _2t20
u
z First compute the least n 2 1 such that
; sup Vn(x)/kn = (€/l)n = O,
X
’ ihen %0 20 in X if
2 2 . 2 2, 2
/
{35) Xy - X5+ 2u(b12xl + bagx?) + 2(n-1)o (b12xl + b22x2) (xl/v) s 0.

A suitable control can be determined from

2 2 2 2, 2 .
2u(b12xl + b22x2) = min[0;, x; + x5 - 2(n-1)0c (b12xl + b22x2) (xl/v)j,

which always yields s bounded control (in any compact set) (if bioX) + bysXy = 0,

then u= 0),

W mCERe Swews Ny ROSR S0

Lo ke

i ST e o R T ——T pa R AT
o 3 .
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Example 2, Same as Example 1, but let oﬁ(x) = 02, a constant. We

would prefer a V(x) such that IL°V(x) = -k(x, 0). Not being able *o find

such a V(x), we select one which yields an approximation. If
2 2
V(x) = 3/2 X)X X+ Xy,
then

0
L2v(x) = -xi - xg + 0.

To satisfy the conditions of Theorem 4, let

)
SO {x: XI + xg s 02}= Rr®

LOV(x) < 0 in the complement of R°, Although R" can be made smaller than

RO, the minimum eigenvalue will be the same, and the allowable reduztion in

the size of the target set mry not be appreciable. Following the procedure

of Theorem 4,

2y o o .0 2 2 2 ..
(36) C(x) = B (%) x5 -0 )dt = V(x) - v,
vhere Ty is the random time to the assumed target set

8= (x: V{x) s A} =R

cHx) < Co(x) iP

"R PRSI i ] WA G WA g " AL o Prntn s e 9 o A, —rn v cone §-s o/ . - -~ .—-.q-! g 7 ol




0=+ (3V/3x,)u < O,
which is satisfied (and is minimum) if

(37) u= -(xl/2 + x2).
Aliso

V(%) = 07" H[-1 - x5 + o8 - 2(xy/2 + xy)°

+ 202(n-l)(xl/2 + Xa)e/v(x)];

The -2(xl/2 + x2)2 term is contributed by the control (37). As in example
1, the control improves stability--in the sense that the probability of an
arbitrary increase in V(xt) (before sbsorption on dS) is decreased.

The method may be used to obtain bounds on moments.

Replace T in (36) by a non-random variable t, let 02 = 0 for very
large |ix| (so that X is compact), and assume that each E x? converges
to a constant as t ==, Since xi + xg is bounded in X, the order of

integration may bte changed for any finite t. Then, (36) and the boundedness

of V(x) in X yield that

. 2
and the limit converges to ¢” as the point ||x]| of truncation of o° goes to
Infinity.

Example 5. Assume the system of example 2. We consider another type of

criteria by which V(x) may be chosen., Les x, = x= (0, Xp0). Then

i Lo 4 A e ;- - {mﬁrf = TR - WA & somwod v
> . LA

SAL -




<.
\”"

Oy T L
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2
V(xo) = bggxgo' Find & u which will transfer X, 1o some small value

2
B~ and such that, for a given & and ¢ > xgo,

P[ sup xgt 2 €] s 5.
Tugtzo

Let LW(x) <0 for xg > 62, and let 7  be well-defined.

Any quadratic form in two variables may be written as

(38) V{x)

2 2
t
b'x, + (bllxl + b12x2) /bll

2
b= (byp - b1/By4),

where the first term of V(x) is positive definite, and the second is

positive semi-definite. Since

(39) P[ sup b’xg 2 M) = P[ sup V(x) 2 7] = (beaxgo)n/),n,
T _z2t20 T zt20
u u
where 2/b' = €, it seems reasonable to use the positive definite yuad-

ratic form with the maximum value of

2
i e
b'/byp = 1 - b1o/by 10,
provided, of course, that
(ko) 1%Nx) <0 for x5 >p°

ard a cuitable n. The problem suggests that we seek a V(x) such that

L°V(x) = -xg + constant. Thus, let

- — N - ——— w—— L Netbe e 2 4

R
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V(x) = (5 + x)/2,

LV(x)

2 2
-Xy + 0 /2 4 UX,.
2 2
If B~ < ¢”/2, then the use of

-x (a2 - ) /8%, 8% s x5 § 0°/2

(41) u

=0 otherwise

assures that (40) is satisfied for n = 1. Thus, there is a control for
which xg - 8% is atteinable. Note also that b'/b,, 1is meximum. If
b'/b22 were not maximum, then either some systematic procedure for maximize-
tion would be followed, or else several V(x) would be tried and compared.

To complete the analysis, find the least n 2 1 for which
2 n
(b22x20/eb') =8

and choose the most convenient u for which

22
-1
Lan(x) = nVn'l[-xg 405+ E:;rzf;;g + ux,]
(xl + x2) 2

is negative in the desired region xg = Bz.

There are, of course, similar procedures fcr more general initial coﬁdi-
tions. The quadratic forms may be chosen by selecting the non-constant, non-
positive quadratic part of LOV(x), and solving for V(x).

Other forms of experimentation with the type of quadratic form is pos-

sible; e.g., choose a control first (say, of an arbitrary linear form with

coefficient to be determined), then choose x'Bx, so that the target
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{x: x'Bx € A} is of some useful shape, and, finally, compute the contrcl !
coefficients. :
!
{
Remark:

Generally, the Liapunov functions Vn(x) do not give the best probabi-
lity bounds on, say, the excursions of some component Ixil, since it
couples the effects of the various components of x more than is necessary.
For example, instead of chcosing n = 2, a suitably chosen homcgeneous
positive-definite quartic form will usually yield better estimates on
the probabilistic behavior is being investigated. The powers of the quadratic

form are used here purely for numerical simplicity.

Example 4. Let

dx = (Ax + Cu)dt + odz
k(x,u) = F(x) + g(u)
n
F(x) =  Fpy (),

where FEi(x) is a homogeneous positive definite form of order 2i, and A
is stable. By a theorem of Liapunov [18], if o =0, and u= 0, there is
a homogeneous positive definite function VEi(x) of 2i-th order, with

Vzi(x) = "FQi(x)’ When o 1is a constant matrix not identically zero,

Lov2i(X) = -Fei(X) + Q?(i-l)(x)
FV
1l ¢ 2i
Q2(i-1)(x) -2 J%h 5§35§m Sjm




O
i

constant.

Sjm = %Ujicmi

Ly 1 # 0, 1is a homogeneous non-negative definite form of order 2i.

A Liapunov function

(42) V(x) = %Vei
with
(43) 1V(x) = -F(x) + Q

is easily determined: set o = 0 and solve, by Liapunov's theorem,

ﬁen( x) = °F2n( x),

and, in general, for the case 0 < i < n,

L{)
1

21 = “Fpy{x) - Qyy(x).

If the target set S

{x: V(x) = ¥} includes (x: F(x) z QO}, then
) o (0
C(x) = E, fo (F(x) - Q)dt = V(x) - 7.
By Theorem 2, if

LV(x) + glu) < Lov(x),
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then
c¥(x) = By [, '(F(x) + g(u) - @ )at < c(x).

For the deterministic problem, this approach was investigated in con-

siderably more detail in [8].

Example 5. Let

(4k) dx = (Ax + u)dt + odz
k(x, w) = - p
A +A=0, O, = 026
RS & iy’

and uv'u= p2. The target set is to be a sphere about the origin, with
radius r > 0. The deterministic part of (44) has ‘veen termed 'norm-in-
variant'. Let the components of 2z be independent. The Liapunov function
which is the minimal cost of transferring x = x, to the origin, for the

deterministic problem, is
1/2
V(%) = I = (002
We have

, 2

which is minimized by

(45) u=-ex/lH ,
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the optimal deterministic control, and
2
(46) LV, (x) = -p + (s-1)o" /2,

where s is the dimension of x. If the target set has a radius at

least 02/2;), then Theorem 1 yields
v(x) - e,

The fact that (46) is still a function of |{x| suggests that C(x)

is a function of ||x|. Let us try
(¥7) V(x) = ||l + a 1og x*x + ¢,

where a and c¢ are constarts. (U47) is suggested by the form of (46).
(It is also suggested by the observation that the 'deterministic' contribu-
tion to L“v, of log x'x, 2Ax' /x' x, 1is of the proper form to cancel part of the

' stochastic' contribution of Vl(x) to L“v, which is (s-l)c‘/2"ﬂ|.)

2 2
u x*u , 0 (s-1) , ax'u , ac (s-2)
L*V(x) =m+ Bl 3t Ty .

With (45),

2
Luv(x) -p - ﬁr + 5 + Tx 8-2).

ILet s=2 and a= 62/2p, then LW(x) = -p. At the target set boundary,
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S = {x: x'x = r2}, we have V(x) = 0. Thus, for arbitrary r >0, set

¢ = -r-aleg (r2).

Now, V(x) >0 and L%(x) = -p in X - S, and

T
upu u
E_ !o pdT = EXTu.

c¥(x) = V(x)
Also, since (45) minimizes LW(x) over all admissible controls, by

Corollary 1, (45) is the average-time-optimal control over the class of

admissible controls. If s > 2, the procedure may “e repeated. This will

be developed elsewhere.
Example 6. Take the scalar case

dx = -xdt + udt + odz

The optimal deterministic solution is (the deterministic version is a problem

in [21])
Vi{x) = (k+ 1)log(lx] + 1), | <k, u=- signx
(48) S4(x) ='{
V'(x) = (k + 1)log(k+1)log|x|, |x] 2k, uw=o0.
log k
(49) LV (x) = -(ke1) - o (kt1)/2(|x] + 1)2, u= - sign x

2 (x) = -k - U2k/x2 , u= 0.
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6th line of Remark : the probabilistic behavior. The povers
of the quadratic form

3rd line below (47) : Replace 2Ax'/x'x by -2p/| x| .
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At }xl = k, gd(x) does not have a derivative, This is not important
in the scalar case. (It can be assumed that Ue(x) satisfies (2) and is

zero in a small neighborhood of |x| = k, with an insignificant change in

"
§ the process.) Since ngd(x) < - k(x, u) for |x| # k, Theorem 1 yields
cH(x) < c.(x) .
A |

i
The loss for the stochastic problem is less than gd(xL since the
problem is scalar and gd(x) is convex downward. Such an improvement is
uncommon for vector problems.

By Corollary 1, if V(x) and u satisfied L™V(x) + k+ |ul = ¢ and

f Lu'V(x) +k+|u] 20 for w #u, then u is an optimal control and

i V(x) = C(x). Then, u must satisfy
(50) u= - sign dV/dx, av/ax > 1

“ u= 0, otherwise,
exactly the form of the deterministic optimal control. The form (50) is
not admissible, but may be approximated arbitrarily closely by an admis-
sible control. Since the provlem can be well defined and solvabie with a
slight modification of uz(x), the inadmissibility will be igncred. Since
c(x) < V'(x), |x| <k, 1t is suggested that |dC(x)/dx| < |av'(x)/ax|,
x| <k, and, hence, that the optimal control would be of the form

!

‘ u=-signx, |x <k' <k

‘ 1=0, |« & x'.

e a2 I“-' , - - AT - - T ~ e
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The qualitative information inferred above can be substantiated by

solving the exact stochastic problem (which is easy and uwill not be done here).
Define Sy= (x: |x| =7}, vr>0 and let X be a large set con-

taining the origin with ¢ = 0 outside X. Now, since L° log {1+ |x|) <0

in X - S‘f Por any v >, (10) ylelds

P[ sup log(l + |xt!) 2 A] s log (1 + |x])/xr.

T_2t20

o
Better bounis cen be cbitained if ST is more restricted. Let WV{x) = |x| n’
n 2 2. Then

n-2
LV(x) = nfx} """ A(x)
2
(%) = -2 s ux (n-1)o /2,

If A(x) <0 in X - Sr , ‘then

>J

) S—

A
>
>
=

The smallest s‘r (such that LV <0 in X - SY and |ul 5 1) corresponds

to

1/2

2
Y=1 = [-1 + {1+ 2(n-1)0 1/2 ,

and then we require u= - sign x for 7, s x| s Y, where Ti = (n--l)02/2.




-33-
REFERENCES

% 1. R. W. Bass, discussion of paper by A. Letov in Proc. Heidelberg
i Conf, on Automatic Control, R. Oldenbourg, Munich (1957),

Pp. 209-210,
i 2. R. E. Kalman, S. E. Bertram, "Control System Analysis and Design
: via the Second Method ov Liapunov," J. Basic Eng., 82 (ASME),

pp. 371-393 (1960).
i 3. J. P, LaSalle, "Stability and Control,” J. SIAM Control, Ser. A,

1, no. 1, pp. 3-15 (1962j.

Geiss, "The Analysis and Design of Nonlinear Control Systems via

Iiapunov's Second Method," Rpt, Ne, RID-TDR-63-4076, Grumman Air-
craft Corp., Bethpage L. I., {1964). -

Wesnunye AT
F
“

5. N. E. Nahi, "Cn the Design of Optimal Systems via the Second Method
of Liapunov," AC-9, pp. 274-275, (196L).

M
o)

.

=

V. Rekasius, "Suboptimal Design of Intentionally Nonlinear
Controllers," IEEE Trans. on Automatic Control, AC-9, pp. 380-385

i (1964).
7. G. W. Johnson, "Synthesis of Control Systems with Stability Constraints
via the Second Method of Liapunov."™ IEEE Trans. on Automatic
Control, AC-9, pp. 270-273 (1964).

8. R. W. Bass, R. F. Weber,"On the Suboptimal Control of Autouomous
Linear Systems," Hughes Aircraft Corp., Rept., March, 1905,

9. J. L. Doob, Stochastic Processes, Wiley, ew York, 1953.

g 10. E. B. Dynkin, Markov Prccesses, Springer-Verlog, (1965).
11. E. Wong, M. Zakai, "On the Relationship Between Ordinary and Stochastie
Differential Equations,” Report 64.26, Electronics Research Lab.,
E Univ. of California, Berkeley, Cal, (196%4).

12. K. Ito, "Lectures on Stochastic rrecesses,” Tata Institute, Bcmbay,

1961.

13. E. B. Dynkin, Foundations of the Theory of Markov Procecses, Springer-
Verlog, (1961).

14, H. J. Kushner, "On the Stability of Stochastic Dynamical Systems,"
j ! Proc. Nat. Acad. of Sci., 53, pp. 8-12, (Jenuary, 1965).

15. H. J. Kushner, "On the Theory of Stochastic Stability,” Report 65-1,
Center for Dynamical Systems, Brown University, (1965).




16.

17.

18.

19.

20.

21.

<3~

R, Z. Khas'minskii, ®On the Stability of the Trajectory of Markov
Processes,” Appl. Math. and Mech. (PPM), 26, pp. 1554-1565,
(1962). o

W. M. Wonham, "On Weak Stochastic Stability of Systems Perturbed by

Noise," Report 65-4, Center for Dynamical Systems, Brown
University (1965).

I. G. Malkin, Theory of Stability of Motion, AEC Translation No. 3352,
Dept. of Commerce, Washington, D. C., (1958).

M. Athans, P, Falb, R. T. Laccss, "Time, Fuel, and Energy-Optimal
Control of Nonlinear Norm-Invariant Systems,” IEEE Trans. on
Automatic Control, AC-8, pp. 196-201 (1963).

R. E. Yalmar, "Optimal Control and the Calculus of Variations,"
Research Institute for Advanced Study (RIAS) Report 61-3 (1931).

M. Athans, P. Falb, "Optimal Control; An Introduction to the Theory
end Its Applications,” McGraw-Hill, (to appear in 1965).




