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Stochastic Stability and the

Design of Feedback Controls
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1. INTRODUCTION

The object of this paper is to describe the stochastic extensions of

the various techniques for using the second method of Liapunov to aid .;he

construction and analysis of feedback controls [1-8]. The method appears

to be useful for design and analysis, although it is too early to make a

final judgment. Much depends on future success in finding suitable Liapunov

functions, and understanding the relationship between the loss function and the

desired behavior of the control system.

The deterministic methods have, been motivated by considerations of the

following nature. Consider the optimal control problem with control u,

and system

x = f(x, u)

and cost

CU(x) = T k(x, u)dt, Cu(2) =0
0

, where T is the time of contact with , the boundary of a targe; set

S. The minimum cost

C(x) = min CU x),
U
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is achieved by u = w. If C(x) is sufficiently differentiable, then the

Hamilton-Jacobi equation I
dC(x)/dt-c(x)f(, w)== C-k(x, w)

is satisfied (where ' is transpose and C is the gradient of C), I
and w is the u minimizing I,

[C(x)f(x, u) + k(x, u)]. I

In lieu of attempting to solve this problem, an alternative procedure

has suggested itself to many authors (e.g.[l]-[8 ]). Choose a Liapunov

function V(x), and some u(x) so that the system has suitable stability

properties, and compute (X is the state space)

I
V(x)f(x, u)--- kl(x, u).

xI
where kl(x, u) k 0 in X + S. X is the state space.

A comparison of k1 (X, u) and k(x, u) can yield useful information; e.g.,

whether V(x) is greater or less than C(x), or stability properties of I
the controlled system, the nature of the problem for which V(x) and u

are optimm, and whether some other calculatable control would minimize the I
cost Cu(x), etc.

I
!
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Similar results are achievable in the stochastic situation. Stochastic

stability seems to be a more complicated subject than its deterministic

counterpart, since the corresponding Liapunov functions do not decrease

monotonically for each sample function. The effect of controls on the

statistical behavior of the system can be made rather explicit in terms of

a reduction of a bound on the probability of arbitrary deviations in the

sample paths before hitting 23.

In part II several comparison and optimality theorems are proved. In

part MlE the theorems are applied to the problem of choosing and analyzing

the effect of feedback controls for several stochastic systems.

2. THE SYSTEM TO BE CONTROLLED

IThe object to be controlled is represented by the vector stochastic
differential (Ito) equation

I (la) dx = f(x, u)dt + a(x, u)dz,

I by which is meant (using the Ito [9] interpretation of the stochastic integral)

t t
"(b) xt = x + f. z(xt, u(xt))dt +0 a~xt' u(xtlldzt-

i
z is a vector Wiener process with independent components, is commonly

called white Gaussian noise;

I (lc) k = f x, u) + a(x, u)!

f is a vector witb components fi' and a is a matrix with components

I The process xt is confined to X

Il-x



Without the control parameter u, the meaning of (1b) and the conditions

under which a solution (a stochastic process) exists and is unique is discussed

in [9], [10]. To be secure in the mathematical development we assume these

conditions. Let Ij I be the Euclidean norm. For some finite positive K, let

IIf(x + a, u + ) - f(x, u)ll 1 ;II Iil + 41P11
(2) Ia(x + a, u + a) - a(x, u)ll K!Iji + KIII

If(x, u)l 1 - K[1 + --11x 2  + Iull 2]

(3) Ilu(x + a) - u(x)li ;- K1 1 l

A control satisfying (3) is termed admissible. (3) implies continuity of u(x).

Note that u = sign x is not admissible. Since the K in (3) can be large,

admissibility is probably not a serious restriction.

In certain cases, our results are valid if (2) and (3) replaced by

local Lipshitz conditions. This is the case when the trajectories have appro-

priate stability properties (e.g., when the origin is stable w.p.1 in the sense

of [15]).

The primary attractions of the model (1) are that it represents a rather

large class of Markov processes with continuous sample paths, there is a large

body of theory concerning it, and it seems that many physical problems can be

modelled by it. The question of modelling will not be discussed. The identifi-

cation of particular forms of (1) with particular physical problems is still an

open problem in general (especially in the non-linear case). (Some interesting

results in [11] clarify some of the questions of modelling.)

For each integer r, define the stochastic process

(4) r + f(r,' u-xr))A + a(x , ur x ))Zn, Ixnl = x ~n ~1 n ni

where 5z = z((n+l)A) - z(nt), and define xr(t) = xr in the intervaln n
(n+l)A > t _- n&. Then, for a suitable sequence of A-+0, we have xr(t)-+x(t)

with probability one for each t, where x(t) is the solution to (1).

-I



Some facts, to be used later, will be quoted. If u(x) is admissible,

x t  is continuous with probability one, and is a Markov process; i.e., for

any measurable set A in X,

(5) P[xt+s e A I x, _t ~t s €A xt] ,

where the bar I denotes conditional probability. A major, relatively

recent, development in probability theory is the analysis and extensive

use of the concept of random time (see [10], [12], [13] for details). An

example of a random time is the first time that x t  leaves an open set A;

= min (t: xt J A). T is a random variable. Loosely speaking, whether

or aot the event (T < t) has occured (in the example, whether xs has

left A by time t) can be determined by observations on the xs process

up to and including time t. (The set (T < t) is in the a-field

d,'.e, rned by xs, s - t.)

The sigrficance to control applications, of the concept of random

time, will be seen in the sequel. If the process xt  is confined to a

set X which is compact, and if u is admissible, the process xt  is, in

fact, a strong Markov process. A strong Markov process has the Markovian

property relative to random times. Let T be a random time, then

P[x+ s e A I x., 8 ;-T] = P[x+ s e A I x ].

For example, let x t  start in ar open set B, let T be the least time

of leaving B, then for any non random s the probability that x+ s e A

given x and the paths up to T equals the probability given only x .

The strong Markov property is proved in [10).
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3. THE CONTROL FROBLEM I
The process xt  is defined in a set X in a Euclidean space. There

is a set S in X given, and the main object of the control is to trans-

fer x = x to S in finite average time. In certain cases, infinite

average times vrill be allowed. The proofs of the theorems we require as-

sume that X is compact (e.g., the proof of (8) for the operator LU).

This does not seem to be a restriction from the practical point of view

since X may be as large as desired. We may stop the process upon leaving ]

some very large set, and estimate the probability of this event by (10). a

Also, to each u and initial point x° = x, there is the associated cost t

0

(6) CU(x) = Eu f u k(xt, ut)dt U

c

EU is the expectation and Tu is the random time of arrival at S,

(provided that i is defined) and k(x, u) is continuous and ncn-negative, D

and is referred to as the loss.

Define C(x) = min CU(x), provided that the minimizing u is admissible.u

Part of the control problem is the comparison of cU(x), and Eu  forx u

various controls. Various restrictions may be placed on the control; it hi

may be bounded, or its functional form may be restricted; e.g., it may be

allowed to be a function of some, but not all, components of x. Some sta- I
bility properties may also be of interest; e.g., an estimate o,' the probability

that xt  ever leaves some set X', if x0  is in X', or some otber quali- ,I

tative information cn the random paths.

A number of relevant results and examples on stability are in [14]-[16].

[17] is concerned with ergodic properties of the processes and utilizes cer.-

tain properties of stochastic Liapunov functions.

I
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4. OTHER MATHEMATICAL PRELIMINARIES

Let u be admissible. Define the operator

(7 -Z +  a' f E S (. u)i2 i 2 ij isb x ()X

k aik ajk

Lu is the differential generator of the xt process, with control u.

We say that V(x) is in the domain of Lu (V(x) E D(L)) if V(x) is a

non-negative, scalar valued function with continuous second derivatives

and the sets (x : V(x) ;- c) are compact and connected, for all c less

than some c0 > 0. Such a V(x) will also be called a Liapunov function,

or a Liapunov function in a region R, if LUV - 0 in R for the given

u. Note that LUV(x) = dV(x)/dt = Vx(x)f(x, u) in the deterministic

case.

Since X is compact and xt is a strong Markov process,

Dynkin's formula (10]

(8) Ex u(x)V(x) = Ef T uV(x)ds

holds for all random times r with Eu r <in. (8) underlies many of thex

results of the sequel. It says, in effect, that V(x) is the average

value of the integral of the 'stochastic derivative' LUV(x). The com-

pactness of X and the finiteness of EU1  are important in establishingx

its validity. In other cases the operator LU, for which (8) is valid,

will be an extension of (7), but this is beyond our purpose.

Let V(x) be in D(Lu) in the region R C X,

tThe domain of L is obviously larger than our D(L), but D(L) suffers
less.



-8-

R = (x : V(x) < X} - (x : V(x) - Xo, 0 > X0

3R = (x : V(x) = X, V(x) = Xo0.

Let LUV < 0 in R and LUV(x) ;0 on 6R. Let 'u be the random

time to 6 R, starting at x e R. It can be proved, using the continuity

of xt and LUV(x), and the compactness of X, that Tu will exist

(although E L may not be finite), and that the integral in (8) is defined
x

and finite, and that (8) is valid. (See [15]). Since xt is continuous

with probability one, xt cannot leave R without touc '.ng o R (with

probability one). We have

EU V(x b PI sup V(xt) X]x T T -t-O0

(9) u

+ X P[ sup V(xt) ]
'r ;t?-U

Letting X° = 0, and noting that the integral in (8) is non-positive in R + 6R,

(i0) P[ sup V(xt) - X] = (V(x) - Eu fu LUV(x)dt)/X
-r t O x o

u

g V(X)/X.

(10) can also be derived by showing that V(yt) is a non-negative

super martingale, where Yt is the x t process stopped at time Tu; then

the inequality (10) is the non-negative super martingale inpjuality. Both

methods may be used when time is discrete. If LUVn(x) 'a 0 in R for any

real number n ' 1, then
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(n) P [ sup V(xt) :S -V(x)!X n

U

which is an improvement over (10),

In general, we will try to improve (10) by finding the maximum n

for which LUVn(x) - 0 in R. This method is mt generally the best for

obtaining probability bounds on the behavior of components of x.

Part II. COMPARISON AND OPTIMALITY THYOREKS

It is always assumed that X is compact, k(x, u) 0 and continuous,

and that (2), (3) are satisfied. The purpose of the theorems is to allow

a comparison of the costs and stability properties resulting from the use

of different controls, and to obtain upper Pd lower bounds on C(x) with-

out actually solving the minimization problem. The symbols o' are

the random times to transfer x = x (in some given initial set) to ?S,o

ihe boundary of the target set S, in the cases of no control, and control

u, respectively.

6R, The theorems use the assumption EUT < w. When LUV(x) < 0 in X - S
x U

and LUV(x) - 0 oil 6S and does not depend on time, the finiteness assumption

may be dropped. The modification will be used occasionally in the exmples.

It is usually of little consequence, since a slight enlargement of the target

set will usually assure that EU' <
x u

Theorem 1

Assume that there is a. optimal admissible control w with EWT <W*

Let u be admissible and E < .. Let Vl(X) be in D anL) dVl()S) =,

and

(14) LuV,(x) + k(x, u) < 0

I
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in X- S. Then

(15) Vl(x) > CWx).

Also, for any X > 0,

(16) P[ sup Vl(xt) >X] 1
u

If there is a V2 (x) in D(L) with V2(6S) = 0 and, for all admissible u,

(ly) LV 2(x) + k(x, u) > 0,

in X - S, *"hen

(18) V2(x) < C(x).

(In the even'x that there is a non-admissible control for which the problem

has a meaning, and which minimizes Cu(x), then the first part of the theorem

still holds.)

Proof;

(8) may be applied to V1(x) and r . Thus,

XT1(x) - EuV1(x ) > Eurfu k(x, u)dt C(x).
UU

u

Since EU Tu < ' x is on S w.p.l. Since X is bounded and
u

VI(6S) = O, we have Eu VI(X 0, and (15) follow6.
1 ~~~x 1 1=0 ad(5 £lor

Since w is admissible, and V2 (x) is in D(L) and EwT < co, the ap-
X w

plication of (8) to V2 (x) and Tw yields

WT

V,(x) - E"' V,(x_ ) f Ew J k(x, w)ds
w

EWz V2 ( :c ) = 0 by a repetition of a former argument. (16) follows from (10).
W

',. ,, I".. ,-'
-,- -- - - -,.. , T -,. -.. " -- - -. ' - ' '-'',,"e., - -,,.x--- ...

E 2: yarptto fafrp ruet 1)flosfo 1)
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Corollary 1

j Let the optimal admissible control existl and let V(x) satisfy the condi-

tions on Vl(x). Let u and w be admissible controls, EW < u

and, for all such u,

I LuV(x) + k(x, u) 0

I with equality when u = w. Then

,1 V(x) = C(x)

and w is optimal.

Prooff:

PofThe statement follows from Theorem 1, by setting V(x) = V1 (x) : V2(x) and

jreplacing all > by 2t.

Remark:

If there is an admissible control which is optimal and a V(x) satisfying

the conditions of the corollary is available, then the corollary partially jus-

tifies the usual result of dynamic programming; i.e., that the optimum control

11 minimizes (19) and that the solution of (19) is V(x) = C(x).

(19) mir[ LUV(x) + k(x, u)j - 0
II U

Corollary 2

(10) is valid and Tu is defined with probability one, when k(x, u) > 0

in X - S. U~nder this condition, the condition on definiteness of the average

arrival timez can be dropped, and we have a true optimality theorem, (the stochas-

1tic counterpart ef the Hamilton-Jacobi equation theorem in [20]).

I Theorem 2

Let E t
Let" CU(x) - E x fo0u [k(x) + - (x, u)]dtx
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where kOI O and I(x, 0) = 0. Let L° correspond to u = 0. Let

E 0 T <-, V(x) in D(L) and V(3S) =0 and
xo - -

L 0V(x) + k(x) - 0.

For some u, let EU. < , and

(2) LuV(x) + k(x) + I(x, u) < 0.

Then

(21) C°(x) = EO I 0 k(x)dt > E U fu [k(x) + L(x, u)]dt = CU(x).X 0 X 0

If - replaces > in (20), it does so in (21).

Proof:

The proof is essentially that of Theorem 1. From (8)

Eu Uf u [LV(VX) + k(x) + I(x, u)]dt < 0 = E' f T L°V(x) + k(x)]dtX 0 X0

- V(x) + Ex2V(x ) + CU(x) < - V(x) + E°V(x ) + C°(x).
u 0

Since xT  and x are on S w.p.l, and V(x) is bounded in X - S,
u 0

the theorem follows.

Remark:

Consider the special case

dx = f(x, u)dt + a(x)dz,

. - - .. . . .....
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where a does not depend on u, and where (with V(6 S) = 0)

!_
(22) k(x)-- L V(x) - v-()f(x, S) Ws .

With u 0,

(23) _Luv(x) = _V'(x)f(x, u) - h sij(x).

By Theorem 2, for any u such that

L"V(x) - Lev(x) + L(x, u) 0 o

or

(24) V I(x) [f(X, u) - f(x, o)] + I(x, u) < 0,

we have

0 U(x) < C0 (x).

Although the theorem states that a control will decrease the cost

under certain conditions, accurate estimates of the decrease are usually

difficult to obtain. Estimates of the effect of the control on the pro-

bability (16) are readily available (see the examples). We obtain the

best improvement of the value of (16) with the u which minimizes (20).

[Otherwise, the problem of selecting one, from among the many controls which
may satisfy (24), is open.

Theorem 3 gives a condition under which u  < a is assured.

[
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Theorem 3 F"
Let V(x) be in D(L). If, for some E >0,

LuV(x) = -k 1 (x, u) -

in X - S, then exists w.p.1 and
- U

Eu r 5 V(x)/E < -.
x u

Let there exist an optimum w and C(x) with loss function

k(x, u). Let k(x, u) - kl(x, u) and

inf k(x, u) - E > 0.
xY u

Ut

Then

Ew i - V(x)/E <.x w

Proof.

Let T be any random time with EuT < w. The first statement follows
x

from

V(x) - EUV(x ) = k (x, u)dt u,

and from the boludedness of V(x) in X. (If EU = , we could increasexu

T until E E u > V(x) in X.)
x

Now, by Theorem 1,



V(x) ; C(x) = Ew f w k(x, u) it E

and the second statement follows. The existence of a T is partw

of the statement on the existence of an optimum w.

Theorem 4 gives a method of selecting S so that the corresponding

problem can be studied by means of Liapunov functions.

Theorem 4

Let u be admissible and let V(x) be in D(L). Define the sets

Ru= (x : LuV(x) o) and S = (x : V(x) ;5 r.- r
Let the sets be non-empty and let Ru be a proper subset of S

Let x =x be in X - S and define T as the random time of

arrival at 6S Then

(25) EUT < .
x u

(26) P[ sup V(xt) - r -X] _9 E[V(x) - r]/X

U

If w minimizes L1 (x) in X s and LVV(x) = -k(x) ; < 0 in

X - S - then w is the optimal control for the loss k(x) and target

set S . The cost is

(27) C(x) = V(x) - = Ew f-w k(x)dt.

Also, if LUV(x) + k(x) - 0 in X - Se then
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(28) V(x) - - cu(x) = Eu f Uk(x)dt.
x 0

Proof:

Since LUV(x) is continuous, and Ru is a proper subset of S

LUV(x) ; - e <0, for some E, in X - S . Consequently (25) follows

from Theorem 3.

Since V(x) - r 0 in X - S and Lu[V(x) - r] ;- 0 in X - S r

(26) follows from (10). The fact that the u which minimizes LUV(x)

is an optimal control for loss k(x) = - min LUV(x) and target 6 S fol-

lows from Corollary 1. (27) and (28) follow from Theorem 1 and Corollary

1, by using V(x) - r in their proofs.

Discussion:

For a given Liapunov function V(x), the control problem may be

studied in several ways.

Let the loss be k(x, u). Now compute Ru = (x : LUV L 0). Now choose

a y such that S - RU and check that X - S is not empty. Checkr o r
that LUV(x) + k(x, u) - 0 in X - S Then, Theorem 4 says that, start-

ing from a point in X - S the total cost, CU(x) of transferring

x° = x to a point on S is no greater than V(x) - r. If LUV(x) +

+ k(x, u) = 0, then the cost is V(x) - r= CU(x).

Now let u I and u be given and check that ST  (Ru U R l ) and that

X - S is not empty. If LUV(x) + k(x, u) ;5 LU1 V(x) + k(x, ul) = 0, then

the theorem says that the cost of transferring x = x in X - ST to 3 S

is no greater with u than with u1 . Theorem 2 may be used to try to find

improved controls, provided that V(x) and k(x) are given.
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If, for some S, two Liapunov functions Vl(x) and V2(x) are

given with the properties Vi ( 6 S) = r i , and LUVl(x) + k(x, u) 4 0,

L V2 (x) + k(x, u) 4 0, LUVi(.) < 0 in X - S, then the cost of trans-

ferring x = x to S is bounded by
0

V2 (x) - ' cU(x) ;gVl(x) -

Obviously, the cost of transferring to a point interior to S is no

less than the cost of transferring to S (by the continuity of xt). The

cost of transferring to a set enclosing S is no greater than the cost of

transferring to S. The observation yields bounds for terminal sets other

than the S.

Other forms of boundary conditions and loss functions and possible (for

example, in case of instability we may minimize the probability of being lost) and

will be considered in the examples. Choosing suitable V(x) is, of course,

no easier in the stochastic case than in the deterministic case. We have

the double problem of finding V(x) so that both k(x, u) and S are

suitable.

In the (homogeneous) deterministic case when i(x) '- 0 with equality

implying k = 0, it is possible to transfer x0 = x to the origin. This

is possible in the stochastic case (with probability one) if LUV(x) k 0

with equality only when x = 0.

The following theorem is useful for obtaining probability bounds on the

rate of convergence of x t to 6 S. The quantity a may depend on the

control.

Theorem 5

Let Vn(x) be in D(L) and



L uVn(x) g - vn(x), c > 0,

in X - S. Let t( ) -min t, 13, for t non-random. Then

P[ sup v(xt) f. easvn(x)/%n,

where x x 0

Proof

Modify the system in S only, so that LUV(x) 9 - CV(x) in X. Let

x' be the modified trajectory and r' the time to the origin for the

modified trajectory. By the continuity o:, th.i paths

P,[ sup Vn(xt) X n, p( sup vn(xt) 4 n,.

By Theorem 5 of [15), the left side is lest, than e-SaVn(x)/Xn, if x 0 x,

.... tnd tho proof iu c-ncluded,.....

M EXAMPLES

Example 1. Lct t

(29) dx1  x2 dt

dx2 - (-x - + u)dt + a(x)dz

w i t h

thc cpaceo X of the examples are not compact. However, by letting
a = 0 for large llxii, and confining xo - x to some large, but compact,
set, the space may be compactified with little loss in generality.



a2 () x2 a2 2<2

k(x, u) x + x2 +U2

2

If cr < 2 and u = 0, then xt-+0 with probability one [15). Owing to

this, the target set may be the origin. Theorem 2 will be applied to the com-

putation of a control. With u a 0, there is a positive definite quadratic

form [15)

V~x b 2 2bA ,+ b x2
V~) 11x1  b1 xx b22 2

1 2 2
b12 -g (

b22 u2/(2 -
2)

so that ...... ~ ?

L 0 '(x) - -k(x, o) X - x 2
1 2

CCox) w JE f(x 2 + x2)dt -V(x).

By Theorem 2 (Eq. (24)), for any u such that

(30) U( aV/ & 2 ) + u2< 0,

we have

(31) Cu(x) - C0(x) < 0.
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In particular,

(32) u = - (Cvl/2)12 _-- (bnxI + b22x2 )

satisfies (30). Although the improvement (31) is difficult to estimate,

an estimate of the stability improvement may be obtained with the use of

(11). Now, with (32), and any real number n k 1,

LUVfl = nVnl C- xl2 + C- (-x1-x2 + u)]

22(33) + a Xi (nV nvl&V + n(n)Vn-2(I )2]

n-1 2

nV [-X 1 -x 2 - 2(bx I +b 22 x 2
2 + 2(n-l) 2 (b + b 2 x2 ) (x21 /V)].

The middle entry, -2(b1 2xl + b 2x2) , is due to the control. The noise

contributes to all other terms. Also (XI/V) S (b 1 1 -

- Since the control -contribut-io6n fs' poport±ia1 *to the -term containing-

a , and is of opposite sign, some cancellation occurs; this cancellation

increases the maximum value of n for which LUV n  is non positive in X.

As n increases, the estimate

(34) P[ sup V(xt) a X] g Vn(x)/Xn
tr It0

u

improves. With properly chosen V(x), estimates of the form of (34) can

yield useful information on the effect of the particular controls. By

Theorem 3, if S is a set containing the origin as an interior point, then

the average time to S is finite. In any case, xt -+0 w.p.l.

A useful general form is
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LuV nV¢-[LoV + (Lu - L0 )V + (i-j.) E (C/&x) (C S]
i,j 2V ij

sij k 1k ik

I In our case,

(LU -,L)V = u(a/ x2 ) = 2(b x1 + b 0 1 x2 )ui
Let numbers 6 > 0 and E < X be given, and assume that x ° = x is

I in (x: V(x) - e). We will compute the'smallest' control which guarantees

2x]/V). (according to our estimates and method) that x t -+0 w.p.1 and

P[ sup V ) -; A]
T _t;O

U

First compute the least n 1 such that

sp Vn(x)/in = (,/,)n = 8.

x

J The :,0 in X if

(35) -x1 2 + 2u(b2x + b )+ 2(n-1)1(bl2Xl + b2 2 x 2 ) 2 (x1/V) - 0.

A suitable control can be determined from

2u(b bx 2 ) = min[, 2(n-)(bX + b22 2) 2 (xI/V)],

which always yields a bounded control (in any compact set) (if b2 x 1 + b2 2 x2 = 0,

then u = 0).

!7
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Example 2. Same as Example 1, but let o 2(x) = a , a constant. We

would prefer a V(x) such that L°V(x) = -k(x, 0). Not being able 4 o find

such a V(x). we select one which yields an approximation. If

V(x) = 3/2 x2 +x +X2

1a + xx2 + 2 ,

then

ev~x = X 2 2 2

To satisfy the conditions of Theorem 4, let

2 2 2- 0°

S'x: xf 1 + X2 ?,

L°V(x) < 0 in the complement of RO. Although Ru can be made smaller than

R 0.the minimum eigenvalue will be the same, and the allowable reduction in

the size of the target set mry not be appreciable. Following the pxocedure

of Theorem 4,

00? 2 2(36) C°(x) =E J (X: x2 - g)dt = V(x)-

where T0 is the random time to the assumed target set

S (x: V(x) .

CU(x) < C°(x) if

M "Mr--
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u + (V/ x2 )u < 0,

which is satisfied (and is minimum) if

(37) u = -(xl/2 + X2).

Also

1 2 2 22

LuVn(x) = nI-l(x)[-X - x2 + a - 2(xi/2 + x2 )2

1 2 1

+ 2C 2(n-l)(xl/2 + x2)2/V(x)

The -2(xi/2 + x2)2 term is contributed by the control (37). As in example

1: the control improves stability--in the sense that the probability of an

arbitrary increase in V(xt) (before absorption on 6S) is decreased.

The method may be used to obtain bounds on moments.

2Replace To in (56) by a non-random variable t, let a = 0 for very

2large lixil (so that X is compact), and assime that each E x. converges
2.

to a constant as t -*w. Since xI + 2 is bounded in X, the order of

integration may be changed for ony finite t. Then, (36) and the boundedness

of V(x) in X yield that

U E(x I + 2)
t-A. 1

and the limit converges to a as the point IXf of truncation of o goes to
infinity.

Example 3. Assume the systemof example 2. We consider another type of

criteria by which V(x) may be chosen. Let x0 = x = (0, xpo). Then
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V(o= 2 inwhcwil2

V(x) b 22x20 , Find a u which will transfer x2 to some small value2 2
02 and such that, for a given 6 and E > x2

P[ sup x 2 Z] _ 8.
u

Let Ln) < 0 for x ,2 > P 2 and let T be well-defined.U

Any quadratic form in two variables may be written as

(58) V(x) = b'x2 + (blx + b1 2 x2 ) 2 /bll

22

where the first term of V(x) is positive definite, and the second is

positive semi-definite. Since

(39) PC sup b'x 2 ! X] _I P[ sup V(x) X] ;9 (b 2o)n/ n

t O _ t_ O
U u

where %/b' = c, it seems reasonable to use the positive definite quad-

ratic form with the maximum value of

= -

b/22 _- 1 - b1/bb2,)

provided, of course, that

(4o) TLuV(x) <0 for 2 >2

and a suitable n. The problem suggests that we seek a V(x) such that

~ 2 2Lov(x) = x 2 + constant. Thus, let
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2 2I ~~v(x) = (x1 +x)/

LUV(x) = _x2 +U2/2+u.

if P2 < _2/2 ' then the use of

(41) U2 2 -x 2 2 ;9 x2 29 2/2

= 0 otherwise

assures that (40) is satisfied for n = 1. Thus, there is a control for

2 2which x 2 = P is attainable. Note also that b'/b 22  is maximum. If

b'/b 2 2 were not maximum, then either some systematic procedure for maximiza-

tion would be followed, or else several V(x) would be tried and compared.

To complete the analysis, find the least n it 1 for which

(b 2 )nb22x2o/b W

and choose the most convenient u for which

-1 2 2 (n-1) 2x2

LuVn(x) = n-l[-x2 + a 2 +  - a' x2

( 1  x2)

is negative in the desired region x 2

There are, of course, similar procedures for more general initial condi-

tions. The quadratic forms may be chosen by selecting the non-constant, non-

positive quadratic part of L°V(x), and solving for V(x).

Other forms of experimentatLon with the type of quadratic form is pos-

sible; e.g., choose a control first (say, of an arbitrary linear form with

coefficient to be determined), then choose x'Bx, so that the target

. ., ,; Ir ..- -- , _ -
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(x: x'Bx c X) is of some useful shape, and, finally, compute the contrcl

coefficients.

Remark:

Generally, the Liapunov functions Vn(x) do not give the best probabi-

lity bounds on, say, the excursions of some component xil, since it

couples the effects of the various components of x more than is necessary.

For example, instead of choosing n = 2, a suitably chosen homogeneous

positive-definite quartic form will usually yield better estimates on

the probabilistic behavior is being investigated. The powers of the quadratic

form are used here purely for numerical simplicity.

Example 4. Let

dx = (Ax + Cu)dt + adz

k(x,u) = F(x) + g(u)

n
F(x) = E F2i(x),

1

where F2i(x) is a homogeneous positive definite form of order 2i, and A

is stable. By a theorem of Liapunov [18], if a = 0, and u = 0, there is

a homogeneous positive definite function V2i(x) of 2i-th order, with

V2i(x) = -F2 i(x). When a is a constant matrix not identically zero,

LTV2 i(x) = - 2i(x) + %(i-l)(x)

1 ) 1v2i S"-(i-l)(x  2 - m S ) i
jjm ' jm
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Qo = constant.

S. = aCr .Om Jij mi

Q2i, i j 0, is a homogeneous non-negative definite form of order 21.

A Liapunov function

(42) V(x) V

( 21

with

(4) L°V(x) = -F(x) + Qo

is easily determined: set a = 0 and solve, by Liapunov's theorem,

V2n(x) = -F2n(x),

and, in general, for the case 0 < i < n,

2i = -F2i(x) - Qi(x)"

If the target set S = (x: V(x) = ri includes (x: F(x) k Qo, then

C°(x) = Ex fo(F(x) - Q)dt = V(x) - r.

By Theorem 2, if

L.UV(x) + g(u) < L0 V(x),
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then

u() = (F(x) + g(u) - Q)dt < C°(x).

For the deterministic problem, this approach was investigated in con-

siderably more detail in [8].

Example 5. Let

(44) dx = (Ax + u)dt + adz

k(x, u) -

+ A 0, ij = r 0 ij'

2
and u'u = p . The target set is to be a sphere about the origin, with

radius r > 0. The deterministic part of (44) has been termed 'norm-in-

variant'. Let the components of z be independent. The Liapunov function

which is the minimal cost of transferring x = x0 to the origin, for the

deterministic problem, is

V 1(X) = I1 = (xx)1/2

We have

L'~(x) +

which is minimized by

(45) u = -px/ll1l 4
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the optimal deterministic control, and

(46) LrV1(x) = -P + (s-l) 2/211II1,

where s is the dimension of x. If the target set has a radius at

least r2 /2p, then TheDrem 1 yields

V1 (X) - T < C(x) ,

The fact that (46) is still a function of IIjl suggests that C(x)

is a function of UxI- Let us try

(47) V(x) = II + a log x, x + c,

where a and c are constants. (47) is suggested by the form of (46).

(It is also suggested by the observation that the 'deterministic' contribu-

tion to LUV, of log x'x, 2Ax'/x'x, is of the proper form to cancel part of the

'stochastic' contribution of Vl(x) to LUV, which is (s-)211xl.)

L, v(x) =x,u U a2 s-1)  ax'u. + I~
=lxT 21ll + x x "

With (45),

L'V(x) = -p - aP + a j1+ (s-2).

Let s = 2 and a = c2 /2p, then LUV(x) = -p. At the target set boundary,
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6S = (x: x'x = r ), we have V(x) = 0. Thus, for arbitrary r > 0, set

c = -r-alog (r 2).

Now, V(x) > 0 and LuV(x) = -p in X - S, and

CU(x) = V(x) = Eu u° U. = EUT

Also, since (45) minimizes LUV(x) over all admissible controls, by

Corollary 1, (45) is the average-time-optimal control over the class of

admissible controls. If s > 2, the procedure may 'be repeated. This will

be developed elsewhere.

Example 6. Take the scalar case

dx = -xdt + udt + adz

lul -i, S= (o),

T
cU(x) U 'o (k + l u )dt.

The optimal deterministic solution is (the deterministic version is a problem

in [21])

,., {V'(x) - (k + 1)log(IxJ + 1), 1xi < k, u - sign x

V '(x) = (k + 1)log(k+1)logl xl, I x- k, u = 0.

log k

(49) LuV ,(x) = -(k+l) - 02 (k+l)/2(Ixl + 1)2, u = - sign x

P (x) = -k - kl , u = o.
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At xl = k, Cd(x) does not have a derivative. This is not important

in the scalar case. (It can be assumed that a (x) satisfies (2) and is

zero in a small neighborhood of I xJ = k, with an insignificant change in

the process.) Since LU (x) < - k(x, u) for lxi k, Theorem 1 yields

C (x) < C(x).

The loss for the stochastic problem is less than Cd(x), since the

problem is scalar and Cd(x) is convex dowmward. Such an improvement is

uncommon for vector problems.

By Corollary 1, if V(x) and u satisfied LUV(x) + k + J ul = 0 and

U,
L V(x) + k + lu'l _ 0 for u' j u, then u is an optimal control and

V(x) = C(x). Then, u must satisfy

(50) u = - sign dV/dx, dV/dx > 1

u = 0 , otherwise,

exactly the form of the deterministic optimal control. The form (50) is

not admissible, bt u may be approximated arbitrarily closely by an admis-

sible control. Since the problem can be well defined and solvable with a

slight modification of a2 (x), the inadmissibility will be ignored. Since

CU(x) < V' (x), I xJ < k, it is suggested that I dC(x)/dxl < I dV' (x)/dxl,

I xJ < k, and, hence, that the optimal control would be of the form

u= - signx, I x <k' <k

= 0 ol xJ i k'.

nvZ-____________________ - ---N

4 -
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The qualitative information inferred above can be substantiated by

solving the exact stochastic problem (wbich is easy and will not be done here).

Define S = (x: lx ), T> 0 and let X be a large set con-rO

taining the origin with a' = 0 outside X. Now, since L log (l + I xl) < 0

in X - S for any *r> , (10) yields

P[ sup log(! + Itj) - X] - log (1 + I1x)/k.
r Ot

0

Better bounds cen be cbtained if Sr is more restricted. Let V(x) I xln,

n a 2. Then

LUV(x) = nj x n-2 A(x)

.,) = -2 (n-1)a- /2.

If A(x) < 0 in X - Sr then

P [ sup Ixtl _ Xj Ixn
T itgO

u

The smallest S (such that LUV < 0 in X - S and Jul g; i) corresponds

to

r = r,. = [-1 + (1 + 2(n-l)a )1]/2 ,

2 2
and then we require u- sign x for r,: l r, where =r (n..l'a /2.

00
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