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FOREWORD

This, document is the first of two volumes, comprising the- finaI report on a

feasibility study of :techniques for the control of re-entry vehicles. The research

was sponsored by the Flight Dynamcs Laboratory, RTD, under Task:No. 82181

of Project No. 8225 and Contract No. AF33(657)-7383 with the Minneapolis-

Honeywell Regulator Company, Mifineapolis. Minnesota. Lt. E. B. Stear was
the RTD project officer for this program. Work at Honeyw ell was perforimed-by

the Systems Techniques group of the Military Products Research depa)tmefit under

the supervision of J. Tz Van Meter. Project personnel were: :G. P. DSwanlund

and D. K. -Scharmack, principal-investigators, and M. D. Ward, R. G. Johnson,

L. "D. Dolid, 'D. L. Lukes, W, C. Marshall, and E. R. Rang.

The first volume of thisreport, "Calculation,of OptimalTrajectories and.

'Synthesis of Contro01 Fictions" presents the mathematical models, the
development of theory and the results of the numerical, calculations for a two-

year study of controlled re-entry vehicles. The digital computer programs,

developed and used in this effort are documented in Volume 2, "Computer Pro-

grams". These reports are designated as Honeywell MPG Documents 1535-TR2,

Volumes 1 and 2.

The encouragement, assistance, and direction provided by Lt. Edwin B. Stear

is gratefully acknowledged.

Some of the digital computation was c cnducted at the RTD computation center.



ABSTRACT

Optimization. techniques are used to synthesize the- control programs. and- compute

the-c'orrespondiigflight paths for controllabie re-entry vehiclesi. Linear per-

turbationcontrolabout these reference trajectoriesr is, investigated..

A large portion of the-teory of the calculus of variations is modified and ex-

tended toapply to, this :problem. Many details of.computational techniques,

necessary in-the adaptation of the theory to, large scale digital calcuation, are

reported. The ,optimization method, which evolves isa modificationof a Newton-

t Raphson iteration, although,,gradient procedures are also.studied.

The criteria for re-entry trajectories are, functionals of the motion related-to
.the heating qf the vehicle. It is found that these -criteria are relatively insensi-

t tive to.the flight path, and this fact ,leadS- to computational problems, which- must

be handled- carefully.. The paths and, control authority are constrained by

,reasonable physical requirements.

The linear..perturbational control is.found by requiring the integral of the square

of the. control deviation to be minimum. The vehicle posit-ion is. the object of

control in the" cases studied. it is found that this form of control can be used
I throughout the entire re-entry corridor. Various modifications of the control

gain program at the end of the, trajectory are considered.

This -technical documentary report has been reviewed and is approved.

L

Technical Director
Flight Dynamics Laboratory

................m. , ....................................
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SYMBOLS

122
at acdeleration- along velocity axis, ft/se 2

an acceleration -normalI -to velbcity axis, ft/sec 2

a. total acceleration due to aerodynamic force, ft/sec'2

r A terminal altitude, ft.

A4  pos itivea definite raatrix in. Newton-Raphson method

B, specified maximum Value for a i ft/sec2

coefficient of drag

(,C coefficient of lift

SCDO' CDV CLO aerodynamic coefficient constants
f0  integrand in- j

E(t) feedback gain -matrix

F generalized Lagrangian for .Optimization problem

g function of terminal state in J
nominal gravity at surface of earth, ft/sec2

G inequality constraint vector

h altitude, ft.,

H Hamiltonian

J function to be minimized

m vehicle mass

p multiplier, or adjoint, vector

P initial multiplier vector

heating, rate, a function of the pathi BTU/ft 2/sec

specified constant heating rate, 1BTU/ft 2/sec

4 lc corrective- heating rate

4r radiative heating rate

R radius of the earth, ft.

.[ terminal range, ft.

S aerodynamic reference area, ft2

T terminal time, sec.

ix



SYMBOLS ,(Cont d.)

ii u control vector for optimal -trajectbry

_U any admissible control vector

v velocity, ftIsec..

V terminal' velocity, ft/sec.

x state vector

x initial value of state vector

Y (T, a)' influence matrix

Z zero, matrix

a angle-of-attack, 'deg,, measured positively upward
-1

atmosphere exponent coefficient,, ft.

flight, path angle, deg., measured positively upward

6 perturbation operator (time independent)

'C great circle range, ft.

multiplier vector for inequality constraint

dimensionless altitude

p atmospheric density, slug/ft.

a slack variable

ep r oll angle, -degrees-

4P terminal surface vector

V gradient with respect to the control, vector, x (If the
x operand is a vector, the result is a matrix)

V gradient with- respect to the control vector, u

first variation, increment

(. ) differentiation with respect to time

( I) .matrix transpose

x

- "
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~SECTIONq I
INTRODUCTION

r COMPENDIUM

I Synthesis of control for a re-entry vehicle presents many difficulties in the
form of nonlinearities, constraints On the dynamical state, cohstraints on

I the control and questions of controllability and observability. These are Of

-such importance they mustbe directly :incorporated into'th design process,

and cannot be considered secondary, as is done in most engineering, methods.
1Furthe;. there is good physical justification for minimizing certain func-

r tionals of the motion, such as heat input and acceleration. effects. The re-

L entry problem, therefore, provides an excellent proving ground for the new

optimization des, ign techniques.

The goal of this, study is to demonstrate 'the efficacy of these new techniques

by actual synthesis and smnulation of'the mechanization of an-autornatic re-

entry c6ntrol scheme develcped: through their' use.. This ha:s not yet been

U achieved. However, -A method o'f autbm ati'ally computing opt imal re'-entry
I trajectories has been developed and demonstrated; and a careful study of a

scheme of linear control about 'a reference trajectory has 'been conducted,

serving topoint out sensitivities! and difficulties, which must be ai9Icipated

in a mechanization attempt., Many details, concerning the application of

I. the theory of the calculus of -variations to this problem and 'of the use of a

large digital computer in trajectory and control calculations, have been

studied' and are reported here.

L

Manuscript released 'by authors, October 14, 1963, for publication as an

SFDL Technical Documentary 'J eport.

l.1

-~ ,-.'.------'



-ModeI f[r Re-'entry Studies

The model chosen for -these re-entry studies is two-dimensional and assumes

a-sphrfcal, non-rotating earth and an exponentialatmosphere. The model

differential equations are. a great simplification of the actual equations of
< motion9 but do represent the essential phenomena found" in re-entry flights.

The velocity v, flight Path angle y, the dimensionless- altitude =h/R,

o and the great circle rahge C = R O, are chosen as the components of'the

state x. The control is -represented by the function u and is manifested by

aUthority over the vehicle, aerodynamic coefficients.

In this notati6n, the -model equations of motion are

dv S 2 g siny
'at 2m, pv CD)Ju) 2~)

d Y S v'cos 'Y go cos Y
- PvC(u)+ 

dt 2m L R(1 +9) V(! + )

(1. 1)

dg

§inY
dt fl

d'C v
- cosV

d-t 1 + I,

where R is the radius of the earth, S and m the vehicle frontal area'and

mass, respectively, p the atmospheric density, and C' and QD are theL
,aerodynamic lift -and 2rdg ,coefficients

2

" " - , ' ' ' -- .. .. " := : ..." ... .. .. . .. ".. .. . .. " = -... .. .. .. . .. .. .. . . . .A -_ _



For conivenienice0, the6 system (L. 1) is usually represented by the vector

j II equation

E ThreIe- vehicles -are c6onsider ed in, these studies. 'The first is a high, lift- drag-

rattovehicle, foir which the control function is the ang'16 of, attack, a . The

aeroynamcoefficienits, based'on flat pOlate ,,Newto'nianltflow, are

'C- D +D "CDL IJsin af

CL siniaL Cosa Vsin a

in ~ DO DLchC and CL are constanits. 'The other two vehicles, are
'low lift*-drag-rAtio Apollo -type bodie s., One has a variable angle of attack,.

J for which the coefficients are

J CDD CDO + DLC U

iCL C~ sin uu ea, e - constant,

( The other assumes a fixed, angl e of attack, -but uses a roll angle CP out of
the plane of motion as the control function:

CD CDO

L CL =C LOCos CP

L 3



The criteria for those optimal; trajectory calculations Which were studied are

the minimum of the ihtegral'of heating, rate deviation from a prescribed value

T'
qf ( )2  dt (16)

'and- the- minimumn of total h eat, re~pre sented 'by

f T q,"d° J dt , (1 . 7)

0

where 4 is the heating rate for the vehicle, and Q is a given constant.

The vehicle described by Equations (. 3) was used with criterion '(1. 6)i

whereasthe vehicle represented'by '(. 4) was used for the minimum total

heat problem.

Studies Conducted

A considerablebody of theory, based on the calculus of variations, was

developed to facilitate the solution of the control optimization problem on.

the computer. The objective of these studies was the development of an

automatic optimization method. A gradient scheme and the second-order

Newton-Raphson method, using the first and second variationS, are des-

cribed indetail in Section II. Also presented isa 'Newion-Raphson scheme

for the two-point boundary value problem associated with the minimization

problem. Experiences with, these methods, together with computer results,

are given, in Section III.

4



!Lear cofitrol about a referehce trajectory, found experimentally for the

1roil-modulated Vehicle, and about an extrema9ltrajectory for the variable

afile-of-;atta k vehicle is-derived by requiring the quadratic integral of

con6trol1 deviation, Au,

fT
J (Au) 2 dt (, (1.8)

to be minimum. The theory arid results for these studies, along with

results 'of navigation and configuration investigations, are- given in.Section IV.

A detailedeiror analysis and a sensitivity study of the controlled systems

alsoare outlined.,

" This-volume ends with conclusions-and recommendations inSettion V The

computer programs used are documented in° Volume Two;.

BACKGROUND

Previous Studies-

Re-entry into earth atmosphereby vehicles launched from the -earth or from

I an orbit about -the earth is a problem which ,has received extensive, analysis

during, the past sveral years., Allen, Eggers, Qazely, Lees, and Chapman

(References: I through 7) have, made pioneering contributions, to the under-I standing of re-entry.. Their important work has been augmented by a multi-

tude of studies, most significantly those of Robinson and Besonis (Ref. 8),

Wongand Siye (Ref., 9), Young, and. Eggleston (Ref. 10), and Luidens,(Ref. 11).

A comprehensive list of re-entry literature would be extremely extensive.

U - 5-



The primary -concern of the early :studies was :aerodynamic heating.,anid,

deceleration,, With the object of showing the feasibility of safe descent"

through -the atmosphere from orbital initial Velocity. The earliest studies

concentrated -on-ballistic vehicles. Later, theieffects--of constant lift-

drag ratios- were evaluated. More recently, careful consideration-has

'been, given to modulated aerodynamic coefficients, produced by varying

the- angle of attack according, to some stated, objective (maintenance of

constant deceleration -for -example). References i2 -through 1T..7 are examples

* of this work.

Manytrajedtories : have been calculated for a wide variety of initial

velocities and flight-path angles. Attempts to generalize ,solutions- through

non-dimensionalization, notably the work of Chapman, (Ref. 6- and 7), and,

more recently Loh (Ref. 18),. have-:been particularly rewarding.

- The, Safe Flight Corridor

These numerous, studies resulted in clarification of the concept of a safe

flight corridor. -This corridor is usually described in a plot of altitude

versus velocity, bounded on the lower side by heating and/or deceleration,

limits andon the upper side by sustained flight at maximum ,lift -(negative

lift for super-orbital velocities and positive lift for suborbital velocities).

Corridor depth is used to evaluate the guidance requirements.for separa-

tion of the perigees of two vacuum conic trajectories, one initiated at

the upper corridor bound and, the other at thelower; this is described, by

Chapman (Ref. 7) and Luidens (Ref. 11).

Asa result ofthis work, the kinematics and aerodynamics of re-entry are

now quite well understood.

6



'Whicle Dynamics and C.ontrol

Recently.,, attention has been given to vehicle dynamnics-and control during

re-entry (aside from a few early studies of the oscillatory stability .of

re-entry bodies). several-relatively simple range and cross-range

schemes have been proposed, for landing-point control. References 16, and

17 are-examples of this- kind of investigation, based on currently established

condepts .and equipment mechanization.

'Credit for the use of optimization techniques in determining re-entry

trajectories seems du6 Bryson, et al (Ref. 19). This paper pointed' out the'

possibility of using more sophisticated control over the vehicle '(to minimize

functionals of the motion) while still- satisfying-giVen end-point conditions.

Linear control techniques were, again, first published, by Bryson, (Refs. 20

and 21). These methods provide the vernier adjustments to the control

fuiction maide necessary by model variations, such ,as atmospheric density

deviations and winds..

[ The control scheme.envisioned in this report makes use of both optimal

trajectories' and linear control. Since Bryson's and similar calculations

are. not automatic but require the .intervention of the person making the

calculation to produce convergence of the iterations, these methods are

not suitable, without modification, 'for on-board mechanization. The

-studies reported here were aimed at finding a calculation, which would be

automatic, converge rapidly and ensure an actual minimum for the

functional.

L
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SECTION II

OPTIMAL TRAJECTORY CALCULATIONS - THEORY

PROBLEM STATEMENT (A):

The problem considered here is a special form of the; problem of Bolzaas

formulated by Bliss (Ref-. 22) and eXtended to include inequality constraints

,by Valentine i(Ref. "23). It is: Find that path which minimizes the function

T

J (T, x (T)) + fo (x., u) d T (2. i)

0

subject to differential equations of the form

f(x, u), x(0) x (2,2)

inequality constraints'

G (X, u) > 0, (2,3)

and terminal surface equations

q/(T, x (T)) = 0., (2,4)

In the above, x and u are,n and m dimensional state and, control column

vectors, and- (" represents differentiation with respect to the independent

variable t. The dimension of vector Equation 2. 3) is q, and that of

(2.4) is r, where r n+ 1.

8



FoIlb 'ing Valentine (Ref. 23), E'quaions (2. 3)'are rewritten inthe form

a -G(x, u) (2.5)'

K 'where the componentsof thev tor a are o , j 1 ., q. The

ar's are slack variables, introduced to complete the set of differential

,equations for the problemof Bolia, No more, than m of the b's may be

zero -at'any point on the path.

[ It is assumed that f0 (x, u) and 'the dffferential Equations (2.'2) and, (2. 5)

,have continuous§,partial derivatives of at l.east third order in all variables,

in an open region S. about the minimizing path. Furtheri ore , the matrix

made up of the partial derivatives of the differential eqdations, with respect

to all derivatiVes and the control functions, must have rank h + q at each

point of' the minimizing path. This ensures that the differential equations

,are independent. The matrix has th& form

V f Z

U

G E (2* -6)

where I is, the nxn identity matrix, Z is an nxq zero matrix,, l iS

I the transpose of Z, and is a qxq diagonal matrix whose elements

are 2 a.

The solution x (t) of the differential Equations (2, 2) and (2. 5) is supposed

to-be, continuous, with, at least,, absolutely continuous first derivatives.

In some instances, it will be possible to consider corners, i. e'., points

at which' the derivatives are discontinuous. The control functions, are

treated as derivatives in (2. 6) so they can be discontinuous, as in the

bang-bang problem. Potential corners are those points, at which inequality

constraints change from .greater than to equality states or vice versa.,

L 9'



They may also, be def ined- by switchingpoints, as inthe- bang- bang problem
where -the equality sign holdsin, the constraint relation. A subarc 'is de-

fiedasthat PArt -of the path between corners or potential corners.,

Finally,; the functionls g (T, xk(T-)); and. (2. 4).arp assu m ed to- have continu~ous

partial1 deivatiies of at least third- ordeir fri an opieh set S~ of points

k(,TI)), and the mAtrik

v~i= *(,2. 7)

b* 
r

1 n

is assumed to~have rank r. An admissible arc is defined- to be. a path having

all of' its elements (t, Ix, x, u) and (TP, x (T)') lying in, S~ and S

res'ectively.

Differential equations,.and inequality constraints containing t, explidcitly,

can easily be brought' to, the form 'of Equations, (2. 2) and: (2. 5) the

independent variable is changed from, t, to s -by adding the differential equa tion'

dt

ds =t (.8

and noting that

dx dx ds dx
(2. 9)

dt ds dt ds

10-
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Then t becomes, a depehdent variable, and the resulting n + q +1 differential

equations: are in the desired form. -Observe that the order of the system hap,

[ been increased, by one.

F NECESSARY CONDITIONS (B)

The necessary conditions for this pr-cblem are stated here&without proof. The

reader is referred to References 22, 23, and 24, for their derivation, The

first ,necessary condition is

FThe Multiplier Rule,

An admissible arc E, defined on an iiterval -0 , T] is said to satisfy the

multiplier rule; if there exist constants p0  1, e' = [e i , ... , er , not

all zero, and a function

F(t, x, u, x , , ,) f0  (2.10)

with multipliers p(t) = [pII(t), ... , pn (t) ], continuous on Q, T] and

|"(t) = [I. 1l(t), ... , q(t)] continuouson [ 0 , TI except possibly at

corners of E where unique right and left hand limits exist, and satisfying

the Euler- Lagrange equations

.t V f +pV f + 1 'V G (2.11)

0 V f 0+ pv f + V G (2. 12)

0 = .Gj, j ,... q (2.13Y

where

0i ~ 2 14)

L1



-anddifferehtial equations

x =f x(0) - X 215)

c2. G -0, (2. 16)-

along E, andfurthermore, such that the equations

0o f +  + e' At

T

+ (Vxg + eV 4' i'T dX(T) = 0, 4' 0

hold',for every choice of the differentials dT, dx (T). The multipliers

PO , p ' . do-iot vanish, simultaneously at any .point of the, interval [0;, T.,
for an arc E satisfying the multiplier rule. Furthermore, the function

H f + p'f (2. 18)

is a constant on E. Every minimizing arc E for the given form ofthe

pir6blem of Bolza must satisfy the mnUltillier rule. In' the above, the

vector is thefirst column ofthe matrix (2. 7).

The vanishing of the coefficients -6f dT and dx (T) in equation (2. 17)

constitutes the transversality condition on the arc E. Thus,

H = (f + ptf)t = (f + p f )  + e' TJ, T (2. 19)

p'(T) (vxg + e'Vx 4')L . (2.20)

12



the Hlamiltonian, Equation '(2. 16), 'is often called, a first intogral for-thisfproblemh It has further significance in -the second nec-essary condftion:-

The Necessary Condition, of Weierstrass. (The -Miniu Prni1e-

An admissible arc E -satisfying, the- multiplier, rule, with mutilir

= 1D , ~,is ~sai& to satisfy the necessarpy condition of
Weiert~rass -with these mnultipjliers if--the conidition

HR It, 'X, Re 14) (t, X, p, U) (2 21)Y

-is valid at every element (t, k, , u)- of E for -ali'admissible. Points,

(t, -x, X U)' # (t, x, ic, u) .satisfyingthe Equations (2.,2), and (2. 3).FEve ry mhinimizing arc E. for the given .form, of the problem of B olzA

must atisy this, condition.,

ii., A consequence of the- Weierstrass condition, is:,

The Necessary Condition of C16bsch

At each point of E let, G be a vector whose components are those-

components of G- which vanish, and ' the- corresponding multipliers.

Phnthe iniequality

it , (H + P35) Tr z2:O (2.'22)

13



must besatisfied Ifor eve-y vector i ) 0 Where rr' = . .[ . ,,. ry

and satisfie§ the ,equafions

IT 0.,2 2)

Every minimizing arc for the given form of the problem of Bolza must

satisfy, this' condition.

EXTREMALS AND THE EQUIVALENT MINIMIZATION PROBLEM (C)

The paths considered here are supposed to satisfy the Equations (2. 1.)

through ,(2.16), as well as the Weierstrass and Clebsch necessary

cohditions. Such paths will be called extremals. The paths are furthei

supposed to consist of a finite number of subarc1. On each subarc a,

given subset of the inequality constraints are equality constraints, and

all the rest are greater than zero, except possibly at a finite number of

points. It is shown in Appendix A that such paths 6an' be generated.by

integrating sets. of differential equations of the form

i = - f (x, p) ,, x(0) = X (2.24)

7 V F(x, p) (2. 25)
x

These differential equations change from subarc to :subarc, 'but the

'Isolutions are continuous at the junction of two subircs. It is further

shown in Appendix A that the solutions can be represented as functions

of the, initial conditions on the multipliers p(O) = po' and, the terminal

value of the independent variable, T; i. e., a, solution is defined by

I specifying a particular set (T, p0 )., 'Continuous partial derivatives of at

i *Junction points are potential corner points and are also referred to
as breakpoints.
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least second' orider in, these variables exist. The optimization problem. can

then be r eformulated as: Minimize thefuiictiin

[ J J~) (2.26)

r inthevariables. y- =(T* p ), subject to, the constraint equations

I (y) 0. (2. 27)

This .is-the equivalent minimization problem. NecesSa-y and sufficient

conditions for a relative minimum. for-this :problem are well known.

F ir.st, form the function

'F(y,. X) =J(y) + 12 ,(y) , (2.28)

where X is an r dimensional vector of Lagranige undetermined' multipliers.

Then. assuming that y tsxdefined over an, open region R, that the necessary

partial derivatives exist in the neighborhood of the °critical point y = c,

and that the critical point is normal (Ref. 22, pp,210-213 ), the necessary.

,and sufficient conditions, may be Written:

If, a criticalpoint y = c has a set of multipliers X for which the

function F satisfies the conditions

V F(c) = 0 (2,29)

and

SLy, V 2 F (c) Ay > 0 (2.30)
Y

L for all vectors Ay satisfying

L Vy O/(c) 4y 0 , L y i 0, (2.31)

then c is a minimizing point.

[ 15
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It should be remharked that the Equations (2. 29) and (2, 27) are n + r + I

equations in the n + r + I variables y and X. They may be solved, ii

principle at least, for the-critical value y c and the corresponding

set of multilliers, if the -matrix

(V2 F)' (V F)' VF (V i/7)
y yx' yy

(2.32)

is, non- singular..

The sufficiency co9ndition ,  Equatfins .30), and f 2, 31)'is ratther awkward, to,

test numerically. However, a more convenient test, showing that a matrix

is positive-definite, is easily' derived. There are two Ways in which, this

can be d6ne.

The most obviOus method is to solve (2. 31)'for a set of r dependerit components

of Ay- in.terms of the (n + 1 - r)' others, and to substitute back into (2..30).

The resulting (n.+ l -. r) x (n + 1 - r) matrix must be positive-Aefinite. The

-other-method is to -complete -the set of constraint Equations (2. 27) with

(n + 1 -r) equations of-the form

l.(y) =, 4/(c) + .z (2.33)

chosen such that the matrix

= V /2 (2.34)

is non-singular.

16



[ Then the i4tions -- -

<10-

may'be;tought of a a atz;abn -inAtion rel~r arb a~ Ai to -values,
,of AY satisf.yqhg -fhe constraint Equadtions p. J ,). :8ub 1tLtutin -of (? 3

int te ufthe~ odtin(.3) eg foloeyth niae

mhultiplicatWonhe iv es the r.u

4Z zA 4 z z> 0: a, 16)-

ISince Az Is- arbitrary, the (n, + .!-r) :k (n, + 1 - i A)ntr-x A4

mrust be-,positive-definiite.

COMPUTATIONAL METHODS FOR FINDING A, RE-LATVE MINIMUMAD).

Thr~ee of the many "numerical schemps. fo r 'finding a m"nium -are discuss-d,
Vhere. the se-are the Newton-Rpaphson 'm ethod, a mhodification .of the 'Ne~ton--

iethod arid' the-mnethod- of -steepest tdescetit. 'Reference 3 1 gives a

other methods. It isadssumed that' the' required partial derivatives

L are, available. Methods for obtaining, them, are given in subsections,. E .and- F.

I Consider -first the case in which r ,the dimension of'terminal surface

Equations ('2. 4) is less than (n + 1). ExKpanpsion of Equations (-,26) and (2,~27),

I through 'second-order terms about a pointy 0 gives,

J-(Y J~y + 7 y6y + I Ay, V 2JVy ) Ay + . (2.3,7)-

L (y) +A + _jy_ Ay 0l~y)A

41(y) VI'(y 0o + 4y Ay +- .2 ky~ ) y + (2.38)

where

17



iheh N ton-Raphson scheme. the point y- iss assumed :to be so close to the

mhinimrizing: point that (2. 37);and (2.38) adequately approximate behavior .-at
the minimizing-,pint. The function F *of Equation (,2.28) is formed with theseo

i ekpressio§ns and differentiated With respect to y,, the assumed minimizong

poifit. Setting the result to zero gives

S(y, X) 0 = V 0F(yo X)F)y (2 39)-y ' y 0- y 01 •.

The-i _rafi-e -solution -of Equations (2. 39) and (. 138) (with k(y) = 0)' for

.A y and X then constitutes -the Newton-Raphson m ethod, provided the matrix

S2 F (y- (2. 40)

saesfies the sufficiency condition. Otherwise,, the solution would be driveh

:t6ward 'a saddle ,poiit or, worse, a maximizing point'.

if the .sufficiency ,condition is not met, some other iterative, scheme,, such as

,steepest descent, should, be used. This situation will generally arise if the

point y is too far from the minimizingpdint for the' second order exoansions

,(2. 37) and (2. 38) to be accurate, Int steepest descent, the point y is assumed

to be closer to the minimizing value than the present estimate yo; The ex-

pansions (2. 37) and- (2. 38) are truncated after first-order terms and written

in the form

-dJ, ] J(Y) - i y 17 j (
L- Ay O(Y 0 ),Ay (2. 41)

dip ,(y)Y - Oyo Vy4 (Yo

18



A change Ay in the gradient, or steepestdescent, direction is made-by the

choice.

A - '(y)K, (2 42)

where K is. an (r + 1) x 1 constant vector -to- be determined. Substituti0n
of (-2.42) into , (2. 41),to determine K, and in sertidon'of the result back into

(2. 42).,gives

Ld

° that is, the desired change in yo isgivenin terms Of the- 0 (Yo)..matrix,-

arid, speciffed small changes. dj and, dP,, The latter are chosen to make

J and ip smaller at the 6ompletion of the next step. Reference (19)

provides a; more complete descriptionof the use of the method. It should

be pointed_ out that the method blows up as a critical point is approached,

I since the (r + 1) x (n + 1) matrix 0 is necessarily of rank, r at such a
point. Otherwise the, gradient Vector could not'be the zero vector. The

inverse matrix of Equation '(2, 43) does not exist under this condition.

Hopefully,, the Critical point is arninimizing-point, so the -computational

equations can be switched io those of the Newton-Raphs6n method as the

point is' approached.

L Now,. suppose r = (n + 1). In this-case, the (n + 1) Equations, ,(2. 38)

completely specify the (fixed) end-point and, hence, Ay, without reference,

L to the minimization criterion (2.37). Truncation of (2. 38) after first-order

.terms and rearrangement then gives

y [ Vy 4(yo )] ' (4(y) - (yo)) , (2.44)

L 1



:provided the problem is normal. If the choice

O'y) -4() (iy 0 1~(.A5

is made,, a gradient-like iterative equation results:;

,Ay 4 (yo - i) , < C 1 (2.46)

Use of an equation of this forrh to Sfind the minimizing path will'be

termed the "modified Newton-Raphsph method. "

The scalar constant C is the only experiencefactoi tequired fbr this

scheme. If C 1, Equation" (2..46) is recognized as the ordinary

Newton-R-aphson method for findlng a root. Usually, the Initial guess

of yo is so far from the minimizing -point that some, smaller value for

C will'be required; hence, the bounds '0 < C 4 1. As the solution

approaches the critical value, it is normally found that acceptable values

of' C become larger and larger. It is possible to, automate the proper

selection of C on the,computer.

There isho guarantee that the, method will converge to a minimizing

solution. However, the second variation test described in Appendix B

can be used to determine whether or not a solution does minimize.

The modified Newton-Raphson method can, also be used for the class

of control optimization problems for -which the terminal surface

Equations (2. 4) assume either the form

i xi(T') - X i = 0 , i 1, ... , r- < (n+ 1) (2.47),

20



or the form

. x(T) X. 0 , -1, ... , (r-i ,<n (2.48)

4r' =- D =0,. (2.49).
r

after a suitable -renumbering of the state coordinates. 'In these

equations, Xi, x. and D ai-e specified constants. A large
number of optimization problems fall #nto this category. The

I advantage Of using the, modifiedNewton-Raphson, methqd ,Over the

meth d of ',steepest descent -is faster convergence.

When, the termihal conditions (2. 47) are substituted' into the transversality

conditions a(2. p19) a (2. 20),. there results

Hx,p) (f 4 p'f) 0 0 '(2.0)

0 0 01

pi1 (T) ei, i = 1, ... , r (2.,51')

1 pj(T) 0 , j- r+, ... , n (2.52)i

I Since the Hamiltonian is constant along theentire path it is evaluated

in (2. 50) at the instant t ; 0, which allows simpler computation.

I Equation (2. 51) specify the constants ei and hence give no new infor-

mation. When the solutiOnsare considered to be functions of the

I vector y, Equations (2.47), (2. 50) and (2. 52) become the set

x(y) -X = 0, i = ,..., r

H(y) 0, (2. 53)

pj(y) 0, j = r+1, ... , n

*The function g of Equation (2. 1) is taken to be zero here for convenience

12
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This is the two-point boundary value problem,. based on the necessary

conditions of the minimization probIem.. When the set (2. 53): is expanded

about the pQint ,y and rearranged as in th developmen-it of Equation (2. 46)

t-here results,

k (yo -x

=Y -nQ~ o  H (y )  0 < .C I,,(,5)Ay (2.5)

where (x - X) and, p are the vector forms of x. ,and p,. in (2. 53).

Let f(0) be the right-hand side ,of Equation (2. 2) evaluated at 4 0.

Then the m atrix n is

y go

02(y) 0, f"(0), (2.55)
'0

Again, there is no guaiantee that the iterative Equation (2. 54) will

converge to a minimizing sol'ution. However, the sufficiency condition

of Subsection C may be, used to determine if an optimal trajectory has

been obtained.

Whenthe terminal value of the independent variable -is specified -as in

Equations (2*. 48) and (2. 49), a reduction in the size of the system is

found. The boundary value problem for the terminal surface becomes

that of solving the system

x (P ) - x 1 0 , j (r -.. 2,(r56)
(2. 56)

Pk (p o) 0 0, k =r ... n

22



f6r theininizing P The iteratie , equati.66 is

x (po- x'C
APo -C w(p) , 0< C 12, (2.57)

, ,p ( p o )
~0

A

swhere (X25 XY and p are the vector, forms of the left-hand side of

syste m '(2. 56), and

v '(p )5

I p0  0V (p
:w~p Y= "(2. 58)

L Pol P 0

I THE PARTIAL DERIVATIVES I (E)

I When Equations (2. 26) and (2.,27) are differentiated with respect to. the

variable y = (T, po), there resultsl0
a g (T, x (T),)

J + Vx g (Tx(T)) + to(T )  (2.59)

V J = V g(T, x(T)) V x(T) + v x (T) (2..60)
Po X PO PO n+1

5+(T, x(T)) + V (T, x(T)) k (T) (2.61)
" X

V P V Oi(T, x (T)) V x (T) (2.62)

23
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where

(t)= f fd, (2. 63)

0

.t he integral termi of Equationfi (2i 1),has been introduced as a new variable

(see AppendiX A).

The symbol J in Equation,(2. 59) represents the partial derivative of

EqUation (2. 26) with respect-to the variable T. This-variable appears

both explicitly and, implicitly (in the variables x), as indicated on. the right-

hand side of (2. 59). A similar interpretation holds, for Equation (2. 6-1)

Since all terms of Equations,,(2.59) and (2,61) are available after ,a path

has been found, i and 4 are readily evaluated. The other partials

may be estimated or they may be computed if v x (T) and T x (T)

are known. P0  p 0 n +,

Consider, first, the estimation of the partial deriVatives. Since the

solutions are -continuous functions of po thefunction J maybe expanded

in a Taylor' i settes expansion through second-order terms in-one of the

variables pio:

a'J 2 1 22jtpi + 6Pi ) Jo + 6 Pi + 2' (P) (2.64)

0 )

The left-hand side notation of (2. 64) indicates that only one component. of

p0 has been changed by the small positive amount 6pi
24
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fNote that the terminal value, f the independent variable T isaiso held
constant. The quantities J , a . or-respond to -the,

0i 0I extremal generated with the initial conditions p 0 . Substitution of,

-op. into :( 64). results in

j(Pi- 6- 2 (Ip,) (2 .65)
I -0 0 0 b i Pio .

I Subtraction of (,2- 65) from (2. 64) and rearrangement gives ,the desired

resultIi
J(P. + 6 P.) -6J(p - 6p.)

1 1(2.66)-

Pi .2, bOpL'0I O 0

That is, the partial derivative is obtained from two solutions with slightly

I different initial conditions- in one of the components: of p . A complete

set of first lpartials is obtained from 2n, perturbed. solutions. Since

j values of 1P can be determinedfor these per- irbed solutions, the obvious

changes in, Equati6n (2. 66) maybe made to calculate V V./

I If the Newton-Rapbson method is used, second partials must also,'be,

estimated. The form of the matrix of second partial derivatives for the

function J is

PO-

i j2 J2

L25
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Of these, only JT' -dan 'be, calcullated explicitly.. The-computationial- equation,

from i.differentiation of E'quation- (-2259)is

2~~~~ +2 (VgT (T)). cT+ ,g( x-(T)) k(T)

x '(2.,67)

+ j (T v~~Tx (T))' k (T) I T),

where

f f fx + V f (V -ux + T -up) -(2. 68)
o ;xo0 uo x- p"

and where Vf I and'V.f' are p artidls with, re specpt to excplicit Apopearanic e

,ofx ahnd u in, f- - Simnilar equations, a-b written for x f',. The-

copnonents of, V70 J are comrputed from application of (2.,66)1 to. the

The diagonal ,elemhenits of 1 2 Jare estimnated fromn

2- J(p. + 6 p. )'+ J (p. -
6 pg. ); 2J

,1 1 0
0, 0 2 10 (2 6B9)-

pi (p

Equation (2. 6 9) is dei ived, by 'adding Equation (2. 64), to -(2,. 6 5) and

rearranging the result.
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The off.-diagonal terms, of V2 _J- areestimated, from

Sp.+ 6  +J, - J(p -. +&p )- J(P. + 6 )

O 0 0- 01 0O 0'6'

10 0O' 0o J

where J(pi + '6 pi, "p. + 6p. ) is the solution which results when
~1 1 J> J

the elements and' p. are perturbed by the small positive amounts

0 JO
6p. .,and 6 ., respectively.

00'

IEquation (2. 70) 'Was. derived by expanding J -in. a Taylorts, series expansion

through second-order terms in the variables plo, p- about the solution,

L for po. Substitution of (2. 66) and (2.69) ihto the result, followed'by some

rearrangement, then gives (2. 70).

Ii Equations similar to (2.70) can be found for either or both of 6pi and, 6pj°

10 J
considered ngatiVe. It is recommended that cross partials be computed
for the' perturbations 6pi , 6pj 'taken in the direction of expected change

in the 'solutioh. This..an be found from the direction of steepest descent.,
The -partials (2. 70) require an additional nn n.- 1) solutions. The grand
total" of solutions for .a Newton-Raphson step rises to n(n + 3'), not counting

the unperturbed' solution

'Finally, secondderivatives of 4/, are computed by substitutingcomponents

of ip for J in, the above equations, with the exceptioi thatL 1 2VI.x+g

+- 2-[ /di + V UiX- k V2

i T x X
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There are severaldisadvantages associated with. estimated partial derivatives.

The 'biggest problem involves the integration, accuracy, Since the partial

derivatives are approximated by differencing integrated solutions, the random

,error generated bythe ihtegration algbrithm may result in bad predictions

of theminimizing point. Closely related to this problerm is the ohe of picking

the perturibations, I p. If these are too small, the partial derivatives will

reflect the integration error, alone.. If they are too large, the paftiai der.va

tives will not reflect the' nature of the surface in the Vicinity of the pqiit

(T, Po). Intermediate values must be chosen by experience. Ev ft thei

there are errors in the estimating equations, since these correspondrtodf-

ferentiated (quadratic)-three-point fits. It generally takes longer toestimate

the partials on the computer than to compute them explicitly (see Subsection E).

The total number of equations integrated. per step is n(n + 1) (n + 2) for esti-

mated partials, whereas it is 2n(p + 1) ,for explicit computation., It took about

three times longer to estimate the-partials than it did; to compute them explicitly

for a particular problem (n - 3).

In spite of these difficulties it may be wise to estimate 'the partial derivatives.

for some problems rather than to calculate them explicitly. The set of

differential equations for estimated partials is much smaller and easier to set'

up than the correspponding set for the explicit computation of partials. Even

if the partials are to be computed explicitly it is helpful, for program

.checkout purposes, t6-have estimates of the partial derivatives.

The value of the Hamiltonian is theoretically constbant, so it may be used'to

detect-large truncation and round-off errors.

THE PARTIAL DERIVATIVES II (F)

Now consider the explicit computation of partial derivatives, For this

purpose it is convenient to shift to the Hamiltonian formulation of the

problem. It may readily be verified that the equations
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'H YxuPp

X- I )2

I H (x u, p). + 40Gkx, u) , (2. 1,5)

Where H4 is defined by Equation (2 8,are-identical With Equations, (2. 15),

: (2, i.)And (2. 12), respectively. According to the arguments.of Appendix A,

e-achsu-b'arc of'da path has its own- 'Set of readucebd differe-ntial ~equations of the

extreima' of the~fcorm,

if V H (X, p (2. 76)-

-p = V) 1 (, (2. 77).

'Where, of course,

U, =U , p2 78)'

Now, in the solutions of Equations "(2. 76) and (2'. 77k), x,, p, ate functions

of the independent variable t and -the initial conditions x,, p,, on the

s ubarc., Consequently, c and j are also functions of thes e quantities.

Differentiation of Equations (2. 76) and (2. 717) with respect to a typical

initial value b. followed by an interchange of the order of differentiation,

-on the left-hand sides (which is permissible) gives

L~_ + ~x V 2 HP. (2. 80)

dt = V H1 _L - V2 H I (2. 81)
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Equations (2 80) and, (2 -81) are a set of 2n linearzfirst-order homogeneous,

differentia'l equations with time-varying coefficients. They have a maximal,

set of 2n- independent (column) Vector solutions.. Only n of these solutions

,are of interest for the control optimizationproblem: namely, those repre-

sentifig partial derivatives with respect -to the initial Values of'the multi-

pliers p. These solutions are represented inmatrix form by

VPF x

(2.82,)
:.L P L

where V x and, V p areboth- nX n matrices. Linear- combinations of
_P0  P0

the solutions-(2. 82.) of the form

'6x.(t). = VpX (t)-dp (2. 83).
p0  0

6p(t) V p(t)do (2.,84)P0  dP

for small dPo0 represent.all possible neighboringextremals about the

extrem-"l whose initial conditions are xo afid'p0 at t = (holding

x 'fixed). The equations .of these extremals are0

x(t, p + dPo) = x(t, po) + V x(t)dPo (2.85).
0 00 P0  0

p(t,:Po + dPo) = p(t, po) + V p(t)-dp o  (2.86)
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-Initial coniditionisfor the -solution.(2. 82).,of the difentaEqtin 280

-and, (2, 8 1),must- be deteriied. For the, first -subarc, s are,

0) z V, v p(0) T (2 '87)

sihde- the initial conditionis on, the path -are t 0, and

I:-Differenhtiation, of (2.,,8) with respect to p0 results- in (2; 87,),

LTh-e initial conditions at the. junction point t of two subarcs are deter-

Minied, from continuity' c ohsiderations. These require A(see Appendix A)

x.(t1  p) (ti k 1  1  (2. 89

L~ p(ti P, p (t1 ,Q 1 ).(. 90)

Differentiating and notlihg that V~ x(t) = , p(t) 0,

I v, p(t 1 0, and V7' p (t) I then gives,

Vp' 1  x 1  (t) + (t,) - '(t 1  V t1 *(2. 92)

0 0 p

Here, the matrice-s VOx (t) a.nd V P p (t d are terminal values for the

previous subarc,, and :k (t 1) , (t) and x -(t Q,~ (t) are limits of
the time derivatives from the left and from the right, respectively. If the
control functions are continiuous , the partial derivatives are continous in

tim e at tp if'discontinuous, the row vector V POt must be computed.

j 31



It is determined from either' (A. 28) or, (A. 35),of Appendi A, depending oh
whether a constraint is being added or subtracted. if (A28)is the subarc
terminal surface-, it is fouhd from, the implicit function theorem that

vt IVG VG k-(t 1) + VpG, p(tfl), (2. 93)
0 Po 0 J

where Gi is defined-by-the equatiOn' following (A. 28).

The differential Equati0ons (2.80) and (2. 81) are usually integrated right
along With the set of Equations (2. 76) and (2. 77). -In this mannier, the
time-varying coefficients of (2. 80) and (2. 8-1)-are easily calculated at
each point along the path.

The terminal surface of a path is, usually -described by one, but not
necessarily 411, of the components of (2.4) being zero. 'On the surface,
the. first 'partial derivatives are evaluated from Equations -(2. 59) - (2. 62).
Examination of these equations. now shows that only V x (T); .s still

p n+1
undetermined' This may be evaluated in one of 4woways. The ffist is to
add the differential equation-

d- f+ = V f x v P (2. 94)
dt 6 a x o ba + pfo ba

To the set (2. 80): and (2. 81) and to'integrate it along with the others.
The initial conditions for the first subarc and. at breakpoints are,

respectively,

VP x n+-0)= 0 (2.95)
p0 n+

(Vp xn+) V X+(t1) + xn+1 Vp ot1  (2.96)
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Th16e eohd method- of evaluating. V -k stems ,frofh, a theoreih in the

calculus of variations concerning thediffferenti lI of xn for a onie-

.paiafameter famnily of extremals (Ref. 22# pO. 237-). 'Here,

tdx n+,1(T ) = (f6 +1 IT dT - p(T) dx().(2. 97)

-Substitution of'

dxc(T) =*(Td + x-(T)--dp 2.8p0 0

f into (2. '07), 'and rearranging--j then gives

F0 dxn~()= d p(V) 7x (T) dp '(2.99)

from, which it .fbllow s that

VpXil+,1 (T) =- p'(fl'' V,.X(T) 0 (. 100)

integration of '(2.,'94)' and, eValuation of (2. 100), give the same

result theoretically. Ho*eVer,- for numerical accuracy it'is,

better to perf'orm the integration. than to evaluate the identity.

E'quation (2. 100) is useful for programr check -out and for

checking the, integration accuracy, since it is' true for -all

value's of the independent variable.
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The second derivatives come from applicatign of -the second, Vaiation, see

Ref. 2, p. p2. For- the doiitrol optimiz.ation problem,. this mn y 'be written

J=dV x4 "' T
-, 1 'T)xT 2  2p. +xT -2 w f~ud 1(2_101),

0

tybere-

V g+el' '( 2..102),

2 1

2F2 2

+ -2 [ , + M (T) V V] 6x(T) dT + 6x"(T) V V76x(T) (.13

and

2,w =quadratic form in second tpartials.of (2. 10), in, all variablles,,,

The'definition of the 6-oporation is given on P. "."95 in Bliss ikook. The

expression (2. 101) assumes that- the transversality conditions (2. 19), and

(2. 20) are satisfied, so it is generally an- approximation during the iterative

process. The terms required to make -it exact are usually too- complex to
compute. They are neglected here on the grounds that the transversality

conditions are nearly satisfied, and the 'Newton -Raph-son, method is known

to be insensitive to error s in the' coefficient matrix.

When the comparison curves are restricted to the neighboring ext.remals

(2, 85) and (2. 86), the integral of (2. 101) can be reduced to (Ref. 22, p. 245)

f 2 wdt 6 p'T6 x(T) ,(2. 
104)

0
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f where '6p and; 6x are defined by (2.:83)and (2. 4), respectively.

Substitution into (2. 101) then gives

d2J' dpj W VpW dT (2. 105)
p0

9 W 2 W dpSPO P16

where the (usually approximate) partial derivatives,,are computed from

2XS--(TY (T) + + 2v -1 i"(T)+ x'(T) ' V x(T) (2. 106)r

VW V MY(T VX (T) + [V ( )+ x8(T) V V Vxft) , (2.'107)

I: and

V2 W - V! V(T) T) sym + Vi x(T) V2 V V x(T) (2.108)

VP0  p p0  0y o 0

Note that (2. 100) may be substituted into (2. 107) and that the partials simplify

considerably if (2. 101) is a linear function.

It was tacitly assumed above that breakpoints contributed nothing to either the

first or the second variation. This point can be checked by splitting the

integral of Equation (2. 1) into several integrals, one for each subarc, and

.exr,-M-ding each through second-order terms. It is found that breakpoints

coi.:tribute nothing to the first variation because of continuity of all the elements

across such a point. The second variation contributions are zero if the
- breakpoint is not a corner. Corner points, apparently, require further

examination for individual problems.

35



SECTION III

OPTIMAL TRAJECTORY° CALCULATIONS -
APP LIQA-TIONS AND, RESUtLTS

AN, EXAMPLE !PROBLEM (A)

The folloWing simple analytical example illustrates the concepts presented in

Section. II. The-problem. chosen is the two-dimensional harmonic oscillator

with a single controi -function. The problem Was, found in Reference 27 The

,equations of motioh Are

dl (3. )

dt 2'O

It is desired to minimize the control effort over the path. This may be

expressed 'in integral form as

T

J = u2 dt. (3.3)

0

The terminal surface is specified by a given terminal time and by

xI(T) = 0. Thus,

',= T - K 0 (3.4)1

12 = x(T) 0, (3.5)
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f where T~ is the -Value of- t, on thy terminal s urface. The Hamilto~a o

thi§ system is,

L H~ p 1x2 p(-x + u)+u%(3)

VThe Euler,-Lagrang.e6equations are, thus,

VP' ~(3. 7)

1I 2 (3.8)0

The o ptim ,al -control fu -nction, .from (3. 9), i's seen to~be

This control function~ automhatically. satifsfies, the miniriiu principle ~and

Ithe Cl'eb sch necessary condition,. E quations (3.?7) 4d-(3:8) re linear

,equations with- constant coefficients ~and may be solvfed directly. In terin s

of initial conditions,

p1 ( M [cos t sint [ P1

LP2(j L sin t Cos t L 2 i

where p, and P2  are the initial conditions on p Iand P2.'

The homogeneous part of Equations (3, 1) and (3. 2) is the same as that for

Equations (3. 7) and (3. 8). The system is thus self -adjoint. The solution
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-of tqations 3.1), and (3. 2) -tan, then be written as

[xi(t) Cos t ikn- t-A2

Igt -sint C st
i L

-snt sinA CSlnT c-sTL S .t Csfl COSTTS
0

After ,substitution and integi'ation,

x f)cos,.t Sin t X

x,(=: [sin t -Cos][ X:

(3. 13')

(t cost -sin t) t sin t

"t sin t (sin t+ t cost I P]

1 22Jit W 8[1 (t - sin tcos t) - 2p pP 2 sinft

(3,. 14)

+ p 22 (t + sin tcos t)]
0
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' On thea terminal suttface,, then,.

[ Q()~ [P2T- sin TcosT) 2,p1  p2  pin 2 i

IL,. 15)

[ '2 T'+s inTqo0s t),P
2 (

f sinTSin,

(3. 16),

IT (cos~T sin T) ' sin T p1

4't sin T (siniP + t os T) p2

IIThe function Fo~ , Equation (2. 28) for the equivaleftt minimization problem

L may be written, from '(3. 15), (3. 4) anid (3'.'5), as.

P=J (T) + e I (T - k), + ex k 1 (T) .(.17)

The first necessary condition then gives

1 2

0T u -( sin T - P2cos T) + e 1 + e 2 x 1 sLi

L +x cos T +1 PiT sin T P (sinT +rTcosT]
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1 .2
O-'(' sin T os'T) in j

4 02, siolp"0

(3.4 19)

('Tcos-T - sin T)

0- o=Li7T'+p (T + h siTos T)]

-,(3- 20b)'

These, together With (3. 4) and(3. 5), are to be- solved for, TI., p1-

00

A sinK (3.23),

0

2 A Lon 0 (3. 24)'

1~ ( snK x2 (iKcosK sn

el A ~K (3,.25)
(K -sin-K cos.K)

provided K 0 0.
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'The -point, definebd by ,,!quations--(3,.21 )- through'(3.-25) is, truly a minimizing

point., this- will now, be shown by poristructing the matrix of <Equation (2'.36).

Thie set (3. 4) and '(3 5) is first completed. by-adding, the equ atibn.

Then. the Equaktion (2'. 35) -may be Wifitteq, ,for the cr itical point, as

10 AT 0;

Fl fI k2 Ap' :0 -(3. 2.7)

0,

where.

11 'bpg Xp 21 p1 ' 22

Equation, (3. 27), may be rewritten-

AT'1 0 00

AP 21 a 22 a23 0 (3. 28)

Ap 2  a31 P32- 33 A

where

a21 C (x 1 2 2  x x2 2 * 2 ) a 2 2 =Cx 2 2, 23 Cx 1 2

a C (x2 c k x1 2 ) a 2  Cx 2 1  a3 3

cj (x 1 -1 x 2 2 - x2 1 x 12 )
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Also, at-the -critical -point,

0-- AK sin-K A (sinK + K cos'K)

A sin2 K

22

A InK1(KK - sinKcoK

-T' ~~sn K i -

:Lsin K K cos K) - n(K+sin K cos )

(3. 29)

After alt the substitutions have 'been made, it is fouhd that the matrix A4

of Equation (2. 36) is the scalar

A - (K - sinK cosK)

112 .2'4 (K sinK)

Since K > sin K for all K > 0, A 4 > 0. It is, thus, concluded, that the

solution is indeed a minimizing solution, since there is only one critical point.

The accessory differential Equations (2. 80), and (2. 81) for this problem can be

wi'itten

a' 0 1 0 0

x -1 0 0 1
6 a 2 baa

d = (3.30)
6 _0 0 0 1

a P P

0 0 -1 0
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It can readfiy be verified that the s6lution of (3, 30) is

xi ax sin l tcOs t -t sin t

ox 2  ] 4' x(O 

f6xx 2  t sin . -(sin t + t cos t)

0 ~ 0[ (.3,. 3-1)

6 Pl, h

d .cos t sintOPI 'bP2
.00

p= -v (10) = I (3. 32),
Po P0

OP2  b_2 -

P 4 -sin t cos t

The first derivative of (3. 3) with respect ot-o, from (2. 100), is

V oJ - p,'(T) Vp x,(T) 4 1 (T - sinT cosT) -P2 sin T),

0L 0I (3--33)

-P sin2 T + P2 I(T + sinTc6s T)c
0 0jI °

It, is seen that this corresponds to the results of differentiating Equation (3. 14).

I.
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Since the constraint Equations (3. 4), and -3, 5), are linear, it is seen tnat the

matrix (2'.1.05) of s~cond partials -reduces to

~Tsin T cosT 2

4 4,
v'x(T) V~ p(T) ( 3,.34)

-sin, T T+sin Tcos.T

This agrees wjih the -corresponding terms of (.29), when tie identification

T Kis made.

THE HIGH ULi T-;DRAG RATIO, VEHICLER OP TIMIZATION STUDY )

The-Problem Statement, (B-i1),

A trajectory is s6ught which minimizes the functional (4. 6) for a flat-plalte

vehicle with aerbdynamic coefficients represented by Equations (1. 3). The

dataf-or these form ulas is C = L 82,J C' 0- 042. and, ZC = 1. 40.LO Do' DL,
The motion is assumed to-.be governed by equations-of the form (1. 1) and the

atmosphere is specified by the relation

p =p e -R R (3,35)

The terminal surface is represented by the single equation

4 T - K = 0, (3, 36)

where K is a specified constant. The pilot~s acceleration, computed from

the formula

ap i-La.L D + C2 (3,37)
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r

[ is con strained-by vthe inequality

a, , (3, 3,8)

(The constant B is-generally taken. as 10 g,.) Initial conditions for the

path are

IV 0 35, 006feet per second

iY 0o -5 degrees-

S= 400,000 feet
0

The criteriofh (1 6) is chosen to, correspond to avehicle which radiates

heat most efficiently at a, specified temperature. The constarit

Q = 195 BTU/sq, ft.4/second fixes this temperature around 3000 R

for -this -particular vehicle, and,. since the trajectory is selected by the

criterion, theheating rate of the vehicle, deviates in the meah-square

sense as little as possible from this constant, 'To simplify the computations,

the heating law is -taken, following, Chapman (Ref. 6) as

C 2 v 3 , -(C = 2 x, 10 - 8 ) . (. 39)

A more realistic formula, which, includes a radiative heating term in

addition to this formularepresenting convective heating, is used in the

next subsection.

1Since T is a constant by (3. 36), it may be omitted from the criterion;

so the integrand fo of Equation (2, 1) may be identified with the integrand

1. of (1. 6):

f Q - q) , (3. 40)
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The function g of (2. 1) is taken as zero. Thus, Equation (2 10) for this

-' applicati6n read-s

F f- + 'p (f - x) + i. (B - a Y 2 (341)0 p

where the terms on the right-hand side correspord to relatiPns (3. 40),

(1. 1), and (3 38), respectively. The range coordinate , does not

appear explicitly in these -terms and, hence, is a, cyclic (or ignorable)

coordinate. 'The correspondig Euler-Lagrange Equation (2. 11) is ,,

P4 
" 0; hence, P4 must be a constant, This constant is zero in

order that the transversality conditon (2. 20) 4,s atisfied on, the terminal

surface (3,36). Hence, the fourth, equation of system 11. 1), may be

eliminated. Further evaluation of the transVersa4ity conditi6n gives

'P(TP) =P 2(T)= p3 (T), 0 ,

and

H e

where e is, a constant which is yet to be determined. To compress the

notation, the remaining three coordinates are written as

X = V 2= x 3

The Unconstrained Subarc (B-2)

The multiplier i in expression (3. 41) is zero on any subarc which is not

limited by equality in the constraint relation. This follows from (2. 13)
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[ with 1G 1 0. The Euler-Lagrange Equations (2. 11) and (2. 12) becomne

p I' ax p x- P

-- P2P + 2... PI('04
" 1 2 3

0f B~f2

P3 - a 2 -x +aX-
X 3  '

11+
,0 p+ 2- (3,43)

The last equation becomes, when substitutions from 1. 1) and (1. 3)

are, made,

SSpy. I sina.,. [-3 CDL P1 vsina cosa

+ CLO P2 (3 cos 2 a - 1)] 0

I
Assuming re-entry conditions,, the leading terms of (3. 41) are non-zero
if I sin a J 0 . The bracketed terms may thenbe rewritten in,- the form

2 3 CDL PI t
tan2,a + tanOa Pa - 0(

)



This leads: to the equation

tana -a + 2J -(3. 46)

Where

3 CDL

a - --2a 2LO :P2,

Note that the Sign of tan-a is determined by-the choice of the ± sign in

Equation (3.-46)

The lift-drag polar is traversed once as a rangesthrugh r radians.

It is thus advisable to limit the contr1 function to a range of' TT radians

to- avoid double values. Furthermore, the points a = 0, rr are

singular points,, since 2 '(the determinant R of (A. 13) in
ba 1

Appendix A) is zero at these points. The range 0 < a < 'r is

chosen. here, since then, sinl -al sin a ,, and the proper sign for

the equation is, most easily chosen. the singular points are removed

by defining a = 0 at these points. Thus, the range, of a, is,

0 < a < Tr. (3.47)

The proper choice of sign is determined by considering the minimum

principle which yields the inequality

F .2sin a [. DL Pv sin a + CLO P2 sina cosa

(3.48)
.F. 2!9 Sin AF -C lv sin A + CLO~ sin A cosAl

where A is any value of the control function satisfying Inequalities (3. 47)

and (3. 38). Substitution of (3. 45) into (3. 48) and rearranging, then gives

P 2 sina tana ! P 2 sin A tanA (3.49)

providing tan A satisfies Equation (3. 45)
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[ Since sin & k: 0, and the sign- of- tan a, is determined, by the isigni of
Equation (3. 46)', 'it is seen ,that (3 49).is ,satisfiedby the- choices::

-I >b 0, choose. sign,, (~< a- < -;

t f 2  0 chnoose+ sigh(0 < a<

l The 'behavior Where p2  -is- examined -by a. limiting proces ic

11s1)2 and, v -*re 'continiuous functions -of ,time. The binomial series

expansion, assuming large a, gives

If a > 0" and th,; mnus- sign were chosen, -then,

tan a =lim - 2 1 a a . TT- (from, the-left)

a2

If a< 0 -and the plus -sign. chosei',

tan a lrn 2 la! I a -.4 -- (from the, right).

On the- other hand, if a < 0 and the minus sign chosen,

ta ad, !a. 0 TT (f rom the right).

lFinally, with a > 0 and the plus sign,

tan a "i mn 0, Q.0 (from the left).
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The, last tWo.-cases show that it- is pos-sible for, -- to, be 'discotilnuous. 'For

ex;ample, if p2 passes-through zero- and d, _w-as neAr r -then at -wil jupp
to zero as- ,2 goes through,,zero. 'This, difficulty is cleared -pif the poe

interpretatilon.is,.made. 'Since tan (IT + d) tan a, ag may be thought odf
-as being conitinuoqiusacross. jumps, 'but, inA th dis-alloWed, region -~a <2 Tr.

'The control'function- disconitinuity will be retained ice computer results can

proprly be interpreted, and, s.ine-it, allows I sin a-I sin a, in all eutin.

Finally, although of little 'practical importance,. ifp 1 and p.are simpultaneously
rpero at a p-oint, the limit, ratio, is p-p attat-poinit-by L'1{ospiiall's

rule.

To sum--up, the reduced differentiali equ Aibns -of the extremal!§ for subajrcs -_

having a < B ar, the first three of -(1. 1.). 'and ste (342-The control
P*

function is coImputed, from Equation (,-3. 46) in the range 0 :! a < Tr acorin
to the rules following Equation 13'.04) .The subarc terminal, surface ITh

a B, provided that - 0.

The,C Con strained- Subarc (B-3),

-When ap B the, multiplier ji of (3. 41) may be different from zero. The
Euler-Lagrange Equations (3. 42) and (3. 43), modif ied for this, -event, are

I - f + -1 2 L3 x
B x a1 x + P2a + 13 1 a

Safi- + bf 2 af35)
2 1 b x + P2 x 2+ -- a 2s-(3 0

af f 2 2 aP

+ p1  +p 3  - J~ 3
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I
-,,,at, 2 F ap

The Control fUnction, is determined from a = B and the multiplier R.
- 'p,

from ( cp). Xpnsion and rearrangement of the constraint equation;

.2

DO2 2

0 qDL "  Lo

c: 3 =2-CDO CDL

The right-hand side of (3'. 52), is a function only of the vehicle aerodynamic
coefficients (constant ) and sin a . It is zer6 when a = 0 or 17, and

maximum when From this it follows that b must satisfy

CDO ! b (C DL + 0 DO) (31,53)

The physical interpretation is that if C DO > b at any point of the path,

then ,a has.gone to zero in the futile attempt to keep a = B. The inte-P
gration is stopped if condition (3. 53) is not satisfied.
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NeIIwton's method was chosen to- extract 4 from (3.M5). The' teration.

-equation is

(2
-CZ~ -sasin in 3a -2 in a+cJ

sin a O, Uia '-
si a-co [6 c1 sin',3 a + 4c2 sina + 3j

A 'a is calculated from (.54), using aniasumed'a (usually the last

integration step value) This 'is added to a, and, the hew 0! Is used'to6
cdalculate a new, Aa *The process- continues until Aa is negligible.

* hteIcnity,,of a, 0,- or 'r, the denominator of (3.,54)- is, likely'2
to be quite Small. To~ avoid this difficuilty, Equation .(3, 52) Was -expanpded

-as-a: series. The results, are:

f -O (sn 3  ('b 2  C2)1/3:

-if a 1, (sina (Tr'- a)-

b.2 _C,2 113.
lo then. a i C

3T

if a Tr (cos a (TT -a) 1 (,TT a)

then a CLC & b 1 /-2

3 CD (CL + CDO) b CL

where

the +sign is used if P2 > 0, and

the -sign is used if P2 < 0.
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I If P2  0, choose sign- so that tan a is continuous. The choice of

"igns again comes from the minimum principle.

It is also noted that the determinant R of Equation. (A. 23): in Appendix A

~)22

. is

R

Since this- must never be zero when ap B, a must, never be TT

oI T

lFinally, 4 'is calculated from Equation (3. 51) in the form

I4=,a~ ,p (3 55)

The reduced diff erential equations of the extr emals for the, coqnstrained

subarc are now the first three, equations of (1. 1) and the system (3. 50).
The c ntrolfunction(0 < a < -- or 7F < a1 < i) from either the

iterative Equation (3. 54) or the small angle equations, and the multiplier

. (: 0) comes from- (3. 55)

L_ 'The Subarc Junction Points (B-4)

I It is known that t he 4Mn:,tipliers p and the Hamiltonian H are continuous

at the junction point of tonstrained and unconstrained subarcs. It is

1 necessary for this pro'elen; that the points at which a = 0 , -- be

ruled out as junction' p ,6inf.s, since the determinants R1 and R 2 of

I_

L
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Equations (A. 13) and(A. 23) must be non-singular at such points. For all other

values Of a , it'turns out that the control function must be continuous at

junction points. This is readily verified from examination of the Hamiltonian.

It is an analytic function- of x, p and 'a. Since x and p are continuous at

junction points, and- since the Jacobian R is' non-singular, it follows that

a is continuous~at such points. Similarly, since R is-non-singular,

Equation (3. 55) shows that 4 muSt be continuous at suchpoints. Thus,+ ,

must start and end with the Value zerooon constrained subarcs, It then,

follows, that the constrained subarc terminal surface is :R 0, provided

# 0 at the junction point

The Ne w ton-Raphson.,Equations (B-5).

The fo6rm of the equivalent minimization problem considered, here is:,

Minimize the function J(T, po) corresponding to the functional (1. 6) in

the variables' y' -(T, P1 0. p20, p3 0 ) subject to the constraint equation

I T - K = 0 (3.56)

The function F of Equation (2. 28) is

F = J(T, p) + e(T - K), (3. 57)

which, when differentiated with respect to T, gives

F (T, PO e) = 0= + e + V jdp0
oYlP 0 ~ (3.58)

since the constraint (3. 56) implies dT - 0. The constant e of ,(3. 58) can

always be chosen to satisfy the identity, Differentiation of (3. 57) with

respect to the other -ariables, setting the result to zero, and a little re-

arrangement then gives the Newton-Raphson iterative equation

dp (V2 j-1 V1 J . (3. 59)
0 PO PO
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I
The sufficiency condition reduces to showing, that ,the matrix. V3 is.. .. . ..... . .P o,
positive-definite. This follows, since in the-quadratic form

2dy, 'VFdy 0 (360)

dy 1 - 0 and the other components of dy are arbitrary.

The-steepest descent equation,,

* dJ
dP0 = ' J v, , J

Po 0

is readily verified using the methods of subsection H (D). The magnitude

of'dJ is chosen by experience,. usually smaller and smaller as the optimum

is approached.

Computer Results (B-5)

Some of the, domputer results are displayed in Figures 3- 1 through 3-4.

J" These trajectories were obtained using the method of estimated partial

derivatives of subsection I (E).
I'

The terminal times for the optim al, trajectories in 'Figures 3 -1 to 3-3 are

200, 440 and 550 seconds, respectively. 'It is noted that the angle of attack

histories are roughly the same, 'going from small to large values after

about 100 seconds of flight. This corresponds to a shift from maximum

positive, to maximum negative lift. It is further noted that this shift takes

place near the bottom of the first pull-out, where the heating rate is at- its

peak. The vehicle apparently does not possess enough lift to avoid the

heating-rate, peak for the given initial' conditions, nor can it-avoid-the

L 'mild skip shown in the figures.
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Figures 3-2 and- 3-3 show that for larger termii.a': timeb the vehicle dtiet
rather sharply near its terminal pointsf Edently the integral of

Equation (1.6) is minimized by this dive, in spite of the large rise, of

short duration, in the heating rate. It should be remembered that no

restrictions, other than fixed terminal time, were placed on , the terminal

point.

Figure 3-4 is included to illustrate the sensed acceleration constraint. It

does- not represent -an optimal path. The angle-of-attack history is similar

to the other results uhtil the constraint, set at 10 g's, bedomes an equality

constraint . From this point-onward, the ang!e6 of attack -change ssuch that

10 -g's is never exceeded. The magnitude of the additional multiplier i

is shown at the 'bottom of the figure.

Do the results of Figures 3-1 to 3-3 represent relative Or absolute minimums

for the, given problem? An attempt to answer this question was made by

re-optimizing with very different initial :conditions for the multipliers.

Computations were carried far enough -to, show that the same optimal path

would have resulted, indicating that the paths probably represent absolute

minimums.

The importance -of these results is not that they are optimal paths, for they

have ,many practical short-comings, but that they confirm the validity of the

automatic optimization scheme. Further improvement of the optimization

method was judged to be more significant and important at this stage than

the computation of an operationally desirable re-entry path.
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f The next stage of deVelppment was the iethod for -computing the partial

derivatives -explicitly (see Subsection I(F)). The computer program incor-[ porating this method calculated the first partials directly from Equation(2. 94),

whereas- the second partial derivative matrix, from Equation (1. 08)i took the

fform

VP j-2VxVp . (3.62)

0 P1o 0L oSYm,

,Attempts wer e made toduplicate the results of Figures 3.1 through, 3.3 to seeIif further improvement in:the trajectories could be made, Some reduction in

the optimal criteria was obtained, ' it, in all. cases, the second derivative

matrix Was so close to singularity that either bad prediction of multiplier

changes resulted, or the matrix became indefinite. This behavior indicated:

['j that, the surface-was extremely flat. It was decided to abandon this program in

favor of the more realistic, more complex and, hopefully, less sensitive

problem considered in the next section.

This program did show that the method, of computing partial, derivatives-was

ii superior to that of estimation. It also ran from three- to five-times faster

than the previous program on the computer.

THE LOWVILIFT -DRAG RA TIO VEHICLE OPTIMIZATION PROBLEM (C)

The Problem Statement and the Euler-Lagrange Equations (C-i)

A re-entry path which minimizes the total stagnation point heating (., 7) for the

blunt-nose body for which the aerodynamic coefficients are given by Equa-

tions (1. 4) is to be found. The. vehicle aetodynamic constants are CDO = 0. 88,

CDL = 0. 52 and CLO = -0. 505 , and the model equations are again the set

(1. 1) with the exponential atmosphere (3. 35). The terminal surface equations are

5
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-vA(T) V = 0

hT).A= 0 (3. 63)

S= ciT - R-, ,..
3 (T" R

with the-constants V = 1650, feet per second, A - 75, 530feet, and

A = .979- statute miles. Thus only the final flight path angle and terminal

,time are left unspecified. Initial conditions are taken as v°  35000fe

0per second' Yo -5. 75degrees, 'ho 4OO'OOO0",feet", -1o zero. Inequality

constraints imposed are relation 3. 38) and a bound on the control function u,

given by

2 2
u - k m 0, (3.64)

with u I a constant (16 degrees at present). Equation (3. 64) was found

necessary toproduce initial trajectories which neither -skipped out of the

atmosphere nor dived in too deeply. It is ,to be sequentially relaxed as

,the proper region of p space is located during the optimization process.

The integrand of criterion (1. 7) is taken as the sum of convective and

radiative heating rates:

- 4c + qr (3.65)

where~the convective component is given by Equation (3. 39)' and -the

radiative component by

q 7. 5 N -0(3. 66)

in which N = 4 feet, the vehicle frontal nose radius. Equation (3. 65)

may again.be identified with the integrand f0 of Equation, (2. 1), and the
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5funcdtiont. is omitted. Thus Equationt (2.410) becomes

= 0 + 2 2 .2 -a .
F q- + x) (u + ut -42j,) + lk( a 2 )

Iwhere the state coordinate- x now has four, comfponents with, 4
the, Euler-Lagrange eOquations -are

hf) f2 f B14Ba

fjI Bf al
+ 2  -- 3 -4

P2 P1XU 2 2

~4 0, 4 . 240

rB f4 a
+ p1  p 2~ - t

The Unconstrained Subaxrc (C_,2)

Both the 'multipliers j 1 and l2 are zero here, as noted in Subsection II1(B).

j Then, when the substitutions-from Equations (1. 1) and (1. 4) have been made,
Equation ,(3. 6 8) -become s

tan u C LO P2  ,(3. 69).

:1 0 DLP
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where- u is centered- about, zero~by -the 6onsitrit,(3. 64),, i.O

_u ug 'U '!9 U (3., 70)

the. minimum principle equation is

-lCLcos u + P2 - CL S' ii P IvC cos U'+ P2 'CLO sin U

where U is -any admissible value in, the range (3. 70).

The -left hand side of (3. 71) may be consi-dered as a dot -product, and the- choice
of a unit, vetor (cos-ui -sin u) which has inimjm, dot product with the v'ector

(-P' v CDL I .P2 LO)i

~cosu DLP1Y
I 2 ( 2v ( CL4 2) A-(DLPlv)

,(3. 72)
sin .CLO P2

V [ 0 LOR2~ + ( 0DLv)

which is paral-lel- but in the opposite direction.

Then from the signs of p1 and P2 . assuming CLO. negative, it follows that:

if P2 =O0-and p 1 > 0 then u =0

>0 p1 > 00< <

P2>0 P, = 0 n- 2

P2 0p,< 0 2 (3. 73)
P2=0 p11 < 0 u r (bang condition if u = ri

<0 p>0 2< u <0
< 0 0  U T

P2< 0 p 1 < 0 TT < u <2
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5 Thereare no4ingular points if p1 and p 2 are never simultaneusly zero.,

This :is verified by computing the determinant R of Equation (A. 3). The

5 subarc ehnds either with 3.38) or (1j.64) becomes zero.

The Constraned.Subaarc U ±u +I(C-3)

I Let -c be the angledefined by Equations 113. 72) and the sign conventions

,given by (3. 73). Then substitution into the minimum principle Equation,

!' (3. 71), rIves

cos (,CP - u) - cos (Cp U), (3. ,74)

which is satisfied if u and ep, < +iT, have the same sign. The condition

tP 'indicates a bang. Furthermore, substitution/into (3.,68) (With

112  0)- gives

P V[Spy c -4
LC V) (3.75)-

Since .u, and-,sin- (cp - u) have the same sign, u1 <='0, as required by

I, Equation (2., 14).

J There, are no singular points; this is easily, shown-by computing the determinant

R Z of Equation (A. 23). It is also easily shown that the control function is
continuous at the junction between constrained and unconstrained, subarcs.

Thus p1  from (3, 75), must start andend with value zero, since at such

points u = p. Then the terminal surface is jI. = 0, provided I 0

611
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The Constrained Subard, a- = B (C-4)y

The control function is determined from, a, B and, the multiplier 

from Equation (3. 55). Expansion -and rearrangement of the constraint

gives

2,acos ,u + 2b cosu + -c = (3, 76)-

where

a CD

b -C CDOCDL

2 2 2mgoC CIb CLO C( 

It follows by substituting u -0, ±rT into (3. 76) that the inequality

2m g oB
(C + CDL) - 2- CDL)> O (3.77)"~Spy

must hold. Furthermore, the determinant R2 of Equation (A. 23) is,

singular at these points.

Solution of (3. 76) for u gives

cosu = + 1 - a ](3, 78)
a

where the omitted root falls outside the range I cos u l ! 1. -It is easily
shown that the term under the square root in (3. 78) is positive by sub.-
stituting the upper limit of (3. 77) into the expression and evaluating.
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The- mifn fimprinciple again -takes the -form (3. 14):, exc~ept, that this, time

-uile< u. (3u 79)

Other~ise, cp and, u, would -be 'identical Then, once. again, CP & 0 an:d,
SIu- must, have the -same sign, And, cp =Q i's the bang -condition. It can

further'be shown-that the mnultiplier L 2 b~ecomes, when all-the, substitutions

hav~e been made,

v b -ac 'sin u-

Since sin (p ~ and: sini u have the same- signs, 0, as. required.

Again, u is continuous at junction points, soi2muststar-f.,and end at

zero; and- = 0 with '12, Oj describes the subarc terminal surface.,

The Modified Newton-RaphsOn Equations (C75)

The terminal conditions for this problem are of the.-form (2.41) which mean~s

Iithe iterative Equation (2.,54), applies with P2 (T) = 0, the single multiplier
constraint. Let T1 * and C .., is j =1,0 0 .. 4, be ,the elements. of'

. x(T) and 7, p (T), respectively. Then the matrix (2. 55) may be written

v v(T) li 11 1 2 T! 13 1114

~(T) In3j1 32 1133 1134

A A(yo) C (T) 141 1142, 1143 1144 P (. 81)

0 f (0)f 2(o) f 3 (0) f 4(0)

P2 (T) C21  C22 C23  C24
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The last vector of Equation (2. 54) assumes -the form

0

H(yo.0

where the-first component V (yo) - V = 0 is the stopping condition on, the
0

integrations.and, hence, is satisfied by every trajectory.

The matrix of second partial-derivatives in Equati6n (2. 105) is the five-by

five, matrix

-p'(T) x(T) -p'(T) V7 x(T)
V= (3. 82)
y 0*

7-V x(T) P'(T) -[V, x (T) Vp (TPoL o Po .]J1 0sym 
.

Both methods of Subsection I!(C) were used to reduce this to a two-by-two

matrix to be tested for positive-definiteness. ' or the determination using

inequality (2. 36), the equations

Y(yo) Y(T) + Z

(3. 83)
Yl = T+ Z 2
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were. a,4ded. to teset (3. 63)., Then, Eq uation (2. 3,5) reads

flu 1~ 114 dT 0

(T 131 112 133 134' dpi

p ~PO C() 442, 143 .14 d 2  0(.4

YV(T) 71 114 p 1Z 1

LI 0 0 0 L0 047

and the lower two-by-twomatrix of the product

("Vex~ 7yj (-7x 4 '2- (3. 85),

is-'the desired matrix A4 fn the other method, the first three equations

of (3.,84) were solved in the form

d T v(T) 111 1112. 11 14 dp
dp1  (T) 113 113 133 11 dP3 3.6

0 0

0

*J L -

Let D b thmarxo(385-an AA2 and' A3 be, respectively, the

upper left hand (3 X 3), upper right-hanid (3',x 2) and lower right- hand Q2 x 2)

submatrices of (3.2). Then the desired -matrix is

D'A 1D + DI2 + (IA21,+ A3(3. 87)
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Computer Results- (C-6),

Figures 3-5 through 3- 8 repres ent one traj ectory obtained using the m odified
Newton-Raphson method and explicitly completed partial derivatives. (Com-
pare these with the extremal of Figures 4-37 through 4T39, which was used
as the in'itial guess at the optimum.) The control, function (Figure 3-6) starts

on the -6o-degreebound (maximum lift condition) and stays there for about

65- seconds. This, is reasonable, since the radiative heating rate, propor-
tional to v 1 2 " , could' become quite large if'the density term p Were hot

kept small by the control maneuver. As velocity begins to decrease and the

,Opathbecomes shallower (Figure 3-5), dissipation of energy becomes impor-

tant; therefore, the control moves toward zero degrees;, the maximum drag,

condition. After the peak heating rate (Figure 3-7),, a little more lift is

called for, for ranging purposes. Then the control -goes to the +16-degree

bound-, following the rule of thumb that the convective heating load is lighter,
the faster the re-entry is accomplished. The peak acceleration is 9., 5 g's c om-

pared to the 10.3 g's of the original extremal, and comparison of the heating-

rate cur',ves of Figures 3-7 and 4-39 shows that the major difference is near

the peaks of the radiative curves (peak value is 188 BTU for Figure 4-39 an&

182 ,TU-for' Figure 3-7). The value of the optimal criterion-was about
'27 500 BTU for the extremal, Which was reduced to 27, 334 BTU by the opti-

mization method. This points out the flatness of the J (y) surface for this

problem.

Figure 3-8 'is included to 9how the angle ep of Subsection C-3. It can be

interpreted as the unconstrained value of the control function, and, over
the unconstrained subarc, u and cp are identical. At the terminal time,

co goes to rT because of the necessary condition P2 (T) 0.

There is some doubt that the trajectory of Figures 3-5 through 3-8 is a

,relative minimum, although, most likely it is. Both test matrices of

Subsection C-5 are indefinite, but numerical problems could be the cause

of this. The determinant of the matrix in (3. 84) is very small (on the order
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Of 10-), so its inverse, used in (3. 85), cannot be known very accurately.

S In the matrix (3.87) the middle two terms .buck the outer terms , causing,

loss,of from two to four significant digits. This is very severe, considering

the accuracy of the original elements an&the number of matrix multiplica-

tions required to arrive at'the result, The primary cause of the tr.ouble

r appears to be the fli.tnessof the J (y) surface for this problem.,

Some workers in the field feel that the initial value method of solving the

optimization problem is tco s4ensitiVe to use (for an examplej see Ref. 29).fThey argue that the Euler-Lagrange equations are the adjoint system to the

original system, and that one of these gives unstable solutions. This may

well be 'true for some problem's, but no s.uch instabilities were found for

this application. The method worked well, and was strongly convergent to-

the solution. Adequate prediction for all variables was obtained; in fact,,

the desired terminal altitude and range were achieved to at least eight

significant digits. The terminal value of p 2 fared somewhat worse,

x - compared. with its 'original.- value of 10 6. The Hamiltonian, a

crude measure of the integration accuracy, changed from -3 x 10 - to
10-2 at the,end of the path, an acceptable value, according to past experience.

Other evidence supporting the numerical accuracy may be found in Table 3-1.

Table 3-1. A Comparison of Partial Derivatives
Computed in Various Ways

6L bi- bj -J
bPl °  b2 )P3 6P40 0 0 0-p P2 o o~p o '

Estimated -0.14988x 105  -0.247x 10- 1  0. 184x 10 3  0. 118x'10 7

5 -1 ,-2.. w - '

Computed -0.15057908x105 0.14247518x10 - 1 017744375x 10- 2 0.12049032x10 7

directly

pT)vx(T) -0. 150811x10 5 +0.142588x10 -i +0.177867x10 - 2  +0.12067x107
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These results were obtained for the extremal of Figures 4-37 through 4-39. The

estimated values were computed for program checkout purposes, and the ih-

accuracy of the second result coines from differencinig solutions Which are the

same to seven significant digits out of'a possible eight. SolutiOns were the same

to six significantdigits for ti e 'last two results, but to 'only three 'for the first

The last roW was hand-computed from computer results truncated' to eight

significant digits.

Table 3-2 is included to illustrate the convergence of the modified Newton-!

'Raphson method for this problem. The criter16n J(T) rose in this final series of

iterations because' the trajectory range had to be lengthened, and ranging always

increases, total heat.

Table '3-2.. Convergence to the Solution

Iteration Method Hamiltonian Criterion Multiplier h(T)--A
'number Constant H(o) J(.T) P (T) . feet feet

1 13.8 26, 774 1. 8x 10 0. 77 -234,691

2 0.2 11.0 26,,887 1. 5x 104 0. 559 -187, 674'

3 0, 28 7'9 27,019 lx 1. 121 -132,679',

4 0.46 4.3 27, 170 5.4x 10 3  2. 313 -69,331

5 0.96 0.15 27,334 -28.0 3. 077 -632

6 1.0 -0.,2x 10 - 5  27, 333 27.0 -0. 228 -239

7 1.0 0,84x10 - 8  27,334 0. 88x 10-  zero -0.1

8 1.0 -0.65x 10- 8  27334 0.94x 10- 2 ' zero zero

-8 -29 1.0 -0.27x 10 27,334 0. 74x 10 zero zero
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S'sECTION IV

LINEAR CONTROL SYNTHESIS AND SIMULATION

F DISCUSSION (A)

It is well known, that.a -quadratic integral, criterion when applied to linear

control systems specifies a linear control law with, in general, time

dependent gains. Because of the simplicity of analyzing and mechanizing

such systems, linear control in the vicinity of a predetermhined reference

trajectory -is studied.

r If the, equations of motion for :state x under control u are represented by

k = f. x, u) (14. 1 )

IF
and a control u(t) which transfers the state from given initial conditions
x at t = a to a final state xf "at a time T has been found, the

equation for the correction 6'x from the reference path x(t) to a

disturbed trajectory is

X4c - f(x.+ 6x, u + Au), - f(X, U1), 6x(a) = Ax o , (4.2)

where a new control function is represented as u + Au. Equation, (4. 2)
is the exact variational equation. In the neighborhood of the reference,

the linear approximation to Equation (4. 2) will predict a correction Ax

{which should reasonably approximate,6x. The "first variational equation"

is

. Ax V xf • Ax + V f Au, Ax(a) = Ax, (4.3)

I where the matrices of partial derivatives 1 f and V f are evaluated
X U

along the reference. The problem is to find a correction to the control Au
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so certain final conditions for the- reference are also -satisfied by the .perturbedI
trajectory. The simplest, though perhaps not the mostnatural, condition.is
to require particular components of the state, to agree at the end-point.

Thus, say

Ax. (T) + 0 i - q+1, .. ,n , 0 4 < 1 (44)1

Then Au will be-completely specified as a function .oftime if it is chosen

T

f (Au) 2 dt '(4. 5),
a

is a-minimum. Conditions (4.4) and criteri6n (4.5) can be greatly

generalized, and, the derivation of the control law may ,be made using
many theories: Pontryagin's maximum principle, calculus of variations,
dynamic programming, etc. The simplest. approach for the case at hand

will be used~here, since general discussions can be found in the literature

(Ref. 27 , for example).

The region bf validity for the linear approximation is -found..by expei-imentation.
It may be-necessary that several reference trajectories be used to provide

linear ;.ontrol, over the entire corridor. This depends on further consider-
ation of navigational accuracy and model fidelity. In a subsequent subsection,

some results affecting these problems are discussed, and some preliminary
navigation and control systems are evaluated by simulation.

If the control law found by'the optimization process is represented by

Au = E(t) Ax, (4.6)

Equation (4. 3) for the linear prediction becomes the homogeneous equation

Ac = [vf + V f E A] (4.7)
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If all states components must agree at the-end-point (q, 0), that poirt .must

be a singular point of the ,diferental, equation, since there are other, solutions

than the triviaix (t) -O. As would be expected, this case is difficult to

control. For the case studied, range and altitude o the trajectories are re-

qUired to agree, and Velocity and flight-path angle are free. This demands

less of the control, but the end-point is still ,singular, since the solutions
begin -as a four-pairameter family and, end as a, two-parameter family. This

implies that some of the gains, the components of E, must tend to infinity

at the end-point, which will lead to difficulties in simulation and mechani-

J zations. Various expedients were tried, .andthese are discUssed in sub-

sequent subsections. A change of the mode of control near the end, is probably

indicated,, since, in any case, the region of validity for the linear approxi-

matiOn is exceeded near the final point.

DERIVATION OF THE CONTROL LAW (B)

Let the row vector X! be the solution, of the, adjoint homogeneous equation

-! . V~f (4.8)
1 i X-11

which has allcomponents zero at t = T except, for the ith component,

which is unity. By direct calculation, using (4. 8) and (4..3), it is found

that

} d
- A -Ax) = X! V f . Au; (4.9)dt 1 u

and, integrating, and applying the end conditions (4. 4), the equations

L T
X! (a) • Ax(a) + f ! - V f A Au dt = 0 14.10)1 1 1 U

I a,

I fort = q + 1,... , n result.
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The control must minimize integral (4. 5), Subject to these conditions.. This
simple problem can be considered using constant Lagrange multipiersPi

and completing the Square on, the auxiliary functionai

T n,

f(Au) 2 t + 1 Nt)At 0
,a i= q+1

n .
+ " Pi Vuf " Au dt (4. 11)
i= q+l a

to get

fT n,2

a , q+1

(4.12)

+ { terms not cOntaining Au)

The terms which do not contain Au cannot be influenced. Hence, the

minimum occurs for

n
Au= - p'. X f (4.

i= q+ 1
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if here ar-e rio further conistraints on -Au. The p. cain be determnined-

frorh Equaktions (4. 10)". Subs tituting this' Au 'and'doing a bit of
madnipulation yields.

Y. (T, a) jp. Ak 2 (ar. (a) (4-.14),

A_ q+1

when tfhe abbreeiation,

alW vf)l (m! *Vf) dt (4,15)'yi1,-(T j u
a,

is used.. All this ma y be condensed with. the following matrixnotation: Let

-q, +1

Y ~ ~ + (T(nx(i Ta)'(n -q) (

pn
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Then.Equation (4. 13) reads'

1u pt 'A' Vf I 4 6

and'14" 14) aknd (4. 15).become

Y(T, A) , 2A0(a) Axla).'4 7

T'
Y(,a) f A' Vf (AA V Vf)"dt (41)j

a,

the matrix Y (T' a) is assumed to, be. nonsingular for a < T. 'This
property, is-related to the control'labi'lity of the system. Thus, the

control law becomes.

Aul(t) =-I V Uf (t)] IAl(t), Y' (T, a) -A' Ila), Axia), (4. 10~ 1
when the transpose of Equation (4. 16), is used. 'this holds for' a S, t S T

and may be considered as- an- open-loop, control. identifying a with t

gives the, -closed-loop-operation, and the- control law is,

Ault) E (t) Ax (t) ,(4, 20)1

with

E (t) [- U Mf~)1' A-(t) Y_ (T, t) A (tY (4.21)1
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I SIMUL ATION OF THE LOW-LIFT VEHICLE, WITH -ROLL MODULATION
ANjD adhoc R-EFERENCE.TRAJECTRY (C)

The. Model ;(C-i-)

The motion of an Apollo-type capsule is: assumed, to be governed by the

two-dimensional Equations, (1 ,), and control for flights at a fixed

angleof attack is to be effected by changing the roll angle cp., It is

- assumed thatthe essentialcharcadteristics of the motion are preserved

when the lateral: motion and forces of the more realistic three-dimensional

flight are neglected. Hence, theift and drag coefficients are taken in the
form (1. 5). The atmosphere is generally considered to be, exponential

with equation

Ii ~P, = 0 C R (22

but the 1959 ARDC atmosphere is also used in places to assess variation,

'in density effects.

Theconstants in the equations are:

j Aerodynamic -reference area: S- 129 square, feet

Weight: W = 81'25 pounds

Drag, Cefficient: CDO = 1.02

(The drag coefficient is- constant for Mach numbers greater than four; it

was found that allowihg it to change with Mach number- had little effect on

,the trajectory. Hence, it is taken as constant throughout the analysis.)

Lift coefficient: CLO = ,51 (CLo/CDo 0.-5)

Ballistic coefficient : W/C S 61. 7 lb/sq. ft
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Sea level density: p0 = 0.o0023769

Atmospherei coefficient i]: = 123500

Sea level gravity- go = 32.2 ftfsec2

Radius of earth: R = 20903, 520 ft.

The initial conditions for the trajectories are choseinas:

Velocity: v= 36,080 ft/sec0

Flight path angle: = !-6. 4 degrees (for standard
0 reference trajectory)

Altitude: h 400, 000 ft.

Range: 0

Theterminal c onditions expected are:

Altitude: hT 100,000 ft.

Range: = 2100:statute miles

-- The time of flight is chosen experimentally, This is discussed, in the

next paragraph.

The rate of roll cp is limited to 20, degrees/second, in the reference

trajectories. While no limit is placed on the closed-loop rate CP A p

practical considerations require that this limit not be- greatly exceeded.

This condition is satisfied on the flight paths studied. The control com-

mand variable Acp is restricted by the condition that cp + Acp must fall

in the same half-circle, either (o, TT) or (Tr, 2w), as cp in order that

an artificial control reversal does not occur because of the nonlinear

manner in which the control enters the equations through the cosine

function. An indirect restriction is that the pilot's acceleration, given by
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LI. aZ Spy2 _(4. 2 3)-
P 2mg D + L

not exeed 10 g.

i The ad hoc Reference Trajectory (C-2)

To begin, the ,study and map out the re-entry corridor,- trajectories werer found -experimentally 'by' guessing forms of control programs %,(t).

Trajectories were then computed, beginning at a height of 400, 000 feet

with a, 36,'080-feet per second initial velocity and various initial flight-path-

angles y " It was determined 'that the safe re-entry corridor was limited-

to trajectories beginning with y between -5. 4 and -7. 4 degrees, since,

'for yo greater than -5, 4 degrees, there was not sufficient lift to avoid a

skip-out, and, if y was less than -'7.4 degrees, the 10-g survival de-IC
acceleration limit Was -exceeded.

Ji The form of the roll program adopted is as -follows: The roll angle q, is

set at zero for maximum positive lift until the tangential'acceleration at

reaches 0.:6 g'; for purpose's of'the reference-program, time is re-set to

'zero at this instant. The rooll is held at zero. for 15 seconds past the re-

set time and then is increased linearly with time for 25 seconds until a

certain maximum, max , is achieved. This maximum is held for the

next 80 seconds, after which the roll is decreased linearly for 80 seconds

until an angle. of 22 degrees is reached'. It is kept at this level for the

remainder of the flight, which is terminated when the altitude decreases

to 100, 000 feet. The value of cp max is chosen so that the flight has a

range of 2100 miles. A plot of y0 against the Value of cp max' which gives

the 2100-mile range, is shown in Figure 4-1. It is observed from this
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graph that a constant-range controller, using the -6,4 degree ,case as a base,

can control most of the re-entry- corridor (-7. 4 to -5. 9) with a maximum, Acp

correction! of less than 1-5 degrees.

the- roll program, for the trajectory beginningwith y --6J degrees

is shown in Figure 4-2; this is taken as the standard control,,program, It's

analytica! representation- is'

(t) 0 0, 0 t 15;
91t) P 15 t 4t- 1515

@p(t) = max 25 ,1 = t = 40;

cp(t) = m) , 40 S t 120; (4.24)

cp-(t) = + (22 -cp ) t 120 120 tr'Pmax - max 80 ' =t=20;

cp(t) = 22 , 200= t.

The quantity cpmax for this trajectory is 90.-97 degrees.. The pilot's

acceleration for three trajectories with rollprograms of this type is

shown in Figure 4-3. These trajectories cover the entire re-entry

corridor for this family of roll programs. The re-set time is plotted

against initial angle in Figure 4-4.

Characteristics of the standard reference trajectory (y = 6. 4 degrees)

are given in Figures. 4-5, 4-6, 4-7, 4-8. These are plots at height, velocity

and re-entry angle against range, and range against time after re-'set. The

closed-loop flights described later use this as a reference.
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Sensitivity of the standard trajectory to Various types of errors is - illustrated

in Figures 4 -9 through 4- 16. Range. effects from shifting the roll timing 42

seconds 'indicate that roll timing is critical (Figure 4-9). Roll magnitude

variations O2 degrees are -shown in Figure 4-10, and the effect ofa change

of ±0. 5,degrees of initial re-entry angle on range is given in Figure 47-1.

Figure 4-12 shows the effect on range when the initial. height on the standard,

reference is changed- by either +20, 000 feet or - 50, 000 feet. Skip-out

occurs with an altitude error much above 20,,000 feet ,in an open-loop run,

Initial Vrelocitychanges of ± 1000,,feet per secondi ballistic coefficient

variations of ±10 per cent, and change in, density by a factor of

h- 110i000

1.0 ±0.5 R (4 25),290, 000

I are plotted in Figures 4-13 through, 4-15. Finally, Figure 4-16 shows

the range effects of varying the time that p max is held ,in the standard.

)roll program (Figure 4-2) by ±20 seconds. By comparin'g this result With

the runs in which the complete roll timing program was changed" by ±2 seconds -

(Figure 4-9), it can be seen that the range effects are about three times as

great as those in Figure 4-16, even though the timing change in Figure 4-16

is 10 times larger. 'Roll changes applied at a later time have less effect on

ranging than the same roll changes applied earlier.

Some of the considerations leading to this choice of rol'lprograms are given

in the following discussion:

The roll cp must be set equal to zero to obtain maximum positive lift

during the initial re-entry phase, at least until the first acceleration peak

is passed, to prevent the vehicle diving into the atmosphere and causing an

increase in magnitude of the peak. The first acceleration peak for the - 7. 4-

degree trajectory is equal to the - 10-g acceleration limit.
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After the first accelerationpeak is passed, the vehicle would soon skip Out

of the atmosphere if the roll angle were left zero. Within- the bound of the

Apollo roil-rate limit of'20 degrees per second, it, wasnecessary to apply
,rapidly a roll sufficient to, prevent, skip -out.

When the Vehicle ,slows enough that a Skip-out can no longer occur, the .roll

must be decreased tdo. Small Valuei such -as 45 or 22 degrees, to prevent

the trajectory from going too deeply into the atmosphere and-exceeding the

acceleration limit. The high negative lift needed to prevent a skip-0ut in

the case in, which yo. equal -5.4 degrees cannot be left in effect too long, or

too much acceleration will occur. The final value of roll used is not critical,

'because most of the -ranging is -done by the maximum roll value. 'It is best

not to use a final roll of zero degrees, because no additional, lift is then

,available for control about the reference.

By basing the roll .control on the interval after at = 0.. 6 g, the large

variability between initial :time and-the time when -the vehicle is experiencing

significant aerodynamic effects is eliminated from roll control timing. With

the standard roll control timing, which can be used over the whole corridor

to get a constant range, the reference is less sensitive to. perturbations and,

also, requires smaller A ep corrections.

This, rol c'ontrol was satisfactory for the whole corridor if timing errors are

,heldl t0 within a few seconds. A better timing would start the roll 22 seconds

after the at = 0. 4 point. This would delay the roll application in the

- 5. 4-degree case and prevernt the slight increase in the acceleration peak

of the at = 0.6 g time reset. The alternate timing is set to leave the

- 5. 4-degree case unchanged, because any delay in this timing of more than

a few seconds would cause a skip-out. Roll timing based on initial tiae' 'is

unsatisfactory because different initial conditions would require initiation

of the roll program to occur 'over a range of 40 seconds.
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The roll angle magnitude which will maintain a constant-altitude flight at

the turnover point (y 0) is an important quantity. Increasing this value

more th'An seven degrees will cause the vehicle to dive ointo the atmospheire

11 so: deeply that the i0-g limit wilL be exceeded; decreasing this value more

than seven degrees will result in a skip-out. Raniges between 2000 and

5000 nilles are possible fr all initial, conditions by using different values

of roll within seven degrees of turnover roll. Ranging possibilities rapidly

l decrease after the turnover point, especially in the - 7. 4-degree: case. It

4is, therefore, necessary that the correct roll magnitude be closely approxi-

mated in the vicinity of the turnover point in order to get the :des:ired range.

I The Linear Perturbation Controller (C-3)

] The closed-loop 'system is diagrammed in Figure 4-17. For now, it is

assumed that the navigation system- produces an. accurate estimate x (t)

of the state x(t), (The effect of errors innavigation is discussed under

Subheading C-6. ) The state estimate is differenced with the state of the

'reference trajectory, and this result is used to provide a correction A p

1to the reference roll command. The inner-loop controller causes the

vehicle to assume this roll angle; this controller is assumed perfect and

I is not studied here., The -related~equations -are

I xm (t) x(t)

Acp(t) E(t) [xm(t)- xr (t)]

0p(t) = c c(t) = W(t) + Lcp(t) (4.26)

Idx
: f(x, c(t))

dt

where x (t) and cp (t) are the reference trajectory state and corresponding

control, as developed in the previous sectL'n. The feedback gains, repre-

I, sented by matrix E(t), are computed according to the theory outlined under

Subsection B.
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The equations of linear pr~ediction (4.3)' for the particular model rebresentedI

in Ecquations 1. I).4re

CDv p2- ko s(in, Y

C

2m DO 'a t G + ]

A' {7:;g [2m + 'LO cos4 AV

siy v 20  S] SVCOS I
siny LOcossiyc

i+ v+ v ,' 2m

R 'R

Cos y v siny veCos y

(4. 27)
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r .(The qdantities Y,, v ,# C are, of'course, those of the -reference; the

superscript r has been dropped for conveience.) The guidance sensitivity

i ft ilk' E(t) is calcitated according to formulas (4. 8) and- (4.21) from

L.s6iutions of the equations adjoint to (4.27). These components are plotted

in Figures 4- 18,and 4-19

The elements of EltW),. from the theory and as demonstrated in the graphs,

be&ome infinite at the end-point, and it, is.fnecessary to,.introduce,some
:modification to, take care of this singularity. A transformation,

I:
A c = arc tanAq, (4. 28)

Fwas used for this purpose. Experiments indicate'that this transformation

actually increases the region of controllability. The additional restrictioh

discussed under C- lnow reads: cp + A c is limited to (0, r-) or (n, 2 T)

The full 6 cp control can be used during the time pmax is being applied

because cm is Close to 90 degrees, and the ±90 degree range of A 9C willF: max ra c.

not cause a crossing of either the zero-or 180-degree limits on, the roll angle.

Closed-Loop Results, ,Precise Navigation Assumed (C-4)

Satisfactory performance'was obtained over almost the entire corridor.
Typical terminal errors are summarized in Table 4-!.

8
L

I
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Table 4--I Terminal Errors Caused by Various Errors
in the Model

Resulting Terminal Error

Model Variation .(T) Ah(T)j A.

feet/second feet Imiles

1. ,p bias - 1 degree 15 -21 0

2 - p +0 5 h -rI10, 000
2 . 290 ,000 - 173 1791 0' 1

3 - h-. ,io. 0o0)
p- p (1 0. 5 2h- ,, -00 '-169 -2584 -0. 1

4. = 6..9 degrees '86 - 462 0

5. yo= -7.4 degrees 180 1.282 -9. 1

6. v 0 + 1000 feet/second -23 - 53 -0. 0.

7. v0 - 10100 feet/seq:ond 31 " 49 0

8. 1.1W/CD S *  -286 :-10, 510, -0.2

9. 0. 9 W/cDS* 137 4845 -0.5

*The-constraint on A cC would have reduced these errors

The particular case in which the initial re-entry angle is - 5. 9 degrees

(compared to - 6. 4 for the reference path) and in which the exponential

atmosphere model is replaced by the ARDC '59 form was chosen to

illustrate the results. The roll correction 4c for this flight is shown [
in Figure 4-20; note the maximum positive lift condition of - 22 degrees
correction after 370 seconds. The final state errors are increased f
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f several times, if this limit is not impsed. Figures 4-21 through 4-25 plot the

deviations. from- the -reference for range, flight-path Ange aliude, velocity

[and tangential acceleration. 'Thi's case will subsequently be -referred to as

the standard perturbed ctrajector-yi

V Aflight beginn wth angle, - 6. 9, degrees I's. graphed in Figure.4-26, and

4-27. Note thlat the roll' c orrections, arem more- in the, linear range -than in

the previous case biecause this perturbation, is toward' the Acceleration limit

boundary,, and The other is- toward the skip-out limit.,

'Figure 4-28 -is a plot 'of A ,, the rang e -deviation, against 'time for 'two

closed'-loop trajectories with, the same condition's as the reference,. exceptU h Is -changed,-by ±50, 000" feet. Since, in the open-loop, case with, 4Th =25,,000
0'

feet, skio-odt occurs, this run, shows that the linear control scheme can control

large perturbations.

IOther perturbations. weire inve stigated. The results are summdized in,
Table-s 4-21., 4-3.

'Table 4-2. Perturbation Study Results (ii)

-Case AV(T) Ah(T)_J____

I1' 126 "1 688 L1,5
2 -197 I-2648 0.1

3 -330 -6295 -4. 0

4 -529 -17885 '-2~
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Case 1is the standard perturbed reference. Cases 2,. 3 and 4 have the same .

initial conditions as Case. 1, y = - 5. 9 degrees, except that they all use I

the exponentialatmo sphere instead of the ARDC '59 atmosphere, Cases i

and 2 indicate 'that the, effects- of -using -the exponential atmosphere are not

large. In Cases 1- and .2, a roll correction greater in magnitude than - 22 degrees

is. called for after the .time the reference roll. c is set to its final value of

22 degrees. 4 p is, then set .equal, to - 22 degrees, so that cp(t) + A cp(t) = 0,c C
the- maximum lift condition. In. Case 4, A cp is allowed- to cross the ze4ro

:point,. and, in Case 3, Acp is' set zero. Because- Case- 2has final, errors&

severakr,.imnes smaller than Cases 3 and 4, it is concluded that the-best

choice is .to hold Acp at -22 degrees.
c

Table 47"3. Perturbation.Study Results-(2)

Cas s e_ Ah(T) j ARange

-891 -20, 508. - 26

255 - 455 0.2

7 -1634 -63,055 - 651

Cases 5 and 6 have the standard reference conditiotis, except the initial height
is ,perturbed 50, 000 feet in. Case 5 and -,50,000 feet in Case 6. Case 5 shows

the effect of a large perturbation towards the skip-out -boundary, and Case 6

,a larger perturbation toward the acceleration boundary. Without the trans-

formation (4. 2P), it was found, in other runs, that too, much acceleration for

survival occurs (Case 5) or a skip-out occurs (Case 6). Both Case 5 and

Case 7 have the same initial conditions, initial Ah = 50, 000 feet, but Case 7

uses the unlimited Acp In Case 4, the useof the unlimited ACP results in a

several-fold increase in, final errors, but, in Case 7, the same several-fold

increase of the already large final errors of Case 5 may affect survival.
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[A..Perttrbatinal'Nav--IitibfrSy stem(C170

The navigation cd lcin. may b'e incorpoi'.ated into the control $cherie &s-Idiagramrihed in, Figure 4-209.- The -estiniAte -of the perturbation of the state

is cd1culated *,by s Ubtracting -the reference tt~e ctory accelertioh from,fthat which i s, mea sured'and then carrying, out ziavigation codmputationis.

The set 'of equations to- estimate the, state_,,et;~di 'Iplf same -as-

Isystem (4. 2)when the 'A -te f-ifi iiit second, equati~o4 of that -set.i

omhitted, Sin ce -the aerod ynamic- forc e te~m s are, determliie-d with-faccelerometers, a more convieit tform 'for, ,the first two of these- equations

is,

g9 .2s~i

'Aa 2 co s Y[ ~~~n 7JYO rin

AI ....... AY sin- ___

cos.Y AV Lw

I1+ R Q,+ 9)

A mechanization coul.d be achieved using these equations. A diaglarii ofI such a system is given in Figure 4-30. However, not all terms are of
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equ at-mp tance. It was found' that the equations could be simplified

V t

..- [(an + Aa) + 4-T + 2V Jo
-) 1(4; 30)

Note' that some -ecohd-order terms are retained, while, certain, first-order

terms, are dropped.- A mechanization-for these equationsis-shown in

Figure 4-3-1.

Using the approximate scheme, an exponential atmosphere and the standard

perturbed reference trajectory, the following terminal errors were found:

Range = 6, miles

Altitude = i3, 025 feet

Velocity = 525 feet per second

A- further, analysis sh6ws that /0 must beknown to about O. 2 degrees. Since

YO cannot be inferred adequately from inertial measurements alone, external

information is required.

The accuracy required, in measuring acceleration is indicated by inserting

an 0. 05-g, bias into Aat and Aa . The rpsults are given in Table 4-4.
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' roTable 4-4. Ter'minal Errors Caused by Accelerometer Bias
for" Standard Perturbed Trajectory

Terminal Errors
Error Source A '_ _ ... ... "t: l:ActuaiL Svs em,

_- ,.. Ran~gf Aliude' pVlcty age Altitude,1 Velocity

Stafidard pertufbed 6.0 -13,,025 -525
trajectoi'y miles feet , ft/senohd

a= Aat - 0.05g 54.5 1000, 44 -1.0 -6000 -920
fn t miles feet 'ft/second

a -- 0. 05g 40. 0 '-20, 000 -850 8.:6 -35,;000 -,205

I, A control :system which uses only measurements of normal and tangential accelera-

tion components$ pluS a roll.angle determination was developed and simulated. It

J was found that it could control only about one-fifth of the, re-entry corridor and,,

so, was unsatisfactory.

Effect of State-Measurement Errors '(C-6)

The, initial conditions for the flight path-.may be obtained on board the vehicle from-

severaI sources:

Propagation of known' mid-course errors

Information telemetered from a ground fix near the onset of re-entry

Instruments in the vehicle.

'The accuracy and availability of the first two sources for estimating the initial

state are not known, and, it is doubtful that the last one can, provide the flight

path angle to the accuracy required for successful re-entry, since, simple
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flight path indicators .generaily have eri-rs of about one degree. The simula-

tions reported here indicate that this information must be known to ±0. 2

degrees or the linear cpntrolscheme, may fail. initial conditions on the

state other than, the flight path angle are not critical. Velocity will' be

known to 100 feet per second from energy considerations. The range of a.

perturbed trajectory at re-set may be ,estimated- closely by multiplying the

range of the reference path by the ratio of perturbed time to re-set to the

reference time of reset (rea-set time is the instant the tangential accelera-

tion, reaches 0, 6- g). From this, experience, the following procedure was

adopted:

For the control calculatibns, assume initial, range -to be the reference range

and velocity and altitude at re-set time :to be that of the reference trajectory

at the corresponding instant. The range at re-set is estimated as outlined

above.

This procedure causes errors in altitude of about 5, 000 to 10, 000 feet because

the perturbed p is based on the ARDC '59 atmosphere, and the reference p

comes from the exponential atmosphere. Since the ARDC '59 atmosphere

gives a -35 per cent to 20 per cent density variation- from the exponential,

atmosphere, a realistic test was made on the effect of density variations

on the controller.

It was not possible to handle the flight path angle in this manner.

At one stage of the investigation, it was hoped to estimate the perturbed y

when at = 0. 6 g by using the time it takes at to go from 0.2 g to 0.6 g.

This time is called the rise time. The rise times for a series of initial

re-entry angles were determined with computer runs. Then, by an inverse

interpolation, y could be estimated to Within 0. 15 degree when using the

exponential atmosphere, even with perturbations such asI

Changes in the ballistic coefficient of ± 10 per cent

Accelerometer bias less than 0. 02 g

Density changes by a factor of 1 0.5 h -110,000
290, 000
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[r If the- exponential atmosphere is replaced by the ARDC '59 atmosphere, an

error of -1, 3 5-degrees occurs in the.-y estimation. Also, it was noticed

that the ARDC '62 atmosphere gives a -0. 7 degree error. T~e-y estimation

errors between the -different atmospheres, are caused by changes of the deriva-

tive of the density with respect to height. Because the dhan"e of density with

respect to height is almost inversely proportional to molecular temperature,

and this -temperature fluctuates a great deal daily, the rise time of at is not a

satisfactory estimator of'y. When the atmosphere is changed bya factor as

above, the height at which -a 0. 6 g changes by ± 7000 feet; but a similar

change in the height occurs at the pOint at whicha = 0. 2 g, so the differenceat g

in altitudes is still Within 800 feet of -the 26,000-foot difference of the standard

f reference. Using thE. ARDC '59 atmosphere, the height difference is 19,000

feet, which is less than with the exponential atmosphere. The shorter rise

p- time is interpreted as a steeper flight path.

Many closed-loop trajectories- were calculated to determine the effect of errors.

[in the state on the A(t) calculation. The standard perturbed closed-loop tra-

jectory conditions were used in these runs. Table 4-5 gives some of this data.Ii
Table 4-5. Effect of Errors in the State on the 40(t) Calculationo

Actual Errors II Estimated Errors

Case 1 AT) Av(T) Ah(T) A

1 126 6,78 -1. 5

17 -525 -13025 5.7 "702 -20922 2.1

18 44 -1077 54.6, -920 -6235 1.4

19 -851 -19672 -40.3 -206 -35306

20 -289- -7982 54.8 -1072 -32421 8.5

21 -420 -8902 -42.1 132 -2939 -0.4

22 25 -1037 -9.4 3 6603 -11. 6
23 -702 -16048 14.8 -939 -39975 iC. 3
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'Case 1 is the standard perturbed, case, which -uses the exact state in calculatirig
A4(t0)0 it is given so comparisons may be made With Cases 17 through -?3,

which are under the same conditions except the, approximate state eirror is used.

The integration of'Equation (4-2) on board the vehicle gives an inexact staie
error rather than the exact state error because both the initial state error is,
inknown and the output of imperfect accelerometers must be used in calculating

the derivatives.

Cases 17, 22, and:23 show the effects of integrating Equati6n: (4-2) when perfect
accelerometers :are used but the initial conditions are the inexact values. In

Case 17, the value of - (0) is assumed-to have no error; in Cases 22 and 23,

the error in the ^(0) estimation isassumed to be 0. 1 and -0. 1 degrees,

respectively. In -Cases 18 and 19 the at and a accelerometers have asteady-
t n

state bias of 0.05 g and -0. 05 g, respectively. In Cases 20 and 21, the
accelerom eters have 2 per cent and -2 per cent error, respectively. The

initial state errors in Cases 18 through 21 are estimated inthe same way as

in, Case 17 The reset times in the last cases are slightly different than in
'Case 17 because an imperfect accelerometer is being used to determine the

point at which at  0 .,6 g.,.

Integration with an accelerometer bias of 0, 05 g for 600 seconds~gives rise
to about a 900-foot-per-second velocity error and a 50-mile range error,

which explains the 50-mile final- difference in AC and Av in Cases 1-8 and 19.

The controller based on the estimated initial" state does a good job Of reducing
the final value of estimated A( to around five miles, but it is off about 50

miles from 'the real range error.

Table 4.6. Perturbation Study Results (4)

Case Av(T) Ah(T) I
24, -549 -11890 j 66.5
25 -733 -15623 -78. 1
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Cases .24 and 25 correspond to the standard perturbed Case 1,. except that,

When computing the control A. in Case 24, Ay was omitted, and, in Case 25.

[Ah Was omitted. In the above cases, the exact state is known but not completely

used. When both Ay and Ah are ignored, control is lost, and the- trajectory

hits the grotnd at-440 seconds With a 350-mile range error,, showing the neces-

IT sity of estimating the complete state irrr. if the perturbation errors get too

large, for instance integrating from apoor path angle estimate, the controller

j fails,.

f Figures 4-32 to 4-36 present the different state errors in Cases 1 and 20.

These are plots -of Ao, A, Aa, Ah and Av with time. The quantities marked

with the tilda are the errors computed with the inexact initial conditions.

The difference between the exact and inexact errori shown by Figures 4-34 and

14-35, is-small for about the first 100 seconds, so the trajectory is controlled

correctly during this critical time. After this, the approximate state estimate

-deteriorates, but bad control A0 (t) 'at this time, has little effect, and a good

re-entry is still accomplished' When the initial Ay estimate is in too-great

error, ±0. 4 degree, the altitude estimate rapidly deteriorates, and erroneous

control -signals are given during the early critical part of the re-entry. This,

sometimes causes the trajectory either to exceed the acceleration limit of

1-0 g's-or to- skip -a -thousandz miles or more.

STUDY OF A LOW-LIFT VEHICLE WITH ANGLE OF ATTACK MODULATION
AND.EXTREMAL REFERENCE TRAJECTORY (D)

The Model and the Controller (D-I)

The re-entry body considered in this subsection is the capsule studied in

Section III (C). The equations of motion are assumed to be the system (1. 1),

and control is produced by changing angle of attack to vary lift and drag coef-

ficents according to Equations (1. The numerical values for the coefficients
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in these equations:are I

DO= 0.88, CDL 0.,52, CLO = -0. 505, e 2 .4. I
The atmosphere is again assumedto be, represented by ,the exponential low.

A linear-controller is studied, the theory of hich'is found in subsection, B,

It is the same type of linear, blosed-loop controller used in the previdus i
simulation. The control attempts to drive altitude and range errors to zero,

'but velocity and flight path angle are:left free. Again, because of the singularity

at the end-point, special procedures are employed, to limit the control command

,in that neighborhood. Two methods are compared: QOne limits the control
correction predicted by Au = E(t)4x by E 1' degrees; 'the other bounds the

Au near the. end of the trajectory by 1 1/2-times the maximum correction used

in the beginning of the flight. (The' maximum usually occurs. at the first turn-

over after about 90 seconds of flight). 'The second technique, which ailovs

smaller variations, was generally found to give better end-pdint results when
the disturbances were small; but with large perturbations, the results 'are

fnconclusive.j

The Extremal Reference Trajectory (D-2)

The linear controller is intended to operate about the -optimal reference path

which was computed in Section III. That calculation had not been completed

when this controller study was begun, so an external trajectory was chosen

as the reference for an intermediate analysis.

An extremal was defined in Section II as a path which satisfies the Euler-
Lagrange equations and the Weierstrass-Clebsch conditions, but not neces-

sarily the required boundary conditions. Here, this may be interpreted as a
path satisfying the equations of motion with the control required by the
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minimur principle, As in Section III, the control command was limited, to

excursions between ± 16 degrees (in future work this bound is to be extended),

The -control for the reference is plotted in, Figure 4-3 7 along with the pilot's:

acceleration. Figure 4-38 shows the state variables v,, a, h as functions of

time, and: the heating characteristics for a re-entry along this path are

recorded in Figure 4-39. Note the similarity'of these graphs to those for the

I optimal trajectory (Figures 3-5 to 3-7).

f The reference was computed by -beginning with the conditions

v = 35,,0o0 feet per second

Y = -5; 75 degrees

j ho = 400, 000 feet

z ero,

and a particular choice of the adjoint variables, in this case

b '0 = 3.,6565

b20 230

b = 67931.9

b = -'2565.54

and terminating when the second adjoint variable became zero. The range of

initial guesses on the adjoints which gives reasonableire-entry paths was found

-by trial and error.

The control sensitivity along the reference path was studied by applying a

constant correction to the angle of attack (AU = eAa = 2,.4 Aa )* and in-

tegrating the first varia, -. ialEquations (4.3) backward in time from the end
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of the trajectory. Typical ti-ends are shown in Figures 4-40 and 4-41 for atone-

degree change hiangle of attack. These curves may be interpreted. as the errors

i 'AV, -h, and A, which will be nulled by a one-degree correction -in control

applied at the time indicated-by the abscissa .and- held to the end. Note that not

much control may be exercised' near the end, and the controllability diminishes

rapidly after the first 90 seconds of flight.

'Open- and- Ciosed-Loop Results, (D-3)'

The controller was tested by calculating a series of trajectories, in which a

single perturbation was made in ian ifiitial condition, or in one -of the -paiam eters

of the vehicle. Each quantity was varied by small positive and negative incre-

'ments and by large'changes which were chosen to be 2 1[2-times the 'small

variations. The open-loopi0aths, which use, the reference program for angle of

attack with no added control correction, were computed for comparison-."

A typical case is illustrated by Figures 4!42 to 4-44; the initial flight path angle

was increased by 0. 05 degree- in this example. The control correction, plotted j
as a function of time in Figure 4-44, saturates at about 220. seconds, and was.

limited to -15 degrees,, as shown by the dashed line, or taken as -3. 91 degrees, {
drawn in a solid curve. This last bound is 1 1/2-times the control correction

peak value which Occurred at'87, seconds flight time. The final altitude error, J
shown inFigure 4-42, was reduced from 568 feet to 25 feet, and the final range

error, Figure 4-43, was changed from 0. 096 mile to 0. 006 mile, when the

smaller bound was used. These numbers are compared to an altitude error of

2784 feet and a range error of 22. 7 miles for the open -loop trajectory, also

illustrated in the figures.

Terminal errors resulting from perturbations of the initial state are listed

in Table 4-7. For each change two closed-loop runs with the different final

control bounds and. the open-loop run are given. Note that the controller allows

altitude errors less than 100 feet and. range errors less than 0. 01 mile, usually,

with small perturbations. The large changes are controlled within a few thousand

feet in altitude and a half-mile in range.
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Table 4-7. Initial-State Err-or Ca ses,

- Fina Perturbed-Statei Differences from Reference

Ty p of AM-xihu&C A '
Petrrtd Correction- inr AV AXc q~ ~

Petrainft/ sec., degrees' feet -miles BTU's BTTJ's

0. None 0.33-0.1,5, -0. 003 0. 018, 0-0000 0.01 '0.002

r15 0.,765- 0,299 1.595., 00O04 0.01 b 0. 002 '

ze ro -0.,03& '0. 002 -1,205, ?-0. 0048 -,0.05 0. ,005,"

E Av 200 ft/sec 3'.23 '-11 0.,008 4-7 0.008, 197, 442

15 -11 2 485 0,'081 i97 442

vzero 90 4 2602, 19. Z9 2' 535 392

A-V-200ftf sec 3, 2 1 4 8 -4 -0.,001 ~193 -417

15 zero 2' 60 0.,0 12 -193' 0. 147'

zeo-67 -4, -2254, -18.455, -0 -37'

AV' 50 ft/ sec -8.12 '-56 -0.2 -10 51 -0. 112 499 1156

15 -57 2.2 -606 -0,033 499 1156

zero 295 12.0 7378 53. 011 1394 1007

AV=-500 flsec 8.00 .8 2 -14 -0. 002 -474 -997

'15, 6 3 21 0.006 -474 -997

zero -142 -9 -52 4384 -1229 -916
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Table 4-'7T. Initial-State Error Cases (Continued)'

Final Perturbed-State Differences from, Reference
Maximum A T

Perturbation qerees q

ft/sec degrees feet miles bs BT.U's

Ah- 200Oft 2.46 - 9 - 0.2 20 0,.003 -69 - 401

15 -6 -0.5 28 0.005 -69 -40

zero ' 41 2.2 1249 13. 059 163 - 76

Ah= -2000ft 2.35 4 0.7 - 10 -0.002 65, 43

15' 0 2,.3 60 0.012 65 431

zero - 36 2.0' -1161 -12.793 -1-61 74

Ah= 5000.ft 6.37 -44 - 0.1 - 697 - 0.077 -179 - 95

15 - 46, 2.9 - 137 0.020 -179 - 96

zero 117 5.7 3320 33.234 411 -192

Ah= -5000 ft 5.67 - 16 1.2 - 956 -0.130 157 I0

15 6 2.9 19 0.006 157 110

zero - 81 - 4.9 -2763 -31. 563 -401 183

Ay -0.05deg 3.65 51 - 14 0.002 29 103

15 1 3, 60 0.013 29 103

zero - 70 - 4 -2337 -20.952 - 344 156
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Table 4- 7. Initial-State- Error Cases .(Continued)
Maxium A Final Perturbed -State Diffrne frm Reference

Typ of Correction, in~ AV A-Y A'h A C A rA-
Perturbation, qere ___ ___ __ ___gfteee rdgesfe ie T' T'

AI e fe x~l s-B I s

AYI ;O egj 39-18 1 - 25' 0.006, 3 35 -99

15' 17 -1 3 568 0'.96-35 99

, zro9~ 5 2784 22,.715 '355,-5

TY= 0. ,15-deg 10.,27 - 40 14 -27 0 62 39

1it- 3' - 781 -0. 115 73 31

pzero, 45,5 16 1033.7 75.,112 1151 -4'

4y-0ldeg 12.63, o-10' - 2 -3013 -0.1 -121, -2-77

115 -1'02 -~1 -3001, -0.304 -121, -27,7

jzeio ~-163 -41 ~604 3 -58.1716 -954 437

I '10 miles 2.40 2 4 -0.4 -316 -0.039 -193 35

15, 28 3. 9 483 0.,090 -193 35

Izero zero zero zero 10 zero, zero

IAc -10 miles -2.40 - 6 0.7- - 413 -0.049 200 - 33

11,5 1 2.5 54 '0.011 200 - 33

zero zero zero zero -10 zero zero
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Table -1. Initial--State T8rror C7ases(Continued),

I Final Perturbed-,State Differences from. Reference i
Type ofMakimum-&U.~A

_______o~if AV_ A__ &__ A.__Perturbation DegreesqC qr
Ift/sec degreesji f eet- mils BTU's: BTU's

=25 'miles 5 98 -118 -5,5 4167 -0. 448 -468, 88

1:5 -13-1 -3.6 5 4481- -0. 459 -468 -88

:zero- zero zero,. zero zero zero zero

AC=-25 mniles- 6.16 - 21 1.4 --1338 -0.476 515 -81

15 17 1.-0 39 0._007 51.3 -813

zero zero zero zer6 -25 zero zero

the first three cases of Table 4- 7 are -a check on the accuracy of numerical
integration, since the reference trajectory and control are computed~ by a

backWard s integration from terminal timie, which differs from the: forward I
calculation by small a.nounts. This gives rise to a control~ correction in
the closed-loop- case.

Errors produced byvehicle parameter changes are summarized in Table 4-8.
The controller does not cope ag well with. these, pertur~bations, as with -initial

conditid~n err6rs, because the control corredtion gains E~t)- were based on. the

vehicle parameters of the reference. The final-state errors are usually less
than 5;o000 ft. in attitude and 1 1/- miles in range.
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Table 4-80 Vehicle Parameter Change Cases

Final Perturbe&dState Differences
Type ~ Makimum4

- Peturbtion Correction in A V A,-h ~
egreesc r

ftsec degrees feet miles 'BTU BTU

4,per cent S 3.-87 0.111 3.,9 4480"' 0.48 - 505 495

15 132 0.6 3845, 0.45. 505 495

zero - 1>- 0.9 382- 5.96- 464 - 391

" -4 per cent S 3.70 - 96 4. 2 -4716- 0.26 528 539

15 - 130 - 2.9 -6059 - 0.47 528 539

J zero 19 1. 0 - 378 6.26 494 429

!0 per cent S 7.43 165 3.2 5506 0.61 --965 - 929

15 140 -1.6 3246 0.28' - 964 -929

I _______ zero 3 39 -2.2 959 -14.38', -11,08 9 914

-10 per cent S 7.05 - 173 8.2' - 9268 - 0. 16- 1109 1-161

j 15 - 204- 8.0 -10819- 0.46 1110 1161

zero 52 2.7 931 16.29 1300 1158

4per centCLO 2'.04 7 - 0.8 18- 0.002 - 2 - 12

i5 '0 1.3 4 0.003- 2- 12

zero 4 zero 41 4.046 73 - 17

-4 per centCLO 2.19 8 0.7 - 46 0.002 3 1,3

15 - 6 3,3 629 0.105 3 13

. zero - 3 zero 58 -3.972- 72 17
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Ta;ble 4-8, Ve hicle Parameter Chanhge Cases (Contintued)

Final Perturbed-State Differences
ype of ~ a~u~A ______ ___ __

Perturbation Corcto inA Ah A - A A,Degreesq

ft'/se c degrees' feet ~miles, -BTU BTUt

l0'per Cent C 4,21 17 1 1.7 60 ' 0.002- 4j- 30,
LO

15 9- O 03- 155 -0,"024 - 4- 30.

-zero 11 zero -67 10. 2 60 183 - 41

-10-ppr centC L 5.35 21 ' 1.5 253 -'O 0020 80 34

15' , 24 4.-6 321 O 0 73 , 8' 34

zero, - 7' 01 175 -9.798,- 179- 4

4 per centC DO 1.-05 49 2. 3 222 0.205- 256 - 246'

1-76 - , 14 1722 0.202 - 256 - 246

zero - 13 - 0.6 275- 6.292- 34 - 2C'

4per cent-C ~ 1.06 - 46, _ 2.3 -2267 - 0. 144 266- 261

15 - 78 0.2 .-3160 -0.265, 2G~6 261

zero 14 0.6 - 280 6.542 358 256

10 per centC DO 2.48 182 4.9, 5361 0.,2 46' - 624 - 590

15 141 1.8 4419 0.511 - 624 - 590

zero - 31 - 1.5 678 -15.298 r 828 -580

-10 per centC DO 2.51 -107 - 5.7 r,5595 - 0.210' 683 685

15t 152 '- 4.7 -7511 - 0.554 684 685

zero 38 1.6 - 709 16.867 926 668
- ----- -- _
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Table 4--8. Vehicle Parameter Change Cases ,(Continued)

.... ivMaximum A' _Final Perturbed-State Differences
Type of Correctiondi ... ...Pertux bation .. . AV A y h A

Degrees q c q r

ft/.sec degrees feet miles BTu BTTj

4 per cent CDL 0. 71 28 13' 1293 0.14 - 148 - 144

15 53 - 2.8 6i3 -  0.076 1 148 - 144

zero - 8 - 4 151 3.,'649 - 198', 141

-4 per centCDL 0.64 - 27 1.3- 1297 - 0-093 I51 149

5- 51 2.-0 1629 .0.120 151 149

zero 8 0.4 i- 152 3.732 203 146

16OpercentCDL- 1.41 70 3.2 3095 0.298 - 354 - 351

15 101 - 0.1 '703 ;0.328 364 351 Mi

zero - 19 0;.9 376 - 8.974 - 486 - 345

-10 per centCDL 1.48 - 64 - 3.3 -3208"- 0.182 384 384

15 - 9'9 - 1.2 -4377 0.369 385, 384

'zero 21 0.9 '384 9.492 519 374

Au.= deg 1.52 10 0.4 173 0.028 - 22 '20

15 3 1.6 35 -0.007 - 22 20

zero - i18 '- 7.4 -4383 -16. 496 - 239 32

AU ideg 1.53 -. 13 0.0 - 150 - 0.019 22 - 20

'15 - 11 2.8 610 0.102 20 - 20

zero 170 8,0 4991 17.755 254 - 32

Au = 2.5 deg 3.77 21 2.0 470'' 0.108 - 55 51

15 - 6 4.4 - 46. 0.022 - 55 51

zero - 237 - 16.8 -9996 -39. 107 - 572 82

Au = -2.Sdeg 3.77 - 40 - 0.5 -'815 - 0.097 57,- 48

15 - 43 3.5 - 30 0.032 57 - 48

........ ...... _ zero 596 20.4 13850 46,955 669 - 80
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-Comparison of Studies in Subsections. C ,and D (D-4 )

'The studies of'a control for modulating, angle of attack in this subsection differ

in several aspects frori -those for roll angle control reported, in Subsection C.
The object of that work was, to find a control for the whole re-entry corridor,
assuming only a -crude navigational system., Very largelperturbations could-be

controlled--50- 000 feet initial altitude -error,, for example--with a, navigation

calculation -from biased, acceleration data., The reference path was chosen so-

the system would be very controllable.

The extremal path, on the 'othe r hand, was .found- to yield, a much less controllable

system, and the perturbations had to be strongiy resticted.

MISCELLANEOUS IDEAS FOR CONTROL (E)

The linear control scheme presented'appears to provide a reasonable engineering
solution "for the re-entry problem considered. There are, however, a number of
questions which must be answered -to round, out this research effort. For example,

.what is the justification in using-the linear Equations (4- 3). for prediction so

feedback gains may be found when, in fact, this equation holds for the closed-

loop system only in a very narrow neighborhood of the referenco and not in ihe
whole controllable corridor? Why is improvement noted 'when the :control is

modified, by transformations like (4. 28), or bounds imposed 'when these modifica-

tions were not considered in the basic derivation of the control law? What
relations are implied, when the reference trajectory is found, by using one criterion

and the feedback cont rol found by using another? A more difficult area of study,

considered a little in Subsection C, is to find the minimum information of the

state, number of variables and accuracy, which will allow a successful design.

Some of the answers lie in a more careful study of the effects of the essential
nonlinearities of the system. A step along these lines is to investigate a controler

based on a predictionfrom error equations linearized in the state variables,
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but in which the nonlinear aspects of the' control authority is retained. The

control criterion must also 'be changed to retain the-,nonlinear character of this

detail of the system. Or, the nonlinearities- may;be avoided by adding more

reference trajectories and error equations. If two paths were employed as

refererice, an auxiliary calculation to choose the reference can be based on the

construc'.on of a plane midway between the reference states and perpendicular to AC(

the plane formed by theni.

Another approach is to make the, system explicit, calculating a new optimal

trajectoryat each point along the motion. This, may be done by simplifying the

Newto-ARaphson method-of Section II, by dropping more unessential! term s using

schemes based on the second variation, or, by using a Newton-Karltorovich-type

of iteration to predict an optimal path. Or, the -equations of motion may be

solved approximately by Galerkin's technique, and a suboptimal path found by

the Rayleighv-Ritz procedure. This would require reiatively elementary calcu-

lati6ns.

105



d

SECTION V

CONCLUSIONSAND RECOMMENDATIONS,

ACCOMPLISHM-ENTS [
A computationalprocedure is developed whichyields the control program and, the f
corresponding re-entry flight path.to minimize a given criterion. 'In the particular
case studied, 'this criterion is the total heat to, the vehicle. The calculation is 1
automatic, in'that the calculation will run on a large digital computer, iterating
as need be, until, an optimaltrajectory is found, without intervention by the

operator. The basls ofthe calculation is the theory of the calculus of variations.

It is demonstrated that,, when, suitably modified, this theory provides. the flexi-

,bility and a generality to encompass a large class of control synthesis problems.

The chief numerical method employed is a modified Newton-Raphson technique.

The method' is superior to both the, gradient appioach zand , standard Newton-
Raphson methods, which were tried, in terms of rapidity of convergence, ease of
automation and auxiliary computations. The .scheme is insensitive to round-off

errors, and.it exhibits no ,tendencies toward, instability'because of adjoint solutions.
It was found tobe'better, for accuracy and computer .usage, to ' empute the

necessary partial derivatives from explicit formulas derived from the second

variations, rather than calculate them. from finite differences.

The success in computing optimal trajectories is due, in part, to the simple
device of limiting the control authority so that a reasonable guess, close to a

ballistic trajectory and in the region of convergence for the method, may be
made and-,subsequently relaxing this limit as the re-entry corridor is studied.

It is demonstrated that a linear perturbational control could be designed to
provide control within a substantial re-entry corridor about a carefully chosen

reference path. The accuracy requirements for system mechanization are not

1 [.

106 1



f severe, A system With-accelerometers and an ,ttitude reference 6f'reasoiable

accuracy would assure safe re-entries, It Will control Vehicles With errors in

',parameters and' changes in- atmosphere density profile. Modification of the linear

controler gains at the end-point is examined with care.

-[ Several complicated digital computer programs, which use specially developed

integration and interpolation methods, were constructed. These will be in-

-valuable for future investigations.

J This study was conducted with a two-dimensional model-of the re-entry maneuver.

This research- has laid the theoretical foundations requisite for ehgineering
feasibility studies of optimal re-entry control. Further, limited experience with

these techniques suggests that an.6ptimal re-enitry trajectory has real 4nd significant

performance advantages, in terms of the chosen optimization criterion. This
research has also made it clear that on-board computation of true optimal

Itrajectories is not likely to be feasible- in- the foreseeable future. However, such

trajectories can be pre-computed and- stored on board for use in the iinear -control

I scheme. Alternatively, there is a: good probability that simplifying approxima-

tions can ,be made to the theory which will make feasible the on-board computation

of sub-optimal paths. The merits of these simplified- schemes can be evaluated

'by comparison with optimal trajectories computed by the methods developed during

this research program.

RECOMMENDATIONS

An original objective of this program was, and still is, to examine the mechaniza-

tion problems associated with optimal or near-optimal re-entry control systems.

I The prerequisite theoretical work is now sufficiently complete that these p:-oblem s

may be studied. The program suggested below has, as its principal purposes,

the development of a technologically feasible mechanization and the evaluation of

the performance degradation which this sub-optimal system exhibits with respect
to an optimal system.
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Task 1 : Optimization-

There are still some aspects of the Newton-Raphson optimizatLon scheme which

should be pursued These are, minor in nature, but should, produce dividends

in. faster determination, of optimal -trajectories., They are:

Examine methods- for- increasing rate of convergence to tbe optimal

trajectory A
Examine other differential equation integration algorithms for faster

path, solution.

Examine-other optimization- criteria

Task 2: Linear Control

The various linear control schemes now known should be tested against each

other to determine their effect upon- the optimization criterion. The results of
these studies will determine the linear control law to be mechanized. The

linear controlschemes include: V
12

Minimum deviation of control from reference control

Minimum deviation of state from reference state

Optimal control in the vicinity of the optimal trajectory

Task 3: Approximation Techniques

The mos. fruitful areas of on-going research will be those of finding suitable
simplifying approximations which will permit near-optimum trajectories to be I
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f computed-on boar'd the vehicle and ,of :evaluating the :performance ,of the

re-suiting -sub- optim al control, scheme.

Practical utilization of the- theory which. has'been developed'depend s on the

successful-extension of these results toward simplifying approximations which

retain as ,many performance advantages of an optima. ,system as possible. Some

-promising, approaches are-:

lRayleigh-Ritz techniques -for optimization-,arid a. Galerkin approximation1'to solve-the equations of motion

V? Optimal solutionsof simplified equations of motion,

Dynamic programming techniques for on-board computation of a crude
approximation to, the optimal path

Task 4::- Simulation

A re-entry control simulation, designed to evaluate the most promising

jtechniques resulting from Tasks 2 and 3 with respect to engineering feasibility,

should be accomplished.

I
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APPENDIX-A

THE EXTREMAL DIFFERENTLAL EQUATIONS AND-PARAMETERS

T An extremal is defined in Section I as a path- satisfying the relations (repro-
d'uced here for convenience)'

_ V f +pVf+QV G (A.)I xo x

0 = V f + ptVff+ iV G' (A, 2)U"o - U .

0 = .G., j= i,..,q (A. 3)
J~J

X f, x(o)= x0  (A. 5)

C2 - G>0 (A. 6)

J H(t, X, p, u) H(tx,p,U) (A. 7)

TO (H +T ) >n_ 0 (A.a

V-Gn = 0. (A. 9)

It is- convenient to, consider each subarc of the extremal separately. For this

I purpose, it will be assur ed that all the constraints are greater than zero along

the first subarc. Then, according to Valentine (Reference 23) the inequality

j constraints may be neglected: over this subarc.

I.

I'.
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The coirresponding Euler-Lagrange Equations (A. 1) and (A,2)' are,

-p= f +P Vf - VF (A. 1o)
xO x xi

o = Vf +,pV7f V 'F (A. 11)
uo0 Ul U*

It is well known from irmplicit fmction- theory that Equations (A. 1I) can be solved

(at least in :principle) in the ,form,

ul = u(x, p) (A. 12),

if the -determinant

2 2F1  -.1

R det v 2 F =det ,-(A. 13)

2 1 ,F1, B

2% 2

is different from zero. Equation (A. 13) is the determinant of the Hilbert

differentiabiiity condition for this problem. Substitution of (A. 12),into (A. 10),
and (A. 5) thus produces a 2n set of differential equations

= f1(x ,p) x(0) ( 0 A. 14)

-p VxF I (x, p) (A. 15)

These will'be called the reduced differential equat ions of the extremals. for th%

first subarc. It is well known from the theory of differential equations that

(A. 14),and (A. 15) have a unique solution for a given set of initial conditions.
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But 'half of these, x o , are given for th! problem, The solution is thus a func-

tion of the n initial conditions. P and is said to be imbedded n an n-parameter

fam'ly of extremals. Over the first subarc then, the solution has the form

p = p(tx 0 ,po) = P(t, Po),

u (t, x ,p = u(t, po). (A. 18)

fIt is further known from. the theory of differential equations that E3quations (A. 16)

and (A. i7) and, consequently, (A. 18),, have continuous partial derivatives in the

[variables t, x and' p of. at least second order-
0

The above results are, of course, obtainable from the general form ,6f the

problem of Bolza. It is -known that the arc can beimbeddeUin an (n+m). parameter

[ family of arcs, and that there are 2n + 2m differential equations of the extremals.

The 2m differential equations become the m algebraic Equations (A. 11) aid their

time derivatives (Which introduce -nonew information) when initial conditions are

imposed. Furthermore, the determinant in the Hilbert differentiability condition

reduces to the form (A. 13).

Over the second subarc, it is assumed tfhat one, of the inequality constraints,

I say G 1 , is equal to zero. The function (2. 10) is written, following Valentine

(Reference 23), as

F2 Af 11)

1. and the Euler-Lagrange equations as

1. xo 1 lx
'V =17xf 0+ pV f +p VG 1 7 F2(A. 20)

0 = V f 0 +PIVuf+ iVuGl ' (A. 21)
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To this is added the -equality constraint

0 - (A. 22)

If the m+i Equations (A .21) and(A.,22).are to be solved -for the m+4: variables u

and, thedeterminant

R 2, d et 1(A.-23)

must not be zero. Equa,.tion ('A. 23), is the determinant of the Hilberkt differenti-

ability condition for this arc. It is then found that

u. = u(x,p) (A. 24)

r = 1 (xp) (A. 25)

and, consequently, that

x f2 (x,p) (A. 26)

-p' = VF 2(x ,) (A. 27)

are the redcced differential equations of the extremals for this arc. These

equations again have a unique solution for a given set of initial conditions.

Furthermore, the solutions possess- continuous partial derivatives of at least

second order, with respect to t and the initial conditions x 1 and p,. It remains

to b shown that the solutions over this arc are continuous functions of the

initial conditions po and that partial derivatives of at least second order exist.
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is :1rnnd point ,of, the first subarc 'is defined by the e~qatin,(.2)

This ma'' be ,solVed-,for f (p) if the derivative

7x 1. 4 Vq~

is-non-zero. Equkation ,(A. 28) represenits the eqation for the terminal sur'face
of the famnily of extr'emal-9 which, are ,solutions, of Equations (A.,.14) and U(. 15).
Ths terihihal, sufface represents the .initial surface. for the family of ektriemals

ovrthe secojid' subarc- Which, are solutions of Equations ('A. 26) and, (A. 27).,
Fora ivn~se p the terminal values x (ti, pd h p (t p 4f ae the initial

Values' fv the differential Equations -(A.,16) 'and, -(A. 2 7)., This, follows .from the

j continuity of, x (t) and pi t). Then, since the- solutioins

X10 xt, X(t, X119 Pill t 2! 1  (A., 2 9)

Ip (t) pli, X1,j pi), t t t1  (A. 3 0)

are continuous functions of -x 1 and p1  and 'Since

,=x,(t 1 , Po) X1 (po) (A. 3 1)

p1 =p t 1 , p,,) P, p(p 0) (A. 3 2)

Iare continuous functions .of p 0 alone, it follows that

x pMt p(t, p0), t t 1 .(A. 343)

L
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Furthermore, since continuous partial derivatives of at least second order

exist for Equations (A. 29) - (A,.32) in the indicated variabes, it follows

that (A. 33) and (A.'34), possess partial derivatives of at least second order

in t, p0 . Since there are nocorners, ! is, at least, absolutely continubus.

Further subarcs -may now'be added, as long as the number of equalityconstraihts

does not exceed , the dimension of the control vector. Each subarc possesses

control functions and multipliers of the form (A. 24) and (A.,25) and, furthermore,

differential equations similar to (A.'26) and (A. 27). it is readily verified that

the :solutions are continuous functions of the initial conditions, P0 and t, and

that continuous partial derivatives of at least second order exist.

Points where equality constraints change to the "greater-thah" state will now

be examined. For this purpose it will be assumned, that only one of the con-

straints, say GI, is zero over the first subarc, and that it is greater than zero

over the Second. Equations (A. 24) -(A.27), hold over the first subarc, and

(A. 12),, (A. 14) and (A. 15) over the second subarc. The Equation (A 28) foP

the terminal surface is replaced by:the equation

II [x (t 1,P 0 ), p(t 1, P)j 0, (A. 35)

since-j 1 is a continuous function and must go to zero before G can be greater

than zero. It is then seen that the arguments follow through as before, provided

the determinants R 1 and R2 are different from zero and that the derivative

= x1 x + VpLIP

is non-zero on the terminal surface of the first subarc. On the second subarc,

then, the solution is a continuous function of t and p0 and partial derivatives in

these variables of at least second order exist. The result is easily generalized

to several equality constraints going to the "greater-than" state over a series

of subarcs.

,I
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To sum up, a,,path is composed of a iinite number of subarcs, each of which

has its own-set of differential equatois and terminal surfaces. The-first subarc

has-a specified- set of initialconditions, xo. and the last has a specified, terminal

surface, Equations ,(2.4). The, equations of this- terminal- surface-havecontinuous

partialdei-iVatives of'at -least second order with respect to- the initial coridi-I tions po and the terminal value of the independent variablo 'T

1 ,Now introduce the-,new differential equation

Xn f xn 1 (0)' = :0, (A. 36)-

where f is the integrand of Equation (2. 1). The Solution to this is -easily

,seen to- be of "the form

Lx (t p) f (x,p)dT -(, 37),

Xn+l = n+l A3)

-over the path and, on the terminal surface,

I'n+1 n+1(T ) x (T, p). (A. 38)

Furthermore, since- g of Equation (2. 1) is a functional of continuous functions,

J(T) = J(T, PO)= g[T,x(T, po)] + xn+lI(T, po), (A. 39)

The terminal surface Equations (2.4) may be expressed in the form

V(T) = 44T,Po) 0 [T,x(T, po)  = 0. (A, 40)

Thus, the problem reduces to that of minimizing (A. 39) subject to the constraint

Equations (A. 40) in the indicated variables.

L
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APPENDIX B

THE SUFFICIENCY CONDITION FOR
THE FIXED END-POINT PROBLEM

When the terminal surface, consists of less than (n+1) equatiohs of the form (2.4)

<I it is- always possible to use the sufficiency Conditions of SectioniL(C). As shown

in Section I(F), the second derivative matrix comes from evaluation of the

second Variation, using neighboring extremals (the accessory minimum problem)
which satisfy the necessary conditions on the problem*. When the -end-point

is fixed, i. e., r = n+1, it is in general impossible -to satisfy both the initial

and terminal conditions with this type of neighboring extremal (assuming -the

Problem is normal and',Ithat the V x matrix is non-singular at the end-point)o

However, it is still possible to construct neighboringextremals which have

disContinuous-:derivatives at one point and which do satisfy end conditions. The

second variation is evaluated with these neighboring extre-als to establish

the sufficiency c6nditin-mfor a relative minimum for this problem; Bliss.'
theorem 86. 1 establishes the basis for -the development. *

The complete fundamental solution matrix of the system (2. 80) and (2. 81) is

V X V x [n ITXo Po '1 2

(B, 1)

Vop Vop T 2 22
L x0 Po_ 21 2j

where the rr notation is introduced for the convenience of the following develop.-

ment. The initial condition for (B. 1) is the 2 n x 2 n identity matrix. Then any

solution 6x(t) and 6p(t) which starts with 6x(0) = 0 must be composed of a

*See Bliss, reference 22, pp. 226-234, 243-247, and 253-257 for the discussion
presented here.

**Ibid, p. 246
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:4

linear -ombifiation of ;i and TI2

80~) =tr: 12()a, ax(o) 0 (B1i2)

p -: o a, B.3)

i Where a is anarbifary (nxl) dimensional vector. It is desired to construct
-similar neighboring extremals which, have th4 property that-6x(T) 0. This is

done by requiring, -

U(T)- IT, I 1T) C" [Z

V(T) n~~)T 2 (T)j J(A

where C ,and D are (nxn) matrices to be-determified, Z is' the zero matrix and

-and Vzare matiices such that

6x(t) = U(t)b, 6x(T) = 0 (B. 5)

,6p(t)- = V(t)b, 6p(T) b, (B. 6)

and b is an arbitrary (nxl) dimensional vector. Now matrix (B. 1) is non-singular

1. by definition, so it may be inverted. Call the inverse at t = T the A matrix.

Then, from (B. 4)

C A 1 A 12'j r A12~

I D A2 1 A2 2  ' A22

from which it follows that

[ U(t) =ri 1(t) A1 2 + TT12(t) A2 2  (B. 8)

L V(t) r T2 1(t) A1 2 + n 2 2 (t) A2 2. (B. 9)
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Other relationships required in the development are

IT= ' +C '(B. 10)

; '22, 1 2 = T1 2Z 'T2 2 
+ C2  (B. )

'T22T d I = i'12 21 + C3 (B. 12)

which hold at any point 't. These relation ships may be verified by differentiating

and substituting Equations ('2.,80) and (2.81) into the result. It is readily Verified

that C I = C - Z and that C = I for the initial conditions folloWing

Equation (B. I) However, if a path consists of more than -one, subarc, these

constants will assume different- values because of the discontinuities at the

junctions of'the subarcs.

The development assumesithat the second variation is evaluated at a point t3 on

,the last subarc. The assumption of continuity at this point requires that

6x(t 3) = n 1 2 (t3 )a = U(t3)b. (B. 13)

When the second variation is evaluated at t = t, it is found that

a' ["'12' (t 3) V(t 3) - rr2 2 (t 3 ) V(t 3 )] b 0 (B. 14)

for all a, b satisfying (B. 13). Assuming that rr1 2 has an inverse at

t = t 3 , this is equivalent to stating that the matrix of

[UV - U 1 ) = b > 0 (B. 15)

must have no negative eigenvalues (although some can be zero). Substitution

of (B. 8) - (B. 12) into (B. 15), and subsequent rearrangement, then gives

the desired result,

br- 1 2 (T) [T 12 -1 (t3 ) Tl (t3) A1 2 + A22] b 0 , (B, 16)
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(at an-arbitrarily selected- point t = 3 on the; last subarc.,

S[Notice that if T is -selected 4s -t,, the matrix of'(B. 1'6) reduces to U(T) =Z.

'this is reasonable,. since, the only, unbroken e4xtremai! between -the two end-

points is the, ori ginal extrenal-, so6 the value of the,, second variationis,

I naturallY, zero.
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Figure 4-34. Closed-Loop Trajectory
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Figure 4-41. Range and Altitude Sensitivity for Extremal
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17

J1'73



20

18

16

14

w 12 OPEN-LOOP
f ,AU=O

10

LUU

w
w

6

4 / " CLOSED-LOOP

Au=E(t)Ax _

0 -
0 40 80 120 160 200 240

TIME -SECONDS

Figure 4-43. Open- and Closed-Loop Errors, Range Case:
Initial Perturbation Aa 0 0. 05 degree

174



I

I'Au- 
E(t) ax

0 40 80 120 10 200 240

,- 2

w

w
4 

I 3.910 LIMIT

0
r) -6I
w

0

0

1- 1

__ __ I ~15 
0 LIMIT

Figure 4-44. Control Correction Case: Initial Perturbation
tAa 0 0. 05 degree

7 5



ERRATA SHEET FOR FDL-TDR-64-13, VOLUME I,

FEASiBiLITY STUDY OF NEW TECHNIQUES FOR CONTROL OF

RE -ENTRY VEHICLES

page 8, Equat:ion (2.I), should read

J = g(]T,x(T)) + -f.(x,u)dT

page 21 line 6 from bottom - first word is Equations

,page 23 lin& 5 from bottom - first word is Variables

page 26 The off-diagonal terms in matrix at bottom of page are

V J and Vt J respectively.,Po Po
page 27 last equrtion is numbered (2.71). Also, the-g in the last term should

'be T..1

page 31 Equation (2.92) requires brackets as in equation (2.91).

page 32 line 2, (A28) should, be (A.28)

Equation (2.96) should read

V X = V Xn+l(tl) + [x- (tt) ) t(Po n+l) p Po[n+l Xn+lt n]1 0o

o 1 0

page 34 - line 10 from bottom - capital P should be lower case for page

page 35 delete lines 9 and 10 from bottom

page 46 Equation (3.41) p should be pt (transposed, or row vector).

page 48 line 8, a2+2 should be

page 52 line 8 from bottom - the a should be a

After line 6 add the following: The minimum principle is satisfied

by the riles at the top of page 49. A corner exists at a point where

P2 passes through zero. Integrations must be restarted at such a point

with EW= OLD' provided that P2 0-



page 53 line'8 from bottom - al should be a.

page 59 Equation (3.67) in the third equation shout'd be

equation (3.68), last term- U2 is _2"

page 60 line 8, the first term of the vector is plVCDL.

page 61 line 3, the 3rdand 4th words should be "when either"

line 7 frombottom - ui should 'be /i.

page- 6 3 equation (3.79) should read -jul <0 < u

equation for p. is numbered (3.80), and should read

go C +2C [] cLoP + (CDLPIV) 2 ]

=2 (b2 ac) sinu (3.80)

line 10 should read ...and _ = 0 with 2 / 0 0....

Equation (3.81) -the first column elements should have dots above

them (except for the zero) to indicate time derivatives, i.e., v(T), etc.

page 64 Equation (3.82) - the first element of the matrix is -p'(T)x(T) and the

third element is -V/ x(T)j(T).
PO

page 65 Equation (3.84) The left-hand side should be the same as that for

equation (2.35) on page 17°

Expression (3.85) should read

( V /) 0 t 2yJ(V y 2 ) - I

Equation (3.86) - The first column elements of the inverted matrix should

have dots over them to indicate time derivations.

Line 4 from bottom - (3.85) should be (3.86)



3,

page 66 line 2 "completed"-should-be "computed".

page 70 - .quation (4.7), should read

[Xf + V-j EAX

page 72 equation (4.11) - the arguments t in the second terms should be "a"

page 73 equation,(-4.14) - the a 's should all be a's.

the dimension of A! should be ((n-q)xn)

page 74 - line 6 from bottom - range on t should be a < t <T.

page 75 equation (4.22) should read p = poe

page 76 line 2 - the atmosphere coefficient should be 1/23500.

line 4 from bottom: yo = -6.4 degrees.

page 79 last line.., the 1Og acceleration limit.

page 94 line 3 - the last word is "law"

page 95 line 4 - a should be y

page 110 Reference 6 - replace "Report" by TR-R-

Reference 7 - "Atmosphere" should be "Atmospheres"

replace "Report" by TR-

Reference 9 - Replace "Report" by TR-

page 111 Reference 19 - the original paper number is 61-6

page 112 Reference 27 - add (1961)

page 113 the right-hand side of equation (A.l) should be -p

Equation (A.4) should read 0 > Ii

page 119 the initial condition for equation (A.36) is x n+(O) = 0

the lower limit for the integral o-' equation (A.37) is 0.

page 122 delete the last sentence of the first paragraph


