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FOREWORD

This document Vis the: f'jrsfc of two volumes’ comprising the: _finaIi report on a.
feasibility study of technigues for the control of re-entry vehicles. The research
was sponsored by thé Flight Dynamics Laboratory, RTD, under Task No. 82181
of Project No. 8225 and Contract No. AF33(657)-7383 with the Mihneapolis-
Honeywell Regulator Company, Minnéapolis, :‘Minnesota. Lt. E. B, Stear was

the RTD project officer for this program. Work at Honeyw ell was performed:by
the Systems Techniques group of the Military Pxﬁo@uéts Research departmerit under
the supervision of J, T. Van Metér. Project personnel were: ‘G. D. Swanlund
and D, K, Scharmack; principal investigators, and M. D, Ward, R. G. Johnson,
L. D; Dolid, D. L. Lukes, W. C. Marshall, and E. R. Rang.

The first volume of this report, '"Calculation-of Optimal Trajectories and .

Synthesis. of Control Functions';, presents the matheématical models, the

development of theory and the results of the numerical calculations for a two-

year study of controlled re-entry vehicles, The digital computéer programs.

developed and used .in this effort are documented in Volume 2, "Computer Pro-

grams'. These reports are designated as Honeywell MPG Documents 1535-TR2,
. Volumes 1and 2.

The encouragement, assistance, and direction provided by Lt. Edwin B. Stear
is grateftlly acknowledged.

Some of the digital computation -was conducted at the RTD computation center.
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= ABSTRACT

REEVRLY N

(w)ptimi"z:a.fion'¢ t'e’c‘hniqug s-are used to synthesize the control ‘programs-and compute

7 ~thé"c@i'néspondjng"f‘l’i‘ght" paths for controllable re<entry vehicles. Linéar per=
E turbation control aboit these reference trajectories is inVéS't»i’gate‘d.«

‘A 1af;;gg'poi't"'ion~ of the theory of the calculus-of variations is modified and ex-

; tteride"ci ‘tOvapply to this problem. Many details of computational techniques,.
- necessary inthé adaptation of the theory to large scale digital calcuation, are

réport‘éd. The optimization method which evolves is-a modification .of a Newton-
: Raphson iteration, é,lt,kiqughgr'adi’e,ri;:pfocedurw are also studied.

v
m ,“ﬁlﬁ
s ol

‘ The ucriitéri“a for re~entry trajectories are functionals of the motion related. to
the heating of the v.ehicle, It is found Vtha’t‘ these criteria are relatively insensi-
tive to-the flight path, and this fact leads to computational jpr\oblefns,whicp" must
‘be haridled carefully. The paths and. control-authority are constrained by
reasonable physical requirements.

: The linear perturbational control is found by requiring the integral of the square
;‘-‘ of the control deviation to be minimum. The vehicle position is the object of

) control in thé cases studied. It is found that this form of control can be used
l throughout the entire re-entry corridor. Various modifications of the control

gain program at the end of the trajectory are considered.

This technical documentary report -has been reviewed and is.approved.

G

Technical Director :
Flight Dynamics Laboratory
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SYMBOLS

acceleration along velocity axis, ft/se02
acceleration normal to vélocity axis, ft/ seciz' ﬁ
total acceleration dué to aérodynamic force, ft/ sec?
terminal altitude, ft: v
positive~definite raatrix in Newton-Raphson method
specified maximum: value for: ;,l;p; f‘c‘/sec‘2
coefficient of drag

coefficient of lift

aerodynammic coefficient constants
integrand in J

feedback gain matrix

generalized Lagrangian for optimization problem

i’ g function of terminal.state in. J
- £, nominal gravity at surface of earth, ft/sec2
T G inequality constraint vector
L h altitude, ft.
' H Hamiltonian
I‘ J function t6 be minimized
m vehicle mass
p multiplier, or adjoint, vector
P, initial multiplier vector
f o] heating rate, .a function of the path; BTU/ftz'/sec
Q specified constant heating rate, ,BTU[/ftz/sec
qc corrective heating rate
. 611" radiative heating rate
R radius of the earth, ft.
L R terminal range, ft.
S aerodynamic reference area, £2
T terminal time, sec.
"
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* SYMBOLS (Cont'd. ),

u ' control vector for -optimal trajectory
any admissible control vector
velocity, ft/sec..

<«

terminal velocity, ft/sec,

"

state vector

»

initial value of state vector

e

(T, a) influérice matrix
‘zer o matrix
angle-of-attack, ‘deg, , measured positively upward:
atmospheére éxponent coefficient,, ft, -
flight. path angle, deg., measured positively upward
perturbation .Qpe;:atof (time independent)
great circle rarige, ft.
multiplier vector for inequality constraint
dimeénsionless altitude ‘
atmospheric density, slug/ft. 3
slack variable
roll -anglé, -degrees

terminal surface vector

49€ 6 Qo WIEFE N R WR N

gradient with respect to the control vector, x (If the
operand is a vector, the result is a matrix)

»

gradient with-respect to the control vector, u

D <
c

first variation, increment

differentiation with respect to time

-~

matrix transpose

»
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. SECTION 1
INTRODUCTION:

- CGMPENDIUM.

Synthesis of control for a re-entry vehicle presents many difficulties in the
form of nonliniearities, constraints on the dynamical state, constraints on

the control and questions of controllability and observability, These are of
-such i‘mpcipt’anc_e they must be directly incorporated into'thé design process

and cannot be considered secondary, as is done in most engineering methods.

Further; there is good physical justification for mi,nimiz‘ing certain func-
tionals of the motion, such.as heat input and acceleration: effects. The re-
entry problem, therefore, provides an -éxcellent proving :ground for the new
optimization design techniques.

The goal -of this. study is to-demonstrate the eificacy of these new techniques
by actual synthesis-and simulation of 'the mechanization of an-automatic re=
entry céntrol scheme developed through their use, This has not yet been
achieved. ‘However, d meéthod of automatically computing optimal re-entry
trajectories has been developed and demonstrated; and a careful study of a
schemeé of linear controlabouta reference trajectory has been conducted,
serving to point out sensitivities: and difficulties which must be arn*icipated
in a mechanization attempt.. Many details, concerning the application of
the theory of the calculus of variations to this problem and of the usé of a
large digital computer in trajectory and control calculations, have been
studied and are reported here,

Manuscript released by authors, October 14, 1983, for publication as an
FDL Technical Documéntary Report,
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Model for Re-entry Studies

Thé .modgl,rchc';s‘env'fqr‘thgse re-entry studies is two-dimeénsional and assumes
a isphéffgé‘,l’,» mon-rotating -earth and ‘gn exponential atmosphére.. The model
differéntial equations are a great simplification-of the actual equations of

«+ -motion !;utdg represent the essential .phenomena found in re-entry flights,

The velocity w, flight path aﬁgle‘ Y, thé dimer‘;s’:iqnless«alfci‘tud'e, £ = ‘h/R,
> and the .great circle range ¢ = RO, are chosen as the -gom‘pohéhts of the

state x. The control is represented by the function u -and'is manifested by
_authority over the vehicle aerodynamic coefficients.

In this'notatién, the iriodel equations of motion are

dv S g. siny
; — = i oy Cou) - e
dt 2m DTV T i+ 8P

« R4 S ) V' cos ¥ g, cosY
—_— = - p\VC'L’(u)+ . 2
dt  2m ~ R(1+8)  v(1+8)
(1. 1)
dg \Z
—= — sin¥Y
dt R
d¢ \
= cosY ;
dt 1+8€

where R is the radius of the earth, S and m the vehicle frontal area and
mass, respectively, p the atmospheric density, and C’L and CD are the
aerodynamic lift and -drag coefficients,

o
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For convenience, theé systém (1.1) isuisually represented by the vector

-equation

x = flx, u). | (1.2)

. Vehicles

Three vehicles are -¢onsidered in these studies, The first is a high lift-drag-
ratio.vehiclé, for which the control furiction is.thé angle of attack a., The

aeno’dynamic: coefficients, based on flat.,pleite~»~fNewt6niaﬁ"ﬂow, are
Cp = Gy + Cop Isin®eal
‘D DO DL .
(1. 3)
Cp = ‘V‘CLO sina cosa lsina]

in which CDO’ CDL and CLO are constants, The other two vehicles are
low lift-drag-ratio ‘Apoll'o-tygﬁ'e bodies, Oné has a variable anglé of attack,.
for which the coefficiénts are

"CD = CDO + ‘CDL cos u ,

‘ . ' (1.4)
' l CL = CLO sinu s u = e, e - constant. o
{ The other assumes a fixed angle of attack; but uses a roll angle ¢ out of
L. the plane of motion as the control function:
L b * po
{; (1. 5)
Cy, = Gy Cos?® . ,
L 3
B A T RN DU
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The criteria for those optimal trajectory cdlculations which were studied are
the minimum of the integral-of heating rate-deviation.from: a préscribed value

+ [ @-a"a (1.6)

3

and- the minimum of tctal heat, representéd by

T

o

where g s the heating rate for the vehic¢le, and Q is a given constant..
The vehicle described by Equations {1.3) was used with criterion (1. 6),
whereas.thé vehicle represented:by (1, 4) was used for the minimum total
heat problem.

Studies: Conducted

A considerable-body of theory, based-on the calculus-of variations, was:
developed to facilitate the solution.of the control optimization.problem on.
the compgt_’ér. The ’objective"of‘ these studies was.the development of an-
automatic optimization method. A gradient scheme and the second-order
Newton-Raphson method, using the first and second- variations, are des-
«cribed in detail in Section II, Also presented is.a Newion-Raphson scheme
for the two~point boundary value problem associated with the minimization
problem, Experiences with these methods, together with computer results,

are given in Section 1II,
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: eLmear control about a reference tra;ectory, found experimentally for the
Froll-modulated veh1cle, and. about an -extremal trajectory for the variable
'gngle.-qfeattagl;, veh;cle ‘;sfdemved\ by requiring the quadratic integral of
coityol deviation. Au,

R j "(Au)? at * {1.8)

to-be minimum, The theory ard results for these studies,. .along with:
results of navigéticin_ and configuration investigations, are given in Section IV,
A detailed etrror analysis and a sensitivity study of the controlled systems:

T e

also-are outlined,. e

‘This volume ends with. conclusions-and recommendations in Sec‘uon V The
computer programs used -are-documented in-Volume Two:.-

BACKGROUND - R

Preévious, Studies’ o —

Re-entry into earth atmosphere by vehicles launched. fromvth;gjéé‘ntﬁ or from
an orbit about the éarth is a problem: which has received extensive analysis
during the past several years, Allen, Eggers, Gazely, Lees, and Chapman
(References: 1 through 7) have made pioneering contributions to the under-
standing of re-entry, Their important work has beén augmented by a multi~
tudé'5‘of studies, most .significantly those of Robinson and Besonis (Ref, 8),
Wong and Slye (Ref, 9), Young and Eggleston (Ref, 10), and Luidens (Ref, 11),
A comprehensive list of re~entry literature would be extremely extensive,




1S

‘The primary concern of the early :studies was.aerodynamic heating and

deceleration, with the object of showing the feasibility of safe descent

through the atmosphere-from orbital initial velocity. The earliest studies:

drag ratios were evaluated, More recently, careful consideration has

been given to modulated aercdynamic coefficients, produced by varying

the-angle of attack according to Some stated objective {maintenance .of

constant deceleration for examplé), References 12:thvough 17 are examples

of this work,

Many trajectories-have been calculated for a wide varjety of initial
velocities and fli’ght=path angles, Attempts to generalize 'sblutidr;s; through
non-dimensionalization, notably the work of Chapman (Ref. 6 and 7), and
more recently Loh (Ref. 18), havebeen particularly rewarding..

‘Tlie Safe Flight Corridor

Thesé numerous: studies resulted in clarification of the concept of a safe
flight corridor. This. corridor is usually described in-a plot of alfitude
versus velocity, bounded on the lower side by heating and/or deceleration
limits and-on the upper side by sustainéd flight at maximum Jlift (negative
lift for super-orbital velocities and positive lift for subbfbital velocities),
Corridor depth is used to evaluate the guidance requirements:for separa-
tion of the perigees of two vacuum. conic trajectories, -one initiated at

the upper corridor bound and the other at the lower; this is described: by
Chapman (Ref. 7) and Luidens (Ref, 11).

As.a result of this work, the kinematics and aerodynamics of re-entry are

now quite well understood.

E
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**- “Vehicle Dynamics_and: Control

;I:{ecéntlj,: atterition has been given to-vehicle dynamics-and control during,

re-entry {aside from a few early studies of the oscillatory stability .of
r-éj-'ér’,i't.fy bodiés), Several relatively simple range and cross-range
schemes have beén: ﬁropoge’é-fcr landing-point control. References 16 and
17 are-éxamplés of this kind of investigation, based on currently established

Seiding o jres T
: R

concepts-and-equipment mechanization,

e

‘Credit for the use of optimization techniques in determining re<entry
trajectories seems-dué Bryson, et al (Ref, 19), This paper pointed out the

o

possibility of using more sophisticated control over the vehicle (to minimize

h“

functiohals of the motion) while still satisfying given end-point -conditions,
Linear control techniques were, again, first published'by Bryson. (Refs, 20

and 21), These methods provide the vernier adjustments to the control
furiction made necessary by model variations, such:as atmospheric density

Aoiniind
LI

deviations and winds,.

The control scheme envisioned in this report makes use of both optimal
trajectories and linear control. Since Bryson's and similar calculations
are not automatic but require the intervention of the person making the

w
[ 4 %

calculation to produce convergence of the iterations, these methods are
not suitable, without modification, for on-board mechanization, The

R i ]
i T %

'studies reported heére were aimed at finding a calculation which would bé
automatic, converge rapidly and ensure an actual minimuin for the

=

functional,
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SECTION 1I
OPTIMAL TRAJECTORY CALCULATIONS - THEORY

& ‘

: PROBLEM STATEMENT (A)

‘The prqb_lem considered hereis a special form of the problem of Bolza.as

‘ formulated By Bliss (Ref, 22) and extended to include inéquality constraints
by Valentine (Réf, 23), It is: Find that path which minimizes the function

PO

T
s mxan+ [ 6w ar (2.1)

o

subject to differential equations of the form

x = f(x, u), x (0) = X, (2,.2)

inequality constraints

and terminal surface equations

YT, x (T) = 0. (2, 4)

In the above, x and u are n and m dimeénsional state and control column
vectors, and (°) represents differentiation with respect to the independent
variable t, The dimension of vector Equation (2.3) is q, and that of

(2,4)is r, where r < n+ 1,
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Following Valentine (Ref, 23);, Equations (2. 3) are rewritten in the form
©2 L r ; - (2
c“ = .G (%, u) (2, 5)

where the componénts.of the vector ¢ 2 are 02 , ¥= 1, ., q. The

-o's are slack vé@ifi‘abl”és,fintrqduced to comple_téth‘é set of differential

equations for, the problem of Bolza, No miorethan m of the &'s may be
zero-at aany point-on gher‘path.

It is assumed that fb\"(x', u) and the differential Equations (2, 2) and: (2, 5)

‘have continuous partial derivatives of at least third order in all variables:

in an open region: Sl‘ about the minimizing:path. Furthermore; the matrix
made: up of the partial derivatives-of the differential equations, with respect
to all.derivatives and the control functions, must have rank.n + q at.each

point of the mihimi‘zing path., This ensures that the differential equations

;are independent, The matrix has thé form

¢ ~

T=1 v f V4

« (2,°6)
A Vl.iG -z

where 1 isthe nxn identity matrix, Z is an nxq zero matrix, Z'is
the transpose of Z, and I is a gxq diagonal matrix whose elements
are 20,.

J

The solution x (t) of the differential Equations (2, 2) and (2, 5) is supposed
to be continuous, with, ‘at least,, absolutely continuous first derivatives,

In some instances, it will be possible to consider corners, i.e,, points

at which the derivatives are discontinuous. The control functions are
treated as derivatives.in (2, 6) so they can be discontinuocus, as in the
bang~bang problem., Potential corners are those points at which inequality
constraints change from greater than to equality states or vice versa.
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They may also be defined by switching peints, as in the bang=bang problem
whete the equality sign holds in the constraint relation. A subarcis de-
fined as that part -of the path between corners or potential corners,

Finally, the functions g(T, x(T)). and. (2. 4) are assumed to-have continuous

partial derivatives of at least third order in an open set Sy, of points

(T, %(T)), and the matrix

| I T WU '

e | - : o 2.1
; bllfr c d,/r’ all{r"
L&T ’ B~x1 > ¢

is assumed to have rank r; An admissible.arc¢ is defined to be a path having
all of its elements (t, X, x, u) and (T, x(T)) lying in 51 and ‘SZ’

respectively.

Differential equations.and inequality constraints ¢ontaining t, explicitly,

can easily be brought to the form of Equations (2. 2) and (2. 5); The

independent variable is changed from- t to s by adding the differential equation

dt _
'f;s‘ = 1 s, = t, = O (2. 8)
and noting that
dx dx ds dx
= m (2. 9)
dt ds dt ds

10-
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Then t becomes.a dependent variable, and the resultingn + q + 1 différential
equations:are in the desired form, :Observe that the order of the system har
been increased by one.

NECESSARY CONDITIONS (B):

Thé nécessary conditions for this prcblem are stated here without proof. ‘The
reader is referred to References 22, 23, and 24, for their derivation. The
first necessary condition is

The Multiplier Rule-

An adraissiblé arc E, defined on aninterval [0, T] is said to satisfy the
multiplier rule if there exist constants Py = 1, e = [ €1s e s er]; not
all zero, and a function

F(t, X, w, %, p, &, 8) = f_ 4 ptf-x) + ut(G - &%) (2. 10)

with multipliers p(t) = [p ), ..., p ()], continuouson [0, T} .and
wit) = [p @, ..., pq(t)‘] continuous on [ 0 , T] except possibly at
corners of E where unique right and left hand limits exist, and satisfying
the Euler-Liagrange equations

—nt = ot v ' :
p foo + p Xf + VXG (2,11)
. = 4 mt Y LAY
0 Vufo +p uf + W u‘G (2. 12)
0 = ’H.G., j = 1, ... . q ,(2, 13)
J ]
where
0 > T , (2. 14)

T GG ——w 3



-and-differential equations:

x = f; X (0) = x_ : 42, 15)

2= G20 T (2,16)

along E, and furthermore, 'such that the equatiohs

4 Sg 3y
f, + p'f +-a",f + et 3T

3

: 4T (2. 17)
7 A

<
"
o

) ot v = ol L -
vV g+ et Y p_;):|Tk dx (T) = o,

hold'foi every choice of the differentials dT, d¥(T). The multipliers
Pyr Ps W do-not wvanish simuitaneously at any point of the interval [0, TJ.
for an arc E satisﬁying‘ the multiplier rule, Furthermore, the function

B = f + pf (2. 18)

is a constant on E, Every .minimizing arc E for the given form of the
problem of Bolza must satisfy thé multiplier rule. In the above, the
vector Y] is the first column of the matrix (2. 7).

T

The vanishing of the coefficients6f dT and dx(T) in equation (2, 17)
constitutes the transversality condition on the arc E, Thus,

(?’g W)

= = = - | v t

H = (f + p'f) = (i + p'ip 3T * 37l . (2. 19)

pHT) = (V. g + e‘*‘?x*tIJ)*T. (2..20)
12
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" The Hamiltonian, Equation (2, 19), is often called a first integral for this
problem It-has further signifi'cénce in the second necessary condition:

" The Necessary. C_pnd,it‘io‘r‘i\. of Weiéerstrass (Thé Minimuin Principle)

An admissible arc E ~éa.t;isfy'ingi the multiplier rule with multipliers

Weiéﬁg,trass with these multipliers if-the condition

I, Py 4 issaid to saitisfx the necessary condition of

Hit, x, p, W) £ H, x, p, U ‘ (2, 21)

is valid at every element (t, ¥, x, u) of E for ail admissible points
(t, =, X, Uy # (t, x, X, u) satisfying the Equations (2..2) and (2. 3).
Every minimizing arc ‘E for the given form: of the problem of Bolza

must satisfy this condition..

A consequenice of the Weierstrass condition: is:

The Necessary-Condition of Clébsch
At each point of E let 8 be a vector whosé components are those
components of G which vanish, and' § the corresponding multipliers,

Then the inequality

m v'2u (4 + §G) m =20 (2.22)

13
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must be satisfied for every vector ft # 0 where m = |5 PP ]

and :satisfies the-equations
v o= 0. - 12,.23);

Every minimizing arc for the given form-of the problém of Bolza must
satisfy this condition.

EXTREMALS AND THE EQUIVALENT MINIMIZATION PROBLEM (C)

The paths consideréd here are supposed to satisfy theé Equations (2. 11)
through (2. 16), as well as the Weierstrass and Clebsch nécessary
coiditions. ‘Such paths will be called.extremals., The paths are further
supposed to consist of a finite number of subarcs: ‘On éach subsrc a
given subset of the inequality constraints are equality constraints, and
all the rest are greater than zero, except possibly at a finite number of
points, It is shown in Appendix A that such paths can be generated by
integrating sets. of differential equations of the form

f(x, n), x(0) = X (2, 24)

e
1l

P 3 V;{Fi(x, p) (2, 25)

These differential .equations change from subarc to :sub’?rc, but the
solutions are continuous.at the junction of two subarcs, It is further
shown in Appendix A that the Solutions can be represented as functions
of the initial conditions én the multipliers p{(0) = Py and the terminal
value of the independent variable, T; i.e., a solution is defined by
specifying a particular set (T, po)., ‘Continuous partial derivatives of at

*Junction points are potential corner points and are also referred to
as breakpoints.

14




least second order in these variables exist. The optimization problem can

then be reformuldted-as: Minimize the fuiiction

= 3y © (2..26)
inthé variables. y- = (T, pa); subject to: the constraint equations

Yly). = 0, £2.217)
Thig is the. equivalent minimization problem. Necessary and sufficient
conditions for a relative minimum for this ;p;robiem are well known,
First, form:the function

Fly, \) = J@) + M yly) (2. 28)
where N is.an r dimensional vector of Lagraiige undetermined multipliers,
Then assuming that y is-defined.over an. open region R, ‘that the necessary

partial derivatives exist in the neighborhood of the critical point y = ¢,
and that the critical point is normal (Ref, 22, ,pp,,.210—21‘3 ), the.necessary

and sufficient conditions may be written:

If a critical point y = ¢ has a set of multipliers X for which the
function F satisfies the conditions

v Fl) = 0 (2. 29)

and

NG v; Flc) Ay > 0 (2. 30)

for all vectors Ay satisfying

vy Yle) Ay = 0, &by #:0, (2..31)

then ¢ is a minimizing point..

15




.. 1t should be rerharked that the Equations (2. 29) and (2, 27) are n+r+ 1
o e'q_uat—ioné.’iri the'n + ¢+ 1 variables y and A, ‘They may be solved; in
- .principle at least, for the-critical value y = c and the corresponding
. :set of multipliers,. if the matrix
o2 2 ] Te2o n
. -V F) A% F)' VOF (V_yir )
S ) .‘,’?"”)'f I ¥ ‘Y‘p
e [ t2.32)
vy z Ly z
* LYY S R J
*  is non-singular,.
The sﬁffici’ency condition, Equations (2, 30). and V2, 31)-is rather awkward to
¢ test numerically, However, a more convenient test, showing that a-matrix
is positive-definite, is easily derived. There are two ways.in which this
can be .done,
The most.obvious method is to solve (2, 31) for a set of r dependerit components
of Ay interms of the (n+ 1 - r)yothers, and to substitute back into (2..30),
) The resulting (n+ 1 - r) x (n+ I - r) matrix must be positive-definite, The
other-method is to complete the set of constraint Equations (2,27) with
(n + 1 -r) equations-of the form
Y ) = Yle) + 2 (2.33)
-chosen such that the matrix
:""v ]
1Y v
= VeV, (2,34)
vV '
L Y
is non-~-singular,
16
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may be thought of as.a transisrmation rélating-arbitrary 4z tovalues

of Ay satisfying the-constraint Equations {2,31). Substitution-of (2.35) —
into-the Suffieiéncy condition (2, 30), followed by the indicated ‘
multiplication then gives the result

Py P
¥ O ¥ -y

i
¥

 Then th® equations _ _

IR

== 3

R

Az'A, Bz > 0.

must‘be positive-definite,

Since Az is ,arb,itrary, the (n+71=-r) % (n+ T - mateix A~4'

COMPUTATIONAL METHODS FOR FINDING A RELATIVE MINIMUM:(D)

-
»
— oo ;
- L
= - - - _ oA
— . e I it
o - -
< g

S -0'«.’.l N T T
VowpBy = L | S T REsE)
L i Az [ L . ]

Three of the many humerical schemés. for finding a minimum. are discussed
here. Theseare the Newton-Raphsor method, a modification 6f the Newton-

1ethod and the method of steepest descerit, Reference 31 gives a

other methods,

It is-assumed that the required partial derivatives

L. are available, Methods for obtaining thém are given in subsections:E and F.,

L Consider first the case in which r , the dimension of terminal surface

‘ Equations (2. 4) is less than {n + 1). Expansion of Equations (2::26) and (2,.27)
I through -second-order terms about a point Yo gives ’

where

Jy) = Iy ) + VyJ(yOv)‘ Ay +

Wiy) = Wy ) + VWl ) Ay +5

By = ¥ - Yy

17
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1y + 2. 37y
Ayt VI 3y ) By + ... (2.37)

2
' v
Ay y Wy ) By +..., (2.38)
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In: vhe Nev«ton -Raphson scheme, the point Yo, is ascumed 16 be so close to the
wminimizing point that (2.3%7).and (2 -38) adequately approximate behavior at
the mlmmxzmg point. The function F .of Equation (2,.28) is. formgd, with these
expressmns .and differentiated W1th respect to y, the assumed minimizing
p,omt, Setting the result to zero gives

TRy, X)) = 0 = Y Fly., X) + ve g \) Ay, 2, 39).
y (y, ) ; Sy.(yo ) y (y» ») &y (2. 39)

T_Iihe';ili@rajiive éblﬂiion of Equations (2. 39) and (2.38) {with Y(y) = 0) for

Ay and A then constitutes the Newton-Raphison method; provided the matrix

. g2 ‘ , (2. 40)
Vy F(yo,,, \) :

safisties the sufficiency condition. Otherwise, the solution would be driven

toward -a saddle point or, worse, a maximizing point,

If the sufficiency ‘condition is not met, some other iterative scheme, such as
steepest descent, should be used, This situation will generally arise if the
point Yo is too far from 'the minimizing point for the second order expansions

42, 37) and (2, 38) to be accurate. In steepest-descent, the point y is assumed

to be closer to thé mininiizing value than the presént estimate Yo The ex-
pansions (2. 37) and (2. 38) are truncated after first-order terms and written
in the form

Tar} [ J( Y] Y Ty ) |
~‘dJ: Jy) - Jly,) | .yJ(yo)

: S| | ay = oy, By (2.41)
tay| Yy - Yiy) TV

3 v
.. - e — e v
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" A change Ay in the gradient, or stéepést‘d'escehjc; direction is made by the
- thoice

By = 'y K, (2: 42)
where: K is-an (r +1) x I constant vector to be determined, Substitution

fo(:z‘{;mj) into- (2, 41) to-determinie K, -and insertion:of the résult back into
(2.42).gives

by = ov(e o0t s (3. 43)

that is, the désired change in Yo is given. in terms of the 6 ('yo),,matrix,,
and: specified small changes dJ and 4y, The latter are chosen to make
J and { smaller at thé completion of the next step. Reference (19)
provides.a. more complete description of the use of the method. It should
be pointed out that the method blows up as.a critical point is approached,
since the (r + 1) x (n + 1) :matrix 0 is necessarily of rank r at sucha
point, -Otherwise the gradieént vector could not'bé thé zero vector. The
invérse matrix of Equation (2, 43) does not exist under this condition.
Hopefully, the ¢ritical point is a-minimizing point, so the-computational
equations can be switched to those of the Newton-Raphson method as the
.point is. approached.

Now, suppose r = {n+ 1), Inthis case, the (n + 1) Equations (2. 38)
completely specify the (fixed) end-point and, hence, Ay, without reference

to the minimization criterion (2,.37), Truncation of (2,38) after first-order
terms and rearrangement then gives

by = [V Wy )1™ W) = vy ), (2. 44)

19
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provided the problem is norral. If the choice

Yly) - Yy ) = = Cidly) {2.45)

%

is made, a gradient-like iterativeé equation resilts:
oy = =€ [ Wyl Twgy . 0<e < (2. 48).

Use of an equation of this form to find the minimizing path will be
termed the "modifiéd Newton-Raphson method. "

The scalar constant C is the -only experience factor fequired for this
scheme, If C = 1, Equation (2.46) is recognized as the ordinary
Newton-Raphson method for finding a root. Usually, the initial guess

of y, is so far from the minimizing point that some: smaller value for
C will be required; hence, the bounds 0 < € < 1, As the solution
approaches the critical value, it is ,‘normal«iy found that acceptable values
of C become larger and larger. It is possible to-automate the proper
sélection of 'C on the-computer,

Theré isno guarantee that the method will converge to a minimizing
solution, However, the second variation test described in Appendix B
can be used to determine whether or not a solution does minimize,
The modifiéd Newton-Raphson method can. also be used for the class

of control optimization problems for which the terminal surface
Equations (2. 4) assume either the form

o= x(T) - X, = 0, i=1,...,r< +1) {2.47)

20
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or the form

, W, = :xjg(:‘r)" =X = 0, j= 1., dr-1)<n (2.48)
i w = T - D = 0, (2'49)

. .’“J«‘ "
g

after.a suitable renumbering of the state coordinates, * 1In theée
I equations, X, X, and D are specified constants. A large

number of optimization problems fall into this. category. The
T " .advantage of using thé modified Newton-Raphson method.over the .
r ;hefhéd_ of ‘steepest descent is faster convergence;

When thé terminal conditions (2; 47) are substituted into the transversality
-conditions (2, 19) and (2, 20),. there results

gt
Y

: { B - ( ‘t = )
Hlx, pg) =, + p'D]g . o = 0O (2.50)
§‘ _
Py {T) = e o= 1, v, , T (2..51)
} pj,(’It)f = 0, § % r+1, ...,n (2.52)-
3« Since the Hamiltonian is constant alorig the .éntire path it is evaluated
. in (2. 50) at the instant t = 0, which allows simpler computation.
] Equatioh (2; 51) specify the constants e; and hence give no new infor-
mation. When the sclutions:are considered to be functions of the
vector y, Bquations (2.47), (2.50) and (2. 52) become the set
xif(y) - Xi= 0., i=1,...,r
| H(y) = 0, (2. 53)
1
L p; () =0, j=or+l.,.,n
) *The function g of Equation (2. 1) is taken to be zero here for convenience
21
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This is the two-point boundary value problem,. based on the necessary
conditions of the minimization problem. When the set (2. 53).i5 expanded

about the point Yy ~and rearranged as in thé development of Equation (2, 46)
- there results

ay = -ca”l

where (x - '5&) and. S are the vector forms ofx and p, in (2, 53).
Let £(0) be the right-hand side of Equatmn (2. 2) evaluated att = 0,
Then the matrix Q is

Ty
aly ) = o 0, 0y | {2.55)

v by |
y.p(y0>

Again, there is no guarantee that the iterative Equation (2, 54) will
converge to a minimizing solution, However, the sufficiency condition
of Subsection C maybe used to determine if an optimal trajectory has
been obtained.

When.the terminal value of the independent variable is specified as in
Equations (2, 48) and (2, 49), a reduction in the size of the system is

found, The boundary value problem for the terminal surface becomes
that of solving the system

xj(po) -Xj: 0, j= 1, ...,(-1)
(2, 56)
p) = 0, k = r, , n
22
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for the minimizing p_ . The iterative equation fis

x”(po) - X
Ap = - Cw"ljpo) i 1, 0<Cs1,
E—P.i(po,) ;

where (% = X) and p arethe vector forms of thé léft-hand side of

system- (2. 56),. and

(v 267
b, ,(po)

w{p 0)‘ =

THE PARTIAL DERIVATIVES 1 (E)

When Equations (2. 26) and (2.,27) are differentiated with réspect to. the

variable y = (T, po)’ there results

) 3g(T, x(T)) _ ) )
J = —= —= + V_g(T, x(T)) x(T) + T (T)
3 T X o]

vpoJ = 9, g(T, x(T)) Vpox(T) + V‘po X 41D

. aY(T, x(T)) .
¥ = - + 9, (T, x(T)) x(T)
e}

vy = VT, x(T) Vp—OX(T)

23
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(2,57

{2..58)

(2, 59)

(2..60).

{2.61)

(2.62)

TR~




where
: _t

e ® = [ o1 ar, e

)

4 he integral tertn. of Equation (2. 1),has been introduced as a new variable

(see Appendix A),

The symbol J in Equation (2. 59) represents the .partial derivative of

Equation {2, 26) with- respecét to the variable T. This variable appears

both explicitly and implicitly (in the variables x), as indicated on. the right-
hand side of (2,59). A similar interpretation holds for Equation. (2. 61);

Since all terms »f Equations.(2..59) and (2,61) are available after .a path
has been found, J and Y are readily evaluated. The other partials

may be estimated or they rnay be computed if ?I‘) x(T) -and Vb X . fl(T)
are khown, o 0 "

Consider, first, thé estimation of the partial derivatives, Since the
solutions are-continuous functions of Py the function .J may bé expanded
in a Taylor's series expansion through second-order terms in one of the
variables Pig:

3J ESE .
Jip. + Opi Y= J + Gpi t s ‘5131»)
) o op; o op; o)
(0] (0]

The left-hand side notation of (2, 64) indicates that only one component. of

P, has been changed by the small positive amount 6pi
‘0

24
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_Note that the terminal value ¢f the independent variable T is also held

, . - e 2 AL o »
constant, 'Theé quantities J_., =——— and Lo 9 corres ond to the
ST q bt n 1‘ ) N ap"i‘o“ ~ - a?io “ " .,p -

i3

extremal genehéted with the initial conditions ’p(;, . Substitution of
-Gpl into {R:'64) results in

o : -
Jp, =~ Op; ) = J;Q -w—= Gp, + v TTE (ﬁpi\) . £2..65):
0 o ap; ) 3p; 0
o 0
Subtraction of (2, 65) from {2, 64)-and rearrangement gives. the desired
result
v LA
3 Jp; + Op; ) - Jlpy = Op; ) |
e (o) : ,0 0 c : (2 86)
bpi 2 6pi‘
"0 (o]

that is, the partial derivative is obtained from two solutiens with slightly
différent initial conditions in one of the components: of P, - A complete
set of first partials is obtained irom 2n perturbed. solutions, Since
values of Y .can be determined for these per arbed solutions, the obvious
changes in Equation (2, 66} may be made to: calculate 'Vpi Y.

0.
If the Newton~-Raphson method is used, second partials must also-be
estimated, The form of the matrix of second partial derivatives for the
function .J is

pO
LI v2 j
L ex-’o pO

25




[

Of these, ounly J -can be calculated explicitly.. ‘The-¢omputational equation,
from.differentiation of Equation(2,59),is

S azg(T; X(T)) Y L . . o
J = e+ (Y gdT, x(T). xAT) + Y, g(T, xAT)) x(T)
3T T * ,
(2,67)
+ ZUT) V2, (D) *(T) + E (1),
where '
oj ; v . e v ] . 9 . e - J
fd :xfox + Vufo( Lux vagp), (2, 68)
and where V)ff;O and’ vﬁfb are partidls with respect to explicit appearance
of xand u in f . Similar equations may be written for X = f. The
components of V‘Po»‘i are computed from application of (2,66} to.the
function J .,
The diagonal elements pf»‘V'g J are estimated from
)
527 . + 6p. ) + I(p, - Op, ) - 27
i i i i )
e = 0. .. 0 .. o .. o 15 aol
opP; (Op,
o o

Equation (2, 69) is detived by adding Equation (2, 64). to (2, 65) and

rearranging the result,

26
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The off-diagonal terms of V;; J: areestimated from
V ‘ Py ,

!

5
g s W X
f

3y Ji{p: + Op. > P +6p.) +J - J(p: + Op. - Jo. +'6";')
T e i N e i T S
dp; 3Py » Sp;

I og@ T
r
I

1

2.170)

where J(p, + Op, , p. ¥ 5ij ) is the solution which results when

I
, 0. o o ‘o .
the .elements ,p‘.x and. p’j are perturbed by the small positive amounts
o . - o] 0
T bp, -and Op, ., respectively.
b 16 . Jo

Equation 7(2 70) was. dérived by expanding J in a Taylor's Series éxpansion
through second-order terms in the variables pi pjo about the solution
for Py Substitution of (2, 66) and. (2.69) into the result, followed:by some
rearrangement, then gives (2. 70).

A Equations similar t6 (2., 70) can be found for either or both of épi and: 5pj
T o
considered negativé. It is recommended that cross partials-be computed
- for the perturbations répi , Op.. taken in the direction of expected change
,,o o
in the solution, This~an be found from the direction of steepest.descent..

- The partials (2, 70) require an additional _‘ﬁr_‘z._l_) solutions, The grand
total of solutions fora Newton-Raphson step rises to .I}i%i‘_""_)_ , ‘not counting

- the unperturbed solution

Finally, second derivatives of { are computed by substituting components
of ¢ for J in the above equations, with the exceptiofi that

.. a zl/i a -y e 2
Tt iy [c¥s]® + vy x + & v gk
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‘There are several-disadvaniages associated with estimated partial derivatives.

The ‘biggest problem involves the integration accuracy. Since the partial

~derivatives are approximated by differencing integrated solutions; the random

error generated by the integration algorithm may result in bad prédictions

of the-minimizing point. Closelj rélated to this problem is the cné of picking
the perturbations, 6. po., If thése are too sinall, the partial derivati‘vesfw,iili
réflect the integration error alone, If they are toolarge, the partial deriva-
tives will not reflect the nature of the surface in the vicinity of the point

(T; P o). Interimediate values must be chosen by experience: EVenthef:, :
there dare errors in the estimating equations, since these correspond to-difs
ferentiated (quadratic) threé-point fits. It generally takes 10ngei‘*to=e$§ixﬁg‘éé;
the partials on the computer than to-computé them explicitly (see Sub‘S‘egtior‘;.-E ).
The total number of equations integrated per step is nn+ 1) (n+ 2)}for~e$t;4
mated partials, whereas it is 2n(n + 1):for explicit computation, It tock.about
three times longer to éstimaté the-partials than it did' to compute them éxplicitly
for a particular problem (n = 3). -

In spite of these difficulties it may be wise to estimate the partial derivatives.
for some problems rather than to calculate them explicitly. The set of

differential equations for estimated partials is much smaller and easier to set

up than the corresponding set for the explicit computation of partials. Even '

if the partials are to be computed explicitly it is helpful, for program

.checkout purposes, to-have estimates of the partial derivatives.

The value of the Hamiltonian is theoretically constant, so it may be used'to
detect large truncation and round-off errors.

THE PARTIAL DERIVATIVES II (F)

7Y

Now consider the explicit computation of partial derivatives. For this
purpose it is convenient to shift to the Hamiltonian formulation of the
problem. It may readily be verified that the équations
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:i 3 - §. :: ¢ . . A ) Y ‘ 17
:; ;E i . ""p \’»x\}ﬂl 1; (xl“ug p!v I-L) ) (2' 73)
\,g : ,.’; .

I 0= ViHy &5 4, p, p) {2.74)
-H,1=, Hix, w p) + uGlx, u) , - (2, 75)

T e
¢ \!l
R At

where H is-defined by Equation (2. 18), are-identical with Equations. (2. 15),

(2, 11):and (2, 12), respectively. According to the arguments of Appendix A,
each subarc-of a path has its own set of reduced differential equations .of the

%‘ extrémal$ of the-form
- . 1 ‘ 6 LR
. “p = Y Hy (x, p) (2.77)

“ w
3 k

‘where, of course,

u = ulx, p) (2.78)

w Heotivatnied
4 H 2 b

wix, p), (2. 79)

€
]

Now, in the solutions of Equations (2. 76) and (2. 77), x, p, are functions
of the independent variable t and the initial conditions X1» Py oD the

- Subarc, Consequently, x and p are also functions of these quantities,
Differentiation of Equations (2. 76) and (2. 77) with respect to a typical

initial value 2. followed by an interchange of the order of differentiation
on the left-hand sides {(which is permissible) gives

d Jox 2 0X 2 3p
—_—_ 2= = V! -_—
dt ( a przl 3a Vp H 3a (2. 80)
4 [3p). . yiy & | 2 g 2P
‘ (aa) XHI da pol da (2.81)
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Equations (2. 80) and (2,81) aré a set of 2n linear first-order ho'rnogénjeous‘

differential equations with time=varying coefficients, They have a maximal

" set.of 2n independent {(column) vector solutions. Only n of these 'solutions

'ére of -i‘ntex‘»est'for thé control optimization problem: namely, those repre~
senting partial derivatives with respect ito the initial values. of the multi-
pliers fp,0 . These solutions -are represented in rnatrix form by

‘where ‘?p X .and Vp p are-both n¥n matrices. Linear combinations. of
o o)
the solutions (2. 82) of thé form

Ox{t) = % x (t)-dp_ (2. 83).

o

(1) = 7, p) dng (2. 84)

for smdll dpO represent .all possible neighboring extremals about the
extremsl whose initial conditions are x,andpgat t = .0 ¢holding

X fixed). The equations of these extremals are

x(t,p, + dp ) = x(t, p)) + ‘7pox(t)dfp0 (2. 85)
. = . . v :
p(t,.po + dpo) p(t; po) + pop(t)dpo (2. 86)
30
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Initial conditions for the solution (2. 82).of the différential Equations (2,:80)
and (2, 81) must be determined, For the first subarc, these are

v: x(0) = Z v, p0) = I,

Po Py

since the initial .conditions on the path-are t = -0, .and
x(0) = x_, p(0) = p
Differentiation of (2..88) with respéct to b, results in (2; 87y,

The initial conditions at the juiction point t, of two-subarcs are detér-

H

mined from continuity considerations. These require (see Appendix A)

xlty, po) = xlty, %y, py)

p(tl P) po) = p(tl » X1 » p]) .

Differentiating and noting that v x(t,) = I, v p(t) = 0,
X 1 Py 1
Vxlp(tl) = 0, and Vblp(tl) = I then gives
voxg o= Voox{t) + i)’c'(t‘l) - k’*(tl)‘:] Voot
* - .+
vop, = Y pl)+ p(t) - plt) v t .
P, 1 Py’ 1 1 : 1 pol

Here, the matrices Vp x(tl) and Vp p(tl) are terminal values for the
O sy
previous subarc, and >’c'(t1) , ;’)"(tl) and k+'{t1), [3+(t1) are limits of

the time derivatives from the left and from the right, respectively, If the
control functions are continuous, the partial derivatives are continous in

time at tl; if discontinuous, the row vector Vp ’c1 must be computed,
o}
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it is determined from either (A, 28) or- (4. 35).6f Appendix A, -dépending on
whether a constraint is *being added or Subtracted, If (AZ28) 1s the subarc
terminal surface, it is found from: the implicit function theorem ‘that

I ¢
v t = *-—-——V G V
Py 1 G ,{xi P,

1

& . . G T i 2k
x(t,) + VpGr ,po,p (tl‘)} »

whére c?}:1 is defined by the equatiocn following (A, 28) .

The differential Equations (2.80) and (2, 81) are usually integrated right
along with the set of Equations (2. 76) and (2, 77). In this manrier, the
time-varying coefficients 6f (2,80) and (2, 81) are .easily calculated at
each point along the path,

The terminal surface of a path is usually described by one, but not
necessarily all, of tlié components of (2, 4) being zero. ‘On the surface,
the first partial derivatives are evaluated from Equations (2. 59) - (2. 62),
Examination of these equations now shows that only Vp X . 11(.’1‘): .8 still

undetermined, This may be evaluated in one of »two'«ways. The first is to
add the differential equation:

4 Fher | v_f —ai+ v_f °F
dt oa X0 9da p‘o 92a

To the set (2.:80) and (2, 81) and to-integrate it along with the others,
The initial conditions for the first subarc and at breakpoints are,
respectively,

vpoxn+1"(0) = 0

32
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hé second method of eviluating V % ,
Thg second method of -évaluating ‘péxn +1

calculus of variations concerning the differential of X 41 for a one-~

stems frorn a theorem in the

~ paratheter family of extremals (Ref, 22, p.237). Here,

- e ye—

g = G+ D] AT - pUT) du(T), (2.97)

Substitution of

dx(T) = x(T)dT + 9, x(T)dp, | (2..98)
(o)

into (2,97), -and: rearranging;. then gives

‘dxn‘_*_‘l‘('I‘x): = £ dT - p'(T) 's'f) O:x(T:) dp, + (2..99)

from. which it follows.that

VPOX~h+~1:(T) = - p"T) Vﬁbx('li) . (2. 100)

Integration of (2,94) and. evaluation of (2.100) give the -same
result theoretically. However, for numerical accuracy it is.
better to perform the integration than to evaluate the identity,
Equation (2.100) is uséful for program check-out and for
checking the integration accuracy, since it is true for all
values of the independent variable,
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The second derivatives come from application of the second varijation, see
. Ref, 22, P 226, For the ¢ontrol optimization problem, this may be written

a’y ‘dzv - Lb’(’r.)‘:‘c(’f») a7 + 2:{3'('1‘) 5x(T) »d"r]

{2,101)

where:
V= g+ ey €2..102)

oV

9. ‘372"% :
d"v = *~—2'+ 29
. o T™

| Ty + %¢T) 92V %(TY | AT

2,

ES

(2.103)

< 3V
+ 2V
- X 3T

. 2 | - s
+ 2T V2V | 0x(T) aT + 6x/(T) ¥V 0x(T)
and
2w = quadratic form in second partials.of {2, 10) in-all variables,

The definition of the d-operation is given on P, %65 in Bliss“book. The
expression (2, 101) assumes that the transversality conditions (2, 19) and

(2, 20) are satisfied, so it is generally an approximation during the iterative
process, The terms required to mdke it exact are usually too complex to
compute, They are neglected here on the grounds that the transversality
conditions are nearly satisfied, and the Newton-Raphson method is known
to be insensitive to errors in the coefficient matrix,

When the comparison curves are restricted to the neighboring extremals
(2, 85) and (2, 86), the integral of (2, 101) can be reduced to (Ref, 22, p, 245)

T .
jZ wdt = -0 pHT) 6x(T) , (2, 104)

0]
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where Sp and &x are defined by (2.:83) and (2.:84), respectively,
Substitution into (2. 101) then gives

a’y = [dT dpg]' W v Wi lar | (2,105)
)A. X T '0/ g ) :
2 b ’
v W vCOW dp_ .
L o) p’b °

where the (usually approximate) partial derivatives.are computed from

2

y . R - s {avd 0
W = -pHT)x(T) +| —5 + 2V = g}«}g(T),+x'(T) vV x{T)
oT" VT i

: . . »‘ av \ v 2 £
vV W = -pHT) V T + Vv | |+ x¥(T) vV
b, p()pbx() *X‘BT,] x()X

and
v?‘VV = - | V! p(T) v_ x(T) + V' x(T) vz\f v ox(T) . (2, 108)
P, 1 Py Po ; Pq x P,
sym

Note that (2, 100) may be substituted into (2, 107) and that the partials simplify
considerably if (2, 101) is a linear function,

It was tacitly assumed above that breakpoints contributed nothing to either the
first or the second variation., This point can be checked by splitting the
integral of Equation (2, 1) into several integrals, one for each subarc, and
exp~nding each through second~-order terms, It is found that breakpoints
cottribute nothing to the first variation because of continuity of all the elements
across such a point, The second variation contributions are zero if the
breakpoint is not a corner., Corner points, apparently, require further
examination for individual problems,
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SECTION 11

OPTIMAL TRAJECTORY CALCULATIONS -
APPLICATIONS AND RESULTS

AN EXAMPLE PROBLEM {4A)

The following simple analytical exainple illustrates the concepts presented in
Section.II, Ther problem chosen is the two-dimensional harmonic oscillator

with a single control function, The problem was found in Reference 27, The
-equations of motion are

‘dxl A
T = Xz , Xl (0) = Xl. (3,1)
‘ o
dx k ,
FEo T oy %, (0 = ox, (3.2)
'0
It is desired to minimize the control effort over the path, This may be
expressed in integral form as
T
J = f u? g, (3.3)
o
The terminal surface is specified by a given terminal time and by
XI(T) = 0, Thus,
Y, = T-K =0 (3. 4)
11/2 = xl(T) = 0 , (30 5)
36
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where T’ is the value of t ‘on th. terminal surface; The Hamiltonian for
this system is

H

PiXy + Py lex, + @) + u?, (3. 6)

The Euler-Lagrangé équations are, thus,

: = N N . i
Py = Py (3.7
5‘2 = - pl )(3.' 8)
pz, + 2u = 0. 13.9)
Thé dptimal :control function, from (3. 9), is .seén to.be
~p~ ’ i .
u = -5 . (3, 10).
‘This control function automatically satisfies the minimum principle .and
the Clebsch necessary condition, Equations (3. 7) and(3.'8) are linear
-equations with constant coefficients .and may be solved directly. In terms
-of initial conditions,
f"’pl(t)'T I cost sint] “pl 7
11 7o
= ' ’ (3. 11)
pz(’c) -sint cost| | p,
‘ o.
L o b PO B .

where Py and pz are the initial conditions on p 1 and Pge
o} 0

The homogeneous part of Equations (3, 1) and (3. 2) is the same as that for
Equations (3. 7) and (3,8). The system is thus self-adjoint. The solution
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cos-t

- -sin t

of Equations (3. 1) and (3..2) can then be written as

After substitution -and integtration,

:“Xl(t')-‘-?
bx.t] |
x2( ): ﬁ
L
4

cost

~sin t

sint !}

cos t|

——

F (t cost -sint)

~t sin t

t sin t

{sint+tcost)]

TFinally, the evaluation of expression (3, 3) is

J{t) = %—[p

2
1
)

+ pz2 (t + sint cos t)] .
o)

(t -

sin t cos t)

38
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On the terminal suiface, ther,

) = =+ [952‘ (T - sinTco8T) - 2p, py sin® T
~ 0. %o

i
4)
& spzz' (T # sinT cos T},
o
I x AT). T cosT sin TV [x, ]
+ 1 : 4 ‘ 1 .
xz('I‘) :;-@in' T cos T} :’fx-z '
I | L JdL 0’..
(3. 16)
T (T cos'T = sin T) T sin T
L ‘ . . )
3 -Tsin T (sin T + T cos'T)
i ,

The function F of Equation (2. 28) for the equivalent minimization problem
may be written, from (3. 15), (3.4) and (3.5), as

F = J(T) + 31’;("11‘ - K) + ey %y (T) . (3.17)
The first necessary condition then gives

—_—= 0'=“‘(p1 sinT-p2 cos T)” + e, + e, (-x, sinT
o)

3T 4 o} 1 2 1o

(3,18)

20 4

v

+ %, cosT —*.L--l..l:plTsinT-p2 (sinT+'1‘cosT)fl
0 o
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9 o F b N - 2 |
Y 0 = T4 P (T" - sin Tcos Ty - py sin T {
1 . (0 0
Q A "
(3.19)
- {TcosT = sinT) ;
,; F v 2 R ]
a;); = 0 = 7| Py sinf T + p, (T + sinT ¢os T) |
N , o) 0. , .
o ,
{3..20) 3
e
—2 7 ogin T
3 T sinT .
These, together with (3,4) and (3.5) are to bé solved for T, Py
. O«
kpzog ey and’ e‘z .. The solutions are
T = K (3. 21) ;
p, = AcoskK (3.22) |
0
p, = AsinK (3. 23)
0
A[x1 KsinK - x, (K cosK - sinK)jl
e, = 0 ° A ’ (3. 24)
(K - sinK cosK)
4‘[}:1 cos K + Xo sin K:I
g = A= ° ° , (3, 25)
(K -~ sinK cos K)
provided K # 0,
40
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‘The poirt défined by Equations (3. 21) through (3. 25) is truly a minimizing

point, This will now bé& shown by constructing the matrix A, of Equation {2, 386).
‘The sét (3. 4) .and (3; 5) is first completed by-adding the equation

Then the Equation (2. 35) may be written, for the critical point, as

10 0 T far]
Xp o ¥p1 o gl | APp ]
) . o
Y2 ¥ap o Fap| | APy |
- JoL J
where
SO T AT

Q&

Equation (3. 27) may be rewritten.

" AT

N Ap : =
10‘
‘ o
- .

91 ° C(x

C(x

1
c = (xy

e

12 %

2

21%1

22

11

‘a

21

34

- X

- X

- X

21

22

32

99%9)s
11%2)

X

23

33

i

19) -

4

22

32

1

= Cx

By A
R 22 9py

Cx22, a23 - Cx12

"

21’ 233 Cxyy

(3, 26

3. 21

(3.28)

T sy v - o




Alsc, atthe critical point,

*

0 -“%-K sin'’K = %(s_in K+K cps’K‘v)_i%
A ; 1 ; sin® K
— K sinK - {K < gin K cos K) = —5——
2. 4 4 4 !
VER= X
A si 2 K 1 4 - '
: T {sinK + K cosK) - 612;: T(K"+ sin K. cos K) |
i 3
(3. 29)
After all the substitutions have ‘been made, it is found that the matrix A 4
of Equation {2, 36) is the .scalar
A = K - sinK cos K)
4(k? - sin® K)
Since K > sin K for all KX > 0, /AQ > 0. Itis, thus, concluded:that the
salution is indeed a minimizing solution, since there is only one critical point,
The accessory differential Equations (2, 80) and (2, 81} for this problem can be
written
Cax.| [ T Mk, ]
1| 1
133 0 1 0 0| Sa
3X 3%, |
—21 . L 2 |
32 1 0 0 ) 33
d .
q | ap,| op, | ° (3.30)
0 0 0 1 _—
oa da
op 9p -
—2 1o 0o -1 of |2
oa da
4 L 4 L7
42
| Al - o s e - — = - -




woney goey  siey sy Ol

i

¥ (I8

2

It can readily be verified that the sélution of {33 30) is

I

:T-afxi oX. sint - tcost -t sin £
9Py %Py | ’ S 4 4
: Ne} : ‘

Xy axz ’ } t sin t - {si;i t + t cos t)
i oPy | ST 4 i

(3.31)

1 3Py op;

R cos t - sint |
1 Py Py ° '
X o

v pe| [ = AU (3. 32)

o

-sin t cost |

- __' L ‘_J:
The first derivative of (3. 3) with respect s.t0~,po, from {2, 100); is
= X AT 1 Y 8 A r ‘ 24'
v J = -pNTY v_x(T) = [p, (T-sinTcosT)=-p, sin” T),
P p 4171, 2o

0 (o] L
(3..33)

- p, sin‘z T Py (T + sin T cas T))
(o) (0]

It is seen that this corresponds to the results of differentiating Equation (3. 14).
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Since the constraint Equations (3.4) and €3. 5) are linear, it is seen inat the

matrix {2..105) of sécond partials reduces to

(&)

C

?g.g{iﬁ Vp,P(T? =1

pave

2.

T

.2 .
~sin” T

4

| T-snTeosT

~ gin

i

T + sin T cos‘}l‘;%

4

5

st

{3,34)

This agrees wiih the corresponding terms of (3, 29). when ine identification

T

-
=

K is made,

THE HIGH LIFT=-DRAG RATIO VEHICLE OPTIMIZATION STUDY (B)

The Problem Statement (B-1)

A trajectory is \sc')ug‘ht which minimizes the functional {1, 6) for a flat-plate

vehicle with aerédynamic coefficients represented by Equations (i, 3), Tne

data for these formulas is CLO = 1.82, CDO =

0,042,

and C;

DL. =

1, 40,

The motion is assumed to:be governed by equations of the form {1, 1) and the

atmosphere is specified by ihe relation

P

%

o -BRE'.

The terminal surface is representied by the single equation

where K is a specified constant,
the formula

> 1

l,Ul-"I‘-K

a

P

-
-

2

Spv

ngo

0,

(3. 35)

(3.36)

The pilot’s acceleration, computed from

\e

44
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"is constraineéd-by the inequality

1AV

'B s & :O‘.:; : A , {3.38)
P ; . -

{The qons__té.nt B i‘sxgenera/lly taken as 10.g.) Iﬁriitigl conditions for the

path are
v, F 35,000 feet per second
;vq = ~ 5 degrees- A
h, = 400,000 feet
¢ = 0.

The criterion (1, 6) is chosen to correspond to a vehicle which radiates

heat most efficiently at a épecified temperature. The constant

Q = 195 BTU/sd, ft./second fixes this temperature around 3000°R

for this particular véhicle, ‘and, since the trajectory is selected by the
criterion, the heating rate of thé vehicle deviates in the mean-square

sensé as little as possible from this constant, ‘To simplify the computations,
the heating law is taken, following Chapman (Ref, 6) as

q = C ‘51/_2 v , C = 2x10°8) , (3.39)

A more realistic formula, which includes a radiative heating term in
addition to this formula representing convective heating, is used in the
next subsection,

Since T is a constant by (3, 36), it may be omitted from the criterion;
so the integrand f  of Equation (2. 1) may be identified with the integrand
of (1,86):

Boe Q- . (3. 40)
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The fu_n‘cﬁén g of (2. 1) is taken as zero. Thus, Equation (2, 10} for this
application reads

Fetf +plE-%+wp(@-a -4,
o = ‘ P g

where thé terms on the right-hand side conrespgﬁd to relations (3. 40),
{1.1), angd (3.38), respectively. The range coordinate { does:not
appear explicitly in thése terms and, hence, is a cyclic (or ign;rable)»
coordinate, ‘The correspondisig Euler-Lagrange Equation {2,11) is ¢!
£34 = ‘0; ‘hence, p‘4 must be a constant, This constant is zerc in
order that the transversality condition {2, 20} is satisfied on the terminal
surface (3,.36). Hence, the fourth equation of system (1. 1) may be
elimminated, Further evaluation of the transversality -condition gives

pl(T) = pz(T) = 93("1‘), = 0 4
and
H= e,

where e is.a constant which is yet to be determined, To compress the

notation, the remaining three coordinates are written as

The Unconstrained Subarc (B-2) ’

The multiplier |+ in expression (3.41) is zero on any subarc which is not
limited by equality in the constraint relation. This follows from (2, 13)

{3,41)
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With G’ 3 0. The Euler-Lagrange Equations (2. 11) and (2..12) become

af af, 3f 3,
e 0 1 2. ~ -3
-p = + P, —=— + Ps 5 + P ‘ 5
1 1 3%, 2 ax~l 3 3%,
. ?f . f
. 1 . . T2, 3 ,
~ Py = Pyt Py st P 3 (3. 42)
2 1 a;;z 2 98Xy 3 ox,
2.
of f o f
s 0 "1 2
Py gt Pyt Py 3
3 ax3, 1 8x%4 2 3x,
‘ 'avfl azf2
0= Pi5g * Paa (049
The last equation becomes, when substitutions from (1, 1) and (1, 3)
are made,
Sev | sinal .| -3 C; p, Vv sina cos:x
2, ’ DL *1 '
m « L
(3, 44)
2 &
+C~Lop2(3cos a-l)]=0.
Assuming re-entry conditions,, the leading terms of (3.441) are non-zero
if |sinea ] # 0, The bracketed terms may then be rewritten in.the form
3C p,v ;
tanzxa + CDL l_ tana - 2 = 0 . (3. 85)

Lo: P2
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singular points,, since =

PR .
P - PRy
oo MR- T

This leads to the equation

o -

tana = -ai afa’ + 2
where .
. 3Cp, Pyv
&% 2€ y
Lo P2

Note that the sign of tana i§-determined by the choice of the + sign-in

Equation (3,46)

‘The. lift-drag polar is traversed once as « »ranges,,'thr()ugh m radians,

It is thus advisable to limit the control function to a range of 1 radians

to-avoid double values. Furthermore, the points « = 0, m:are

2 > (the determinant R, of (4:13) in
Appendix A) is zero at th%sé,points«'. The range Q”< a < is
chosen here, since then, lsinal = :cina, ‘and the proper sign for
the equation is most easily chosen, The singular points are removed
by défining @ = 0 -atthese points, Thus, the range of a is

0 £a < 1m.
The proper choice of sign is determinéd. by considering the minimum

principle which yields the inequality

. : .2 ~ .
sin « "-"CDL p;vsin a + CL,O P,y Sina *cosa]

. 2 | . |
<sinA} - CDL p,v sin A + CLO Py sinn A cos A] ,

where A is any value of the control function satisfying Inequalities (3, 47)

and (3,38), Substitution of (3, 45) into (3. 48) and rearranging, then gives

Py sine tana < Py sin A tan A ,
providing tan A satisfies Equation (3, 45) .,
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Since sine = 0 -andthe signof tana is-determined by the % sign of
Equation: (3,46), it is seen-that (3, 49)is -satisfied by the choices:

if Py < 0,. choose+sign(0 < a < _121__ ).

The ‘behavior where Py = 0-isexamined by a limiting:process, since

Pys Py and v are continuous functions of titne, The binomial seriés

expansion, assuming large a, gives

af-2+52 = lal + .+

lal

If a > 0 and the minus sign were chosen, then

tane = lim-2 lal, a - g— (from- the left) ,
a -

If a < 0 -and the plus.sign choser,

n , )
tana = lim2 lal , @ - —é—v(from the right) .
a - o

On thé other hand, if a < 0 and the minus sign chosen,

e

tane: = lim- — = 0, @ - 7w (from the right) .
a-o jal

Finally, witha > 0 and the plus sign,

tane = lim 1 0, @ - 0 (from the left) .,
a —-® la!
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The last -tWocaét\éS show-that it is possible for @ to;be»di‘,scg‘?)btii)ni;étis‘,u For
example, if p, passesthrough zero-and ¢ wasnear m, then a will jump
to zéro as pz goes 'Ehroug'h,:zéro. ‘This-difficulty is cleared up if the ‘proper
interpnetation.«is.:made. Since tan (r + @) = tana, @ maybe t}loi-!ghtjfi)'f
as being contintious-across jumps, but-in‘the-dis-allowed region m < a < 2m,
‘The control function disﬂqdi;tvinuityfwul be retained fince compiter results can
properly be interpreted, -and sincé it allows Isine | = sina in-all equations,
Einally, although of little practical importance;, if 'p, and p,, are simultaneously
tiero-at apoint, the limit ratio p,/p, is :{ol;/';}z at that:point by L'Hospital's
rule, ’ - :

To sim.-auzp, the reduced differential equations-of the extremals for subarcs. 7
having a_ < B arethe first three of (1. 1) and system:(3,42)- “The control
function is computed from Equation (3.46) in the range 0 < @ < 7 acécording
to the rules following Equation (3.49) , The subarc terminal surface i§ \

a = B, provided that \ép # 0. -

The, Constrained Subarc (B-3)

When a, = B the inultiplier p of (3,41) may be different from zero, The
Euler-Lagrange Equations (3. 42) and (3, 43); modified for thi§ event, are

e o 2 2y 33 2%
1 3%, 13x, Py 3% | Pg 3%, 3,
df df af
-1 1 2 . %' , |
Py P13x, ¥ P23x, * P3ax, (3. 50)
af of af da
"L 0 1 __2 _ P
- P3 3%y t Py Xq t Py Xg “axa
{
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O m3E tPye Py asy
The control functmn is determined froem- ap = B and the multiplier
‘ from (3. 51) Expansmn and rearrangement of the constraint equation:
az v B ives:
ageT B gl
52 - 02 = sin® a|c, sinda + ¢, sine + ¢ | (3.52)
>‘, ‘ﬂm .“',‘ ‘ ’:’.-’]: ? . g : 3,5’ L] A
where
2m Bg,
b = Sl
S pvz
- o2 . 2
¢ = Cp, © CLo
A2
€s. ~ C:_I_‘.O

¢g = 2Cpo Cpp, -

The right<hand side of (3. 52) is a function only of the vehicle aerodynamic

coefficients (constants) and sin @ ., Itis zérowhen @ = 0 or 7, and
maximum when a = -—%— . From this it follows that b must satisfy
Cho < b < (CDL + CDQ) o (3, 53)

The physical interpretation is that if CD 0 > b at any point of the path,
then .«@ has.-gone to zero in the futile attempt to keep ap = B, The inte-
gration is stopped if ‘condition (3, 53) is not satisfied,
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Newton's method was chosen to extract -@ from-(3,52), Thé iteration.
équation is ‘

b2 - C‘Z.’]-)O) - st a ;L;i»siﬁ‘sc_r + ¢, sine + c_3f"]
Aa = ——i o e e 2,
, sin” d cos a f[Gcl sin@ + 4c, sina + 3c, }

(3, 54¥
, 2 3

A Aa  is calculated from (3. 54), using an-assumed @ ‘{usually the last

integration step -value) .. Thisisadded to &, and the hew & is used to

-calculate anew Ag ., The process continues until Aa. is negligible,

In thevicinity.of @ = 0, A‘g or m, the denominator of (3..54) is:likely
to be quite small, To.avoid this difficulty, Equation (3. 52) was.expanded

-as'a series, The results are:

3 [p2.c2 \1/3
If a ~ 0 ’ e(éina a - -L)’ then o = —"—v——r&) .

if @ ~ 7, (sin«a

2 2\ 1/3
b® - C
then. a = 1 -(———QQ) H

n
o~
s |

!
L

[}

If a~12, (cosa=(-%-a)=-1—(%--a)

then 9 9 1/2

where
the + sign is used if Py > 0, and

the - sign is used if Py < 0.
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1f Py = 0, choose sign so that tana is .continuous, The choice of

signs-again cornes from the minimum principle,

It is also noted that the d‘eterminant,Rz, of Equation (A. 23):-in Appendix A

is .

Since this must never be zero when apﬁ = B, @ mustneverbe 0, —27-1-
Of' TT; .

Finally, u is calculated from Equation (3, 51) in the form

1 of of,

1 ‘ "2 i
da .. 1 3 2 3a |

The reduced differential equations of the extremals for the constrained

subarc are now the first three equations of (1, 1) and the system (3, 50).
The c¢ontrol function (0 < a < -;L or -g- < a, < ) from either the

iterative Equation (3. 54) or the small angle equations, ‘and the multiplier
k(< 0) comes from (3, 55) ..

‘he Subarc Junction Points (B8-4)

It is known that ihe muvltipliers p and the Hamiltonian H are continuous
at the junction point 9f constrained and unconstrained subarcs. It is

necessary for this prorlens that the points at which @« = 0, —;L be
ruled out as junction péints, since the determinants R1 and R2 of

= v AR LS - o T e e




Equations (A. 13) .and“(A, 23): must be non-singular at such points. For all other
values of a , itturns out that the control function must be continuous at
junction points. This is readily verified from examination of the Hamiitonian.,
It is an analytic function-of x, p and o, Since x and p are continuous at

junction:points, and sirice the Jdacobian R, is nor‘i~’singu13r, it follows that

@ is-continuous.at such points. Similartlyl, -since RZ? is noni-singular,
Equation (3. 55) 'shows that p must be contihuous at such'points. Thus; .p
miist start and end with the value zero-on constrained subarcs, It then
follows. that the constrained subarc terminal surface is # = 0, provided

p # 0 atthe junction point.

‘The Newton-Raphson Equations (B-5)

The form of thé equivalent minimization problem considered here is:
Minimize the function J(T, po)} corresponding to the functional (1. 6) in.
the variables y' =T, P10’ Pag ,p30) subject to the constraint equation

4/1=T‘K=~0' (3. 56)
The fundétion F of Equation (2, 28) is

F = JT, p) + e(T - K), (3. 57)
which, when differentiated with respect to T, gives

2BF (1, p,e) = 0 = J'+e+vpjdpo.

377 0 o (3. 58)

since the constraint (3, 56) implies dT = 0, The constant e of (3. 58) can
always be chosen to satisfy the identity, Differentiation of (3. 57) with
respect to the other rariables, setting the result to zero, and a little re-
arrangement then gives the Newton-Raphson iterative equation

1 I (3. 59)
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The sufficiéncy .condition reduces to -showing that the matrix. sz J is
positive-definite, This follows. sincé in the quadratic form

dy' V§Fdy > 0
dyi = 0 and the other 'compor;ents} of dy are arbitrary,

The steepest descent equation,.

de =:\v 'J,d‘VI' 3 V;) j ,
pO 'po T 0

is reddily verified using the methods of subsection II(D). The magnitude
of 'dJ is chosen by experisnce, usuaily smaller and smaller as the optimum
is approached,

Computer Results (B-5)

Some of the computer results are displayed in Figures 3=1 through 3-4,
These trajectories were obtained using the method of estimated partial
derivatives of subsection II(E) ,

The terminal times for the optimal trajectories in Figures 3-1 to. 3-3 are
200, 440 and 550 seconds, respectively. It is noted that the angle of attack
histories are roughly the $ame, going from small to large values after
about 100 seconds of flight, This corresponds to a shift from maximum
positive to inaximum negative lift, It is further noted that this shift takes
place near the bottom of the first pull-out, where the heating rate is at its
péak., The vehicle apparently does not possess enough lift to avoid the
heating-rate peak for the given initial conditions, nor can it-avoid-the

‘mild skip shown in the figures,
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Figures 3-2 and. 3-3 show that for larger termiria’ times the vehicle dives
rather sharply néar its términal points, Evidently the integral of
Equation (1. 6) i5 minimized by this dive, in spite of the large.rise, of
short duration, in the heating rate. It should be remembered that no
restrictions, other than fixed terminal time, were placéd on the terminal
poiifit,

Figure 3-4 is included to illustrate the sensed acceleration constraint. It
does: not represent «an»optimalﬁ,path. The angle-of-attack history is similar
to the other results until the constraint, set at 10 g's, becomes an equality
constraint, From- this point-onward, the .anglé of attack .¢hanges such that
10 g's is' never exceeded, The magnitude of the additional multiplier

is shown at the bottom of the figure,

Do the results of Figures 3-1 to 3-3 represent relative or absolute minimums
for the given probl‘eﬁ: ? An attempt to answer this question was made by
re-optimizing with very different initial .conditions for the multipliéers.
‘Computations were carried far enough to show that the same optimal path
would have resulted, indicating that the paths probably répresent absolute
minimums;,

The importance -of these results is not that they are optimal paths, for they
have many practical short-comings, but that they confirm the validity of the
automatic optimization scheme. Further improvement of the optimization
method was judged to be more significant and important at this stage than
the computation of an operationally desirable re-entry path,
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The next-stage of -development was: the ﬁx‘ethoq for cbmput,i:;g' the partial
derivatives explicitly (see Subsection II(F)). The computer program incor- i

porating this method calculated the first partials directly from Equation (2, 94),.
whereas the second partial derivative matrix, from Equation (2.108), took the

;‘ | form
2 = Y [ > T .
Vo J = =g XV P} . (3.62) ;
1: o Po Po} sym. ‘
- Attempts were made to duplicate the results of Figures 3, 1:through- 3.3 to see '

if further improvement in-the trajectories ¢ould be made. Some reduction in
- the optimal criteria was obtained, "" it, in all cases, the second derivative

| matrix was so close to singularity' that either bad prediction. of multiplier
changes resulted, 'é)r the matrix became indefinite, This behavior indicated:
that the surface was extremely flat, It was decided to abandon this program in
favor of the more realistic, more: complex and, ahopefu'lly, less sensitive
problem considered in the next section,

This program did show that the method of computing partial derivatives was
- superior to that of estimation. " It also ran from three- to five-timeés faster
than the previous program on the computer.

THE LOW'LIFT+-DRAG R.!TIO VEHICLE OPTIMIZATION PROBLEM (C)

i The Problem Statement and the Euler-Lagrange Equations (C-1)

A re-entry path which minimizes the total stagnation point heating (1. 7) for the
blunt-nose body for which the aerodynamic coefficients are given by Equa,—-

tions (1. 4) is to be found, The vehicle aerodynamic constants are CDO = 0,88,
Cpy, = 0.52 and CLO = -0, 505, and the model equatipns are again the set

(1. 1) with the exponential atmosphere (3,35). The terminal surface equations are
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;pl = w(T) - V= 0
Vs = h(T) - &= 0 | (3.63)
(;1'3 = C(T) - R = 0,

Rl

with the constants V = 1650 feet per second, A = 75,530.feet, and
R = 979 statute miles. Thus only the final flight path angle and terminal
time are left unspecified, Initial conditions are taken as Vo = 35,000 feet
per second, yo = -5, 75 degrees; ‘h;& = 400, 000:feet, 'go = zero, Inequality
constraints :imposed are relation (3, 38) .and a-bound on the control function u,
given by

uf, -w 20, (3. 64)
with u, a constant (16 degrees at pre:se’r‘xt). Equation (3, 64) was found
necessary to-produce initial trajectories which neither ‘skipped out of the
atmosphere nor dived in too deeply. 1t is to bé sequentially relaxed as
the proper region of P, space is located during the optimization process.

The integrand of criterion (1. 7) is taken as the sum of convective and
radiative heating rates:

q = 9, * 4., (3.65)
where-the convective component is given by Equation (3, 39) and the
radiative component by
0 3f2 v £12:5
q = T.5N|= , (3. 66)
Pof 10, 00C

in which N = 4 feet, the vehicle frontal nose radius, Equation (3, 65)
may again-be identified with the integrand f, of Equation (2. 1), and the
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 funétion: g is omitted, Thus: Equation. (2,10) becomes

2 2

Fo2 oM )+l - w® - 5] 4B - - 5,

wheré the state-coordinate: x now has: four components with- x 4" £,

‘The Euler-Lagrange equations are

3q. df of af df, :aap
o E e S I 3 i B
“Py T 3¢ tPyEEs t Py 3 TP + Py P '
| ox, 1 &g 2 ox, 3 %, 4 x, 2 ¥,
of 232 af, af
s ° ‘. e T
"Ry T PrE, TP, TP %, T Ph E
(3.67)
'-;Jf, é‘f.’i,Lpifla,p' af2+;p 2f, . aa}.,
| 3 ax3 1 axs 2 Bx3 >4 axé, 2 bx3~h
Py 7 0, oy = py,)
of of da,
- _._1. .—.g. - ' - j . ‘ .
0= "pl 3u + pz 3T 291, u u2 sa (3.:68):
The Unconstrained Subarc (C-2)
Both the multipliers My and ko arezero here, as noted in Subsection II(B),
Then, when the substitutions from Equations (1. 1) and (1, 4) have been made,
Equation (3, 68) becomes
-C p
tanu = _ Loz , (3. 69).
CpLPyV
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where u is centered about zero.by the ¢onstraint (3,64), i.e.,

#

-u, <€ u S u, . (3.70)

T 1

The minimum principle equation is

- pl vC.DL cos u + Py CLQ‘ sinu < epl,v‘gﬁL cos U + p.2‘CLO sin- U; f
(3,71)

where U is-any admissible value in the range (3, 70).
The left hand side of (3. 71) may be considered.as a dot product and the choice

of a unit vector (cos-u, sin u) which has minimum. dot product with the vector

(f-p, VCDL’ ,pchO) is

Chi Py V
COB U = = ﬂ‘*DL‘:.l
/(€ o pp)? + {Cop py v
““roP2! * {‘prLPy
{3, 72)
-Cyn P
sinu = Lo 72 ., ‘
(C; op,)° + (Cpyy p, v
**LoP2 DLP1 ‘=
which is parallel but in the opposite direction,
Then from the signs of p, and p,, assuming C. . negative, it follows that:
1 2 LO:
If p, = 0 and p; > 0, then u = 0
Py > O p, > 0 0<uc<3
Py > 0 P © 0 u = 1;—
T
> < =< u <
Py > 0 py < 0 g S usnm (3.73)
Py 0 py < 0 u = +m (bang condition if u, = m)
Py < 0 Py > 0 -5 <u<o
- . I
p2 < 0 p1 = 0 u = - .
T
Py < 0 Py < 0 T <u<yg
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There- are no-singular points if Pj and’ Py are never simultaneously zero,
Th1s is verified by computing the determinant- R of Equation (A, 13). Thé
subarc ends either with (3..38) or (3.64), peqomes zero,

e

o > N N
b1 P > b v et P ot - N e ! ’

The Constrained Subarc -u: = u, {(C-~3)

PN

Let ¢ be the angle-defined by Equations (3, 72).and the sign conventions
.given by (3, 73).. Then substitution into the' minimum principle Equation
3. 71). gives

which is satisfied if u and' @ < 7, have the same sign. The condition
@ = 7 indicates a bang. Furthermore, substitution into (3.68) (with
Bo = 0); gives

spv ‘ 2 sm(cp u)
By = '\/‘CLO pz) (CDL Py V) T

. ‘“ﬁ" = )

Since  u and:sin (¢ - u) have the same sign, uy £ 0, as required by
Equation (2,.14),

Savlisiag,
* 3

There are no singular points; this is easily shown by computing the determinant
R
continuous at the junction between constrained and unconstrained subarcs,

9 of Equation (A, 23), It is also easily shown that the control function is

- Thus My from (3, 75),. must start and end with value zero, since at such
points u = ¢, Then the terminal surface is My = :0, provided Ftl £0,
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. (3, 75).
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The Constrained Subarc ‘a. B (C-4)

-~

The control function is determined from. a, = B and the muiltiplier g
from Equation (3. 55), Expansion and rearrangement of the constraint

gives
a,acosz"-,u + 2bcosu+c = 0 {3, 76)
where
- e 2 2 :
a = Cpr, - Cro
b = ’CDO CDL
] [2m g B\’
e= 6.2 4+ 2 [ 20
DO “LO « "S—""T .
' . 9V
It follows by substituting'u = ‘0, #m into (3. 76) that the inequality
» 2m go;B .
(CDO + CDL) 2 —S_p—;z_' 2. (CDO - C’_DL) >0 (3. 77y

must hold, Furthermore, the determinant R

5 of Equation (A, 23) is.
singular at these points,

-

Solution of (3, 76) for u gives

cosu = 2 -1 +~/1 - -2‘% ) (3. 78)
a - b~ -

where the omitted root falls outside the range lcos ul < 1, 1t is easily
shown that the term under the square root in (3, 78) is positive by sub-
stituting the upper limit of (3, 77) into the expression and evaluating,
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The mifimurm principle again takes the form (3, 74).. exsept that this time

,-,’u‘ < w < :u.»

u must have the same sign, and @ = 0 i§ the ‘bang condition, It can

further be shown that the multiplier o becomes, when all the substitutions

have been made,

R W . Y )'D]“[,(SLOPZ’,) - (?pL_P,:("‘)] sin (u - @
2 v "bz rac sin w

‘Since sin (u - ‘p) and-sin u have the same signs, i, < 0 .as required,

"2
Again, u is continuous at junction points, so Mo must-start.and end at

zero; and- }12 = 0 with My # 0, describes the subarc terminal surface,

The Modified Newton-Raphson Equations (C-5)

The terminal conditions for this-problem are of the:form (2,4:7) which means
the iterative Equation (2, 54) applies with pz(fI‘) = 0, the single multiplier
constraint, Let M. and Cij’ i, = 1, ... 4, bethe elements of

v,p x(T) and Vp p(T), respectively, Then the matrix (2, 55) may be written
o o

r— —

vil) My Mg Mgz Mg

BT mg, Mg,

A(yo) = ¢ (T) N4y Ngo  Mys Na4 .
0 fl(o) fz(o) f3(o) f4(o) |
PofT) Gy oo Caz3  Cog
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The last vector of Equation (2, 54).assumes:the form

— ——

0
| Bty - AIR|
lew) - & |,
Hly ) |

R -

where the first component V(yo) - V = 0 isthe stopping condition on the
integrations and, hence, is satisfied by every trajectory,

The matrix of second partial derivatives in. Equatién (2, 105) is the five-by
five matrix

-p"(T) x(T)  -p"T) v, x(T)
9 ) ’ 0
: VoI, - : (3.82)
- x{T) p*(T) -‘[vv x (T) v p(T)]
L Po Po Po ' sym,

Both methods of Subsection II{C) were used to reduce this to a two-by=-two
matrix to be tested for positivé-definiteness. Hor the determination using
inequality (2. 36), the equations

Y(T) + 2

Yy (yo) 1

(3.83)

yl T-i—Z2
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1) were added to the set (3,63), Then, Equation (2, 35) reads
; * i H
™ B L / . . o~ ' Qo L
- T | S M3 Mgy Mgy Mg | ey f | O
, A T I A A PR PR Naa| | dpzo =10 |, (3.84)
L | 1 0 0 0 0 | | dpy 8Z,
3 K N R R T
o and the Tower two-by-two-matrix of the product
A -1, . -1 :
. o1 _ :
(VL ¥y) T (T 0) (.85
is-‘the désired matrix A4 . In the other method, the first three equations
of (3.84) were solved in the form
}
4. —~ - T~ =-1 — - — - .
dpy [ = = BT mgy Mgy N33 Mgy dpg | - (3. 86)
s ) 18] ) 0
‘ dp20 164D My My, Mag Ny
- ..J L L ... £ L -
Let D be the matrix of (3. 85), and Al’ Az and A3 be, respectively, the
upper left hand (3 x 3), upper right-hand (3 x 2) and lower right-hand (2 X 2)
submatrices of (3,82), Then the desired maitrix is
D'AID + D'A2 + (D'Az)'r + A3 . (3, 87)
65
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Computer Results: (C-6)

Figures 3-5 through 3-8 represent-one trajectory. oﬁtained‘«using_ the modified
Newton-Raphson method and éxplicitly: completéd partial derivatives, (Com-

s ey
’\! !! i e

pare these with the extremal of Figures 4-37 through 4-39, which was used
as the initial guess at the optimum.) The control function (Figuré 3-6) starts
on the -*6-degree-bound (maximum lift condition) and stays there for about

65-§e‘co'nds. This. is reasonable, since the radiative heating rate, propor-
12,5 '

tional to v , could become-quite large if the density term .p3 2 were not.
kept small by the control maneuver, As velocity begins to decrease and the
path’becomes shallower (Figure 3-5), dissipation of energy becomes impor-

tant; therefore, the control moves toward zero degrees, the maximum drag

condition, After the peak heating rate (Figure 3- 7),. a little more lift s

W
. &

called for, for ranging purposes. Then the control goés to the +16-degree
bound;, following the rule of thumb that the convective heating load is lighter,
the faster the re-entry is accomplished, The peak acceleration is 9,5 g's com-
pared to the 10.3 g's of the original extremal, and comparison of the héating-
rate curves of Figures 3-7 and 4-39 shows that the major difference is near

the peaks of the radiative curves (peak value is 188 BTU for Figure 4-39 and’

182 BTU for Figure 3-7), The value of the optimal criterion was about .
217,500 BTU for the extremal, which was reduced to 27, 334 BTU by the opti- "
mization method, This points out the flatness of the J(y) surface for this
problem,

Figure 3-8 is included tc Show the angle ¢ of Subsection C-3, It can be
interpreted as the unconstrained value of the control function, and, over
the unconstrained subarc, u and ¢ are identical., At the terminal time,

$ goes to 1 because of the necessary condition pz(T) = 0,

There is some doubt that the trajectory of Figures 3-5 through 3-8 is a
relative minimum, although, most likely it is, Both test matrices of
Subsection C-5 are indefinite, but numerical problems could be the cause
of this, The determinant of the matrix in (3, 84) is very small (on the order
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-of 10"5"), 'so its 'iﬁvérée, used in (3. 85), cannot be known very accurately,
In the matrix (3.87) the middle two terms buck thé outer terms;, causing
loss of from two to four significant digits. This is very seveére, considering

the accuracy of the original elements and“thé number of matrix multiplica-

tions required to arrive at the résult; "The primary ¢ause of theé trouble

.

appears to be the flatness of'the J.(y) surface for this problem:..

Somé workers in the field feel that the initial value method of solving the
optimization problem.is tco Sensitive to use (for an example; see Ref, 29).
They argué that the Euler-Lagrange equations are the adjoint system to the
original system, and that one of these gives unstable solutions, This may
well be true for some problems, but no such instabilities were found for
this application, The method worked well, and was strongly convergént to:

the solution, Adequate prediction for all variables was obtained; in fact,

significant digits, The terminal value of Py fared somewhat worse,

7% 1073

compared. with its original value of 1‘06.
ctude measure of the integration accuracy, changed from -3 x 10~

The Hamiltonian,
7

the desired terminal altitude and range were achieved to at least eight

a

to

1072 at the end of the path, an acceptable value, according to past experience,

Other evidence supporting the numerical accuracy may be found in Table 3-1,

Table 3-1, A Comparison of Partial Derivatives
Computed in Various Ways
2T s 33 aJ
0 ‘o 0 0.

o 5| -1 =3 o
Estimated | -0,14988x10°} -0, 247x 10 0.184x 10 0.118x% 10
Computed |-0, 15057908 x 10° | 0. 14247518 107 1] 0, 17744375 10”%| 0.12049032x% 10"
directly

- | P x(m) -0,150811x 10° | +0. 142588x 10” 1| +.0,177867x10°2| +0.12067x 10"
o
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These results were obtained for the extremal of Figures 4-37 through 4-39, The
estimated values were computed for program checkout purposes, and the in-
accuracy of the second result comes from differencing solutions which are the
same to seven significant digits out of a possible eight. Solutions were the same
to six significant digits for f e last two results, but to only three for the first,
The last row was hand-computed from computer results truncated to eight
significant digits,

Table 3-2 is included to illustrate the convergence of the modified Newton-
Raphson method for this problem. The criterion J(T) rose in this final series of
iterations because the trajedtory range had to be lengthened, and ranging always
increases. total heat.

Table 3-2.. Convergence to the Solution

‘ -I’teratiomn': Methé)d fﬁamiltoﬁian, C;rit)er‘tion” Muﬂltip‘klie;‘ ’h(T)‘-.-;\ : E-R
number | Constant | H(o) _ ] J(T) _ py {T) feet | feet
| 13.8 | 26,774 1.ex10° | 0,77 | 234,601
> | o2 |110 © 26,887 rs5x10f | 0,559 | -187,674 |
3 0.28 | 7.9 | 27,019 1x 10% 1.121 | -132,679 |
4 | o0.46 | 4.3 97, 170 5.4x10° | 2.313 | -69,331
5 0.96 | 0.15 97,334 | -28.0 3,077 | -632
6 1.0 -0.2x107° | 27,333 27. 0 20,228 | -239
| 7 1,0 0.84x10°° | 27,334 0. 88x10“i‘ zéro | -0.1
8 1.0 | -0.65x107°| 27,334 0,94x10°%| zero | zero
9 1.0 |-0.27x1078| 27,33¢ | 0.74x107%| zero 2ero
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SECTION IV
LINEAR CONTROL- SYNTHESIS AND SIMULATION

DISCUSSION (A)

It i5 well known that.a quadratic integral criterion when applied to linear
control :systems spécifies a linéar cortrol law with, in general, time

dependent gains, Because of the simplicity of analyzing and mechanizing
such systems, linear ‘control in the vicinity of a predetermined réference

trajectory is studied,
If the equations of motion for state x under control u are represented by

x = flx, u) (4.1
and a'cgntrbl u(t) which transfers the state from given initial conditions

X, at £ = .a to a final state xf-“at?a»t‘ime T has been found, the
equation for the correction 0x from the reference path x:(t) toa

disturbed trajectory is

6x = f(x+06x, u+ Au) - f(x, u), 6x() = Ax . 4.2)

where a new control function is represented as u + Au, Equation (4, 2)
is the exact variational equation, In the neighborhood of the reference,

‘the linear approximation to Equation (4. 2) will predict a correction Ax

which should reasonably approximate-dx. The "first variational equation"

is

*

Ax = fo « Ax + Vuf . Au, Ax(a) = Axo, (4, 3)

where the matrices of partial derivatives V‘{f and Vuf are evaluated
along the reference, The problem is to find a correction to the control Au
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so.certain final conditions. for the reference are also satisfied by the perturbed
trajectory. The simplest, though perhaps not the most natural, condition is
to require particular components of the state to agree at the end-point.

Thus, say

AN

8xAT) = 0; i= g+t ...,n; 05q5a-1. (%9

Then Au will be-completely specified as a function of time if it is' chosen

so
T
j (Au® dt 4. 5)

a

is a minimum, Conditions (4.4) and criterion (4.5) can be greatly
generalized, and the derivation of the control law may be made using

many theories: Pontryagin's maximum principle, calculus of variations,
dynamic programming, etc, The simplest approach for the case at hand
will be used:here, since general discussions can be found'in the literature
(Ref, 27 , for example),

‘The region of validity for the linear approximation is found-by-experimentation.
It may be necessary that several reference trajectories be uséd to provide
linear Jontrol over the entire corridor. This depends on further consider-
ation of navigational accuracy.and model fidelity, In a subsequent subsection,

some results affecting these problems are discussed, and some preliminary

navigation and control systems are evaluated by -simulation,
If the control law found by-the optimization process is répresented by
Au = E(t) Aox, (4, 6)

Equation (4, 3) for the linear prediction becomes the homogeneous equation

Ax = [Vf+Vf~E Ax:l, (4.7
X u )
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If all state components must ‘agree-at the-end-point (g = 0), that poirt must
be a singular point of the differential equation, since there are other solutions
than the trivial Ax{t) = 0., Aswould bé expected, this case. is difficult to
control, For the case studied, range and altitude o: the trajectories are re-
quired:to agree, and: 'vélqc{ty and flight-path-angle aré free, This demands
Jess-of thé control, but the end-point is still singular, since the solutions
begin as a four-parameter family and end as a two-parameter family, This
implies that some of the gains, the components.of E, must tend to infinity

at the end-point, which will lead to difficulties in simuldtion and mechani+<
zations; Various expedients were tried, .and these are discussed in sub-
sequent subsections, ‘A change of the-mode of control néar the end is probably
indicated, since, in any case, the region of validity for the linéar approxi-
mation is exceeded near the final. point,.

DERIVATION OF THE.CONTROL LAW (B)

¥ v L

-" Fhrunsd Coratai |
¥

»

)

\

Let the row vector )\w]!‘ be the solution. of the-adjoint homogeneous equation

f = - i v« .
M M xf , (4. 8)
which has all components zero at t = T exceptfor the ith component,
which is unity. By direct calculation, using (4. 8) and (4.3), it is found
that
d
— !, . = ' ¢ . . .
qt (ki Ax) )‘i uf Au (4. 9)
and, integrating and applying the end conditions (4. 4), the equations
’ -T
x{ (a) . Ax(a) + j )\{ . Vuf . Au dt = 0 (4. 10)
a
for i = q + 1, ..., n result,
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T n
22 e N Al
j (Au)® dt # ), pi.)‘*i (td') Axu(to:)
a i= q+1
n T
NP . TR .
+Z Py j’ xi uf Au dt (4. 11)
i=q+l a
to get
'f'_ n . 2
N 1 oy , ‘ 4
\ C— I R
f Bu + = Z p; M uf] dt
a i 'i‘= q+1 -
(4, 12)
+ -{»term s not -containing ‘Au}
The terms which do not contain Au cannot be influenced. Hence, the
minimum occurs for
n
= e _1_ Z f . Vv ‘3
Au 3 Py ki, ‘ uf , (4, 13)
i= q+1
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The control must minimize integral (4, 5) subject to these conditions, This

simple problem can be considered using constant Lagréz}ge ‘multipliers Pi

and completing the $quare on. the auxiliary functional
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if there are rio-further.constraints on Au. The p, canbe determined

from Equations (4,10), Substituting this' Au and doing a bit of
‘manipulation yields.

n

N - AT q = 9Nt (ay . Ax(s ) ;o '

Z \ yij (T: ao) fpj: 2 )‘i ‘ao) : Ax (40) s (4. 14)
iz q#+l '

whén the abbreviation
T
y‘i‘jf(T’ a) = f (X{ . ng:‘)‘ (7\5 - )~ dt (4, 15)

a.

is:used, All this may be condensed with. the following matrix notation: Let

Al

i}

, (nxin - q))

Y (T, a)

i
—n
<

Pl

=
A
L2
-
S

L
0
e
¥4
——
8

§
2
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Then Equation (4, 13) reads

1

= e = pt A T RT3
Au 3 P A u_f , (4. 16)
and (4, 14) and (4. 15).become
YT, a) 5 = 24'(a) Ax(a) (4. 17)
: T
) Y(T, a) = j AT - T et (4. 18)
. a
The matrix Y (T, a) is assumed to be nonsingular for a < T, "This
property-is related to the controllability of the system. Thus, the
control law becomes.
Auft) = - Vuf(t)f]' A(t) vyl (T, a) A'i{a) Ax(a), (4, 19)
when the transpose of Equation (4. 16)‘ is used, This holds for a s t S T
and may be considered as-an open-loop control. Identifying a with t
gives the closed-loop-opération, and the control law is
Au(t) = E(t) Ax(t), (4, 20)
with
E() = - [T 001 A® YT, 0 A . (4.21)
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SIMULATION OF THE LOW LIFT VEHICLE WITH ROLL MODULATION
AND .ad. hoc REFERENCE TRAJECTGRY (C)

The Model f(c-i-),

’fl;g motion -of an Apollo-type capsule is:assumed: to be governed by the
two-dimensional Equations: (1.,1), and control for flights at a ‘fixed
ang'le‘ot' a.t’iack is to be effected by changing the roll angle @, Itis
assumed that thé éssential.characteristics 6’f the motion are preserved

" when the lateral motion and forces of the more realistic three-dimensional
flight are nieglected, Hence, thelift and drag coefficients are taken in the
form «1,5). The atmosphere is generally considered to be exponential
with equation

c BRE

pr = 'po ’

but the 1959 ARDC atmosphere is also used in places to.assess var1at10n
in-density effects,

The constants in the equations are:

Aerodynamic reference area S = 129 :square feet -
Weight : W = 8125 pounds
Drag:Coefficient: 7 - ’CZDO = 1,02

(The drag coefficient is coristant for Mach numbers greater than four; it
was found that allowing it to change with Mach number had little effect on
the trajectory. Hence, it is taken as constant throughout the analysis, )

Lift coefficient: - €&, . = 0,51 (C

LO = 0.5)

LO/ DO

Ballistic coefficient : W/CDO S = 61,71b/sq. ft
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Sea lével density: Py, © 0,:0023769.
Atmosphere coefficient: B - 1/123500

Sea levél gravity: g, = 32.2 f’c‘/fsec"2
Radius of -earth: R = 20,903,520 ft,

The initial conditions for thé trajectories .are chosen.as:

Velocity: - v_ = 36,080 ft/sec

Flight path angle: Y = -6,4degrees (for standard
- _reference trajéctory)

13

Altitude: ' h 400, 000 ft.

Range: ¢ =0

The terminal conditions expected are:

1l

. Altitude: by

- Range: ¢

100,000 ft,

2100 statute miles.

" The time of flight is chosen experimentally, This is discussed. in the

next-paragraph,

The rate of roll § is limited to 20 degrees/second in the reference
trajectories, While no limit is placed on the closed-loop rate ® + AQ ,
practical considerations require that this limit not be greatly exceeded,
This condition is satisfied on the flight paths studied, The control com-
mand variable A@ is restricted by the condition that ® + A® must fall
in the same half-circle, either (o, @) or (m, 2uw), as ® in order that
an artificial control reversal does not occur because of the nonlinear
manner in which the control enters the equations through the cosine
function, An indirect restriction is that the pilot's acceleration, given by

A s i
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(4, 23)

not exceed 10 g,

The ad hoc Reference Trajectory (C=2)

To begin the study and map out the re-éntry corridor; trajectoriés were
found experimentally by guessing forms of control programs «(t).
Trajectories were then computed, beginning at a height of 400, 000 feet
with a. 36v, 080-feet per second initial velocit_y and various initial flight-path
angles Vo It was determined 'th.at the safe re-entry corridor was limited
to trajectories heginning with 14 between -5.4 and -7, 4 degrees, since,
for \',0 greater than -5, 4 degrees, there was not sufficient lift to avoid a
skip-out, and, if ﬁ"o was less than -7, 4 degrees, the 10-g survival de-
acceleration limit Was exceeded.

The form of the roll program adopted is as follows: The roll angle © is
set at zero for maximum positive lift until the tangential acceleration a;
reaches 0.6 g; for purposes of the reference program, time is re-set to
zero at this instant. The roll is held at zero. for 15 seconds past the re-
set time and then is increased linearly with time for 25 seconds until a
certain maximum, wmax , is achieved, This maximum is held for the
next 80 seconds, after which the roll is decreased linearly for 80 seconds
until an angle of 22 degrees is reached, It is kept at this level for the
remainder of thé flight, which is terminated when the altitude .decreases
to 100, 000 feet, The value of q)max is chosen so that the flight has a
range of 2100 miles, A plot of Yo against the value of @ hax’ which gives
the 2100~-mile range, is shown in Figure 4-1, It is observed from this
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graph that a constant-range controller, using the =6.4 degree case as a base,
can control most of thé re-entry corridor (-7, 4 to -5, 9) with a maximum A
correction. of less than 15 degrees,

The-roll program, for the trajectory beginning with y o - 8,4 degrees
is shown in Figure 4-2; this is taken as the standard control program, Its

analytical representation:is-

o = 0, 05 ¢t% 15,

o) = o T, 152 3 40

o) = @, 403 t'S 120, (4. 24)
o) = @t (220 ) "'8”0120, 1208 ¢+ S 200

o) = 22, 200% i,

The quantity P hax for this trajectory is. 90, 97 degrees.. The pilot's
acceleration for three trajectories with roll programs of this type is
shown in Figure 4-3, These trajectories cover the entire re-entry
corridor for this family of roll programs, The re-set time is plotted
against initial angle in Figure 4-4,

Characteristics of the standard reference trajectory (\{0 = 6,4 degrees)

are given in Figures 4-5, 4-6, 4-7, 4-8. These are plots at height, velocity
and re-entry angle against range, and range against time after re-'set, The
closed-loop flights described later use this as a reference,
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Sensitivity of the standard trajectory to various types of errors is illustrated
in Figures 4-9 through 4-16, Range effectsfrom shifting the roll timing +2
seconds indicate that roll timing is critical (Figure 4-9). Roll magnitude
variations of +2 degrees are :shown in Figure 4-10, and the effect of a change.
of £0. 5 degrees -of initial resentry angle on range is given in *Fig_ure 4-17,

Figure 4-12 shows the effect on range when the initial height on the standard
reference is changed by either +20, 000 feet or - 50, 000 feet. Skip-out

occurs with an altitude error much above 20, 000 feét in an Qpe‘n-‘loopv run,

Initial Vvelocity \changes of %1000 feet per second; ballistic coefficient.
variations of +10 per cent and.change in density by a factor of

h - 110, 000

1.0 £0,5 ) (4..25).

290, 000

are plotted in Figures 4-13 through 4-15. Finally, Figure 4-16 shows

the range effects of varying the time that ¢ is heldin the standard

roll program (Figure 4-2) by %20 seconds. By comparing this result with

the runs in which the complete roll timing program was changed: by +2 seconds
(Figure 4-9), it can be seen that the range effects are about three times as
great as those in Figure 4-16, even though the timing change in Figire 4-16

is 10 times larger. Roll changes applied at a later time have less effect on
ranging than the same roll changes applied earlier.

Some of the considerations leading to this choice of roll programs are given
in the following discussion:

The roll @ must be set equal to zero to obtain maximum positive lift

during the initial re-entry phase, at least until the first acceleration peak

is passed, to prevent the vehicle diving into the atmosphere and causing an
increase in magnitude of the peak. The first acceleration peak for the - 7. 4-
degree trajectory is equal to the - 10-g acceleration limit.




After the first acceleration peak is passéd, the vehicle would soon skip out
of the atmosphere if the roll angle were left zerc. Within the bound of the
Apollo roll=rate limit of 20 degrees per second, it was necessary to apply

rapidly a roli sufficient to:prevent skip-out.

‘When the vehicle slows enough that a skip-out can .no longer occur, the roil
must be decreased t6 a small value; suchas 45 or 22 degrees, to-prevent
the trajectory from going too deeply into the atmosphere and exceeding the
acceleration limit. The high negative lift needed to prevent a skip-out in

the c¢ase in which ‘}ﬁo,equa'l -5. 4 degrees -cannot be left in effect too long, -or
too much acceleration will cccur, The final value of roll used is not critical,
‘because most of the ranging is done by the maximum roll value. It is best
not touse a final roll of zero degrees, because no additional: lift is then
.available for control about the reference.

By basing the roll control on the interval after a, = 0.6 g, the large
variability between initial time and the time when the vehicle is eéxperiencing
significant derodynamic effects is eliminated from roll control timing, With
the standard roll control timing, which can be used over the whole corridor
to get a constant range, the reference is less sensitive to. perturbations\ and,

also, requires smaller A @ corrections.

Thi$ roll control was satisfactory for the whole corridor if timing errors are

held to:within a few seconds. A bettér timing would start the roll 22 seconds
after the a, = 0.4 point. This would delay the roll application in the

- 5. 4-degree case and prevent the slight increase in the acceleration peak
of the a, = ‘0. 6 gtime reset.. The alternate timing is set to leave the

- 5, 4-degree case unchanged, because any delay in this timing of moré than
a few seconds would cause a skip-out. Roll timing based on initial timwe is
unsatisfactory because different initial conditions would require initiation

of the roll program to occur ‘over a range of 40 seconds.
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The roll anglé magnitude which will maintain a constant=altitude flight at
thie turnover point (¥ = 0) is-an important quantity. Increasing this valie

morfe than seven degrees will cause the véhicle to dive into the atmosphere

s0:deeply that the 10-g limit will.be exceeded; decreasing this value more

than seven degrees wiil résult in a skip-out. Raiges between 2000 and.
5000 miles are possible for all initial conditions by using different values
of roll within seven degrees of ‘turnover roll. Ranging possibilities rapidly
decrease after the turnover point, éspecially in the - 7.4~-degreé case. It

is, therefore, necessary that the correct roll magri‘itude be closely approxi=

mated in the vicinity of the turnover peint in order to get the-desired range.

The Linear Perturbation Céntroller (C-3)

The closed-loop-system is diagrammed in Figure 4-17, For now, it is
assumed that the navigation system produces an accurate estimate xm(t)
of the state x(t). (The effect of errors in:navigation is discussed under
Subheading C-6.) The state estimate is differenced with the state of the

reference trajectory, and this result is used tc provide a correction A @

to the reference roll command. The inner-loop controller causes the
vehicle to assume this roll angle; this controller is assumed perfect and
is not .studied here. The related.equationsare

Xt = x(t)

Aolt) = E(f);[xm(t) =

p) = %) = @ (1) + Av() (4. 26)
_:i‘_ = f(x P))

where x* (t) and o' (t) are the reference trajectory state and corresponding
control, as developed in the previous sectinn, The feedback gains, repre-

sented by matrix E(t), are computed according to the theory outlined under
Subsection B.
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The equations of linear prediction (4, 3) for the particular model represented

in Equations-(1, 1).are

hy s - SEY

Av -
m PO

goCOS Y

(1+8)%

3p 2.8, siny|

98 (1+28)" |
AV = + ——-— CL() cos® ) Av
sin ¥ v g ' S pvC
. — - —9 Ay - —= O Apsing
1+ € R v{Ll+E): 2m.
. coSs ¥ v 2g . SvcC cos @ a‘p]
+ -——-'E-I-—-— + .4’0 + mLiOﬁ = — Ag
© o (1+8g) [ R v (1+¢€) 2m o8 I
sin ¥ vV cos ¥
A.§ = Av + A')’
R R
. cos ¥ v sin ¥ v cos ¥
AC = — Av - bYy-———75 AF,
1+¢€ 1+¢ (1+¢g)
(4. 27)
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- {The quantities p, v, ¥, £, { are, of course, those of the reference; the

superscript r has been dropped for convenience, ) The guidance sensitivity
matrzx B(t) is calcilated aécording to formulas-(4. 18) and: (4. 21) from
Solutions of the equations adjoint to (4.27). These components are plotted
in Figures 4~ 18.and 4-19;

The eléments of ‘E(t), from the théory and as demonstrated in the graplis,

become infinite at the end-point, and it is-hecessary te.introduce some

‘modification to take care of this singularity. A transformation,

A %, = arc tan Ao, {4. 28)

was usedf'or this purpose. Experiments indicate that this transformation
actually incéréases the region of controllability., The additional restriction.
discussed under C-1now reads: ¢ + g, is limited to (0, m) or (m 2T),
The full & ¢ control can be used during the time: P rnax is being -applied
because P max is close to 90 degrees, and the +90-degree range of Acpc' will
not cause a crossing of either the zero-or 180-degree limits on the roll angle.

Closed-Loop Results, Precise Navigation Assumed (C-4)

Satisfactory performance was obtained over almost the entire corridor.

Typical terminal errors are suminarized in Table 4=1,
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Table 4-1. Terminal Errors Caused by Various Errors
in the Model

" ',Re‘§1;1tinl“g ;I‘erfh‘inai Error
Model Variation Av(T) " Anety ac |
feet/second | feet | miles |
1. @bias - 1l degree ~ 15 <21 1 0
_ {1+ ¢ h<o 110,000 Y | | R
2, p=p (1 +0,5 290,000 ) ' 173. 1791 § 031
- = 1 a & b- 110,000 Y | 1 4
3. = p ( 1-0.5 290, 000 ) =169 | =2584 -0.1
4, Yo = = 6,9 degrees < ‘86 ‘- 462 0
1 5. Yy = -17.4 degrees ‘ 180 T 1282 -9. 1
6. v, + 1000 feet/second I =23 I - 53 | -0.0
7. v, - 1000 feet/second f 31 - 49 0
8. 1.1 'W‘/CD S* -286 1-10,510°| -0.2
9. 0.9 W/C,s* 137 4845 | -0.5 [
’Q‘Th'e'-constraint on A cpc would have reduced these errors

The particular case in which the initial re-entry angle is - 5, 9 degrees
(compared to - 6.4 for the referenice path) and in which the exponential
atmosphere model is replaced by the ARDC '58 form was chosen to
illustrate the results, The roll correction Acpc for this flight is shown
in Figure 4-20; note the maximum positive lift condition of = 22 degrees
correction after 370 seconds, The final state errors are increased
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deviafions. from the reference for range, flight-path angle, altitude, velocity

several times. if this limit is not imposed. Figures 4-21 through 4-25 plot the

and tangential acceleration. This case will subsequently be referred to as
the standard perturbed trajectory,

A flight beginning with angle - 6. 9. degrees is graphed in Figure-4-26 and
4-27, Note that the roll corrections.are more in the linear range than in 5
the previous case because this perturbation is toward the acceleration limit

boundary, and the other is:toward the skip-out dimit.

Figure 4-28 is a plot-of A, the range deviation, against time for two
closed-loop trajectoriés with the samé conditions as the reference,. except

‘ho is changed by +50, 000°feet, Since, in the open-loop. case w;‘;thu,A*h_o = 25,000

feet, skip-otit occurs; this run shows that the linear control scheme can control
large perturbations,

Other perturbations were investigated, The results are summarized in
Tables 4-2, 4-3,

‘Table 4-2, Perturbation Study Results (1)

! ‘Case | AV(TY Ah(T) AC
| bor | 12 688 | - 1.5
‘ 2 | -197 -2648 0.1 5
i 3 | -330 -6295 - 4,0
| 4 -529 | -17885 | - 2.0
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Case 1 is the standard pérturbed reference, Cases 2, 3»and 4 have the same
initial conditions as Case. 1, Vo = - 5. 9 .degrees, except that they all-use 7
the exponential -atmosphere instead of the ARDC '59 atmosphere, Cases 1

and 2 indicate that the effe¢ts. of using the exponential atmospheére-are not

large. In:Cases 1 and .2, a roll correction greater in magnitude than - 22 degrees

is.called for after the time the reference roll. ¢ is set to its final value of

22 degrees, Ag  isthen set-equalto - 22 degrees; so that pdt) + Ao (t) = 0,

the maximum:lift condition, In Case 4, A, isallowed-to:cross the zuro

point, and, in:Case 3, Acpc is set zero. Because Case 2 has final eérrors:

several times smaller than Cases 3 and 4, it is concluded that the best
choice is to hold Ay at =22 degrees,

Table 4-3. Peérturbation Study Results (2)

Case | AV(T) | OWT) | ARange |

5 | - 891 |-20,508 | - 26

6 455 | - 455 . 0.2
7 | -1634 | -63,055 | - 65

Cases 5 and 6 have the standard reference conditioiis, ‘except the initial height
is perturbed 50, 000 feet in Case 5 and - 50,000 feet in Case 6. Case 5 shows
the effect of a large perturbation towards the skip-out boundary, and Case 6

a larger perturbation toward the acceleration boundary. Without the trans-

formation (4, 28), it was found, in other runs, that too-much acceleration for
survival occurs (Case 5) or a skip-out occurs (Case 6). Both Case 5 and
Case T have the same initial conditions, initial Ah- = 50, 000 feet, but Case 7
uses the unlimited Acpc; In Case 4, the use of the uniimited A results in a
several-fold increase in final errors, but, in Case 7, the same several-fold

increase of the already large final errors of Case 5 may affect survival.
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The navigation calculafmn may be mcorporated into the control scheme as -
diagrammed in Figure 4- 29 The est1mate of the perturbatlon of the state
is cdlculated’by subtracting the réferénce: trajectcry adceleration from-

that which is measured and then carrying out nawgaflon computatmns
The set of equations to estimate the state: periurbatmmn the :same &8s
system (4 27). when the Ay —term i Ihe second equatlon of: that set is -
omitted, Sinhce the aerodynam;_c force terins arg‘detenmmed with
accelerometérs, a morée convenisit ;f'o'rm_ for the first two of these éguations
is -

- - e -l - -

. g 2 siny: Al
Av = -pa, + ————5 | = AY cosY + — O 4
t7 (1+e)? | 1+8 >
. Aan €, 2 cosY
AY = SLIgs Ay siny + ——— AE
v v'(1+§) 1+¢€
(4..29)
g, cosY vsiny
+ '——2—-—'—5 Av - ———— Ay
vo{1+€) R (r+€)
cos-Y Ay v
+ - : AE
1+ ] R R (1+§)
A mechanization could be achieved using these equations, A diagram of
such a system is given in Figure 4-30. However, not all terms are of
87
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| quughi@?e}‘@tgn@; 1t was found that the equations could be simplified
-+ “otheform

3

I
i

1 L R 1 e e

. F | - ) 7 (4. 30)
A% = (v F AV v + BY) [

A n
A\g - 1 ";F;%r AV .

Note that some Second-order terms are retained, whiie certain first-order
terms are dropped.. A mechanization for these equations is..shown in
Figure 4-31.

ft;jsfng the approximate scheme, an exponential atmosphere and the ‘standard

perturbed reference trajectory, the following terminal errors were found:

Range = 6.miles
Altitude = 13, 025 feet
Velocity = 525 feet per second ,

& further analysis shows that "/0 must be known to about 0, 2 degrées, Since
7o cannot be inferred adequately from inertial measurements alone, external
information is required,

The accuracy required in measuring acceleration is indicated by inserting
an 0, 05-g bias into Aa,c and Aan. The re¢sults are given in Table 4-4,
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Table 4-4, Termindl Errors Caused by Accélerometer Bias
for Standard Perturbed Trajectory

. L . 'Ferminal Errors
Error Source r T
: ~ Actual o . System:
Range | Altitude | Velocity | Range | Altitude | Velocity
Staridard perturbed 6.0 [-13,.025 | -525 ,
trajectory miles | feet | ft/'second |
 ba_ = da, = :0,05g | 54.5 1000 | 44  [-1.0 | -6000- | -920 |
| B B |miles feet ft/ second
‘Ba = Bag = -0.05g(40.0 |-20,000 - -850 8.6 |-35,000 | =205

A control 'system which uses only measurements of normal and tangential acéelera-
tion componernts:plus a roll angle determination: was developed -and simulated, It
was found that it could control only about one-fifth of the re-entry corridor and,

so, was unsatisfactory.

Effect of State-Measurement Errors {(C-6)

The. initial conditions for the flight path may be obtained on board the vehicle from-
several sources:

Propagation of known mid-course errors

Information telemetiered from a ground fix near the onset of re-entry

Instruments in the vehicle,

The accuracy and availability of the first two scurces for estimating the initial
state are not known, and:it is doubtful that the last one can provide the flight
path angle to the accuracy required for successful re-entry, since simple




flight path indicators generaily have errors of about one degreé. The simula-
tions réported here indicate that this information must bé known to +£0, 2
degrees or the linear control scheme may fail, Initial conditions on the

state other thar the flight path angle are not critical. Velgcity will be

known to 100 feet per second from energy considerations, The range of a
perturbed trajectory at re-set may be estimated closely by multiplying the
range -of the reference path by the ratio of perturbed time to re-sét to the
reference time of reset ({re-set time is the instant the tangential accelera-
tion reachés 0, 6:g). From this. experience, the following procedure was
adopted:

For the control calculations; assume initial range to be the reference range
and velocity and altitude at re-set time to be that of the reference trajectory
at the corresponding instant, The range at re-set is estimated as outlined

above,

This procedure causes errors in altitude of about 5, 000 to 10, 000 feet because
the perturbed p is based on the ARDC %59 atmosphere, and the reference p
comes from the exponential atmosphere. Since the ARDC '59 atmosphere
gives a - 35 per cent to 20 per cent density variation:from the exponential
atmosphere, a realistic test was made on the effect of density variations

on the controller,
It was not possible to handle the flight path angle in this manner,

At one stage of the investigation, it was hoped to estimate the perturbed ¥y
when a, = V. 6 g by using the time it takes a, to go from 0.2 g to 0.6 g,
This time is called the rise time. The rise times for a series of initial
re-entry angles were determined with computer runs, Then, by an inverse

interpolation, 7y could be estimated to within 0, 15 degree when using the

-exponential atmosphere, even with perturbations such as:

Changes in the ballistic coefficient of £10 per cent
Accelerometer bias less than 0,02 g

. h - 110,000
Density changes by a factor of 1£0, 5 590, 000
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If the exponential atmosphere is replaced by the ARDC t59 atrrip'sphere, ‘an
error of -1, 35-dégrées occurs in the y estimation, Also, it'was noticed

that the ARDC '62 atmosphere gives a -0, 7 degree error. foe y estimation
errors between the different atmospheres are caused by chafxges of' the deriva-~
tive of the density with respect to.height. Because the change of density with
respect to height‘is almost inversely proportional to molecular lemperature,
and this temperature fluctuates a great deal daiiy;, the rise time of at isnot a
satisfactory estimator of v, When the atmosphere is changed by a factor as
above, the height at which a, = 0.6 g changes by + 7000 feet; but a similar
change in the heightoccursiaft theé point at-which a, = ‘0.2 g, so the difference
in altitudes is still within 800 feet of the 26,.000-foot difference of the standard
reference., Using th# ARDC 59 atmosphere,. the height difference is 19,000
feet, which is less than. with the exponential atmosphere. The shor‘ger rise

1" time is interpreted as a steeper flight path,

" Many closed-loop trajectories were calculated to determine the effect of errors.
in the state on the A¢(t) calculation, The standard perturbed closed-loop tra-
jectory conditions were used in these runs, Table 4-5 gives some of this data.

Table 4-5, Effect of Errors in the State on the A¢{t) Calculation.
| , ) Actual Errors :Estiimated Errors
| Case Av(T) | Ah(T) A Av(T) Ah(T): | AC
1 - 126 | 678 -1, 5 * N ‘
17 | =525 -13025 5. T <702 -20922 2.1
1 18 44 | -1077 54. 6. -920 | -6235 1,4
.19 -851 -19672 -40, 3 -206 ~-353086 g, %
20 | <289 | -7982 54, 8 -1072 | -32421 8.5
21 -420 -8902 -42.1 132 -2939 -0.4
22 25 -1037 -9, 4 3 6603 . =11,86
23 -702 -16048 14,8 -939 -39975 1¢. 3
!
{
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Case 1'is the standard perturbeéd case, which usés ’gh‘e exact state in calculating
Ad(t); it is given so comparisons may bé made with Caszs 17 through 23,

which are under the same conditions excépt the approximate state error is used,
The integration of Equation (4-2) on board the vehicle gives an inexact stale
error rather than the exact state error because both the initial state error is.
imknown and the output of imperfect accelerometers must be uséd in .calculating
the derivatives. '

Cases 17, 22, and 23 show the effects of integrating Equaiion: (4-2) when perfect
accelerometers-are used but the initial conditions are the inexact values, In
Case 17; the value of ¥ (0) is assumed t6 have no error; in Cases 22 and 23,
the error in the ¥ (0) estimation is;assumed to-be 0. 1 and -0. 1 degrees,
respectively, In Cases 18 and 19, the a, and 'éfn accelerometers have a ‘St‘eady;
state bias of 0.05 g and -0, 05 g, respectively, In Cases 20 and 21, the
accelerometers have 2 per cent and -2.per cent error; respectively, The
initial state errors in Cases 18 through 21 are estimated in thé same way as
in Case 17, The reset times in the last cases are slightly different than in
‘Case 17 because an imperfect accelerometer is being used to determineé the
point at whichnat = 0.6 g..

Integration with an accelerometer bias of 0.05 g for 600 seconds.gives rise

to about.a 900-foot-per-second velocity error and a 50-mile range error,
which explains the 50~mile final difference in A and Av in Cases 18 and 189,
The controller based on the estimated initial state does a good job of reduding
the final value of estimated A¢ to around five miles, but it is off about 50
miles from. the real range error.

Table 4,6, Perturbation Study Results (4)

Case | _Av(T) AWT) | Ar
24. | -549 -11890 ' 66.5
25 -733 | -15623 -18.1

- - o -, - m——
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Cases 24 and 25 correspond t6 the standard perturbed Case 1, except that,

when computing the conirol Ag:in Case 24, Ay was omitted, aid; in‘Case 25,
Ahwas omitted, In the above cases, thé exact .state is known but not completely
used, When both Ay and .A8h are ignored, control is lost, and-the trajectory

hits the ground at 440 seconds with a 350-mile range error, showing the neces-
sity of estimating the complete state €rror, If the perturbation.errors get too
large, for instance integrating from. a poor path angle estimate, ‘the controller
fails,

Figures 4-32 to 4-36 present the different state errors in Cases 1 and 20,
These are plots-of A¢, AT, Aa, Ahand Av with time, The quantities marked
with the tilda are the errors compiited with the inexact initial conditions,

The difference between the exact and inexact error; shown by Figures 4-34 and.
4-35, is 'small for about the first 100 seconds, so the trajectory is controlled
correctly during this critical time, Aftér this, the approximate state estimate

deteriorates, but bad control A¢ (t) at this time has little effect, and a good

re-entry is still accomplished; When the initial Ay estimate is in too-great
error, 0,4 degree, the altitude estimate rapidly deteriorates, and erroneous
control signals are given during the early critical part of the re-entry. This:
sometimes causes the trajectory either to exceed the acceleration limit of

10 g's-or to-skip -a-thousand miles or more.

STUDY OF A LOW-LIFT VEHICLE WITH ANGLE OF ATTACK MODULATION
ANDEXTREMAL REFERENCE TRAJECTORY (D)

The Model and the Controller (D-1)

The re-entry body considered in this subsection is the capsule studied in
Section III (C), The equations of motion are assumed to be the system (1. 1),
and control is produced by changing angle of attack to vary lift and drag coef-
ficents according to Equations (1.4), The numerical values for the coefficients
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in thesé equations:are

= 0..52, Cc = -0, 505, e = 2.4,

Crnm = 0,88, C 1O

DO ‘DL

The atmosphere is. again assumed to be represented by the exponeéntial low,

Alinear controller is studied, the theory of whichis found in subsection B,

It is the same type of linear, ¢losed-loop controller used in the previcus
simulation, The control attempts to drive altitude and range errors to zero,
but velocity and. flight path angle areleft frée. Again, because of the singularity
at the -end-point, special procedures are employed to limit the control command
in that neighborhood. Two methods are compared: -One limits the control
corréction predicted by Au. = E{t)Ax by +15 degrees; the othér bounds. the

Au near the end of the trajectory by 1 1/2-times the maximum correction used
in the beginning of the flight. (The maximum usually occurs. at the first turn-
over after about 90 Seconds of flight), ‘"The second technique, which allows
smaller variations, was. generally found to give bettér end-point results when
the disturbances were small; but with large perturbations, the resultisare
inconclusive..

The Extremal Reference Trajectory (D-2)

The linear controller is intended to operate about the optimal reference path
which was computed in Section III, That calculation had not been completed

when this controller study was begun, so an extremaltrajectory was chosen

as the reference for an intermediate analysis,

An extremal was defined in Section II as a path which satisfies the Euler-
Lagrange equations and the Weierstrass-Clebsch conditions, but not neces-
sarily the required boundary conditions, Here, this may be interpreted as a
path satisfying the equations of motion with the control required by the
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minimurh principle, As in Section 1II, the control command was limited. to
excursions between + 16 dégrees (in future work this bound is to-be extended),

The control for the reférence is plotted in Figure 4-37 along with the pilot's:
acceleration, Figure 4-38 shows the state variables v, @, h as functions of
time, and the heating characteristics for a re-entry a,long this path are
récc‘;rded in Figure 4-39, Note the similarity of these graphs to those for the
optimal trajectory (Figures 3-5 to 3-17). ’

The reference was computed by beginning with the conditions

= 35,.000 feet per second

Yo

Y, = 5 75 degrees
h‘o= = 400, 000 feet
Co zero ,

and a particular choice of the adjoint variables, in this case

bjo = 3.6565
by = 23C

bgg = 67931.9
by, = -2565.54 ,

and terminating when the second adjoint variable became zero, The range of
initial guesses on the adjoints which givesreasonablerre-entry paths was found
by trial and error,

The control sensitivity along the reference path was studied by applying a

constant correction to the angle of attack (Au = eAa = 2.4 Ae) and in-
tegrating the first variz. -.ial Elquations (4, 3) backward in time from the end
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of the trajectory. Typical trends are shown in Figures 4-40 and 4-41 for a.one=
degree change in-angle.of attack, These curves may be interpreted as the errors
in-Av, ‘Ah, and -A¢, which will'be nulléd by a one-degree correction in control
applied at the time indicated by the abscissa and held to thé end, Note that not
much control may be exercised niear the end, and the controllability diminishes

rapidly after the first 90 seconds of flight.

‘Open- and Closed-Loop Results (D-3)

The controller was tested by calculating a series.of trajectories in which a
single perturbation was made in.an initial condition, or in one-of the parameters
of the véhicle, Each quantity was varied by small positive and negative incre-
‘ments and by large changes which were chosen t6 .be 2 1/2-times the small
variations. The open=loop paths, which use the reference program, for angle of

attack with no added control correction, were computed for comparison.

A typical case is:illustrated by Figures 4~42 to 4-44; the initial flight path angle
was increased by ‘0, 05 degree in this example, The control correction, plotted
as a function of time in Figure 4-44, saturates at about 220. seconds, and was
limited to -15 degrees, as shown by the dashed line, or taken as -3, 91 .degrees,
drawn in a solid curve, This last bound is 1 1/2-times the control correction
peak value which occurred at 87 seconds flight time, The final altitude error,
shown in,Figure 4-42, was reduced from 568 feet to 25 feet, and the final range
error, Figure 4-43, was changed from 0,096 mile to 0, 006 mile, when the
smaller bound was used., These numbers are compared to an altitude error of
2784 feet and a range error of 22, 7 miles for the open=-loop trajectory, also

illustrated in the figures,

Terminal errors resulting from perturbations of the initial state are listed

in Table 4-7, For each change two closed-loop runs with the different final
control bounds and the open-loop run are given, Note that the controller allows
altitude errors less than 100 feet and range errors less than 0, 01 mile, usually,
with small perturbations, The large changes are controlled within a few thousand
feet in altitude and a half-mile in range,
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Table 47, Initial-State Error Cases-

“Maxit.um Au P
| Corréction: in|

Degrees.

Final Perturbed-State Differences from Reference

ft/ sec..

AV

- Aj?

degrees

;¥H.

. feet

1 ‘miles

: A—‘C‘,A

,Al
’qr,
| BTUS’

None

0.33
15

z€ro

1 0.015.

| -0,036."

1 ;0,~’-765-; ,

0,002

-0.003 |,

0..299 |

~1,205

0. 018

1,595

0..0000°
0,.0004 |

-0, 0048 |

01| 0,002 |
“O'. 002 » H

| 0.0057

AV = 2001t/ sec

3, 23
15

zero

| -1

1 90

o~

11

(V]

0.-008 |

485:

47

i

0, 008
0.081

19,892

| 35

442
197 | 442

392

ANV =-=2001ft/ séc

3.21
15

zero

. 2602

60

;2254

' -0..001

0.012

-18,455.

- =193

193 |

| -417
0, 147"

-509 | =377

AV = 500ft/sec |

8,12
15

'Zero

1 295

-1051
- 606

7378

-0,112
-0,:033

53,011

499 | 1156

499 | 1156

i
1394 | 1007

AV = ~500 ft/sec

8.00

15

zero

-142

97

-14

21

.-5124

-0, 002

0. 0086

|-43. 864
--/“’/—-—_———-“"

- -474

-474 | -997
-997

-1229 | -916

‘“‘“‘~J-~um~,wf
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Table 4=7, Initial-State Error Cases (Continued)

. .

Type of
‘Perturbation

-}

Maximum Auf
‘Correction in |

Degrees

| Final Perturbed-State Differences from Reference |

| £t/ sec

AV

AY

"degrees:.

| An

feet

sc |

miles

b
Q.

BTU'S

- s -
Sy ey | g

| .an= 20004t °

= 9

a1 |

0,2

0.5

2.2

- 20
28

1249

. 0.003 |- 6

0. 005 |~ 6

13,059 |

163

}- 40
- 40

- 78

- 2000 ft

0,7

2.3

2.0

.- 10

-1161

60

-0.002 |

-12, 793

0. 012 |

65
65

-161

43
43

74

| An

5000. ft

15

zZero.

1t |

0.1

2,9 .

5.7

- 697
- 137

3320

- 0,077
0,020

33..234

-179
-1179

411

|- 95

- 96

N e 192

- 5000 ft

5.67

15

- 81

1.2

2.9

- 956

19|

-0, 130

0. 006

157

157

110

110

.

zero

98

e e -

Foia no

zZero. - 4.9 | -2763 |-31.563 | - 401 | 183
A>e¥ -0, 05deg | 3. 65 5 1 - 14 [- 0,002 ) 29 | 103
15 1 3 60 | 0,013 29 | 103

| -7 |- 4 A-2337'~zo.952 - 344
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Table 4-7, Initial-State Error Cases (Continued)

“ Type -of
Perturbation:

{ Correction inj

- Final Perturbed-State Differences from Referénce |

Maximum Au

Degrees

AV

| f£t)sec

| ay

tdegrees

| an

feet

A¢

[ miles

BTU's|

A
95

BTU's

AY = 0,05 deg

3: 91
15

zZeéro

i~ 18
T - 17

97 |

1

25
568

2784

10,006 |
0,.096 .

22,715 |

355,

‘e 90

1 99

| -158

i

1ay

0..15 deg

10,27
15

zero

1 - 40

455

: ?2&731

1- 781

10337

0,168 |
i -0;115

15,112

72
73

1151

i 319

=485

319

5A5l=’0;1§deg

12,63
15

zZero

ﬁlOO

-102

~163

-11

-3013
1-3001

26043

-0..318

-0. 304

-58,716

y"121

-121

=954

1-277

1-277

439

A¢ = 10 miles

2,40
15

Zero

ZEero

- 0.4
3.9

Zero

- 316
483

Zero

20,039

0.:090

10

=193
-193

Zeroc

35
35

zero

A =

- 10 miles

-2, 40
15

zero

99

0.7
2.5

Zero

- 413

54

zZero

-0, 049

0.011

-10

200

200

zero

- 33

- 33

zZero




Table 4-7, 7Initial-State Error Cases-(Continued)

| | Final Perturbed-State Differences from. Reference
Typeot | MOV | Ay | an | st | & &
1 o TP P I Correction in { Vv Y I :

\e Perturbation Degrees. ‘ ; ’ ‘qc, qr |
ft/sec | degrees; feet | miles| BTU's|{ BTU's"

A€ = 25 miles 5,98 -118 ~-5,5 {-4167 | =0,448 | -468 88

15 | -131 | -3.5 |-4481 | -0.459 | <468 | 88

Zero: zero 2ero’ zZero | fzeyo zero zero

AC=-25miles| 616 |-21 | 1.4 |-1338 | 0,476 | 515 | -81

15 17 1.0 39 1 0..007 513 -81

zero zero zero | zéro | -25 zero | zero

The first three cases .of Table 4-7 are .a check on the accuracy of numerical

integration, since the reference trajectory and control are computed by a

‘backwards integratica from terminal time, which differs from the forward

calculation by small ainounts.

the closed-loop case.

This gives rise to a control correction in

Errors produced by vehicle parameter changes are summarized in Table 4-8,

The controller does not cope as wéll with these peérturbations, as with initial

condition errors, because the control correction gains E(t) were based on the

vehicle parameters of the reference.

The final-state errors are usually less

than 5,000 ft. in attitude and 1 1/2 - miles in range.
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Table 4-8, Vehicle Parameter Change Cases

| mpeor  [Meimems | Eme e e e
' Perturbation 5 ?ﬁégreg"s 1 : (S - q, 9.
¥ | ft/sec | degrees/| feet miles BTU | BTU
4 per cent S 3.87  fo.111| 3.9 | 4480] 0.48 |- 505 |- 495
15 132 | 0.6 | 3845] 0.45 [~ 505 - 495
zero |- 17 |- 0,9 | 382{- 5.95|- 464 |- 391
<4 per cent § 3,70 |- 96 |- 4,2 |-4716{- 0.26| 528 | 539
15 |- 180 |- 2.9 |-6059|- 0.47| 528 | 539
zerd 19 1o - 378| 6.26| 494 | 429
" 10 per cent S 743 165 3,2 | 5506 -0.61|--965 |- 929
15 140 |- 1.6 | 3246| 0.28|- 964 |- 929
4 zero - 39 |- 2.2 | 959- 14.38]-1108 |- 914
| -10 per cent 8 705 |- 173 |- 8.2 | 9268|- o0.16] 1109 | 1161
15 - 204 |- 80 }10819]|- 0.46| 1110 | 1161
Zero 52 2.1 &.; 931| 16.29| 1300 | 1158
| 4percentc | 204 7 |- 0.8 18(- 0,002|- 2 |- 12
| i5 o] 13 b 4] o003 2| 12
zero 4 | zero | 41| 4.046 73 |- 17
-4 per centCp | 2.19 - 8| o7 | 46| 0,002 3 13
15 - 6 3,3 629| 0,105 3 13
Zero - 3 Zero 58 |- 3.972 |~ T2 17
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Table 4-8. Vehicle Parameter Change Casés (Continued).

pocs  [hssimu oul _ PoelPerimbeSe iterencer
| Perturbation - ﬁégneéé | AV | Ay ~ Ah AC ch z}q_r
ft/sec | degrees| feet | miles |BTU |BTU
| 10 per centC | 4.21 17 |- 7] 60 |- 0.002+  4|- 30
| | 15 o |- 0.3|- 155 |- 0.024]- 4|- 30]
; zero 1 1 zero |- 67 | 10,260{ 183 |- 41
'-10:<pe£”ceht'cll;;) A 5.35 |- 21 1.5 = 253 |- :o,o,éo1’ g, 34 |
/ 15 |- 2a | ae| 321 o073 8] 32
zero. |- 7] 0.1| 175 |- 9.798]- 179 41 |
4 per céntCl;O“ 1,05 49| 2.3 | 2222 | 0.208]- 256 |- 246
BT 6 |- 1.4 1722 | 0.202]- 256 |- 246
| - zero |- 13 |- 0.6 275 |- 6.202|- 342 |- 24 ?
| -4 percentcp gl 106 |- 46 |- 2.3 |-2267 |- 0.144] 266 261
| 15 - 18 0.2 |-3160 |~ 0.265| 2066} 261
zero 14 o8- 280 | 6. 542 358i 256
10 per centCpy|  2.48 182 | 4,9 | 5361 | 0.246]- 624]- 590
' 15 141 | 18| 4419 0.511{- 624 |- 590
zero - 31 |- 15| 678 |-15.298/- 828|- 580
-10 per centCp,| 2.5 - 107 |- 5.7|-5595 |- 0,210/ 683| 685
15 - 152 |-  4,7/|-7511 |- 0.554 684 685
I 38 | 1.6|- 709 | 16.867| 926 668
—— e e —
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Table 4-8. Vehicle Parameter Change Cases {Continued)

r
2‘, Type of 1(\:&ax1mum A'u'.' _ ‘?ingl ,Pg?tvt?fbéd’—ﬂstétg pi{fe;eﬁées :
r | Perturbation ggggggn‘m AV | ay | an A |4 Y
! | ft/sec :;degregsf feet i;:r‘nﬂes BTCU BTtr)
f 4 per centCpy, 0. 71 28fj 1.3 | 1293 | 0.‘1:14,?-, -‘1481::',* 144
- ‘ 15 53 |- 2.8 | 613 0.0761- 148]- 144
zero - 8= 4 | 151~ 3.649 |- 198)- 141
" | -apercentcy | o064 |- 27| 1.3 [-1207 |- 0,093 | 51| 149
) | 15 - 51 2.0 |-1629 {- 0.120 | 152] 149
S zéro 8| o4l 153] 32| 203 146 -
-] IOxpérscér;tC;L:‘ 1.41 701 3.2 3095 0.298 |- 354?-4 351
| 15 101 |- 0.1 ] o703 | 0.328 |+ 364]- 351
’ zero - 18 - 0,99 376 |- 8,974 |- 486 |- 345
| -10 per centc, | 1.48 - 64 |- 3,3 [=3208]- 0,182 | 384 | 384
o 15 - 99 |- 1.2 |-4377]- 0.369 | 385| 384
zero 21 | 0.9 |- 384] 9.402| 10| 374
- |ou= 1aeg 1,52 " 10 0.4 | 17| o.028(- 22| 20 -
15 3 6| 35| o.007 (- 22| 20
* zero - 118 | |-4383 |-16,496 |- 239 32
[au.= 1deg .52 |— 13 0.0 |- 150 |- 0.019 | 22 |- 20
15 - 11 2.8 | 610 o.102] 20| 20
zero 170 8.0 | 4991 17,755 254 |- 32
M = 2,5 deg 3. 77 21 2.0 | 470{ 0.108 |- 55| 51
15 - 6 4.4 |- 48] o.022|- 5| 1
zero - 237 |- 16.8 |-9996 |-39.107 |- s72 | 82
AU = -2,5 deg 3,77 - 40 |- 0.5 |- 815 |- 0.007 | 57| 48
15 - 43 3.5 |- 30| 0,082| 57| 48
zero 596 | 20.4 |13850 | 46.955 | 669 |- 80
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‘Comparison of Studies in Subsections C .and D (D-4)

‘The studies of’'a contrgl for modulating arigle of atidck in'this subsection differ
in severalaspects from those for roll angle control reported in Subsection C.
The object of that work was to find a control for the whole re-entry corridor,
assuming only a -crude fzgviga_tiOnai system. Very largesperturbations could-be
contrelled~--50,000 féet initial altitude error, for -example=-with a navigation

R T P

calculation from biased acceleration data, The reference path was .chosen so.
the system would be very controllable,

The extremal path, on the other hand, was found to yield a much less controllable
system, and the perturbations had to be strongly restricted.

| MISCELLANEQUS IDEAS FOR CONTROL (E)

The linear .control scheme presented appears to provide a reasonable engineering
solution for the re-entry problem considered, There are, however, a number of
questions which must be answered to round out this research effort, For example,
what is the justification in using the linear Equations (4. 3) for prediction so
feedback gains may be found when, in faét, this equation holds for the closed-

loop system only in a very narrow neighborhood of the reference und not in the
whole controllable corridor ? Why is improvement noted when the :control is
modified by transformations like (4, 28), or bounds imposed when these modifica-
tions were not considered in the basic derivation of the control law? What
relations are implied when the reference trajectory is found by using one criterion
and the feedback cont rol found by using another? A more difficult area of study,
considered a little in Subsection C, is to find the minimum information of the
state, number of variables and accuracy, which will allow a successful design, s

Some of the answers lie in a more careful study of the effects of the essential
nonlinearities of the system. A step along these lines is to investigate a controller
based on a prediction from error equations linéarized in the state variables,




but in which the nonlinear aspects of thé control authority is retained, The
control criterion must also be changed to retain the-nonlinear character of this
detail of the system. Or, the nonlinearitiés maybe avoided by adding more
réference trajectories and error equations. If two paths were employed as
reference, an auxiliary calculation to choose the reference can be based-on the _
construciion of a plane midway between the reference states and perpendicular to AC§
the plane formed by them. '

Another approach is to make the system explicit, calculating a new optimal
trajectory at each point along the motion. This may be done by simplifying the
Newton-Raphson method-of Section II, by dropping more unessential terms using
schemes based on the second variation, or, by using a Newton-Kantorovich-type
of iteration fo predict an optimal path. Or, the equations of motion may be
solved approximately by Galerkin's technique, .and a suboptimal path found by
the Rayleigh=Ritz procedure. This would require relatively elementary calcu-
lations.
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SECTION V
CONCLUSIONS AND RECOMMENDATIONS.

ACCOMPLISHMENTS

A computational procedure is developed which yields the control program and the
cgpreéponding re-entry flight pathto minimize 2 givzn criterion. In the particular
case studied, -this criterion is the total heat to.the vehicle. The calculation is
automatic; in that the calculation will run on a large digital computer, iterating

as need be, until an optimal trajectory is found, without intervention by the
operator. The basis of the calculation is the theory of the calculus of variations,
It is demonstrated that, when suitably modified, this theory provides. the flexi~
bility and a generality to encompass a large class of control synthesis problems,

The chief numerical method eémployed is a modified Newton~Raphson technique.

The method is superior to both the gradient approach.and standard Newton-
Raphson methods, ‘which were tried, in terms of rapidity of convergence, ease of
automation and auxiliary computations, The .scheme is insensitive to round-off
errors, and.it exhibits no tendencies toward instability because of adjeint solutions,
It was found to be better, for accuracy and computer usage, to~>mpute the
necessary partial derivatives from explicit formulas derived from the second
variations, rather than calculate them from finite differences,

The success in computing optimal trajectories is due, in part, to the simple
device of limiting the control authority so that a reasonable guess, close to a
ballistic trajectory and in the region of convergence for the method, may be
made and subsequently relaxing this limit as the re-entry corridor is studied.

It is demonstrated that a linear perturbational control could be designed to

provide control within a substantial re-entry corridor about a carefully chosen
reference path. The accuracy requirements for system mechanization are not
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severe, A system with accelerometers and an rttitude reference of reasonable
accu;r!acy would assure safe re-entries, It will control vshicles with errors in
parameters and changes in atmosphere density profile, Modification of the linear
controller gains at the end-point is examined with care,.

Several complicated« digital computer programs, which use specially developed
integration and interpolatign methods, were constructéd. These will be in-
valuiible for future investigations,

This study was conducted with a t\vdrdimensiojnal' model-of the ré-entry maneuver,

This research has laid the theoretical foundations requisite for engineering
feasibility studies of optimal re-entty control, Further, limited experience with
these techniques suggests that an optimal re-entry trajectory has real and significant
performancé advantages in terms of the chosen optimization criterion, This
research has alsc made it clear that on~board computation of true optimal
trajectories is not likely tobe feasible in the foreseeable future, However, such
trajectories can be pre-computed and stored on board for use in thé linear control
scheme, Alternatively, there is a good .probability that simplifying approxima-
tionhs can be made to the theory which will make feasible the on-board computation
of sub~optimal paths, The merits of these simplified schemes can be evaluated
by comparison with optimal trajectories computed by the methods developed during
this research program.

RECOMMENDATIONS

An original objective of this program was, and still is, to examine the mechaniza-
tion problems associated with optimal or near-optimal re-entry control systems,
The prerequisite theoretical work is now sufficiently complete that these problems
may be studied. The program suggested below has, as its principal purposes,

the development of a technologically feasible mechanization and the evaluation of
the performance degradation which this sub-optimal system exhibits with respect
to-an opfimal system.
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Task 1: Optimization

There are still some .aspects of the Newton-Raphson-optimization scheme which
should be pursued, These are minor in nature, but should produce dividénds
in faster determination of optimal trajectories. They are;

Examine methods for increasing rate of convergence to the optimal

trajectory

Examine other differential equation integration algorithms for faster
path solution.

Examine-other optimization criteria

Task 2¢ Linear Control

The various linear control schemes now known should be tested against each
other to-determine their effect upon the optimization criterion. The results of
these studies will determine the linear control law to-be mechanized. The
linear control 'schemes include:

Minimum- deviation of control from reference control

Minimum deviation of state from reference state

Optimal control in the vicinity of the optimal trajectory

Task 3: Approximation Techniques

The mos. fruitful areas of on-going research will be those of finding suitable
simplifying approximations which will permit near-optimum trajectories to be
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computed on boafd the vehicle and.of -evaluating the performance of the

- resulting ‘sub-optimal control scheme,

Practical utilization of the theory which hag been developed-depends. on the
successful -éxtension of these results toward simplifying approximatiens which
retain-as many periér'mance advantages of an optimal system as possible, Some

promising approaches are:

Rayleigh-Ritz techniques for optimization and a Galerkin approximation
to solve the equations of motion

Optimal solutions.of simplified equations of motion
Dynamic programming techniques for on-board -computation of a crude

approximation to-the optimal path

Task 4:_ Simulation

A re-entry control simulation, designed to evaluate the most promising
techniques resulting from Tasks 2 and 3 with respect to engineering feasibility,
sheuld be accomplished,
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APPENDIX.A
THE EXTREMAL DIFFERENTIAL EQUATIONS AND PARAMETERS

An extremal is defined in Section II as a path satisfying the relations (repro-
duced here for convenience)

- : = = 1Y) 1 A
p! vxfo + p!vxf + 1 VXG (A. 1)
0 = Vugb £ P'vﬁf + p.‘;.'v)ilq (A, 2)
0 = pG, j=1,...,49 (A.3)
JJ

0 < M (A. 4)
x =1, xlo)= x, {a. 5)
¢ 2

g £ G =20 {A. 8)
H(t,x,p,u) £ H(t,x,p, V) (A, 7)
m vuz (H+H) 120 (A, 6

It is convenient to consider each subarc of the extremal separately, For this
purpose, it will be assumed that all the constraints are greater than zero along
the first subarc. Then, according to Valentine (Reference 23) the inequality
constraints may be neglected: over this subarc,
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The corresponding Euler-Lagrange Equations (A. 1) and (A, 2) are

el = 39 f 4 ntY f o= 1

p fovf? +p vxf : O F (A, 10)
{ = 3 1. = v ; :
0 Voio T P91 v.Fq {A.11)

It is well known from implicit function theory that Equations (A, 11) can be solved
{at least in-principle) in the form.

u = ulx,p) A, :2).

if the:determinant

-
2 BZFJ "‘2171
R, =detv_F. =det | =—ps=- ..., o ) (A, 13)
1 u-1 aui Bu‘laur’n |
1t
| 2. 2
.._.._.a F,...__.l y 0 o0y a Fl 4
du_du,, 2k
m- 1 aum i

is dgifferent from zero, Equation (A, 13) is the determinant of the Hilbert
differentiability condition for this problem. Substitution of (A. 12)into (A, 10)
and (A. 5) thus produces a 2n set of differential equations

x = f,x,p), x(0) = x (A, 14)

0

= TR (x,p). (A, 15)

These will be called the reduced differéential equa ions of the extremals for the
first subarc, It is well known from the theory of differential equations that
(A, 14) and (A, 15) have a unique solution for a given set of initial conditions.
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But a‘halfi of thesé, X, Are given for the problem, The solution is thus a func-
fion of the n initial conditions: P, and is said to be imbedded in an n~parameter
family of éxtremals, Over the first subarc, then, the soluiion has the form

X = x(t‘,.xc, po)‘ = x(t,_:po) . (A, 16)
p = plt,x,, p_o) = plt, ) {A, 17)
u # ult, X ,py) = ult,p, ). (A.18) ;

It is further known from. the theory of différential equations that Equations (A, 16)
and (A, Ai 7y and, consequently, (A.18), have continuous partial derivatives in the
variables t, xo and Po of at least second order;

The above results are, of course, obtainable from the general férm .of the
problem of Bolza. It is:known that the arc can beimbeddedinan {n+m) parameter
family of arcs, -and that there are 2n + 2m differential equations of the extremals,
The 2m differential equations become the m algebraic Equations (A, 11) and their
time derivatives (which introduce no new inférmation) when initial conditions are
imposed, Furthermore, the determinant in the Hilbert differentiability condition
reduces to the form (A, 13),

Over the second subarc, it is assumed tkLat one of the inequality constraints,
say. Gl’ is equal to zéro, The function (2, 10) is written, following Valentine
(Reference 23), as

P, = fo + pNE-x) + pIG

2 1 (A, 19)

and the Euler-Lagrange equations as

AR S LA v.Gy* 7.y (A, 20)

—p?

0 Vlo ¥ P L F B 9Gy = Y Fy (A, 21)




To this is added the equality constraint
0= G, , (A, 22)

If the m+1 Equations (A, 21) and(A..22) are to.be s6lved for the m+1 variables u
and.p i the determinant

(4,.23)

riust not be zero, Equation {A.23) is the déeterminant of the Hilbert differenti-
ability condition for this aré, It is then found that '

u = ulx,p) (A, 24)
k= By &,p) (A, 25)
and, consequently, that

34

X

fy (x,p) (A, 26)

P = TR, (x,p) (A.27)
are the reduced differential equations of the extremals for this arc, These
equations again have a unique solution for a given set of initial conditions.
Furthermore, the solutions possess- continuous partial derivatives of at least
second order with respect to t and the initial conditions X4 and Py It remains

to be shown that the solutions over this arc are continuous functions of the

initial conditions Py and that partial derivatives of at least second order exist.
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Tbé'.terminél :r.géint:o,f‘ the first subarc is defined by the equation.

e Al
- ,N'
3

G [ty p,) . Pl )] = 0. (A, 28)

- EyT oz

Thfs ma’.ylb_e:solv'ed-'fdr fl'(?b) if the-derivative

RERPE TN
.
BTN
L e,

Gy = %Gy x + V.Gp

‘o -
ot ‘

is non-zero, Equation-(A, 28) represents the equation for the terminal surface
of the family of :.extremals which are solutions. of Equations (A, 14) and (A, 15).
Thistertn‘iﬁalnsuz‘fape represents the initial surface for the family of extrémals
: over the second subarc which are solutions of Equations (A, 26) and: (A, 27)..

| For a given.set QQ, the terminal values x (tl, qu); vp’(tl, p\o‘) are the initial
values-fior the differential Equations:(A.;26) and (A, 27), This follows from the
continuity of x(t) and pt). Then, since the solutions

i g x(t) = x(t, X4 pl,),, t 2t (A..29)
p{t) = plt, x,, py), t 2t (A, 30)

e

are continuous functions of Xy and p X and since

(W?

¥

x, = x»(t«l, P, xl(pd) (A, 31)

L4

py = pt, p) Py (p,) (A.32)

are continuous functions.of Pq alone, it follows that

P poriansn St PYVIRN
x . : ¥

x(t) = x(t, po), t 2 t1 ‘ (A, 33)
- plt) = plt, p ), tz ot . (A, 34)
7
117

w LI — "~y — 7 aindiiian " . "'ﬂ?ﬁfm: .»w.{»’«? L T
| -




B o

exist for Equations (A.29) - (A, 32)n the indicated variables, it follows
that (A, 33) and (A, 34) possess partial derivatives of :at least second order
int; pr; Since there are no-corners, y is, at least, absélutely continuous,

Further subarcs may now be added; as long as the.number of ggualitymgpn'straihts
does not exceed'm, the -dimension of thé control vector, Each subarc possesses
control functions and"multipliers of the forin (A, 24) and (A..25) and, furthermore,
differential equations similar to (A.'26) and (A. 27). It is readily verified that

the .solutions are continuous functions of the initial-conditions, Pg and t, and

that continuous pa'rt'ia], -derivatives-of at least second: order exist,

Points. where equality ¢onstraints change to the " greater-than" state will now
be examined, For this purpose it will be assumed. that only one of the con-
straints, say G;,, is zero over the first subarc, and that it is greater than zero
over the second. Equations (A. 24) - (A.27) hold over the first subarc, and

(A. 12), (A.14) and (A. 15) over the second subarc, The Equation (A, 28) for

the terminal surface is replaced by ‘the equation

oy [x (t,,pg), p(tl,\po)] = 0, (A. 35)

sinqe»ul is a continuous function and must go to zero before G1 can be greater
than zero, It isthen seen that the arguments follow through as before, provided
the determinants R1 :amd:R2 are different from zero and that the derivative

by 7 Ty X VP

is non-zero on the terminal surface of the first subarc. On the second subarc,
then, the solution is a continuous function of t and Py and partial derivatives in
these variables of at least second order exist., The result is easily generalized
to several equality constraints going to the " greater~than" state over a series
of subarcs.
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"To sum up, a path is composed of a finiite number of subarcs, each of which
has its.owh set of differential equatiofis and terminal.surfaces. The first subarc
has-a specified set of initial conditions, X and the last has a specified terminal

surface, Equations {(2,4), The equations-of this términal surface-have-continuous
partial derivatives of at least second order with respect to the initial condi-

tions pj; ‘and the terminal value of thé indepéndent variable T

Now introduce themew diffefential equation

(0) = 0, (A, 36)

where f is the mtegrand of Equation (2. 1), The solution to thisis easily

‘seen to be of the form

tv

Xpei = XpagltPy) = y[ f &, pldt T {A3T
0

.over the path and; on the te’rminalvsurfac;e,‘

= ; 14
n+1(T) xn+1 (T’ po)d (Ac 38)
Furthermore, since g of Equation (2, 1) is a functional of continuous funciions,

HT) = NT,p) = g[T,x(T,p3] +x . (T,p) (A.39)

n+1

The terminal surface Equations (2, 4) may be expressed in the form

WT) = WUT,p) = ¥[T.x(T,p)] = o. {A, 40)

Thus, the problem reduces to that of minimizing (A. 39) subject to the constraint
Equations (A, 40) in the indicated variables,
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APPENDIX B.

THE SUFFICIENCY CONDITION- FOR
THE FIXED END-POINT PROBLEM

When the terminal surface consists of léss than (n+1) equations of the form (2.4)
it is-always posiible to use the sufficiency conditions of Section. II{C),. As shown
in Section II (F), the second derivative matrix comes from: evaluation of the
second variatioa, using neighboring extrémals (the accéssory minimum: problein),
" which satisfy the neCeséary conditions on the-problem*, When the .énd-point
is fixed, i.e,, r = n+l, it is in general impossible to satisfy both-the initial
and terminal conditions with this typé of neighboring extremal (assuming the
problem is normal and‘that the V_ x matrix is non-singular at the end-point).
However, it is still possible to.cofstruct neighboring extremals which have
discontinuous-derivatives -at one point and which-do 'satisfy-end conditions. The
second variation is evaluated with these neighboring extreémals to establish
the sufficiency condition-for a relative minimum for this .pz;c;blem; Bliss!
theorem 86, 1 establishes the basis for the development, **

The complete fundamental solution matrix of the system (2, 80) and (2. 81) is

Ry v x [ T n
x X po.x 11 12

= (B, 1}

vx P Vpop Lﬂ21 TT22

where the m notation is introduced for the convenience of the following develop~-
ment, The initial condition for (B, 1) is the 2n x 2n identity matrix. Then any
solution 0x(t) and 6p(t) which starts with 6x(0) = 0 must be composed of a

*See Bliss, reference 22, pp. 226-234, 243-247, and 253-257 for the discussion
presented here,

**¥Ibid, p. 246
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L. By = mMa,  Ox(o)

‘similar neighboring éxtremals which have thé propeérty that-6x(T)

»hvggar—:cjombmat;on of m i2 and. n:'2'2';

~ P

- Oplt) = 2;in522<(t)g«é - 8plo) = a, (B. 3)

where a is an.arbitfary (nx1) dimensional vector, It is désired to construct
0, This is

iy

done by requiring -

um), [ W T | cy |
I L ) = (B.4)

where C and D are (nxn) matrices to be determined, Z is the zero matrix and
U and V :are matrices such that ’

i* - ox(t) = Ult)b, ox(T) = 0 (B..5)
Sp(t) = Vit)b, 6p(T) = b, _ (B. 6)
B and b is an arbitrary (nx1) dimensional vector. Now matrix (B, 1) is non-singular
by definition, so it may be inverted, Call the inverse att = T the A matrix,
b Theri, from (B. 4)
|° i (B, 7)
- DY lAgrhge| [T Aog
from which it follows that
U(t) = ﬂll(t) Aygt ﬂlz(t) Aoo (B. 8)
' L V() = Ty (t) Ay + Toolt) Agy. (B. 9)
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Other relationships réquired in thé development are

.. o= ~ :
T21 M Ty Ty ¥ Gy - (B.10)

.1 = - . or [P
Moz’ M1 T ' Tep * C3 (B, 12)

which'hold at any poiit t, ‘These relationships may be verified by differentiating

and substituting Equations (2,.80) and (2, 81) into the result, It is readily verified

that C, = C, = Z and that c'3 = I for the initial conditions following
Equation (B, 1), ‘However, if a path consists of more than one subarc, these
constants will assume different values because of the discontinuities at the

junctions of ‘the subarcs,

The development assumes.that the second variation is evaluated at a point t3 on
the last subarc, The assumption of continuity at this point requires that

6x(t3) = r‘rlz(t3)a = U(t3)«b . (B. 13)
When the second variation is evaluated at t = ts it is found that

al [nlz' (t3) V(t3) - n22(t3) V(t3)] b 20 (B, 14)
for all a, b satisfying (B, 13)., Assuming that T 9 has an inverse at
t = t3, this is equivalent to stating that the matrix of

b' |[U'V - U (m, 1) my'U b 2 0 (B. 15)

12 22 _
t= t3
must have no negative eigenvalues (although some can be zero), Substitution
of (B.8) - (B,12) into (B.15), and subsequent rearrangement, then gives
the desired result,
-1
b! nlz(T) [nlz (t3) nll(t3) A12 + Azz] bz 0, (B. 16)
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Notice that if T is-selected ast,, the matrix of (B. 16) reduces to U(T) = Z,
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ERRATA SHEET FOR FDL-TDR-64-13, VOLUME I,

FEASIBILITY STUDY OF NEW TECHNIQUES FOR CONTROL CF
RE-ENTRY VEHICLES

Equation (2.1), should read
T

:=anam>+£fgmwm

liné 6 from bottom - first word is Equations

liné 5 from bottom - first word is Yariableg

The off-diagonal .terms in matrix at bottom of page are
Véojwahd Véé.j\respectivelyh

last equstion ‘is numbered (2.71). Also, the -g in the last term should

be Wi.

‘Equation (2.92) requires brackets as in equation (2.91).
line 2, (A28) should be (A.28)
Equation (2.96) should read

<+

= vpoxn+l(t1) + [xn+1(t1) - xn+1(t1)]Vp t

(vp xn+1) 1
o o

1
- line 10 from bottom - capital P should be lower case for page

delete lines 9 and 10 from bottom

Equation (3.41) p should be p' (transposed, or row vector).

line 8, a%+2 should be /ao42

line 8 from bottom - the a should be &

After line 6 add the following: The minimum principle is satisfied

by the riles at the top of page 49. A corner exists at a point where
P, passes through zero. Integrations must be restarted at such a point

with QNEW =95 - abLD’ provided that Py f 0.

T T . ST - S ANAF S e e — P =
e - b ——— —




page 53

page 59

page 60

page 61

page 63

page 6it

page 65

n

line ‘8 from bottom - al‘should be a.

Equation (3.67) - %ﬂ in the third equation should be gﬂ .
X x
3 ~3

equation (3.63), last term < Uy is [y

line 8, the first term of the vector is~p1vaL.

line 3, the 3rd and Uth words should be "when either"

line 7 from bottom <= uy should be g

equation (3.79)~Shdufd read -|ul < g < lul

equation for i1, is numbered (3.80), and should read

T PN
ler +colic. pJ + (€ p,v)“]
B b At T 10 2? DL 1, sin(u-g)

“)2 v (bQ "MaC) ‘sinu

line 10 should read ...and {4, = O with 4, # O,....

Equation (3.81) - the first column elements should have dots above

(3.80)

them (except for the zero) to indicate time derivatives, i.e., V(T), etc.

Bquation {3.82) - the first element of the matrix is -p'(T)x(T) and the

third element is -V; x(T)p(T).
0

Equation (3.84) The left-hand side should be the same as that for
equation (2.35) on page 17.
Expression (3.85) should read

N . -1
(97,1) " 309 1)

Equation (3.86) - The first column elements of the inverted matrix should

have dots over them to indicate time derivations,

Line 4 from bottom - (3.85) should be (3.86)




page 66 line 2 - "completed” should be "combutéd".

page 70 - equation (4.7). should read

A = [ - f F 1A
X [yxf + yu_f EJOx

page 72 equation (4,11) - the arguments t, in the second terms should be "a".

page 73 equation (4.1h) - the a 's should all be a's:
the dimension of A’ should be,((néé)xn)

pagé T4 - line 6 from bottom - range on 't should be a <t<T.

page 75 equation (k4.22) should read p = poe=8R§

page 76 line 2 - the atmosphere coefficient should: be 1/23500.
line 4 from bottom:. Y, = -6.h4 degrees.

page 79 last line... the 10-g acceleration limit,

page 9% line 3 - the last word is "law"

page 95 line 4 - @ should be ¥y

page 110 Reference 6 - replace "Report" by TR-R-
Reference 7 - "Atmosphere" should be "Atmospheres"

replace "Report" by TR-

Reference 9 - Replace "Report" by TR-

page 111 keference 19 - the original paper number is 61-6

page 112 Reference 27 - add (1961)

page 113 the right-hand side of equation (A.1) should be -p’
Equation (A.l4) should read 0 >

page 119 the initial condition for equation (A.36) is x 0) =0

n+1(

the lower limit for the integral o° equation (A.37) is o.

page 122 delete the last sentence of the first paragraph




