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The earlier work on acoustic radiation from a cylinder was extended 

by working out the low frequency approximation and doing more machine 

calculat ons . A variety of boundary conditions and cylinder height to 

diameter ratios were treated in the low frequency approximation, and the 

results were used to study the limitations of the method of colculation . 

The machine calculations were performed for cases in which the method 

should yield reliable far field results. Several different cases of 

cylinders vibrating sytmnetrically on the ends with uniform and parabolic 

velocity distributions were treated . Directivity patterns and radiation 

resistances were obtained which should be useful in transducer design 

work . 
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Further Results on Acoustic Radiation from a Finite Cylinder 

by 

Charles H. Sherman and Dorothy A. Horan 

Introduction 

The method for the calculation of acoustic radiation from a finite 

1 2 cylinder' has been extended by working out the details of the low 

frequency approximation ~s described in preliminary fashion earlier3 . 

Although this approximation holds only when the height and diameter of 

the cylinder are both much smaller than the wavelength, it has the 

dvantage of giving results in a partially analytical form . Such results 

have been obtained for cylinders with six different ratios of height to 

diameter (b/& • 4,2, 3/2, 1, 1/2 and 1/4) and six different boundary 

conditions ( niform and parabolic vibration of the cylinder sides and 

uniform and parabolic vibration of the cylinder ends with both syanetric 

and antisymmetric forms of the latter). These low frequency results 

provide the opportunity for evaluating the method more fully than ha• 

been possible before . We will be able to determine how the accuracy of 

the results depends on the type of boundary condition and on the ratio 

of cylinder height to diameter . Such information will be an important 

guide for future applications of the method . 

2 
The computer program for the calculation of acoustic radiation 

from a finite cylinder has also been revised and used to obtain numerical 

- l -



results for cylinders vibrating on the ends. Several examples of far 

field radiation patterns and various radia t ion resistance results have 

been obtained which will be useful in transducer design work . It has 

not been possible to obtain accurate near field results with the revised 

program because of practical machine limitations. Although these limi

tations might be partially overcome by further revisions of the program, 

the studies to be described here suggest other directions which might 

ultimately be more fruitful. 

Swmnary of Method 

In brief summary the method consists of expanding the spatial part 

of the acoustic velocity potential in the finite series of spherical 

wave functions 
H 

- L a.~ F:, ( cos s ) h., (I~ ) ., ( 1) 

for axially symmetric boundary conditions. In Eq . (1) rand 8 are 

spherical coordinates with origin at the center of the cylinder and polar 

axis parallel to the cylinder axis, ~ (Cose) is the Legendre polynomial, 

and h"(~~) is the spherical Hankel function . The boundary conditions 

are satisfied in the least squares sense when the expansion coefficients, 

a. are determined from the equations 
~> 

"' La."(""") c-J,M) = ( c/),. > N(B)), ~=O, ,, 2., .. . ., N, (2) 
n 

- 2 -
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where 

(cf>.,.,+,.)~ JJ 4>= (11) 4'., (e) .IS, 

(cl>,.., f'IC&))= JJcp:(&) NC&).IS, 

(3) 

(4) 

<?., ( 8) is the normal derivative of ~ (to~ 9) h,. ('fer) evaluated on the 

boundary, H(&) is the specified axially symmetric normal velocity on 

the boundary, and the integrations extend over the P.ntire boundary surface. 

The scalar products in Eqs.(3) and (4) have the properties: 

• 1) ( 4>..,) cp~) = ( "'~ , ct,., ) 

2) ( • ... , d»,. ): 0 except when~ and \'I are both even or 

both odd 

3) (cf>~, N ( 9)) • o for odd (even)~ when N(9) is 

synmetric (antisymmetric) with respect 

to the equatorial plane. 

It follows from the second property that Eq.(2) separates into two sets 

of equations - one involving only even o~der coefficients, the other only 

odd order coefficients. The third property then shows that for a sym

metric (antisymnetric) problem the odd {even) order set of equations is 

homogeneous, and the odd (even) order coefficient• vanish. It is con

venient to treat boundary conditions which are either symnetric or anti

symmetric and then handle more general boundary conditions by superposition. 

The general expreasion for •., ( 0) for a cylindrical boundary of 

height .a.I, and radius tL is~ 

- 3 -
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and for "'1/2. ~ 9~ 1f the expression is given in terms of Eq . ( 5) by (-1).,~\1(1T-&). 

Eq.( 5) is used in the computer program . An approximation which holds for 

small '4. and small lb will be discussed in the next section . 

~ Frequency Approximation 

We begin the low frequency approximation by using the standard 

small argument formulas for the spherical Hankel functions and their 

derivatives in Eq . (5) . If the cylinder height and diameter are botr 

sufficiently small compared to the wave length, any point on the cylLLdri

cal boundary is close enough to the origin to validate this approximation . 

The expansion coefficients o tained by satisfying the boundary conditions 

in this approximation can then be used in Eq.(1) to calculate the sound 

field at any point outside the cylinder. 

The small argument formulas for the spherical Hankel functions and 

their derivatives 4 are :. 

C: ,., 

h., c ~) = - i. t:>.., e 

J~.,, h" c,) = \,' Ci) • i, n' e ''~ "' ,, 

- 4 -

(6) 

(7) 

(5) 



where 

D"' = 

D' 
~ 

C 
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l•J.a.s- ... (.u,-,) 

..., > 0 

I. 3 . s- . . . (el ....... ,). /. /. J . ~ . . . C•h-1) 
, 

S.: -= 'Is t. J 

V) s' = 
" 

n > o. 

These formulas hold for X "'- I ~n-1 I , except for 

exactly. 

h (l.) which is given 
0 

We will approximate the spherical Hankel functions and their deriva

tives f urther by replacing the complex exponentials in Eqs.( 6 ) and (7) by 

unity which is consistent with the restriction to sufficiently small ~4, 

and•~. With this additional approximation the expressions in Eqs.( 6 ) 

and (7) have the same form as t he small argument approximations of the 

radial solutions of Laplace's equation. Our approximation is, then, the 

familiar one in which the acoustic field near the source is replaced by 

a hydrodynamic field . With these approximations Eq . ( 5 ) reduces to 

0~ S ~ 8 • 

( s;,,, )"+' 
I· I· 3· r • • · ( r2n-1) i.lt si-,.; I ~ P

1 
(cos e) 

"+I , 

- 5 -
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Although Eq.(8) is significantly simpler than Eq . (5) it is still 

not feasible to obtain the expansion coe ff icients in an analytical form 

as functions of '<Land~/~. It is only feasible to specify a numerical 

value of b/a. and then obtain the results as a function of ~a, . This 

has been done for six different values of b/a,, for which the cylinders 

are illustrated to scale in Fig 1. For each value of b/o.. the calculations 

have been performed for six different boundary conditions - the following 

four conditions which are symmetric with respect to the equatorial plane: 

uniform vibration of sides N(e) = ( O, 
lu.> 

0 ~ 8 ~ 9 : ta,., - I a.;,:, 
• 

"• ~ e ~ T/z. 

parabolic vibration of sides N (8) = \ 0 , 0 ~ 6 ~ e. -r,l. 
l u.( I- c.-t&.6 /Co+"•.) ., ~ ~ 9 ~ /; 

uniform vibration of ends 

parabolic vibration of ends 

N(&) • \ u_, 

1 0 > 

0~ e~ eo 
e ~e !:: T/~ • 

N(8)= f u. ( I- t;......ae / t....1.S. ) > 

1 0 , 

O.!:: Q ~ ~. 

e.~ e ~ T/2. 

plus the antisymmetric forms of the latter two conditions . These s i x 

nonnal velocity distributions are illustrated in Fig 2. 

In each of these 36 cases we have used from one to five terms in 

the expansion in Eq.(1). The results for the expansion coefficients 

are given in Tables 1-6 in Appendix I . In this approximation -we obta1n 

only the imaginary parts of the expansion coefficients and these hold 

only for 

- 6 -
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The practi cal range o f val idity of these results can be evaluated by 

comparison with the exact calculations based on Eq~5) which will be 

presented later. We will f i nd, for example, that for b/a. = J and ~a.= 0./ 

the low frequency approximation for a.. is in error by less than 1%, for 

a.
1 

and a.
4 

by a bout 5%, and for a.._ by a bout 15%. At ~Q, = 0 . 1~ the 

error for a...
0 

has increased to about 3%, but for a,
1 

and a.
4 

it is s til 1 

a bout 5%. At -Aa. = o. S the errors in Q, Q, and Q.._ are al 1 about 15%. 
e> .I, T 

These are only the mathematical errors resulting f rom approximating 

Eq . ( 5) by Eq . (8 ) . The extent to which these results differ from the 

true solution of the physical problem is another question which we will 

consider later It appears that as far as the mathematical errors are 

concerned the low frequency results in Tables 1-6 are useful for trans

ducer design estimates up to about -/ea_ c0.2S. 

Tables 1- in Appendix I show how each expansion coefficient varies 

with N , that is, with the number of terms used in the expansion. This 

variation with N ref lee ts how the least squares approximation of the 

boundary condition changes with the number of terms used . Presumably 

each change in the approximation is an improvement, and as the approxi

m3 t ion settles down the expansion coefficients also settle down to a 

stable value. The first expansion coefficient stabilizes first, then 

the second one, etc • . We note that in most cases the first coefficient 

( a.. for symmetric problems, a,
1 

for antisynune tric problems) has stabilized 

quite we 11 at H = 8 or 9 with some exceptions for 'o/G.. far from unity. 

In many cases the second coefficient also appears to have stabilized 

well at N = 8 or 9_. We will examine the least squares approximations 

- 7 -
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Fig . I The six different cylinders for which low frequency 

computations were made. 

b/a = 1/4 2b 

b/a = 1/2 ! 
b/a -= I 

b/a • 3/2 

b/a • 2 

b/a = 4 
- 8 -



Fig .2 The s,x different velocity distributions for which 

low frequency computations were mode. 

• 2o • 

2b 

uniform sides parabolic sides 

symmetric 

•lo • ,1, 

uniform ends parabolic ends 

" -~ • 

antisymmetric 

'°' '" 41> 

uniform ends parabolic ends 
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in detail later and try to determine how well these coefficients represent 

the solutions of the specified problems . 

In some cases there is a strong pairing of the expansion coefficients 

as they vary with N . This can be seen especially for the cases of 

vibrating ends with 'o/a. e I • We will see later that this behaviour is 

correlated with the way in which the least squares approximations improve 

as more terms are added . In certain cases the third term gives little 

improvement over that obtained with only two terms, and correspondingly 

the second coefficient does not change appreciably when the third term 

is added . Then the fifth term gives no improvement over the approximation 

obtained with four terms, etc . (for example, see Fig 3e). 

Evaluation of the Method 
__,.;;.;..;;....,;;;~.;;..;.; - - ---

Actual t:ormal Velocity Distributions 

From Eq.(l) and the definition of the <t/B) we see t hat the actual 

normal velocity on the boundary surface is 

s 

Using Eq . (8) this becom s 

- 10 -
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0~ (J ~ 8 , . 
( 10) 
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where b"' is related to Q," by 

( 11) 

Calculations based on Eq . (10 ) are shown in some representative cases in 

Figures 3a - 3f. The specified normal velocity distribution is shown at 

the top of each figure, and the approximations obtained with one term, 

two terms, etc . are shown below. These figures show how difficult it is 

to accurately satisfy boundary conditions on a cylindrical surface by use 

of spherical wave functions . Figures 3a - 3c show that the approximation 

is somewhat better for b/._ •/ than it i s for either large or small ~/~ . 

It is evident also that the approximation is better for the parabolic 

than for the uniform velocity distributions This is fortunate, because 

most of the transducer applications are better represented by the para

bolic distributions. 

· The method of calculation determines the expansion coefficients by 

minimizing the mean square error between the specified and the actual 

normal velocity for a given number of terms in the expansion . Thus the 

normal velocity distributions in Figures 3a - 3f are the best fits to 

the specified distributions in the least squares sense . The root mean 

square errors between the actual and specified normal velocities were 

calculated for all the cases treated in the low frequency approximation . 

These rms errors ( EY
1111

) are included in Figures 3a - 3f; for example, in 

Figure 3a for I'\• o {one term in the expansion) therms error is .460 

times the magnitude of the velocity of the cylinder sides . 

We will not give all the details of the results for therms errors 

- 11 -



FiCJ. 3a Specified normal velocity N(B) and least square 

approximations a~Jan Is <u =n. 
Uniform vibration of cylinder sides with b/a • I. 

N(8) 

0+-------~--,,----r----r--.----,--

N•O 
O..__ ____________ --.----~---'T- E,ms • .460 

N•2 
O..,_ ________ ~-----r---r--~--,,-
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N=4 

o,.___~--.----~-~-.....,....----,-----,--
Erms• .408 

N•6 
E,ms =.398 

0+--,---,----~-----,-----,-----,--

N•8 
E,m, •. 386 

•. 

0 30 60 90 

8 - degrees 
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Fig.3b Uniform vibration of cylinder sides with b/o = 1/4. 
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Fig. 3c Uniform vibration of cylinder sides with bib • 4. 
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Fig.3d Parabolic vibration of cylinder sides with · b/a • I. 

N(8) 

0 .._ ______ ,.._L.....oo-----------.--

o..,_ _________ ___,, _______ .......,._ 

60 

8 - de;rees 

- 15 -

90 

N•O 
E,ms = .311 

N•2 
E,ms • .210 

N•4 

E,ms •. 208 

N•6 
Etms • .176 

N=8 
E • .176 

rm1 

-



Fig. 3e Uniform vibration of cylinder ends with b/o =- I. 
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Fig. 3f Parabolic vibration of cylinder ends with bA:> •I. 
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here, since they are not especially illuminating unless they re r elated 

carefully to other features o f the problem or compared with similar error 

calculations for other problems. The most significant result found from 

the error analysis was that in many cases the solutions do not significantly 

improve as more terms are added; see, for example, Figure 3· . In such 

cases the method i s almost powerless for practical purposes. In other 

cases the errors decrease quite strongly with the first two or three 

terms. In general it appears that the results are best for ~/o, near 

unity and for parabolic velocity distri utions. 

Expected Results Based on Radiated Power 

For any of the cylinder problems discussed here the radiation re

sistance can be calculated from the far field using the expression 

where A is the vibrating area on the cylinder Eq . (12 ) gives the 

radiation resistance referred to U , which is the normal velocity 

( 12 ) 

averaged over the vibrating portion of the surface , Thus the time average 

radiated power is '/,. R \ u\ 1 . 

For sufficiently small -ko. and 1eb only the first term of the sum 

is necessary in the far field . In such cases Eq . (12 ) gives the results 

in Table 1, where b. and b
1 

are the numbe rs in Appendix I which are 

related to the expansion coefficients ¢• and a,
1 

by Eq,(11) . 

- 18 -



PA.ID llol'l1DIU11CAL 1->aATOUU, IIICOUO&IDD 

OIII IIIVU IIOAD • c.u&.IIU, 111.uMCH\STTS 
75686B-SR-3 

I 

Table 1 Radiation Resistance f or the Low Frequency 

Solut i ons (The numb~rs b. and b1 are given in Appendix I) 

SV11111etric Cases A u R/ tc.A 

uniform vibration of sides f-T£b "' ~ 1. ( ~ ... t "-/,. 
parabolic vibration of sides +Ta,I, 3/3 \A. 'I/, b: ( ~ .. ) .. .. /1o 

1 1 
uniform vibration of ends .l.,,. ~ u ~ £,. ( ~ca,) 

l. 1/1 U 
i. I. 

parabolic vibration of ends .,_ 1f Cl, ca £,
0 

(i4..) 
I 

Antisyum~tric Cases 

rniform vibration of ends .JV4. ,_ L.c.. 
~ I, ,,. ., b, ( ~ ... ) 

!parabolic vibration of ends 
I, 1/,. ~ "/a ~~ C ,a.)+ • Ttt, 

The a oustic power radiated by any sufficiently small pulsating 

source is equal to that radiated by a monopole sphere of the same source 

strength . This relationship is most conveniently expressed in the form 

I ( R \ 
A\ ,,A) - ( 13) 

where A is the vibrating area of the source in question and R is its 

radiation resistance refer red to its average normal velocity. 

This r elationship enables us to determine the expected values of b. 

for the synnetric cylinder problems. Using the results in Table 1 we 

find 

b a; 
0 

~/~ uniform v i bration of sides 

-¾ b/~ parabolic vibr.ation of sides 

., . • uniform vibration of ends 

'/t parabolic vibration of ends. 

- 19 -
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b/a 

4 

2 

3/2 

1 

1/2 

1/4 
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The values of b. for H c t from Appendix I are compared with these expec

tations in Ta.ble 2 . 

Table 2 Calculated and Expected Values of the Lowest 

Order Expansion Coefficient for Low Frequency 

Symmetric Cases. 

Uniform Si rles Parabolic Sides Uniform Ends Parabolic Ends --
Calculated Expected Calculated Expected Calculated Expected Calculated 

2. 457 4 2 .150 8/3 .089 1/2 .083 

1.953 2 1.372 4/3 . 426 1/2 .246 

1.464 3/ 2 1.026 1 .445 1/2 .263 

. 993 1 .689 2/3 .463 1/2 .255 

. 507 1/2 .368 1/3 .445 1/2 .248 

.123 1/4 .083 1/6 .337 1/2 .240 

This comparison shows definite patterns which are consistent with our 

findings from studying the errors in satisfying the specified boundary 

conditions. The calculated values of b. are close to the expec ted values 

for '/1, ~ '-/a,,~ 1, while for '-/a,,• + or 1,/,._:. '/t the two are quite different 

Expected 

1/4 

1/4 

1/4 

1/4 

1/4 

1/4 

in most cases. For vibration of the sides the agreement is better for _b/._ • + 
than ~/., • 14 , while for vibrating ends '-/o.. c: '/t gives better agreement. 

Finally the agreement for the parabolic cases extends to larger~/., for 

vibrating sides and to 1maller D/o.. for vibrating ends than it does in the 

uniform cases. The general picture then is that, when using 1pherical 

wave functions, the accuracy is best for the cylindAr h~ight and diameter 

- 20 -
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approximately equal, but the range of~/~ over which a given accuracy 

could be expected depends on the type of boundary condition. 

Exact Calculations 

The revised computer program was used to calculate the expansion 

coefficients for cylinders vibrating syumetrically on the ends. These 

results are exact in the sense that the exact Eq.(5) was used for the c:#-"(~) . 

They still suffer, of course , from the inaccuracies in satisfying the bounda

ry conditions which we have just been discussing. The pro ram includes a 

modification of the previous boundary c nditions in which only a central 

region on the ends of radius b tan e, is vibrating, and the out er annular 

region on the ends is rigid. Calculations have been done for both uniform, 

and parabolic, 

o~e~s, 

9,!9!:"2., 

0~ ,~ 19, 

8, ~ , ~ "'72. , 

vi bration of the central region on the ends . Results have been obtained 

for eighteen cases, and the expansion coefficient• are given in Appendix II 

in the form a,-/ bu,, . 

The previous remarks about the practical range of validity of the 

low frequency approximation can now be substantiat d by compari•on of, 

for example, Table 3 in Appendix I and the first page of Appendix II for 

uniform, symnetric vibration of the ends with l./tt • / • The agreement at 
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~4.:: o.J can be seen easily, since the factor by whicl> the coefficients 

differ in these two cases is then a power of ten. Recall that the low 

frequency approximation gives only the imaginary part of a.., . 

Although the revised computer program is more efficient than the 

original program it still is quite limited in the number of terms which 

can be handle . However, our study of the least square approximations 

suggested that simply taking more terms is not always a practical way to 

improve the solution. The program is useful as it stands , but only for 

a limited range of~/~ near unity and only for far field calculations. 

Practical Results 

Far Field Patterns 

The far field sound pressure can be obtained directly from Eq.(l) 

and is given by 

The pressure amplitude patterns have been calculated for all the cases 

where the c linder dimensions are large enough to give appreciab e de

partures from omnidirectionality. 

Figure 4 shows the effect on the pattern of varying the relative 

amount of vibrating area on the ends for ~ct •I and .,.la. =I . We see the 

expected minimum in the axial direction where the contributions from the 

two ends of the cylinder partially cancel. The cancellation is more 

complete for the stn11ller sources (smaller 9
1 

). Since the parabolic 
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velocity distribut ion corresponds to a smaller effective source it gives 

a deeper minimum along the axis than the uniform velocity for the same &, . 

Figures 5 and 6 s ow patterns for ~la.=/ and l), = f~• {entire ends 

vi brating) for~ increasing from 3/1 where the patterns are almost omni

directional to 2 where strong directional effects exist. The directional 

effects are more pronounced for these sources on the ends of a cylinder 

than they are for the same sources in a plane, that is, for circular disks 

of the same ,«- in a plane. 

Figure 7 gives patterns for 7fa.• 1 , ~ = 8
0 

(entire ends vibrating) 

and '°/o.. c ~ /
1 

2. • The case •la. = O is, of course, the familiar circular 

disk in an infinite rigid plane for which the far field is well known for 

the uniform case (piston) and has been given by Porter5 for the parabolic 

case where it is called approximate supported edge case. This reminds us 

that all the cylinders with height lb and symmetric boundary conditions 

can equally well be regarded as cylindrical protuberances of height b on 

an infinite, rigid plane. Similarly the cyli~ders with antisynmetric 

boundary conditions can be regarded as protruding from an infinite, ideally 

soft plane , Fig 7. shows that the maximum on the axis, which occurs for 

a vibrator 1.n a plane , changes to a minimum ( for A«. not too large) when 

the vibrator protrudes from the plane . The deepest minimum for ~& ., 

probably comes between our two cases of -A,'= I and ~I,=~ . 

Table 3 gives the pressure amplitude at 8 • ,o• relative to the 

average normal velocity, Specifically the quantity given in the table is 

.... "' .,f,.l_ ~ a.,. __ ., ) 
NO - L - ' P..,, ( 0 U 1>rO I.a.. (15) 
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Fig. 4 Normalized for field pressure amplitude. 

Uniform 

1.0 .6 

Parabolic 

1.0 .6 

symmetric vibration of ends 

ko = I 
b/o = I 

30°} 
--- - -- 400 9, 
-- 45° 

o• 

o• 

.2 .2 
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FiQ. S Normalized far field pr111ure ampli tude 

Uniform symmetric vibration of entire ends 

b/a • I 

go•.__ ......... _______ ___.... ____ __ -'---~----'---..__ _____ __, go• 
1.4 1.0 .6 .2 .6 1.0 1.4 
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FiQ. 6 Normalized far field pressure amplitude 

Parabolic symmetric vibration of entire ends 

b/a = I 

oo 

---------------------L-----lgoo 
1.0 .6 .2 .2 .6 1.0 1.4 
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Fig. 7 Normalized for field pressure amplitude 

symmetric vibration of ends 

ka - I -
b/a : 0 

--b/a : I 
---- b/a : 2 

Uniform 

1.0 .6 .2 .2 .6 1.0 

Parabolic 

1.0 .6 .2 .6 1.0 
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where U is the average normal ,·e i.ocity; U- u. for uniform vibration, 

while U• 11 LL for parabolic vibr ation. With the results in Table 3 

the n~,nalized patterns in Figs . 4 - 7 cftn be compared on an absolute 

basis . 

,c. 
1 

1 

1 

• 5 

1 

1.5 

2 

1 

1 

1 

Table 3 . 

,.,,, 
1 

1 

1 

1 

1 

1 

1 

0 

1 

2 

0 Pressure amplitude at 90 (see Eq.(15)) and 

radiation resistance for cylinders vibrating on 

the ends (referred to average normal velocity). 

Uniform Parabolic 
t, P(,o•) ~/~A P(,o•J R/1e,A 

30° .161 .087 .159 .084 

4o0 
.306 .169 .330 .181 

e. .369 .194 .434 .234 

, . .108 .085 .119 .099 

&. .369 .194 .434 .234 

e. .699 .292 .955 .444 

e. .778 .470 1.272 .747 

e. .440 .423 .460 .42 

&. .369 .194 .434 .234 

e. .248 .084 .278 .099 

Theae far field calculations require only three or four term• in 

the expansion for the largest~., and"' which have been used. Reasonably 

stable values of theae fir1t few coefficient• have been obtained by taking 

terma up to M• 1, in the machine calculation•• In Appendix II the 
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coefficients are given only for the maximum value of N used and that 

value of N is indicated. 

Radiation Resistance 

For the cylinders vibrating on the ends where A• -.1Tb • li.lfll • 11 

have for the radiation resis t ance 
T/1. N 

I 
.. J l 2. 1,4 1- a.ti 

• -r..•, hr ., .. b"' 
I 0 

. -"' .. 
1. 

F!, ,~. •> I ~;,, & J.S . 

, we 

( 16) 

The results calculated from Eq.(16) by numerical integration of the far 

field patterns are given in Table 3. Figure 8 also shows "R/,rc.A a1 a 

function of ~ .. for J./,_ • I with the disk in a plane case ( "/,,, • 0 ) for 

comparison. The curve for ~/a= 0 and parabolic vibration is from refer

ence 5. The important point for practical application• shown by these 

results i1 the significant decrease of the radiation resistance when the 

vibrator protrudes from the plane of 1ymmetry. Thia i1 also shown clearly 

in Table 3 for the ca1e1 with ~Q. •I and ~/._ • D I and .:L . , 

Concluaion 

The work described here has been aimed mainly at discovering the 

practical limitation• of the previoualy propoaed method of calculating 

acoust~c radiation from a cylinder. It appear• that when uaing spherical 

wave function• uaeful far field information 1uch as directivity pattern• 

and radiation resiatance, can be obtained for cylinder, with height to 

diameter ratio between about 2 and 1/2. New information of thi1 kind ha1 
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FiQ. 8 Radiation resistance referred to averaQe velocity 
for vibratinQ circular disks of radius a on 

the ends of a riQid cylinder of heiQht 2b. 
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Uniform vibration 

.8 
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0 
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1.2 

Parabolic vibration 

.8 
b/a = I 

0-a-l!!!:::::;..._~----..------..-~----~------
0 ko 2 
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been given here, and additional calculations could be made with the 

existing computer program. However , it has not been possible to use 

enough terms to get reliable near field information. 

We have also seen that the range of usefulness of the method depends 

in a quite detailed way on the boundary conditions. For example, when 

using spherical wave functions for a cylinder, it depends on whether the 

sides or the ends of the cylinder are vibrating and on the shape of he 

velocity distribution . These findings support the obvious need for in

vestigating the use of other wave functions, and suggest that a fruitful 

direction for future work would be the development of wave functions 

which could be adjusted to suit specific boundary shapes and specific 

boundary values. 
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Appendix I 

Expansion Coefficients Calculated in the 

Low Frequency Approximation 

In the low frequency approximation only the imaginary parts of the 

expansion coefficients are given, and the approximation is valid for 

J (~)1 +- (f•)' ~<. I • The results are obtained as functions of ~ when 

~/& is numerically specified. Thus we have tabulated the quantities 

i~& .. Ju (..l.)".,J. 64 64 ~/k -,t& • The notation . 1 2El, for example, means .1 2 x 10 '. 

Table 1 Uniform, symmetric vi ration of cyJ.inder sides. 

Table 2 Parabolic, symmetric vibration of cylinder sides. 

Table 3 Uniform, symmetric vibration of cylinaer ends . 

Table 4 Parabolic, symmetric vibration of cylinder ends . 

Table 5 Uniform, antisymmetric vibration of cylinder ends. 

Table 6 Parabolic, antisymmetric vibration of cylinder ends . 
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Appendix II 

Expansion Coefficients Obtained From 

the Computer Program 

75686B-SR-3 

a,, I 
The qu ntities tabulated here are /~~, and all results are for 

cylinders vibrating sytmnetrically on the ends. The notation -2 .4o1E-5, 

for example, means -2 .401 x lo- 5• 

Eighteen different cases, including uniform and parabolic velocity 

distributions, are given in the following order: 

icz. ... ,0. ~ N -
.1 1 45° 8 

.25 1 45° 10 

.5 1 45° 12 

1 1 45° 16 

1.5 1 45° 16 

2 1 45° 16 

1 1 30° 14 

1 1 4oO 14 

1 2 e. 14 

The value of "' given is the maximum value used, and the expansion coef-

ficienta are given only for this value of H 
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