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ABSTRACT

This paper considers the possibility of inducing a convective

secondary flow in the fully developed channel flow of a quasi-

incompressible (Boussinesq) fluid. Instabilities of this type can

only occur when the temperature gradient in the direction of the body

force exceeds a certain critical value. This temperature gradient is

prcportional to the Rayleigh number of the fluid. We find that for

channels of arbitrary cross section, the critical Rayleigh number is

4R L 1360 (h/d) where h is the arbitrary channel's maximum dimension

in the body force direction and d is the diameter of an equal area

circular channel. For two special geomnetries it is possible to im-

prove the above lower bound estimate to the critical Rayleigh number.

In a circular channel R > 3450 and in a square channel R > 2480.
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INTRODUETION

Maslen [1] considered the fully developed steady flow of an in-

compressible fluid in a channel whose generators lie parallel to an

axis. He demonstrated that the velocity components normal to the

"channel axis must vanish everywhere. Velte [21 treated the fully de-

veloped steady flow of a quasi-incompressible (Boussinesq) fluid in a

similar channel with a horizontal axis. A body force acts along a

normal to the axis. The channel wall is nonuniformly heated to estab-

lish a constant temperature gradient in the fluid in the direction of

the body force ("heated from below"). Velte found that there is a

critical value for the Rayleigh number below which the transverse

velocd.ty components vanish. The Layleigh number is proportional to

the imposed temperature gradient and is given by R - ga~h 4/kv where cv

"is the fluid coefficient of thermal expansion, g is the body force per

V' unit mass acting on the fluid, 0 is the magnitude of the imposed tem-

perature gradient, h is the maximum dimension of the region in the

direction of the body force, k is the fluid thermal diffusivity, and

*Any views expressed in this paper are those of the author. They
should not be interpreted as reflecting the views of The RAND Corpora-
tion or the official opinion or policy of any of its govermnental or
private research sponsors. Papers are reproduced by The RAND Corpora-
tion as a courtesy to members of its staff.
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v is the fluid kinematic viscosity. Above the critical Rayleigh num-

ber it is possible to establish a convective secondary flow.

4Velte developed a method for calculating upper bounds to this

"critical Rayleigh number in channels of arbitrary cross section. If

for design purposes it is desirable to insure the stability of the

initial fully developed channel flow, then lower bounds to thee criti-

cal Rayleigh number must be established. In this paper a method is

presented to calculate these lower bounds.

THE GOVERNING EQUATIONS

Consider a fully developed quasi-incompressible flow in a channel

parallel to the y-axis. The Cartesian velocity components u, v, and w

are in the x, y, and z directions (given by the unit vectors i, ., and

A body force g acts in the negative z direction. The initial

velocity, temperature, and pressure distributions in t!.e fluid are

u - O, v = v (x, z)j, w 30

VT - -Ok (1)

Vp = -pg(l - a~z)k + pvv2Vj J
where T is the temperature, p is the pressure, p is the mean fluid

density, V is the gradient operator, and V2 is the Laplacian operator.

It is assumed that the secondary convective flow is fully develop-

ed (independent of y), hence the governing dimensionless perturbation

equations valid at the onset of instability are (see E2])

2V2 = RG (2)X
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v2 e- e (3)

where * is the perturbation stream function measured in units of k

(u - z' w * ), and e is the temperature perturbation in unitu of

Oh. Here the gradient and Laplacian opL-dtors are in, the x, z-plane.

If the rigid channel wall has a large thermal conductivity and heat

capacity relative to the fluid, then the initial temperature distri-

bution on the wall is maintained at all times. Thus the boundary con-

di. ions on the channel wall B are

-" V n - 0 on B

(4)

0 - 0 on B

Here n is a unit outer normal to B. The above eigenvalue problem is

equivalent to the variational principle in the cross-section plane C.

f (V4)2 dx dz

R -2 = = 0 onB (5)

.c(Ve)
2  dx dz

The functions * and 8 are chosen from E,, a space of admic 4 bie func-

tions whose * functions are four times differentiable and whose 0

functions are twice differentiable. In addition, the functions satis-

fy the constraint V 2e - * x in the region C and the boundary conditions

on B. The critical Rayleigh number is given by R = - min R.

GENERAL LOWER BOU•D ESTIMATES TO R

Using the inequality (Vi )2 2 *,, and the constraint V = •x0 it

follows directly from equation (5) that

I!
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- n f,(v2 *) 2 dx dz c (V2 0) 2 dx dzR > rMi.. - rai n (6)
SC •(V*)2 dx dz ['(V,)2 dx dz

over the function space E1. Employing the Principle of Monotony [3],

one finds that a lower bound to R is also given by the extremum prob-

lem (6) over a less restrictive function space E2 in which * and 0 are

chosen independent of one another. Hence E is a sub-space of 2"

Consider the extremum problem

2 f.r(V 2 •~) 2 dx dz

K 2 r min ........ ,x Vd • n = 0 on B (7)

tfc(V*) 2 dx dz

over the function space E2 . The smallest extremal value of equation

(7) is identical to ".,e principal eigenvalue of the problem posed by

V2 2 + K2V2* . 0 inC

(8)

= *V* n = 0 on B

For most regions, the principal eigenvalue cannot be calculated in a

simple manner. But for a circular channel (in which h = d, t•he diame-

ter), K2 is determined from the first root of J 1 (K/2) = 0 (see [4])

where J is the Bessel function of the first kind of order one. There-

fore, K - 58.74. Polya and Szeg* [41 have demonstrated that among

all plane regions of equal area, the circle has the smallest value of

2K . Thus if one replaces a given arbitrary region of height h by an

equal area circle of diameter d, then

K2 1 58.74 (h/d) 2 (9)
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Next consider the extremum problem

2 S rn (V9) 2 dx dz
L min, 0 = 0 on B (10)

1c e 2 dx dz

over the function space E 2 The smallest extremal vaiue of equation

(10) is identical to the principal eigenv;±lue of the following prob-

lem:

V28 + LG 2 0 inC

(11)

e a 0 on B

For a circle, L2 is L-termined frow, the first root of Jo(L/2) - 0.2~ 0.

Therefore, L - 23.14. Polya and Szegd also have shown that among

all plane regions of equal area, the circle has the smallest value of

L2L2 .Analogous to the estimate (9), one then can obtain

L2 ' 23.14 (h/d) 2  (12)

Using the diverkence theorem, the boundary condition 0 = 0 on B, and

the Schwarz inequality, it follows that

{J (¶0) 2 dx dz}2 I f 9V20 dx dz 12
c0 C

If V2e dxdz 12  Sc e2 dx dzfJ (¶720)2 dx dz
C c c

Combining these expressions with equation (10) yields •

~ *
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2Lc (V2e)2 dx dzL2 • 2. . . . . (13)

J'c (VO)2 dx dz

Substituting the estimates (7).and (13) into equation (6) and using

the estimates (9) and (12) gives

R 2 1360 (h/d) 4  (14)

As an illustrative example, consider a channel whose cross section

is an equilateral triangle of height h. A simple calculatiozn yields

(h/d) 4 - 1.85 and R c 2520 for this channel.

LOWER BOUNDS TO P IN TWO SPECIAL CASES

For channels with circular or square cross sections, the lower

bound estimates of the previous section may be i.mproved. In these two

special cases we find estimates from equation (6) over the function

space E rather than the less restrictive function space Z2.

The Circular Channel. In a circular channel (0 ! r ! k,

0 - 2rr, cp measured counterclockwise from the x-axis) the complete

set of eigenfunctions to equation (8) is given by (see ref. [4])

X X f2r~mjjýinn - Jin(Kmnr)}

m,-O nl

(15)

Am cosap +B sin UPI

The associated eigenvalues are K2 where K is the nth root ofmn mn

J I(K/2) - 0. Vele [2] has demonstrated that the stream function

mode associated with the critical Rayleigh number is symmetric with

/I
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respect to both the x- and the z-axis. Thus the subset of (15) that

has the proper symmecry property is given by

- ~~ A{n(2*)m J. 223 - Jm (Lmn)} o

m-0 n-l

m an even integer (16)

The principal eigenvalue of the subset is K2 . K0 2 = 58.74.
01

The complete set of eigenfunctions to equation (11) for the cir-

cular channel is given by

0 0

~iZJm(Lmnr){fAmn cosap + Bmn sin u=p} (17)

m=O n-1

L2 th
The associated eigenvalues are L where L is the n root ofmn mn

J m(L/2) - 0. From the constraint V 2 - x and the symmetry property

of *, one can conclude that e must be symmetric with respect to the

x-axis and anti-symmetric with respect to the z-axis. The complete

subset of (17) that has the proper symmetry property is given by

Co W

8 A J Am(Lmnr) cos ~p m an odd integer (18)

m-l n-l

The principal eigenvalue of the subset is L2- 58.74. One now

has at hand the following estimates for the circular channel

I•
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K2  .f (V2 )2 dx dz

01 f~(V*2 dx dz

2 _

11 c (V:) 2

1dx dz

Substituting the above estimates into equation (6) gives

R 2 3450 (19)C

for the circular channel. Recently Sherman [5] used a Rayleigh-Ritz

technique and the variational principle (5) to establish the upper

bound estimate

R C 6510 (20)C

for the circular channel.

Thp. b. uarr. ,&Canel. In a square channel (lxi j ½, IzI ! k), the

eigenfunctions of equation (8) cannot be determined in any simple

form. Weinstein [61 has determined a lower bound to the principal

2 2 .
eigenvalue, K • 5.1 2. The associated principal eigenfunction is

symmetric with respect to the x- and the z-axis. Veltc [2] has shown

that the critical stream function mode also has this symmetry.

The complete set of eigenfunctions tc equation (11) for the

square channel is
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e - cos (2m - 1) TTx + Bm sin 2MTM •

m-l n-l

{An cos (2n - 1) rry + Bn sin 2UTTI} (21)

As in the circular channel, one can conclude that 9 must be symmetric

with respect to the x-axis and anti-symmetric with respect to the z-

axis. The complete subset of eigenfunctions with the required symme-

try is

e -A mnsin 2mrrx cos (2n -1) Tiy (22)

m-i n-i

2 2The principal eigenvalue of this subset is L - 5T. Thus for the

square channel one has the estimates

5. 1 2 f Sc (V2 ) 2 dx dz

,Jfc (V'$)2 dx dz

2 c (v27) 2 dx dz
5.2 2-

S'c (Ve)2 dx dz

Substituting the above estimates into equation (6) gives

R k 2480 (23)c

Velte calculated the upper bound estimate for the square channel

R ! 5030 (24) V
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CONCLUDING REMARKS

The lower bounds to R established in this paper differ con-
C

siderably from the upper bounds calculated by the Rayleigh-Ritz

method. Nevertheless the lower bounds provide the designer with a

limit of error which the Rayleigh-Ritz method cannot yield. Better

lower bounds may be established if the Weinstein method [31 can be

successfully applied to the variational principle given by equation

(5). It is evident from both lower bound and upper bound calculations

that the nature of the confining region can have a marked effect on

the critical Rayleigh number.

Finally it should be noted that for zully developed flow between

two horizontal planes of infinite lateral extent, the critical Rayleigh

number is exactly R ff= 1707.8 [71.
C
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