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ABSTRACT 

A method is presented for numerically integrating a system of 
stiff,  first-order differential equations.    This method is based on 
transforming the set of dependent variables so that the resulting sys- 
tem will not be stiff; the transformed system is then integrated by the 
Runge-Kutta method.    The resulting procedure is often appreciably 
faster than classical methods in that a much larger step size is allow- 
able with nominal increase in step computation time.    Applications and 
results are discussed for systems of various order,  including a system 
of six chemical rate equations. 
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SECTION   I 
INTRODUCTION 

Although systems of diffei ential equations having the property of 
being stiff have been used as mathematical models of certain physical 
phenomena almost since the invention of the calculus,  only in recent 
years have such systems been categorized according to this property 
and been formally recognized as a class of equations, the numerical 
solution of which often eludes the computer when sought by classical 
means.    Since 1951, various works have been published on the subject 
(Refs.   1 through 5). 

The primary reason that equations in this class present such dif- 
ficulty is that an exceedingly small integration step size is sometimes 
required,  making classical integration techniques impractical even on 
the most sophisticated computing machines. 

The object of this presentation is to formulate a method that can 
be used efficiently on a high speed digital computer to obtain the solu- 
tion of a system of first-order,  ordinary,  stiff differential equations. 
The method described is straightforward and practical when applied to 
stiff equations resulting from many physical problems. 

The above objective may be realized by transforming the dependent 
variables in such a manner that the resulting system of equations will 
not be stiff in a neighborhood of the value of the independent variable at 
which the transformation was made.    The Runge-Kutta method will be 
used to integrate the resulting system. 

SECTION  II 
DEFINITIONS AND NOMENCLATURE 

When presenting a similar technique,  some authors develop their 
theory exclusively for a single equation with one dependent variable, 
and later state that the extension of their method to a system of such 
equations is "obvious".    It is the contention of the authors of this 
presentation that any such extension is almost always |ambiguous.    It 
is also believed that with little or no sacrifice to clarity,  the method 
can be developed in vector notation, leaving no doubt concerning how 
the method should be applied to the general case.    Following these 
convictions, the nomenclature introduced below Will be used throughout 
this document: 



AEDC-TR-65-262 

1. Roman characters will be used to denote real scalar 
quantities. 

2. Greek characters will denote numbers which are,  in 
general,  complex scalars. 

3. An (-.)  will indicate an n x 1 column vector,  and <f> 
denotes the null vector. 

4. An (-)  will denote an n x n matrix; 4> and I denote the 
null matrix and identity matrix, respectively. 

5. The notation Re (A)   will mean the real part of the 
complex number,   A . 

Now consider the system of equations 

=  Fj (x, y,, y,, ,    Vn) ;    Vi   (x0)   =   Yi0 

for i = l ,. . ., n .    More conveniently,  Eq.  (1) can be written 

dy 

Hx 
=   F   (x, y)   ,   y  (x„)   =   y„ 

(1) 

(2) 

where 

y = 

>'n 

F(x,y)   = 

F,(x,y) 

F,(x,y) 

Fn (x, y) 

In order to get Eq.  (2) in an applicable form, define the matrix 

-^(x,y)      —_i(x,y)       --■      —S-(x.y) 

dy7(x'y) dv7{x'y)  ■•■   *;(x*y) 

-  (   (x.y)   = 

«?yi dy, <?yn 
•(*,?) 

(3) 
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It will be assumed throughout that 7 U, y) is nonsingular, this 
method being inapplicable at any point on the solution of Eq. (2) for 
which this is not true.    Equation (2) can now be written 

ÜL + 7  <x,y)y  = g(x,y)      ,      y(x0)  = y, (4) 
ax 

where 

g (x,y)   =   F{x,y)  +   f (x,y)y (5) 

The form of Eq.   (4) is now such that the definition of a stiff differ- 
ential equation can be given.    Definition:   Let x = Xj  be a value of the 
independent variable in the region of interest,  and let A.,, X2, ... , An 

be the eigenvalues of 7 (xlt y (xj  .    If 

Re Ui) > > 0 

for any 1,  then Eq. (4)  is said to be stiff at x = x, . 

SECTION   III 
DERIVATION OF THE TRANSFORMATION 

It was mentioned previously that the dependent variable in Eq.   (4), 
y (x0) ,  will be transformed so that if | x. — x0 | £ t, then the transformed 
equation will not be stiff.    For the remainder of this paper,   his under- 
stood to be the integration step size for the Runge-Kutta method (fourth- 
order) on the transformed equations.    The maximum allowable value of 
h| will,  of course,  depend on the exact nature of the original differential 
equation; the transformation has allowed the value of h to be significantly 
increased in all test cases tried so far. 

It is pointed out again that the validity of the method depends on the 
nonsingularity of 7 (x,  y). 

It is convenient to define at this time the matrix 

uw =7-70(x -*,) .J^t'-,'*>'■■ _ ^u-o   + ... (6) 

which is sometimes referred to as 

u (x)  =   exp (- f0 (x - x„)) 

for obvious reasons. 
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The following properties of the infinite matrix series, Eq.  (6),  can 
be readily verified independent of f„ and U - x„); 

1. The series converges 

2. 5(x)   is nonsingular 

3. 5(x) X = \ S(x) 

Note also that 

A]x
{x)    +f. u(x) = $    ,    ü(x0) = f <7> 

Now,  let z (x) be a solution of 

d z   ,   r -*      -» -       -• (8) 
-77- + fo z = gD    -    2c = y0 

Hence 

. - i 00  (y, -l_1i0) +V B„ (9) 

Defining 

w(x) = y (x) - z (x) one gets,  by subtracting Eq.   (8) from Eq.  (4) 

-JJBJSL + 1   (x,   5?)   w (x)   =  v (x,   y)   ;   w0   =  } (10) 
ax 

where 

v(x.y)  =  i(x,y)   -  io   + [FB  -  l(x,?)]   z{x) (11) 

Premultiplying Eq.  (10) by a. (x)   and postmultiplying Eq.  (7) by w(x) 

gives 

5U)  4^- + Ü f(x,y") w = Ü v 
dx 

and 

du 

Subtracting, 

w    +   f0 u (x)  w   =   rf» 
dx 

~    d w da ,    -t  < \ t    ~ t   \ ~ u — —— w  + ut UpVJw  — f0 u U) w  = uv 
dx dx 

-£- (u-1^)  +   5"' [f  (x.y)   -   a"1 r0   ü]   w    =    5"' v (12) 
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Defining 
- _ i   -» 

t   =   u        w 

« ~11 F (x, y ) - frlu 

Eq.   (12) becomes 

-S-5- +   m   t   =   u v ;       t    (x0)   -  <f> 
dx 

(13) 

Equation (13) is the desired transformed equation, the relation be- 
tween 7 and y being 

Y = u(x) t  (xl * r^'Tf - ü(X)JF0 + y. 

Setting 

G (x, t )  = n"'  v  - m t   = Ü"1   F (x, y)  - F„ + t0 (y   - y0) 

Eq.   {13) can be written as 

{14) 

(15) 

-ii-= G (x.t)j     Ux0) - J <16> 
dx 

An interesting consequence of the transformation is observed if 
Eq.   {2) is linear with constant coefficients.    In that case 

F(x,y) ^ r0 

g {x,y) - g0 

i t      ~    > 

t (x)   =   ffl 

?W = I"1  (I  - «) F0 + yB (17) 

Notice that Eq.  (17) gives the exact solution of the linear equation 
with constant coefficients. 

The fundamental question to be explored at this point,  the trans- 
formation having been obtained,  is whether, and to what extent, Eq. (16) 
is stiff.    Basic to this question is the matrix 



AEDC-TR.65-262 

which is associated with Eq.  (16) in the same mariner that f is asso- 
ciated with Eq.  (2).    On the assumption that all the necessary partial 
derivatives exist, it can be shown after some manipulation that 

As 

$f) ■ -s 

=   ü""lf(x,y)-f0ü 

it follows that the eigenvalues of m  are the same as the eigenvalues 
of 

U*,y) - f. 

Thus, the spectral radius of m can be made as small as desired 
simply by choosing an x sufficiently close to x0.    It is assumed here,  of 
course, that F (x, y) is continuous at x = x0.    According to the definition 
of a stiff equation given earlier,  it follows that Eq.  (16) is not a stiff 
equation at x = x0 + h provided the value of h is not too large.    Any 
failure in the Runge-Kutta integration of Eq.  (16) will, therefore,  be 
the result of some other undesirable phenomenon. 

SECTION   IV 
APPLICATION TECHNIQUES 

One method of applying the transformation to obtain the solution of 
Eq.   (2) would be to solve the transformed Eq.   (16) for t (x) by the Runge- 
Kutta method,  compute the corresponding y (x), update the transforma- 
tion,  and continue in the same fashion on a new interval.    While t M 
is piecewise discontinuous,  this of course has no bearing on the solution 
of interest, y (x) . 

Having served its purpose,  the transformation can now,  in a com- 
putational sense,  be entirely removed from the procedure.    Thus, the 
technique can be thought of in a completely different way, that of solving 
the untransformed Eq.  (2) by a method different from that of Runge-Kutta. 

While the above two interpretations of the method would theoretically 
yield identical answers, the second version seems to be advantageous 
to the first in practice.    This was experienced in actual test runs in 
which the two interpretations were compared on the basis of run time, 
accuracy,  and simplicity of program logic. 
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As a result of Eqs. (14) and (16), and the classical fourth-order 
Runge-Kutta equations (Ref, 6, p. 122), the equations necessary for 
integrating Eq.  (2) with the transformation removed are 

for i = 0 

y = y0 (18a) 

k0    =    0 

for j = 1 
x - x- +  f 
y - F«T

1
[T - 5W]F. 4 y, 

kt = J" W[F  tx.y) - F0 + 5 (y - ?.)] 

(18b) 

for j 
* " *° + T 

for j  = 3 

y = {;«!,+ I0^[\ - u W]F. + y, 

k,   =   ü-i   (X)[F  (x,y)   -  F0   +   FD   (y   -   yo)J 

x   =   x0   +  h 

?^«(x)tJ +  f0-
l[f - 5 Wj F0  + y0 

k3  =  ST' (X)[F (x,y)  -  F0  +  i0   (y  - yjj 

U8c) 

(16d) 

at 
x   =  x„   +   h 

y = -J- Ü (x) ( 2k, + 2k2 + k,) + if,- f 1   - ,; (> i | i.:u f [i  - 5 (x)l 

Notice that although the algebra is somewhat more involved,  there 
is a close similarity between\Eq.  (18) and the corresponding Runge- 
Kutta equations. 

The problem that initially motivated the development of this tech- 
nique is a system of six chemical rate equations (Ref.  7).    However,  the 
matrix F (x, y) associated with this problem was found to be ill- 
conditioned; hence,  a modified version of the method was developed. 

Equation (18) in scalar form was applied to each of the six equa- 
tions individually.    In other words,   the six equations were,  for purposes 
of making the transformation only,  assumed to be uncoupled. 
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In order to determine whether or not to make the transformation on 

the i th equation,   —j-5 f,(x, y) , the number 5-7—  ä 0  was examined to 
ax cy 

see if the equation was suitable for integration by the Runge-Kutta Method. 

If ai _   4^ Ax   >   0.5 

then the i th equation was transformed.    If the above inequality did not 
hold,  the i th equation was considered suitable for integration without 
making the transformation (Ref.  8,  p.   198,  or Ref.   1).    Thus the six 
equations were solved as a coupled system,  but the integration method 
used on the individual equations was dictated by the above criterion. 
Also, the test was made at every integration step so that at one value 
ofx,  for example,  Eqs.  (1),   (2),   (5),  and (6) were transformed while 
Eqs. (2) and (4) were integrated by the Runge-Kutta method.   At another 
value of x,  an entirely different combination might very well have pre- 
vailed. 

SECTION   V 
DISCUSSION OF RESULTS 

Several stiff systems for which the analytic solution is known were 
solved both by the Runge-Kutta method and by the method under considera- 
tion here.    One such equation is 

y' +  & y  = xS   ;       y (0)  =  0 

A comparison of the errors,  the absolute value of the difference 
between the exact answer and the approximation,  is shown in Fig.   1 for 
a = 100  and a = 1000 . 

Figure 2 shows a similar graph for the Euclidian norm of the error 
vector associated with the system. 

-y/ + an y, + ai2 y2 ■ bi x ;       y, Co) = yl 

-y2'  + a2i  y,  + a22  y3  = t>2 \  ;        y2 (0)  = y° 

No analytic solution was available for analyzing the success of the 
method as applied to the chemical rate equations.    Essentially,  the same 
solution was found using both the Runge-Kutta method proper and the 
transformed method,   a considerably larger Ax being admissible in the 
latter case.    These answers were also compared with solutions from 
another source (Ref.   7) as further confirmation of their validity. 
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SECTION  VI 
CONCLUSIONS 

The method discussed herein for integrating a system of stiff, first- 
order differential equations has been found to be practical and expedient 
in all cases on which the method has been tested.    Answers comparable 
to those indicated by the Runge-Kutta method were obtained with a con- 
siderably larger integration step size, 
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Fig. 1   Errors for a Single Equation 
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